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Abstract. This paper presents a connection calculus for the description logic
(DL) ALC. It replaces the usage of Skolem terms and unification by additional
annotation and introduces blocking, a typical feature of DL provers, by a new
rule, to ensure termination in the case of cyclic ontologies. Besides the con-
nection calculus, a simplified clausal form normalization is presented. Further-
more, termination, soundness and completeness of the calculus are proven.
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1 Introduction

Description logics (DL) are widely used for knowledge representation and modelling
ontologies, e.g., they are the standard ontology language for the semantic web [1]. One
approach to reason with DL is the embedding of DL into classical first-order logic
(FOL) and using existing provers for FOL. On the one hand, when using a FOL prover
to answer DL queries, no alterations are required, since DL correspond to decidable
fragments of FOL [6, 8]. Moreover, the main FOL reasoners were exhaustively tested,
and thus, their usage is reliable. On the other hand, in a preliminary study, Tsarkov
et al. reported that, even running one of the fastest FOL provers, the FOL approach
displays a performance much slower than a specially crafted DL reasoner [12].

This paper proposes a connection calculus h-CM for ALC, an important fragment
of DL. It relies on annotations instead of Skolem terms, and includes a rule for copying
clauses that implements blocking, similarly to existing tableau-based DL reasoners. It is
a significantly enhanced version of the connection calculus proposed earlier [3], which
essentially translates a DL formula into a FOL matrix, thus including Skolem terms and
unification, the latter here replaced by a similar procedure, h-substitution.

The calculus was implemented in RACCOON (ReAsoner based on the Connection
Calculus Over Ontologies) [4]. Therefore, such a calculus and its implementation can
serve any Semantic Web application that deals with ALC, an important DL language.

Section 2 presents the DL ALC; its normalization is shown in Sect. 3. Section 4
explains the formal connection calculus for ALC, while its termination, soundness and
completeness are proven in Sect. 5. Section 6 concludes with a summary.
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2 The Description Logic ALC

An ontology O in ALC is a set of axioms over a signature (NC, NR, NO), where NC is
the set of concept names (unary predicate symbols), NR is the set of role or property
names (binary predicate symbols); NO is the set of individual names (constants) [1].
Concept expressions are inductively defined as follows. NC includes ⊤, the universal
concept that subsumes all concepts, and ⊥, the bottom concept subsumed by all
concepts; all concept names belong to NC. If r 2 NR is a role and C, D 2 NC are
concepts, then these formulae are also concepts: (i) C t D (ii) C u D, (iii) ¬C,
(iv) 8r.C; (v) 9r.C.

A knowledge base in DL consists of a set of basic axioms (TBox), and a set of
axioms specific to a particular situation (ABox). Two axiom types are allowed in a
TBox T : (i) C ⊑ D; (ii) C � D, standing for C ⊑ D and D ⊑ C. An ABox A w.r.t. a
TBox T is a finite set of assertions of two types: (i) a concept assertion is a statement
of the form C(a), where a 2 NO, C 2 NC and (ii) a role assertion r(a, b), where a,
b 2 NO, r 2 NR. An ALC formula is either an axiom or an assertion; an ontology O is
an ordered pair (T ;A).

There are two major ways of defining the semantics of ALC. The first one relies on
the definitions of interpretation, model, etc., over a domain D [1]. Another way is by
mapping ALC constructs to FOL (see [1], 2.2.1.3) and exploiting the semantics defined
for FOL, see, e.g., [2]. This approach defines a translation / that maps a concept C to a
unary predicate /C(x) with a free variable x. If C is a concept and r a role, then, e.g., 9r.C
is translated into the FOL formula /9r:C yð Þ ¼ 9xr y; xð Þ^/CðxÞ [1].

The work described in this paper uses an adaption of the translation approach,
hence, taking advantage of existing concepts of connection calculi for FOL.

As for notation, in this paper, words starting with a capital letter denote concepts;
roles start with small letters. Individuals are denoted by the lowercase letters a, b, c, d;
variables are denoted by x, y, z, k, u, v. Terms are either variables or individuals.

3 Normal Form and Matrix for ALC

Definition 1 (Query). A query a (a TBox or ABox axiom) against an ontology O is an
ALC formula for which the logical consequence O ⊨ a should be proven.

Definition 2 (ALC Disjunctive Normal Form, Clause, Matrix, Graphical Matrix).
Literals (of ALC) are atomic concepts or roles, possibly negated. Literals involved in
an universal restriction 8r.C or in a existential restriction 9r.C are underlined. In case a
restriction involves more than one clause, literals are indexed with the same new
column index number at the top. Literals can participate at most in two universal
restrictions in left-hand side (LHS) axiom’s sub-formula or in two existential ones in
the right-hand side (RHS); therefore, they can have at most two indices, e.g. Li,j. An
ALC formula in disjunctive normal form (DNF) is a disjunction of conjunctions (like
C1 _ . . . _ Cn), where each Ci has the form L1 ^ . . . ^ Lm and each Li is a literal. The
(ALC) matrix of an ALC formula in DNF is its representation as a set C1; . . .;Cnf g,
where each clause Ci has the form L1; . . .; Lmf g with literals Li. In the graphical matrix
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representation, clauses are represented as columns, and restrictions as lines; restrictions
with indexes are horizontal, while those without are vertical (see Example 1).

Remark 1. To deduce O ⊨ a the validity of the formula C1 ^ . . . ^ Cn ! a ðO ! aÞ,
i.e. of ¬O _ a, must be proven. The effects for the DNF are: (i) axioms of the form
E ⊑ D translate into E ^ ¬D; (ii) ABox assertions are negated; (iii) free variables are
existentially quantified; (iv) FOL Skolemization is applied to universal variables; and
(v) the query a is not negated.

Example 1 (Query, Clause, ALC Matrix). The query {9hasPet.Cat ⊑ CatOwner,
OldLady ⊑ 9hasPet.Animal ⊓ 8 hasPet.Cat} ⊨ OldLady ⊑ CatOwner reads in FOL as:

8x 9yhasPet x; yð Þ ^ Cat yð Þð Þ ! CatOwner xð Þð Þ
8z OldLady zð Þ ! 8k hasPet z; kð Þ ! Cat kð Þð Þð Þ
8z OldLady zð Þ ! 9v hasPet z; vð Þ ^ Animal vð Þð Þð Þ

9>=
>;

�8uðOldLady uð Þ ! CatOwnerðuÞÞ

and is represented by the FOL matrix (where a is a Skolem terms, f a function symbol):

ffhasPet x; yð Þ; Cat yð Þ; :CatOwnerðxÞg; fOldLady zð Þ; hasPet z; vð Þ;:CatðvÞg;
fOldLady zð Þ; :hasPetðz; f ðzÞÞg; fOldLady zð Þ; :Animalðf ðzÞÞg; f:OldLadyðaÞg;
fCatOwnerðaÞgg

and by the following ALC matrix (the column index marks the two clauses involved in
he same restriction; variables are omitted as they are specified implicitly) (Fig. 1):

ffhasPet;Cat; :CatOwnerg; fOldLady; hasPet;:Catg; fOldLady;:hasPet1g;
fOldLady;:Animal1g; f:OldLady að Þg; fCatOwner að Þgg

Definition 3 (Impurity, Pure Conjunction/Disjunction). Impurity in an ALC for-
mula is a disjunction in a conjunction, or a conjunction in a disjunction. A pure
conjunction (PC) or disjunction (PD) does not contain impurities (see [3] for a formal
definition).

Example 2 (Impurity, Pure Conjunction/Disjunction). (a) 9r.A and ^n
i¼1Ai are PCs

if A and each Ai is also a PC. (b) 8r: D0 t. . .tDnt C0 u. . .uCmð Þt A0 u. . .uAp
� �� �

is
not a PD as it contains two impurities: C0 u. . .uCmð Þ and A0 u. . .uAp

� �
.

Definition 4 (Two-Lined Disjunctive Normal Form). An ALC axiom is in 2-lined
DNF iff it is in DNF and in one of the normal forms (NFs): (i) Ê ⊑ �D; (ii) E ⊑ Ê;

Fig. 1. The query from Example 1 represented as an ALC matrix
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(iii) �D ⊑ E, where E is a concept name1, Ê is a pure conjunction, and �D is a pure
disjunction2.

Example 3 (Two-Lined Disjunctive Normal Form). The axioms (i) Ê ⊑ �D (1NF);
(ii) E ⊑ 9r:Ê (2NF) and (iii) 8r:�D ⊑ E (3NF), where Ê ¼ ^n

i¼1Ci and �D ¼ _m
j¼1Dj

(Fig. 2).

Example 4 (Two-Lined DNF). Table 1 shows examples of quantification restrictions.
Vertical lines represent existential restrict ions ð9r:CÞ, horizontal lines represent uni-
versal restrictions ð8r:CÞ on the LHS axiom’s sub-formula or the opposite on the RHS.
Lines may overlap. Note also that, if written in FOL, Skolem functions should appear
in the two last NFs in Table 1 (e.g., :rðx; f ðxÞÞ would replace 9y. . .:rðx; yÞ).

Remark 2. The motivation for relying on these NFs is a two-fold: it saves memory by
avoiding redundancies in the matrix, and it helps proving the system’s soundness,
completeness and termination, by restricting the problematic cases to 2-lined columns.

Normalized, “purified” TBoxes may add new, introduced concepts; however, they are
conservative extensions [5] of their originals, since to every model of the former there
is a (sometimes distinct) model of the latter, and validity is preserved. Besides, for these
NFs, in the worst case, the number of new concepts grows linearly with the number of
impurities; in the average case, this is better than other normalizations (e.g., in [10], the
number of new axioms grows linearly with the axioms’ length).

Definition 5 (Cycle, Cyclic/Acyclic Ontologies and Matrices). If A and B are atomic
concepts in an ontology O, A directly uses B, if B appears in the right-hand side of a
subsumption axiom whose left-hand side is A. Let the relation uses be the transitive
closure of directly uses. A cyclic ontology or matrix has a cycle when an atomic
concept uses itself; otherwise it is acyclic [1]; e.g., O ¼ fA ⊑ 9r:B;B ⊑ 9s:Ag is a
cyclic ontology. Besides, in acyclic ontologies all subsumption axioms have a concept
name in its LHS.

Fig. 2. Examples of the three two-lined normal forms’ representations in ALC

1 The symbols E and Ê were chosen here to designate a concept name and a pure conjunction rather
than the usual C and Ĉ, to avoid confusion with clauses, that are also denoted by C.

2 If 9r:> ⊑ Ê or 8r: ⊑ �D 2 ?T , then the matrix must include axioms A ⊑ >, for all A 2 NC, too.
Conversely, 9r:> ⊑ Ê or 8r:> ⊑ �D requires axioms ? ⊑ A, for all A 2 NC, in the matrix.
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4 The ALC h-Connection Calculus (ALC h-CM)

The ALC h-Connection Method (henceforth ALC h-CM) differs from the FOL Con-
nection Method (CM) by replacing Skolem functions and unification by h-substitu-
tions, and, just as typical DL systems, employs blocking to assure termination.

Definition 6 (Path, Connection, h-Substitution, h-Complementary Connection). A
path through a matrix M contains exactly one literal from each clause in M. A con-
nection is a pair of literals {E, ¬E} with the same concept/role name, but different
polarities. A h-substitution assigns each (possibly omitted) variable an individual or
another variable. A h-complementary connection is a pair of ALC literals
EðxÞ;:EðyÞf g or pðx; vÞ;:pðy; uÞf g, with hðxÞ ¼ hðyÞ; hðvÞ ¼ hðuÞ. The complement
�L of a literal L is E if L = ¬E, and it is ¬E if L = E.

Remark 3 (h-Substitution). Simple term unification without Skolem functions is used
to calculate h-substitutions. The application of a h-substitution to a literal is an
application to its variables, i.e. hðEÞ ¼ EðhðxÞÞ and hðrÞ ¼ rðhðxÞ; hðyÞÞ, where E is an
atomic concept and r is a role. Furthermore, xh ¼ h xð Þ.

Definition 7 (Set of Concepts, Skolem Condition). The set of concepts sðxÞ of a
variable or individual x contains all concepts that were instantiated by x so far, or, more

formally, s xð Þ ¼def E 2 NCjE xð Þ 2 Pathf g. The Skolem condition, ensures that at most
one concept is underlined in the graphical matrix form. This condition is formally

defined as 8a Ei 2 NCjEiðaÞ 2 Path
n o���

���� 1, where i is a column index.

Lemma 1 (Equivalence Between h-Substitution in ALC h-CM and Unification in
CM for ALC Formulae). h-substitution is equivalent to unification for ALC formula,

Table 1. Examples of quantification restrictions
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i.e., both procedures either return the same results or behave the same way w.r.t. their
calculi, when given the same inputs.

Proof. The cases occurring in ALC, all covered by h-substitution, are in Table 2.

Note that in all cases h-substitution and unification yield the same substitution or no
substitution; the only exception resides in the case where L1 ¼ E xð Þ and L2 ¼
:E f yð Þð Þ (L1 ¼ E; L2 ¼ :Ei in the notation without variables). However, Lemma 2
shows that they are equivalent, in the sense that unification in FOL CM prevents the
same connections that ALC h-CM and h-unification prevent. ∎

Definition 8 (ALC Connection Calculus). Figure 3 shows the formal ALC connec-
tion calculus (ALC h-CM), adapted from the FOL CM [9]. The rules of the calculus are
applied in an analytic, bottom-up way. The basic structure is the tuple\C;M;Path[ ,
where clause C is the open sub-goal, M the matrix corresponding to the query O� a
(O is an ALC ontology) and Path is the active path, i.e. the (sub-)path currently
checked. The index l 2 N of a clause Cl denotes that Cl is the l-th copy of clause C,
increased when Cop is applied for that clause (the variable x in Cl is denoted xl) – see
example of copied clauses in Fig. 8. When Cop is used, it is followed by the appli-
cation of Ext or Red, to avoid non-determinism in the rules’ application. The Blocking
Condition is defined as follows: the new individual xhl (if it is new, then xhl 62 NO, as in

the condition) has its set of concepts sðxhlÞ compared to the set of concepts of the

previous copied individual, i.e., sðxhlÞ g s xhl�1

� �
[11], to test if the former is a subset of

the latter.

Remark 4 (ALC Connection Calculus). FOL CM already copies clauses, using the
indexing function l; in ALC h-CM, Cop implements blocking [1], when no alternative
connection is available and cyclic ontologies are dealt. It regulates the creation of new

Table 2. Equivalence for ALC between CM unification and h-substitution in ALC h-CM

Unification h-substitution
Input Output Input Output

L1 ¼ EðxÞ
L2 ¼ :EðaÞ

r(L1) = E(a) L1 ¼ E or EðxÞ
L2 ¼ :EðaÞ

h(L1) = E(a)

L1 ¼ EðxÞ
L2 ¼ :EðyÞ

r(L1) = E(y) L1 ¼ E or EðxÞ
L2 ¼ :E or :EðyÞ

h(L1) = E(y)

L1 ¼ EðbÞ
L2 ¼ :EðaÞ

Not unifiable L1 ¼ EðbÞ
L2 ¼ :EðaÞ

No h-substitution: Not unifiable

L1 ¼ EðxÞ
L2 ¼ :Eðf ðyÞÞ

r(L1) = E(f(y)) L1 ¼ E

L2 ¼ :Ei

h L1ð Þ ¼ E yð Þ
s yð Þ ¼ s yð Þ [ f:Eig

L1 ¼ EðgðxÞÞ
L2 ¼ :Eðf ðyÞÞ

Not unifiable L1 ¼ Ek

L2 ¼ :E j

No h-substitution, as Skolem
condition does not hold:

8a EijEiðaÞ 2 Path
n o���

���� 1
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individuals, thus preventing non-termination. The Skolem condition solves the FOL
cases where the combination of Skolemization and unification correctly prevents
connections (see Soundness Theorem below). The Skolem condition is easy to
implement: only a flag denoting if each variable/individual in any path contains an
underlined concept suffices Finally, in the Ext and Red rules, h-substitutions replace
variables by variables/individuals in the whole matrix. Any individual x can have in its
set of concepts s(x) at most a single concept name with a column index in the matrix

(i.e., 8a Ei 2 NCjEiðaÞ 2 Path
n o���

���� 1). This restriction avoids the situation in FOL

matrices, where unification is tried with distinct Skolem functions (see Lemmas 1, 2).

Example 5 (ALC Connection Calculus). Figures 4 and 5 show the proof of the query
from Example 1 using the matrix representation and the formal calculus, respectively.

5 Termination, Soundness and Completeness

Definition 9 (Functional Equivalence Between Decidable Inference Systems w.r.t.
a Set of Formulae). An inference system A is functionally equivalent to a system B w.
r.t. a set of formulae R when, for any formula a, R‘Aa $ R‘Ba and R0Aa $ R0Ba.

Lemma 2 (Functional Equivalence Between CM and ALC h-CM for Acyclic ALC
Formulae). ALC h-CM is functionally equivalent to CM w.r.t. acyclic ALC formulae.

Proof. Given that (i) Cop is not applied here; (ii) the two systems only differ on the
replacement of unification by h-substitution in the Ext and Red rules; and (iii) h-sub-
stitution is equivalent to unification, Lemma 1 proves all cases but one: a connection
with two Skolem functions. The proof for that case is inductive over the matrix
structure.

Fig. 3. The connection calculus ALC h-CM
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Fig. 4. The proof of the query using the graphical matrix representation. Arcs are connections
whose labels are the names of the involved individual(s)/variable.

Fig. 5. The proof of the query using the formal connection calculus, where M is an abbreviation

for M ¼ f h;C;:CO
n o

; O; h;:C
n o

; O;:h1
� �

; O;:A1
� �

; :O að Þf g; CO að Þf gg (the double-

ended arrow just copies the proof part to save text space).
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Induction Hypothesis: O0CM a, where the only available connection is between literals
with distinct Skolem functions.

Base Case: Suppose a tentative connection between literals with two distinct Skolem
functions. For instance, a posed query 9r:A ⊑ E;E ⊑ 8r:a �EðaÞ, represented in FOL
for the CM in Fig. 6a. Unification prevents the connection (denoted by a dotted lined) in
the CM. For ALC h-CM, this connection is forbidden too, due to the Skolem condition.
In Fig. 6b, for the new variable y, s yð Þ ¼ fA2g; so it cannot contain also :A1, otherwise

it would violate the Skolem condition ð8a Ei 2 NCjEiðaÞ 2 Path
n o���

���� 1Þ.

Inductive Case. Suppose an individual a or a variable x that, in CM, takes part in several
connections, two of two in literals with Skolem functions. Then the same behavior from
the base case will occur here: CM prevents the last connection ought to unification
between two different Skolem functions, whileALC h-CM avoids the connection on the
basis that the Skolem condition is violated. In Fig. 7, the set of concepts of y or a cannot
admit two underlined concepts, i.e. s yð Þ ¼ fA1g, but s yð Þ 6¼ fA1;:C2g, again due to the
Skolem condition ð Ei 2 NCjEiðyÞ 2 Path

n o���
���� 1Þ.

Since the two systems apply the same rules in the same order and the effects of
unification in the FOL CM are the same as that of the h-substitution in ALC h-CM, the
systems are equivalent for the set of acyclic ALC formulae. ∎

Remark 5 (Cyclic Ontologies). Lemma 2 entails that termination, soundness and
completeness need only to be proven for the cyclic cases. Lemma 2.22 from [1] states
that in a cyclic ontology O, for an individual name xi ∊ ABox A of concept Ei (i.e.,
individual EiðxiÞ is an assertion), then there is a unique finite sequence of roles
r1; . . .; riði� 1Þ, a unique finite sequence of i role instances (the so-called role suc-
cessors) r1ðx0; x1Þ; . . .; riðxi�1; xiÞ, and a unique, finite sequence of individual names
x1; . . .; xi�1 that creates xi for the ALCN tableaux system, as defined by the authors
(also holds for ALC, since it is a subset of ALCN ). For the ALC h-CM, a similar
corollary is valid, without needing role successors.

Fig. 6. Tentative connection proof for a) 9r:A ⊑ E;E ⊑ 8r:A0CM :EðaÞ, with r = {y/a} and b)
9r:A ⊑ E;E ⊑ 8r:A0ALCh�CM :E að Þ. Dotted lines stand for forbidden connections.

Fig. 7. Tentative ALC h-CM connection proof for the inductive case
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Lemma 3 (Uniqueness of a Generation Sequence). Suppose Ei an ALC concept
from a query over a cyclic ontology O, xi an individual name of concept Ei (i.e.,EiðxiÞ).
Then, there is a unique finite sequence of individual names x0; . . .; xi�1, xi in a path.

Proof. Since only one rule is applied at a time, the new concept instance Ei(xi) (with
the new individual name xi) is created in the end of the active path. Since the active
path contains the unique sequence Eðx0Þ; . . .;Eðxi�1Þ, the corollary holds. ∎

On the other hand, it is easy to see why role successors [1, Lemma 2.22] are not
needed in ALC h-CM (for notation ‘ALCh�CM and ‘CM stand for deductions carried out
with ALC h-CM, CM respectively). Observe the generation of ¬E(c) for the query
described as E v 9r:E‘ALCh�CM:E að Þ in Fig. 8: the active path in this case is
:E að Þ;:E bð Þ;:E cð Þf g. In tableaux systems, role successors ¬r(a, b) and ¬r

(b, c) would also need to be created to arrive at ¬E(c).

Theorem 1 (Termination). Given M, the matrix representing the arbitrary query
O‘ALCh�CM a, and a chosen initial clause C, any rule sequence in the ALC h-CM
applied over the tuple “e;M; e” terminates.

Proof. Case (1) O‘ALCh�CM a, which has itself three sub-cases:

(a) ALC h-CM does not apply the Copy rule, and M is proven valid. This case
reduces to the last, since the proof is found and has no cycle; then, ALC h-CM
terminates.

(b) ALC h-CM uses cyclic axioms, but the Copy rule is only applied with already
existent individuals. Again, ALC h-CM is equivalent to CM, because the already
existent individuals are not created by Cop; thus, xhl 2 NO, which never meets the
blocking conditions. Consequently, the indexing function l is incremented, the
cyclic columns Cl

2 are copied, and the process repeats that of the CM. Besides,
after the copy, h-substitutions work just as unifications (Lemma 1). Since CM
terminates (see proof at [2, III.6.4.]), ALC h-CM terminates for this case, too.

(c) ALC h-CM uses the cyclic axioms and the Copy rule (Cop) to create new indi-
viduals. The blocking condition from Cop ensures termination, given that it
prevents Cop to be applied indefinitely, thus generating infinite repetitions of finite
sequence(s) of individual names x0; . . .; xj�1; xj in the active path p that would
characterize the loop. The blocking condition identifies such repetitions, by
checking if the generated concept instances are new individuals names (testing if
the new instance is not in the ABox already, i.e., if xhl 62 NO), and if their set of

Fig. 8. The creation of the unique sequence f:E að Þ;:E bð Þ;:EðcÞg to arrive at ¬E(c) for the
unfinished query E ⊑ 9r:E 0ALCh�CM :E að Þ, with lðfE;:EgÞ ¼ 2
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concepts (s) is changing (by testing whether sðxhlÞ g s xhl�1

� �
, i.e., if the new

instance`s set of concepts is a subset of the set of the previously created instance).
If both conditions are met, this active path is blocked; ALC h-CM runs until a
proof is found (see Completeness Theorem below) and halts.

Case (2) O 0ALCh�CM a, which has two sub-cases:

(a) The Copy rule is not applied or is applied with existent individuals, not created by
previous Copy rule applications (i.e., xhl 2 NO), there are open subgoals which
make O 0ALCh�CM a. This case is analogous to cases (1) (a) and (b).

(b) When the Copy rule creates new xi individuals, the case is similar to (1) (c). The
infinite open cycles are detected by the Copy rule and blocked, and the proof fails
due to open subgoals. Hence, ALC h-CM terminates for this case, and thus, for all
cases. ∎

Theorem 2 (Soundness). An ALC formula in the two-lined disjunctive normal form
M is valid if there is a connection proof for “e;M; e” in the ALC h-CM, i.e. there exists
a derivation in which all leaves are axioms.

Proof. CM is a decision procedure for ALC, since ALC corresponds to the decidable
FOL fragment L2 [8]. Thus, O ‘CM a implies in O � a. Hence, it suffices to prove that
O ‘ALCh�CM a implies in O ‘CM a. For the cyclic cases and when M originally contains
(Skolem) functions, the ALC formulae will be converted to the 2NF and 3NF,
respectively E ⊑ 9r:Êðor E ⊑ ÊÞ; and 8r:�D ⊑ E (or �D ⊑ E), E being an atomic con-
cept, Ê a pure conjunction and �D a pure disjunction. This case is proved by the
contrapositive: O0CM a must imply in O0ALCh�CM a.

The contrapositive proof is by structural induction on the structure of the finite
sequence of individual names x1; . . .; xi�1 that generates the next individual of the cycle
xi. The cases of each of the two normal forms are proven in a similar way, as they differ
only in the polarity of the class(es) involved in the existential/universal restriction. Note
that in any case, the normal forms only generate columns with two elements, which
facilitates the inductive proof. The proof for second normal form comes next. The set of
formulae in the first, second, third normal forms is denoted by S1NF, S2NF and S3NF.

Induction Hypothesis: O0CM a, where a 2 O, S2NF (also works for S3NF).

Base Case: O ¼ fE ⊑ 9r:Eg 2 S2DNF ;O0CM a, a being an arbitrary formula, e.g.
a ¼ :E að Þf g, as shown in Fig. 9a, b. After the connection fE xð Þ;:E að Þg, with
r = {x/a}, due to the lack of complement for ¬E(f(x))), first FOL CM copies the second
clause increasing this clause’s l (see Fig. 9a). Then, occurs-check blocks the new
connection, and, therefore, E ⊑ 9r:E 0CM:E að Þ.

As for the ALC h-CM, the case is portrayed in Fig. 9b. The first connection is equal
to that of CM (except for applying h instead of r). In the second clause
ðfE;:E1gÞ;:EðbÞ1 is built as a h-substitution. Next (not shown in the figure), Cop is

applied, and a new clause fE;:E2g appears inM. Then, the connection f:EðbÞ1;EðbÞg
is settled, and instead of generating a new individual name c, b is reused in the new
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literal E(b) (an alternative test for blocking suggested by Baader et al. [1]). A new clause
copy is made, and since the connection f:EðbÞ2;EðbÞg reappears, the process is
blocked and E ⊑ 9r:E 0ALCh�CM:E að Þ. The lines below the last matrix represent the
fact that each new clause copy shall not represent the same individual instantiated in E,
i.e., a new individual must instantiate ¬E. So, for the base case a 2 O, S2NF, O0CM a
implies in O0ALCh�CM a, q.e.d.

Inductive Case: Suppose O ¼ fE ⊑ 9r:B;B ⊑ Êg; a ¼ :E y0ð Þf g; a, a an arbitrary
formula), y0 an individual name, Ê a pure conjunction that uses E. In that case, Ê is in
one of the following forms: E uÂ; 9r: E uÂ

� �
or 9r: E uÂ

� �
uÂ, being Â; F̂ also pure

conjunctions. In either form, M contains the column fB xð Þ;:E f ðxÞð Þg for CM and
fB xð Þ;:EðyÞ1g for ALC h-CM. Therefore, even after pursuing long finite sequences of
individual names x1; . . .; xi�1, CM fails just as in the base case, by occurs-check or
looping. Similarly, ALC h-CM generates :Eðy1Þ1 after the first loop and in the next;
then, the blocking condition is reached, and ALC h-CM halts.

For the inductive case where a�O; S2NF ;O0CM a implies in O0ALCh�CM a. So, the
contrapositive O‘ALCh�CM a implies in O � a and ALC h-CM is sound. ∎

Theorem 3 (Completeness). There is a connection proof for “e;M; e”, i.e.. there exists
a derivation in which all leaves are axioms, if the ALC formula F that corresponds to
the matrix M is valid.

Proof. Analogously to the soundness proof, it suffices to prove that if O � a then
O ‘ALCh�CM a. To show that, it is enough to demonstrate O ‘CM a implies in
O ‘ALCh�CM a, again, by the contrapositive: O0ALCh�CM a must imply in O0CM a,
when M contains cycles. O0ALCh�CM a has two sub-cases:

(a) When the Copy rule is not applied or is applied with already existent individual
names, not created by previous Copy rule applications (i.e., xl

h ∊ NO), there are
open subgoals which make O0ALCh�CM a. This case is analogous to the last case:
FOL CM fails with the same open subgoals, and O0CM a for this case, too. Thus,
O0CM a.

(b) The case when O0ALCh�CM a and the Copy rule creates new xi instances, can be
shown by an inductive proof similar to the one of soundness. The idea is to show

Fig. 9. Tentative connection proof, showing that a) E ⊑ 9r:E 0CM :E að Þ, r ¼ fx=ag, with
l({E(x), ¬E(f(x))}) = 1, and that b) E ⊑ 9r:E 0ALCh�CM :E að Þ, with lðfE;:EgÞ ¼ 2
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that FOL CM loops or finishes by occur-check when blocking takes place in ALC
h-CM for the base and inductive cases. Therefore, when ALC h-CM fails after
exhausting all possible connections and h-substitutions, CM, by occur-checks
and/or loops, is also unable to find a proof, i.e., O0CM a.

Indeed, the soundness theorem has shown that there is a functional equivalence
between the two systems for the cyclic case too: ALC h-CM blocks the cases that CM
either loops or halts and vice-versa.

Hence, O0ALCh�CM a implies O0CM a, and ALC h-CM is complete. ∎

6 Conclusions, Ongoing and Future Work

In the current work, ALC h-CM is introduced, a connection method for DL that
presents two novelties: (i) it replaces Skolem functions and unification by h-substitu-
tions that emulate the process of creating instances in the model that is typical for DL
tableaux systems; and (ii) it introduces a blocking scheme (with a new Copy rule) to
deal with cyclic ontologies in order to assure termination.

For the inference process, it employs a normal form that minimizes redundancy in
the representation and in the proof search. Moreover, termination, soundness and
completeness were proven with the aid of these NFs, which restrict the more convo-
luted cases to matrix columns of only two literals. This facilitates to portrait the
correspondence between FOL unification and h-substitution/blocking for ALC h-CM.

For future work, we will tackle cardinality restrictions (� =� n r for ALCN and
� =� n r:C for SHQ) by dealing with equality between instances. We also aim to
create more sophisticated blocking schemes for dynamic and double blocking for DL
constructs like inverse roles [7] or dealing with nominals.
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