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Abstract. Testing independencies is a fundamental task in reasoning
with Bayesian networks (BNs). In practice, d-separation is often utilized
for this task, since it has linear-time complexity. However, many have had
difficulties in understanding d-separation in BNs. An equivalent method
that is easier to understand, called m-separation, transforms the problem
from directed separation in BNs into classical separation in undirected
graphs. Two main steps of this transformation are pruning the BN and
adding undirected edges.

In this paper, we propose u-separation as an even simpler method for
testing independencies in a BN. Our approach also converts the problem
into classical separation in an undirected graph. However, our method is
based upon the novel concepts of inaugural variables and rationalization.
Thereby, the primary advantage of u-separation over m-separation is that
m-separation can prune unnecessarily and add superfluous edges. Hence,
u-separation is a simpler method in this respect.

Keywords: Bayesian networks · Testing independencies · d-separation ·
m-separation

1 Introduction

Pearl [9] states that perhaps the founding of Bayesian networks (BNs) [3,4,7]
made its greatest impact through the notion of d-separation. d-Separation [8]
is a graphical method for deciding which conditional independence relations
are implied by the directed acyclic graph (DAG) of a BN. To test whether two
sets X and Z of variables are conditionally independent given a third set Y of
variables, denoted I(X,Y,Z), d-separation checks whether every path from X
to Z is “blocked” by Y in the DAG. d-Separation considers every variable on
each of these paths. Each variable is classified into one of three categories. The
same variable can assume different classifications depending on which path is
being considered. Depending on the direction of the edges, sometimes blocking
works intuitively. On the contrary, sometimes a path is not “blocked” by Y even
though it necessarily traverses Y . Unfortunately, the above has led to many
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having difficulties in understanding d-separation [10] even though there exists a
linear-time implementation of d-separation [2].

m-Separation [5,13], an equivalent method for testing independencies in a
BN, seeks to avoid the confusion associated with the directionality of edges
in a DAG by turning the problem into classical separation in an undirected
graph. The undirected graph is constructed using a two-step process. First, a
sub-DAG is built by pruning the DAG of the BN. Second, the constructed sub-
DAG is moralized. The moralization [6] of a DAG involves adding an undirected
edge between every pair of variables with a common child and then dropping
directionality. The independence I(X,Y,Z) holds in the BN if and only if X and
Z are separated by Y in the undirected graph.

The main contribution of this paper is an even simpler method for test-
ing independencies in BNs, called undirected separation (u-separation). Like m-
separation, we seek to apply classical separation in an undirected graph built
from the given BN. We prove that only inaugural [1] variables need be pruned
from the BN. Next, we suggest the notion of rationalization as a refinement of
moralization. Unlike moralization, rationalization only adds an undirected edge
between parents of a common child when the common child is in Y of I(X,Y,Z).
We establish that u-separation is equivalent to m-separation. Two advantages
of u-separation are that it can prune fewer variables than m-separation and add
fewer undirected edges than m-separation. Given the prominence of d-separation
[9], the novel method of u-separation provides a clearer understanding of BNs.

This paper is organized as follows. In Sect. 2, m-separation is reviewed.
Section 3 presents u-separation. The equivalence between m-separation and u-
separation is established in Sect. 4. In Sect. 5, advantages of u-separation are
provided. Conclusions are given in Sect. 6.

2 Background

Let U = {v1, v2, . . . , vn} be a finite set of variables. Let B be a directed acyclic
graph (DAG) on U . A directed path from v1 to vk is a sequence v1, v2, . . . , vk with
directed edges (vi, vi+1) in B, i = 1, 2, . . . , k − 1. For each vi ∈ U , the ancestors
of vi, denoted An(vi), are those variables having a directed path to vi, while the
descendants of vi, denoted De(vi), are those variables to which vi has a directed
path. For a set X ⊆ U , we define An(X) and De(X) in the obvious way. The
children Ch(vi) and parents Pa(vi) of vi are those vj such that (vi, vj) ∈ B
and (vj , vi) ∈ B, respectively. An undirected path in a DAG is a path ignoring
directions. A path in an undirected graph is defined similarly. The moralization
[6] of a DAG is the undirected graph formed by adding an undirected edge
between each pair of parents of a common child and then dropping directionality.
A singleton set {v} may be written as v, {v1, v2, . . . , vn} as v1v2 · · · vn, and X∪Y
as XY .

A Bayesian network (BN) [3,4,7] is a DAG B on U together with conditional
probability tables (CPTs) P (v1|Pa(v1)), P (v2|Pa(v2)), . . ., P (vn|Pa(vn)). For
example, Fig. 1 shows a BN, where CPTs P (a), P (b), . . ., P (j|i) are not provided.
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We call B a BN, if no confusion arises. The product of the CPTs for B on U
is a joint probability distribution P (U) [7]. The conditional independence [12] of
X and Z given Y holding in P (U) is denoted IP (X,Y,Z). It is known that if
I(X,Y,Z) holds in B, then IP (X,Y,Z) holds in P (U).

Fig. 1. A BN B modified from [3].

m-Separation [5,13] is an equivalent method to d-separation [7] for testing
independencies in BNs. Let X, Y , and Z be pairwise disjoint sets of variables
in a BN B. m-Separation tests I(X,Y,Z) with four steps: (i) prune B onto
XY Z ∪An(XY Z); (ii) construct the moralization of the sub-DAG from (i); (iii)
delete Y and its incident edges from the undirected graph built in (ii); and (iv)
if there exists a path from (any variable in) X to (any variable in) Z in (iii),
then I(X,Y,Z) does not hold; otherwise, I(X,Y,Z) holds.

Example 1. Consider testing I(a, de, g) using m-separation in the BN B of
Fig. 1. In step (i), the sub-DAG constructed on {a, d, e, g} ∪ An({a, d, e, g}) =
{a, b, d, e, g} is illustrated in Fig. 2(i). In step (ii), the moralization of the sub-
DAG is depicted in Fig. 2(ii), where undirected edges (a, b) and (d, e) were added
and then directionality was dropped. In step (iii), variables d and e and their

(i) (ii) (iii)

Fig. 2. When testing I(a, de, g) in the BN B in Fig. 1, m-separation builds the sub-
DAG in (i), determines the moralization in (ii), and deletes Y = {d, e} and the incident
edges, giving (iii).



216 C.J. Butz et al.

(i) (ii) (iii)

Fig. 3. When testing I(a, e, g) in the BN B in Fig. 1, m-separation builds the sub-DAG
in (i), determines the moralization in (ii), and deletes Y = {e} and the incident edges,
yielding (iii).

incident edges (a, d), (b, d), (b, e), (d, e), (d, g), and (e, g) are deleted, yielding
the undirected graph in Fig. 2(iii). Since there does not exist a path from a to g
in Fig. 2(iii), I(a, de, g) holds in B by m-separation.

Example 2. Consider testing I(a, e, g) using m-separation in the BN B of Fig. 1.
In step (i), the sub-DAG constructed is illustrated in Fig. 3(i). In step (ii), the
moralization of the sub-DAG is depicted in Fig. 3(ii), where undirected edges
(a, b) and (d, e) were added and then directionality was dropped. In step (iii),
variable e and the incident edges (b, e), (d, e), and (e, g) are deleted, giving
Fig. 3(iii). Since there exists a path from a to g in Fig. 3(iii), I(a, e, g) does not
hold in B by m-separation.

3 u-Separation

Our simplification of m-separation, called undirected separation (u-separation),
requires the notion of inaugural variables and a refinement of moralization.

A variable vk is called a v-structure [11] in a BN B, if B contains directed
edges (vi, vk) and (vj , vk), but not a directed edge between variables vi and vj
in B. For example, variable f is a v-structure in BN B of Fig. 1, since B contains
directed edges (d, f) and (e, f), for instance, and does not contain either directed
edges (d, e) or (e, d).

Given an independence I(X,Y,Z) to be tested in a BN B, a variable v is
inaugural [1], if at least one of the following two conditions is satisfied: (i) v is a
v-structure and

({v} ∪ De(v)) ∩ XY Z = ∅; (1)

or (ii) v is a descendant of a variable satisfying (i). With respect to a given
independence I(X,Y,Z) being tested against a BN B, we denote by V the set
of all inaugural variables.
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Example 3. Consider testing I(a, de, g) in the BN B of Fig. 1. Variable f is inau-
gural, since it is a v-structure and, by (1),

({f} ∪ {h}) ∩ {a, d, e, g} = ∅.
Consequently, by condition (ii), h is also inaugural, since h is a descendant of f .
On the contrary, variable d is a v-structure, but is not inaugural, since

({d} ∪ {f, g, h}) ∩ {a, d, e, g} �= ∅.
Therefore, the set of all inaugural variables in B for I(a, de, g) is V = {f, h}.

Definition 1. The rationalization of a DAG with respect to an independence
I(X,Y,Z) is the undirected graph constructed by adding an undirected edge
between parents of a common child v, if v ∈ Y , and then dropping directionality.

Example 4. Given the DAG in Fig. 4(i) and the independence I(a, de, g), the
rationalization is in Fig. 4(ii). Here, an undirected edge (a, b) was added between
variables a and b, since common child d ∈ Y = {d, e}. Directionality was then
dropped.

(i) (ii)

Fig. 4. When testing I(a, de, g) in the DAG in (i), rationalization gives (ii).

Note the key difference between moralization and rationalization. Moraliza-
tion of Fig. 2(i) adds undirected edges (a, b) and (d, e) as shown in Fig. 2(ii). In
contrast, rationalization of Fig. 4(i) only adds undirected edge (a, b) in Fig. 4(ii).

We now formally introduce u-separation.
u-Separation tests independencies in BNs. Let X, Y , and Z be pairwise

disjoint sets of variables in a BN B. Then, u-separation tests I(X,Y,Z) with four
steps: (i) prune all inaugural variables from B; (ii) construct the rationalization
of the sub-DAG in (i); (iii) delete Y and its incident edges from the undirected
graph built in (ii); and (iv) if there exists a path from (any variable in) X to (any
variable in) Z in (iii), then I(X,Y,Z) does not hold; otherwise, I(X,Y,Z) holds.

Example 5. Let us test I(a, de, g) in the BN B of Fig. 1 using u-separation.
By Example 3, f and h are the only inaugural variables. Thus, step (i) of u-
separation prunes inaugural variables f and h from B, yielding the sub-DAG
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in Fig. 5(i). In step (ii), the rationalization of the constructed sub-DAG gives
the undirected graph in Fig. 5(ii). Variables d and e and their incident edges are
deleted in step (iii), yielding Fig. 5(iii). In step (iv), there does not exist a path
from a to g. Thus, I(a, de, g) holds in B by u-separation.

(i) (ii) (iii)

Fig. 5. When testing I(a, de, g) in the BN B in Fig. 1, u-separation builds the sub-
DAG in (i) by pruning all inaugural variables, determines the rationalization in (ii),
and deletes Y = {d, e} and the incident edges, yielding (iii).

Example 6. Let us test I(a, e, g) in the BN B of Fig. 1 using u-separation. Step
(i) of u-separation prunes inaugural variables f and h from B, yielding the sub-
DAG in Fig. 6(i). In step (ii), the rationalization of the constructed sub-DAG
yields the undirected graph in Fig. 6(ii). Variable e and its incident edges are
deleted in step (iii), yielding Fig. 6(iii). Since there exists a path from a to g in
Fig. 6(iii), I(a, e, g) does not hold in B by u-separation.

4 Equivalence of u-Separation and m-Separation

We introduce pertinent notation to establish the equivalence of u-separation and
m-separation. Given independence I(X,Y,Z) to be tested in a BN B on U , we
define the following set:

W = U − (XY Z ∪ An(XY Z)). (2)

In other words, W is the set of all variables pruned from B when m-separation
builds the sub-DAG in step (i).

Lemma 1. Given I(X,Y,Z) to be tested in a BN B. Let V be the set of all
inaugural variables. Let W be the set of all variables pruned by m-separation in
step (i). Then, V ⊆ W .
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(i) (ii) (iii)

Fig. 6. When testing I(a, e, g) in the BN B in Fig. 1, u-separation builds the sub-DAG
in (i) by pruning all inaugural variables, determines the rationalization in (ii), and
deletes Y = {e} and the incident edges, yielding (iii).

Proof. Let v ∈ V . By (1), (v ∪ De(v)) ∩ XY Z = ∅. Thus, v ∩ XY Z = ∅ and
De(v) ∩ XY Z = ∅. Now, De(v) ∩ XY Z = ∅ implies that v /∈ An(XY Z). Thus,
as v /∈ XY Z and v /∈ An(XY Z), v ∈ W .

Lemma 1 implies that every variable pruned by u-separation is also pruned
by m-separation.

Example 7. Given I(a, de, g) to be tested in the BN B of Fig. 1, step (i) of u-
separation constructs the sub-DAG in Fig. 5(i) by pruning V = {f, h}. On the
other hand, step (i) of m-separation builds the sub-DAG in Fig. 2(i) by pruning
W = {c, f, i, j, h}. By Lemma 1, V ⊆ W .

Now, we consider the set of variables pruned by m-separation but not by
u-separation. Given I(X,Y,Z) to be tested in a BN B. Let V be the set of all
inaugural variables. Let W be the set of all variables pruned by m-separation
in step (i). Then the set S of variables pruned by m-separation but not by
u-separation is defined as:

S = W − V. (3)

Lemma 2. Given I(X,Y,Z) to be tested in a BN B. Then S ∩ (XY Z ∪
An(XY Z)) = ∅, where S is defined in (3).

Proof. By (2), W ∩ (XY Z ∪ An(XY Z)) = ∅. Now, by (3), S ⊆ W . Hence, the
claim follows.

Recall that S denotes the set of variables pruned by m-separation but not by
u-separation. Lemma 2 means that none of these variables appear in I(X,Y,Z)
nor are ancestors of variables therein.
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Example 8. Consider W and V from Example 7 when testing I(a, de, g) in the
BN B of Fig. 1. Then, V = {f, h}, W = {c, f, i, j, h}, and S = {c, i, j}. Moreover,
{a, d, e, g} ∪An({a, d, e, g}) = {a, b, d, e, g}. As promised by Lemma 2, {c, i, j} ∩
{a, b, d, e, g} = ∅.

Lemma 3. Given I(X,Y,Z) to be tested in a BN B, let S be defined as in (3).
Then no variable in S is a v-structure in B.
Proof. By contradiction, suppose v ∈ S is a v-structure in B. By (3), v /∈ V .
Then, by (1), (v ∪ De(v)) ∩ XY Z �= ∅. Thus, either

v ∩ XY Z �= ∅ (4)

or

De(v) ∩ XY Z �= ∅, (5)

or both, hold. Suppose (4) holds. Then v ∈ XY Z. By Lemma 2, S ∩ (XY Z ∪
An(XY Z)) = ∅. A contradiction, since by assumption v ∈ S. Now suppose (5)
holds. Then there exists a v′ ∈ De(v) such that v′ ∈ XY Z. Since v ∈ An(v′), we
know v ∈ An(XY Z). A contradiction to Lemma 2, since by assumption v ∈ S.

Lemma 3 implies that there are no v-structures among the variables pruned
by m-separation but not by u-separation.

Example 9. Consider S = {c, i, j} from Example 8 when testing I(a, de, g) in the
BN B of Fig. 1. No variable in S is a v-structure in B.

We now show the equivalence of u-separation and m-separation.

Theorem 1. Testing independence I(X,Y,Z) in a BN B with m-separation is
equivalent to testing independence I(X,Y,Z) in B with u-separation.

Proof. We establish the equivalence between m-separation and u-separation by
showing the equivalence of their corresponding steps.

Consider the sub-DAGs built in step (i) of m-separation and u-separation.
All paths are the same between the two sub-DAGs, except for those involving
variables in S. We now show that these paths do not affect the result of testing
I(X,Y,Z). By contradiction, suppose there is an undirected path from X to
Z involving S. Then there exists two undirected edges (v1, s1) and (v2, s2) on
this path, where s1, s2 ∈ S and v1, v2 /∈ S. Note that s1 and s2 may be the
same variable. Now (v1, s1) must be a directed edge in B. Otherwise, s1 would
be parent of v1, and thus would not be pruned by step (i) in m-separation.
Similarly, (v2, s2) also must be a directed edge in B. This immediately implies
that there exists a variable s3 on the path such that s3 ∈ S and s3 is a v-structure
in B. A contradiction to Lemma 3. Therefore, there does not exist an undirected
path from X to Z going through S.

Now consider the undirected edges added to the sub-DAGs in step (ii) of m-
separation and u-separation. By Lemma 3, S does not contain v-structures in B.
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Therefore, the set of v-structures considered is the same for both m-separation
and u-separation. For any v-structure v with v ∈ Y of I(X,Y,Z), both ratio-
nalization and moralization will add an edge connecting its parents. The only
difference is the case when v-structure v is not in Y . This means variable v is
not deleted in step (iii). Let (v1, v) and (v2, v) be directed edges in B, namely,
v1 and v2 are parents of v in B, with no directed edge between v1 and v2. There
are two cases to consider. Suppose that neither v1 nor v2 are in Y . This means
that v1 and v2 both are not deleted in step (iii). Hence, adding edge (v1, v2) is
redundant, since there already is an undirected path (v1, v), (v, v2) from v1 to
v2. Now suppose that at least one of v1 and v2 are in Y . In this case, either v1
or v2, or both, are deleted in step (iii) along with their incident edges. Thus,
adding edge (v1, v2) is wasteful in step (ii), since it will be deleted in step (iii).
Therefore, in either case, adding (v1, v2) is immaterial.

Steps (iii) and (iv) are the same in both methods.

Theorem 1 establishes that testing independence with u-separation is equiv-
alent to testing independence with m-separation.

Example 10. Consider the BN B in Fig. 1. I(a, de, g) holds by m-separation in
Example 1 and holds by u-separation in Example 5. Similarly, I(a, e, g) does
not hold by m-separation in Example 2 and does not hold by u-separation in
Example 6.

5 Advantages

Salient features of u-separation compared to m-separation are described.
In its attempt to transform directed separation in DAGs into classical sepa-

ration in undirected graphs, m-separation can be heavy-handed in two aspects.
First, in step (i), m-separation can prune variables from the BN unnecessarily.

Variables not affecting the outcome of the separation test do not need be pruned.
Doing so is wasteful.

Example 11. Consider testing I(a, de, g) in the BN B of Fig. 1 using m-
separation. Here, variables {c, f, h, i, j} are pruned, yielding the sub-DAG in
Fig. 2(i). Closer inspection reveals that variables c, i, and j would not affect the
separation test between variables a and g. Thus, it was wasteful of m-separation
to prune these three variables.

u-Separation corrects this shortcoming by pruning only inaugural variables
from the BN. In Example 11, u-separation only prunes variables {f, h} instead
of {c, f, h, i, j}.

The second undesirable characteristic of m-separation is that moralization
can be excessive. More specifically, moralization may add edges to the undirected
graph that have no bearing on the outcome of the separation test.

Example 12. Recall how m-separation tests I(a, de, g) in Example 1. Step (ii)
of m-separation includes adding undirected edge (d, e), while step (iii) involves
deleting edge (d, e).
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Example 13. Recall how m-separation tests I(a, e, g) in Example 2. Step (ii)
of m-separation involves adding undirected edge (a, b). However, edge (a, b) is
immaterial in Fig. 3(ii), since edges (a, d) and (b, d) are also present in step (iv).

Closer inspection of Example 2 highlights the excessiveness of m-separation
using moralization to test independencies. Moralization adds two edges, (a, b)
and (d, e) in Fig. 3(ii). Edge (d, e) is subsequently deleted by m-separation, while
edge (a, b) is superfluous.

u-Separation remedies this failing by introducing the notion of rationaliza-
tion. Rationalization is a refinement of moralization, since the edges added
by rationalization are a subset of those added by moralization. When testing
I(X,Y,Z), whereas m-separation adds an undirected edge between variables
with a common child, u-separation does so only when the child is in Y . This
means that the v-structure variable will be subsequently deleted and the added
edge between the parents is required to encode the dependence between them.
In Example 5, for instance, u-separation only adds edge (a, b) rather than edges
(a, b) and (d, e).

It is perhaps worth mentioning here that moralization is ideally suited when
applied for building a join tree [6] of a given DAG. For this purpose, moralization
ensures that a clique containing all variables in each CPT of the BN is formed in
the undirected graph. On the contrary, moralization can be overkill when applied
for testing independencies in BN.

6 Conclusion

We have suggested u-separation as a new method for testing independencies in
BNs. Our emphasis here, like that of m-separation, is on simplicity rather than
speed. We have demonstrated how u-separation is simpler than m-separation. By
utilizing the notion of inaugural variables, Lemma 1 ensures that u-separation
will never prune more variables than m-separation. This means that m-separation
can prune variables unnecessarily to apply separation in undirected graphs, as
Example 7 shows.

Moreover, our analysis shows how m-separation’s use of moralization is waste-
ful. An edge added in step (ii) can be deleted in step (iii), as illustrated in
Example 12. Furthermore, Example 13 highlights how m-separation can add an
edge that is extraneous. To overcome this excessiveness, u-separation suggests
the use of rationalization rather then moralization. Rationalization is better
suited for testing independencies in BNs, whereas moralization is perfectly suited
for building a join tree in BN inference.
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