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Abstract. Collective adaptive systems (CAS) consist of a large number
of possibly heterogeneous entities evolving according to local interac-
tions that may operate across multiple scales in time and space. The
adaptation to changes in the environment, as well as the highly dis-
persed decision-making process, often leads to emergent behaviour that
cannot be understood by simply analysing the objectives, properties, and
dynamics of the individual entities in isolation.

As with most complex systems, modelling is a phase of crucial impor-
tance for the design of new CAS or the understanding of existing ones.
Elsewhere in this volume the typical workflow of formal modelling, analy-
sis, and evaluation of a CAS has been illustrated in detail. In this chapter
we treat the problem of efficiently analysing large-scale CAS for quan-
titative properties. We review algorithms to automatically reduce the
dimensionality of a CAS model preserving modeller-defined state vari-
ables, with focus on descriptions based on systems of ordinary differential
equations. We illustrate the theory in a tutorial fashion, with running
examples and a number of more substantial case studies ranging from
crowd dynamics, epidemiology and biological systems.

1 Introduction

Distinctive features of collective adaptive systems (CAS) are the presence of a
large number of entities with their own properties, objectives, and behaviour,
that interact with each other and with the environment in such a way that
the resulting global dynamics arises as an emergent property that cannot be
directly inferred from the study of individuals in isolation. To ensure that a CAS
design meets the desired properties, or to accurately understand the behaviour
of existing CAS, it is of crucial importance to be able to reason about a (possibly
huge) system as a whole. In this context, the modelling phase clearly plays an
important role, as it does with any system characterised by high complexity.

Quantitative Abstractions. The focus of this chapter is on quantitative modelling
of CAS. Due to their heterogeneity and scale, CAS introduce a number of diffi-
cult challenges, the most notable of which is the problem of state space explosion
that is typically incurred when analysing large collectives of entities. Elsewhere
in this volume are contributions to a prototypical design and modelling work-
flow for CAS which take scalability and accuracy of the analysis into account.
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The process algebra CARMA (cf. [9]) is explicitly designed to study collectives
of agents evolving stochastically according to a continuous-time Markov chain
(CTMC) model [57]; approximate analysis techniques based on hybrid or dif-
ferential equation approximations are presented in [10]; effective approaches for
dealing with the spatial dimension of CAS are reviewed in [38]; finally, model
checking for spatial and temporal properties are discussed in [40]. Here, instead,
we focus on techniques that crosscut the above phases of the modelling workflow.
Namely, we consider the problem of obtaining suitable abstractions of dynamical
models for CAS. We are motivated by the fact that, in real-world scenarios, the
inherent system’s complexity is so high that it may even defeat typically com-
pact and effective model descriptions, such as those based on ordinary differential
equations (ODEs).

Let us consider, for instance, the case of a bike-sharing system (BSS). This
is a prototypical CAS [30], an instance of which has been also used as running
example of [57]. Its quantitative analysis may be based on a CTMC model, which
will however grow unfeasibly large in realistic settings since the state space has
to cover (at least) all of the possible combinations of bike availabilities at each
station. Deterministic approximations based on ODEs may come to the rescue,
by more compactly associating one equation for each station and each possible
link between two stations. In this case they would capture an estimate of the
average number of bikes available at each station as well as of those in transit [37].
Clearly, if instantiated to a real-world large BSS such as London’s, with over
700 stations, it would yield an ODE system of many thousands of equations,
which is likely to drastically impact on the practical feasibility of the analysis.
Furthermore, the analysis would become prohibitive if the modeller wished to
track higher order moments than the averages, since the ODE system size grows
polynomially with the number of variables of the original system (e.g., [32]).

Abstraction techniques may help tackle the dimensionality problem further.
The basic idea is to obtain a representation of the original model projected onto
a lower dimensional state space so as to allow a more efficient analysis. Due to
the large scale involved in CAS models, there are four main desirable properties
for an effective method:

P1. The abstraction should come with formal guarantees on the relationship
between the abstract dynamics and the original one. This enables the mod-
eller to use the abstract model with full confidence in the results of the
analysis.

P2. The construction of the abstract model should be fully automatic, since the
original model is likely to be unintelligible due to size.

P3. The method should be generic in order to be applicable to as a wide range
of CAS models as possible.

P4. The abstract model should preserve user-defined observables of the original
system. For instance, it should be possible to fully recover the dynamics of
selected variables of the original model.

In this chapter we consider abstraction techniques that satisfy the above require-
ments for quantitative CAS models based on ODEs. However they can be
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applicable also to CTMC models by studying the CTMC’s equations of motion,
which is a linear ODE system (e.g., [61]). In fact, we will discuss that these tech-
niques can be somewhat seen as a generalisation of aggregation algorithms spe-
cific to CTMCs, based on the well-known notion of lumpability [14]. Languages
and equivalences have been extensively studied for models based on CTMC
semantics (e.g., [27]).

Since ODEs are a universal dynamical model, featuring in many diverse sci-
entific branches including organic and inorganic chemistry, ecology, economics,
epidemiology, systems biology, and control theory, reducing large scale ODEs has
also a long-standing tradition (e.g., [2,48,62]). Here we offer a specific computer-
science viewpoint on this subject, looking at ODE reduction as the problem of
finding an appropriate equivalence relation over the ODE’s state variables, bor-
rowing ideas from the programming languages community and concurrency the-
ory. Most of the results discussed here, summarised from [19-21], concern exact
notions of aggregation. These may be lossy in that the dynamics of some origi-
nal variables cannot be recovered in the abstract model, yet all the information
in the abstract model is exactly related to the original variables; approximate
notions of aggregation are an exciting future research direction.

Differential Equivalences. The problem of minimising ODEs is interpreted as a
quotienting up to some equivalence, akin to more classical models of computation
based on labelled transition systems (LTS). We put forward the analogy between
states of an LTS and ODE variables. The starting point is that of differential
equivalences, relations between ODE variables that preserve their corresponding
solutions in some appropriate sense. Here we consider two variants of differential
equivalence, as first presented in [21].

In forward differential equivalence (FDE), an ODE system can be written
for the variables that represent the equivalence classes, giving the sum of the
solutions of its members at all time points ¢. Let us consider the example:

1 = —I1, T = k1 - 21 — X2, 3 = ko -1 — X3, (1)

where k; and k are constants and the ‘dot’ operator denotes the derivative.!
It can be shown that {{z1}, {z2,25}} is an FDE quotienting. Indeed, exploiting
basic properties one gets

T, = —x1, (:172 + 33‘3) =29+ T3 = (k‘1 + k‘g) - I — (LL'Q =+ 373). (2)
By the change of variable y = x5 + x3, this is equivalent to writing
i = -1 U= (k1 +kg) 21—y

This quotient ODE model recovers the sum of the solutions of the variables in
each equivalence class. Thus, setting the initial condition y(0) = z2(0) + x3(0)
yields that the solution satisfies y(t) = z2(t) + x3(t) at all time points t.

! Throughout the paper we will work with autonomous ODE systems, which are not
explicitly dependent on time.
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Backward differential equivalence (BDE) equates variables that have the
same solutions at all time points. In (1), {{z1}, {z2,23}} is also a BDE pro-
vided that k1 = ko. In this case, we obtain a quotient ODE by removing either
equation between x5 and x3, say s, and rewriting every occurrence of x3 as za:

il = —T1 1'32 = klllil — T9.

Both FDE and BDE satisfy P1, since a differential equivalence will yield
an abstract model that can be exactly related to the original one. However, we
observe that BDE is lossless, because every variable in the same equivalence
class has the same solution. Therefore, the original model solution can be fully
recovered at the expense of the side condition that equivalent variables have to be
initialised equally. Instead, with FDE one cannot recover the original solutions
in general; on the other hand FDE has no restrictions on the initial conditions.

When the ODE comes from a CTMC model, in [21] it is shown that FDE
and BDE correspond to ordinary and exact lumpability of CTMCs [14], respec-
tively. Incidentally, this also implies that FDE and BDE are not comparable in
general. The terms “forward” and “backward” are motivated by a rather estab-
lished tradition in the literature to call these two notions of CTMC lumpabil-
ity (e.g., [19,36,70]), due to the fact that they involve conditions on the outgoing
and incoming arcs of the CTMC state transition diagram, respectively.

Differential equivalence can be in principle defined for any ODE system.
However, in order to satisfy P2 and obtain a minimisation algorithm, it is neces-
sary to impose some restrictions on the kind of admissible ODE systems. In this
chapter we review two alternatives that trade off expressiveness for scalability.

Symbolic Minimisation Algorithms. The first approach, presented in [21], inter-
prets each ODE variable directly as a real function. Establishing an equivalence
between two variables thus amounts to relating two functions for all their possible
assignments, which involves reasoning over uncountable state spaces. The first
step in [21] is to encode the equivalence conditions into logical formulae contain-
ing ODE variables, and check them symbolically through a satisfiability modulo
theories (SMT) solver [4]. Actually, it turns out that differential equivalences can
be encoded into the quantifier-free fragment of first-order logic. By appropriately
restricting the admissible ODE systems to those for which an SMT solver — in
our implementation, the well-known Z3 [26] — is a decision procedure for such
formulae, we obtain a rigorous way of checking the existence of a differential
equivalence. The language IDOL (Intermediate Drift-oriented Language) of [21]
does so by essentially excluding trigonometric functions. On the other hand, it
can encode polynomials of any degree, rational expressions, minima and max-
ima, enough to cover affine systems, chemical reaction networks with frequently
used kinetics such as the law of mass action and Hill’s, and the deterministic
semantics of process algebra. Thus, it can satisfy P3 to some extent.

The SMT checks can be embedded into an algorithm that finds the coarsest
refinement of a given input partition up to a differential equivalence. This exploits
the ability of the SMT solver to produce a witness, i.e., a variable assignment that
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falsifies the hypothesis that the current partition is a differential equivalence. The
partition is then refined iteratively until a fixed point is found.

We note that the algorithm meets the requirement of property P4. Indeed,
suppose that the modeller wishes to keep track of an ODE variable x in the
abstract model. Then, starting the FDE algorithm with the trivial partition
where all variables are in the same block might clearly lead to an equivalence
where x is related to other variables. As a result, z’s individual solution cannot
be recovered. However, since the input partition may be chosen arbitrarily, it is
possible to isolate the desired observable variables into singleton initial blocks.
Similarly, to be able to fully reconstruct the original model from the abstract
one when using BDE, it is necessary to construct an initial partition consistent
with the initial conditions of the original model (that is, two variables are in the
same initial block if their initial conditions are the same).

Syntaz-Driven Minimisation. The second approach takes a different perspective
that offers a trade off between expressiveness of the language and efficiency of the
minimisation algorithm. It is based on a finitary representation of an ODE sys-
tem by means of a so-called reaction network (RN) [20]. This is a slight extension
of a formal chemical reaction network (CRN) which allows rate parameters to be
also negative. Assuming elementary reactions only, i.e., reactions with at most
two reagents, a reaction network gives rise to an ODE system with derivatives
that are multivariate polynomials of degree at most two. The advantage in using
this construction is that it is possible to use bisimulation-style equivalences for
model reduction, originally developed in [19] for CRNs, over a state space that
is discrete because it only concerns finitely many “species” (corresponding to
the ODE variables) and reactions (each representing a monomial in the ODE’s
right-hand side, as discussed in Sect. 2.3).

The notions of bisimulation for RNs are closely related to the differential
equivalences in [21]. In particular, forward bisimulation (FB) is a partition of
an RN’s set of species which represents a sufficient condition for an FDE of
the corresponding ODE variables. Instead, backward bisimulation (BB) fully
characterises BDE (for multivariate polynomials of degree at most two). The
main contribution of [20] is to exploit the fact that FB and BB can be written in
the Larsen-Skou style of probabilistic bisimulation [55]. This enables us to cast
the computation of the largest FB/BB into Paige and Tarjan’s famous coarsest
refinement problem [63]. In particular, in [20] a partition refinement algorithm
is developed along the lines of efficient analogues for Markov chain lumping such
as [31,77], and for probabilistic transition systems [3].

Tool Support. Both families of symbolic and syntactic minimisation techniques
are tool supported. The former has been implemented in ERODE, a tool offering
SMT-based automatic Exact Reduction of Ordinary Differential Equations. The
tool is available at http://sysma.imtlucca.it/tools/erode/, together with instal-
lation and usage instructions. ERODE is a Java tool which interacts with Z3
to perform automatic minimisation of IDOL programs up to FDE and BDE.
More details on the implemented procedures are provided in Sects. 2.1 and 2.2.
ERODE currently supports the continuous-state semantics based on the law of
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mass action of CRNs given in the .net format generated with the well-established
tool BioNetGen [8], version 2.2.5-stable. This allowed us to validate our differen-
tial equivalences against a wide set of existing models in the literature. Support
for the entire IDOL language in under development.

The syntactic minimisation techniques have been implemented in CRNRe-
ducer, a Java tool offering automatic exact reduction of (chemical) reaction
networks. It is available at http://sysma.imtlucca.it/tools/crnreducer /. CRNRe-
ducer performs the syntactic checks necessary to minimize an input RN up to
forward and backward bisimulations. More details on the implemented algo-
rithms are given in Sects. 2.3 and 2.4. CRNReducer currently supports CRNs
given in the BioNetGen’s .net format, and CTMCs in the .tra/.lab format of
the state-of-the-art model checker MRMC [50]. In addition, it accepts a com-
pact CSV-like representation of linear systems of equations in the form A-z = b,
where z is the vector of unknowns. Stationary iterative methods such as Jacobi’s
can be seen as discrete-time dynamical system that converges to the solution. To
such a system, CRNReducer can apply FB/BB (see [20] for details and bench-
marks). Support for other languages which can be encoded as reaction networks
is currently under development.

As part of a larger effort, a new tool collecting both symbolic and syntactic
minimization techniques is currently under development. The tool will be pro-
vided with a modern integrated development environment, will offer full support
for the IDOL language, and will be equipped with importing capabilities from a
number formats.

Paper Structure. The paper is organized as follows. Section 2 presents our sym-
bolic (Sects. 2.1 and 2.2) and syntactic (Sects. 2.3 and 2.4) reduction techniques.
Then, Sect. 3 shows how they can be applied to crowd dynamics models (Sect. 3.1),
to multi-community epidemiology models (Sect. 3.2), as well as to models from
the realm of evolutionary biology (Sect. 3.3) and biochemistry (Sect. 3.4). Finally,
Sect. 4 discusses related works, while Sect. 5 concludes the paper.

2 Background

2.1 Differential Equivalences

Although differential equivalences can be in principle defined for a larger class of
ODE models, here we consider a fragment, identified by a formal kernel language
called Intermediate Drift-oriented Language (IDOL), which guarantees decidabil-
ity for the problem of computing a differential equivalence.

Definition 1 (IDOL Syntax). The syntax of programs of the intermediate drift
oriented language (IDOL) is given by

pu=clai=fp

fa=nla| f+f1f-F1fm

where ; € V and n,m € Z and m # 0.
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The set V represents ODE variables. A program is a list of elements &; = f

where each element gives the drift f for ODE of the variable x;. The “dot”

operator indicates the derivative with respect to time. Given an IDOL program

p, we define V,, = {x1,...,x,} as the set of variables in p. We say that p is well-

formed if for every x; € V, there exists a unique term &; = f in p. We denote its

drift by f;. Throughout this paper we will consider well-formed programs only.
We remark that IDOL can cover frequently used dynamics such as:

— the law of mass action for CRNs, using drifts such as z1 - x9;
— the Hill kinetics for CRNs, with drifts such as z% /(1 + 23);
— and the minimum function for threshold based drifts, where

1 1
min(zy,ze) 1= i(xl + xo — |21 — 22]), with |z|:= (x-x)2.

The semantics of IDOL is given denotationally through the ODE solution
of an initial value problem, starting from an initial condition &. For an IDOL
program p, we denote by ©(p) the logical formula that encodes the appropri-
ate domain where the solution lives (which must be regular enough, cf. [21] for
details). Furthermore, we slightly ease notation with respect to [21] by repre-
senting the solution for variable x; simply by x;(¢).

FDE is a partition over IDOL variables satisfying the property that sums of
variables can be factored out from the cumulative derivatives that sum across
the drifts of all variables belonging to each block, e.g. (2). This property can
be captured by replacing each variable as a scaled sum of the corresponding
variables of its block, such that all scaling factors are non-negative and sum to
one; in the example (1), we would keep 1 as is (it is a singleton block), and
replace xo with sq - (x9 + x3) and z3 with s9 - (3 + x3), where s; and sy are
the scaling factors. Then, FDE amounts to proving that the aggregated drifts
do not depend on the assignments of the scaling factors. For instance, in (1) we
would rewrite the aggregated drift fs + f3 as follows

fot fas=ki-x1—x2+ ko 1 — 23
=ky-x1— 51 (xa+ax3)+kax1 — 52 (T2 + 2x3)
= (k1 + ko) -x1 — (51 + 82) - (w2 + 3)
= (k1 + k2) - 21 — (22 + 23)
Indeed it does not depend on the choice of s; and ss, since s1 + so = 1.
We now appeal to a fundamental result from [72], which shows that it is
enough to check this for a particular choice. For technical reasons discussed

n [21], FDE checks this through a uniform scaling (for instance s; = so = 1/2
in the example).

Definition 2 (FDE). Let p be an IDOL program and Z o partition of V,. Then,
Z s a forward differential equivalence if the following formula is valid:

A (X fi= Z fi [a:j/zg”r;ﬁ H' €2, aeH]) (97

HeZ «x;€H
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As usual, we have denoted by [t/s] the term where each occurrence of ¢ in 1) is
replaced by s.

Definition 3 (FDE Quotient). Let p be an IDOL program and Z an FDE
partition. Then, the forward quotient of p with respect to Z, denoted by pz, is:

gr=Y fi[xj %' H' €2, z,€H|, forallH € Z.
z,€H
We now state a crucial dynamical characterization theorem: A partition of
IDOL variables is FDE if and only if the ODEs of the quotient program preserve
the sums of the original trajectories in each equivalence class. Hence the largest
FDE represents the best possible aggregation that can be obtained in this sense.

Theorem 1. Let p be an IDOL program with initial condition 6, Z a partition
of V. Then, Z is an FDE partition with forward quotient pz if and only if

yr(t) = 3 ai(t)

r,€EH

for all t for which the solutions exist and for an initial condition of the quotient
program Gz that satisfies 6z(yn) =D, cpy 0(xi) for all H € Z.

One extra step is needed to make FDE usable in a minimisation algorithm.
We need to be able to refer FDE to properties enjoyed by the single variables, as
opposed to blocks of variables in the original definition. If a candidate partition
is not FDE, the algorithm needs to “split” the partition blocks in such a way
that it isolates such variables that prevent the partition from being an FDE.
For this we consider an alternative characterisation of FDE in terms of binary
conditions.

Theorem 2 (Binary FDE Characterization). Let p be an IDOL program,
R be an equivalence relation on Vy, and Z2 = V,/R. Then Z is an FDE if and
only if for all distinct x;,2; € V, we have that (x;,x;) € R implies that the
following formula is valid:

o) = N (X fo= 3 flwi/s it a)m/ (1= )i +35)] ) (BF )

HeZ xr€H zr€EH

We now turn to BDE. The fact that IDOL variables have the same solutions
at all time points is characterized by the property that variables with the same
assignment are mapped to equal drifts.

Definition 4 (BDE). Let p be an IDOL program and Z a partition of V,. Then
Z is a backward differential equivalence if the following formula is valid:

O(p) — ( N @or=...=zgm)— N\ foa=...= fH,|H|)> (2%)

HeZ HeZ
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Now, similarly to FDE it is possible to define a notion of quotient IDOL
program, and state the dynamical characterization theorem.

Definition 5 (BDE Quotient). Let p be an IDOL program and Z a BDE
partition of V,. The backward quotient of p with respect to Z, denoted by Pz,
is given by

g = fua[ew /vy vy fyeH €Z], forH € Z.

Theorem 3 (Dynamical BDE Characterization). Let p be an IDOL pro-
gram and Z a partition of V,. Then, Z is a BDE partition with backward quotient
‘pz if and only if 6z(yy) = 6(xg1) = ... = 6(xp,m|) for all H € Z implies

yH(t) = $H71(t) =...= (tH,‘H‘(t)

for all H € Z and all t for which the solutions exist.

2.2 Symbolic Minimisation

The first step toward a symbolic minimisation algorithm is to be able to check
whether a candidate partition is a differential equivalence. The problem amounts
to establishing the validity of the (quantifier-free) formulae &=, @fm, and ¥Z,
which are decidable by Tarski’s famous result. To check them, we encode the
problem into the unsatisfiability of their negations, i.e., by computing sat(—®%),
sat(—@i@j), and sat(—¥?). These can be decided using the decision procedure
nlsat [49], which is implemented in Z3 v4.0 [26]. Thus, a partition Z is FDE

(resp., BDE) if and only if sat(—®%) (resp., sat(—¥<)) returns “unsatisfiable”.

Ezample 1. Consider the ODE system given in Eq. (1), the partition of its species
Zy = {{x1},{x9,23}}, and ~¥?1, ie., the formula to check if Z; is a BDE.
Listing 1 provides the encoding of ~¥?1 in the standard SMT-LIB v2.0 [5]. Given
that Eq. (1) is parametric with respect to two real variables k; and ks, we declare
them in Lines 2-3. We consider two cases: either k1 = ko = 1 (Lines 6), or k; = 1
and ks = 2 (commented out in Lines 7). We have three ODE variables: x1, 2 and
x3, declared as real variables in Lines 10-12, paired with the three corresponding
drifts f1, fo and f3, defined as functions in Lines 20-28. The three functions
implicitly take ki, k2 and the three ODE variables as arguments, and evaluate
in a real number. In this example we assume that the domain @ of interest
is R3, as encoded in Lines 15-17. After having specified the ODE system of
interest, in Lines 31-32 we can provide the actual encoding of -¥%1. By applying
simple transformations we can rewrite W21 = —((zy = 23) = (f2 = f3))
as (xa = x3) A (f2 # f3). The first conjunct (z2 = x3) imposes that the ODE
variables are constant on Z; (i.e., the ODE variables in the same block have
same value). Instead, the second conjunct (f2 # f3) imposes that the drifts are
not constant on Z;. Note that the given SMT-encoding has 3 free variables: 1,
xo and x3. If there exists an assignment for them that satisfies Listing 1, then
Z is not a BDE. The command to check the satisfiability is given in Line 35,
while Line 36 asks the solver to return one of the satisfying assignments (if any).
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;Declare a real constant per parameter k1 and k2
(declare-const ki1 Real)
(declare-const k2 Real)

;We consider ki =1, and either ko =1 or kg =2
(assert (= k1 1)) (assert (= k2 1))
;(assert (= k1 1)) (assert (= k2 2))

© 00O U WN -

;Declare a real constant per ODE wvartable
10 | (declare-const x1 Real)
11 (declare-const x2 Real)
12 | (declare-const x3 Real)

14 | ;We assume to have Rio as domain O.
15 | (assert (>= x1 0))

16 | (assert (>= x2 0))

17 | (assert (>= x3 0))

19 | ;Define the drift f; of each ODE wariable x;.
20 | (define-const f1 Real

21 (*+ -1 x1)

22 )

23 (define-const f2 Real

24 (+ (*x k1 x1) (x -1 x2))
25 |)

26 | (define-const f3 Real

27 (+ (*x k2 x1) (* -1 x3))
28 |)

29

30 | ;We encode —=WZ1 4in the equivalent form (xa = x3) A (f2 # f3)
31 | (assert (= x2 x3))
32 | (assert (not (= £2 £3)))

34 ;Check <f the formula ts satisfiable, and return a witness if so
35 (check-sat)
36 | (get-model)

Listing 1. SMT-LIB v2.0 encoding of -¥*! to check that Z; is a BDE for (1)

Listing 1 can be solved using any of the SMT solvers supporting the SMT-
LIB v2.0 standard. The executable Z3 encoding of Listing 1 for both the cases
k1 = ko and k1 # ko is available via the rise4fun web interface at http://rised4fun.
com/Z3/IWT7d1. For the case k; = ko we obtain “unsatisfiable”, because Z; is a
BDE partition if k1 = ko, as discussed. Instead, for the case k1 # ko we obtain
“satisfiable”, and the assignment o, = {x1 = 1,29 = 0,25 = 0}. In fact, we
have [f2](0w) = 1 and [f3](cw) = 2, where by [f](0) we have denoted the
interpretation of f as a real function, evaluated with the assignment o.

The steps sat(@i’mj) and sat(¥?) can be embedded into an algorithm that
computes the coarsest FDE/BDE refinement of a given input partition, shown
in Algorithm 1, and parametrised by the differential equivalence of interest (by
setting y = F and y = B for FDE and BDE, respectively).

The refinement step for FDE (Algorithm 2) exploits its binary characteriza-
tion, relating two variables whenever they do not prevent the current partition
from being an FDE.
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Algorithm 1. Construction of the largest FDE and BDE.
Require: Program p, partition G of V, and x € {F, B}.
Z—3g
while true do
2" — refine, (Z)
if 2’ = Z then
return Z
else
Z—2Z
end if
end while

Algorithm 2. Routine refine

Require: Program p and a partition Z of V.
Z —10
for all H € Z do
R —{(zi,xj):zi,x; € H and (z;=x; or @xzi,xjis valid) }
Z'— Z'U(H/R)
end for
return Z’

Algorithm 3. Routine refineg

Require: Program p and a partition Z of V.
if ¥Z is valid then
Z —Z
else
ow — getWitness(sat(—¥%))
Z — 0
for all H € Z do
R —{(@i,x;):@i,x; € H and [fi](ow) = [f;](ow)}
Z'— Z'U(H/R)
end for
end if
return 2’

The refinement step for BDE (Algorithm 3) exploits the fact that, when the
current partition is not a BDE, i.e., -¥Z is satisfiable, then the SMT solver
can produce a witness assignment, o,,, as shown in Example 1. This can be
interpreted as a counterexample with respect to BDE, since it provides evidence
that an equal assignment of variables within the same block of the candidate
partition gives different values of the corresponding drifts, denoted by [f;](ow)
and [f;](ow) in the algorithm. The idea of the refinement is to preserve variables
in the same block whenever the corresponding drifts are not distinguished by the
witness assignment.
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Ezxample 2. Let us consider the following IDOL program:

%1 = —min(z1,x3) + 22
To = —min(z2, z3) + 71
I3 = —min(fEl,.’L'g) - min(OEz,fES)

We show that {{z1, 22}, {x3}} is the coarsest BDE that refines the initial parti-
tion Z = {{z1,x2,z5}}. Indeed, by applying the partition refinement algorithm,
at the first iteration the formula 2 reads

Tr1 =2 — I3 —

—min(z1, 23) + 2 = —min(ze, 3) + 1 = — min(zy, r3) — min(xy, x3)

where we have omitted the encoding of the domain ©(p) since we assume the
whole of R3. Its negation ¥ is satisfiable. Indeed, a witness assignment is o, =
{1 = 1,29 = 1,23 = 1}, which yields a drift evaluation [f1](cw) = [f2](0w) =
0, and [f3](0w) = —2. This triggers a new iteration with a refined partition that
preserves variables whenever their corresponding drifts evaluated for the witness
are equal. In this case, we obtain the partition Z’ = {{z1, 22}, {x3}}. Then, at
the next iteration 2" reads

1 = x9 — —min(zy,x3) + ro = —min(ze, z3) + 1

Now, its negation is unsatisfiable, thus terminating the algorithm.

2.3 Reaction Networks

An RN (S, R) is a pair of a finite set of species S and a finite set of reactions R.

A reaction is a triple written in the form p LR m, where p and 7 are multisets
of species, called reactants and products, respectively, and k # 0 is the reaction
rate. We restrict to elementary reactions where |p| < 2 (while no restriction is
posed on the products). We denote by p(X) the multiplicity of species X in
the multiset p, and by MS(S) the set of finite multisets of species in S. The
operator 4+ denotes multiset union, e.g., X+Y +Y (or just X +2Y) is the multiset
{X,Y,Y]}. We also use X to denote either the species X or the singleton {XT|}.

The semantics of an RN (S, R) is given by the ODE system V= f(V), with
f: RS — R?, where each component fx, with X € S is defined as:

[x(V)i= 3 (w(X) = p(X)-a- [T
0 reR Yes

This ODE satisfies a unique solution V' (¢) = (Vx (t)) xes for any initial condition
V(0). The restriction to elementary reactions ensures that the monomials are of
degree at most 2. A standard CRN with mass-action semantics (where reaction
speeds are proportional to the product of the concentrations of the reactants)
is recovered by restricting to positive reaction rates and non-negative initial
conditions. Instead, an arbitrary ODE system with multivariate polynomials
can be encoded according to the following.
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Lemma 1. Consider the ODE system y = G(y) with components

=Ge) = Y o) yiyi+ > oy P 1<k<n, (3)

1<i,5<n 1<i<n

and with agj, (k) 3(k) ¢ R. Then, then RN (Sq,Rg), with Sg = {1,...,n}
and

*)
Rg = {z+]—>z+]+k|o¢”7é0}
()

u{z~—ﬂ+k|a(’f)¢o} {@ﬂkm(’“);&o},

has ODEs Vj, = Gi(V), for1 <k <n.

This encoding gives one reaction for each monomial in the ODE.

FB and BB are relations over the species of an RN defined only through
properties that concern the reactions in which they are involved. Thus we say
that they are syntaz-based in that the ODE system is never analysed directly, in
contrast to the symbolic checks performed with IDOL. FB is a sufficient condition
for FDE, defined in terms of reaction and production rates.

Definition 6 (Reaction and Production Rates). Let (S,R) be an RN,
X,Y € S, and p € SU{0}. The p-reaction rate of X, and the p-production
rate of Y-elements by X are defined respectively as

crr[X, p] := (p(X) + 1) Z k., pr(X,Y,p):=(p(X)+1) Y k-a(Y)

X+p->7r€R X+pi>7r€R
Finally, for H C S we define pr[X, H, p| := 3y .y Pr(X,Y, p).

Definition 7. Let (S, R) be an RN, R an equivalence relation over S and Z =
S/R. Then, R is a forward RN bisimulation (FB) if for all (X,Y) € R, all
p € SU{D}, and all H € Z it holds that

crr[X, p| = crr[Y,p] and pr[X, H,p| =prlY, H, ) (4)

This definition, originally proposed in [19] for chemical reaction networks, carries
over to RNs. An important observation that is instrumental for the development
of an efficient partition refinement algorithm is that, as discussed, FB is in the
Larsen-Skou style of probabilistic bisimulation, whereby species are related with
respect to their aggregate behaviour toward the equivalence classes, parametrised
by a further object p which plays a role akin to “action labels” in probabilistic
transition systems.
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Ezample 3. Consider the RN with species {X1, X2, X3, X4, X5} and reactions

X, L X, X+ X3 3 Xy

X, L x, Xo+ X3 5 X5

Xi 5 X1+ X X5 5 Xy + X3
Xi+ X3 5 X5 X5+ X3 2 X,

Then, it holds that {{X7, X2}, {X3}, {X4, X5}} is an FB. For instance, we have

crr[Xy,0] = crr[ Xy, 0] =1
crr[Xy, X3] = crr[Xa, X3] =3

As regards pr, we have

pI‘[Xl,@, {X17X2}] = pI‘[Xl,@, {Xl,XQH =1
pr[X47®, {X3}] = pr[X57®7 {X?)}] =1

We now provide a version of BB developed in [20] in the same style.

Definition 8 (Cumulative Splitter Flux Rate). Let (S,R) be an RN,
X,Y €8, Z a partition of S, H € Z and H' € ZU {{0}}. We define

r(X,YH) =Y > (x X))o, st[X,H H':=Y sr(X,Y,H).
pEH/pi)weR YeH
p=Y+p’

with o/ = § if Y # p' andY € H', or o/ = a otherwise. We call the quantity
sr[X, H, H'] the cumulative (H, H')-splitter flux rate of X.

Note that we account for summands that are counted twice due to the two
summations over H' in sr[X, H', H'] by choosing o/ € {a,$} in the above
definition.

Theorem 4. Let (S, R) be an RN, R an equivalence relation over S and Z =
S/R. Then R is a BB if and only if for oll (X,Y) € R, all H € Z and all
H' € ZU{{0}} it holds that st[X,H,H'] = sr[Y,H, H'].

Ezample 4. The partition {{X7, Xo}, {X3}, {X4, X5}} of Example 3 is also a

BB. For instance, due to the reactions Xy 1, X5 and X LN X, we have
sr[ X1, {X1, X2}, 0] = sr(X1, X1,0) +sr(X1, Xo,0)=-1+1=0
Similarly, we have

SI‘[)(Q7 {Xl,Xg},(Z)] = Sr(X27X1,®) + SI‘(XQ,XQ,@) =1-1=0
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2.4 Partition-Refinement Algorithms for RNs

The minimisation algorithms for FB and BB are partition-refinement algorithms
based on Paige and Tarjan’s approach, iteratively refining an input partition
based on a splitter block that tells apart the behaviour of two species toward
that block. We omit the technical details of the minimisation algorithm, which
can be found in [20]. Here we remark that the coarsest FB and BB partitions
of an arbitrary polynomial ODE system can be computed in O(r - s - log s) time
and O(r - s) space, where r is the number of monomials and s is the number of
species. Instead, here we provide a step-by-step illustration of the algorithms on
a simple example.

For FB, we first observe that the crr-condition of FB can be implemented as
an initialization step that pre-partitions the species according to the values of
crr. This is because crr is a “global” property of the RN; i.e., it does not depend
on the current partition. Then, as discussed, the conditions on pr require the
iterative partition-refinement treatment, where p plays the role of the label as
discussed. An important property is that, at each iteration, the blocks of the
current partition are used as potential splitters. This ensures that the list of
splitters can be updated at no additional cost while splitting the blocks.

Ezample 5. Let us consider again the RN in Example 3 and compute the coarsest
FB refinement of the trivial partition {{X;, X2, X3, X4, X5}}. The initialization
step that computes the pre-partitioning with respect to the values of crr leads
to the refinement {{X;, Xo, X4, X5}, {X3}}. Now, both blocks { X7, X5, X4, X5}
and { X3} will be considered as potential splitters. The former does not cause any
splitting because, for any species X; and any label p, the values of pr[X;, { X1, Xo,
X4, X5}, p] are the same. Instead, { X3} will split the block { X7, X2, X4, X5} into
two blocks { X7, X2} and {X4, X5}, because, e.g., it holds

pr(Xy, {X3},0] = pr[Xs, {X3},0] = 1
prX1, {Xs}.0] = pr[Xs, {X3},0] = 0

Since {X7, Xo, X4, X5} has already been used as a splitter, following the
principle of ignoring the largest part [63], the sub-block with maximal size is
not added to the list of potential splitters. In this case, the algorithm will add
{X4, X5}, which remains the only splitter to be considered. Since it does not
refine any of the existing blocks, the algorithm terminates with the partition
{{X1, X2}, { X3}, {X4, X5}} being the coarsest FB refinement.

For BB, instead, the third argument of sr can be seen as a label. However,
while in FB this ranges over the set of species (together with the distinguished
species ) to indicate unary reactions), in BB it ranges over blocks of the candidate
BB partition to be checked (again, together with the distinguished set {(} for
unary reactions). When used within the partition refinement algorithm, splitting
a partition block leads to a refinement of the BB labels. In other words, unlike
for FB the set of labels must be updated at every iteration. However, it can be
shown that this incurs no additional computational cost [20].
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Ezample 6. Let us consider once more the RN in Example 3 and compute the
coarsest BB refinement of the trivial partition {{X;, X2, X3, X4, X5}}. In the
first iteration the block H = {X;, Xa, X3, X4, X5} is used to split itself, com-
puting sr[X;, H,(] and sr[X;, H, H| for all i € {1,2,3,4,5}. This leads to the
partition {{X1, Xa},{X3},{X4, X5}}. Similarly to the FB case, since H has
already been used as a splitter, only {Xy, X5} and {X3} are added as potential
splitters, while {X7, X5} is ignored. The two candidate splitters do not lead to
any refinement, and thus the previously computed partition is returned.

3 Case Studies

This section presents four case studies of CAS models. We begin in Sect. 3.1 with
a crowd dynamics scenario, where the emergent behaviour of a population arises
from decisions made locally by individuals. Then, in Sect. 3.2 we consider an
epidemiological model, where the emergent phenomenon of an infection spread-
ing is the result of individual opportunistic contacts between agents. Inciden-
tally, these two case studies feature space and locality as first-class citizen, with
increasing complexity. In the crowd dynamics model, individuals do not have
an internal status, and dynamics are restricted only to movements among loca-
tions. The epidemiological model, instead, does account for individuals’ internal
states, affected by local interactions with other individuals in the same location.
In both cases, we start from specifications given by co-authors of this volume
in two formal languages, namely BioPEPA [22] and PALOMA [33], from which
(together with PEPA [44] and SCEL [28]), originates the CARMA language
described elsewhere in this volume.

Sections 3.3 and 3.4 present case studies of biological relevance. Specifically,
Sect. 3.3 deals with adaptation in biological systems through evolution of simple
structures into more complex ones that retain some of the original behaviour.
This is formally captured by means of suitable differential equivalences between
CRNs. Section 3.4 presents reductions of a number of CRN models of protein
interaction networks presented in the literature, which are well known to the
problem of ODEs with combinatorial complexity (e.g., [23]; see also Sect. 4 for
further related work).

3.1 Crowd Dynamics

Our first case study regards a crowd scenario in which individuals move
among the squares of a city according to certain policies. Our starting point
is the famous “El Botellén” model [66], used to describe the spontaneous self-
organization of drinking parties in the squares of Spanish cities. The model
considers four squares connected in a ring by streets. The movements of a sin-
gle individual are dictated by a simple rule: if no friend (or partner to talk to)
can be found in its current square, the individual randomly moves to one of
the two connected squares. The model assumes that an individual in square ¢
moves with probability (1 —c¢)*~1, where s; is the number of people currently in
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square 7, and c is the chat probability, i.e. the probability that an individual finds
a friend. The model has been also studied in [58] by co-authors of this volume
using related analysis techniques.

More recently, a variant of El Botellén has been proposed in [12] and further
analysed in [11], where the chat probability is not a constant, but it depends
on two parameters: (i) The socialisation factor of the population (soc), i.e. the
average number of friends of each individual; (ii) The total number of considered
individuals (N). The socialisation-driven chat probability is then given by ¢ =
soc/N. The intuition is that people tend to have a limited number of friends,
soc, hence the larger is the considered population, the lower is the probability
of meeting a friend.

Inspired by the El Botellon model and its socialisation-based variant, we
hereby propose a sort of dual scenario where individuals do not move across
the squares on their own, e.g. because streets are not safe, but move only if
they are able to meet a friend to share the path with. Also, we assume that
movements follow a biologically-inspired dynamics: movements from a square @
to a square j happen with a rate proportional to the power of the number of
people in square i (s?), modelling the probability of two individuals to meet,
multiplied by the socialisation-driven chat probability. This is reminiscent of
the already discussed law of mass action, which states that the firing rate of
a chemical reaction X; + X LA Y, + Y} is proportional to the concentration
of the reacting species of the reaction (X;, X;), times the kinetic constant k.
Considering n squares, we assume to have an n X n routing matrix @, where
each @; ; entry stores the probability that an individual moves from square 7 to
square j. The evolution of the population of each square is governed by an ODE
system defined as, for all ¢ € {1...n}:

1<j<n 1<j<n

For example, the ODE system for the case of four cities (n = 4) is

s1=2c (= ) Qui-si+ Y Qjui-s))

1<5j<4 1<j<4
32:2-6-(— Z QQJ"S%"‘ Z Q%Q'S?)
1<55<4 155<4
s3=2-c-(= > Qaj-s5+ Y Qjz-s)
155<4 1<5j<4
$4=2-c-(— Z Qaj- 55+ Z Qja-s7)
1<j<4 1<j<4

The same dynamics can be expressed also in terms of a reaction network
defined as, for all i,7 € {1...n} such that ¢ # j:

S; + 8 M Sj+8; (6)
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Fig. 1. Probabilities of movements among squares in the crowd dynamics model.

This reaction models the fact that two individuals in square ¢ meet and move
together to a target square j. The deterministic firing rate of the reaction is
[si] - [si] - Qi,j - ¢, where [s;] is the number of individuals in square 7. The term
[si] - [s:] accounts for the number of meetings?, while ¢ restricts to the successful
ones (i.e. those among friends), and @; ; for those leading to movements towards
square j. For example, the reaction network for the case of four cities (n = 4) is

51+81M52+52 53+53M54+54
51—1—31M>54+34 83+83M52+52
82+82m83+53 S4+S4m31+51
52+32ﬂ>81+81 S4+S4M83+33

This model shows an interesting property in case @) is symmetric, i.e. Q; ; =
Q;,i: independently from how the individuals are initially distributed among the
squares, on the long run they will be evenly distributed. The same property is
found also in the models of [12,66]. To show this, Fig. 2 depicts the evolution of
200000 individuals among the squares (s1, s2, s3, and s4) with symmetric routing
matrix () defined such that Ql,g = Q271 = %, Q1,4 = Q471 = %, Q273 = Qg,g = %
and Q34 = Q43 = %, as depicted in Fig. 1. The socialisation factor soc is set to
2. In the left plot all individuals are initially located in square si, while in the
right plot they are evenly divided among s; and so. After some time, in both
plots individuals equi-distribute in the four squares, as expected. We notice that
more time is required in the case in which all individuals are initially located in
the first square.

Figure 2 shows a further interesting property of the crowd scenario. From
Fig.2 (right) we note that the populations in squares s; and sa, as well as those
in s3 and s4, evolve in the same way if individuals are initially evenly distributed
in 1 and ss. Instead, such symmetries do not appear in Fig. 2 (left). This can be
proven using our backward reductions. The model has the following property:

2 Note that [s;] - [s:] should actually be [s;] - ([s:] — 1), since an individual cannot meet
itself. However, this is irrelevant for large populations, and hence, as for existing
ODE-based semantics in the biological context [78], we approximate it to [ss] - [s;].
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Fig. 2. Crowd scenario with 4 squares and 200000 individuals. All individuals initially
in square 1 (left) or evenly divided among squares 1 and 2 (right) (Color figure online).

Whenever the initial number of individuals in sy and s3 is equal that of
so and sy, respectively, then the number of individuals in s; and s3 will
be equal to that of sy and s4, respectively, at any point in time.

This property can be verified by reducing the model up to BDE (or equivalently
up to BB) using a pre-partition coherent with the required initial conditions,
e, Zppr = {{s1, s2}, {83, s4}}. The algorithm returns Zpp itself, confirming
that it is a BDE. Instead, by using an initial partition coherent with Fig. 2 (left),
ie. {{s1},{s2,s3,54}} we obtain no reduction, as expected.

The model also allows for forward reductions, even though they are less
interesting. It can be shown that the only forward differential equivalence of the
model is Zrpr = {{s1, $2, $3, 54} }. This one-block partition is typical of mass-
preserving systems, i.e. where the total number of entities does not change. In
fact, the corresponding FDE-reduced model is spprp = 0, meaning that the
cumulative population s = s; + s2 + s3 + sS4 is an invariant of the system.
No reduction can be instead computed using FB. This is because, as discussed
in [19], FB distinguishes among incoming and outgoing flow.

3.2 Multi-community Epidemiology

Our second case study is inspired from the well-known epidemiology model
SIR [51], describing the spreading of an infection in a population from infected
individuals (I), to susceptible individuals (S), considering the possibility of recouv-
ering (R) from infection after some time. We hereby consider a multi-community
SIR model extended with spatial features as considered in [33]. Intuitively, indi-
viduals move among a number of communities, similarly to our crowd model. In
addition, individuals in the same location might interact spreading the infection.

More in particular, the authors of [33] use PALOMA (the Process Algebra of
Located Markovian Agents), a predecessor of the CARMA language described



Quantitative Abstractions for Collective Adaptive Systems 221

0.01

C1 Cc2

0.03 0.03

Cq Cc3
0.01

Fig. 3. Rates of movements between communities in the multi-community SIR model.

in this volume, to formalize a simplified model of the 1918-1919 flu epidemic in
central Canada originally described in [68]. The model consists of m communi-
ties, with a routing matrix @ used to store the rates (rather than probabilities
as in the previous crowd model) at which individuals travel between communi-
ties. While moving between communities, individuals might interact with locals,
spreading the flu. Interactions might happen at different rates in each commu-
nity (e.g., to distinguish among residential and business areas). Each community
¢ is thus associated with three populations of susceptible (S.), infected (I..) and
recovered (R,.) individuals. Upon a contact between an S, and I.. individual, the
former gets infected with a given probability p. In 1/ days on average, an I
will recover, becoming immune from the flu. The two parameters p and ~y are
system-dependent, while the rate of contact might change in each community.

In the rest of this section we will consider two variants of the model. In the
first one we assume that contacts happen with rate 0.03 in all communities, while
in the second variant we have contact rate equal to 0.03 in communities ¢; and
c2, and to 0.04 in the others. In both models we have p = 0.5, v = 0.2, and, as
for the crowd protocol we consider four locations (i.e., communities) connected
in a ring by streets according to the symmetric routing matrix @ defined as in
Fig.3. Also, we assume that each community initially has 150000 susceptible
individuals, 11000 infected ones and 12000 recovered ones.

The actual PALOMA specification (up to slight changes in the parameters)
can be found at http://groups.inf.ed.ac.uk/paloma/SIR.paloma. We refer the
interested reader to [33] for more details about the considered PALOMA spec-
ification, as well as PALOMA’s syntax and tool support. Thanks to the tool
support of PALOMA, it is possible to generate an ODE system whose solution
gives an approximation of the expected values and the variances of the three
populations (S, I and R) in each of the four locations, for a total of 24 measures
of interest [32]. In total, 90 ODEs are generated.

The obtained ODE system belongs to the IDOL language, allowing us to
apply our symbolic reduction techniques. The coarsest BDE of the model variant
with homogeneous contact rates consists of 27 blocks, 6 of which contain all and
only the 24 measures of interest, while the other 21 blocks contain the additional
variables. In particular, we have three blocks containing the expected values
of the three populations in each community: {yE[Sul],yE[SCQ],yE[SCB},yE[S%]},
e, yEU.,) VB, VB, {YER., ) YE(R.,) YE(R.,]: YE(R.,]}- This tells us
that (the approximation of) each population evolves in the same way in all
communities if initialized equally. This might be expected in a sense, due to
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the fact that interaction rates do not depend on the community of residence.
However, it is interesting to note that populations remain evenly distributed
among communities despite having different inter-community transition rates.
This can be explained using similar arguments to those of the crowd scenario.
The other three blocks are similar, but refer to the second-order moments. Hence,
not just the expected values, but also the variances of the populations evolve
equally. The obtained BDE partition does not change even if starting with an
initial partition coherent with the discussed initial populations. Hence, when the
populations of each of S, I and R are initially evenly divided among the four
communities, we have that the same information contained in the original ODE
system can be recovered from one with 30 % of its original size. Similarly to the
crowd scenario, FDE does not produce notable reductions.

We now focus on the model variant having 0.03 as contact rate in communi-
ties ¢; and co, and 0.04 in c3 and c4. By applying BDE starting from the trivial
partition with one block only, or from the one coherent with the initial popu-
lations, we obtain a partition of 48 blocks. This is actually a refinement of the
BDE partition obtained from the homogeneous model variant. In particular, the
6 blocks of interest are split to separate the populations of the communities c;
and cs from those of c3 and ¢y; e.g., the 3 blocks about the average populations
are split in {yg(s, 1, YE(s., |} AYES., | YES., ) s e, 1 VB, s VB, YEL.,) )}
{ye(r., 1 VER.,1} {YER., ) YE(R.,] |- As aTesult, an ODE system of size of about
50 % the original one can be used to study the measures of interest of the model.

3.3 Evolutionary Biology

A major subject of investigation in evolutionary biology is to understand how
simple structures may evolve into more complex ones as a result of their adap-
tation to the environment. It has been argued, for instance, that basic cellular
switches have evolved in order to increase robustness in their capacity to perform
certain functionality by reducing sensitivity to noise [18].

Recently, Cardelli has proposed the notion of emulation as a formal way
of comparing two CRN models of biological systems in order to postulate an
evolutionary path between them [17]. A simpler CRN, i.e. a CRN with fewer
species, is said to emulate a larger CRN if in the latter it is possible to find
appropriate initial conditions such that the trajectories exactly correspond to
those of the simpler CRN. Since the CRN semantics associates an ODE variable
with each species, the presence of an emulation will imply that in the larger
CRN two or more species’ ODE trajectories will overlap, and match one of the
simpler CRN as well whenever the initial conditions are equal. The intuitive
interpretation given to this dynamical property is that the more complex CRN
might possess richer behaviour than the simpler CRN from which it descends,
but that the evolution is conservative in the sense that under special initial
conditions it may collapse onto the original one.
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Fig. 4. ODE solutions of AM (left) and MI (right), showing equivalent trajectories
with equal initial conditions (Color figure online).

Example 7. The following two mass-action CRNs describe the behaviour of
AM, a basic biological switch (left) and MI, a mutual inhibition mechanism
(right) [17]:

Yo+ Zo 25 Zo+ Y1

Yi+ 2o -2 Zg+ Yo

Xo+ Xz =5 Xo+ X4 Yo+ Yy =5 Yo+ 1
X1+ X2 5 Xo + X Vi+Yy Y+ Y,
Xo + Xo =5 Xo + X1 Zo+ 2o =5 Zo+ 74
X1+ Xo =5 Xo + Xo Zy+ Zo =5 Zo + Zo

Zo+Yo Yo+ 24
i+ Yy S5 Yo+ 2o

Consider the following mappings:

— Trajectories of Yy and Zs correspond to that of Xj;
— Trajectories of Y7 and Z; correspond to that of Xj;
— Trajectories of Y5 and Z; correspond to that of X5.

Indeed, it can be shown that if one sets equal initial conditions for related
species (e.g., by setting equal initial conditions for Yy, Zs, and X;) then the
trajectories will coincide at all time points (see Fig.4). It is clear that emula-
tion is closely related to BDE — and to BB since it has been considered for
mass-action CRNs. In fact, it can be shown that an emulation is an appro-
priate BDE on the “union CRN” [21]. For instance, in the example above the
BDE is given by ZE]V[U = {{Xo, Yo, ZQ}, {X17Y1, Zl}, {XQ, )/2, Zo}} This can
be checked using the executable Z3 encoding available at http://rise4fun.com/
Z3/bgVv, which is similar to Listing 1, but regards the nine ODEs of (the union
CRN of) AM and MI. Note that {{Xo}, {X1},{X2}} is a BDE form AM, while
{{)/07 ZQ}, {Yl, Zl}, {}/2’ Zo}} is a BDE for MI.
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Here we show how to exploit the expressiveness of IDOL to strengthen the
idea of an evolutionary relationship between networks, by studying whether it
carries over to non-mass-action kinetics as well. The possibility of reasoning using
different hypotheses for the reaction kinetics is of biological relevance because in
different situations one may find mass-action mechanisms (e.g., phosphotrans-
fers) or Hill-type mechanisms (e.g., enzymes) [78]. For instance, much of the util-
ity of Hill kinetics is owed to supporting non-integer exponents. Famously, this
ranges in 2.3-3.0 for haemoglobin. Furthermore, biologists often consider expo-
nents less than 1in order to describe “anticooperative” behaviour [60]. Since any
rational exponent can be expressed in IDOL we consider the question whether
the mappings are preserved by a BDE for CRNs with Hill semantics.

We discuss an IDOL encoding of CRNs according to the Hill kinetics
(e.g., [78]) in the case of catalytic reactions, i.e., reactions which are in the form
B+C L D+C with B % D. We remark that both AM and MI are in this form.
Here, C plays the role of a catalyst, a species promoting the reaction but which is
not affected by it. Species B is the substrate that is modified, becoming D, when
the reaction occurs. Each reaction is labelled with a triple (31, 32, v) € Q2.

Definition 9 (see [21]). A Hill CRN is a pair (S, Rs) where Rg is a finite set
of catalytic reactions with Rg C N5 x N5 x Q?;O.

Definition 10. The IDOL program ps of a Hill CRN is

. 511‘%
=hy = E A — —_—
TA A ( A PA)BZ T

(B1,B82:v)
p—  —7’mERg
p=B+C,nr=D+C

for allA € S.

By replacing equal mass-action rates with equivalent Hill triplets, it can be
shown that the BDE carries over. The following are the Hill CRNs obtained
from AM and MI by replacing each original mass action reaction p - 7 with
the corresponding Hill reaction p LY, o

Yo+ Zo =5 Zo + Y
Y+ Zy 25 Zg+ Yy
Xo+ Xo 2% Xo + X4 Yo+ Yo 22N Yo+ 13
X1+ X, 225 X0+ X, Vi +Yy Y+ Yo
X+ Xo 2% Xo+ X3 Zo+ Zo 22N 7o+ 7y
X1+ Xo 222 X+ X, Iy + Zo 22228, 70+ Z,
Zo + Yo 2220% ¥y 4+ 2y
Zi+Yy Yo + 2y

For example, the first reaction of the Hill variant of MI introduces the terms

5117_&/90 and —;117_3;90 in the drifts of Y7 and Yj, respectively. It can be shown that
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the coarsest BDE partition of the above Hill variant of MI remains {{Yy, Z2}, {Y1,
Z1},{Y2, Zo}}. Also, Yemu = {{Xo, Y0, Z2}, {X1, Y1, Z1},{ X2, Y2,Zp}} is an
emulation among the two Hill CRNs. Similarly to the mass action case, we
provide an executable Z3 encoding available at http://risedfun.com/Z3/f90U to
confirm this.

3.4 Protein Interaction Networks

We hereby consider three of the biochemical networks considered in our previ-
ous work [19] (and also in [20]): a model of pheromone signalling (M1, [71]); a
model of a tumour suppressor protein (M2, [6]); and a MAPK model (M3, [52]).
These are three biologically meaningful chemical reaction networks taken from
the literature given in .net format of the widely used BioNetGen tool [8], ver-
sion 2.2.5-stable. In [19,20] we have proved that FB and BB can be successfully
applied to these and other BioNetGen models, providing the reduction times,
the size of the obtained reduced models, and the speed-up obtained by analysing
them. For each RN (S, R), in the case of FB reductions we considered the trivial
partition {S} (thus yielding the largest bisimulation). Instead, for BB an initial
partition coherent with the initial conditions was chosen, due to the side condi-
tion of BB: two species were put in the same initial block in case of equal initial
conditions, read from the original model specification.

The BioNetGen tool allows the modeller to specify observables of interest,
given in the form of sums of species. When solving the ODEs underlying the
considered model, a plot containing a line per observable is generated, showing
the evolution of the specified cumulative concentrations. Differently from [19,20],
we now study the FB partitions obtained when using initial partitions coherent
with the user-specified observables. These are partitions which guarantee that
the information of interest to the modeller is preserved, hence de facto obtaining
“lossless” FB reductions. We remark that BioNetGen observables might not
specify a partition of the species because: (i) Some species might not appear in
the observables; (i) Others might appear in more than one observable. However,
it is easy to obtain an observables-preserving initial partition as follows:

1. All species not appearing in any observable are put in a single (sink) partition
block;

2. For each observable, its subset of species not appearing in any other observable
is turned into a partition block;

3. The set of species appearing in more than one observable is partitioned in
blocks of species appearing in (all and only) the same blocks.

As shown in column |Prep.| of Tablel, the 14531 species of M1 are pre-
partitioned in 1345 blocks, the 796 species of M2 are pre-partitioned in 18 blocks,
while the 85 species of M3 are pre-partitioned in 4 blocks. From the table we
also note that, both in terms of reduction time and size of the reduced model,
the pre-partitioning does not affect the FB reduction of M2, while it affects that
of the other two models only slightly.
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Table 1. FB reductions with and without observations-coherent pre-partitioning.

Original model FB reduction FB reduction with prep.

Id |Ref.| |R] |S| | Red.(s) |R| |S| |Prep.| |Red.(s) |R| |S|
M1 | [71] | 194054 | 14531 | 3.88E-1 | 142165 | 10855 | 1345 3.28E-1 | 147797 | 12037
M2 | [6] |5797 796 1.90E-2 | 4210 503 18 4.10E-2 | 4210 503
M3 | [52] | 487 85 2.00E-3 | 264 56 4 2.00E-3 | 362 69

4 Related Work

FDE/FB are special cases of exact ODE lumpability [62], which concerns ODE
aggregations through a linear projection of the state space. While the gen-
eral theory is well-established, in particular for ODEs arising from mass-action
CRNs [72], there are no algorithms for computing these projections, unlike with
the partition refinement algorithms of FDE/FB. As discussed, when the ODE
represents the forward equations of motion of a CTMC, both FDE and FB
correspond to ordinary CTMC lumpability [14]. In addition, in that case the
partition refinement algorithm of FB yields the same time and space complexity
of state-of-the-art algorithms for CTMCs [31,77]. FDE/FB are also related to a
recently proposed notion of equivalence called differential bisimulation [47]. This
is developed for a fragment of Hillston’s PEPA process algebra that is equipped
with an ODE semantics with non-linear minimum-based drifts that approximate
the average evolution of underlying CTMCs with massively parallel computa-
tions [43,45,73]. Differential bisimulation is a relation over the set of constants of
a PEPA model, defined in terms of conditions on the sequential behaviour and
on the compositional structure of processes. It can be shown that differential
bisimulation is a special case of FDE for the ODEs induced by a PEPA process.

BDE/BB are generalisations of the notion of label equivalence for process
algebra with fluid semantics [74]. It relates processes that are equivalent when-
ever their ODE solutions are equal at all time points. Label equivalence is only
a sufficient condition for ODE reduction since it works at a coarser level of
granularity. Indeed, it relates sets of ODE variables, each corresponding to the
behaviour of a sequential process. Instead, BDE/BB relate individual ODE vari-
ables. In addition, no algorithm for computing label equivalence is available.
Analogously to FDE/FB, for ODEs that represent a CTMC we have that BDE
and BB correspond to exact CTMC lumpability [14].

Model reductions have been extensively studied for CRNs in systems biology.
In particular, for protein interaction networks, the combinatorial explosion of the
state space has motived considerable research, e.g., [15,16,19,23-25,34,35]. The
fragmentation approach for the rule-based language « identifies a coarse-grained
ODE system for models with mass-action semantics through sums of variables;
this is weaker than an equivalence relation over species, because one variable
may appear in more than one block (a fragment) [25,35]. Using the terminology
of [62], fragmentation is a form of improper lumping, as opposed to the notions
of equivalence presented here where a species belongs to a single block.
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SMT has become a cornerstone in the programming languages and in the
verification community, with contributions to program synthesis [41], constraint
programming [53], and symbolic optimization [56]. The combination of SMT
and equivalence relations has been the subject of recent investigations. In [7]
partition-refinement algorithms are proposed to compute equivalences between
terms over arbitrary theories inferred from a set of axioms. Applied to equiv-
alences presented here, these partition-refinement algorithms could be used to
check if a candidate partition is a differential equivalence, but not to compute the
largest equivalence for an IDOL program. In [29] the authors present an SMT-
based approach for the computation of the coarsest ordinary lumpable partition
of a Markov chain, but for a fragment of the PRISM language [54].

Finally, links between ODEs and SMT are established in the formal verifica-
tion community, especially for hybrid systems (e.g., [39,59,67]); however none of
these works considers ODE comparisons and minimizations through equivalence
relations. Bisimulation for dynamical systems have been studied by Pappas [64]
and van der Schaft [69]. These works are similar in spirit to ours, but the setting
is different because the focus is on control systems, i.e., dynamical systems with
internal states, external inputs, and output maps. In that context, bisimula-
tion relates internal states mapped to the same output, i.e., they cannot be told
apart by an external observer. The largest bisimulation is therefore related to the
maximal unobservability subspace of a control system (e.g., [69, Corollary 6.4])
while our largest differential equivalences provide the coarsest partition of ODE
variables that preserves the dynamics.

5 Conclusion

This paper has presented a number of techniques for the automatic reduction of
systems of ordinary differential equations (ODEs), motivated by their popularity
in the modelling and analysis of large-scale dynamical systems such as collective
adaptive systems. The symbolic approach of differential equivalences and the
syntax-driven minimisation through reaction-network (RN) bisimulations offer
a trade-off between expressiveness and efficiency.

Differential equivalences support a rather rich class of non-linear ODE, which
can be analysed by using satisfiability solvers as the underlying engine. In gen-
eral, it is well known that such solvers are more efficient in providing a positive
“sat” result than a negative “unsat”, which is however required to check that a
candidate partition is a differential equivalence. Nevertheless, the current tech-
nology allows us to analyse models of realistic size (see also [21] for further
examples). In the current prototype implementation the SMT solver is used as
a black-box; it would be interesting in the future to consider the development of
domain-specific heuristics that improve the search.

RN bisimulations are particularly efficient since the partition-refinement algo-
rithms run in polynomial time and space; however, currently they support ODE
with derivatives given by multivariate polynomials of order at most two. Nev-
ertheless, they cover an interesting class of systems, including CRNs and affine
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systems (see also [20] for experiments in large-scale benchmarks). To further
improve efficiency it would be interesting to consider parallelisation techniques;
on a more theoretical viewpoint, an obvious direction for future research is to
extend the bisimulations of higher-order multivariate polynomials.

The forward and backward variants of the presented equivalences are not
comparable in general. This suggests a possible combined use, which has however
not been investigated so far. A better understanding of the relationship between
these two variants may help achieve further reductions.

Much of the efficiency in computing ODE reductions is owed to the fact that
the largest differential equivalences and bisimulations exist and can be computed
via partition-refinement. We argue, however, that there are situations of prac-
tical interest that cannot be cast into this framework. For example, the notion
of emulation that is instrumental to investigate evolutionary aspects of CRNs,
amounts to finding a particular backward bisimulation where each equivalence
class contains exactly one species of the small CRN and at most one species of
the larger CRN. This condition cannot be expressed as a suitable initial partition
to be refined; hence, one is left with having to enumerate all possible partitions
that satisfy these conditions in order to find emulations automatically. However,
this is feasible only for very simple models. Further research is needed to develop
algorithms that aggregate according to more liberal constraints on the desired
equivalence classes.

Finally, we remark that all the techniques presented in this paper are con-
cerned with exact aggregations. In some cases, these may be too strong because
even small perturbations may discriminate ODE variables that have nearby tra-
jectories in practice. This has motivated a large body of work into approximate
notions of equivalence [1,13,42,65]. Preliminary work for models based on ODE
semantics has been carried out in [76] in the case of process algebra; more general
ODE systems are treated in [46,75]. However all these approaches still lack an
algorithm for automatic reduction. Furthermore, they provide a priori bounds on
the approximate aggregation that tend to grow fast with time. Future research
work will be aimed at tackling these two issues.
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