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Abstract. We consider fuzzy functional dependencies (FFDs) which
can exist between attributes in possibilistic databases. The degree of FFD
is evaluated by two numbers from the unit interval which correspond to
possibility and necessity measures. The notion of FFD is defined with the
use of the extended Gödel implication operator. For such dependencies
we present inference rules as a fuzzy extension of Armstrong’s axioms.
We show that they form a sound and complete system.
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1 Introduction

Conventional database systems are designed with the assumption of precision
of information collected in them. The problem becomes more complex if our
knowledge of the fragment of reality to be modeled is imperfect. In such cases one
has to apply tools for describing uncertain or imprecise information [7,8]. One
of them is the theory of possibility [1,3]. In the possibilistic database framework
attribute values are represented by means of possibility distributions. Each value
x of an attribute X is assigned with a number πX(x) from the unit interval which
expresses the possibility degree of its occurrence. Different ways of determination
of the possibility degree have been described in [4].

One of the most important notions of the database theory is the concept of
functional dependency (FD). The classical definition of functional dependency
X→Y between attributes X and Y of a relation scheme R is based on the
assumption that the equality of attribute values may be evaluated formally with
the use of two-valued logic. The existence of X→Y means that X-values uniquely
determine Y -values. If attribute values are imprecise one can say about a certain
degree of the dependency X→Y . It contains the information to what extent X
determines Y . In possibilistic databases closeness of compared values can be
evaluated by means of possibility and necessity measures.

Since the notion of FD plays an important role in the design process [5],
its fuzzy extension has attracted a lot of attention. Hence, different approaches
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concerning fuzzy functional dependencies (FFDs) have been described in pro-
fessional literature. A number of different definitions emerged [2,6,9,10]. In the
paper we extend the definition given by Chen [2]. According to [2] the degree of
the fuzzy functional dependency is evaluated by means of the possibility mea-
sure. The necessity measure is not used. The equality degree equals the maximum
value 1 when the two possibility distributions have the maximum degree 1 at
the same element. Thus applying of the possibility measure for evaluation of the
equality of two imprecise values expressed by possibility distributions is not suf-
ficient. In the paper evaluation of closeness of imprecise values is made by means
of both possibility and necessity measures. The notion of FFD is defined with
the use of the extended Gödel implication operator [9]. For such dependencies
we will present inference system based on the well known set of Armstrong’s
axioms which is an important property of FDs in classical databases.

The paper is organized as follows. In the next section we discuss the basic
notions dealing with fuzzy functional dependencies in possibilistic databases
and formulate the extended inference rules. Section 3 discusses properties of the
extended Gödel implication operator. In Sect. 4 we proved the soundness and
completeness of the inference rules.

2 Fuzzy Functional Dependencies in Possiblistic
Databases

Let r be a relation of the scheme R(U) where U denotes a set of attributes,
U = {X1,X2, ...,Xn}. Let DOM(Xi) denotes a domain of Xi. Let us assume
that attribute values are given by means of normal possibility distributions:

t(X) = {πt(Xi)(x)/x : x ∈ DOM(Xi)} , supx∈DOM(Xi)πt(Xi)(x) = 1, (1)

where t is a tuple of r and πt(Xi)(x) is a possibility degree of t(Xi) = x. The
possibility distribution takes the form: {πX(x1)/x1, πX(x2)/x2, ..., πX(xn)/xn},
where xi ∈ DOM(X). At least one value must be completely possible i.e. its
possibility degree equals 1. This requirement is referred to as the normalization
condition. Let t1 and t2 be tuples of r. The degrees of possibility and necessity
that t1(Xi) = t2(Xi), denoted by Pos and Nec, respectively, are as follows:

Pos(Πt1(Xi) = Πt2(Xi)) = supxmin(πt1(Xi)(x), πt2(Xi)(x)),
Nec(Πt1(Xi) = Πt2(Xi)) = 1 − supx�=ymin(πt1(Xi)(x), πt2(Xi)(y)). (2)

The closeness degree of t1(Xi) and t2(Xi), denoted by ≈(t1(Xi), t2(Xi)), is
expressed by two numbers ≈(t1(Xi), t2(Xi))N and ≈(t1(Xi), t2(Xi))Π from the
unit interval which correspond to necessity and possibility measures. Thus ≈
(t1(Xi), t2(Xi)) = (≈ (t1(Xi), t2(Xi))N ,≈ (t1(Xi), t2(Xi))Π). For identical val-
ues of t1(Xi) and t2(Xi) we have ≈(t1(Xi), t2(Xi)) = (1,1). Otherwise,

≈ (t1(Xi), t2(Xi))N = Nec(Πt1(Xi) = Πt2(Xi)),
≈ (t1(Xi), t2(Xi))Π = Pos(Πt1(Xi) = Πt2(Xi)). (3)



Inference Rules for Fuzzy Functional Dependencies in Possibilistic Databases 183

For estimation of tuple closeness, denoted by =c(t1(X), t2(X)) = (=c(t1(X),
t2(X))N , =c(t1(X), t2(X))Π), one must consider all the components Xi of X
(Xi ∈ X) and apply the operation min:

=c (t1(X), t2(X))N = mini ≈ ((t1(Xi), t2(Xi))N ,

=c (t1(X), t2(X))Π = mini ≈ ((t1(Xi), t2(Xi))Π , (4)

In order to evaluate the degree of a fuzzy functional dependency by means
of both possibility and necessity measures we will apply the following extension
of the Gödel implication operator IG(a,b) = (IG(a,b)N ,IG(a,b)Π), a = (aN ,aΠ),
b = (bN ,bΠ), aN , aΠ , bN , bΠ ∈ [0,1] where

IG(a, b)Π =
{

1 if aΠ ≤ bΠ

bΠ otherwise, (5)

IG(a, b)N =

⎧⎨
⎩

1 if aN ≤ bN and aΠ ≤ bΠ

bΠ if aN ≤ bN and aΠ > bΠ

bN otherwise.
(6)

Definition 1. Let R(U) be a relation scheme where U = {X1,X2, ... ,Xn}.
Let X and Y be subsets of U : X, Y ⊆ U . Y is functionally dependent on X in
θ = (θN , θΠ) degree,θN ,θΠ ∈ [0,1], denoted by X →θ Y , if and only if for every
relation r of R the following conditions are met:

mint1,t2∈rI(t1(X) =c t2(X), t1(Y ) =c t2(Y ))N ≥ θN ,

mint1,t2∈rI(t1(X) =c t2(X), t1(Y ) =c t2(Y ))Π ≥ θΠ , (7)

where =c is the closeness measure (4) and I is the following implicator:

I(a, b) =
{

Ic if t1(X) and t2(X) are identical
IG otherwise, (8)

where Ic is the classical implication operator and IG is the extended Gödel impli-
cator.

Like in classical relational databases one can formulate the following inference
rules known as extended Armstrong’s axioms:

A1: Y ⊆ X ⇒ X →θ Y for all θ
A2: X →θ Y ⇒ XZ →θ Y Z
A3: X →α Y ∧ Y →β Z ⇒ X →γ Z, γ = (min(αN , βN ), min(αΠ , βΠ))

where θ = (θN , θΠ), α = (αN , αΠ), β = (βN , βΠ) and γ = (γN , γΠ) are pairs of
numbers belonging to the unit interval [0, 1].
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3 Properties of the Extended Gödel Implicator

In order to prove the correctness of the inference rules for fuzzy functional depen-
dencies (7) we will first show certain properties of the implicator IG.

Theorem 1. Let a = (aN , aΠ), a′ = (a′
N , a′

Π), b = (bN , bΠ), b′ = (b′
N , b′

Π), c =
(cN , cΠ), α = (αN , αΠ), β = (βN , βΠ), γ = (γN , γΠ) and θ = (θN , θΠ) be pairs
of numbers belonging to the unit interval [0, 1]. The implicator IG satisfies the
following conditions:

P1: aN ≤ bN ∧ aΠ ≤ bΠ ⇒ IG(a, b) = (1, 1),
P2: IG(a,b)N ≥ θN ∧ IG(a,b)Π ≥ θΠ ⇒ IG(a′,b′)N ≥ θN ∧ IG(a′,b′)Π ≥ θΠ for

a′
N = min(aN ,cN ), a′

Π = min(aΠ ,cΠ), b′
N = min(bN ,cN ), b′

Π = min(bΠ ,cΠ),
P3: IG(a,b)N ≥ αN ∧ IG(a,b)Π ≥ αΠ ∧ IG(b,c)N ≥ βN ∧ IG(b,c)Π ≥ βΠ ⇒

IG(a,c)N ≥ γN ∧ IG(a,c)Π ≥ γΠ for γN = min(αN ,βN ),γΠ = min(αΠ ,βΠ).

Proof.
P1: This condition directly follows from the definition of IG.
P2: Let IG(a,b)N ≥ θN and IG(a,b)Π ≥ θΠ . If IG(a,b) = (1,1) then aN ≤ bN

and aΠ ≤ bΠ . It follows that a′
N ≤ b′

N and a′
Π ≤ b′

Π and so IG(a′,b′) = (1,1). If
IG(a,b) 
= (1,1) we must prove P2 for different cases of a, b and c. If cN < aN ,
cΠ < aΠ , cN < bN and cΠ < bΠ then a′ = b′ = c ⇒ IG(a′,b′) = (1,1). If cN ≥ aN ,
cΠ ≥ aΠ , cN ≥ bN and cΠ ≥ bΠ then (a′ = a and b′ = b) ⇒ IG(a′,b′) = IG(a,b).

I. Let aN > bN and aΠ > bΠ . Thus IG(a,b) = b.

1. aN > bN ≥ cN and (aΠ > cΠ ≥ bΠ or aΠ ≥ cΠ > bΠ). a′
N=cN , a′

Π=cΠ , b′
N=

cN , b′
Π=bΠ . If bΠ = cΠ then IG(a′,b′) = (1,1), otherwise IG(a′,b′) = (bΠ ,bΠ).

2. aN > bN ≥ cN and cΠ ≥ aΠ > bΠ

a′
N = cN , a′

Π = aΠ , b′
N = cN , b′

Π = bΠ ⇒ IG(a′,b′) = (bΠ ,bΠ).
3. (aN > cN ≥ bN or aN ≥ cN > bN ) and aΠ > bΠ ≥ cΠ . a′

N=cN , a′
Π=cΠ , b′

N=
bN , b′

Π=cΠ . If cN = bN then IG(a′,b′) = (1,1), otherwise IG(a′,b′) = (bN ,1).
4. (aN > cN ≥ bN or aN ≥ cN > bN ) and (aΠ > cΠ ≥ bΠ or aΠ ≥ cΠ > bΠ)

a′
N = cN , a′

Π = cΠ , b′
N = bN , b′

Π = bΠ . If (cN > bN and cΠ > bΠ) then
IG(a′,b′) = b. If (cN > bN and cΠ = bΠ) then IG(a′,b′) = (bN ,1). If (cN =
bN and cΠ > bΠ) then IG(a′,b′) = (bΠ ,bΠ). If (cN = bN and cΠ = bΠ) then
IG(a′,b′) = (1,1).

5. (aN > cN ≥ bN or aN ≥ cN > bN ) and cΠ ≥ aΠ > bΠ . a′
N=cN , a′

Π=aΠ , b′
N=

bN , b′
Π=bΠ . If cN > bN then IG(a′,b′) = b, otherwise IG(a′,b′) = (bΠ ,bΠ).

6. cN ≥ aN > bN and aΠ > bΠ ≥ cΠ

a′
N = aN , a′

Π = cΠ , b′
N = bN , b′

Π = cΠ ⇒ IG(a′,b′) = (bN ,1).
7. cN ≥ aN > bN and (aΠ > cΠ ≥ bΠ or aΠ ≥ cΠ > bΠ). a′

N=aN , a′
Π=cΠ , b′

N=
bN , b′

Π=bΠ . If cΠ > bΠ then IG(a′,b′) = b, otherwise IG(a′, b′) = (bN ,1).

II. Let aN > bN and aΠ ≤ bΠ . Thus IG(a,b) = (bN ,1).

1. aN > bN ≥ cN and bΠ ≥ cΠ ≥ aΠ

a′
N = cN , a′

Π = aΠ , b′
N = cN , b′

Π = cΠ ⇒ IG(a′,b′) = (1,1).
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2. aN > bN ≥ cN and cΠ ≥ bΠ ≥ aΠ

a′
N = cN , a′

Π = aΠ , b′
N = cN , b′

Π = bΠ ⇒ IG(a′,b′) = (1,1).
3. (aN > cN ≥ bN or aN ≥ cN > bN ) and bΠ ≥ aΠ ≥ cΠ . a′

N=cN , a′
Π=cΠ , b′

N=
bN , b′

Π=cΠ . If cN = bN then IG(a′,b′) = (1,1), otherwise IG(a′,b′) = (bN ,1).
4. (aN > cN ≥ bN or aN ≥ cN > bN ) and bΠ ≥ cΠ ≥ aΠ . a′

N=cN , a′
Π -aΠ , b′

N=
bN , b′

Π=cΠ . If cN = bN then IG(a′,b′) = (1,1), otherwise IG(a′,b′) = (bN ,1).
5. (aN > cN ≥ bN or aN ≥ cN > bN ) and cΠ ≥ bΠ ≥ aΠ . a′

N=cN , a′
Π=aΠ , b′

N=
bN , b′

Π=bΠ . If cN = bN then IG(a′,b′) = (1,1), otherwise IG(a′,b′) = (bN ,1).
6. cN ≥ aN > bN and bΠ ≥ aΠ ≥ cΠ

a′
N = aN , a′

Π = cΠ , b′
N = bN , b′

Π = cΠ ⇒ IG(a′,b′) = (bN ,1).
7. cN ≥ aN > bN and bΠ ≥ cΠ ≥ aΠ

a′
N = aN , a′

Π = aΠ , b′
N = bN , b′

Π = cΠ ⇒ IG(a′,b′) = (bN ,1).

III. Let aN ≤ bN and aΠ > bΠ . Thus IG(a,b) = (bΠ ,bΠ).

1. bN ≥ aN ≥ cN and (aΠ > cΠ ≥ bΠ or aΠ ≥ cΠ > bΠ). a′
N=cN , a′

Π=cΠ , b′
N=

cN , b′
Π=bΠ . If cΠ = bΠ then IG(a′,b′) = (1,1), otherwise IG(a′,b′) = (bΠ ,bΠ).

2. bN ≥ aN ≥ cN and cΠ ≥ aΠ > bΠ

a′
N = cN , a′

Π = aΠ , b′
N = cN , b′

Π = bΠ ⇒ IG(a′,b′) = (bΠ ,bΠ).
3. bN ≥ cN ≥ aN and aΠ > bΠ ≥ cΠ

a′
N = aN , a′

Π = cΠ , b′
N = cN , b′

Π = cΠ ⇒ IG(a′,b′) = (1,1).
4. bN ≥ cN ≥ aN and (aΠ > cΠ ≥ bΠ or aΠ ≥ cΠ > bΠ). a′

N=aN , a′
Π=cΠ , b′

N=
cN , b′

Π=bΠ . If cΠ = bΠ then IG(a′,b′) = (1,1), otherwise IG(a′,b′) = (bΠ ,bΠ).
5. bN ≥ cN ≥ aN and cΠ ≥ aΠ > bΠ

a′
N = aN , a′

Π = aΠ , b′
N = cN , b′

Π = bΠ ⇒ IG(a′,b′) = (bΠ ,bΠ).
6. cN ≥ bN ≥ aN and aΠ > bΠ ≥ cΠ

a′
N = aN , a′

Π = cΠ , b′
N = bN , b′

Π = cΠ ⇒ IG(a′,b′) = (1,1).
7. cN ≥ bN ≥ aN and (aΠ > cΠ ≥ bΠ or aΠ ≥ cΠ > bΠ). a′

N=aN , a′
Π=cΠ , b′

N=
bN , b′

Π=bΠ . If cΠ = bΠ then IG(a′,b′) = (1,1), otherwise IG(a′,b′) = (bΠ ,bΠ).

P3: Let θ = (min(IG(a, b)N ,IG(b, c)N ), min(IG(a, b)Π ,IG(b,c)Π)).
If aN ≤ cN and aΠ ≤ cΠ then IG(a,c) = (1,1). If aN ≤ bN and aΠ ≤ bΠ then
IG(a,b) = (1,1) ⇒ θ = IG(b,c). Since the components of IG are decreasing in the
first argument [9], we obtain IG(a,c)N ≥ θN and IG(a,c)Π ≥ θΠ . If bN ≤ cN and
bΠ ≤ cΠ then IG(b,c) = (1,1) ⇒ θ = IG(a,b). Since the components of IG are
increasing in the second argument [9], we obtain IG(a,c)N ≥ θN and IG(a,c)Π

≥ θΠ . Otherwise, we must prove P3 for different cases of a, b and c.

I. Let aN > bN and aΠ > bΠ . Thus IG(a,b) = b.

1. aN > bN ≥ cN and aΠ > bΠ ≥ cΠ . IG(a,c) = c.
If (bN > cN and bΠ > cΠ) then IG(b,c) = c. If (bN > cN and bΠ = cΠ)
then IG(b,c) = (cN ,1). If (bN = cN and bΠ > cΠ) then IG(b,c) = (cΠ ,cΠ).
If (bN = cN and bΠ = cΠ) then IG(b,c) = (1,1). Thus in all cases θ = c ⇒
IG(a,c) = θ.
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2. aN > bN ≥ cN and (aΠ > cΠ ≥ bΠ or aΠ ≥ cΠ > bΠ).
IG(a,c)N = cN and IG(a,c)Π ≥ cΠ . IG(b,c)N ≥ cN and IG(b, c)Π = 1.
Thus θ = (cN ,bΠ) ⇒ (IG(a,c)N = θN and IG(a,c)Π ≥ θΠ).

3. aN > bN ≥ cN and cΠ ≥ aΠ > bΠ . IG(a,c)=(cN ,1). IG(b,c)N≥cN .
IG(b, c)Π=1. Thus θ=(cN ,bΠ) ⇒ (IG(a,c)N=θN and IG(a,c)Π>θΠ).

4. (aN > cN ≥ bN or aN ≥ cN > bN ) and aΠ > bΠ ≥ cΠ .
IG(a,c)N ≥ cN . IG(a,c)Π = cΠ . If bΠ > cΠ then IG(b,c) = (cΠ ,cΠ). If bΠ = cΠ

then IG(b,c) = (1,1). Thus θ = (bN ,cΠ) ⇒ (IG(a,c)N ≥ θN and IG(a,c)Π =
θΠ).

5. cN ≥ aN > bN and aΠ > bΠ ≥ cΠ . IG(a,c) = (cΠ ,cΠ).
If bΠ > cΠ then IG(b,c) = (cΠ ,cΠ) and if bΠ = cΠ then IG(b,c) = (1,1). Thus
θ = (bN ,cΠ) ⇒ (IG(a,c)N > θN and IG(a,c)Π = θΠ).

II. Let aN > bN and aΠ ≤ bΠ . Thus IG(a,b) = (bN ,1).

1. aN > bN ≥ cN and bΠ ≥ aΠ ≥ cΠ . IG(a, c)N = cN and IG(a, c)Π ≥ cΠ .
If (bN > cN and bΠ > cΠ) then IG(b, c) = c ⇒ θ = c ⇒ (IG(a, c)N = θN and
IG(a, c)Π ≥ θΠ). If (bN > cN and bΠ = cΠ) then IG(b, c) = (cN ,1) ⇒ θ =
(cN ,1). If bΠ = cΠ then aΠ = cΠ ⇒ IG(a, c) = (cN ,1) = θ. If (bN = cN and
bΠ > cΠ) then IG(b, c) = (cΠ ,cΠ) ⇒ θ = c ⇒ (IG(a, c)N = θN and IG(a, c)Π

≥ θΠ). If b = c then (IG(b, c) = (1,1) and IG(a, c) = (cN ,1)) ⇒ θ = (cN ,1)
⇒ IG(a, c) = θ.

2. aN > bN ≥ cN and bΠ ≥ cΠ ≥ aΠ . IG(a, c) = (cN ,1).
IG(b, c)N ≥ cN ⇒ θN = cN ⇒ IG(a, c)N = θN .

3. aN > bN ≥ cN and cΠ ≥ bΠ ≥ aΠ . IG(a, c) = (cN ,1).
If bN > cN then IG(b, c) = (cN ,1) ⇒ θ = (cN ,1) ⇒ IG(a, c) = θ.
If bN = cN then IG(b, c) = (1,1) ⇒ θ = (cN ,1) ⇒ IG(a, c) = θ.

4. (aN > cN ≥ bN or aN ≥ cN > bN ) and bΠ ≥ aΠ ≥ cΠ

IG(a,c)N ≥ cN and IG(a,c)Π ≥ cΠ . IG(b,c)N = 1 ⇒ θN = bN ⇒ IG(a,c)N ≥
θN . If bΠ > cΠ then IG(b,c)Π = cΠ ⇒ θΠ = cΠ ⇒ IG(a,c)Π ≥ θΠ . If bΠ = cΠ

then IG(b,c)Π = 1 ⇒ θΠ = 1. If bΠ = cΠ then aΠ = cΠ ⇒ IG(a,c)Π = 1 =
θΠ .

5. (aN > cN ≥ bN or aN ≥ cN > bN ) and bΠ ≥ cΠ ≥ aΠ

IG(a,c)N ≥ cN and IG(a,c)Π = 1. IG(b,c)N = 1 ⇒ θN = bN ⇒ IG(a,c)N ≥
θN .

6. cN ≥ aN > bN and bΠ ≥ aΠ ≥ cΠ . I(a,c)N ≥ cΠ and I(a,c)Π ≥ cΠ .
I(b,c)N ≥ cΠ ⇒ θN = bN ⇒ I(a,c)N ≥ θN . If bΠ > cΠ then IG(b,c)Π = cΠ

⇒ θΠ = cΠ ⇒ IG(a,c)Π ≥ θΠ . If bΠ = cΠ then IG(b,c)Π = 1 ⇒ θΠ = 1. If
bΠ = cΠ then aΠ = cΠ ⇒ IG(a,c)Π = 1 = θΠ .

III. Let aN ≤ bN and aΠ > bΠ . Thus IG(a,b) = (bΠ ,bΠ).

1. bN ≥ aN ≥ cN and aΠ > bΠ ≥ cΠ

If aN > cN then IG(a, c) = c, otherwise IG(a, c) = (cΠ ,cΠ).
If (bN > cN and bΠ > cΠ) then IG(b, c) = c ⇒ θ = c ⇒ (IG(a, c)N = θN and
IG(a, c)Π = θΠ). If (bN > cN and bΠ = cΠ) then IG(b, c) = (cN ,1) ⇒ θ =
c ⇒ (IG(a, c)N ≥ θN and IG(a, c)Π = θΠ). If (bN = cN and bΠ > cΠ) then
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IG(b, c) = (cΠ ,cΠ) ⇒ θ = (cΠ ,cΠ). If bN = cN then aN = cN ⇒ IG(a, c) =
(cΠ ,cΠ) = θ. If b = c then IG(b,c) = (1,1) ⇒ θ = (cΠ ,cΠ) ⇒ IG(a,c) = θ.

2. bN ≥ aN ≥ cN and (aΠ > cΠ ≥ bΠ or aΠ ≥ cΠ > bΠ)
IG(a, c)N ≥ cN and IG(a, c)Π ≥ cΠ . IG(b, c)Π = 1.
If bN > cN then IG(b, c) = (cN ,1) ⇒ θ = (cN ,bΠ) ⇒ (IG(a, c)N ≥ θN and
IG(a, c)Π ≥ θΠ). If bN=cN then IG(b, c) = (1,1) ⇒ θ = (bΠ ,bΠ). If bN=cN

then aN=cN ⇒ IG(a, c)N ≥ cΠ ⇒ (IG(a, c)N ≥ θN and IG(a, c)Π ≥ θΠ).
3. bN ≥ aN ≥ cN and cΠ ≥ aΠ > bΠ . IG(a, c)N ≥ cN and IG(a, c)Π = 1.

IG(b, c)Π = 1. If bN > cN then IG(b, c) = (cN ,1) ⇒ θ = (cN ,bΠ) ⇒ (IG(a, c)N

≥ θN and IG(a, c)Π > θΠ). If bN=cN then IG(b, c) = (1,1) ⇒ θ = (bΠ ,bΠ).
If bN=cN then aN=cN ⇒ IG(a, c)N = 1 ⇒ (IG(a, c)N > θN and IG(a, c)Π

> θΠ).
4. bN ≥ cN ≥ aN and aΠ > bΠ ≥ cΠ . IG(a, c) = (cΠ ,cΠ).

If (bN > cN and bΠ > cΠ) then IG(b, c) = c ⇒ θ = c ⇒ (IG(a, c)N ≥ θN and
IG(a, c)Π = θΠ). If (bN > cN and bΠ = cΠ) then IG(b, c) = (cN ,1) ⇒ θ =
c ⇒ (IG(a, c)N ≥ θN and IG(a, c)Π = θΠ). If (bN = cN and bΠ > cΠ) then
IG(b, c) = (cΠ , cΠ) ⇒ θ = (cΠ ,cΠ) ⇒ IG(a, c) = θ. If b = c then IG(b, c) =
(1,1) ⇒ θ = (cΠ ,cΠ) ⇒ IG(a, c) = θ.

5. bN ≥ cN ≥ aN and (aΠ > cΠ ≥ bΠ or aΠ ≥ cΠ > bΠ) If aΠ > cΠ then
IG(a,c)=(cΠ ,cΠ). If aΠ=cΠ then IG(a,c)=(1,1). If bN > cN then
IG(b,c)=(cN ,1) ⇒ θ=(cN ,bΠ) ⇒ (IG(a,c)N ≥ θN and IG(a,c)Π ≥ θΠ). If
bN=cN then IG(b,c)=(1,1) ⇒ θ=(bΠ ,bΠ) ⇒ (IG(a,c)N ≥ θN and IG(a,c)Π

≥ θΠ).
6. cN ≥ bN ≥ aN and aΠ > bΠ ≥ cΠ . IG(a,c) = (cΠ ,cΠ).

If bΠ > cΠ then IG(b,c) = (cΠ ,cΠ) ⇒ θ = (cΠ ,cΠ) ⇒ IG(a, c) = θ.
If bΠ = cΠ then IG(b,c) = (1,1) ⇒ θ = (cΠ ,cΠ) ⇒ IG(a,c) = θ. �

Moreover, the extended Gödel implicator has the following properties [9]:
P4: aN ≤ a′

N ∧ aΠ ≤ a′
Π ⇒ IG(a, b)N ≥ IG(a′, b)N ∧ IG(a, b)Π ≥ IG(a′, b)Π ,

P5: bN ≥ b′
N ∧ bΠ ≥ b′

Π ⇒ IG(a, b)N ≥ IG(a, b′)N ∧ IG(a, b)Π ≥ IG(a, b′)Π ,
P6: IG(1, b)N = bN and IG(1, b)Π = bΠ ,
P7: IG(a, b)N ≥ bN and IG(a, b)Π ≥ bΠ ,
P8: IG(a, IG(b, c))N = IG(b, IG(a, c))N and IG(a, IG(b, c))Π = IG(b, IG(a, c))Π .

4 Soundness and Completeness of the Inference Rules

The set of extended Armstrong’s axioms can be used to derive new fuzzy func-
tional dependencies implied by a given set of FFDs. Let F be a set of FFDs
(7) with respect to the relation scheme R (U). Let us denote by F+ the set of
all FFDs which can be derived from F by means of the extended Armstrong’s
axioms:

F+ = {X →θ Y, θ = (θN , θΠ) : F � X →θ Y }. (9)

Theorem 2. The extended Armstrong’s axioms are sound.
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Proof. Let F be a set of FFDs for the relation scheme R(U). Let t1 and t2 be
tuples of r, where r is relation of R(U). Let X, Y , Z ⊆ U .
Let a = =c (t1(X), t2(X)), b = =c (t1(Y ), t2(Y )), c = =c (t1(Z), t2(Z)).
A1: If Y ⊆ X then by (4) aN ≤ bN and aΠ ≤ bΠ . Since IG satisfies P1, we get
IG(a, b) = (1, 1) and so

IG(=c (t1(X), t2(X)),=c (t1(Y ), t2(Y )))N = 1 ≥ θN ,

IG(=c (t1(X), t2(X)),=c (t1(Y ), t2(Y )))Π = 1 ≥ θΠ .

A2: Since X →θ Y holds, we have IG(a, b)N ≥ θN and IG(a, b)Π ≥ θΠ . Let
a′ = =c (t1(XZ), t2(XZ)) and b′ = =c (t1(Y Z), t2(Y Z)). From (4) we get a′

N =
min(aN ,cN ), a′

Π = min(aΠ ,cΠ) and b′
N = min(bN ,cN ), b′

Π = min(bΠ ,cΠ). Since
IG satisfies P2, we obtain IG(a′, b′)N ≥ θN and IG(a′, b′)Π ≥ θΠ and so

IG(=c (t1(XZ), t2(XZ)),=c (t1(Y Z), t2(Y Z)))N ≥ θN ,

IG(=c (t1(XZ), t2(XZ)),=c (t1(Y Z), t2(Y Z)))Π ≥ θΠ .

Thus, if X →θ Y ∈ F+ then XZ →θ Y Z ∈ F+.
A3: Since X →α Y and Y →β Z hold, we have: IG(a, b)N ≥ αN , IG(a, b)Π ≥ αΠ

and IG(b, c)N ≥ βN , IG(b, c)Π ≥ βΠ . By P3 we obtain IG(a, c)N ≥ γN and
IG(a, c)Π ≥ γΠ , where γN = min(αN , βN ) and γΠ = min(αΠ , βΠ) and so

IG(=c (t1(X), t2(X)),=c (t1(Z), t2(Z)))N ≥ γN ,

IG(=c (t1(X), t2(X)),=c (t1(Z), t2(Z)))Π ≥ γΠ .

Thus, if X →α Y ∈ F+ and Y →β Z ∈ F+ then X →γ Z ∈ F+ for γ=(min(αN ,
βN ), min(αΠ , βΠ)). �

The following rules result from Armstrong’s axioms:
D1:X →α Y ∧ X →β Z ⇒ X →λ Y Z for γ = (min(αN , βN ), min(αΠ , βΠ))

Proof. By A2 we have X →αY ⇒ X →αXY and X →βZ ⇒ XY →βZY . Then
by A3 we obtain X →αXY ∧ XY →βY Z ⇒ X →γY Z for γ = (min(αN ,βN ),
min(αΠ ,βΠ)). �

D2:X →α Y ∧ WY →β Z ⇒ XW →λ Z for γ = (min(αN , βN ), min(αΠ , βΠ))

Proof. By A2 we have X →αY ⇒ XW →αY W . Then by A3 we obtain XW →α

Y W ∧ WY →βZ ⇒ XW →γZ for γ = (min(αN ,βN ), min(αΠ ,βΠ)). �

D3: X →α Y ∧ Z ⊆ Y ⇒ X →α Z

Proof. By A1 we have Z ⊆ Y ⇒ Y →α Z for every α = (αN , αΠ), αN , αΠ ∈
[0,1]. Then by A3 we obtain X →α Y ∧ Y →α Z ⇒ X →α Z. �

D4: X →α Y ⇒ X →β Y for βN ≤ αN and βΠ ≤ αΠ

Proof. By A1 we have Y →θY for every θ=(θN , θΠ), θN , θΠ ∈ [0,1]. Then by A3
we obtain X →αY ∧ Y →θY ⇒ X →βY for β=(min(αN ,θN ),min(αΠ ,θΠ)). �
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The closure of a set of attributes X ⊆ U with respect to the set F of FFDs,
denoted by X+

F , is defined as a set of triples (A, θN , θΠ), where A ∈ U , θN =
sup

{
α : X →(α,β) A ∈ F+

}
and θΠ = sup

{
β : X →(α,β) A ∈ F+

}
. The set of

attributes occurring in X+
F will be denoted by DOM(X+

F ):

DOM(X+
F ) =

{
A : (A, θN , θΠ) ∈ X+

F

}
.

Lemma 1. Let F be a set of FFDs defined over a relation scheme R(U). Let
X,Y ⊆ U and Y = {A1, A2, ..., Ak} , Ai ∈ U . Then X →(θN ,θΠ) Y is deduced by
means of the extended Armstrong’s axioms if and only if ∀i(Ai, θi,N , θi,Π) ∈ X+

F ,
where θi,N ≥ θN and θi,Π ≥ θΠ .

Proof.
Necessity: If X →(θN ,θΠ) Y is deduced by means of the extended Armstrong’s
axioms then by D3 we obtain X →(θN ,θΠ) Ai for i = 1, 2,...,k. Thus there exist
θi,N ≥ θN and θi,Π ≥ θΠ such that (Ai, θi,N , θi,Π) ∈ X+

F (definition of X+
F ).

Sufficiency: If (Ai, θi,N , θi,Π) ∈ X+
F where θi,N ≥ θN and θi,Π ≥ θΠ for i =

1, 2,...,k, then X →(θi,N ,θiΠ) Ai ∈ F+. By D1 we obtain X →(θN ,θΠ) Y , where
θN = mini(θi,N ) and θΠ = mini(θi,Π). �

Theorem 3. The extended Armstrong’s axioms are complete.

Proof. In order to prove the theorem we will show that if X →(θN ,θΠ) Y /∈ F+,
then it is possible to construct a relation where all FFDs in F are satisfied
and X →(θN ,θΠ) Y does not hold, which means that X →(θN ,θΠ) Y cannot be
derived from F . Let F be a set of FFDs for relation scheme R(U). Suppose that
X →(θN ,θΠ) Y /∈ F+. Let X = {X1,X2, ...,Xk} and DOM(X+

F ) = {X1,X2, ...,
Xk, A1, A2, ..., Al}. Let us construct a relation r of the scheme R(U), U =
{DOM( X+

F ), B1, B2, ..., Bm}, consisting of two tuples t1 and t2 such that:

t1(X) = t2(X) = 1,
t1(Ai) = ci, t2(Ai) = di for Ai ∈ DOM(X+

F ) − X, i = 1, 2, ..., l

t1(Bi) = 0, t2(Bi) = 1 for Bi ∈ U − DOM(X+
F ), i = 1, 2, ...,m

where ci and di are possibility distributions with degrees of closeness φi,N and
φi,Π . Let φ0,N = miniφi,N and φ0,Π = miniφi,Π .

We will show that each FFD V →(γN ,γΠ)W ∈ F holds in r. One should
consider only the case when V ⊆ DOM(X+

F ) and W ⊆ DOM(X+
F )−X. (If V

� DOM(X+
F ) then t1(V ) 
= t2(V ) and so V →(1,1)W . Similarly, if W ⊆ X then

t1(W ) = t2(W ) and so V →(1,1)W . Suppose that V ⊆ DOM(X+
F ) and W ⊆ U

− DOM(X+
F ). Degrees of closeness of t1(W ) and t2(W ) are equal to 0. By

Lemma 1 we obtain X→(φ0,N ,φ0,Π)V ∈ F . Since V →(γN ,γΠ)W ∈ F we have
X→(ψN ,ψΠ) W ∈ F , where ψN = min(φ0,N , γN ) and ψΠ = min(φ0,Π , γΠ). Thus
W ⊆ DOM(X+

F ): a contradiction.)
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Suppose that there exists V →(γN ,γΠ)W ∈ F , which does not hold in r. Let
V ⊆ DOM(X+

F ), V −X = {Ap1 , Ap2 , ..., Apr
}, W ⊆ DOM(X+

F ) − X and W =
{As1 , As2 , ..., Ast

}, where p1, p2, ..., pr, s1, s2, ..., st ∈ {1, 2, ..., l}. Let φV,N = mini

φpi,N , φV,Π = miniφpi,Π and φW,N = miniφsi,N , φW,Π = miniφsi,Π . Thus,
=c (t1(V ), t2(V )) = (φV,N , φV,Π) and =c (t1(W ), t2(W )) = (φW,N , φW,Π). If
V →(γN ,γΠ)W does not hold in r, then φW,N < min(γN , φV,N ) or φW,Π < min(γΠ ,
φV,Π). Thus, φpi,N > φW,N or φpi,Π > φW,Π for every pi. By Lemma 1 we obtain
X→(φV,N ,φV,Π)V ∈ F+. Since V →(γN ,γΠ)W ∈ F we have X→(ψN ,ψΠ)W ∈ F+,
where ψN = min(φV,N , γN ) and ψΠ = min(φV,Π , γΠ). Since W ⊆ DOM(X+

F )
− X then (Asi

,φsi,N , φsi,Π) ∈ X+
F for every si. According to the definition

of X+
F , φsi,N and φsi,Π are upper bounds. Thus, conditions φpi,N > φW,N or

φpi,Π > φW,Π for every pi are not satisfied. We obtained a contradiction. Thus,
V →(γN ,γΠ)W holds in r.

Now we prove that X →(θN ,θΠ) Y /∈ F+ does not hold in r. We should con-
sider only the case when Y ⊆ DOM(X+

F ). (If Y � DOM(X+
F ) then =c (t1(Y ),

t2(Y ))N = =c (t1(Y ), t2(Y ))Π = 0 and so X →(θN ,θΠ) Y does not hold). Let
Y ⊆ {A1, A2, ..., Al}. Let φY,N = miniφi,N and φY,Π = miniφi,Π . By Lemma 1,
it follows that X →(θN ,θΠ) Y holds in r for φY,N ≥ θN and φY,Π ≥ θΠ and
X →(θN ,θΠ) Y ∈ F+ which is a contradiction to the assumption. �

Example 1. Let us consider relation scheme R(A,B,C,D) with the following set
of FFDs: F = { ABC →(0,0.8)D, BCD →(0.5,1)A, ACD →(1,1)B, ABD →(0.8,1)

C, A →(0,0.7)C, A →(1,1)D, B →(0,0.6)AC }. By D2 we obtain: AB→(0,0.7)D,
AD→(0,0.7)B, AC→(1,1)B, AB→(0.8,1)C and B→(0,0.6)D. Since A→(1,1)D ⇒
AB→(1,1)D (by A2 and D3) and AB→(1,1)D ⇒ AB→(0,0.7)D (by D4) we con-
clude that AB→ (0,0.7)D is redundant. Similarly ABC →(0,0.8)D, ACD →(1,1)B,
ABD →(0.8,1) C are also redundant. By D3 we have B→(0,0.6)A and B→(0,0.6)C.
Thus Fm = {BCD →(0.5,1) A,AD →(0,0.7) B,AC →(1,1) B,AB →(0.8,1) C,A →
(0,0.7)C,A →(1,1) D,B →(0,0.6) A,B →(0,0.6) C,B →(0,0.6) D} is a minimal set of
FFDs for the scheme R.

5 Conclusions

The paper deals with data dependencies in possibilistic databases. We applied
and extended the definition of fuzzy functional dependency which was formu-
lated by Chen [2]. Its level is evaluated by measures of possibility and necessity.
For FFDs we have established inference rules which are an extension of Arm-
strong’s axioms for conventional databases and showed that they form a sound
and complete system. Similar results may be expected for other approaches. The
obtained results could be generalized when using t-norms. Another line of future
work is an extension of the presented considerations by taking into account
unknown and inapplicable (missing) values.
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