
On Tree Structures Used by Simple Propagation

Anders L. Madsen1,2(B), Cory J. Butz3, Jhonatan S. Oliveira3,
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Abstract. Simple Propagation (SP) is a new junction tree-based algo-
rithm for probabilistic inference in discrete Bayesian networks. It is sim-
ilar to Lazy Propagation, but uses a simpler approach to exploit the
factorization during message computation. The message construction is
based on a one-in, one-out-principle meaning a potential has at least
one non-evidence variable in the separator and at least one non-evidence
variable not in the separator. This paper considers the use of different
tree structures to guide the message passing in SP and reports on an
experimental analysis using a set of real-world Bayesian networks.
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1 Introduction

The Simple Propagation (SP) algorithm was introduced in [1] as a new algo-
rithm for belief update in Bayesian networks. SP is similar to LP as it proceeds
by message passing in a join tree or a junction tree taking advantage of a decom-
position of clique and separator potentials, but it takes a simpler approach to
the computation of potentials in the message passing phase of belief update.
In SP, message construction is based on a one-in, one-out-principle meaning a
potential has at least one non-evidence variable in the separator and at least one
non-evidence variable not in the separator.

In this paper, we empirically analyze the role that the choice of the tree struc-
ture plays when SP conducts inference. We consider three kinds of tree structures,
namely, optimal (or believed to be close to optimal) junction trees, junction trees
produced by the fill-in-weight heuristic, and maximal prime subgraph decomposi-
tion (MPD) trees [4]. When using optimal junction trees or the ones produced by
the fill-in-weight heuristic, experimental results shows that in fewer than half the
cases, the space cost of SP is almost invariant. Moreover, the time cost of SP in
these two categories is approximately the same in 14 out of 28 cases. On the other
hand, SP often runs out of memory on MPD trees.
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2 Preliminaries and Notation

A Bayesian network BN N = (X , G,P) consists of a set of discrete random
variables X = {X1, . . . , Xn}, where dom(X) is the state space of X and ||X|| =
|dom(X)|, an acyclic, directed graph (DAG) G = (V,E), where V ∼ X is the
set of vertices and E is the set of edges, and a set P of conditional probability
distributions (CPDs). A BN represents a decomposition of the joint probability
distribution P (X ) =

∏
X∈X P (X | pa(X)), where pa(X) denotes the parents of

X in G and fa(X) = pa(X) ∪ {X}. For example, a BN N = (X , G,P) over
six variables is shown by G in Fig. 1, where we assume ||X1|| = ||X4|| = 3,
||X2|| = ||X5|| = ||X6|| = 4, and ||X3|| = 2.

Belief update is the task of computing the posterior marginal probability
distribution P (X |ε) for each non-observed variable X ∈ X \Xε given evidence ε
assumed to be instantiations of variables X (ε). A variable X is a barren w.r.t. a
set T ⊆ X , evidence ε, and DAG G, if X �∈ T , X �∈ Xε and X only has barren
descendants in G, if any [6]. The notion of barren variables can be extended to
graphs with both directed and undirected edges [3].

A junction tree T = (C,S) of N is created by moralization and triangulation
of G (see, e.g., [2]), where C denotes the cliques and S denotes the separators of
T . The state space size of clique or separator A is defined as s(A) =

∏
X∈A ||X||.

3 Simple Propagation

SP [1] can be considered a simplification of LP [5] with respect to how messages
are computed. The basic idea is to maintain a decomposition of clique and sep-
arator potentials and to exploit independence relations induced by evidence and
barren variables during belief update. Each CPD P ∈ P is associated with a
clique C s.t. dom(P ) ⊆ C, where P is reduced to reflect ε. Next messages are
passed over the computational tree structure relative to a selected root of T .

In SP, the one-in, one-out-principle is applied when a clique sends a message to
a neighbouring clique over a separator S. The one-in, one-out-principle states that
a probability potential φ has at least one non-evidence variable in S and another
variable X not in S and SP can eliminate X. The computation of messages in SP
is performed using the Simple Message Computation (SMC) algorithm shown as
Algorithm 1. The SumOut algorithm corresponds to Variable Elimination sum-
ming out X from the product of ΦX = {φ ∈ F|X ∈ dom(φ)} and replacing ΦX

in F with the result.

Procedure SMC(F , S, X (ε))
1 F = RemoveBarren(F , S)
2 while ∃φ(Y) ∈ F with X �∈ (S \ X (ε)) and X ′ ∈ (S \ X (ε)) do
3 F = SumOut(X, F)

end
4 return {φ(Y) ∈ F | Y ⊆ S}

Algorithm 1. The Simple Message Computation algorithm.
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In addition to passing the potentials created by Algorithm1, SP also passes
any potential φ for which dom(φ) ⊆ S, i.e., the potentials where the domain is
a subset of the separator. After a full round of message passing, the posterior
marginal P (X |ε) can be computed from any clique or separator containing X.

4 Computational Tree Structure

The computational tree structure induces a partial order on the set of possible
(implicit) elimination orders produced by the SMC algorithm during the message
passing step of belief update. As SP maintains a decomposition of clique and
separator potentials, it becomes sensitive to the order in which variables are
eliminated during message passing. The number of variables to be eliminated
when sending a message from A to B is determined by A\B which is influenced
by |A| and |B|. Thus, the impact of the (implicit) elimination order tends to
increase with |A \ B|. As SP uses the same potentials for message computation
as LP, we can rely on the correctness considerations of [4].
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Fig. 1. A DAG G with Gm and triangulations using fill-in-size and fill-in-weight.

To illustrate the impact of using different computational tree structures, con-
sider the moral graph Gm and two triangulations of Gm in Fig. 1. The fill-in-size
heuristic may produce the elimination order σfis = (X6,X1,X5,X2,X3,X4),
while the order σfiw = (X6,X5,X2,X1,X3,X4) will be produced by the fill-in-
weight heuristic (optimal w.r.t. s(T )).

The junction trees Tfis and Tfiw produced are shown in Fig. 2. This figure
also shows the MPD tree TMPD for N constructed from Tfiw by merging cliques
connected by incomplete separators in Gm. For simplicity, we assume that clique
X4X5X6 is selected as root of each tree.

Due to space limitations, we only consider the first message passed in each
of the computational trees shown in Fig. 2. For Tfis, the first message is from
clique X1X2X4 to X2X3X4. The clique potential πX1X2X4 = ({P (X2), P (X1 |
X2), P (X4 |X1)}) has two CPDs satisfying the one-in, one-out-principle: P (X1 |
X2) and P (X4 |X1). Notice P (X2) does not satisfy the principle as all domain
variables are in S. Both P (X1 |X2) and P (X4 |X1) satisfy the condition in line 2
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Fig. 2. Three different computational tree structures.

of the SMC algorithm and variable X1 can be eliminated using the SumOut-
algorithm producing φ(X4 |X2). The message is then

πX1X2X4→X2X3X4 = ({P (X2), φ(X4 |X2)}). (1)

For Tfiw, the first message is from clique X1X2X3 to X1X3X4. The potential
πX1X2X3 = ({P (X2), P (X1 |X2), P (X3 |X2)}) has two CPDs satisfying the one-
in, one-out-principle: P (X1 |X2) and P (X3 |X2). Notice P (X2) does not satisfy
the principle. Both P (X1 | X2) and P (X3 | X2) satisfy the condition in line 2
of the SMC algorithm and variable X2 can be eliminated using the SumOut-
algorithm producing φ(X1,X3). The message is then

πX1X2X3→X1X3X4 = ({φ(X1,X3)}). (2)

For TMPD, the first message is from clique X1X2X3X4X5 to X4X5X6. Poten-
tial πX1X2X3X4X5 = ({P (X2),P (X1 | X2), P (X3 | X2), P (X4|X1), P (X5|X3)})
has two CPDs satisfying the one-in, one-out-principle: P (X4 | X1) and P (X5 |
X3). Assume variable X1 selected for elimination first producing the updated
set F = {P (X2), P (X3 | X2), P (X5|X3), φ(X4 | X2)}. Next, P (X5|X3) and
φ(X4 |X2) satisfy the condition in line 2. Assume variable X2 is selected for elimi-
nation producing the updated set F = {P (X5|X3), φ(X4,X3)}. Next, P (X5|X3)
and φ(X3,X4) satisfy the condition in line 2. Variable X3 is the last variable
eliminated producing the updated set F = {φ(X4,X5)}. The message is then

πX1X2X3X4X5→X4X5X6 = ({φ(X4,X5)}). (3)

The important point to notice is that different tree structures lead to different
messages being constructed by SP, as shown in Eqs. (1), (2), and (3). The next
section reports on an empirical evaluation of the performance impact of different
tree structures.
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5 Experimental Analysis

Table 1 shows statistics on a sample of 10 out of 28 BNs used in the experiments
and information on the junction tree T̂ , the junction tree Tfiw and the MPD tree
TMPD, where sizes are on a log-scale in base 10. Table 2 shows the average largest
factor over 100 sets of random evidence created by SP during belief update (this
includes computing marginals using Variable Elimination). The empty entries
denote examples where SP ran out of memory on some evidence sets.

In fewer than half the cases, the space cost of SP is almost invariant to the use
of T̂ or Tfiw as the computational structure. These are the cases where s(T̂ ) ≈
s(Tfiw). In the cases where s(T̂ ) << s(Tfiw), there is a large difference in the
average size of the largest factor created by SP. SP is not able to perform belief
update in 20 out of 28 networks using TMPD as the computational structure.

Table 1. Information on 10 out of the 28 Bayesian networks and the computational
tree structures used in the experiments.

max max max

N |X | |Ĉ| |Cfiw| |C′| s(Ĉ) s(Cfiw) s(C′) s(T̂ ) s(Tfiw) s(T ′)

ADAPT DX09 T2 671 489 489 284 3.1 3.5 29.6 4 5 30

Amirali network 681 556 555 461 6.9 7.5 41.5 7 8 42

Heizung. 44 28 28 14 7.6 7.6 29.2 8 8 29

Hepar II 70 58 58 55 2.6 2.6 2.9 3 3 4

Mildew 35 29 28 15 6.1 6.6 20.6 7 7 21

Munin1 189 162 160 70 7.6 7.9 69.2 8 8 69

andes 223 180 175 79 4.8 5.4 40.0 5 6 40

cc245 245 235 235 232 5.4 5.4 6.0 6 6 6

sacso 2371 1229 1175 980 5.2 6.4 107.5 6 7 107

ship 50 35 35 10 6.6 8.1 35.6 7 8 36

Table 2. Average space cost of belief update using SP.

N μ(T̂ ) σ(T̂ ) μ(Tfiw) σ(Tfiw) μ(TMPD) σ(TMPD)

ADAPT DX09 T2 520.09 315372 727.13 845205

Amirali network 70716.8 3.6E+10 1093871.04 1.3E+13

Heizung. 4091131 1.3E+14 3542217.5 1.2E+14

Hepar II 106.5 15384.4 106.5 15384.4 186.58 71361

Mildew 219317 1.6E+11 580396.08 1.7E+12

Munin1 2499265 6.2E+13 4158649.69 1.3E+14

andes 7958.68 3.1E+08 13922.2 1.4E+09

cc245 21764.6 3.3E+09 21764.6 3.3E+09 37384.3 1.4E+10

sacso 12887.4 1.1E+09 67052.22 4.1E+10

ship 732996 1.8E+12 8645006.83 8E+14
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The eight networks for which SP can perform belief update have an average size
of the largest factor of less than 100, 000 probabilities.

Table 3 shows the average computation cost (wall-clock time) of belief update
by SP. In 14 out of 28 cases the time cost of SP using Tfiw is approximately the
same as the time cost SP using T̂ . The difference is less than five per cent. Since
SP using TMPD is only able to solve the most simple networks, the time cost of
SP in this case is low and in many cases comparable to the time cost of T̂ and
Tfiw (at least in absolute terms).

Table 3. Average time cost of belief update using SP (mean and standard deviation).

N μ(T̂ ) σ(T̂ ) μ(Tfiw) σ(Tfiw) μ(TMPD) σ(TMPD)

ADAPT DX09 T2 0.19 0.011 0.19 0.011

Amirali network 0.38 0.043 0.61 0.835

Heizung. 0.24 0.326 0.23 0.31

Hepar II 0.03 0 0.02 0 0.03 0

Mildew 0.04 0.001 0.05 0.006

Munin1 0.74 3.26 0.98 7.408

andes 0.13 0.005 0.11 0.004

cc145 0.07 0.001 0.07 0.001 0.07 0.001

sacso 0.83 1.051 0.74 0.899

ship 0.16 0.084 1.26 25.073

6 Conclusion

This paper has investigated the impact of the secondary computational structure
used for belief update on time and space performance of SP. The results of a
preliminary empirical performance evaluation on a set of real-world Bayesian
networks indicate that the tree structure used to control the message passing
can have a significant impact on both time and space performance.
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