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Abstract This chapter is about recent advances in giant magneto-impedance
(GMI) magnetometer development. The emphasis is put on their performances in
terms of equivalent magnetic noise. We first present the physical principles and
outline the model of the GMI effect. Next, we establish the relation between the
GMI sensing element and the associated electronic conditioning circuits, thus
providing expressions for the performances of the device. Our approach is prag-
matic and aimed at scientists and engineers concerned with sensitive magnetic
measurements. It is hoped that our presentation of the topic will be useful to
workers in the field who wish to compare GMI to other magnetic sensors.

1 Introduction

The magneto-impedance (MI) effect refers to the change in the electrical impedance
of a ferromagnetic metal due to the application of an external magnetic field. While
it was observed and qualitatively understood several decades ago [1], it was not
until the development of magnetically ultrasoft metals that the effect was recog-
nized for its potential for magnetic field sensing in the 1990s [2]. By 1994, several
groups had reported large impedance variation in CoFeSiB amorphous microwires
[3–7] and the term giant magneto-impedance (GMI) was gradually adopted to
qualify the effect. In the subsequent years, the effect was observed in a variety of
soft magnetic wires and ribbons and the initial phenomenological models were
extended into quantitative models. The vast amount of work involved during this
first decade of “GMI re-discovery” is too numerous to be properly reported her, but
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the interested reader may find a comprehensive review of the development over that
period in Ref. [8].

Magneto-impedance is a general property of any ferromagnetic metals.
However, the effect can be particularly spectacular in ultra-soft magnetic wires and
ribbons, whether amorphous or nanocrystalline [8]. The most widely used materials
are CoFeSiB-based soft amorphous wires (exact composition varies among dif-
ferent research group). Wires or ribbons can be fabricated, for instance, by
in-rotating water quenching [9, see also 10], glass-coated melt spinning [11] and
melt extraction [12]. A fairly large number of GMI studies, over the last two
decades, have also been dedicated to studies of the effect of various annealing
procedures on the GMI response. It is generally accepted that soft amorphous
materials with slightly negative magnetostriction coefficient, submitted to a proper
stress, current, or combined stress and current annealing, yield the largest GMI ratio
and highest sensitivity.

The present chapter is mostly concerned with the exploitation of the GMI effect
for the development of magnetic sensors as magnetometers. Section 2 presents the
physical basis for modelling the effect. For simplicity, we focus on single domain
wires with uniform circumferential anisotropy, thus avoiding any difficulties
associated with the details of the domain structure and domain-wall dynamics and
of non-uniform anisotropy distribution. While the magnetic susceptibility, and
therefore the GMI, can be related to the domain-wall dynamics at low-to-moderate
frequencies (such that the domain-wall motion is not damped), we chose to ignore
these effects for the following reasons. Domain structures are hard to predict and to
control in these ultra-soft magnetic metals, they are most likely a source of mag-
netic noise, but fortunately they are relatively easy to eliminate, using a small dc
bias current, which we usually do in practice.

We also chose not to focus on details of model interpretation, particularly on the
confusion or misunderstandings associated with the established link between GMI
and ferromagnetic resonance, along with the use of a non-local permeability due to
the inclusion of an exchange term in the equation of motion for the magnetization.
We will limit ourselves by stating that the non-local permeability, leading to
so-called exchange-conductivity effects, have been demonstrated to set fundamental
limits on the performance of GMI sensors [13, 14]. The interested reader will find a
discussion of these issues in Ref. [15]. Finally, we also chose to limit our discussion
to the linear behavior, which leads to simple analytic treatment. A numerical
treatment of the non-linear regime has been presented, for instance, in Ref. [16].

In Sect. 3, we are concerned with the sensitivity and noise of an idealized GMI
sensor. Contrary to the widespread practice of using the GMI ratio

DZ
Z

¼ Z Bð Þ � Z Bref
� �

Z Bref
� � ; ð1Þ

as a figure of merit, here we adopt the pragmatic point of view that the main
criterion relevant to the design of highly sensitive GMI (or low noise GMI)
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magnetometers is the maximum voltage sensitivity, defined as the derivative of
voltage across the GMI sample, at the applied magnetic field at the static working
point (bias field) B0,

@V
@B

����
B¼B0

; ð2Þ

expressed in V/T. As was recently discussed [17], the GMI ratio is not particularly
meaningful as a metric for sensitive magnetometry and it can be misleading in the
comparison of the performance between GMI wires from different sources.

Section 4 considers the design of a GMI-based magnetometer, that is, a device
which outputs a voltage linearly proportional to the measured field in the full output
dynamic range. An overview of the conditioning electronics is presented, along
with the estimation of the associated performances. To conclude, the state of art of
recent GMI magnetometer development is given.

2 Physics of Magneto-Impedance

2.1 Phenomenology of the MI Effect

Consider a magnetic wire of length l and radius a, driven by a longitudinal electrical
current iac and placed in a longitudinal static magnetic field H0, as shown in Fig. 1.
It is found experimentally that the electrical impedance of the wire depends sen-
sitively upon the longitudinal component of the applied static field. The phe-
nomenon is referred to as magneto-impedance. The complex impedance,
Z ¼ Rþ iX, of the wire is obtained from the ratio of the voltage vac across the wire
and the drive current iac,

Z ¼ vac
iac

¼ ‘

2pa
ez
hu

����
surface

; ð3Þ

where ez is the surface longitudinal electric field, and hu the circumferential
magnetic field. For nonmagnetic conductors, the ratio of the fields on the right hand
side of Eq. (3), which corresponds to the surface impedance, is directly calculated
from Maxwell’s equations. The procedure results in the electrical impedance, which
depends on the electromagnetic skin depth.

For magnetic conductors, we may assume a similar dependence of the impe-
dance, provided the classical (non magnetic) skin depth is replaced by an effective
skin depth which depends upon the magnetic field. Thus, the normalized impedance
will be expressed as
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Z
Rdc

¼ ka
2
J0 kað Þ
J1 kað Þ ; ð4Þ

where Rdc is the dc resistance of the wire, and

k ¼ 1� i
deff

; ð5Þ

is the radial propagation constant, related to the effective skin depth

deff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
xrleff

s
: ð6Þ

In Eq. (6), x is the angular frequency, r is the electrical conductivity, and leff is
the effective permeability.

In order to observe a strong MI effect, the effective penetration depth, deff, of the
electromagnetic field must be much smaller than the radius, a, of the wire. When
this is the case, the ratio of the Bessel functions in the right hand side of Eq. (4)
equals the imaginary unit i, and Eq. (4) reflects the inverse dependence of the
normalized impedance on the effective skin depth

Z
Rdc

¼ 1þ i
2

a
deff

: ð7Þ

Equation (7) is generally valid for the GMI response of microwires in the MHz
range. However, for frequencies of a few kHz or less, or for sub-micron structures,
the situation may be such that the skin depth is much larger than the transverse
dimension of the sample. For such cases, the ratio of Bessel functions in the right
hand side of Eq. (4) may be expanded in series, which yields

Z ¼ Rdc þ ix‘
8p

leff : ð8Þ

(a) (b)

Fig. 1 a Ferromagnetic metallic wire driven by an AC current and submitted to a longitudinal
magnetic field to be measured. b Picture of a wire with an associated coil
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In this limit, we would refer to the effect as magnetoinductive. Since leff is
generally complex, both the real and imaginary parts of Z may vary appreciably
with the field.

The effective permeability, defined by Eqs. (4)–(6), is a useful concept to discuss
the physics of the GMI effect. However, it merely displaces the problem from a
calculation of the impedance to a calculation of the effective permeability. For the
important case of a wire with helical anisotropy, relatively simple, approximate
expression for the effective permeability, may be obtained.

2.2 Effective Permeability

Consider the cylindrical coordinate system in which the static field H0 is applied
longitudinally along the z-axis, as shown in Fig. 1, with a circumferential easy axis
of anisotropy. When there is no applied field, the magnetization is circumferential,
that is h = 90°. Thus, the circumferential component of the dynamic magnetic field
produced by the driving current is parallel to the static magnetization. If the drive
current is small enough to avoid nonlinear effects, there should be no response from
the magnetization, and the material behave as a normal nonmagnetic conductor.
Thus, for a circumferential magnetization the effective permeability is trivially l0. If
the wire is magnetically saturated along the z axis, that is h = 0°, the coupling
between the magnetization and the circumferential field is maximum. This corre-
sponds to a transverse effective permeability which is defined as lt. For the general
case (0° � h � 90°), l0 and lt are related to the diagonal component of the
impedance tensor defined in a helical coordinate system with the z′ axis at an angle
h from the z axis, that is, parallel to the static magnetization M0. As an example, for
a circumferential uniaxial anisotropy characterized by an energy Ksin2h, K is the
anisotropy constant (J/m3), the anisotropy field is given by Hk = 2 K/l0Ms and the
static equilibrium is given by cosh = H0/Hk. The tensor is then rotated by an angle h
in order to be oriented along the wire axis. The procedure leads to a general
effective scalar permeability1.

leff ¼
ffiffiffiffi
lt

p
cos2 hþ ffiffiffiffiffi

l0
p

sin2 h
� �2

: ð9Þ

The heart of the problem consists of calculating the transverse effective per-
meability lt. Note that, despite the fact that the permeability which enters
Maxwell’s equations is a 3 � 3 tensor, the magnetic behavior is effectively
determined by a simple scalar effective transverse permeability,

1See Eq. (49) or Ref. [14]
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lt=l0 ¼ 1þmu
�
hu: ð10Þ

This follows from the constraint hr = −mr on the out-of-plane components of the
fields, which is a consequence of the dipolar field associated with the radial k-
vector, and also from the fact that the components of the fields parallel to the static
magnetization do not contribute to the magnetic response. One may alternatively
work in terms of a tensor of surface impedance and apply the constraints subse-
quently, in order to obtain an effective scalar impedance, as was done in Ref. [14].

The effective transverse permeability is calculated from the ferromagnetic torque
equation of motion

dM
dt

¼ � cj jl0 M� Hþ d2exr2M
� �� R: ð11Þ

where cj j=2p ¼28 GHz/T is the gyromagnetic ratio, l0 is the permeability of free
space, M is the magnetization vector, and H is the “Maxwellian” magnetic field,
which includes external, dipolar, and demagnetizing fields. While the effective
anisotropy field has not been included here for simplicity, it can be easily accounted
for, as will be discussed below. The exchange effective field, which arises from
non-uniform magnetization vector, is expressed in terms of the exchange length

dex ¼ 2A
�
l0M

2
s ; ð12Þ

where A is the exchange stiffness. In Eq. (11), R is a phenomenological relaxation
term, which can take various mathematical forms, such as a viscous damping
(Gilbert term) or a relaxation (modified Bloch-Bloembergen term) or both terms, as

R ¼ a
Ms

M� dM
dt

þ M�M0

s
; ð13Þ

where M0 is the static part of the magnetization. The Gilbert parameter a is
dimensionless and relates to viscous damping, whereas the Bloch-Bloembergen 1/s
term corresponds to a relaxation rate in rad/s. The calculation of the effective
permeability from Eq. (11) has been described in detail in previous publications
[13, 14].

Let us first consider a wire magnetically saturated in the z direction.
Equation (11) is solved in cylindrical coordinates, in a small signal approximation.
This leads to a k dependent susceptibility tensor,

mr

mu

� �
¼ v �ij

ij v

� �
hr
hu

� �
: ð14Þ

108 C. Dolabdjian and D. Ménard



The tensor components are given by

v ¼ xM ~xH

~x2
H � ~x2

; j ¼ xM ~x
~x2
H � ~x2

; ð15Þ

where

xM ¼ cl0M0; ð16Þ

~x ¼ x� i=s; ð17Þ

~xH ¼ cl0H0 þ iaxþxMd
2
exk

2; ð18Þ

are in units of angular frequency. Note the implicit condition mz = 0, which arises
from the small signal approximation. Equation (14) describes the response of the
dynamic magnetization to an internal dynamic field. The effect of anisotropy and
demagnetizing fields, which is neglected here, can be included in Eq. (18) by the
replacement of H0 by an effective internal field. In the local approximation,
exchange interaction is neglected, and the last term in k2 is omitted from Eq. (18).

Due to the skin effect, the wave vector k will be perpendicular to the surface of
the wire and the fields are expected to vary with the radial coordinate in terms of
Bessel functions. Maxwell’s equations will then lead to the relations

hr ¼ �mr; ð19Þ

hu ¼ k20
k2 � k20

mu; ð20Þ

where k0 ¼ 1� ið Þ=d0 relates to the non magnetic skin depth obtained with
leff = l0 in Eq. (6). With the observation that k2=k20 ¼ leff =l0, Eq. (20) simply
restates that leff =l0 ¼ 1þmu=hu. The combination of Eqs. (14) and (19) enables
one to solve for the scalar transverse permeability

lt
l0

¼ 1þ mu

hu
¼ ~x2

AR � ~x2

~x2
R � ~x2

: ð21Þ

where the complex resonance

~x2
R ¼ ~xH ~xH þxMð Þ; ð22Þ

and antiresonance

~x2
AR ¼ ~xH þxMð Þ2; ð23Þ

angular frequencies have been defined for convenience.
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In the local approximation, Eq. (21) may be substituted directly in Eq. (9), with
the proper h dependence of the effective internal field, which will yield the effective
skin depth and thus, the permeability of the wire. Otherwise, the exchange term in
Eq. (18) leads to a k-dependent transverse permeability, or equivalently, to spatial
dispersion of the permeability. Since lt depends on k, which also depends on lt, the
non-local approach requires a self-consistent solution. Detailed analysis has been
presented in Refs. [13, 14].

In summary, combining Eqs. (5), (6), (8) and (20) leads to the normalized
impedance

Z
Rdc

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ixrl0a2

4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2
AR � x2

~x2
R � x2

s
þ tan2 h H0ð Þ½ �

 !
cos2 h H0ð Þ½ �: ð24Þ

In Eq. (24), h is presented as an explicit function of the static external applied
field H0, emphasizing the two mechanisms of impedance variation: magnetization
reorientation as a function of the field and field-dependent transverse permeability.
Figure 2 illustrates a characteristic GMI impedance variation as the function of a
longitudinal applied magnetic, as modeled by Eq. (24). As illustrated, the calcu-
lation provides an evaluation of the two figures of merit, defined in Eqs. (1) and (2).

Z

B

Z(Bref)

Z

0B B

Z

B =

B0

Fig. 2 Characteristic GMI response of a wire as a function of a longitudinal applied field
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3 GMI Sensors

3.1 Two-Pole Network Model

Here, we describe how a GMI element can be engineered into a sensor, using a
two-port network approach [18]. A schematic of the sensing element is illustrated in
Fig. 3, along with the associated two-port network model. It consists of a GMI wire
inside a long solenoid or pick-up coil.

The GMI sensing element may be described by its field-dependent impedance
matrix [Z(Bext)], where Bext = l0Hext is the longitudinal component of the external
magnetic induction.2 Its expression is

v1
v2

� �
¼ Z Bextð Þ½ � i1

i2

� �
¼ Z11 Z12

Z21 Z22

	 

i1
i2

� �
; ð25Þ

where vp and ip are the voltage across or current into port p (1 or 2), as illustrated in
Fig. 3. For operation at low field amplitude in a closed field configuration (feedback
loop), the external magnetic induction may be written as

Bext ¼ B0 þ b tð Þ; ð26Þ

where B0 is the static working point (bias field) and b(t) is the measured ac signal.
Under a small signal approximation, the first order expansion of the impedance
components yields

Fig. 3 Sensing element schematic and its associated two port network model illustrating the
different terms of the impedance matrix given in Eq. (25) [18]

2Due to strong demagnetizing effect and assuming that we measure fields that are much smaller
than the saturation magnetization, the GMI elements are essentially sensitive to the longitudinal
component of the field.
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Fig. 4 Real and imaginary parts of the components of the impedance matrix, Zij(B), as a function
of the applied magnetic field for three dc bias currents. Measurements were performed for an
excitation frequency, f0, of 300 kHz. On the Re(Z12) curve, we show an estimated differential
variation of the impedance sensitivity, S12−X, at a zero field working point in X/T [18]
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Zij ¼ Zij0 B0ð Þþ @Zij
@B

����
B¼B0

�b tð Þ ¼ Zij0 þ Sij�X � b tð Þ; ð27Þ

where Zij0 = Zij(B0) is the impedance at the bias field and ∂Zij(B)/∂B (= Sij−X) are
the intrinsic sensitivity of the corresponding impedance components, in units of
X/T.

As implied by Eq. (25), there are four different configurations for excitation and
detection, each related to a component of the impedance matrix. Examples of
measured impedance components, Zij(B), as a function of applied field are presented
in Fig. 4 [18].

The matrix components, in Eq. (25), are given by [19]

Z½ � ¼
l

2pa ZMcos2hM þ ZNsin2hM
� �

N ZN � ZMð ÞsinhMcoshM
N ZN � ZMð ÞsinhM cos hM 2paN2

lc
ZMcos2hM þ ZNsin2hM
� �

 !
; ð28Þ

where l, lc, and N are the length of the wire, the length of the pick-up coil, the
number of turns of the coil, N, respectively. This expression of the impedance
matrix can also be extended to include the parasitic capacitance of the pick-up coil,
Ccoil, yielding [19]

Z 0½ � ¼ Z11 � jZ12Z21Ccoilx0
1þ jZ22Ccoilx0

Z12
1þ jZ22Ccoilx0

Z12
1þ jZ22Ccoilx0

Z22
1þ jZ22Ccoilx0

 !
; ð29Þ

where x0 is angular frequency of the sinusoidal current excitation of amplitude Iac.

3.2 Sensitivity of the Sensor

The output voltage Vout of the sensor, ideally proportional to the measured field,
depends upon several factors, including the intrinsic sensitivity, the driving current and
the conditioning electronics. Let us consider a typical lock-in detection scheme in any
of the four configurations A, B, C or D, as illustrated in Fig. 5. The classical single wire
configuration (A configuration), which was treated in Sect. 2, consists of a direct
measurement of the wire electrical impedance, whereas the so-called off-diagonal or
wire-coil configuration (B configuration), corresponds to an excitation current through
the GMI wire, with a voltage detection across the pick-up coil.

The excitation and detection stages consist of a voltage generator, eg1, having an
internal resistance, R1, and associated with carrier compensation circuitry. The
detector is a lock-in amplifier, locked to the excitation frequency, f0 [18]. The
output sensitivity, also called the transfer, Tr, at the lock-in amplifier output,
expressed in V/T, is defined as
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TrX ¼ @Vout

@B
: ð30Þ

where X = (A, B, C or D) indicates the measuring configuration and Vout is the
output voltage. Assuming a linear response, the sensitivity can be obtained from Sij
−X, Zij0 and the circuit elements. The Fourier transform of the voltage at the lock-in
output is given by

Vout xð Þ � G Iac Zij0 x0ð Þþ @Zij x0ð Þ
@B

����
B¼B0

�b xð Þþ kDSznij xð Þ
 !

þ kDSenX x0ð Þ
" #

,

ð31Þ

where G and kDS are the gains associated with the preamplifier and the detector,
znij (x) is the equivalent impedance spectral noise density source, in X/√Hz and
enX (x) is the equivalent conditioning voltage noise, in V/√Hz. At the working
frequency and the static working point (bias field), the output sensitivity is

TrX ¼ G Iac
@Zij x0ð Þ

@B
¼ Iac

2
@Zij x0ð Þ

@B
; ð32Þ

and the equivalent voltage noise

vn xð Þ ¼ GkDS Iac znij xð ÞþGkDS enX x0ð Þ ¼ 1ffiffiffi
2

p Iac znij xð Þþ enX x0ð Þ� �
; ð33Þ

where the right hand terms in Eqs. (32) and (33) were obtained by setting G = 1/2
and kDS = √2, where kDS is a correction factor varying from √2 to 1, depending upon
the type of synchronous detector or lock-in used [20, 21]. Here, we consider a
product detector using a sinusoidal function, at the same frequency and in phase
with the carrier.

Fig. 5 Diagram of the two-pole network sensor and its associated signal conditioning
(preamplifier + detector) [18]
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With an ideal sinusoidal current generator (R1 � Z11 or Z22) and a high input
preamplifier impedance, the sensitivity of the sensor is simply given by

TrX � @ Zij x0ð Þ�� ��
@B

Iac
2
: ð34Þ

The specifics of electronic conditioning are further discussed below. Details may
be found in Ref. [18].

3.3 Equivalent Magnetic Noise of the Sensor

3.3.1 Intrinsic Magnetic Noise

It is well known that thermal fluctuations of the magnetization set fundamental
limits to the signal-to-noise ratio of magnetic sensors, with a response depending
upon the magnetization direction of their sensing elements, with magnetoresistive
element as an example [22]. Estimation of the impact of the magnetization fluc-
tuations on the equivalent magnetic noise of GMI sensors was first discussed in [23]
and subsequently developed in [24]. More recently, the contribution of the hys-
teresis losses to the low-frequency noise was considered for the A configuration
[25] and extended to the B configuration in Ref. [26].

Based on the equipartition theorem and a simplified physical model of the GMI
response, the intrinsic magnetic noise is expressed by Ménard et al. [23]

z2nij xð Þ � @Zij
@h

� �2

S2hh xð Þ � @Zij
@h

� �2 4kBTv00

2pfl0M2
s #

� �
; ð35Þ

where Shh is the spectral density of the magnetization direction fluctuations, vt, the
magnetic susceptibility, #, the effective volume of the wire, µ0 the permeability of
free space, and kBT, the thermal energy. The imaginary part of the susceptibility, v″,
is related to various dissipation mechanisms. For example, Eq. (35) implies that a
viscous damping, proportional to the frequency, yields a frequency independent
noise (white noise), whereas frequency independent hysteresis losses, should result
in 1/f noise at low frequency.

The equivalent magnetic power noise spectral density, in T2/Hz, is given by the
magnetic part of the voltage noise spectral density, Eq. (33), divided by the transfer,
Eq. (34), that is

b2n fð Þ ¼ 2
z2nij xð Þ

@Zij f0ð Þ�@B�� ��2 : ð36Þ

In Ref. [27], it was shown that magnetic contribution to white noise is given by
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@Zij f0ð Þ
@B

����
����
2

¼ � sinh
l0Hint

� �
@Zij
@h

����
����
2

: ð37Þ

Then, assuming a wire with circumferential anisotropy, the magnetization as a
function of field is given by M/Ms = cosh = H0/Hk, and the internal field by
Hint ¼ H2

k � H2
0

� �
=Hk. The sensor is usually operated at a few MHz, with a dc bias

field approximately equal to H0 ¼ Hk=2. In these conditions, using Eqs. (35)–(37),
an estimate of the equivalent magnetic power noise spectral density, is given by

b2n fð Þ ¼ 4l0kBTv
00

pf#

� �
H2

int

sinhj j2M2
s

¼ 3l0kBT
p#

H2
k

M2
s

v00

f
: ð38Þ

Assuming a worst case scenario, provided by v00 � Ms=Hk , a very rough esti-
mate of the equivalent magnetic power noise spectral density, in the low frequency
regime is

b2n fð Þ � 3l0kBT
p#

Hk

Ms

� �
1
f
: ð39Þ

A lower limit to 1/f excess noise, at low frequency, is given by the theoretical
intrinsic magnetic white noise, [17]

b2n fð Þ � Z2
11

@Z11 fð Þ=@Bj j2
4kBTa
c l20H

3
K#

� �
; ð40Þ

where c and a are the gyromagnetic ratio and the dimensionless Gilbert damping
parameter, respectively. In principle, the Johnson noise of the dc resistance of the
GMI sensor, which is included in Eq. (42), should be considered also as an intrinsic
noise contribution. In contrast, as discussed below, the white noise regime has been
limited so far by the conditioning electronics.

To conclude, the low frequency equivalent magnetic noise spectral density is
expected to scale with the impedance sensitivity ratio, with the square root of the
absolute temperature, and inversely with the square root of the wire volume. While
the analysis above must be considered to be a very rough estimate of the equivalent
GMI magnetic noise, numerical values suggest that thermal magnetic noise arising
from thermal fluctuations of the magnetization could be a significant contribution to
the low frequency intrinsic noise of the sensing element. Further theoretical and
experimental studies are required to address this issue in the future.
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3.3.2 Noise from the Conditioning Electronics

The output equivalent noise of the system can be estimated based on the classical
conditioning circuitry illustrated in Fig. 4. Assuming a well-conditioned electronic
circuit, there are three main sources of this noise.

The first is noise induced by the voltage generators, eg. Signal instability of
sinusoidal sources are generally characterized by the single sideband noise spectral
density expressed in decibel below the carrier per hertz (dBc/Hz), in direct relation
to the output amplitude of the source. This allows one to evaluate the voltage power
noise spectral density of the two generators shown in Fig. 4 to be

e2ngi fð Þ ¼ e2gi
10dBc=10þ 3

ði ¼ 1; 2Þ; ð41Þ

where engi is the amplitude of the sinusoidal signal generator. The order of the dBc,
around 100–140 dB at 1 Hz, depends upon the generator performance. The
amplitude, eg2, of the second generator is usually related to eg1 since the amplitudes
of the signals at the inverting and non-inverting inputs of the preamplifier need to
be approximately equal. Consequently, the noise level of the second generator,
eng2(f), may be expressed as functions of eng1(f) and of circuit elements.

The second noise source is that of the preamplifier, which may be summarized
by its (en(f) − in(f)) model, considering an input voltage white power
e2npreamp(f) and an input current, i2npreamp(f).

The third source is the Johnson noise of each resistor, R, of the setup, including
that of the GMI element, expressed as

e2nR ¼ 4kBTR; ð42Þ

where kB (1.38 � 10−23 J K−1) is the Boltzmann constant and T (300 °K) is the
electronic operating temperature.

Considering an AM signal at the preamplifier input of the form Ac [1 + m cos
(xmt)] cos(x0t), where xm is the angular frequency of the sensed field, b(t), and x0

is that of the excitation (driving) current, Iac(t). The filtered demodulated signal is
multiplied by cos(x0t). Consequently, the output noise spectral density is increased
by a factor G � kDS, due to the quadratic sum of the noise of the sidebands which
have to be considered (cf. Eq. 33). This effectively results in a decrease by a factor
kDS of the signal to noise ratio. Consequently, we can express the equivalent output
white noise power spectral density given at the output, after demodulation and
low-pass filtering, by

e2nX fð Þ � G2k2DS
Zij0 f0ð Þ�� ��
R1

� �2

2e2ng1 fð Þþ e2nR1
h i

þ e2npreamp þ e2nRx þR2
x i
2
npreamp

( )
:

ð43Þ
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Finally, the equivalent magnetic noise spectral density of the setup, bnX, in pT/
√Hz, is defined as the ratio of the electronic noise spectral density (in V/√Hz) to the
sensitivity (in V/T), bnX = enX/TrX.

We note that this description leads to a good estimation of the experimental
noise and also that the magnetic noise spectral density is dominated either by the
excitation or detection stages, depending upon whether the excitation currents, or
sensor sensitivity, are high or low. The non-trivial noise behavior exhibited by each
configuration (A, B, C, D), leads to a better understanding of the sensor noise
limitations. The configuration in which the signal at the coil terminals is measured
(often named off-diagonal, X = B) appears, at present, to be the most efficient in
decreasing the electronic conditioning equivalent output magnetic noise spectral
density. Details may be found in Ref. [28].

Overall, the GMI equivalent magnetic noise due to the two main noise source
contributions (intrinsic 1/f noise and white conditioning electronic contribution
noise) is described by

b2nX fð Þ � b2n fð Þþ e2nX fð Þ
.
T2
rX fð Þ

� 3l0
kBT
pf#

HK

MS
þ

k2DS Zij0 f0ð Þ�� ���R1
� �2

2e2ng1 fð Þþ e2nR1
h i

þ e2npreamp þ e2nRx þR2
x i
2
npreamp

n o
@Zij f0ð Þ�@B�� ��2I2ac

ð44Þ

4 Magnetometer Development

4.1 Conditioning Electronics

There are two principal modes of excitation of a GMI sensor: the classical sine
wave generation [18] and pulsed generation [29, 30]. Examples are shown in
Figs. 6 and 7. The first provides a single frequency, the second a multiple frequency
excitation mode.

C1

C2 C3

R3

R8

R1
R2

R4

Oscillator

GMI

GMI(t)V

+12V

+12V

7404

Fig. 6 Typical electronic
design based on a pulse
generator [31]
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Based on the Fourier formalism and considering a linear system, both modes are
quite similar due to the fact that the first harmonic amplitude dominates for both
signals. In both cases, a dc bias current is usually used. This helps to reduce the
equivalent magnetic noise of the sensor [31]. There are some other approaches for
conditioning electronics, such as a Colpitts oscillator [32], exploiting the GMI wire
resonance, but we do not treat them here.

Similarly, there are different types of detectors, such as a peak detector or a
lock-in. A typical peak detector is shown in Fig. 8.

4.2 Magnetic Feedback Loop

A GMI magnetometer must exhibit appropriate linearity and magnetic field
dynamic range. This can be achieved by using a negative feedback technique,
applying a feedback magnetic field. This is applied to the GMI wire via a coil

R1

Voltage
generator GMI

+12V

GMI
ac (t)(t) VV

R2

C1

Fig. 7 Typical electronic
design based on a sine-wave
generator [28]

GMI

C1

D

+12V

Voltage
Generator ac(t)V

GMI(t)V

R1

R2

RD

CD

Fig. 8 Classical electronic
peak detector associated to a
MIG wire as sensor
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wound around the wire, as illustrated in Fig. 1b. This field locked loop principle is
common to several magnetometers. Figure 9 illustrates a typical experimental
configuration. The output of the preamplifier, VC(t), is applied to a low-pass filter,
AI(x), to get the magnetometer output signal, VS (t). The latter is fed back to the
GMI coil through a resistor.

Considering a small signal, the system is assumed to be locked on the working
point having the highest transfer coefficient Tr (Tr > 0). The transfer between the
detector and the differential amplifier output is given by

ALðxÞ ¼ ALð0Þ
1þ jx=xL

; ð45Þ

where AL(0) and xL are the low frequency gain and cutoff frequency of the
amplifier, respectively. Similarly, the transfer function of the low-pass filter is

AIðxÞ ¼ AIð0Þ
1þ jx=xI

; ð46Þ

where AI(0) and xI are the low frequency gain and cutoff frequency of the amplifier,
respectively. Combining the two, the loop factor of the magnetometer is [33]

AðxÞ ¼ Tr b ALðxÞAIðxÞ; ð47Þ

where b is the ratio of the magnetic flux density applied to the magnetic wire to the
feedback current feeding the GMI coil (in units of T/V). Finally, the classical
overall small signal transfer function of the magnetometer expresses as a standard
second order transfer function is

TðxÞ ¼ TMag
x2

N

x2
N � x2 þ jxxL

� �
ffi 1

b
x2

N

x2
N � x2 þ jxxL

� �
; ð48Þ

where TMag ¼ TrAIð0ÞALð0Þ
1þ TrbAIð0ÞALð0Þ � 1

b and x2
N ¼ Tr bAIð0ÞALð0ÞxI xL .

AI ( )AL( )
Bext(t) +

-
VC(t) VS(t)

Fig. 9 Sketch view of feedback loop principle
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Let us now consider the large signal behavior of the magnetometer. Around the
working point, at which the transfer coefficients are maximal, a rough estimation of
the dynamic range available at the pseudo-integrator is [33]

�HPeak TrALð0Þ�VcðtÞ�HPeak TrALð0Þ: ð49Þ

where HPeak � Hk/2. It yields that the slew-rate (the maximum rate of change of
output voltage per unit of time) at the magnetometer output is limited to

@VSðtÞ
@t

����
���� � HPeak T1ALð0ÞAIð0ÞxI : ð50Þ

This limitation is encountered when a large field step takes place, shifting the
magnetic flux density applied to the sensor out of the ±Hpeak range. This limitation
is quite similar to the large signal response of a locked system. The slew rate
limitation also appears for large sinusoidal Bext(t) signals. Further, it requires a
low-pass filter time constant, higher than the slew rate. If nothing else in the system
saturates, the equivalent magnetic slew rate is deduced from the previous equation
to be

@BðtÞ
@t

����
���� � HPeakTrbALð0ÞAIð0ÞxI : ð51Þ

In the literature, there are some examples of optimized giant magneto-impedance
effect magnetometers [26, 28, 29, 34]. Their performances are in good agreement
with the analysis presented here, in terms of equivalent magnetic noise and per-
formance. Table 1 summarizes the state-of-the-art of GMI magnetometer (or sen-
sor) performances.

As an example, the field response model for the sensing element and the noise
model are in good agreement with experimental results [26, 28]. Here, the sensing
element consists of a thin pick-up coil wound directly on a 100 lm diameter
CoFeSiB amorphous ferromagnetic wire (Ms = 561 kA/m, a = 0.02, q = 129 lX
cm). The length of the pick-up coil, lc, was equal to that of the wire, l, and is about
2.5 cm. The number of turns of the coil, N, is approximately 500 turns/layer. The
noise performance of the magnetometer is, approximately, 1.7 pT/√Hz in the white
noise region. It has a bandwidth of about dc-70 kHz, a full scale of 100 µT and a
measured slew rate of higher than 450 T/s. A sketch view of the electronic design
and the associated equivalent spectral magnetic noise density are shown in Fig. 10.
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5 Conclusions

While the development of GMI sensor technologies started about two decades ago,
advances in the engineering of magnetometers with a systematic evaluation of their
noise performances have mostly taken place over the last 10 years. GMI magne-
tometry in wires, ribbons, single or multi layered films is steadily progressing and is
still an active field of research. So far, impressive GMI magnetometer demon-
strations have been carried out, exhibiting performances competitive with
state-of-the-art low-cost magnetometers operating at room temperature. GMI
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Fig. 10 Sketch view of a full electronic GMI magnetometer design (a) and associated equivalent
spectral magnetic noise (b) [26, 28]
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sensors are also currently considered to be promising candidates for the develop-
ment of multi-sensor arrays, which could considerably extend their range of
applications. Major short-term challenges include the reduction of their
low-frequency excess noise and the improvement of their long term magnetic
stability. These points have to be addressed, keeping sight of their energy con-
sumption and manufacturing costs, along with other issues pertaining to material
studies and optimization.
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