
Chapter 8
Portfolio Performance Assessment: Statistical
Issues and Methods for Improvement

Bernell K. Stone

8.1 Introduction: Purposes and Overview

8.1.1 Performance Assessment Problems/Frameworks

Building on Markowitz (1952, 1959) mean–variance portfolio theory and the capital
asset pricing model, Treynor (1965), Treynor and Mazuy (1966), Sharpe (1966), and
Jensen (1968) set frameworks for portfolio performance assessment. Investment
texts now all include chapters summarizing these measures. The crux of these
performance assessment frameworks is assessing and explaining the amount that
realized return exceeds a fair return for time and risk.

The primary focus of much performance measurement is after-the-fact assess-
ment of how a managed portfolio performed relative to a before-tax fair return for
time and risk. A related performance measurement problem is the task of evaluating
well methods for active stock selection. The focus here is a full sample backtest
of the performance potential of a stock return forecast. The assumed assessment
structure is a panel framework for a time series of cross sections rank-ordered into
fractile portfolios on the basis of a return forecast.

To assess with high statistical confidence the economic potential of a stock return
forecast, the central backtest problem is to ensure that any apparent ability of a
return forecast to predict future returns is well isolated from risk, tax, and other
nonforecast return variables. The conventional methodology for correcting a cross
section of realized returns for variation in risk is a multivariate regression using one
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of the standard return models. Estimating how well-realized returns or realized risky
returns are explained by a return forecast and any of the APT or multivariate style
models such as the Fama–French three-variable extension of the CAPM is fraught
with measurement and specification problems, especially extreme multicollinearity
problems.

8.1.2 Purposes

This chapter presents and illustrates the use of an alternative return forecast assess-
ment framework. Rather than estimating a multivariate explanation of how realized
returns or realized risky returns depend on a return forecast and other explanatory
variables, the proposed alternative suppresses cross-sectional variation in the other
explanatory variables by transforming the initial cross section of rank-ordered
fractile portfolios into an associated cross section in which every portfolio has the
same portfolio-weighted average value of each pertinent explanatory variable.

Response surface/subsurface statistical designs are intended to assess the
response (dependent variable) to a treatment. Response surface/subsurface designs
are widely used in controlled experiments, e.g., chemical synthesis, petroleum
refining, nuclear reaction yield, etc. In fact, response surface/subsurface designs
are the preferred statistical design framework for most controlled experiments.1

Response surface/subsurface designs are also widely used in partially controlled
experiments such as the illustrative example in Sect. 8.4.2 of health response to
well-controlled variation in drug dosage administered to a patient sample designed
to be matched on other sample attributes that could distort apparent response to the
drug dosages.

Response surface/subsurface statistical designs and methods are not widely
used in economics and finance (or social sciences generally) although response
surface/subsurface methods are implicit in the extensive use of matched-sample and
partially-matched-sample designs, especially in areas like marketing research and
medicine. Regression and related econometric methods are the generally preferred

1There is a large literature on statistical designs for the empirical estimation of multivariate
functional dependencies but primarily focused on controlled or partially controlled studies rather
than the observational samples that typically arise in epidemiology, demographics, the social
sciences including especially economics and business, medicine, and many physical sciences
including astronomy. Treatment response studies were an early statistical design focus and continue
to be an ongoing design estimation concern. Because of the early and ongoing concern for
treatment response studies, it is common to use the term response surface methods to refer to
empirical methods for estimating functional dependencies. Most of the statistical literature pertains
to controlled or partially controlled experiments in process industries, medicine, and advertising.
For background readers are referred to the foundation works by Box (1954) and Box and Draper
(1959); to the review article by Myers, Khuri, and Cornell (1989); and to the books on response
surface methods: Khuri and Cornell (1996), Box and Draper (1987), and Box, Hunter, and Hunter
(2005).
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statistical method for assessing return dependencies in asset pricing studies and
other return-risk modeling. In addition to goodness of fit measures such as standard
forecast error or mean absolute forecast error, the standard procedure for evaluating
a return forecast, i.e., for assessing forecast value, is to use regression to evaluate
how well the cross-section of realized returns for a pertinent stock sample and time
period is explained by the return forecast. As in the case of many return dependency
studies, it is standard procedure to rank order the sample stocks on the predicted
return or an adjusted return prediction measure such as return in excess of estimated
risk. When the realized return response for the rank-ordered sample is estimated via
linear regression, the estimated slope coefficient is referred to as the “information
coefficient.” Return forecast value and reliability is indicated by the magnitude and
significance of the information coefficient.

The key conceptual insight is to view a stock return forecast as a treatment
applied to all the stocks in a sample that is designed to rank order the stocks on
the basis of true performance corrected for specified risk, tax, and other return
impact variables. Rather than matched controls via sample selection, the control
matching for an observation sample of stocks is achieved after the fact by means
of a power optimizing mathematical assignment program that transforms the initial
cross section of forecast rank-ordered portfolios into an associated rank-ordered
cross section matched on key controls.2

In addition to presenting the matched control framework, the intent here is a
systematic structuring of the major design decisions for a panel study based on a
time series of rank-ordered fractile portfolios. Compared to forecast performance
assessment using multivariate regression, the matched control framework has
substantial efficiency/power benefits. Compared to the multicollinearity distortion
in a multivariate regression, control matching on all the pertinent distortion variables
means no correlation between the forecast and any of the return control variables.
For instance, having the same portfolio average value of a variable such as beta
means no cross-sectional variation in beta and therefore no correlation between
beta and the return forecast or in fact any other control variable. Control matching
ensures that the cross-sectional impact of the forecast is well isolated from any
distortion from any of the control variables, because each portfolio in the cross-
section has the same security-weighted average value of each impact variable. Since
there is no variation in the portfolio-average value of each control variable over the

2Most of the statistical design literature cited in the previous footnote focuses on controlled
and especially partially controlled studies. The ability to adapt response surface methods to
observational studies is developed in Stone, Adolphson, and Miller (1993). They extend the use
of response surface methods to observational data for those estimation situations in which it
is pertinent to group data, e.g., to group observations on individual stocks into portfolios or
households into income percentiles. The use of control variables to assess a conditional dependency
(response subsurface) is a basic technique in controlled experiments that we adapt in this study
to obtain a well-isolated portfolio-level dependency of realized risky return on a return forecast.
Fortunately for compatibility with other finance panel studies using rank-ordered grouping, the
optimal control matching can be structured as a power/efficiency improvement to the widely used
relative rank-ordering used in many return dependency studies.
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rank-ordered return cross section, there can be no variation over the cross section in
the impact of any matched control to the extent that its average value is accurately
measured and is a good summary of the impact of each control on the portfolio
return.

Power pertains to correctly assessing sample information. In the context of a
full-sample return forecast assessment, there are three pertinent power attributes.
The most critical is isolation of the forecast from other return impact variables.
The other two pertain to assessing well the magnitude and significance of the
apparent forecast response. Control matching ensures complete isolation of the
return forecast from the impact of other variables to the extent that control variables
are well measured and well summarized by their portfolio average values. Assessing
well the magnitude and significance of the forecast response is achieved via the
use of a reassignment algorithm that transforms an initial forecast rank ordering
into an associated control-matched rank ordering using the reassignment algorithm
formulated in Section 8.5. This algorithm optimizes a trade-off between two
complementary power instruments – having a wide range of well-ordered forecast
values and also having a high level of variable homogeneity within each fractile
portfolio. Variable homogeneity refers to the extent to which values are close to the
portfolio average. Variable homogeneity is measured in this research study by the
variance relative to the mean for each fractile portfolio.

8.1.3 Chapter Organization

The rest of this chapter is organized as follows. Section 8.2 distinguishes between
standard forecast accuracy measures such as standard forecast error and the ability
of a forecast to predict return beyond a fair return for time and risk. Section 8.3
focuses on key statistical designs that determine power and efficiency in estimating
performance potential for a well-isolated return forecast. Section 8.4 compares
multivariate regression with control matching as alternative ways to assess the per-
formance potential of a stock return forecast. Section 8.5 formulates a mathematical
program to transform the starting, presumably correlation-distorted, rank-ordered
cross section into an associated cross section of well-ordered, control-matched
portfolios with zero correlation with a specified set of control variables. The
objective function is to optimize a trade-off between two power measures—cross-
sectional range and within-portfolio variable homogeneity on the rank-ordering
variable. The decision variable is the amount of stock in each fractile portfolio that
is assigned to one or more of the other portfolios. The key constraints are the control
matching requirement that each portfolio in the cross section has the same portfolio-
weighted average value of the specified control variables.

Sections 8.6, 8.7, and 8.8 provide an illustrative performance potential assess-
ment using an implementation of the eight-variable return forecast model of Bloch,
Guerard, Markowitz, Todd, and Xu (1993). Section 8.6 provides an overview of
the return forecast model. Section 8.7 defines and discusses a set of firm-specific
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control variables. With an emphasis on the elimination of risk and tax effects (both
dividend–gain distortion and the tax shield of corporate debt), Sect. 8.8 illustrates
the imposition of matched controls for different combinations of control variables.
Section 8.9 summarizes conclusions and suggests issues for further research.

8.1.4 Overview of Some Key Results/Conclusions

In addition to optimizing statistical power, the imposition of a combination of
risk and tax controls significantly increases statistical efficiency relative to the
uncontrolled cross section. For the illustrative forecast model, tax effects are much
larger than risk effects as measured by the three Fama–French risk variables:
beta, size, and the book-to-market ratio. The three risk variables tend to smooth
both the cross section of realized risky returns and especially the cross section of
realized standard deviations. Both the return and the realized standard deviation
cross sections are nonlinear. The cross section of realize standard deviations is
not only nonlinear but highly nonmonotonic. As expected for a forecast designed
to identify undervalued stocks (high upside potential with limited downside risk)
versus overvalued stocks (limited upside potential with high downside risk), the
distribution of realized returns about the average value exhibits significant skewness,
negative skewness for low return forecasts, very little for the middle of the
distribution, and very large significant skewness for the highest return forecasts.

Both the significant nonmonotonic cross section of realized standard deviations
and the significant cross-sectional variation in realized skewness for the illustrative
forecast attest to the importance of avoiding restrictive distributional assumptions.
Overall, the matched control approach not only ensures a well-isolated return
forecast but also provides significant improvements in both statistical efficiency and
power compared to estimating a multivariate regression.

8.2 The Problem of Assessing the Performance Potential
of a Stock Return Forecast

8.2.1 Forecast Accuracy/Significance Versus
Performance Potential

Standard methodology for evaluating a forecast is to see how well actual values
correspond to predicted values. For a stock return forecast, this realization versus
forecast assessment translates into seeing how well-realized returns correspond
to predicted returns. Standard forecast evaluation measures include the standard
forecast error and the information coefficient. The standard procedure for computing
an information coefficient is to estimate a linear fit of realized returns on predicted
returns. The slope measures the information value of the forecast. A slope that
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is insignificantly different from zero implies no forecast value. Of course, a
significantly negative slope implies negative forecast value. For a significantly
positive slope, the larger the estimated slope and the higher the R2 (the more
significant the estimated slope), the better the forecast.

In commenting on a return forecast model of Timmerman (2008a), Brown (2008)
asserted that high statistical significance for predicting future returns does not ensure
actual ability of a stock return forecast to provide a significant improvement in
performance after correcting returns for risk and other systematic return variables.
In response, Timmerman (2008b) concurred with Brown’s assertion that the
appropriate forecast assessment criterion is the ability to create superior portfolio-
level performance. However, Timmerman observed that such an assessment was
itself problematic. In particular, converting realized return from a forecast into
realized return corrected for time and risk means that the assessment is a joint
test of the forecast and an assumed fair return model. In questioning the ability
to provide a risk correction with a high degree of confidence, Timmerman (2008b)
assumes that correcting realized return for risk requires a fair return model with
its associated limitations. The issues raised by Timmerman are indicative of a need
for a specification-free, distribution-free alternative methodology for obtaining the
well-isolated performance potential assessment demanded by Brown (2008).

8.2.2 Key Specification Issue: Eliminating/Controlling
for Correlation Distortion

The primary requirement for isolating well true return forecast value from risk,
taxes, and other return dependency variables is to ensure that there is no significant
distortion from covariation between the return forecast and these other vari-
ables. While rank-ordered grouping into fractile portfolios can increase statistical
efficiency by mitigating measurement error as discussed further in Sect. 8.3.2, rank-
ordered grouping can exacerbate the problem of eliminating correlation distortion.
Low sample-level correlation between the return forecast and other return impact
variables can be greatly multiplied by the rank-ordered grouping.3 For a sample of
1000 stocks rank-ordered into deciles, relatively low sample-level correlation coef-
ficients of 0.05 to 0.10 can be magnified to portfolio-level correlation coefficients
greater than 0.50 and even as high as 0.80. Getting the measurement error reduction

3The mathematics for correlation magnification is straightforward. The formula for the correlation
coefficient between variables X and Y is covariance(X, Y)/[SD(X)SD(Y)], where SD stands for
standard deviation. Ranking on variable X and grouping into fractile portfolios preserve a wide
range of values for variable X. However, in each of the portfolios, the individual values of variable Y
tend to average out to a value close to the sample average value. Thus, the portfolio-level standard
deviation of Y is reduced, and for a very small number of portfolios (e.g., quintiles or deciles),
SD(Y) tends to approach zero while the covariance in the numerator declines relatively slowly
because of the wide range of portfolio-level values for the ranking variable X.
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benefits of rank-ordered grouping clearly requires a statistical design that explicitly
deals with correlation distortion.

8.2.3 Eliminating/Controlling for Systematic Tax Effects:
Dividends Versus Gains

Tax effects associated with cross-sectional variation in the proportion of return
realized as dividends and capital gains4 are a clear omission from all the standard
before-tax APT and multivariate style models. A forecaster seeking to beat any of
the before-tax return models can generate a rolling time series of forecasts that
exploit the dividend yield tilt, the well-known difference in the before-tax return of
dividends and gains reflecting the differential dividend–gain taxation and possible
differences in the systematic risk of dividends and gains.

Trying to reflect tax effects by adding a dividend yield term or other dividend–
gain mix explanatory term to a before-tax return model can further exacerbate
covariation resolution issues. For instance, dividend yield is correlated or partially
correlated with beta, size, and especially value variables such as the book–price
ratio.

8.3 A Framework for Optimal Statistical Design

8.3.1 Key Design Decisions

Statistical efficiency and power are two complementary dimensions of how well a
researcher can extract information from a data sample. Key attributes of information
extraction include (1) sample size and how well sample information is used; (2)
the usual estimation issues of measurement error, specification error, and omitted
variable distortion; and (3) breakdown in the assumptions that underlie estimation–
inference tests. Of particular concern in isolating return forecast performance from
other return dependency variables is covariation contamination that can significantly
distort efforts to isolate the impact of the return forecast from other variable
dependencies.

4Brennen (1970) shows that dividend yield is a significant omitted variable from the CAPM.
Rosenberg (1974), Rosenberg and Rudd (1977), Rosenberg and Marathe (1979), Blume (1980),
Rosenberg and Rudd (1982) and many subsequent researchers have empirically established the so-
called dividend yield tilt. More recent studies include Peterson, Peterson, and Ang (1985), Fama
and French (1988) and Pilotte (2003). For an extensive review of both dividend valuation and
dividend policy and extensive references in this area, see Lease, Kose, Kalay, Loewenstein, and
Sarig (2000).
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Given the decisions on the forecast, the pertinent stock sample, and the time
frame for the backtest assessment, the major power–efficiency decision is the
methodology used to isolate the return forecast from other return impact variables.
As already indicated, the conventional methodology is a multivariate regression.
The alternative methodology advocated here is the use of matched controls.

8.3.2 The Number of Fractile Portfolios: Measurement Error
Versus Power

Two key decisions for rank-ordering into fractile portfolios are the number of fractile
portfolios in a cross section and the partitioning rule for deciding on the number of
securities in each portfolio. These two decisions are critical for statistical efficiency
related to measurement error versus three statistical power attributes: (1) portfolio
sample size, (2) cross-sectional forecast range, and (3) within-portfolio variable
homogeneity. Within-portfolio variable homogeneity refers to how well the portfolio
average value represents the collection of stocks within the portfolio. Fewer fractile
portfolios and therefore more stocks per portfolio mean that return dependency
variables including the rank-ordering return forecast will generally have greater
dispersion about the portfolio average value. Within-portfolio variance is a measure
of the departure from the mean.5

In addition to reducing nonsystematic return variation, the primary reason for
grouping stocks into fractile portfolios is to reduce measurement error. Early rank-
ordered grouping paradigms established in tests of the capital asset pricing model
in Fama and MacBeth (1973) and in Black, Jensen, and Scholes (1972) used
rank-ordered grouping into deciles to mitigate beta measurement error. Individual
stock betas have relatively large estimation errors and tend to change over time. To
the extent that beta measurement errors are independent of each other,6 estimation
measurement error for a portfolio of 50 stocks is reduced to approximately 1/50 of
the average stock-level measurement error.

5Other dispersion measures could be used, e.g., mean absolute deviation or interquartile range.
Relative to these measures, within-portfolio variance gives greater weight to extreme departures
from the portfolio average.
6Since beta measurement errors are known to regress toward the mean, the assumption of
uncorrelated measurement errors used in the discussion here is almost certainly too strong for
correctly assessing efficiency gains from reducing measurement error by grouping into rank-
ordered fractile portfolios. In particular, beta values that are correlated with the forecast are very
likely to have systematic variation in beta change values over the cross section. The control
matching methodology developed in Sects. 8.4 and 8.5 will mitigate systematic changes in
measurement error such as the well-known regression of betas toward the mean. When every
portfolio in the cross section has the same beta value, each portfolio will have essentially the same
ex post beta change. Hence, control matching provides the benefit of no systematic distortion from
beta regression toward the mean.
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In designing a study to evaluate forecast value, there is a clear need to
trade-off the efficiency gains from measurement error reduction (see for instance
Grunfeld and Griliches (1960) and Griliches (1986) for background) versus the
information/power loss from reduced sample size and the associated power costs of
reduced cross-sectional range (cross-sectional variance) and loss of within-portfolio
variable homogeneity.

To illustrate the efficiency/power trade-off, consider partitioning a sample of
1000 stocks into equal-size portfolios of 200, 100, 50, and 20 stocks per portfolio.
This partitioning results in 5, 10, 20, and 50 portfolios, respectively. Given that a
portfolio of 50 and 20 stocks provides 98 % and 95 % of the measurement error
reduction for uncorrelated measurement errors, collapsing the sample size to just
ten portfolios (deciles) or even more extremely just five portfolios (quintiles) seems
to be a clear case of excessive measurement error reduction relative to lost power
from collapse of the sample size.

8.4 Isolation Methodology Alternatives: Multivariate
Regression Versus Control Matching

8.4.1 Treatment Response Studies

To motivate intuition, it is useful to think of assessing stock return forecasting
performance potential within the broad class of treatment response studies. A stock
return forecast is a treatment applied to a sample of stocks to identify misvalued
stocks. The assessment problem is to be sure that any apparent ability to rank order
a stock sample on the basis of superior return is from the ability to separate true
misvaluation from risk, taxes, and possibly other nonforecast return responses.

A treatment response assessment is a special case of empirically estimating a
functional dependency.7 The response is assumed to depend on the treatment and
other explanatory variables. However, the usual concern in a treatment response
assessment is not necessarily estimating the overall response dependency on the

7There is a large literature on statistical designs for the empirical estimation of multivariate
functional dependencies but primarily focused on controlled or partially controlled studies rather
than the observational samples that typically arise in epidemiology, demographics, the social
sciences including especially economics and business, medicine, and many physical sciences
including astronomy. Treatment response studies were an early statistical design focus and continue
to be an ongoing design estimation concern. Because of the early and ongoing concern for
treatment response studies, it is common to use the term response surface methods to refer to
empirical methods for estimating functional dependencies. Most of the statistical literature pertains
to controlled or partially controlled experiments in process industries, medicine, and advertising.
For background readers are referred to the foundation works by Box (1954) and Box and Draper
(1959); to the review article by Myers, Khuri, and Cornell (1989) and to the books on response
surface methods: Khuri and Cornell (1996), Box and Draper (1987), and Box et al. (2005).
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treatment and all other explanatory variables but rather ensuring that the estimated
response to the treatment is well isolated from distortion from other explanatory
variables. Using regression to estimate a multivariate response dependency is
one way to assess treatment response. However, a good statistical design can
significantly increase both efficiency and power by creating a series of treatment
observations that are matched on the values of one or more of the nontreatment
explanatory variables. The matched variables are called control variables, often
shortened to controls. Matched controls eliminate treatment variation from all the
controls.

While purely controlled experiments such as petroleum blending–refining and
chemical synthesis are a widely studied class of treatment response statistical
designs, partially controlled studies such as drug response and product market
response to pricing are more pertinent analogs for assessing how realized risky
return responds to a stock return forecast.8

8.4.2 Intuition Motivation: Isolating Well Treatment Response
to Drug Dosage Variation

A test of an anti-inflammatory drug could look at dosage per unit of body weight
to assess inflammation reduction. The prototypical treatment response study is
conducted on double-blind subsamples, with treatments ranging from no drug (the
placebo) and then a range of well-structured dosage increases up to a maximum safe
treatment. Each subsample is selected to match each other as much as possible on
control variables such as sex, age distribution, obesity distribution, blood pressure,
etc. The term “control variable” here refers to attributes of the study population
that can impact initial inflammation and inflammation response or otherwise distort
assessment of response to the drug dosage. The creation of the subsamples from
an initial study population is designed to provide identical values on the key control
variables. If all subsamples are matched on all pertinent controls, then inflammation-
dosage response is well isolated from variation in the control variables.

Because of initial subsample differences and especially because of withdrawals
and disqualification of some of the treatment subjects, the cross section of efficacy
assessment subsamples is usually not a perfect match on all controls. Researchers

8Most of the statistical design literature cited in the previous footnote focuses on controlled
and especially partially controlled studies. The ability to adapt response surface methods to
observational studies is developed in Stone et al. (1993). They extend the use of response surface
methods to observational data for those estimation situations in which it is pertinent to group
data, e.g., to group observations on individual stocks into portfolios or households into income
percentiles. The use of control variables to assess a conditional dependency (response subsurface)
is a basic technique in controlled experiments that we adapt in this study to obtain a well-isolated
portfolio-level dependency of realized risky return on a return forecast.
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assessing dosage response must deal with possible distortion from variation in the
unmatched controls.

What is pertinent for intuition about statistical procedure for cross-sectional
assessments of portfolio performance potential are alternative ways that researchers
can deal with cross-sectional variation in unmatched controls to ensure that drug
efficacy assessment is well isolated from distortion in unmatched controls. One
alternative is to use a multivariate regression model that attempts to explain observed
inflammation changes by a combination of dosage variation and a regression-
estimated inflammation response to other variables. Given the very difficult problem
of modeling inflammation response to other variables and given the generally
small departure from a match on the intended controls, the preferred alternative
to a multivariate regression assessment is a transformation of the unmatched cross
section back into a new cross section of control-matched subsamples. In drug
dosage studies, the sample transformation may be accomplished by holding out
some subsample observations. For instance, subsamples with above- and below-
average obesity values can remove some above-average and below-average obesity
observations from the respective subsamples.

Rather than giving some sample observations a de facto weight of zero, the
rematching problem is usually structured as an optimization problem in which
observations in each subsample are reweighted. The objective is to find the overall
reweighting that minimizes the reduction in sample size (measured as the overall
departure of all observation weights from one) while producing a sufficiently near
match on each pertinent control variable. The benefit of the control rematching
approach is that drug efficacy assessment is reduced to the intended evaluation
of a univariate response to the treatment differences. The difficult multivariate
regression estimation problem with its associated limitations in functional form
modeling has been bypassed. Rather than spreading the sample observations
over the estimation of a multivariate dependency, all of the sample data can
be concentrated on the univariate response to the varying dosage treatments.
The statistical properties (explained variation, t-value on treatment, F-stat) of the
univariate response almost always dominate the corresponding statistical measures
for the multivariate estimation.

The key point of this rather long discussion of a prototypical drug treatment
response study is the significant efficiency/power benefits associated with the use
of matched controls. The concern in a treatment response assessment is response
to the treatment, a conditional univariate dependency. Variation in the controls is
a source of distortion in assessing the treatment response. Trying to estimate the
control impact involves the unnecessary use of sample data to eliminate distortion
from control variable variation. Producing a match on each control avoids this
very difficult and generally unnecessary estimation problem and focuses all sample
information on the conditional univariate dependency of concern.

In viewing a forecast as a treatment applied to the stock sample in which we
want to observe the performance response, the concern is again the estimation of a
conditional univariate dependency. The impact of cross-sectional variation in firm-
specific values of risk variables, tax effect variables, and possibly other firm impacts
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such as differences in growth and profitability can be eliminated from the cross
section by transforming the initial rank ordering into an associated cross section
that is matched on key return–risk impact variables.

Control matching is especially pertinent to backtest the return response to a
forecast using time series of rank-ordered portfolios because grouping stocks into
fractile portfolios can magnify sample-level correlation distortion. The magnifi-
cation is nonlinear so that very low stock-level correlations can be multiplied
dramatically when the overall sample is collapsed to a very small number of
portfolios. The control-matched cross section has no cross-sectional variation in the
control variables and thus zero correlation with the rank-ordering variable.

8.4.3 Transforming a Rank-Ordered Cross Section into
a Control-Matched Cross Section

Ranking on forecasted return and grouping into fractile portfolios will produce a
set of portfolios ordered on the basis of predicted return. This return cross section
will almost certainly have a wide range of forecasted return values. However, each
portfolio in the cross section will almost never have the same average values of
explanatory variables such as beta or size or the dividend–gain mix or any of the
other return impact variables listed in Exhibit 8.1.9 To the extent values of return
impact variables fluctuate randomly about their average value over the cross section,
their variation is primarily a source of noise and therefore a source of lost efficiency
in assessing the cross-sectional dependency of realized returns on the return forecast
score.

Much worse than lost efficiency from random variation in systematic risk, tax,
and other return impact variables is the problem of distortion from correlation
or partial correlation between these return dependency variables and the return

9Candidates for control variables are any variable believed to have a significant impact for
explaining or predicting the cross-section of realized returns. Classes of return impacts include
risk measures, e.g., beta, the book-price ratio, and firm size; tax valuation impacts, e.g., dividend
yield, the dividend payout ratio, and possibly the debt tax shield as measured by the percentage of
financing that is debt; and attractiveness measures that are indicative of future cashflow generation
potential and asset usage efficiency, e.g., growth, return on investment, or sales intensity (sales
per dollar of investment). Beta is the standard measure of volatility risk established as a return
explanatory variable in formulations of the capital asset pricing model, for instance Sharpe (1964).
It is also included in multifactor return modeling, as indicated by the Fama-French series, e.g.,
Fama and French (1992, 1996 2008a, 2008b). The variables EP and BP are the reciprocals of
the price-earnings ratio and the price-book ratio, respectively. Their use as valuation and/or risk
variables has been researched extensively beginning with Basu (1977), viewing dependency on
the earnings-price ratio primarily as a valuation anomaly but recognizing the possibility that the
earnings-price ratio could also be a risk instrument. The tax effect associated with the differential
taxation of dividends and capital gains and the debt tax shield are discussed extensively in Sect.
8.7.3.
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VARIABLE NAME SYMBOL VARIABLE DEFINITION

Beta b β = Cov(Rs-Ro, RM – Ro) / Var(RM – Ro) measured over 
3 years of past monthly returns, where Ro is the 
riskless rate and RM is return on a market index.

Book-to-Price Ra�o (Book-
to-Market Ra�o)

BP Ratio of book value to market value. Book value BP
is the latest (at least two-month back) annual CRSP 
value for total common equity. Market value MV
is the current market value of common stock 
(current stock price times number shares 
outstanding).

Size (Market Value of 
Common Stock)

S The market value of common stock at a point in 
time

Earnings-Price Ra�o  
(Earnings Yield)

EP The ratio of Net Income to market value, the 
reciprocal of the price-earnings ratio

Dividend-Price Ra�o 
(Dividend Yield)

DP The ratio of Annual Dividends to Market Value

Financial Structure FL The fraction of Total Investment provided by debt 
and preferred stock

Sales Growth SAG Five-year average sales growth

Sustainable Growth SUG The growth of common equity from retained 
earnings

Return on Investment ROI The ratio of Opera�ng Income (before 
extraordinary income and expenses) to Total 
Investment

Return on Equity ROE The ratio of Net Income to Book Value

Sales Intensity SI The ratio of Sales to Total Investment

Exhibit 8.1 Summary of control variables

forecast. To the extent that a systematic risk or tax variable is correlated with
the return forecast score, the cross-sectional dependence of realized risky return
will reflect the well-ordered cross-sectional change in the correlated variable. For
instance, if a return forecast were positively correlated with beta, the observed
cross section of realized risky returns will include the systematic variation in beta.
An apparent increase in realized risky return from the return forecast will also
include any return to beta risk bearing. Similarly, if the dividend–gain mix increases
systematically with the return forecast, once again, an apparent increase in realized
risky return with the return forecast can be a tax tilt in disguise.

The conventional methodology for separating return forecast potential from
dependence on other variables is multivariate regression. For instance, if the concern
were just to correct for beta risk in the context of the CAPM, a regression that adds
the return forecast to the linear market index model as an additional explanatory
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variable would resolve the relative importance of beta and the return forecast
in explaining the cross section of realized risky returns. For a multivariate risk
correction, adding the return forecast to the three-variable Fama–French return
model might remove the effect of the three risk variables on the cross section of
realized risky returns but clearly incur a multicollinearity problem if the concern
is correlation distortion from the Fama–French risk variables. Trying to correct
as well for systematic tax effects is even more problematic. For instance, adding
a term based on dividend yield to reflect variation in the dividend–gain mix adds
another explanatory variable that is correlated with all the Fama–French variables,
especially the book–price ratio.10 Adding more variables to model better the cross
section of realized risky returns, for instance, combining the return forecast with
all three Fama–French risk variables plus the three tax variables (DP, EP, and FL
in Exhibit 8.1), and then additional variables to reflect differences in growth and
profitability means using up degrees of freedom while incurring more measurement
error and creating an ever worse multicollinearity problem.

As in the previously discussed example of the drug treatment response assess-
ment, isolating well-realized return response to a forecast does not require empiri-
cally measuring an overall return dependency but rather ensuring a well-measured
return-to-forecast response. In the case of a stock return forecast, the primary
isolation requirement is to eliminate distortion from correlated variables in the
context of a good assessment design that appropriately trades off efficiency and
power.

As in the drug treatment response assessment, the contention here is that
the use of matched controls is superior to using a multicollinearity-contaminated
multivariate regression when the goal is isolating the impact of a return forecast
from other return impact variables. The isolation alternative is to transform the
initially rank-ordered cross section into an associated cross section matched on the
variables that would be used as explanatory variables in a regression. A control-
matched variable has the same impact on each portfolio in the cross section. There is
no cross-sectional variation from the matched control and therefore zero correlation
distortion.

The drug treatment example was a partially controlled experiment. Each dosage
subsamples was selected to match every other treatment subsample on key controls.
Rematching to reflect withdrawals and excluded subjects may be accomplished
by pruning and more generally by an optimal reweighting of the subjects in each
subsample. In the drug dosage study, each subsample represents a well-ordered
dosage change. Dosage observations in one subsample would not be mixed with
dosage observations from another subsample. In contrast, each fractile portfolio has
a distribution of return forecasts summarized by their average. Reassigning stocks is

10Trying to put before-tax returns on an after-tax basis is fraught with problems. To put the dividend
component of return on an after-tax basis requires an estimate of a time-varying marginal tax
rate for ordinary income. To put the gain component of return on an after-tax basis requires the
determination of the time-varying effective tax rate on capital gains.
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an alternative way to obtain a match on key explanatory variables. Thus, rather than
either excluding some stocks having extreme values of some control variables11 or
the more general use of portfolio-by portfolio reweighting to produce a transformed
cross section matched on key control variables, the approach developed here is a
reweighting that allows stocks to be reassigned to adjacent portfolios.

8.5 A Power Optimizing Mathematical Assignment Program

As an example of cross-portfolio reassignment, assume trying to make each
portfolio in the cross section have the same average beta value. Cross-portfolio
reassignment could move a stock with an above-average beta value into a portfolio
whose average beta value is below the population average. At the same time, a stock
with a below-average beta value in a below-average beta portfolio could be shifted
into an above-average portfolio.

Just to produce a match for each portfolio in the cross section on a single
explanatory control variable such as beta clearly is computationally complex for a
large stock sample with many fractile portfolios. There is a need for an objective
algorithmic procedure to produce the best control-matched transformation. The
problem of transforming an initial rank-ordered cross section into the best control-
matched cross section can be formulated as a mathematical assignment program.
Given an initial rank ordering, the criterion for “best control match” is to optimize
three power measures. Covariation distortion is suppressed completely by the
control matching while optimizing a trade-off between range and within-portfolio
forecast variance.

8.5.1 Overview: Formulating the Mathematical Assignment
Program

The assumed input to the control matching algorithm is a rank-ordered grouping into
fractile portfolios. In addition to input data, an optimization requires specification
of decision variables, an objective function, and constraints.

Given a cross section of fractile portfolios formed by rank ordering on predicted
return, the objective of the assignment program is to transform this cross section
into an associated control-matched cross section to optimize two complementary
attributes of statistical power:

11In a stock return forecast designed to find misvalued stocks, extreme values of some return
variables are very likely the observations of greatest performance potential.
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1. Preserving a wide range of well-ordered return forecasts
2. Preserving within-portfolio homogeneity of forecasted return.

The following is a verbal statement of four generic constraints.

1. Control match restriction. For each fractile portfolio, make the portfolio average
value of each control variable equal to the mean (average) value of that control
variable in the sample population.

2. Preserving initial portfolio size. In reassigning securities to create the control
matching, keep the number of securities in each of the fractile portfolios the same
as the number of securities in that portfolio in the initial (starting) rank-ordered
cross section.

3. Full assignment. Each security must be fully assigned.
4. No short sales. There can be no short sales.

The crucial constraints are the control matching restrictions. Preserving initial
portfolio size and full use of each security are technical constraints that go with
full use of the sample. Prohibiting short sales prevents one return observation from
canceling out other return observations. Prohibiting short sales is also consistent
with the idea of full use of all sample information in a long-only framework.

8.5.2 Notation Summary

The following summarizes notation and defines key variables.

P D number of rank-based portfolios in the cross section
p D 1 is the portfolio with the smallest value of the rank-ordering variable
p D P is the portfolio with the largest value of the rank-ordering variable
S D total number of securities being assigned to portfolios
s D security subscript
FSs D the forecast score for stock s, s D 1, : : : ,S
Xps D the fraction of security s assigned to fractile portfolio p, 0 � Xps � 1
Fp D the number of securities in fractile p in the starting rank ordering
C D number of control variables
Vc D control variable c, c D 1, : : : ,C
VTARGETc D the target value for control variable c, c D 1, : : : ,C12

Dps D a difference measure of the change in rank for stock s when reassigned to
portfolio p

12In this study, the target average value is always the ex ante sample average value.
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8.5.3 The Power Optimizing Objective Function

Preserving range and minimizing cross-portfolio mixing are two aspects of sta-
tistical power. They are complementary measures in that optimizing one tends
to optimize the other. To reflect the relative importance of these two measures,
let · be a trade-off parameter that defines a relative weighting for range and
within-portfolio variance, where 0 <·< 1. The trade-off between range and within-
portfolio variance can be written as

OBJECTIVE D ˆ ŒRANGE MEASURE� � .1 � ˆ/ ŒWithin-Portfolio Variances�
(8.1)

For each portfolio in the cross section, the within-portfolio variance is the
portfolio-weighted squared deviation of return forecast score from the portfolio
mean forecast return score. It is a quadratic function. Thus, minimizing within-
portfolio variance, actually minimizing a sum of within-portfolio variances over the
cross section, means a quadratic objective function.

In this study in which we assess month-to-month return cross sections in each
of the 456 months of 1967–2004, we impose progressively more complete sets
of control variables in each month. Obtaining 15 or more control-matched cross
sections in 456 months means solving more than 6700 optimization runs. Solving
this many quadratic programs would be a computational challenge. However, just as
one can approximate well the mean–variance portfolio optimization of Markowitz
(1952, 1959) by solving an associated linear programming (LP) approximation
to the quadratic program,13 one can approximate the control matching quadratic
optimization by an associated LP objective function.

The LP approximation objective function is

Maximize W LP OBJECTIVE D ˆ ŒRANGE� � .1 � ˆ/ ŒSHIFTING� (8.2)

The linear measure SHIFTING is the approximation to variance minimization
that we now define.14 Let Dps be the squared difference in the numerical rank
between portfolio p and the natural portfolio rank of security s in the initial rank-
order partitioning into fractile portfolios. The set of Dps can be summarized by a
symmetric PxS matrix. Squaring the difference means that all values are greater
than zero. Squaring the difference also means that large shifts are much worse than
small ones. If a stock stays in the initial portfolio, Dpp is zero for no shifting. If all or

13See, for instance, Sharpe (1963, 1967, 1971) and Stone (1973).
14It is intuitive that minimizing the amount and distance of cross-portfolio shifting tends to
preserve the original within-portfolio forecast distribution including within-portfolio variances.
The substance of this approximation is to use portfolio rank-order distance as a substitute for actual
return forecast differences. Since we map each return forecast into a near uniform distribution on
the (0, 1) interval, we tend to ensure the validity of this approximation.
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part of a stock is shifted up or down by one, two, and three portfolios, the respective
values of Dps are 1, 4, and 8. Thus, reassignments of two or more portfolios up or
down the rank ordering are highly penalized.15

If FSs denotes the value of the forecast score for stock s, then the linear
approximation objective function above can be written in terms of assignment
variables as

Maximize ˆ Œ†sXPsFSs–†sX1sFSs� – .1–ˆ/
�
†p†sXpsDps

�
(8.3)

The mathematical assignment program can be solved for a range of trade-off
values by varying · from zero to 1. In the results reported in Sect. 8.8, the value of
the trade-off parameter · is 0.25. However, experience shows that the solutions are
robust to variation in ·. The reason for the robustness is that these two attributes of
statistical power are complementary objectives. Minimizing cross-fractile shifting
generally preserves most of the range as well as the distribution of return forecast
scores in the starting fractile portfolios.

8.5.4 Control Matching: The Equal Value Constraint for Each
Control Variable

Let Vs denote the security s value of a representative control variable. Let VTAR-
GET denote the target value of this representative control variable for all P portfolios
in the cross section. The representative control constraint can be expressed as

X

s
XpsVs D VTARGET p D 1; : : : ; P and every control variable (8.4)

8.5.5 Security Usage and Short Sales: Technical Constraints

We impose two generic data usage constraints. The first says that each security must
be fully assigned to one or more portfolios, i.e.,

X

p
Xps D 1 s D 1; : : : ; S (8.5)

15The changed difference in changed rank is actually a stronger restriction on changing portfolio
membership than the quadratic variance change it is approximating. Because the LP shifting
measure penalizes very large rank shifts even more than the quadratic, the LP approximation tends
to preclude large shifts in rank order even more than the quadratic. However, comparison of the LP
and quadratic solutions showed that the LP and quadratic solutions were generally close.
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The second security assignment constraint keeps the number of securities in each
matched portfolio the same as the number of securities in the corresponding fractile
of the starting rank-order partitioning of the distribution of V1. Let Fp denote the
number of securities in fractile p. Then this restriction is

X

s
Xps D Fp p D 1; : : : ; P (8.6)

The no short-sale restriction and the natural limitation that no security can be
used more than once require

0 � Xps � 1 s D 1; : : : ; S and p D 1; : : : ; P (8.7)

8.5.6 Synthesis of the Power Optimizing Reassignment
Program

Optimization arises in finding the particular reassignment that optimizes a trade-off
between preserving the widest possible range of well-ordered portfolio values of
forecasted return and also ensuring preservation of within-portfolio homogeneity of
forecasted return.

Given the sample of stocks with variable values for each stock in that time
period, once we pick a number of portfolios P in the cross section and select a
set of control variables, the transformation of the rank-ordered cross section into the
control-matched cross section is defined by the optimization program. The mapping
from the rank-ordered input cross section into the control-matched output cross
section is objective in the sense that the forecaster/researcher exercises no discretion
in how stocks are reassigned. The input cross section and the mathematical program
determine the output cross section.

The substance of the reassignment process is well understood by knowing input
and output. The input is a cross section of fractile portfolios. The rank-ordering
variable is the return forecast. The overall output is a cross section of fractile
portfolios that are matched on a specified set of controls variables. The mathematical
program finds an optimal reassignment of stocks that transforms the input rank-
ordered cross section into a new cross section that is matched on the portfolio
average values of each control variable.

The input values of the assignment variables are the relative weighting of each
stock in each portfolio in the cross section without any controls. The output values
of the assignment variables are the relative weighting of each stock in each portfolio
in the control-matched cross section.

The relative amount of each stock in each portfolio can be used to compute
portfolio average values of pertinent portfolio attributes. Of most concern is the
realized risky return for each portfolio. Given a time series of rank-ordered input
portfolios and a corresponding time series of control-matched output portfolios, it
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is straightforward to compute the average realized risky return for each portfolio
before and after controls and then to assess differences associated with the control
variables.

8.6 Forecast Model Overview

8.6.1 Selecting an Illustrative Forecast Model

To illustrate well the benefits of using controls to isolate forecast performance from
risk, tax, and other nonforecast impacts, a good illustrative forecast model should
have a statistically significant dependency of realized risky returns on the return
forecast. From the point of view of an illustration, it does not matter if the apparent
dependency of realized returns on the stock return forecast is true alpha performance
or is from risk, tax distortion, or other nonmodel return impact variables. In fact,
when it comes to illustrating forecast isolation methodology, it is actually good if
the cross-sectional return dependency is a mixture of effects from the return forecast
itself and from systematic risk variables, tax effects, and other nonmodel return
performance variables. In effect, to illustrate isolation methodology, it is actually
good to have a “dirty return dependency” in the sense that the return dependency
includes apparent performance from variables other than the forecast model itself.

The model selected to illustrate the benefits of the control methodology is an
eight-variable, fundamental value-focused, rolling horizon return forecast model
first published in Bloch, Guerard, Markowitz, Todd, and Xu (1993). We hereafter
refer to this return forecast model as the BGMTX return forecast model. In talking
about the generic approach of using a regression-estimated weighting of their eight
value ratios, we shall refer to the BGMTX forecast approach or BGMTX forecast
framework.

In addition to a very rigorous implementation in terms of only using data publicly
available well ahead of forming the forecast, BGMTX assessed performance
potential by using the model return forecast as the return input for a mean–variance
portfolio optimizer. The other inputs to the mean–variance optimization were rolling
horizon forecasts of security-level risk parameters.16 The mean–variance optimizer
transformed the rolling horizon return and risk forecasts into a time series of pre-
dicted mean–variance efficient portfolios in both Japan (first section, nonfinancial
Tokyo Stock Exchange common stocks, January 1975 to December 1990) and the
United States (the 1000 largest market-capitalized common stocks, November 1975
to December 1990). BGMTX reports that the mean–variance optimized portfolios

16For details on the mean–variance optimization used, see Markowitz (1959, 1987).
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significantly outperformed benchmark indices even after testing for both survivor
and backtest bias.17

8.6.2 Overview of the Illustrative Eight-Variable Forecast
Model18

The BGMTX return forecast model uses a weighted average of eight value ratios19:

EP D Œearnings per share� = Œprice per share� D earnings-price ratio
BP D Œbook value per share� = Œprice per share� D book-price ratio
CP D Œcash flow per share� = Œprice per share� D cash-price ratio
SP D Œnet sales per share� = Œprice per share� D sales-price ratio:

REP D relative earnings-price ratio D EP= Œmost recent five-year average value�

RBP D relative earnings-price ratio D BP= Œmost recent five-year average value�

RCP D relative earnings-price ratio D CP= Œmost recent five-year average value�

RSP D relative earnings-price ratio D SP= Œmost recent five-year average value�

The first four ratios are called current value ratios in a sense of being the most
recently reported values relative to the current price per share. Current value ratios
measure value in terms of attractiveness compared to other peer companies. For
instance, all other things being equal, a relatively high EP or BP ratio for a stock
means that the stock is relatively more value attractive than the peer stocks with
lower values for their EP and/or BP ratios.

The last four ratios defined above are relative value ratios. The “most recent five-
year average value” in the denominator of these four relative value ratios means the
five-year average of the ratio in the numerator. The four relative value ratios each

17Markowitz and Xu (1994) later published the data mining test for backtest bias. Their test allows
assessment of the expected difference between the best test model and an average of simulated
policies.
18BGMTX is a one-step direct forecast of stock returns. The more common return forecast
framework is a two-step return forecast in which an analyst predicts both a future value of a variable
such as earnings and an associated future value multiple for that variable such as a future price–
earnings ratio. These two predictions imply a prediction of future value. Under the assumption that
the current price will converge toward this predicted future value, there is an implied prediction of
a gain return. Given a prediction of future dividends, there is an implied stock return forecast.
For a thorough treatment of the two-step framework and extensive references to the two-step
return prediction literature, readers are referred to the CFA study guide by Stowe et al. (2007).
Because BGMTX is a direct one-step return prediction following a step-by-step determination of
a normalized weighting of current and relative value ratios, it is amenable to a repeatable backtest.
19The ratio BP is of course the book-to-market ratio. BP is defined here as the ratio of book value
per share to price per share. However, multiplying both numerator and denominator by the number
of outstanding shares gives the ratio of book value to market value.
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indicates relative attractiveness compared to a company’s own past values of the
four value ratios in the numerator. Thus, a stock is viewed as attractive not only
when it provides a relatively higher earnings’ yield than peer companies but also
when it provides a high earnings’ yield relative to its own past values. If a stock
has a high relative EP ratio relative to the stock of peer companies, then that stock
has had a greater relative decline in its price–earnings ratio and is thus a relatively
“out-of-favor” stock.

These two types of value ratios arise from two complementary ways that
fundamental value managers say they use value ratios, namely, (1) attractiveness
relative to peer companies and (2) attractiveness relative to a company’s own
past valuations. In this sense, the relative weighting of these eight value variables
can be thought of as a regression-based simulation of the type of fundamental
value analysis advocated in works such as Graham and Dodd (1934) and Williams
(1938).20

8.6.3 Variable Weighting: A Step-By-Step Implementation
Summary

Having identified eight ratio variables as potential return predictors, the forecast
modeling question is how to use these variables to predict future returns. An obvious
way to evaluate relative predictive value is to assess how well they explain recent
past returns. BGMTX uses regression to estimate the relative ability of these eight
variables to explain past returns. Let Rs denote the return on stock s in a sample of S
stocks. A linear regression equation to assess the relative explanatory power of the
eight ratio variables is

Rs D a0 C a1EPs C a2BPs C a3CPs C a4SPs C a5REPs

C a6RBPs C a7RCPs C a8RSPs C "s (8.8)

In the context of a rolling quarterly backtest of the potential benefit of using this
type of ratio-based stock return forecast to improve portfolio performance using a
mean––variance optimizer, BGMTX creates a time series of rolling one-quarter-
ahead return forecasts from the estimated regression coefficients from Eq. (8.8).

20Security analysis, Graham and Dodd (1934), is generally credited with establishing the idea of
value investing. Graham and Dodd influenced Williams (1938), who made particular reference to
their low P/E and net current approaches in The Theory of Investment Value. In turn, Williams
(1938) influenced Markowitz’s thoughts on return and risk as noted in Markowitz (1991). Over
the past 25 years, value-focused fundamental analysts and portfolio managers have expanded their
value measures from primarily price relative to earnings and price relative to book value to include
also price relative to cash flow and even price relative to sales. The choice of the eight fundamental
variables in BGMTX reflects this expansion in focus, especially the expansion to include cash and
sales ratios.
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They use four quarters of past coefficients estimates (four sets of quarterly estimates)
as the basis for a relative weighting of the eight value ratios. For each quarter-
ahead return forecast, BGMTX develops a relative weighting by first modifying the
coefficient estimates as described below to reflect significance and extreme values,
then averaging the modified coefficients from the past four quarters, and finally
normalizing the averaged coefficient values.

Stone and Guerard (2010) replicate the BGMTX forecast procedure: (1) to test
performance after the publication of the model in 1993, (2) to expand the time period
and sample size for the model performance potential evaluated, and (3) to resolve
questions of whether the apparent performance is at least in part a return for risk
or possibly a de facto yield tilt or possibly even from other return impact variables.
The question of a de facto risk tilt is especially pertinent because the Fama–French
return model includes BP as one of its three risk variables and BP is also one of the
BGMTX return forecast variables.

The illustration of the matched control methodology to isolate well forecast
performance from risk and other distortions is based on Stone and Guerard (2010).
As a post publication test of the original model, the only change that Stone and
Guerard (2010) made to the BGMTX return forecast procedure itself is to forecast
monthly returns in a rolling month-to-month framework rather than forecasting
quarterly returns in a rolling quarter-to-quarter framework.

Detailed below is the step-by-step forecast procedure summary as adapted in
Stone and Guerard (2010) for a rolling month-to-month forecast.

1. Regression coefficient estimation. With a two-month delay, estimate each month
for ten months back the regression coefficients fa0, a1, : : : , a8g of Eq. (8.8)
above.

2. Coefficient modification. Adjust/modify regression coefficients a1 to a8 in each
month to reflect significance and/or extreme values in two ways:

(a) Any coefficient with a t-value � 1.96 is set equal to zero.21

(b) Extreme positive values are truncated.

3. Normalized average. Average the last ten months adjusted coefficient values and
normalize these averages to determine relative weights that sum to one. Let wi

denote the normalized forecast coefficient for the ith value variable, i D 1, : : : ,8.
The fwig sum to one.

4. Update ratio variables. For each stock in the sample, update the eight value
ratios using the current stock price and financial statement variables as reported
in Compustat from the “most recent” (at least 2-month back) annual financial
statement and current stock prices.

5. Compute forecasted return. Use the normalized weights from step 3 and the
updated ratios from step 4 to obtain a month-ahead return forecast. If FRs denotes

21When regression coefficients with t-values � 1.96 are made equal to zero, there are no negative
coefficients regardless of significance.
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the forecasted return for stock s, then the formula for the forecasted return for
stock s is the weighted average of the eight value ratios, i.e.,

FRs D w1EPs C w2BPs C w3CPs C w4SPs C w5REPs C w6RBPs

C w7RCPs C w8RSPs (8.9)

The forecast formula in Eq. (8.9) is similar to the cross-sectional return regres-
sion except that:

1. The regression error term is dropped.
2. There is no intercept coefficient.
3. The regression coefficients in Eq. (8.8) are replaced by the 10-month average of

significance-adjusted, outlier-modified, and normalized past coefficient estimates
for each variable.

8.7 Control Variables

8.7.1 Control Constraints

To assess the performance potential return forecast, it is essential to eliminate any
impact from systematic risk, tax effects, or other nonmodel variables such as growth
and profitability that could conceivably be the source of apparent performance
value. Exhibit 8.1 lists a set of risk, tax, growth, and profitability variables that are
candidate control variables.

8.7.2 Risk Controls: ˇ, BP, and Size

The first three variables listed in Exhibit 8.1 are the three Fama–French risk
variables: beta, book–price, and size. The ex ante beta value used in this study was
based on a rolling update using three past years of monthly risky returns (return in
excess of the monthly T-bill rate in that month) relative to the risky return on the
CRSP index.

The book–price ratio BP is the book value per share divided by price per share.
The ex ante book–price value is computed using the book value from the most recent
financial statement lagged at least two months to allow for the financial statement
data to be public information. The price per share is the last closing price in the
prior month. Using BP as a risk variable is consistent with the Fama–French risk
modeling but conceptually different from the Graham–Dodd use of BP as one of
the value ratios that can indicate relative misvaluation of otherwise comparable
companies. Given that BP is one of the eight ratio variables in the BGMTX forecast
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model, the critical performance question is whether the contribution of BP is a
risk effect in disguise or whether it is an indicator of value potential beyond any
systematic risk. Rather than the either–or extremes of being either all risk ala
Fama–French or all performance value ala fundamental value-focused analysts, the
reality is almost certainly a combination of risk and value potential with the critical
performance question being the relative amount of risk and value beyond risk at
a given point in time. The relative amount of each effect in a cross section of
performance-ranked return predictions is almost certain to vary across time. For a
researcher trying to assess true value performance potential, resolving these relative
contributions is a difficult problem. As we discussed further in Sect. 8.8 illustrating
the imposition of risk isolating control variables, it is a very difficult problem to
resolve via the conventional multivariate regression assessment but more treatable
by the matched control methodology.

The size variable S is simply the market value of outstanding equity, the price
per share times the number of outstanding shares. The ex ante value used in this
study is based on the price per share at the close of trading in the prior month.
While the measurement of size has the least measurement error of the three risk
variables, the cross-sectional size distribution is perverse in the sense of having a
large number of relatively small cap companies and a small number of very large cap
companies. To produce a less extreme size distribution that mitigates the extremely
large weight given to the small number of very big companies, Fama–French and
other researchers have used the log of company size as the size measure in assessing
the ability of size to explain the cross section of stock returns. This rather arbitrary
nonlinear transformation mitigates but does not cure the heteroscedasticity problem.
As in a cross-sectional regression, it matters how size is measured when imposing
an equal-size constraint using the power optimizing transformation detailed in
Sect. 8.5. In particular, imposing a size control that makes every portfolio in the
cross section in a given month have the same average size can mean reassigning a
very large company to several portfolios in order to satisfy the equal average size
constraint. As in a cross-sectional regression, using the log of size mitigates but does
not really cure this size distortion. An alternative used in this study was the creation
of a relative size variable. “Relative size” is obtained in a given month by dividing
all companies by the size of the largest company. Thus, the relative size variable
puts all companies on the interval (0,1). The range in cross-sectional variance is
comparable to the range and cross-sectional variance for beta, financial leverage,
and growth and clearly less than the range and cross-sectional variance in other
control variables such as BP, EP, and DP.

8.7.3 Tax Controls: DP, EP, and FL

The ex ante dividend yield variable DP is an annualized value of the most recent
quarterly dividend per share at least 2-months back divided by the share price
at the end of the prior month. Because dividends change slowly, there is very
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little measurement error in using the ex ante dividend as a predictor of the future
dividend. As with BP, most of the uncertainty in DP arises from changes in the price
per share. For this reason, the cross-sectional correlation between BP and DP is
high.

The primary tax control is DP. With the dividend yield control, every portfolio
in the cross section will have the same portfolio average dividend yield. Hence, the
DP control means that every portfolio has the same ex ante expectation for ordinary
income. With the same dividend yield, the cross section of realized returns becomes
a cross section of realized capital gains. Any variation in the dividend–gain mix
over the cross section is a capital gain effect. If beta were also controlled, the ex
ante CAPM expectation is a flat cross section.

Given a normalized set of weights for the BGMTX return forecast, the higher
predicted returns tend to correspond to stocks with higher values of the four current
value ratios, BP, EP, CP, and SP. These are all correlated with dividend yield and
thus the concern that the apparent return performance may actually be a dividend
yield tilt in disguise. Thus, apparent before-tax performance would be significantly
reduced or eliminated if returns were put on an after-tax basis.

Adding a control for the earnings yield EP to the DP control tends to improve
the ability of the ex ante DP variable to be a good control for the dividend-gain
mix. When each portfolio in the cross section has the same average value of both
EP and DP, each portfolio has the same ex ante dividend payout ratio, i.e., the
same portfolio average value of the dividends–earnings ratio. To the extent that the
dividend payout ratio characterizes dividend policy, the combination of the EP and
DP controls together means that each portfolio in the cross section has the same
portfolio average dividend payout policy.

One further comment on the effect of the DP control alone and especially in
combination with the EP and FL controls pertains to the interaction with both size
and beta. Stocks having a high dividend yield and high earnings yield tend to be
larger companies with lower than average beta values. Hence, imposing the DP
control alone and especially the DP and EP controls together tends to move larger
and lower beta stocks to lower-ranked portfolios and vice a versa, to move smaller
and higher beta stocks to higher-ranked portfolios.

It is common to talk about a value/growth trade-off with the assumption being
that high value tends to mean lower growth and vice a versa. Given validity to
the value/growth assumption, value controls like BP, EP, and DP are also
de facto growth controls. Exhibit 8.1 lists two growth control variables: 5-year
past sales growth and sustainable growth. When used in addition to the risk
and tax controls, it is reasonable to assume that these two controls are simply
refining the already established growth control associated with the risk and tax
controls. This point is discussed further after illustrating the use of the risk and tax
controls.

The financial leverage control FL is the ex ante percentage of nonequity
financing. It is measured as one minus the book equity per dollar of total investment,
both values being from the most recent annual financial statement at least 2-months
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back. Aside from preferred stock, FL measures the percentage of total investment
provided by debt financing.

Financial leverage has been included with DP and EP as a tax control. Rather
than controlling for the dividend–gain mix, FL is designed to reflect the corporate
tax shield associated with debt financing and thus a corporate tax performance
impact associated with more return to shareholders and less to the government. Like
many controls, FL reflects more than just the tax shield of debt financing. Use of
debt involves an increase in both refinancing and interest rate risk. One source of
adverse changes in interest rates is a change in inflationary expectations. Hence, the
stock-specific FL control has an element of both company and macro risk control in
addition to reflecting any valuation effect of the corporate tax shield.

Another potentially important role for the FL control pertains to industry
exposure. There is considerable variation across industries in the relative use of
debt financing. Thus, controlling for financial leverage tends to be a de facto control
on the variation in industry mix across portfolios. A check on industry membership
over the uncontrolled cross section of forecast-ranked portfolios compared to cross
sections with the FL control imposed indicates a clear but less-than-perfect tendency
for the FL control to reduce well concentrations of some industries in subsegments
of the uncontrolled cross section.

8.8 Using Control Variables to Isolate Performance Potential

Section 8.8 uses the control variables defined in Sect. 8.7 and the return fore-
cast model summarized in Sect. 8.6 to provide a concrete illustration of the
power/efficiency benefits of the matched control methodology for a full sample
assessment of the performance potential of a stock return forecast. The purpose
here is not to establish value for the BGMTX forecast model per se but rather to use
an actual return forecast to illustrate the power/efficiency benefits of the matched
control methodology.

This illustration emphasizes the major design decisions that impact statistical
power and efficiency.

8.8.1 Alternatives to the Full Sample, Relative Rank-Ordering
Framework

From the viewpoint of having a high-power statistical assessment of the perfor-
mance potential of a stock return forecast, the most important decision is the
selection of the assessment framework. One alternative to the full sample relative
rank ordering advocated here is the use of the forecast to select a stock portfolio
that is then compared to a reference index benchmark. The BGMTX forecast
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evaluation was based on the ability of the return forecast along with a risk forecast
to generate a frontier of mean–variance optimized portfolios that outperformed a
reference index. One problem with this approach is ambiguity with respect to the
relative performance contribution of the return forecast versus the risk forecast
although good sensitivity analysis can reduce this ambiguity.22 The significant
power disadvantage is limiting the forecast evaluation to the selected stocks, i.e.,
the stock subsample that has the best expected risk-adjusted return. Not assessing
performance potential for the full sample means a loss of information and thus a
loss of statistical power.

For the management of active mutual funds and for hedge funds, typical use
of return and risk forecasts is not to generate a mean–variance efficient frontier
but rather to use a stock return forecast as input to an index–tilt portfolio selection
model that seeks to maximize the increase in expected return relative to a benchmark
index subject to constraints on tracking error and a maximum tilt away from tracking
error-related style variables such as beta, size, value/growth, industry, and country.23

For organizations operating in an index tilt environment, the standard backtest
performance potential assessment is to generate a time series of forecasts over a
pertinent past time period and then evaluate the average performance improvement
relative to the benchmark or possibly relative to another forecast or even just the
past performance of the fund. The comparative assessment of alternative forecast
selection approaches is often termed a “performance derby.”

While assessing return forecast benefits in the context of the portfolio tilt
environment in which the forecast is to be used is clearly an essential step in
evaluating the performance potential of a return forecast, such a backtest assessment
of constrained portfolio selection is a logical follow-on after first establishing how
well the forecast performs in a large sample backtest, at a minimum how well
the forecast performs in terms of ability to identify misvalued stocks across at
least all the stocks in the benchmark index plus any stocks that are candidates for
replacement of benchmark stocks.

There are two problems with skipping a full-sample, relative rank-ordering
performance assessment and only assessing benchmark tilt performance. As in the
case of evaluating a return forecast via mean–variance portfolio selection, the tilt to
a relatively small subset of the stocks in a benchmark index means loss of potential
sample information and thus loss of power. The typical benchmark tilt is almost
always a small departure from the benchmark, for instance, a 20 % tilt is generally
viewed as relatively large with significant tracking risk. Thus, for an S&P 500

22Michaud (1989, 1998) recognizes that uncertainty about both the return and risk forecasts and
other portfolio selection parameters is a source of risk/uncertainty in addition to the inherent
uncertainty risk of investment and has formalized a very sophisticated resampling simulation to
structure very thorough sensitivity analysis.
23See Grinold and Kahn (2000) for a thorough description of the MCI-Barra active tilt frameworks.
See Menchero, Korozov, and Shepard (2010) for an updated version of the MCI-Barra equity risk
modeling that includes both industry and country factors, a global equity risk factor, and additional
style factors for value, size, momentum, etc.
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benchmark, the performance of the portfolio is typically more than 80 % benchmark
and at most a 20 % tilt.24 The effective comparison sample is about 100 stocks either
predicted to have the best expected return relative to tracking error for overweighted
stocks or the worst expected return relative to tracking error for underweighted or
excluded stocks. By focusing on a small subset of the pertinent stocks that is
primarily the subset that is predicted to be the extreme best and worst stocks,
a benchmark tilt comparison excludes information on the ability to rank order
the rest of the pertinent stock universe. Compared to a full sample relative rank-
ordering assessment, just using a benchmark tilt assessment is a low power relatively
uninformative performance potential assessment.

The assertion of being uninformative pertains especially to the second problem
with using a benchmark tilt assessment to evaluate a stock return forecast, namely,
mixing any forecast performance value with the effect of predictions of tracking
error and of style alignment/misalignment. Mixing the effect of a return forecast
with tracking error predictions and style and industry alignment/misalignment
obfuscates information about the forecast itself. While extensive statistical and
sensitivity analysis can help separate forecast performance from other factors,25

the clear best solution to having a high-power assessment of forecast performance
potential is to isolate completely return performance from all other return impact
variables. The primary function of the matched control embellishment of the
relative rank ordering is to ensure a well-isolated return forecast. Use of the power
optimizing reassignment programs like that formulated in Sect. 8.5 ensures that
power is optimized.

Within the full sample, relative rank-ordering framework, there are alternatives to
the power optimizing matched control methodology advocated here. The most com-
mon is to use multivariate regression to explain realized returns by a combination
of the return forecast and other known return impact variables such as the control
candidates developed in Sect. 8.7. Another alternative is to use an endogenous
APT to remove all statistically identifiable systematic variation from the return as
illustrated in Guerard, Gültekin, and Stone (1997). The merits of matched controls
compared to these two alternatives are addressed later in the context of illustrating
and evaluating the matched control methodology.

24The magnitude of a tilt is defined as the absolute value of the difference in the relative weighting
of stocks in the benchmark and the tilt portfolio. For instance, if a stock with a weight of 0.5 % is
increased to 0.7 %, the tilt change is 0.2 %. If a stock with a relative weight of 0.15 % is excluded
completely, the tilt change is 0.15 % to the tilt. The overall tilt percentage is the sum of all the tilt
change percentages.
25The resampling simulation approach set forth in Michaud (1989, 1998) is again pertinent here.
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8.8.2 Stepwise Imposition of Control Constraints: Procedure
Overview

In a control-based assessment of how apparent forecast performance value is
distorted by interaction with control variables, the starting point is a collection of
rank-ordered return forecasts with no controls imposed. Inputting the no-control
cross section to the mathematical assignment program for a given set of control
variables produces an output cross section in which each portfolio is now matched
on the specified set of controls. Comparing before and after cross sections and noting
any changes in the cross section enable a forecaster/researcher to assess to what
extent apparent performance potential has been distorted by one or more of the
control variables. Or, in the case of no significant change, a forecaster/researcher
knows that the given set of controls is not distorting apparent performance potential.

Adding controls in a stepwise fashion enables a researcher to explore how
the initial rank-ordered cross section changes by systematically removing the
effect of a control variable or combination of control variables. This stepwise
exploration of how the return dependency changes with changes in combinations
of control variables is generally very informative. Because the primary concern
here is correcting apparent performance for distortion from risk and tax effects,
the stepwise assessment of control impacts focus primarily on cross sections for six
sets of controls summarized below:

1. No controls: the initial rank ordering
2. Individual risk controls: beta, book-to-market, and size as individual controls
3. Three risk controls together: beta, book-to-market, and size together
4. Three tax controls together: the earnings–price ratio, the dividend–price ratio,

and financial leverage together as a combination control for the dividend–gain
mix and other tax effects

5. The combination of risk and tax controls: the three risk and the three tax controls
together, six control variables in all.

After in-depth assessment of the effect of risk and tax controls, the impact of
growth and profitability controls is assessed. Finally, by removing the effect of the
four value ratios BP, EP, CP, and SP, we assess the relative contribution of the four
value ratios and the four relative value ratios to forecast performance.

8.8.3 Study Sample and Time Frame

The backtest study period is January 1967 through December 2004. Developing
a return forecast for every stock in the backtest sample for January 1967 through
December 2004 produces a time series of 456 monthly return forecast cross
sections.
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The data sample is all nonfinancial common stocks in the intersection of CRSP
and Compustat with a book value in excess of $20 million that are included in CRSP
for at least three years with monthly return data necessary to compute a 3-year
rolling beta and in Compustat for at least five years with all necessary financial
statement data. The table below summarizes by year the number of companies in
the 1967–2004 backtest study sample.

Year #Stocks Year #Stocks

1967 198 1986 1660
1968 324 1987 1632
1969 422 1988 1580
1970 564 1989 1621
1971 901 1990 1644
1972 966 1991 1671
1973 1058 1992 1742
1974 1108 1993 1845
1975 1037 1994 1921
1976 1329 1995 2003
1977 1495 1996 2057
1978 1651 1997 2193
1979 1701 1998 2238
1980 1703 1999 2331
1981 1757 2000 2284
1982 1734 2001 2256
1983 1698 2002 2305
1984 1714 2003 2318
1985 1676 2004 2238

Because of the sparseness of the Compustat database in the 1964–1966 5-year
start-up period required for control variables such as 5-year sales growth, there are
only 198 companies in January 1967 and only 324 companies in January 1968.
The table shows that the forecast sample size grows rapidly. From 1971 on, there
are more than 900 companies in the forecast sample growing to more than 2000
companies by 1995.

The fact that the sample size shows little growth from the 2003 stocks in January
1995 to the 2238 stocks in January 2004 indicates that the large number of new
IPOs after the mid-1990s is not producing an increase in the number of sample
companies. The fact that our sample does not exhibit the same growth as the cross
time increase in publicly listed companies shows that the combination of requiring
5 years of past financial statement data plus the minimum book value restrictions
means that we are studying primarily larger more mature companies.
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8.8.4 Key Efficiency/Power Design Decision: The Number
of Fractile Portfolios

In panel studies using rank-ordered cross sections, many return dependency assess-
ments rank stocks into deciles and in some studies only quintiles. However, in each
month of 1967–2004, stocks were ranked into 30 fractile portfolios. As already
discussed, having more fractile portfolios pertains to the power/efficiency trade-
off. Most of the efficiency benefits of measurement error and omitted variable
diversification are accomplished with 20 or fewer stocks in a fractile.

It is pertinent to expand on the greater power benefits of having more fractile
portfolios. First, grouping stocks into a fractile portfolio and using the portfolio-
weighted average to represent the portfolio value of variables tend to average away
information while averaging away measurement error, especially in the tails of the
distribution. Second, cross-sectional plots like those in Exhibits 8.2, 8.3, and 8.4 of
key performance indicators such as average realized return and realized standard
deviation are more useful when there is a high density of data points. Third, when
assessing the cross-sectional dependence of realized returns and realized standard
deviation cross sections on the return forecast, both efficiency and power are
increased from more observations. In particular, regression estimation and related
hypothesis testing have much greater statistical power when there are at least 20
observations. Fourth, adjacent portfolios in a control-matched return cross section
can be merged together and preserve the control matching without having to resolve
the control matching optimization program. For instance, combining adjacent three
tuples in the 30-portfolio cross section produces a cross section of matched deciles
as done in Sect. 8.8.9. Thus, it is methodologically better to error on the side of
too many portfolios in a cross section rather than too few.

8.8.5 The Impact of Individual Risk Controls

Exhibits 8.6 shows cross-sectional plots of average realized return and realized
standard deviation versus portfolio rank for no controls and for just a beta control
for risk. Exhibit 8.3 presents return and risk cross sections for just a size control and
just a BP control.

Plot 2.1 is a cross section showing average realized return for the rank-ordered
cross section with no controls. If there were no forecast information in the return
prediction, the plot would be a random scatter about the overall average return. In
contrast to a random scatter, Plot 2.1 shows an overall tendency for realized return
to increase with an increase in predicted return.

The rate of increase is clearly nonlinear. For portfolios 1–10, the cross section
is noisy and relatively flat. For portfolios 10–20, the realized return increases at a
steady rate. For portfolios 20–30, the average realized return tends to increase at an
accelerating rate with the largest increases being for portfolios 28, 29, and 30.
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Exhibit 8.2 Risky returns, SD, and Sharpe ratio vs. P# (portfolio #): no controls compared to
only a beta control

The realized return range is large and economically significant. The annualized
realized return difference between portfolios 30 and 1 is 8.8 %. The difference
between the realized return for the upper quintile (average for the top six portfolios)
and the realized return on the bottom quintile (average return for the lowest six
portfolios) is 6.5 %.

In effect, before imposing controls, Plot 2.1 indicates that the return forecast has
limited ability to rank order return performance for the bottom third of the sample
other than identifying the bottom third as inferior to the rest of the sample. For
portfolios 10–30, the return forecast tends to rank order on average portfolio-level
realized risky return. The relative rank-ordering ability is especially good for the top
third of the sample, portfolios 21–30. The apparent ability to predict realized risky
return improves with portfolio number and seems especially good for the top two
portfolios.

The vertical axis in Plot 2.1 is average realized risky return. There is no
correction for possible variation in risk. Before imposing controls for risk or
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otherwise correcting for any portfolio-to-portfolio variation in risk, basic insight
on risk variation is provided by measuring the cross-time variation in realized risk.
Plot 2.2 shows the cross-sectional dependence of realized standard deviation on
portfolio number for the case of no controls. For each portfolio number, the realized
standard deviation is computed in accord with the definition by taking the square
root of the mean squared deviation of each annualized monthly return from the
long-run average return. The standard deviation cross section in Plot 2.2 is not a
random scatter. It is also not the steady increase implied by the assumption that
higher predicted returns arises from selecting progressively higher risk stocks. The
very steady portfolio-to-portfolio variation pattern is not only nonlinear but also
nonmonotonic. If an increase in predicted return were associated with a systematic
increase in realized standard deviation risk from either systematic or unsystematic
sources, the cross section of realized standard deviations should be increasing with
an increase in predicted return. Any interaction between risk and predicted return is
more complex than a simple linear association.

The SD cross section in Plot 2.2 is much smoother than the return cross section
return in Plot 2.1. Compared to the 8.8 % return range, the SD cross section has
a smaller range of just 5.19 %.26 Most of this range is from the relatively high
realized standard deviations for the very low return forecasts and the very high-
return forecasts. For the three inner quintiles, portfolio 7 through portfolio 24, all
realized standard deviations are within a range of just 0.70 %.

The very smooth, nonmonotonic SD cross section raises questions. One impli-
cation is that the very high and the very low return forecasts have greater realized
SD risk. One question is whether the greater realized standard deviation risk arises
from greater systematic risk or from unsystematic uncertainty or even possibly
greater forecast uncertainty for the extreme forecasts. Another related question is
whether the higher returns in the upper quintile justify the greater SD. From the
viewpoint of both mean–variance efficiency and tracking error control, whether
the source is systematic, unsystematic, or greater forecast error is a very important
information. Imposing risk control first for beta, size, and BP individually and then
in combination can help answer these questions.

8.8.6 CAPM Performance Assessments

Plot 2.4 is a cross section showing average realized return for the rank-ordered
cross section with a control for just beta risk but with no other controls imposed.
Imposing the same beta control means that every portfolio in the beta-controlled
cross section in Plot 2.4 has the same population average value of beta. Since the

26See Appendix 8.1 for the data to compute the ranges of realized risky return and standard
deviations. Appendices 8.2 to 8.6 provide pertinent data for each of the 30 fractile portfolios for
the cross sections with other control variables.
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rolling three-year risky return beta was calculated relative to the sample average, the
ex ante sample average beta value is one in every month.27

The textbook Treynor Performance Measure is realized risky return divided by
the beta of the portfolio. Thus, with all portfolios having a beta of one, the average
realized return cross section in Plot 2.4 is also a Treynor performance cross
section.

Compared to the no-control cross sections, the beta controls tend to smooth
somewhat the return cross section but with very little systematic change. In contrast,
the beta controls smooth the SD cross section and significantly reduce the range. The
overall range is reduced from 5.19 % with no controls to 4.01 %. More significantly,
the SD range for the 18 interquartile portfolios is reduced from 0.70 % for no
controls to just 0.55 % with beta controls. Given the smoothing and especially the
reduced range, the beta control seems to do a good job of correcting portfolios in
the three inner quartiles for variation in realized standard deviation risk.

The fact that beta controls reduce but do not eliminate the greater standard
deviations for both the very high and very low forecasts is evidence that some of the
SD increase for these portfolios is beta related. However, for the highest predicted
returns, there seems to be more to realized SD uncertainty than just beta.

The widely used CAPM alpha is the realized risky return less beta times the
average risky return on the market index portfolio. When beta is one for every
portfolio, we have

’p DRp–“p .risky index return/!’p DRp– .risky index return/ ; pD1; : : : ; P:

When beta is the same for every portfolio in the cross section in Plot 2.4, the CAPM
alpha is just an additive constant subtracted from the realized risky returns of each
portfolio in the cross section. Thus, to within an additive constant for the average
realized risky return on the market index portfolio, the average realized return
cross section in Plot 2.4 with all portfolios having a beta of one is also a CAPM
alpha performance cross section.

The third standard performance measure is the Sharpe ratio. Like the Treynor
ratio, the Sharpe ratio assesses risky return relative to the associated risk. Rather
than risky return per unit of beta risk, the Sharpe ratio is risky return per unit of
standard deviation risk. Plots 2.3 and 2.6 show the cross section of realized Sharpe
ratios. As expected given the wide range of realized risky returns and relatively
smaller range of realized standard deviations, the overall trend for the Sharpe ratio
without any controls and especially with the beta control is a tendency to increase
with an increase in predicted return. Given the smoothing from the beta control
and especially given the reduced range for realized standard deviations, the beta-
controlled Sharpe ratios are smoother and more nearly monotonically increasing
than the uncontrolled cross section.

27Relative to the CRSP index, stocks in the backtest sample had a lower beta, generally about 10 %
lower. While the backtest sample excluded generally low beta financial stocks, it also tilted toward
larger, more mature companies because of the requirement of inclusion in both Compustat and
CRSP for at least five years. This maturity tilt is the reason for the somewhat lower beta values for
the backtest sample than for the overall CRSP sample.
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Compared to the Treynor and the CAPM alpha, the relatively large realized
standard deviations for the highest predicted returns mean that the beta-controlled
Sharpe ratio performance assessment is less favorable for the highest predicted
returns than either the Treynor or the CAPM alpha.

8.8.7 The Impact of Size and BP Risk Controls

Afterconsidering the CAPM beta-controlled performance, the next logical step is to
evaluate the impact of the two remaining Fama–French risk variables—size and BP.
Assessing the risk impact of BP is especially pertinent since it is one of the eight
predictor variables in the BGMTX return forecast.

Plots 3.1–3.3 in Exhibit 8.3 show the cross sections of realized return, realized
standard deviations, and realized Sharpe ratios when a size control is imposed.
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Exhibit 8.3 Risky return, SD, and Sharpe ratio vs. P# (portfolio #) for a size control only and a
BP control only
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Contrary to what one expects from the tendency of size to be negatively correlated
with the four value ratios BP, EP, CP, and SP, the imposition of the size control alone
has very little impact relative to the uncontrolled cross sections other than a slight
smoothing of each cross section and a modest reduction in the realized return for
the highest return forecasts.

Plots 3.4–3.6 in Exhibit 8.3 show the cross sections with just a control for BP.
Despite the fact that BP is one of the eight variables in the return forecast model,
eliminating any impact of BP on the cross sections has a relatively modest impact
on the range of realized returns.

Imposing just the BP control tends to smooth the three cross sections, especially
for portfolios ten and higher. Consistent with being a risk variable, imposing just the
BP control reduces the range of realized standard deviations.

8.8.8 Imposition of Combinations of Risk and Tax Controls

Exhibits 8.4 and 8.5 repeat plots of the return cross section and SD cross section for
no controls and then show the return and SD cross sections, respectively, for three
key combinations of controls:

1. The Fama–French risk controls: beta, size, and BP
2. Three tax controls: DP, EP, and FL
3. The combination of the three Fama–French risk controls and the three tax

controls

4-1. Risky Returns vs P#:  No Controls

0.00

5.00

10.00

15.00

20.00

25.00

0 5 10 15 20 25 30

4-2.   Risky Returns vs P#:  Risk Controls Only       

0.00

5.00

10.00

15.00

20.00

25.00

0 5 10 15 20 25 30

4-3. Risky Returns vs P#:  Tax Controls Only 

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

0 5 10 15 20 25 30

4-4. Risky Returns vs P#:  Tax & Risk Controls

0.00

5.00

10.00

15.00

20.00

25.00

0 5 10 15 20 25 30

Exhibit 8.4 Risky returns vs. portfolio number: risk only, tax only, and both risk and tax controls
together
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Plot 4.2 of Exhibit 8.4 summarizes the realized return cross section when all
three Fama–French risk controls, beta, size, and BP, are imposed together. Recall
that making these three variables into control variables means that the transformed
cross section has shifted securities so that each portfolio in the cross section has the
same portfolio average value of each of these three variables. There is no portfolio-
to-portfolio variation in the value of beta, size, or the book–price ratio. Thus, in
each month, these three variables will have the same contribution to portfolio return.
Realized risky return is now well-isolated from any differential impact from any of
these three risk variables. The portfolio-to-portfolio variation in return must arise
from the forecast variables other than the now-controlled book–price ratio, possibly
taxes, or other return impact variables but not from beta, size, or BP.

Comparing Plots 4.1 and 4.2 shows a similar range and pattern but with much
less portfolio-to-portfolio variation in average realized return. The net effect of the
three risk controls is to smooth the curve without changing the overall nonlinear
pattern or the range of realized risky returns. Moreover, the smoothing effect makes
the nonlinearity much more pronounced. For the no-control plot and especially risk
control plot, the cross section of average realized returns is flat to slightly declining
for portfolios 1–15. For portfolio 15 on, the cross section has a steady monotonic
increase with the rate of increase being the greatest for the top three portfolios.

Plot 4.3 of Exhibit 8.4 summarizes the realized return cross section with three tax
controls: EP, DP, and FL. Making each portfolio in the cross section have the same
average value of the dividend price ratio by itself tends to ensure that the percentage
of return realized as dividends is the same as the percentage of return realized as
capital gains. When both EP and DP are the same in every portfolio, this amounts to
each portfolio having the same dividend payout ratio, which is an additional control
on dividend policy. Financial leverage has been included as a tax control to reflect
the tax deductibility of corporate interest payments. The combination of having
the same earnings price ratio and therefore almost the same average earnings for
each of the portfolios plus the same percentage of debt means roughly the same
average percentage of earnings are shielded from taxes. Financial leverage also
tends to reflect both company debt capacity and exposure to interest rate risk and
may reflect some performance and risk beyond the three control variables that we
have characterized as “risk controls.”

Comparing Plot 4.3 with Plots 4.1 and 4.2 indicates significant changes in the
cross section of realized returns compared to no controls and especially compared
to the cross section with all three risk controls together. The largest changes are for
portfolios 1–15. Realized returns are reduced on average and rank-ordered much
better for portfolios 1–15 than for the plot for no controls or also for all three risk
controls together. The overall monotonic increase is now much steadier and more
nearly linear. Tax effects clearly exhibit very significant systematic variation
over the cross section of forecast rank-ordered portfolios compared to both
the uncontrolled and the risk-controlled cross sections!

Plot 4.4with both risk and tax controls is similar to Plot 4.3. Adding risk controls
to the tax controls does not significantly change the cross-sectional return plot.
Having controls on both DP and “ together for the combination of risk and tax
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Exhibit 8.5 Standard deviation vs. portfolio number: risk only, tax only, and both risk and tax
controls together

controls tends to ensure even more completely that the percentage of returns realized
as dividends and as capital gains is the same over the cross section.28

Exhibit 8.5 contains plots of realized standard deviation versus portfolio number
for no controls, for all three risk controls together, for just the three tax controls
together without any risk controls, and then for all three risk and tax controls
together. All four plots are nonlinear and nonmonotonic. Plot 5.1 with no controls
has a range of realized standard deviation values from a low of about 5.5 % in the

28It is easy to check how well DP alone and DP and “ in combination actually control for cross-
sectional variation in the dividend–gain mix. For the forecast rank ordering in this study, in all
time periods of 5 years or longer after 1972, the DP control alone does a good job of controlling
for cross-sectional variation in the ex post dividend–gain mix. The term “good job” means that
the average ex post dividend–gain ratio in each portfolio is very close to the sample average
with no systematic variation over the cross section. Controlling for DP and EP together improves
the control for variation in the dividend–gain mix by eliminating portfolio-to-portfolio variation
and making most portfolios very close to the average. Controlling for DP and “ in combination
improves the control since high beta tends to be lower dividend payout. Likewise controlling for
DP and size in combination improves the control for the dividend–gain mix for similar reasons,
namely, the fact that small size tends to be higher beta and often zero or token dividend payout.
Thus, the combination of tax controls and risk controls together improves on the tax controls alone
in terms of ensuring very little portfolio-to-portfolio variation in the dividend–gain mix, especially
for all time periods after 1972. The main caveat is slighter greater variation about the average
dividend–gain mix for the three lowest-ranked and the three highest-ranked portfolios. This greater
variation about the mean for the low-ranked and high-ranked portfolios is consistent with the much
greater realized standard deviation for these portfolios as shown in Exhibit 8.5 as well as the much
greater positive skewness for the three highest-ranked portfolios.
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middle of the cross section to a high of 11.5 % for portfolio 30, a high-low range of
6 %. The portfolio-to-portfolio changes are remarkably smooth. After portfolio 2,
realized standard deviations first smoothly decrease toward the middle of the cross
section and then smoothly increase at an accelerating rate with the highest realized
standard deviation occurring for portfolio 30.

As expected, adding the three risk controls in Plot 5.2 of Exhibit 8.5 tends to
reduce realized risk variation as reflected in the reduced range of realized standard
deviations from 6 % to less than 3.5 %. Moreover, realized standard deviation varies
by no more than 1 % from portfolio 4 to portfolio 20. Most of the increase in realized
standard deviation at the low and high end of the cross section is attributable to
skewness, negative skewness for the low end, and significant positive skewness for
the high end.

Plot 5.3 for tax controls only is similar to Plot 5.2 for just risk controls except
for slightly higher realized standard deviations at the low and high extremes and
a slightly greater asymmetry. The fact that both risk and tax controls have similar
effects in terms of controlling for realized standard deviation risk is surprising. It
suggests risk control impacts from some combination of the dividend–gain mix and
possibly financial leverage risk. Plot 5.4 with both risk and tax controls together
supports this conjecture of risk control benefit from the three tax controls beyond
the risk control provided by beta, book–price, and size. For portfolio 1–21, the cross
section of realized standard deviations varies by just a little more than 1 %. For
these 21 portfolios, the combination of the conventional risk variables plus the tax
controls does an excellent job of controlling for realized risk as measured by realized
standard deviation.

As indicated by the skewness data in the Table in Appendix 8.6, the increase
in realized standard deviation in Plot 5.4 is well explained by the corresponding
increase in significantly positive realized skewness for the highest return portfo-
lios.29

Exhibit 8.6 shows cross-sectional plots of the Sharpe ratio for the four control
sets. As a synthesis of the respective return and standard deviation plots, they show
that the overall increase in returns is outweighed by the very modest increase in
realized standard deviations. Hence, the plots in Exhibit 8.6 indicate significant
performance potential for the basic BGMTX return forecast framework, with the
most pertinent Sharpe ratio cross section being Plot 6.4 since it eliminates distortion
from both risk and tax effects.

29A plot of realized semi-standard deviation for the case of all risk and all tax controls together
is flat for the top 25 portfolios in the cross section, strong support for the assertion that the
greater standard deviation for the top four portfolios is primarily a positive skewness effect and
not downside uncertainty.
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The primary purpose of this control matching example is to illustrate the benefits
of using matched controls in assessing forecast performance potential rather than to
establish value to the eight-variable BGMTX forecast model.30

8.8.9 Stepwise Imposition of Risk and Tax Controls:
High-Minus-Low Differences

Exhibit 8.7 summarizes high-minus-low returns for major constraint sets. The first
column names the constraint set. In addition to the risk and tax controls used in
looking at the impact of risk and taxes on the cross-sectional plots, Exhibit 8.6 lists
a more detailed stepwise imposition of control matching constraints. In particular, it
adds to the risk and tax controls additional controls for growth and profitability.

The next three columns in Exhibit 8.7 give high-minus-low returns. For 30
fractile portfolios in column 2, this high-minus-low value is the long-run average
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Exhibit 8.6 Sharpe ratio vs. portfolio #: risk only, tax only, and both risk and tax controls together

30Forecast value for mean–variance portfolio selection was established in BGMTX for 1978–1990.
Guerard, Gultekin, and Stone (1997) added to the evidence of forecast value for the return forecast
itself by using an endogenous APT to remove all explainable systematic return. Others have added
both growth and momentum to show performance value well after the 1993 publication time.
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return on portfolio 30 (the fractile portfolio with the highest forecast score) less the
long-run average return on portfolio 1 (the fractile with the lowest forecast score).
Column 3 is the average return for the two highest fractiles minus the average return
for the two lowest fractiles. Column 4 for deciles31 is the average of the top three
fractiles minus the average of the bottom three fractiles. Since all portfolios in each
cross section are matched to the ex ante values of the listed factor controls, the
high-minus-low values are the long-run realized returns on a factor-neutral
arbitrage portfolio, i.e., a portfolio that is long in one or more of the top 30
fractile portfolios and short in the corresponding low score portfolios. It is factor
neutral in the ex ante values of each of the imposed control variables because each of
the portfolios in each cross section has been matched to the sample average value of

CONTROL VARIABLES 30-�les Deciles Quin�les

No Constraints  0.088 0.074 0.065

β(Beta) 0.121 0.091 0.066

S(Size) 0.086 0.075 0.064

BP(Book-to-Market ) 0.076 0.068 0.055

β, S, BP 0.087 0.079 0.056

FL, EP, DP 0.196 0.176 0.137

β, S, BP, FL, EP, DP 0.211 0.165 0.128

β, S, DP, FL, Sag5, Sug3 0.239 0.187 0.147

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE 0.267 0.193 0.143

β, S, BP, FL, EP, DP, Sag5, Sug3, ROI 0.250 0.190 0.143

β, S, BP, FL, EP, DP, Sag5, Sug3, SI 0.254 0.194 0.143

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE, SI 0.276 0.198 0.145

β,S,BP,FL,EP,DP,SAG5,SUG3,ROE,SI,CP,SP 0.191 0.142 0.111

Notes:

1. For 30-tiles, the high-minus-low values for each control set are computed by taking the difference
between the average realized return for portfolio 30 and for portfolio 1.

2. For deciles, the high-minus-low value is the difference between the average realized returns for the
top 3 portfolios minus the average realized return for the bottom 3 portfolios.

3. For quintiles, the high-minus-low value is the difference between the average realized return in the
top six portfolios minus the average realized return for the bottom six portfolios.

Exhibit 8.7 High-minus-low values for 1968–2004 average returns: how imposing controls
changes the extreme high and low returns

31With 30 fractile portfolios in the cross sections of conditional return response observations, the
difference for the top three returns combined and the bottom three portfolios combined represents
a high-minus-low return for the top and bottom deciles of the cross section.
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the imposed controls. Therefore, a long–short combination of any two portfolios
has zero ex ante exposure to the imposed controls.

The high-minus-low values are the annualized average of 458 monthly values.
Thus, they indicate the economic significance of the composite value score before
any transaction costs for a naive factor-neutral portfolio strategy.

The term “naïve” refers to the fact that these portfolios are formed on the
basis of return forecast data alone without using any information about vari-
ances, covariances, or higher moments such as skewness. Given that past values
of both variance and covariance are fairly good predictions of month-ahead
values, use of the value-focused return scores with mean–variance optimiza-
tion should always produce superior market-neutral hedge portfolios in terms
of Sharpe ratios. The Sharpe ratios reported for these three market-neutral
portfolios are lower bounds on the mean–variance optimized factor-neutral
portfolios.

The high-minus-low ranges and associated Sharpe ratios both exhibit a strong
dependency on the imposed controls. The return cross section with no controls has
a range of 8.8%, the Fama-French three factor control set has a range of 8.7%. In
contrast to the is very small change from imposing the three risk controls, imposing
the three tax controls results in a high-minus-low range of 19.6%. Imposing the
three risk controls and the three tax controls together further increases the 30-fractile
high-minus-low range to 21.1%.

Adding growth controls increases the hml to more than 24 %, triples the range for
the unranked cross section, and more than doubles the range when the only control
variables are the conventional Fama–French three-factor risk instruments. Adding
sales intensity and profitability controls further increases the range and improves the
Sharpe ratios.

8.8.10 Estimates of the Dependence of the Return and SD
Cross Sections on the Return Forecast

Exhibits 8.8, 8.9, and 8.10 summarize regression tests of the ability of the return
forecast score to explain the long-run realized cross sections of average returns,
Sharpe ratios, standard deviations, and skewness coefficients.

For the stepwise imposition of a series of control constraints, the first table in
Exhibit 8.8 summarizes linear regressions of the long-run 456 month average value
of realized risky return on return forecast score for a series of progressively more
complete sets of control variables.
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Rp = C0 + C1(FSp) + εpControl Variables   

slope t R2 p-value
No Constraints  .079 7.23 .651 <.0001
β(Beta) .086 7.47 .666 <.0001
S(Size) .080 7.91 .691 <.0001
BP(Book-to-Market ) .071 7.77 .683 <.0001
β, S, BP .079 6.44 .597 <.0001
FL, EP, DP .181 17.81 .919 <.0001
β, S, BP, FL, EP, DP .192 18.97 .928 <.0001
β, S, DP, FL, Sag5, Sug3 .206 16.4 .906 <.0001
β, S, BP, FL, EP, DP, Sag5, Sug3, ROE .217 14.57 .884 <.0001
β, S, BP, FL, EP, DP, Sag5, Sug3, ROI .215 16.44 .906 <.0001
β, S, BP, FL, EP, DP, Sag5, Sug3, SI .216 15.66 .898 <.0001
β, S, BP, FL, EP, DP, Sag5, Sug3, ROE, SI .220 14.24 .879 <.0001
β,S,BP,FL,EP,DP,SAG5,SUG3,ROE,SI,CP,SP .186 16.56 .907 <.0001

Exhibit 8.8 The changing ability of forecast score to explain realized returns and Sharpe ratios

All of the regressions in Exhibit 8.8 have very high R-squared values, large and
significant t-values, and p-values less than 0.0001. Given that all of the regressions
have p-values less than 0.0001, the change in the t-values for the coefficient on return
forecast score and the change in R-squared are the best indicators of the effect on the
cross section of imposing additional control constraints, especially in terms of the
extent to which we are obtaining a return forecast dependency that is better isolated
from the effect of nonforecast variables. Thus, we focus most of our attention here
on the changes in the t-values and R-squared values as we impose different sets of
control constraints.

The cross section of realized returns with no controls and with the three risk
controls imposed individually and in combination results in very modest changes
in both the estimated slope and the associated t-value. For instance, the imposition
of the three risk controls together produces a t-value on the slope coefficient of
0.597 with an associated t-value of 6.44 compared to the no-control case of a slope
coefficient of 0.079 and a t-value of 7.23.

The most significant structural feature is the jump in R-squared values and t-
values when we impose the tax controls alone or impose the tax controls along with
the three systematic risk factors. Imposing the three tax controls alone produces
a t-value of 17.81. The control set with both systematic risk and tax controls
has a t-value of 18.97, a clearly significant increase in the slope estimate and its
significance.

These results are a surprise! First, the negligible impact of the three Fama–French
risk controls on the long-run cross section of realized returns means that apparent
return potential is not a systematic risk effect in disguise, at least in terms of the three
Fama–French risk variables. The major surprise is the large and very significant tax
effect. Most surprising is the direction of the tax effect on the assessment of
performance potential. In noting the issue of distortion from regularly recurring
systematic tax effects, the concern was that the very high correlation of the four
current value ratios with dividend yield could mean that apparent forecast potential
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could be a dividend yield tilt in disguise rather than finding truly misvalued stocks
that would produce superior returns as the market recognized the undervaluation.

Also surprising is the fact that imposing the combination of risk and tax controls
means that all portfolios in the cross section have the same portfolio average values
of BP and EP, two of the eight variables weighted in the return forecast prediction.
In effect, any contribution of these two variables to realized return performance is
suppressed for the combination of risk and tax controls. The apparently large and
significant performance is from the other six variables. It is pertinent to note that
a benefit of the control approach is a straightforward assessment of the relative
contribution of one or more of the forecast variables in a multivariate forecasting
model. Contrary to much empirical evidence on the value of BP and EP for explain-
ing the cross section of realized returns, it appears that for the cross section based
on the BGMTX forecast model, neither BP nor EP are an important part of the very
significant performance potential indicated by the plots, the high-minus-low returns,
and especially the very significant slope for the linear regression fit. This analysis
indicates that most of the forecast potential must arise from the other six variables.

In order to gain more insight on forecast potential, it is useful to add to the risk
and tax controls additional controls for growth and profitability and also to assess the
impact on the return cross section of suppressing other model variables. The next
control sets summarized in Exhibit 8.8 add to the Fama–French risk controls and
the set of tax controls two growth controls (5-year sales growth, 3-year sustainable
growth) plus a profitability control (either ROE, ROI, or sales intensity SI). In all
three cases the estimated slope coefficient increases to more than 0.20, but both
the t-value and R2 decrease slightly. The increased slope coefficient with poorer fit
makes sense if one also considers the high-minus-low data in Exhibit 8.7. The effect
of adding growth and profitability controls is to increase primarily the very high
returns and to decrease the very low returns and to thereby increase the departure
from linearity. Hence, there is more range and more performance potential for the
very high predicted returns but a departure from linearity and a poorer linear fit.

The final control set adds controls for two more forecast variables: CP and SP.
Hence, for this control set there is no cross-sectional impact from any of the four
current value ratios: BP, EP, CP, and SP. The large significant slope coefficient is
attributable solely to the four relative value ratios. If we use the estimated slope
coefficient as an indicator of overall ability of the return forecast to predict
risk-controlled, tax-controlled, growth–profitability controlled realized return
predictions, the suppression of CP and SP indicates that the relative value
ratios are responsible for about 80 % of the apparent return forecast potential,
CP and SP contribute about 20 % of the apparent return forecast potential,
and BP and EP seem to contribute very little to the apparent return forecast
potential.
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8.8.11 The Cross Sections of Realized Standard Deviations
for Different Combinations of Controls

Exhibit 8.9 summarizes regressions of the realized cross-time standard deviations
on return forecast score for different combinations of controls.

The coefficient on the linear term C1 is insignificant until tax controls (FL, EP,
and DP) are imposed. The large jump in the t-value with the imposition of tax
controls alone or in combination with other variables again indicates that controlling
for tax effects is critical to isolate return forecast performance from other distorting
return factors. For the cross section of realized standard deviations, it appears
systematic tax effects are the most pertinent set of control variables rather than the
usual systematic risk variables.

In all of the cross-sectional plots summarizing the dependence of realized
standard deviation on portfolio number such as in Exhibit 8.5, the dependence of
realized standard deviation on portfolio number is clearly nonlinear and nonmono-
tonic. In particular, the standard deviations for low portfolio numbers (low forecast
scores) and for high portfolio numbers (high forecast scores) were all substantially
greater than the standard deviations for the middle of the cross section. Visual
inspection of the cross-sectional plots suggests a quadratic dependency. For this
reason, the regressions summarized in Exhibit 8.9 designed to assess the cross-
sectional dependence of realized standard deviations on return forecast score include
a quadratic term as well as a linear term. Because the concern is assessing the impact
of below average and above average forecast scores relative to the average, the
quadratic dependency is expressed as a squared deviation of return forecast score

SDp = C0 + C1(FSp) + C2(FSp - mean(FSp))2 + εpControl Variables   

C1 t C2 t Adj R2 p-value 

No Constraints  0.07 2.30 0.02 18.21 0.920 <.0001

β(Beta) 0.11 3.74 0.01 12.45 0.852 <.0001

S(Size) 0.07 2.31 0.02 18.36 0.921 <.0001

BP(Book-to-Market ) 0.11 3.89 0.02 22.24 0.946 <.0001

β, S, BP 0.14 5.50 0.02 15.46 0.902 <.0001

FL, EP, DP 0.18 6.46 0.02 17.32 0.928 <.0001

β, S, BP, FL, EP, DP 0.20 9.98 0.01 16.57 0.934 <.0001

β, S, DP, FL, Sag5, Sug3 0.18 7.18 0.01 13.27 0.895 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE 0.21 9.24 0.01 14.80 0.918 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROI 0.20 10.20 0.01 16.20 0.931 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, SI 0.21 9.44 0.01 15.04 0.921 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE, SI 0.21 9.62 0.01 15.11 0.922 <.0001

β,S,BP,FL,EP,DP,SAG5,SUG3,ROE,SI,CP,SP 0.17 11.06 0.01 17.13 0.936 <.0001

Exhibit 8.9 The ability of forecast score to explain the cross section of standard deviations
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from the average forecast score. In the regressions in Exhibit 8.9, the t-values for
the quadratic coefficient C2 are much larger and thus much more significant than
the t-values for the linear coefficient C1. The very high adjusted R-square values
for all of the regressions in Exhibit 8.9 strongly indicate that the combination of
a linear and quadratic dependency explains most of the cross-sectional variation in
the realized standard deviations. The much higher significance for the quadratic term
is confirmation of the importance of the nonlinear, nonmonotonic apparently near-
quadratic dependency suggested by the cross-sectional plots such as Exhibit 8.5.

8.8.12 The Cross Section of Realized Skewness Coefficients

Exhibit 8.10 is a cross-sectional regression on the long-run realized skewness as
measured by the skewness coefficient.

The skewness is significant even with no control constraints. This jump in the
t-value from imposing the beta control alone suggests that controlling for market
movements by means of the beta control increases the isolation of nonsystematic
skewness from any market skewness. Interestingly, neither the size control alone
nor the book-to-market control alone significantly changes the skewness. However,
the three systematic risk controls together increase the increase skewness.

In contrast to the regressions for realized standard deviation, tax controls alone
do not seem to help isolate skewness effects. However, the three risk controls plus
the three tax controls together do increase the coefficients and associated t-values.

SDp = C0 + C1(FSp) + C2(FSp - mean(FSp))2 + εpControl Variables   

C0 t C1 t C2 t Adj R2 p-value

No Constraints  -1.272 -14.36 0.014 10.7 0.001 13.67 0.911 <.0001

β(Beta) -1.252 -14.06 0.017 12.13 0.000 8.55 0.883 <.0001

S(Size) -1.274 -13.42 0.014 9.95 0.001 12.84 0.900 <.0001

BP(Book-to-Market ) -1.375 -15.84 0.016 11.7 0.001 14.68 0.923 <.0001

β, S, BP -1.340 -21.18 0.018 17.84 0.000 12.14 0.941 <.0001

FL, EP, DP -1.164 -9.15 0.013 5.92 0.001 9.16 0.822 <.0001

β, S, BP, FL, EP, DP -1.365 -17.42 0.019 14.07 0.000 7.93 0.907 <.0001

β, S, DP, FL, Sag5, Sug3 -1.347 -21.04 0.018 17.12 0.001 11.15 0.940 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE -1.408 -18.3 0.020 15.07 0.000 8.2 0.916 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROI -1.411 -23.11 0.020 19.17 0.000 10 0.945 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, SI -1.427 -19.23 0.020 15.88 0.001 9.24 0.926 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE, SI -1.418 -21.82 0.020 18.03 0.000 10.02 0.940 <.0001

β,S,BP,FL,EP,DP,SAG5,SUG3,ROE,SI,CP,SP -1.150 -18.14 0.016 14.51 0.000 5.89 0.896 <.0001

Exhibit 8.10 The ability of forecast score to explain the cross section of skewness coefficients
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Adding our two growth controls and other company-specific controls does
increase significantly the ability of return forecast score to explain the cross-
sectional skewness coefficient. We conclude that isolating nonsystematic value-
related skewness associated with the illustrative value-focused return forecasting
model requires that we isolate these value-related return and risk effects from growth
in particular.

In the final set of controls in Exhibit 8.10, we add two more controls for two of
the forecast model variables, namely, CP and SP. Given that the control set already
contains the BP and EP ratios, the net effect of this final control set is to remove
from the cross section the contribution to realized returns of all four current value
ratios. Thus, this final set thus measures the skewness response for just the relative
value ratios. It is interesting that the t-value is the greatest for this set of control
constraints. This high t-value for the response of realized skewness to the relative
value subset of the eight forecast variables is strong evidence that the significant
cross-sectional dependency of skewness on return forecast score is primarily
from the relative value ratios rather than the current value ratios.

Since the relative value ratios measure attractiveness for a company relative to
its own past value ratios, this result suggests, or at least is consistent with, company
values returning to a moving mean. In other words, this result indicates that when
current value ratios are well below their 5-year average value, there is an apparently
strong likelihood that the stock price will increase in order to return the company
to its recent average valuation. This result is consistent with the value analyst
use of relative value ratios to find stocks with limited downside risk and upside
potential. It also suggest turning point performance, rather than trend (momentum)
as the primary source of unpriced, unsystematic skewness.

8.9 Further Research

Having good return forecasts is the primary requirement for successful active
portfolio management. Given one or more return forecasting alternatives, the central
problem for making decisions about return forecast centers on the ability to conduct
high power, high efficiency backtest assessments. The focus here has been to
illustrate the use of a mathematical assignment program to optimize the construction
of control-matched cross-sections of rank-ordered return forecasts. The central
requirement for high-quality return forecast assessments is the ability to isolate the
impact of the return forecast from the impact of other return variables. The control
matching framework is an alternative to the use of multivariate regression to evaluate
return forecasts.

The BGMTX forecast model has been used as an illustrative multivariate return
forecast. There are several ways to extend this forecast assessment. A very important
question for forecast performance is cross-time consistency. The majority of this
chapter has looked at the very long 1967-2004 for time period. Stone and Gerard
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(2010) report comparable performance results for this United States sample for four
subperiods of 1967–2004.

Additional performance concerns are relative ability to perform in up-markets
versus down-markets as well as performance in other markets or market subsectors.
Stone and Gerard (2011) use control matching to evaluate performance for Japan
including subperiods of net market decline. The Japan assessment shows that the
BGMTX forecast model rank orders return performance over extended net market
declines in Japan, for instance excellent relative rank ordering for control matched
cross-sections when every fractile portfolio except the highest ranked has a negative
return.

Tracking error pertains to cross-time consistency. Given a sample of control
matched cross-sections for a forecast time period such as the 456 monthly control
matched cross-sections used in this illustration of the methodology, a researcher can
evaluate tracking error by looking at moving averages, e.g., 12-month, 24-month,
and 60-month rolling averages to obtain an indication of one-year, two-year, and
five-year performance consistency risk. Observing moving average performance
provides insights to not only tracking consistency but also relative performance in
net up markets, net down markets, and over market reversals. Relative performance
in up, down, and reversal markets provides insight on the extent to which a particular
forecast is momentum focused (trend extrapolating) versus turning-point focused.
For the BGMTX forecast model used in this illustration of control matching, one-
year moving averages indicate that much of the performance value occurred over
marker reversals, both transition from a bear to bull market and also transition from
a bull market to a bear market. This reversal performance is consistent with the fact
that suppressing the effect of the four value ratios indicated that roughly 80% of the
high-minus-low performance summarized in Exhibit 8.7 was attributable to the four
relative value (return reversal) variables in the BGMTX forecast model.

The key idea implicit in the preceding discussion is many alternative performance
assessment insights beyond the statistical tests used in this chapter. Having a time
series of control matched forecast cross sections allows a researcher to investigate
not only statistical return performance but also cross-sectional risk (tracking error,
standard deviations, skewness, etc).

Looking at performance value without noise from other return variables lets
a researcher experiment with forecast performance without distortion from other
return impact variables. Moreover, looking at performance for alternative control
sets provides important information on interaction with other return impact vari-
ables. For instance, the fact that the two growth controls had an impact on the
high-minus-low performance even after controlling for both risk and tax effects
suggests a nonsystematic growth effect and therefore potential value to adding one
or more growth variables to the BGMTX forecast model.
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8.10 Conclusions

The BGMTX forecast model shows significant return performance potential as
established in other studies. Compared to studies that do not use matched controls,
the use of risk, tax, growth, and profitability controls provides additional informa-
tion.

1. Both the return and the realized standard deviations cross sections are nonlinear.
The cross section of realized standard deviations is a relatively small range
compared to the range in the cross section of realized returns. The cross section
of realize standard deviations is not only nonlinear but highly nonmonotonic.

2. The distribution of realized returns about the average value exhibits skewness,
negative skewness for low return forecasts, very little for the middle of the
distribution, and very large significant skewness for the highest return forecasts.

3. The three risk control variables tend to smooth the cross sections of realized
returns; however, risk variables appear not to have a significant effect on the
long-run cross section of realized returns. These risk variables are not a source
of systematic performance bias.

4. The three risk controls in combination tend to smooth the cross sections of
realized standard deviations. More importantly, the three risk controls together
reduce the range of realized standard deviations.

5. Tax effects are very significant for the illustrative BGMTX forecast model.
Contrary to the hypothesis of apparent return potential being a tax tilt, imposing
the three tax controls to eliminate cross-sectional variation in the dividend–gain
mix significantly increases the slope and range of the realized return cross section
and moderately reduces realized standard deviation.

6. The power optimizing imposition of a combination of risk and tax controls
significantly increases statistical efficiency relative to the uncontrolled cross
section. Adding growth and profitability controls adds additional value in
assessing return potential.

7. Suppressing the four current value ratios in the cross section of realized returns
reduces the slope of the realized return cross section only modestly, about 20 %.
The relative value ratios are the major source of realized return potential and the
significant positive skewness for the high-return forecast part of the cross section.

The main methodology benefit for full sample assessments of performance
potential of a return forecast is the control matching framework itself. Using a
power optimizing reassignment program like that formulated in Sect. 8.5 makes
it possible to eliminate return performance distortion from other return impacting
variables without having to make any assumptions about the distribution or form
of the functional dependency for any of the control variables. One simply has
to assume a possible dependency on the return variables. Imposing the control
constraint eliminates any portfolio-to-portfolio impact from the matched controls.
The distribution-free, specification-free attribute avoids functional form specifica-
tion errors and the estimation limitations associated with distributional assumptions.
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Compared to using a multivariate regression to estimate jointly the sensitivity of
realized returns to the forecast and also to estimate an assumed dependency for
all the other possible return impact variables for risk, taxes, growth, profitability,
etc., the use of controls to suppress cross-sectional variation in the other variable
dependencies means only the need to estimate a univariate dependency on the
return forecast under the assumption that any effect of other return impact variables
has been suppressed. Concentrating all sample data on a conditional univariate
dependency rather than estimating a multivariate dependency means much more
efficient, more powerful extraction of sample information relative to making
restrictive assumptions to estimate multiple dependencies when the concern is a
single well-isolated conditional dependency.

The use of tax controls illustrates the benefit of avoiding functional specification
to remove a potential source of realized return distortion. By simply making every
portfolio in the cross section have the same dividend yield, dividend payout ratio,
and same benefit from the debt tax shield, it is not necessary to estimate time-varying
marginal tax rates for dividends and gains. Similarly, using FL as a financial control
avoided the need to assess the value of the debt tax shield and the simultaneous
need to correct for distortion from other possible but not known valuation effects of
financial leverage.

In addition to the benefits of concentrating data on a univariate dependency
and avoiding distribution and specification assumptions, the control matching
framework completely eliminates bias/distortion from covariability effects between
the return forecast and any of the control variables. Complete elimination of
covariability contamination is a significant power benefit!

Another efficiency/power design concern is the number of portfolios in the cross
section. The efficiency benefit of grouping observations is reduced measurement
error and possibly reduced specification and omitted variable error. Grouping
observations loses power by reducing the number of sample observations. The
point made in this paper is the need to explicitly recognize the relative benefit of
reduced measurement error versus loss of power from reduction in the number of
sample observations and the associated loss of information from using averages
to represent a collection of observations. In the control matching framework, it is
possible to consolidate control-matched fractiles and preserve the control matching.
This consolidation is illustrated in Sect. 8.8.9 assessing the high-minus-low realized
return differences for 30 tiles and the consolidation to 15 tiles and deciles.

Return forecasting is very much an art using knowledge of valuation and statis-
tics. Assessing return forecast performance potential is also an art. The matched
control framework aided by an optimal reassignment algorithm is a decision support
framework for exploring return performance potential that avoids many limitations
of multivariate regression assessments including especially collinearity distortion
and the restrictions of distributional and functional form assumptions.
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Appendices

Appendix 8.1. Rank-ordered portfolio data: no controls

P# FS Rtn% SD% Skew S Ratio

1 2.98 10.29 8.96 0.802 0.096
2 3.90 6.22 9.11 0.279 0.057
3 6.99 8.84 7.96 0.065 0.093
4 11.70 7.72 7.01 �0.231 0.092
5 14.38 6.10 6.81 �0.300 0.075
6 18.02 8.89 6.41 �0.543 0.116
7 21.51 7.94 6.13 �0.509 0.108
8 24.98 7.75 6.09 �0.519 0.106
9 28.05 9.18 5.76 �0.682 0.133
10 31.50 7.85 5.68 �0.593 0.115
11 34.84 6.48 5.54 �0.714 0.097
12 37.98 7.96 5.56 �0.606 0.119
13 41.04 9.92 5.48 �0.591 0.151
14 44.48 9.20 5.43 �0.528 0.141
15 47.98 9.39 5.39 �0.503 0.145
16 51.03 9.42 5.35 �0.384 0.147
17 54.45 8.79 5.35 �0.417 0.137
18 57.89 9.93 5.54 �0.213 0.149
19 60.96 9.48 5.50 �0.209 0.144
20 64.44 11.74 5.56 �0.241 0.176
21 67.87 9.97 5.69 �0.077 0.146
22 70.89 10.04 5.78 0.034 0.145
23 73.96 10.36 6.08 0.462 0.142
24 77.43 12.39 6.35 0.287 0.163
25 80.87 11.95 6.49 0.530 0.154
26 84.41 12.93 6.95 0.421 0.155
27 87.06 14.29 7.35 1.061 0.162
28 91.08 13.03 8.26 0.993 0.131
29 94.29 15.50 9.57 1.271 0.135
30 96.59 19.12 10.62 2.308 0.150
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Appendix 8.2. Rank-ordered portfolio data: only a beta control

P# FS Rtn% SD% Skew S Ratio

1 4.21 7.77 7.36 �0.248 0.088
2 5.20 5.74 7.59 0.080 0.063
3 8.54 9.37 7.14 �0.447 0.109
4 13.52 7.72 6.22 �0.617 0.103
5 16.19 7.64 6.40 �0.636 0.099
6 19.69 9.61 5.83 �0.565 0.137
7 23.12 7.73 5.98 �0.612 0.108
8 26.27 7.60 5.81 �0.477 0.109
9 29.14 7.56 5.78 �0.507 0.109
10 32.34 9.83 5.68 �0.629 0.144
11 35.49 7.94 5.56 �0.400 0.119
12 38.51 7.73 5.77 �0.541 0.112
13 41.44 7.68 5.61 �0.567 0.114
14 44.72 8.70 5.64 �0.402 0.128
15 48.02 8.08 5.54 �0.484 0.121
16 50.97 9.39 5.65 �0.404 0.139
17 54.24 8.85 5.59 �0.290 0.132
18 57.51 9.04 5.76 �0.034 0.131
19 60.47 9.17 5.75 0.197 0.133
20 63.79 11.05 5.84 �0.012 0.158
21 67.07 10.47 5.78 �0.180 0.151
22 69.96 10.37 5.92 0.149 0.146
23 72.92 10.89 5.85 �0.010 0.155
24 76.15 12.23 6.09 0.042 0.167
25 79.65 12.76 6.07 0.287 0.175
26 83.18 11.10 6.50 0.632 0.142
27 85.85 13.27 6.78 0.247 0.163
28 89.97 15.10 7.65 1.263 0.164
29 93.48 15.11 8.68 1.483 0.145
30 95.94 19.89 9.55 1.585 0.173
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Appendix 8.3. Rank-ordered portfolio data: only a size control

P# FS Rtn% SD% Skew S Ratio

1 3.28 10.31 8.90 0.914 0.097
2 4.22 6.77 9.08 0.159 0.062
3 7.31 7.73 7.93 0.137 0.081
4 12.00 7.91 7.03 �0.313 0.094
5 14.65 6.35 6.85 �0.200 0.077
6 18.28 8.70 6.33 �0.556 0.115
7 21.86 8.06 6.06 �0.621 0.111
8 25.20 7.79 6.10 �0.538 0.106
9 28.29 9.07 5.84 �0.602 0.130
10 31.67 7.09 5.61 �0.704 0.105
11 34.97 6.80 5.54 �0.640 0.102
12 38.11 8.49 5.54 �0.537 0.128
13 41.16 9.49 5.47 �0.581 0.145
14 44.51 9.05 5.35 �0.604 0.141
15 47.99 9.34 5.44 �0.413 0.143
16 51.09 9.30 5.33 �0.375 0.145
17 54.40 8.84 5.36 �0.478 0.137
18 57.82 10.07 5.58 �0.279 0.150
19 60.90 9.79 5.42 �0.198 0.150
20 64.26 11.35 5.51 �0.196 0.172
21 67.67 10.17 5.62 �0.035 0.151
22 70.68 10.91 5.95 0.266 0.153
23 73.75 10.31 5.96 0.189 0.144
24 77.07 12.86 6.31 0.340 0.170
25 80.63 11.73 6.52 0.322 0.150
26 84.15 12.78 6.96 0.514 0.153
27 86.80 14.43 7.29 1.045 0.165
28 90.80 13.24 8.21 1.017 0.134
29 94.01 15.06 9.58 1.261 0.131
30 96.28 18.87 10.55 2.329 0.149
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Appendix 8.4. Rank-ordered portfolio data: only a BP control

P# FS Rtn% SD% Skew S Ratio

1 4.03 10.27 8.83 0.805 0.097
2 5.47 7.47 8.89 0.276 0.070
3 9.10 7.66 7.64 �0.064 0.083
4 14.47 7.46 6.83 �0.460 0.091
5 17.26 8.51 6.71 �0.495 0.106
6 21.01 8.60 6.45 �0.292 0.111
7 24.59 9.23 5.94 �0.657 0.129
8 27.75 7.76 5.88 �0.745 0.110
9 30.61 8.45 5.87 �0.772 0.120
10 33.74 8.09 5.67 �0.515 0.119
11 36.75 7.70 5.38 �0.824 0.119
12 39.56 10.29 5.55 �0.547 0.154
13 42.27 9.68 5.51 �0.690 0.146
14 45.27 8.96 5.38 �0.569 0.139
15 48.26 8.93 5.25 �0.594 0.142
16 50.89 9.74 5.35 �0.425 0.152
17 53.84 9.24 5.33 �0.381 0.144
18 56.82 10.67 5.37 �0.310 0.166
19 59.50 10.67 5.51 �0.077 0.161
20 62.58 10.70 5.49 �0.173 0.162
21 65.68 9.64 5.72 �0.105 0.140
22 68.44 10.50 5.83 �0.038 0.150
23 71.36 11.25 6.02 0.177 0.156
24 74.60 10.88 6.30 0.220 0.144
25 78.16 11.75 6.70 0.565 0.146
26 81.86 12.03 6.92 0.373 0.145
27 84.69 13.33 7.15 0.707 0.155
28 89.21 12.84 8.44 1.469 0.127
29 92.95 15.15 9.62 1.342 0.131
30 95.83 17.85 10.65 2.186 0.140
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Appendix 8.5. Rank-ordered portfolio data: risk controls only

P# FS Rtn% SD% Skew S Ratio

1 4.21 7.77 7.36 �0.248 0.088
2 5.20 5.74 7.59 0.080 0.063
3 8.54 9.37 7.14 �0.447 0.109
4 13.52 7.72 6.22 �0.617 0.103
5 16.19 7.64 6.40 �0.636 0.099
6 19.69 9.61 5.83 �0.565 0.137
7 23.12 7.73 5.98 �0.612 0.108
8 26.27 7.60 5.81 �0.477 0.109
9 29.14 7.56 5.78 �0.507 0.109
10 32.34 9.83 5.68 �0.629 0.144
11 35.49 7.94 5.56 �0.400 0.119
12 38.51 7.73 5.77 �0.541 0.112
13 41.44 7.68 5.61 �0.567 0.114
14 44.72 8.70 5.64 �0.402 0.128
15 48.02 8.08 5.54 �0.484 0.121
16 50.97 9.39 5.65 �0.404 0.139
17 54.24 8.85 5.59 �0.290 0.132
18 57.51 9.04 5.76 �0.034 0.131
19 60.47 9.17 5.75 0.197 0.133
20 63.79 11.05 5.84 �0.012 0.158
21 67.07 10.47 5.78 �0.180 0.151
22 69.96 10.37 5.92 0.149 0.146
23 72.92 10.89 5.85 �0.010 0.155
24 76.15 12.23 6.09 0.042 0.167
25 79.65 12.76 6.07 0.287 0.175
26 83.18 11.10 6.50 0.632 0.142
27 85.85 13.27 6.78 0.247 0.163
28 89.97 15.10 7.65 1.263 0.164
29 93.48 15.11 8.68 1.483 0.145
30 95.94 19.89 9.55 1.585 0.173
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Appendix 8.6. Rank-ordered portfolio data: tax controls only

P# FS Rtn% SD% Skew S Ratio

1 10.42 0.30 6.50 �0.420 0.004
2 11.42 0.15 6.45 �0.393 0.002
3 15.46 4.50 6.35 �0.600 0.059
4 20.52 6.09 5.89 �0.737 0.086
5 22.84 4.93 5.98 �0.495 0.069
6 25.76 4.61 5.87 �0.728 0.065
7 28.62 4.90 5.67 �0.642 0.072
8 31.02 6.47 5.57 �0.729 0.097
9 33.27 6.75 5.59 �0.490 0.100
10 35.77 8.13 5.60 �0.638 0.121
11 38.14 7.96 5.47 �0.645 0.121
12 40.46 8.12 5.49 �0.587 0.123
13 42.74 7.33 5.47 �0.607 0.112
14 45.30 8.78 5.59 �0.522 0.131
15 47.90 8.26 5.70 �0.377 0.121
16 50.26 10.91 5.51 �0.407 0.165
17 52.94 9.86 5.60 �0.277 0.147
18 55.63 11.84 5.77 �0.077 0.171
19 58.13 12.02 5.72 �0.269 0.175
20 60.96 11.56 5.83 �0.010 0.165
21 63.80 11.84 5.92 0.047 0.167
22 66.32 10.84 6.02 0.019 0.150
23 68.98 11.79 6.07 0.147 0.162
24 71.98 14.23 6.05 0.069 0.196
25 75.37 12.79 6.38 0.144 0.167
26 78.92 13.99 6.39 0.121 0.182
27 81.66 16.00 6.90 0.604 0.193
28 86.26 14.75 7.38 0.515 0.166
29 90.47 18.25 8.38 0.987 0.181
30 93.65 21.40 8.92 1.789 0.200
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Appendix 8.7. Rank-ordered portfolio data: risk and tax controls

P# FS Rtn% SD% Skew S Ratio

1 10.42 0.30 6.50 �0.420 0.004
2 11.42 0.15 6.45 �0.393 0.002
3 15.46 4.50 6.35 �0.600 0.059
4 20.52 6.09 5.89 �0.737 0.086
5 22.84 4.93 5.98 �0.495 0.069
6 25.76 4.61 5.87 �0.728 0.065
7 28.62 4.90 5.67 �0.642 0.072
8 31.02 6.47 5.57 �0.729 0.097
9 33.27 6.75 5.59 �0.490 0.100
10 35.77 8.13 5.60 �0.638 0.121
11 38.14 7.96 5.47 �0.645 0.121
12 40.46 8.12 5.49 �0.587 0.123
13 42.74 7.33 5.47 �0.607 0.112
14 45.30 8.78 5.59 �0.522 0.131
15 47.90 8.26 5.70 �0.377 0.121
16 50.26 10.91 5.51 �0.407 0.165
17 52.94 9.86 5.60 �0.277 0.147
18 55.63 11.84 5.77 �0.077 0.171
19 58.13 12.02 5.72 �0.269 0.175
20 60.96 11.56 5.83 �0.010 0.165
21 63.80 11.84 5.92 0.047 0.167
22 66.32 10.84 6.02 0.019 0.150
23 68.98 11.79 6.07 0.147 0.162
24 71.98 14.23 6.05 0.069 0.196
25 75.37 12.79 6.38 0.144 0.167
26 78.92 13.99 6.39 0.121 0.182
27 81.66 16.00 6.90 0.604 0.193
28 86.26 14.75 7.38 0.515 0.166
29 90.47 18.25 8.38 0.987 0.181
30 93.65 21.40 8.92 1.789 0.200
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