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Abstract. To find the clusters of arbitrary shapes rapidly from the sustainable
growth of data stream, this paper proposes GDRDD-Stream algorithm. To
capture the evolving characteristics of the data stream, this paper defines the
effective time for the data points and design the eliminating strategy based on
the effective time to remove the historical data. Secondly, we design the parti-
tioning method based on resilient distributed datasets to balance the computing
load between different nodes. Finally, we improve the traditional DBSCAN
algorithm in order to compute in parallel between different partitions. The
experimental results show that the proposed algorithm can cluster data stream
distributed in arbitrary shape rapidly, capture the evolving behaviors of data
stream, and its performance and quality are better than the CluStream algorithm.
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1 Introduction

With the rapid development of Internet applications, an enormous amount of data
stream arrived in real time, like stock data, network intrusion monitoring data and etc.
Different with the static data, data stream [1] is massive, diverse, continuous, and rapid
[2]. So the clustering algorithms on static data are no longer applicable to data stream.
There have been some algorithms [3] which improved the traditional clustering algo-
rithms in view of the characteristics of data stream: the clustering algorithms proposed
in the articles [5, 6] are based on k-means which cluster data stream by single
scanning. CluStream [7] is a framework, in which clustering process is divided into the
online stage and the offline stage. And it could capture the evolution. But all of these
algorithms are based on k-means, so which can only mine spherical clusters. D-Stream
[8] applies the two-stage framework of the CluStream so as to capture the evolving
process and is a density-based clustering algorithm to find the clusters of arbitrary
shape. But its efficiency will decreased significantly for data stream of high dimension
or rapid growth. So it is an urgent need for efficient clustering algorithm. Distributed
cluster provides a revolution for large-scale data stream clustering. However, the
clustering algorithms based on MapReduce [4] store the intermediate results on disks,
and I/O operation is frequent with a certain delay. In order to improve the capability of
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parallel computing and the throughput of the cluster, Matei et al. proposed Resilient
Distributed Datasets (RDD) [9]. RDD is a shared memory model without the need for
frequent access to the disk so as to improve the computing performance of the cluster
significantly.

This paper proposes a density-grid based clustering algorithm (GDRDD-Stream),
which is based on the DBSCAN [10] algorithm on the Spark platform.

2 Design and Implementation of GDRDD-Stream

GDRDD-Stream algorithm achieves parallelization by storing data in resilient dis-
tributed datasets. Firstly, the whole data space is divided into the grids with the same
size that is not less than 2*ε using the traditional spatial partitioning algorithm. Then
these arrived data points are matched to the corresponding grids, and the elimination
algorithm based on the effective time is implemented to filter out the grids and the data
points. And then the RDD partitioning algorithm based on the number of the data
points is implemented to partition. Finally, this algorithm improves the traditional
DBSCAN algorithm to achieve parallelization, and adopts the basic idea of “parallel
DBSCAN in partitions – DBSCAN in border points – merging results” to generate the
clustering results. The flow chart of GDRDD-Stream algorithm is shown in Fig. 1.

2.1 Eliminate Algorithm Based on the Effective Time

The timeliness of the data affects the accuracy of clustering result. If clustering only the
recent data stream, it cannot reflect the evolution of the data stream. Therefore, the
concept of the effective time of data point is proposed in GDRDD-Stream algorithm.
Data objects in the effective time will be clustered, weakening the impact of historical
data and reflecting the evolution of data stream.

Generate the initial grids

Select the grids and data points 
using eliminate algorithm

Perform Partition algorithm 

Receive the stream data and map 
them to the according grid

Perform the improved DBSCAN

Output the clustering results

Fig. 1. The flow chart of GDRDD-Stream algorithm
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Definition 4 Effective Time of the data point (Teffective): Refers to a period of time
that the data point impacts on the clustering results, that is, the longest time that the data
points in memory can survive.

In order to further optimize the algorithm, GDRDD-Stream designs the elimination
algorithm based on the effective time, which can reduce the amount of computation,
and timely release of memory. The elimination rules are as follows:

• Record the update time of grid. If the update time of the grid over the effective time,
delete its historical data and this grid does not participate in the cluster calculation.

• Detect every data point in the grid that if they exceed the valid time.

2.2 RDD Partitioning Algorithm

The grids selected by Elimination algorithm easily result in the uneven distribution of
the data points in different partitions. GDRDD-Stream algorithm adopts the partitioning
method based on the number of data points in grid. It balances the computing load
between different nodes by merging the adjacent grids to ensure that the data points in
each grid are relatively average.

• The minimum number that could be processed per partition can be calculated by the
formula (1). The parameter processedPts is the points selected by Elimination
algorithm. The parameter defaultParallelism, parallel degree of Spark, is set in Spark.
Because the distribution of points in the partition is not even, use defaultParal-
lelism*2 to make the number of the partition floating around the average value.

MinNum ¼ countðprocessedPtsÞ
defaultParallelism� 2

ð1Þ

• Merge the adjacent grids according to the minimum number of partition. Spark
provides Partitioner interface, allowing developers to customize partitioning rule.
Reallocate the grid IDs for the merged grids and generate the objects that inherits
from the Partitioner interface. The RDD partition based on grid IDs is generated
using the MapPartitionWithIndex interface in Spark.

2.3 The Improved DBSCAN Algorithm

GDRDD-Stream, based on DBSCAN, can discover clusters of arbitrary shapes and is
of high clustering quality. Because the traditional DBSCAN algorithm needs to cal-
culate the distances between all of data points, its time complexity is high. But the
position of point in the data space is fixed so only the data points in the ε-neighbor need
to be calculated. We could partition the data by the positions of them in dimension
space. The data points in the same partition are of the close distance that most of the
points in the same partition only find the ε-neighbor in this partition. And the border
points(ε from the partition boundary) need to find the ε-neighbor from other partitions.
Because the number of the border points is small and the clustering calculation in
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partitions could be executed in parallel, the efficiency is significantly improved com-
pared with the original algorithm. Based on the partitioning method, we improve the
DBSCAN as following:

(1) DBSCAN algorithm is executed to cluster the data in every partition in parallel.
(2) Then, record the border points(ε from the partition boundary) and cluster the

border points between different partitions.
(3) Finally, merge the clustering results.

It is important to note that the cluster identifier may be duplicate between different
partitions. To avoid this situation, the identifier of the first point is allocated as the
identifier of the new cluster because of the point identifier with the global uniqueness.
For any two points in the border points, if they are not in the same grid and do not
belong to the same cluster but their distance is less thanε, create a tuple (clusterId1,
clusterId2) using their cluster identifiers and then merge them into the same cluster; if
their distance is less thanεand one of them does not belong to any cluster, allocate this
point with the cluster identifier of another point. And then merge all of the tuples and
reassign the cluster identifiers for all data points.

If the total number of data points is n, the complexity of the traditional DBSCAN is
O(n2). This algorithm improves the efficiency of clustering through parallel computing.
If the partition number is m, the complexity is O((n/m)2), the efficiency may improve
m2 times nearly.

3 Experimental Results

We evaluate the evolution, quality and efficiency of GDRDD-Stream and compare it
with CluStream. Our experiments are conducted on four PCs with 2.2 GHz CPU and
1 G memory. We evaluate GDRDD-Stream on CentOS 6.5 with Spark 1.3.1 and Scala
2.10.4 and use Teffective = 40 s, eps = 30, Mpt = 8. We use two testing datasets. The
first one is DS1 with 2-dimension which are synthetic. Its size is 80000 (the original
distribution of the dataset is shown in Fig. 2). The second one is a real dataset used by
KDD-CUP-99 [11] which contains 41 attributes and 5 categories.

3.1 Evolution Testing

We simulate the data stream based on DS1 at the speed of 1000 points per second to
evaluate the evolution of GDRDD-Stream. We check the clustering results at four
different times, including t1 = 40 s and t2 = 60 s. The clustering results are shown
from Figs. 3 to 4. Since this algorithm is based on the effective time of data point and
parallel in-memory computing, it can mine dynamically the evolution of the data
stream and discover clusters of arbitrary shapes. The grids and data points are detected
and eliminated periodically to release the memory resources in time.
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3.2 Correct Rate Comparison

The cluster purity is used to measure the quality of the clustering algorithm.

purity ¼ 1
k

Xk

i¼1

jCr
i j

jCij ð2Þ

In the formula (2), k is the number of clusters, |Ci| is the number of the data points
in the ith cluster, |Ci

r| is the number of the data points that are clustered rightly in the ith

cluster. The cluster purity of GDRDD-Stream and CluStream are compared on KDD
CUP-99, shown in Fig. 5. The cluster purity of GDRDD-Stream is apparently higher
than CluStream’s at the time of 40 s, 60 s, and 80 s. It is caused by that CluStream can
only discover the spherical clusters and need to know the value of k in advance while
GDRDD-Stream can discover non-convex clusters. The clusters of arbitrary shape are
generated and the number of clusters is unknown with flowing of data stream.
GDRDD-Stream can allocate the network intrusion detection type to the right cluster
while CluStream will allocate the different intrusion types into the same cluster. So the
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u-
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GDRDD-Stream is higher than CluStream.

Fig. 2. Original distribu-
tion of the dataset DS1

Fig. 3. Clustering result at
t1 = 40 s

Fig. 4. Clustering result at
t2 = 60 s

Fig. 5. Correct rate com-
parison on KDD CUP-99
(1000points/s)

Fig. 6. Running time with
changes of length of data
stream

Fig. 7. Running time with
changes of dimension of data
stream
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3.3 Efficiency Comparison

The efficiency comparison of GDRDD-Stream and CluStream with the growth of data
stream length on KDD CUP-99 is shown in Fig. 6. The processing time of CluStream
increases apparently with the extension of data stream length while the processing time
of GDRDD-Stream increases slowly. The efficiency comparison of GDRDD-Stream
and CluStream is shown in Fig. 7 with dimension from 2 to 40. The efficiency of
GDRDD-Stream is higher than CluStream’s. It is caused by that CluStream, based on
complex distance calculation, will increase the calculation load with the growth of
length and dimension of data stream. While GDRDD-Stream improves the efficiency
through parallel computing between the RDD partitions based on grids.

4 Conclusion

In this paper, the GDRDD-Stream algorithm is proposed that are based on DBSCAN
algorithm and resilient distributed datasets on Spark in view of the drawbacks of the
current clustering algorithms of data stream. Experimental results show that
GDRDD-Stream could capture the evolution of data stream and discover the clusters of
arbitrary shapes in real time. And it has high efficiency without affecting the clustering
results because of parallel computing using RDD. The algorithm makes high speed data
stream clustering feasible without degrading the clustering quality.
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