Chapter 16
Forecasting Implied Volatilities for Options
on Index Futures: Time-Series

and Cross-Sectional Analysis versus Constant
Elasticity of Variance (CEV) Model

Tzu Tai and Cheng Few Lee

16.1 Introduction

Forecasting volatility is crucial to risk management and financial decision for future
uncertainty. Previous studies have found that the volatility changes are predictable
(Engle, 1982; Pagan & Schwert, 1990; Harvey & Whaley, 1991, 1992a, 1992b;
Day & Lewis, 1992; Fleming, 1998). In perfectly frictionless and rational markets,
options and their underlying assets should simultaneously and properly change
prices to reflect new information. Otherwise, costless arbitrage profits would happen
in portfolios combined by options and their underlying assets. However, prices in
security and option markets may differently and inconsistently change to respond
to news because transaction costs vary cross financial markets (Phillips & Smith,
1980). Based on trading cost hypothesis, the market with the lowest trading costs
would quickly respond to new information. The price changes of options on index
and options on index futures lead price changes in the index stocks because trading
costs of index option markets are lower than the cost of trading an equivalent stock
portfolio (Fleming, Ostdiek, & Whaley, 1996). Therefore, the dynamic behavior of
market volatility can be captured by forecasting implied volatilities in index option
markets (Dumas, Fleming, & Whaley, 1998; Harvey & Whaley, 1992a).

In this chapter, we use option prices instead of relying on the past behavior of
asset prices to infer volatility expectations of underlying assets. The derivation and
use of the implied volatility (called IV hereafter) for an option as originated by
Latane and Rendleman (1976) has become a widely used methodology for variance
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estimation. The IV derived from option prices depends on the assumptions of option
valuation formula. For example, IV in Black-Scholes-Merton option pricing model
(called BSM hereafter) tends to differ across exercise price and times to maturity,
which violates the assumption of the constant volatility of underlying asset in model.
The fact that there are as many BSM IV estimates for an underlying asset as
there are options on it, as well as the observable nonconstant nature, has attracted
considerable attention from practitioner and theoretician alike.

For the academician, previous studies have been proposed to capture the
characteristics of implied volatility by either using statistical models or stochastic
diffusion process approaches. Statistical models such as autoregressive conditional
heteroskedasticity (ARCH) models (Engle, 1982) and GARCH model (Day &
Lewis, 1992) have been used to capture time-series nature of IV dynamic behavior.
On the other hand, stochastic process models such as constant-elasticity-of-variance
(CEV) model (Cox, 1975; Cox & Ross, 1976; Beckers, 1980; Chen & Lee, 1993;
DelBaen & Sirakawa, 2002; Emanuel & MacBeth, 1982; MacBeth & Merville,
1980; Hsu et al., 2008; Schroder, 1989; Singh & Ahmad, 2011; Pun & Wong,
2013; Larguinho et al., 2013) and stochastic volatility models (Hull & White, 1987;
Heston, 1993; Scott, 1997; Lewis, 2000; Lee, 2001; Jones, 2003; Medvedev &
Scaillet, 2007) incorporate the interactive behaviors of an asset and its volatilities
in option pricing model. From the practitioner’s point of view, the implementation
and computational costs are the principal criteria of selecting option pricing models
to estimate IV. Therefore, we use cross-sectional time-series regression and CEV
model to forecast IV with less computational costs.

The two alternative approaches used in this chapter give different perspective
of estimating IV. The cross-sectional time-series analysis focuses on the dynamic
behavior of volatility in each option contracts. The predicted IV obtained from the
time-series model is the estimated conditional volatility based on the information
of IV extracted from BSM. Although the estimated IVs in a time-series model
vary across option contracts, this kind of model can seize the specification of time-
vary characteristic that links ex post volatility to ex ante volatility for each option
contract. In addition, cross-sectional analysis can capture other trading behaviors
such as week effect and in/out of the money effect. On the other hand, CEV model
generalizes implied volatility surface as a function of asset price. It can reduce more
computational and implementation costs rather than the complex models such as
jump-diffusion stochastic volatility models because there is only one more variable
compared with BSM. Although the constant estimated IV for each trading day may
cause low forecast power of whole option contacts, it is more reasonable that the
IVs of underlying assets are independent of different strike prices and times to
expiration.

The focuses of this chapter are (1) to improve the ability to forecast the IV by
cross-sectional time-series analysis and CEV model, (2) to explain the significance
of variables in each approaches, (3) compare prediction power of these two
alternative methods, and (4) test market efficiency by building an arbitrage trading
strategy. If volatility changes are predictable by using cross-sectional time-series
analysis and CEV model, the prediction power of these two methods can draw
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specific implications as to how BSM might be misspecified. If the abnormal returns
are impossible in a trading strategy which takes transaction costs into account, we
would claim that option markets are efficient.

The structure of this chapter is as follows. Section 16.2 reviews previous option
pricing models and related empirical works concerning the viability and use of these
models. The data and methodology are described in Sect. 16.3. Section 16.4 shows
the empirical analysis and devise the trading and hedging strategies to determine if
arbitrage profit can be obtained. Finally, in Sect. 16.5, the implications of the results
are summarized from both an academic and practitioner view.

16.2 Literature Review

The amount of option pricing research is substantial. This section briefly surveys the
major studies which form the impetus for this research effect. Then we introduce
previous literature using time-series analysis as an alternative approach to forecast
implied volatilities.

16.2.1 Black-Scholes-Merton Option Pricing Model (BSM)
and CEV Model

Option pricing is a central issue in the derivatives literature. After the seminal papers
by Black and Scholes (1973) and Merton (1973), there has been an explosion in
option pricing models developed over the last few decades (Black, 1975; Brenner
et al., 1985; Chance, 1986; Ramaswamy & Sundaresan, 1985; Wolf, 1982; Hull,
2011). BSM formula for a European call option on a stock with dividend yield rate,

q, is:

C =S "N (d)) —Ke "N (d») (16.1)
n(5)+ r—q+”2 T . . .
where d; = () (T(Jr ) ,dy = dy — 0/t, N () is the cumulative probability
distribution function for a standardized normal distribution, 7 is time to maturity, r
is risk free rate, Sy is current underlying stock price, K is exercise price, o is the
variance of stock returns, C; is the theoretical BSM option price at time t.

Black’s (1976) model for pricing futures call options is used in this study. His
model is:

Cl' = e [FiN (di) — KN (d)]
dy = [ln (F,/K) + (af2/2> z] Jop/T (16.2)
dz = dl — Uf\/‘f
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where CF is the model price for a call option on future at time ¢, F, is the underlying
futures price at time ¢, K is the exercise price of the call option, t is the option’s
remaining time to maturity in terms of a year, r is the continuous annualized risk-free
rate, af2 is the instantaneous variance of returns of the underlying futures contract
over the remaining life of the option.

Although it is well known that the BSM model exhibits biases in its pricing of
deep-in and out-of-the-money options and those with a very short or very long term
to maturity, the direction of the bias has not been consistent across studies. Black
(1975) found that the BSM model systematically over-priced options which were
deep-in-the-money and underpriced those being deep-out-of-the-money. However,
MacBeth and Merville (1979) reported an exactly opposite type of systematic bias.
To make matters even more imprecise, Merton (1976) notes that practitioners often
claim that the BSM underprices both deep-in and out-of-the-money options. In
regards to time to maturity, it is generally maintained that the BSM underprices
short-maturity and overprices long-maturity options. But again, the evidence con-
tains discrepancies, particularly when the bias relative to both exercise price and
maturity are considered. All these authors conclude that, to some degree, the pricing
bias is related to the volatility parameter which is typically observed not to be
proportionally constant over time. Jarrow and Rudd (1982) focus on the potential
effects from distributional misspecification of the underlying return-generating
process. Thus, their model takes into account pricing biases which might arise due
to differences between the second, third and fourth moments of the assumed and
“true” distributions.

Previous studies have shown that the constant volatility assumption is inap-
propriate, and the evidence of our empirical results presents as well. Several
more generalized models have been proposed to overcome the BSM restriction
on the volatility parameter. Cox (1975) and Cox and Ross (1976) developed the
“constant elasticity of variance (CEV) model” which incorporates an observed
market phenomenon that the underlying asset variance tends to fall as the asset
price increases (and vice versa). The advantage of CEV model is that it can describe
the interrelationship between stock prices and its volatility. The constant elasticity
of variance (CEV) model for a stock price, S, can be represented as follows:

dS = (r — q) Sdt + 85°dZ (16.3)

where r is the risk-free rate, ¢ is the dividend yield, dZ is a Wiener process, § is
a volatility parameter, and « is a positive constant. The relationship between the
instantaneous volatility of the asset return, o (S, f), and parameters in CEV model
can be represented as:

o(S,1) =85! (16.4)

When o = 1, the CEV model is the geometric Brownian motion model we
have been using up to now. When o < 1, the volatility increases as the stock price
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decreases. This creates a probability distribution similar to that observed for equities
with a heavy left tail and a less heavy right tail. When « > 1, the volatility increases
as the stock price increases, giving a probability distribution with a heavy right tail
and a less left tail. This corresponds to a volatility smile where the implied volatility
is an increasing function of the strike price. This type of volatility smile is sometimes
observed for options on futures.

The formula for pricing a European call option in CEV model is:

c = |Se [1—x2(a. b+2, )] —Ke " ¥ (c. b, a) when o < 1
T S [1—=%2(c,—b, a)] —Ke " x%(a, 2—b, ) when o > 1
(16.5)
_ [Kef(rfq)r]z“"") o R _ 52 r—a)a—1
wherea="" 5, b=l o= (o VS ey [FT0OTV 1],

and y%(z, k, v) is the cumulative probability that a variable with a noncentral y>
distribution! with noncentrality parameter v and k degrees of freedom is less than z.
Hsu, Lin and Lee (2008) provided the detailed derivation of approximative formula
for CEV model. Based on the approximated formula, CEV model can reduce
computational and implementation costs rather than the complex models such as
jump-diffusion stochastic volatility model. Therefore, CVE model with one more
parameter than BSM can be a better choice to improve the performance of predicting
implied volatilities of index options (Singh & Ahmad, 2011).

Beckers (1980) investigate the relationship between the stock price and its
variance of returns by using an approximative closed-form formulas for CEV model
based on two special cases of the constant elasticity class (@ = 1 or 0). Based on
the significant relationship between the stock price and its volatility in the empirical
results, Beckers (1980) claimed that CEV model in terms of noncentral Chi-square
distribution performs better than BC model in terms of log-normal distribution in
description of stock price behavior. MacBeth and Merville (1980) is the first paper
to empirically test the performance of CEV model. Their empirical results show
the negative relationship between stock prices and its volatility of returns; that is,
the elasticity class is less than 2 (i.e., ¢ < 2). Jackwerth and Rubinstein (2001)
and Lee, Wu, and Chen (2004) used S&P 500 index options to do empirical work
and found that CEV model performed well because it took account the negative
correlation between the index level and volatility into model assumption. Pun and
Wong (2013) combine asymptotics approach with CEV model to price American
options. Larguinho et al. (2013) compute Greek letters under CEV model to measure
different dimension to the risk in option positions and investigate leverage effects
in option markets. Tsai (2014) applied CEV model to portfolio hedge strategy and
found CEV model can reduce replication error of barrier call options.

IThe calculation process of %2(z, k, v) value can be referred to Ding (1992). The complementary
noncentral chi-square distribution function can be expressed as an infinite double sum of gamma
function, which can be referred to Benton and Krishnamoorthy (2003).
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Merton (1976) derived a model based on a jump-diffusion process for the
underlying security that allows for discontinuous jumps in price due to unexpected
information flows. Geske (1979) derived a compound-option formula which con-
siders the firm’s equity to be an option underlying the exchange traded option. An
interesting feature of Geske’s model is that by incorporating the effects of a firm’s
leverage on its option the model allows for a nonconstant variance. Alternative
option pricing models to describe nonconstant volatility is stochastic volatility
models which consider the volatility of the stock as a separate stochastic factor
(Scott, 1987; Wiggins, 1987; Stein & Stein, 1991; Heston, 1993; Lewis, 2000;
Lee, 2001; Jones, 2003; Medvedev & Scaillet, 2007). Heston (1993) assumes the
dynamics of instantaneous variance, V, as a stochastic process:

dS = pSdt + N'VSdz, (16.6)

dV = (a + BV) dt + 0+/Vdz, (16.7)

where dZ; and dZ, are Wiener processes with correlation p. For the complex
implied volatility model without closed-form solutions, advanced techniques such
as partial differential equations (PDEs) or Monte Carlo simulation are used to
estimate the approximation of implied volatility under non-tractable models. Lewis
(2000) and Lee (2001) estimate implied volatility under stochastic volatility model
without jumps. Jones (2003) extends the Heston model and proposes a more general
stochastic volatility models in the CEV class as follows:

dS = pSdt + 'VSdz, (16.8)
dV = (a + BV) dt + o,V dZ, + 0,V"2dZ, (16.9)

where dZ; and dZ, are independent Wiener processes under the risk-neutral proba-
bility measure. The model setting in Jones (2003) allows the correlation of the price
and variance processes to depend on the level of instantaneous variance. Recently,
Medvedev and Scaillet (2007) deal with a two-factor jump-diffusion stochastic
volatility model where there is a jump term in stock price and volatility follows
another stochastic process related to stock price’s Brownian motion term with
constant correlation p. Medvedev and Scaillet (2007) empirical results advocate the
necessary of introducing jumps in stock price process. They found that jumps are
significant in returns. The evidence also supports the specification of the stochastic
volatility in CEV model (Jones, 2003; Heston, 1993).

The optimal selection of an option pricing model should be based on a trade-
off between its flexibility and its analytical tractability. The more complicated
model it is, the less applicable implementation the model has. Although jump-
diffusion stochastic volatility models can general volatility surface as a deterministic
function of exercise price and time, the computational costs such as parameter
calibration or model implementation are high. Chen, Lee and Lee (2009) indicated
that CEV model should be better candidate rather than other complex jump-
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diffusion stochastic volatility models because of fast computational speed and less
implementation costs. Therefore, we decide to use CEV model for forecasting
implied volatilities in our empirical study.

16.2.2 Time-Varying Volatility and Time-Series Analysis

Several studies have attempted to improve the estimation of the volatility term
required by the BSM and Black models. Harvey and Whaley (1992a, 1992b) stated
that market volatility changes are predictable by forecasting the volatility implied
in index options. Their findings are consistent with the trading cost hypothesis that
the index futures and option price changes lead price changes in the stock market
(Stephan & Whaley, 1990; Fleming, Ostdiek, & Whaley, 1996). Therefore, we can
employ the predicted IV to do hedge strategy and risk management.

All the studies involving IV estimation point out to one degree or another that
for any day, the individual IV’s for all the options on a particular asset (stock or
futures contract) will all be different, and will change over time. Yet as MacBeth
and Merville (1979) aptly note, different exercise prices should not imply differing
IV’s since the IV pertains to the underlying asset itself and not the exercise price. In
what might be considered a preliminary basis for this study, MacBeth and Merville
(1979) relate systematic pricing differences between market and BSM option prices
to the systematic differences that occur among individual IV’s relative to exercise
price and time to maturity.

Since Latana and Rendleman’s (1976) development of the IV concept, numerous
researchers have studied different weighting schemes in calculating the IV. The
majority of studies, including Schmalensee and Trippi (1978) and Chiras and
Manaster (1978), devise weighting schemes which aim at deriving a single weighted
IV from among all individual IV’s for input into the BSM model. Whaley (1981;
1982) and Park and Sears (1985) utilized an OLS regression procedure to weight
and segregate I'V’s by maturity date. The major finding of the Park and Sears (1985)
study, which used option on stock index futures data, was a “time-to-maturity” effect
in the pattern of the weighted IV’s over time. The authors interpreted their findings
as being consistent with Merton’s (1973) option pricing model with stochastic
interest rate. This is a portion of the IV’s instability is due to the diminishing
instantaneous variance of the riskless security.

Another rather foreshadowing study conducted by Brenner and Galai (1981)
not only found significant divergence between the daily individual IV’s and some
time-series average IV, but that the distributions of the average IV’s were not
invariant over time. Finally, Rubenstein (1985) used individual IV’s to test five
alternative option pricing models versus the BSM formulation, and attempted to
explain observed pricing biases. Rubenstein (1985) reported that the direction of
pricing bias changed over time. This instability could be a function not only of a
time-varying volatility term, but also stochastic interest rates and a changing stock
market climate. Harvey and Whaley (1992a, 1992b) utilized OLS regression of the
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change in IV on S&P 100 index option on lagged IV, week effect dummy variables,
and interest rate measures to test if IV is predictable. The significant abnormal
returns obtained in Harvey and Whaley (1992a, 1992b) indicated that the market
volatility is predictable time-varying variable and can be estimated by time-series
analysis.

16.3 Data and Methodology

16.3.1 Data

The data for this study of individual option I'V’s included the use of call options on
the S&P 500 index futures which are traded at the Chicago Mercantile Exchange
(CME).? The Data is the options on S&P 500 index futures expired within January
1, 2010 to December 31, 2013. The reason for using options on S&P 500 index
futures instead of S&P 500 index is to eliminate from nonsimultaneous price effects
between options and its underlying assets (Harvey & Whaley, 1991). The option
and future markets are closed at 3:15pm Central Time (CT), while stock market is
closed at 3pm CT. Therefore, using closing option prices to estimate the volatility of
underlying stock return is problematic even though the correct option pricing model
is used. In addition to no nonsynchronous price issue, the underlying assets, S&P
500 index futures, do not need to be adjusted for discrete dividends. Therefore, we
can reduce the pricing error in accordance with the needless dividend adjustment.
According to the suggestions in Harvey and Whaley (1991, 1992a, 1992b), we select
simultaneous index option prices and index future prices to do empirical analysis.

The risk free rate used in Black model and CEV model is based on 1-year
Treasury Bill from Federal Reserve Bank of ST. LOUIS.? Daily closing price and
trading volumes of options on S&P 500 index futures and its underlying asset can
be obtained from Datastream.

There are two ways to select data in respect to two alternative methodologies used
in this chapter. For time-series and cross-sectional analysis, we ignore transaction
information and choose the futures options according to the length of trading period.
The futures options expired on March, June and September in both 2010 and 2011
are selected because they have over 1 year trading date (above 252 observations)
while other options only have more or less 100 observations. Studying futures option
contracts with same expired months in 2010 and 2011 will allow the examination of

2Nowadays Chicago Mercantile Exchange (CME), Chicago Board of Trade (CBOT), New York
Mercantile Exchange (NYMEX), and Commodity Exchange (COMEX) are merged and operate
as designated contract markets (DCM) of the CME Group which is the world’s leading and most
diverse derivatives marketplace. Website of CME group: http://www.cmegroup.com/

3Website of Federal Reserve Bank of ST. LOUIS: http://research.stlouisfed.org/
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IV characteristics and movements over time as well as the effects of different market
climates.

In order to ensure reliable estimation of IV, we estimate market volatility by using
multiple option transactions instead of a single contract. For comparing prediction
power of Black model and CEV model, we use all futures options expired in 2010
and 2013 to generate implied volatility surface. Here we exclude the data based on
the following criteria: (1) BS IV cannot be computed, (2) trading volume is lower
than 10 for excluding minuscule transactions, (3) time-to-maturity is less than 10
days for avoiding liquidity-related biases, (4) quotes not satisfying the arbitrage
restriction: excluding option contact if its price larger than the difference between
S&P500 index future and exercise price, and (5) deep-in/out-of-money contacts
where the ratio of S&P500 index future price to exercise price is either above 1.2 or
below 0.8.

After arranging data based on these criteria, we still have 30,364 observations of
future options which are expired within the period of 2010 to 2013. The period of
option prices is from March 19, 2009 to November 5, 2013.

16.3.2 Methodology

In this section, two alternative approaches to estimate IVs are introduced. We first
illustrate how to obtain BSM IV for each option contract in MATLAB. Then,
based on BSM IVs, we forecast future BSM IVs for each option contract by time-
series analysis and cross-sectional regression. Finally, the second method to estimate
future IV is based on CEV model. To deal with moneyness- and maturity-related
biases, we use the “implied-volatility matrix” to find proper parameters in CEV
model. Then, the IV surface can be represented for predicting future IV in different
moneyness and time-to-maturity categories.

16.3.2.1 Estimating BSM IV

This chapter can utilize financial toolbox in MATLAB to calculate the implied
volatility for futures option that the code of function is as follows:

Volatility = blsimpv (Price, Strike, Rate, Time, Value, Limit, Tolerance, Class)

where the blsimpv is the function name; Price, Strike, Rate, Time, Value, Limit,
Tolerance, and Class are input variables; Volatility is the annualized IV.* The

“4Detailed information of the function and example of calculating the implied volatility for futures
option can be found on MathWorks website: http://www.mathworks.com/help/toolbox/finance/
blkimpv.html
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advantages of this function are the allowance of the upper bound of implied volatility
(Limit variable) and the adjustment of the implied volatility termination tolerance
(Tolerance variable), in general, equal to 0.000001. The algorithm used in blsimpv
function is Newton’s method.

When we do the comparison of performance between CEV model and Black
model, the implied volatility of Black model for each group at time ¢ can be obtained
by following steps:

-~

1. Let Cf, , is market price of the nth option contract in category i, Cf, , (o) is the
model option price determined by Black model in Eq. (16.2) with the volatility
parameters, o. For nth option contract in category i at date ¢, the difference
between market price and model option price can be described as:

-~

e, =Ch,, —Cl (o) (16.10)

in,t in,t

2. For each date ¢, we can obtain the optimal parameters in each group by solving
the minimum value of absolute pricing errors (minAPE) as:

N
minAPE;, = minZ ™ (16.11)

in,t
n=1

Where N is total number of option contracts in group i at time ¢.

3. Using MTALAB optimization function to find optimal o in a fixed interval. The
function code is as follows:

[00, fvalBls] = fminbnd (fun, xi,x;), (16.12)

Where o is an optimal implied volatility in Black model that locally minimize
function of minAPE, fvalBls is the minimum value of minAPE, fun is MATLAB
function describing Eq. (16.11). The implied volatility, o, is constrained in the
interval between x; and x», that is, x; < 09 < x,. The algorithm of fminbnd function
is based on golden section search and parabolic interpolation.

16.3.2.2 Forecasting IV by Cross-Sectional and Time-Series Analysis
Time-Series Analysis

Box and Jenkins (1970) time-series model building techniques are used to identify,
estimate, and check models describing particular generating processes. These

models are of the form

Xt — ¢]X[_] — p.xz‘_p = & — 6]8[-] — Qqé‘r_q (16.13)
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where x; is an observation from a covariance stationary series meaning that
A = cov (Xg, Xi—7) (16.14)

is independent of ¢ for all . The ® and 0 terms represent the autoregressive (AR)
and moving average (MA) coefficients and ¢, is white noise.

A developed technique motivated by Hannan and Rissanen (1982) seems to
provide a good practical basis for model selection. The process involves two stages
of computation. The purpose of the first stage is to obtain estimates of the innovation
errors of model. This is accomplished by running successively higher order auto-
regressive models and using the AIC of Akaike (1969) to determine the optimal
order from among them. The innovation errors are estimated by

8 =X — Oy — o — Dpxiy (16.15)

where k is the optimal autoregressive order suggested by the AIC. The second stage
involves fitting all different combinations of ARMA (p, ¢) models where, instead of
using full maximum likelihood estimation, the innovation errors estimated in stage
one are used as the regressors upon which the moving average parameter estimates
are based. This allows use of least squares. The different ARMA (p, ¢) models are
then compared using the AIC of Akaike (1977) and SBC of Schwarz (1978) and
the appropriate model is chosen on that basis. A simulation study conducted by
Ansley and Newbold (1980) has found that exact maximum likelihood estimation
outperforms least squares when the series are of moderate size and moving average
terms are involved. An approximation to the full maximum likelihood function has
been derived by Hillmer and Tiao (1979).

In addition, alternative simple time-series methods are taken into account to
compare with the forecastability indicators from optimal ARMA models. There are
five alternative models to generate IV indicators which are used in cross-sectional
regression model in next section. These time-series models are as follows:

p q
1. ARMA model (ARMA): IV, = ag + Y aIVi—i + & + » _bigri
i=1 i=1
2. Lag IV method (LIV): IV, =1V,
5

Zi=1w’_’
5
5 .
_ Zi= 2 Vi

4. 5-day exponential moving average method (EMAS): IV, = H

3. 5-day moving average method (MAVS): IV, =

5. Regression on lag IV (RGN): IV, = ag + a;IV,—| + &

The optimal ARMA model is autoregressive-moving-average model with order
of the autoregressive part, p, and the order of the moving average part, ¢ where the
suitable p and g are based on the goodness-of-fit indicators, AIC and SBC, and the
forecastability indicators, RMSE, MAE, and MAPE. The 5-day moving average and
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the 5-day exponential moving average methods can be expressed as the special cases
of the general AR(5) model. Lag IV and the regression on lag IV methods belong to
AR(1) process.

Cross-Sectional Predictive Regression Model

A significant amount of information has been shown to exist in a time series of IV.
The five alternative time-series models used to describe the generating processes
of the IV series examined are all clearly preferred to random walk or “white
noise” alternatives. These models do not give the final word on the subject of IV
forecasting, however. There are several cross-contract effects that may exist which,
if isolated properly, will provide further predictive power. To learn more about these
different influences, a large cross-sectional time-series predictive regression model
was formulated. The cross-sectional time-series predictive regression model is

yir = Bo + Bixti—1 + Boxoi—1 + -+ + Braxiai—1 + &ir (16.16)

where y;, is IV of the i option contract at time #; x;;;— is the time-series predictor
of i contract for time ¢ based on information known at time #— 1 and one of
forecasting time-series methods; xp; — | is time to maturity of the i option contract
at time ¢ — 1 which is the unit of year; x3;,— is proportional in-the-money that
is equal to the value of (future price at time t — l—strike price)/(strike price) if
the value is positive, otherwise is zero; x4;;— is proportion out-of-the-money that
is equal to the value of (strike price—futures price at time 7 — 1)/(strike price) if
the value is positive, otherwise is zero; xs;—; and x¢;— | are standard deviation of
the IV based on previous 5 and 20 observations, respectively; x7;,—; and x7;,—
are skewness and kurtosis of IV distribution over the previous 20 observations,
respectively; xo;,—; and xjg;— are the standard deviations of the rate of returns of
the underlying future price on previous 5 and 20 observations, respectively; xj1;— 1,
X12it— 15 X13it— 1, and x4;,— 1 are dummy variables that equals 1 if the trading date at
time # — 1 is Tuesday, Wednesday, Thursday, and Friday, respectively.

The time-to-maturity variable was included because, as was indicated by Park
and Sears (1985), there tends to be a certain point close to maturity where the IV’s
begin to decrease. The third and fourth independent variables have been included
to see if deep-in-the-money options and far-out-of-the-money options tend toward
higher or lower than expected IV’s. Previous studies have had conflicting answers
to this important question (see Jarrow & Rudd, 1983). The next two independent
variables are included to determine whether or not the standard deviations of the
IVs have any positive or negative effect on the IVs themselves. The third and fourth
moments of the distribution of 20 previous IV observations were also included
in the regression equation to see what, if any, influence they have in determining
current I'V.

The two measures of the standard deviations of the rate of returns of the underly-
ing future price are of great interest as regressors since these have traditionally been
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approximations of the variable used in the BSM model to determine the theoretical
option price. The final four explanatory variables are weekday effect dummies
which are intended to see if certain days give rise to higher IV than others. For
example, certain economic announcements are regularly made on particular days of
the week and this may have a weekday effect on IV. Note that only four dummy
variables are needed to describe the 5 days of the week in order to avoid perfect
multi-collinearity with the constant term.

16.3.2.3 Forecasting IV by CEV Model

To deal with moneyness- and expiration- related biases in estimating BSM 1V,
we use the “implied-volatility matrix” to separate option contracts and estimate
parameters of CEV model in each category. The option contracts are divided into
nine categories by moneyness and time-to-maturity. Option contracts are classified
by moneyness level as at-the-money (ATM), out-of-the-money (OTM), or in-the-
money (ITM) based on the ratio of underlying asset price, S, to exercise price, K.
If an option contract with S/K ratio is between 0.95 and 1.01, it belongs to ATM
category. If its S/K ratio is higher (lower) than 1.01 (0.95), the option contract
belongs to ITM (OTM) category. According to the large observations in ATM and
OTM, we divide moneyness-level group into five levels: ratio above 1.01, ratio
between 0.98 and 1.01, ratio between 0.95 and 0.98, ratio between 0.90 and 0.95,
and ratio below 0.90. By expiration day, we classified option contracts into short-
term (less than 30 trading days), medium-term (between 30 and 60 trading days),
and long-term (more than 60 trading days).

Since for all assets the future price equals the expected future spot price in a
risk-neutral measurement, the S&P 500 index futures prices have same distribution
property of S&P 500 index prices. Therefore, for a call option on index futures can
be given by Eq. (16.5) with S; replaced by F, and g = r as Eq. (16.17)°:

e 't (F,[l—x2 (a, b+ 2, c)]—K)(2 (c, b, a)) wheno < 1

cf =
! et (F, [1 — %2 (c,—b, a)] —Ky?*(a, 2—b, c)) when o > 1
(16.17)
where
KZ(I—a) 1 F 2(1—a)
a= , »b= ,e= ! 2,U=82‘E
(1—a)v -« (1—a)v

SWhen substituting ¢ = rinto v = 2(,,;)2(0[,1) [¢2¢=9@=D7 — 1], we can use L’Hospital’s Rule

to obtain v. Let x = r — ¢, then

a2 [o2x@—Dr _,
i az[emu—1>r—1] — 5 [ e ] — i (2(a—1)r)82[e2““*”’] — ng[ezvtu—m] - .5
me s @—1) = lm 22(a—1) = lim 2a—1) = lim | = 8%,
x—0 o x—0 Pl 0 « >0
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The procedures to obtain estimated parameters of CEV model in each category of
implied-volatility matrix are as follows:

1. Let Cf, , is market price of the nth option contract in category i, Cf, , (80, o) is
the model option price determined by CEV model in Eq. (16.17) with the initial
value of parameters, § = &y and « = . For nth option contract in category
i at date ¢, the difference between market price and model option price can be
described as:

&, =Ch,, —Ch, (8. a0) (16.18)
2. For each date ¢, we can obtain the optimal parameters in each group by solving
the minimum value of absolute pricing errors (minAPE) as:

N
minAPE;, = min) _ ¢l | (16.19)

in,t
8o.@0 '
n=1

Where N is total number of option contracts in group i at time ¢.

3. Using optimization function in MATLAB to find a minimum value of the
unconstrained multivariable function. The function code is as follows:

[x, fval] = fminunc (fun, xp) (16.20)

where x is the optimal parameters of CEV model, fval is the local minimum value
of minAPE, fun is the specified MATLAB function of Eq. (16.19), and x is the
initial points of parameters obtained in step (1). The algorithm of fminunc function
is based on quasi-Newton method.

16.4 Empirical Analysis

In the empirical study section, we present the forecastability of S&P 500 index
option price for two alternative models: time-series and cross-sectional analysis and
CEV model. First, the statistical analysis for time-series futures option prices of
the contracts expired on March, June and September in both 2010 and 2011 is
summarized. Then we use time-series and cross-sectional models to analyze each
individual contract and compare their forecastability of I'V. Finally, we estimated IV
by using CEV model and compare its pricing accuracy with Black model.
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Table 16.1 Distributional Statistics for Individual IV’s

Studentized

Option Series* Mean Std. Dev. CV®  Skewness Kurtosis Range® Observation
Call Futures Options in 2010

MARI10 1075 0.230 0.032 0.141 2.908 14.898 10.336 251
JUN10 1050  0.263 0.050 0.191 0.987 0.943 6.729 434
JUN10 1100  0.247 0.047 0.189  0.718 —0.569 4.299 434
SEP10 1100 0.216 0.024 0.111 0.928 1.539 6.092 259
SEP10 1200 0.191 0.022 0.117 0.982 2.194 6.178 257
Call Futures Options in 2011

MARI11 1200 0.206 0.040 0.195 5.108 36.483 10.190 384
MARI11 1250 0.188 0.027 0.145 3.739 25.527 10.636 324
MARI11 1300 0.176 0.021 0.118 1.104 4.787 8.588 384
JUNI1 1325  0.165 0.016 0.095 —1.831 12.656 10.103 200
JUNI1 1350  0.161 0.018 0.113 —0.228 1.856 8.653 234
SEP11 1250 0.200 0.031 0.152 2274 6.875 7.562 248
SEP11 1300 0.185 0.024 0.131 2.279 6.861 7.399 253
SEP11 1350 0.170 0.025 0.147 2212 5.848 6.040 470

2Option series contain the name and code of futures options with information of the strike price and
the expired month, for example, SEP11 1350 represents that the futures call option is expired on
September, 2011 with the strike price $1350 and the parentheses is the code of this futures option
in Datastream

PCV represents the coefficient of variation that is standard deviation of option series divided by
their mean value

“Studentized range is the difference of the maximum and minimum of the observations divided by
the standard deviation of the sample

16.4.1 Distributional Qualities of IV time series

A summary of individual IV distributional statistics for S&P 500 index futures call
options in 2010 and 2011 appears in Table 16.1. Comparing the mean IV’s across
time periods, it is quite evident that the 2011 IV’s are significantly smaller. Also,
the time-to-maturity effect observed by Park and Sears (1985) can be identified.
The September options in 2011 possess higher mean I'V’s than those maturing in
June and March with the same strike price.

The other statistical measures listed in Table 16.1 are the relative skewness
and relative kurtosis of the IV series, along with the studentized range. Skewness
measures lopsidedness in the distribution and might be considered indicative of a
series of large outliers at some point in the time series of the IV’s. Kurtosis measures
the peakedness of the distribution relative to the normal and has been found to
affect the stability of variance (Lee & Wu, 1985). The studentized range gives an
overall indication as to whether the measured degrees of skewness and kurtosis have
significantly deviated from the levels implied by a normality assumption for the IV
series.
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Using significance tests on the results of Table 16.1 in accordance with Jarque—
Bera test, the 2010 and 2011 skewness and kurtosis measures indicate a higher
proportion of statistical significance. We also utilize simple back-of-the-envelope
test based on the studentized range to identify whether the individual IV series
approximate a normal distribution. The studentized range larger than 4 in both 2010
and 2011 indicates that a normal distribution significantly understates the maximum
magnitude of deviation in individual IV series.

As a final point to this brief examination of the IV skewness and kurtosis, note the
statistics for MAR10 1075, MAR11 1200, and MAR11 1250 contracts. The relative
size of this contract’s skewness and kurtosis measures reflect the high degree of
instability that its IV exhibited during the last 10 days of the contract’s life. Such
instability is consistent across contracts.

However, these distortions remain in the computed skewness and kurtosis
measures only for these particular contracts to emphasize how a few large outliers
can magnify the size of these statistics. For example, the evidence that S&P 500
future price jumped on January 18, 2010 and plunged on February 2, 2011 cause
the I'V of these particular contracts sharply increasing on that dates. Thus, while still
of interest, any skewness and kurtosis measures must be calculated and interpreted
with caution.

16.4.2 Time-Series and Cross-Sectional Analysis for IV Series

The optimal ARMA models for the IV series are based on the goodness-of-fit
indicators, AIC and SBC, and the forecastability indicators, root mean square error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).

Table 16.2 shows the results of the regression model in Eq. (16.16). The
time-series predictor variables calculated by different forecasting models are all
significant, which should come as no surprise—IV depends on past IV value.
However, the fact that other regressors were found to be significant indicates that
not all of the variation in IV series is explained by the past. Time-to-maturity has
the predicted positive effect. The closer an option is to expiration, the lower the
IV. The in-the-money effect is significantly positive; however, the out-of-the-money
give mixed insignificant influence on IV series. Merton (1976) shows that large
deviations from the strike price tend to bias the BSM theoretical price downward.
Therefore it is logical to expect the IV of the deep-in-the-money and far-out-of-
the-money contracts to be higher because the writer of these calls runs a greater
risk of being stuck in his position. However, in this study, the selected IV time
series calculated by BSM model cannot show the downward characteristic obviously
because the longest trading data is the option contract with the strike price close to
the underlying asset.

The coefficients on the standard deviation of the IV variables give the signif-
icantly positive signals based on previous 20 observations, but show the negative
effect based on previous 5 observations when the short term effect is of significance.
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The skewness and kurtosis terms have consistently slight effects over two sample
periods even though sometimes the effects have statistical significance. Perhaps
what can be said about the lower relationship between these two statistic measures
and predicted IV is that the influence of the outliers bringing about the skewness and
kurtosis is already captured by other independent variables such as the time-series
predictor estimated by forecasting model or the standard deviation of IV series. The
coefficient on the standard deviation of the rate of returns of the underlying future
price only has significantly large positive effect on IV for the 20-day measure. The
strong relationship to historical standard deviations of underlying assets seems that
the I'V series not only response to market deviation from the functional specification
of the BSM model but also reflect the market assessment of the standard deviation
of underlying assets.

The weekday effect dummies indicate a significantly small Friday effect where
the IV are slightly higher. This may be related to the fact that certain economic
announcements are made on Friday such as employment situation or lag response
to the announcements made on Thursday such as money supply and jobless claims.
These economic announcements will alter the market perception of asset price
volatility, especially currently the situation of economics that just came through
the financial crisis and is suffering from European sovereign-debt crisis. The Friday
effect might also be related to option market inactivity the day before the weekend.
Further study may investigate this apparent weekday effect to explain why Friday’s
market may be out of line with that of other days.

Whether the estimated models change significantly over time is an important
question. The parameter estimates obtained for this cross-sectional time-series
model seems not consistent in 2010 and 2011 sample periods. A Chow test®
statistic indicating structural change based on five forecasting methods are obtained
in Table 16.2 for the 2010 and 2011 regressions. These values exceed the table
value of 2.04 for an F random variable at the 99 % level. The chow test indicated
the significant change of structure in the cross-sectional time-series predictive
regression model on 2010 and 2011. It would therefore be wise for the practitioner
to update parameter estimates periodically even though both 2010 and 2011 sample
periods are suffering from global financial crisis.

16.4.3 Ex-Post Test for Forecastability of Time-Series
and Cross-Sectional Regression Models

In this section, the practical monetary value of the IV estimates versus more naive
methods is tested, to determine which might be superior from a trader’s point of

/ ’
SChow test F, ,—p = 5F f where e..ex is restricted SSE, ¢’e is unrestricted SSE, « represents
4q e/ (n—k) P

the number of restrictions, and k is number of regression coefficients estimated in unrestricted
regression.
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view. In addition, we hope that these results will further support the theoretical
and practical superiority of using individual I'V estimates versus some weighted-IV
measure.

Trading rule tests in this chapter utilize seven different estimates for IV as
follows: (1) a 5-day equally weighted moving average of the IV (MAVYS); (2) a
5-day exponentially weighted average of the IV (EMAS5); (3) a 1-day lag of the
actual IV for the option (LIV); (4) 1-day ahead simple regression forecasts of the
IV (RGN); (5) 1-day ahead ARMA forecasts of the IV (ARMA); (6) 1-day ahead
cross-sectional time-series predictive regression forecasts of the IV based on Eq.
(16.16) (CSTS); (7) a simple-constant mean of an individual IV time series for the
estimated IV of that option (MEAN).

The trading rule used is simply to buy underpriced and sell overpriced options,
while taking an opposite position in the underlying futures contract according to
the hedge ratio computed by the estimated IV. The holdout periods for each option
are 20 trading days. Here the day count convention in Black option pricing model
is used actual/actual basis. Mispricing will be identified by comparing the market
price for an option with the price calculated by Black option pricing model using
one of the seven IV estimates. The overpriced (underpriced) options are defined as
the situation that the theoretical price calculated by Black option pricing model is
smaller (larger) than the market price. The trading behavior is buying (selling) the
underpriced (overpriced) future option and selling (buying) S&P 500 index future
for hedge. In order to magnify the mispricing as might be seen from the eyes of
a trader, ten options and ten times the hedge ratio of futures are sold or bought in
opposite position respectively in each transaction. Positions are closed out once the
absolute value of mispricing diminishes to a predetermined minimum level equal to
0.1. If the mispricing has reversed and is of a great enough significance larger than
0.1, the trading rule is utilized again.

In order to ascribe as much realism as possible to these tests, the following market
trading costs are considered. Transaction fee per transaction of $2.3 is determined
by CME group which provides CME Globex trading platform for 24-h global
access to electronic markets. Total transaction fees is transaction costs of option
position + transaction costs of future position:

> ($2.3x10) + ) ($2.3 x 10 x hedge ratior,)

i=1 i=1

where 7 is the total number of times a position is opened at time 7.

Although a portion of the margin required of a trader enter into a futures position
can be put up in the form of interest earning T-bills, a substantial portion required for
maintaining the margin account by the clearinghouse must be strictly in cash even
for a hedge or spread position. Consequently, there is a real interest cost involved,
for which we will further reduce gross trading income:

Margin Interest Costs = Z (RMM x NF7, x RTi X ‘L’i)

i=1
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where RMM is required maintenance margin from CME group,” NFz; indicate the
number of futures contracts entered into trading which is equal to ten times hedge
ratio at time 7; Ry is the risk free rate defined as the 3-month T-bill rate used in
Black option pricing model, t; is the length of futures position holding until maturity
in annual terms, and 7 is the total number of times a futures position is entered.

Furthermore, there is little assurance that one could buy or sell these contracts and
expect to receive the closing prices reported in the paper when the market reopens
the next morning. To approximate such market costs the position is penalized each
time a futures position is entered and existed by “one tick” equal to 0.1 index
points = $25 per contract®:

Futures Liquidity Costs = Z ($50 x NF7,)

i=1

where $50 = 2 x $25 represented the entered and existed cost by one tick, the market
value of two price ticks; NFy; is defined as the number of futures contracts entered
into trading which is equal to ten times hedge ratio at time 7;, and n is the number
of times a futures position is entered. More severe liquidity and timing costs are
calculated and deducted for each option transaction:

Option Liquidity costs = Z [$250 x (NEPA7, + NMMOy;)]

i=1

where $250 =10, (number of options bought or sold) x $250 (the market value
multiplier for the option premium) x 0.1 (one tick price as the correspondingly
liquidity), NEPA represented the number of exercise prices in out-of-the-money
options are $5 away from underlying future prices at time 7;, and NMMO
represented the percentage of maturity months out. For example, a option assumed
to be expired on September 2010 and this option start to be traded on February
2010, then the NMMO on June 2010 is equal to the number of month of the period
between February and June divided by the number of month of the period between
February and September, that is, (6-2)/(9-2) =4/7.

The test results are summarized in Tables 16.5. We use seven alternative methods,
a cross-sectional time-series regression and six time-series models, to compute
tomorrow’s IV for each contract. The cross-sectional time-series (CSTS) model

"The minimum required maintenance for S&P 500 index futures is various in different period. For
example, from Jan 28, 2008 to Oct 1%, 2008, the maintenance cost is $18,000 per future contract.
However, the period during Oct 1%, 2008 to Oct 17, 2008, the required maintenance is changed to
$20,250. The maintenance costs are $22,500, $24,750, $22,500, and $20,000 for other periods Oct
17, 2008-Oct 30, 2008; Oct 30, 2008—Mar 20, 2009; Mar 20, 2009-Jun 2", 2011; and Jun 2™,
2011 until now.

8The detailed contract specifications for S&P 500 futures and options on futures can be found in
CME group website: http://www.cmegroup.com/trading/equity-index/files/SxP500_FC.pdf
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Table 16.3 Cumulative survey of trading results for samples in holdout period

Gross value  Total trading  Net value of ~ Number of  Net profit or

IV estimate of all trades  costs all trades trade made  loss per trade
(a) 2010

MAVS 1,673,339 785,469.1 887,869.8 95 9,345.997
EMAS5 1,185,108 735,197.1 449,910.6 95 4,735.901
LIV 1,325,712 405,671 920,041.3 95 9,684.645
RGN 1,077,990 432,747.3 645,243.1 95 6,792.033
ARMA 535,833.8 462,131 73,702.82 95 7,75.8192
CSTS 413,830.8 618,588.4 —204,758 95 —2,155.34
MEAN 454,006.3 1,714,191 —1,260,185 95 —13,265.1
(b) 2011

MAVS5 840,926.2 706,118.6 134,807.6 152 886.8921
EMAS5 —794,276 784,070.1 —1,578,346 152 —10,383.9
LIV 2,433,862 500,012.3 1,933,850 152 12,722.7
RGN 3,170,605 1,090,987 2,079,618 152 13,681.7
ARMA 679,499.3 786,602.5 —107,103 152 —704.63
CSTS —4,119,967  600,665.3 —4,720,633 152 —31,056.8
MEAN 4,168,410 2,752,602 1,415,807 152 9,314.522

The holdout period is the last 20 days of each S&P 500 index futures option contracts. There
are seven IV estimates for the trading rule test: MAVS is the 5-day moving averages method,
EMAS is the 5-day exponential moving averages method, LIV is Previous IV method, RGN
is the Regression method, ARMA is autoregressive-moving-average model, CSTS is the
cross-sectional time-series predictive regression model represented in Eq. (16.16) where
using ARMA as predictor method, and MEAN is the constant value over the entire period
equal to the mean of individual IV series. The definitions of first five IV estimates are
indicated in Tables 16.2 and 16.3. The gross value of all trades are included the bought
and sold price of options plus the value in the end of maturity if the trades are not closed out
before maturity. Total trading costs are included the total transaction fees, margin interest
costs, future liquidity costs, and option liquidity costs. The net value of all equals to gross
value of all trades minus total trading costs. The net profit or loss per trade is the value of
net value of all trades divided by number of trade

utilized some of the insights of time-series analysis as would be impounded in
the optimal time-series predictors, ARMA model. Also, it takes into account the
historical 5-days and 20-days standard deviation of the continuous return for the
underlying futures contract, the short-term variability and skewness and kurtosis
of the IV, the time-to-maturity, and weekday effects. Table 16.3a, b summarize
the cumulative trading results for the selected options contract in Table 16.1. For
both years, EMAS, LIV, and RGN perform better than the sophisticated model
such as cross-sectional time-series predictive regression. The results implied that
the ARMA model may have over-fitting problem and thus make CSTS model
perform worse. The worse prediction is using MEAN model to estimate IV. MEAN
model’s IV is constant for entire period of contract; thus, MEAN model neither
deal with the fluctuation of option market nor response to everyday’s new important
information. It also implied that the constant volatility setting in BSM model may
be misspecified.
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Fig. 16.1 Implied volatilities in black model

16.4.4 Structural Parameter Estimation and Performance
of CEV Model

In Fig. 16.1, we find that each contract’s Black IV varies across moneyness and
time-to-maturity. This graph shows volatility skew (or smile) in options on S&P
500 index futures, i.e., the implied volatilities decrease as the strike price increases
(the moneyness level decreases).

Even though everyday implied volatility surface changes, this characteristic still
exists. Therefore, we divided future option contracts into a six by four matrix based
on moneyness and time-to-maturity levels when we estimate implied volatilities
of futures options in CEV model framework in accordance with this character.
The whole option samples expired within the period of 2010 to 2013 contains
30,364 observations. The whole period of option prices is from March 19, 2009
to November 5, 2013. The observations for each group are presented in Table 16.4.

Since most trades are in the futures options with short time-to-maturity, the
estimated implied volatility of the option samples in 2009 may be significantly
biased because we did not collect the futures options expired in 2009. Therefore, we
only use option prices in the period between January 1, 2010 and November 5, 2013
to estimate parameters of CEV model. In order to find global optimization instead of
local minimum of absolute pricing errors, the ranges for searching suitable 5y and ¢
are set as §p € [0.01, 0.81] with interval 0.05, and oy € [—0.81, 1.39] with interval
0.1, respectively. First, we find the value of parameters, (§0, @), within the ranges
such that minimize value of absolute pricing errors in Eq. (16.19). Then we use
this pair of parameters, (go,ﬁo), as optimal initial estimates in the procedure of
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Table 16.5 Initial parameters of CEV model for estimation procedure

Time-to-Maturity (TM) TM<30 30=TM=60 TM>60 All TM
Moneyness (S/K ratio)  «g 8o. o 8o o 8o o 8o
S/K ratio >1.01 0.677 0400 0.690 0.433 0.814 0.448 0.692 0.429

098 =S/Kratio=1.01 0.602 0.333 0.659 0.373 0.567 0.361 0.647 0.345
0.95 =S/Kratio<0.98 0.513 0.331 0.555 0.321 0.545 0.349 0.586 0.343
0.9 = S/K ratio <0.95 0.502 0.344 0.538 0.332 0.547 0318 0.578 0.321
S/K ratio <0.9 0.777 0.457 0.526 0468 0.726 0.423 0.709 0.423
All Ratio 0.854 0.517 0.846 0.512 0.847 0.534 0.835 0.504
The sample period of option prices is from January 1, 2010 to November 5, 2013. During the

estimating procedure for initial parameters of CEV model, the volatility for S&P 500 index
futures equals to §,S% !

Table 16.6 Total number of observations and trading days in each group

Time-to-Maturity (TM) TM <30 30=TM=60 TM>60 All TM
Moneyness (S/K ratio) Days Total Obs. Days Total Obs. Days Total Obs. Days Total Obs.
S/K ratio >1.01 172 272 104 163 81 122 249 557

0.98=S/K ratio=1.01 377 1,695 354 984 268 592 448 3,271
0.95=S/K ratio<0.98 362 1,958 405 1,828 349 1,074 457 4,860
0.9=S/Kratio<0.95 315 919 380 1,399 375 1,318 440 3,636

S/K ratio <0.9 32 35 40 73 105 173 134 281
All Ratio 441 4,879 440 4,447 418 3,279 461 12,605
The subsample period of option prices is from January 1, 2012 to November 5, 2013. Total
observations is 13, 434. The lengths of period in groups are various. The range of lengths is from
47 (group with ratio below 0.90 and time-to-maturity within 30 days) to 1,100 (whole samples).
The range of daily observations is from 1 to 30

estimating local minimum minAPE based on steps (1)-(3) in Sect. 16.3.2.3. To
compare with the option pricing performance of Black model, we set the interval
between 0.01 and 0.08 to find optimal implied volatility via estimation procedure
in Sect. 16.3.2.1. The initial parameter setting of CEV model is presented in
Table 16.5.

In Table 16.5, the average sigma are almost the same while the average alpha
value in either each group or whole sample is less than one. This evidence implies
that the alpha of CEV model can capture the negative relationship between S&P
500 index future prices and its volatilities shown in Fig. 16.1. The instant volatility
of S&P 500 index future prices equals to 8§,5*~! where S is S&P 500 index future
prices, 8y and « are the parameters in CEV model. The estimated parameters in
Table 16.9 are similar across time-to-maturity level but volatile across moneyness.

Because of the implementation and computational costs, we select the sub-period
from January 2012 to November 2013 to analyze the performance of CEV model.
The total number of observations and the length of trading days in each group are
presented in Table 16.6. The estimated parameters in Table 16.7 are similar across
time-to-maturity level but volatile across moneyness. Therefore, we investigate the
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performance of all groups except the groups on the bottom row of Table 16.8. The
performance of models can be measured by either the implied volatility graph or
the average absolute pricing errors (AveAPE). The implied volatility graph should
be flat across different moneyness level and time-to-maturity. We use subsample
like Bakshi et al. (1997) and Chen et al. (2009) did to test implied volatility
consistency among moneyness-maturity categories. Using the subsample data from
January 2012 to May 2013 to test in-the-sample fitness, the average daily implied
volatility of both CEV and Black models, and average alpha of CEV model are
computed in Table 16.7. The fitness performance is shown in Table 16.8. The
implied volatility graphs for both models are shown in Fig. 16.2. In Table 16.7, we
estimate the optimal parameters of CEV model by using a more efficient program.
In this efficient program, we scale the strike price and future price to speed up the
program where the implied volatility of CEV model equals to § (ratio“_l), ratio is
the moneyness level, 8 and « are the optimal parameters of program which are not
the parameters of CEV model in Eq. (16.17). In Table 16.8, we found that CEV
model perform well at in-the-money group.

Figure 16.2 shows the IV computed by CEV and Black models. Although
their implied volatility graphs are similar in each group, the reasons to cause
volatility smile are totally different. In Black model, the constant volatility setting
is misspecified. The volatility parameter of Black model in Fig. 16.2b varies across
moneyless and time-to-maturity levels while the IV in CEV model is a function
of the underlying price and the elasticity of variance (alpha parameter). Therefore,
we can image that the prediction power of CEV model will be better than Black
model because of the explicit function of IV in CEV model. We can use alpha to
measure the sensitivity of relationship between option price and its underlying asset.
For example, in Fig. 16.2¢c, the in-the-money future options near expired date have
significantly negative relationship between future price and its volatility.

The better performance of CEV model may result from the over-fitting issue
that will hurt the forecastability of CEV model. Therefore, we use out-of-sample
data from June 2013 to November 2013 to compare the prediction power of Black
and CEV models. We use the estimated parameters in previous day as the current
day’s input variables of model. Then, the theoretical option price computed by
either Black or CEV model can calculate bias between theoretical price and market
price. Thus, we can calculate the average absolute pricing errors (AveAPE) for both
models. The lower value of a model’s AveAPE, the higher pricing prediction power
of the model. The pricing errors of out-of-sample data are presented in Table 16.9.
Here we find that CEV model can predict options on S&P 500 index futures more
precisely than Black model. Based on the better performance in both in-sample and
out-of-sample, we claim that CEV model can describe the options of S&P 500 index
futures more precisely than Black model.
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Table 16.9 AveAPE performance for out-of-sample

Time-to-Maturity (TM) TM <30 30=TM=60 TM>60 All TM
Moneyness (S/Kratio) CEV  Black CEV Black CEV Black CEV Black
S/K ratio >1.01 322 362 338 494 896 13.86 4.25 547

098 =S/Kratio=1.01 221 235 263 253 3.47 3.56 272 275
0.95=S/Kratio<098 0.88 1.04 142 146 1.97 195 144 145
0.9 = S/K ratio <0.95 034 053 061 0.62 1.40 1.40 0.88 0.90
S/K ratio <0.9 023 079 025 030 1.28 1.27 1.03 1.66

16.5 Conclusion

The purpose of this essay has been to improve the interpretation and forecasting of
individual implied volatility (IV) for call options on S&P500 index futures in 2010
to 2013. The two alternative methods used in this essay are cross-sectional time-
series analysis and CEV model. These two alternative approaches give different
perspective of estimating I'V. The cross-sectional time-series analysis focuses on the
dynamic behavior of volatility in each option contracts and captures other trading
behaviors such as week effect and in/out of the money effect. On the other hand,
CEV model generalizes implied volatility surface as a function of asset price.

By empirically explaining the composition through time-series analysis and
cross-sectional time-series regression models, the disadvantages to evaluating an
option IV by Black model have been demonstrated. More importantly, the results
based on our trading strategy provide some evidence as to how the Black option
pricing model might be misspecified, or jointly, how the market might be inef-
ficient. Though the original model implicitly assumes a frictionless market and
a constant volatility term, market realities along with past studies would not be
able to substantiate these types of assumptions. The forecasting performances of
seven time-series regression models based on our trading strategy show that the
simple regression models perform better than sophisticated cross-sectional time-
series models because of over-fitting problem in the advanced models. In addition,
although our trading rules based on the prediction of these models can make profit,
the net profit depends on the transaction costs. Therefore, the setting of trading
strategy should be necessarily adjusted to the transaction costs.

We also show that CEV model performs better than Black model in aspects of
either in-sample fitness or out-of-sample prediction. The setting of CEV model is
more reasonable to depict the negative relationship between S&P 500 index future
price and its volatilities. The elasticity of variance parameter in CEV model captures
the level of this characteristic. The stable volatility parameter in CEV model in our
empirical results implies that the instantaneous volatility of index future is mainly
determined by current future price and the level of elasticity of variance parameter.

In sum, we suggest predict individual option contract by using simple regression
analysis instead of advanced cross-sectional time-series model. Even though the
moneyness and week effect have significant influence on index future option prices,
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the over-fitting problem in an advanced cross-sectional time-series model will
decrease its pricing forecastability. With regard to generate implied volatility surface
to capture whole prediction of the future option market, the CEV model is the better
choice than Black model because it not only captures the skewness and kurtosis
effects of options on index futures but also has less computational costs than other
jump-diffusion stochastic volatility models. In future research, we can apply CEV
model and its Greek measures to other liquid option markets to test market efficiency
based on our trading rules.
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