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Foreword

My memory, possibly faulty, is that I first met Jack Treynor at a meeting of the
Institute for Quantitative Research in Finance (“Q Group”). It was most likely the
meeting held at the Camelback Inn in Scottsdale, Arizona, in 1975. As I recall it
was billed as a meeting to promote the reinvigoration of the group. The new Q
Group leaders felt that there was a bigger role than previously for the group of like-
minded practitioners and academics to collectively discuss how the new theories
then emerging from academia could best be applied in practice. Many leading
practitioners and several well-known academics were part of this new orientation.
Among them was Jack.

Later, when I was fortunate to know him better and particularly after I got to
see him in action presenting his ideas and insights on a broad range of topics
from investor behavior and market structure to capital market theory I should
not have been surprised to observe Jack deeply involved in this group. Not only
was he then editor of the Financial Analysts Journal (FAJ), but it was clear
that he was held in very high esteem for his creativity and innovation by the
attendees. It was obvious that he felt passionately about the theoretical foundations
of financial economics—and indeed had played a major role in many of the
most significant developments—but he was also equally passionate about the “best
practices” of applying these theoretical developments in the real world. As a result
his institutional influence was deep and profound, while his counsel and individual
guidance widely sought.

As a young Ph.D. student in Operations Research, I was energized to observe
Jack’s effortless move between theory and practice, his powerful intellect and
relentless drive to understand the intricacies of markets. He had studied mathematics
at Haverford College and earned an M.B.A. with Distinction from Harvard Business
School before being hired by the Operations Research Department at Arthur D.
Little. There, as reported by Franco Modigliani, Jack had developed a capital asset
pricing model (CAPM) in 1962 when searching for the applicable discount rate to
be used in capital budgeting projects.
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vi Foreword

At the Q Group meeting where I first met Jack, Barr Rosenberg and I had
been invited to give a talk on some of our work at Barra, Inc. The subject
matter included some of the real-world applications of many of the theoretical
innovations that Barr had made as a member of the Business School faculty at UC
Berkeley, particularly his work in the estimation of investment risk using a multiple
factor methodology.1 This approach enabled the various components of risk to be
decomposed and potentially separately measured and controlled. In particular, the
approach enabled the contemporaneous prediction of risk that could be attributed
to active management of the portfolio. At the time of the talk, we had built a
portfolio analysis tool that estimated active risk and, by implication, suggested
the efficacy of active management, as well as a portfolio optimization tool that
built optimal equity portfolios with, for example, different risk tolerances towards
the separate components of risk. This enabled portfolios to be constructed that
exhibited, for example, high aversion towards specific risk but less aversion towards
risk arising from style exposures (i.e., extra-market components of covariance) that
were perceived to be associated with superior returns.

Jack, unsurprisingly, had also been involved in this area. In 1973 he had published
an article entitled “How to Use Security Analysis to Improve Portfolio Selection,”
coauthored with Fischer Black and published in the Journal of Business. The goal
of the paper, as described, was to explore the link between the judgmental work of
the security analyst and the more objective and quantitative approach of Markowitz
and others. It was a theoretical paper that was based on a model that split an asset’s
excess return into two components, a systematic component and an independent
component of return. The authors further interpreted the independent return as
the sum of an appraisal premium and residual error, which was their approach to
modeling the value of security analysis. While they didn’t relate the independent
return to microeconomic characteristics of companies or residual market factors as
we attempted, their approach was also quite consistent and confirmatory of some
of our thinking. In particular, our approach of measuring the active portfolio risk
directly (as distinct from the total portfolio risk measurement) in order to understand
the degree and effectiveness of active portfolio management.

This path of research led directly to the emergence at Barra, Inc. of new and
more powerful investment technology based on the paradigm of a multiple factor
model to understand and measure a wide variety of portfolio and investment strategy
attributes. These included the measurement of portfolio risk, construction of tailored
portfolios that were optimized to trade off sources of expected return versus the
resulting active risk, identification and estimation of factors of expected return,
the measurement of efficient measures of portfolio and factor-related performance,
and the analysis of problems inherent in employing multiple managers for a single

1E.g., Rosenberg, B. (1974, March). Extra-market components of covariance in security returns.
Journal of Financial and Quantitative Analysis, 9(2), 263–274.
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investment portfolio. These problems were thoroughly researched for several asset
classes in multiple countries around the world.2

The widespread adoption of multiple factor models beginning in the 1980s
sparked some confusion as to the relationship between factor models and risk
estimation that results from them, and the CAPM. Jack weighed in on this debate
in an important article published in the May-June 1993 issue of the FAJ. The
article was entitled “In Defense of the CAPM” where he compared the Arbitrage
Pricing Theory (APT), the CAPM in the context of a multiple factor structure. He
writes provocatively that “there is nothing about factor structure in the CAPM’s
assumptions. But there is also nothing about factor structure in the CAPM’s
conclusions.” He then summarizes his position in the statement that “there can be
no conflict between the CAPM and factor structure.”

Later, when I was on the faculty of the Johnson School at Cornell University, I
was invited to organize a conference on the impact of rate of return regulation on
regulated utilities. One of my tasks was to select the keynote speaker. I turned to Jack
and came to recognize his ability to move between different subjects with an ease
and fluency that defied confusion and mystery. Jack with good humor challenged
the audience of senior utility executives to question their preconceived notions as
to both the costs/benefits of regulation and exactly the definition of what should be
regulated in a highly original and thought provoking talk. Later, Jack published a
similar article in the FAJ.3

For the last several years I have focused on understanding the issues related to the
investments of households, their financial goals, and approaches designed to help
individuals achieve the appropriate balance between investing and consumption.
Unfortunately this subject engenders confusion and mystery among both clients
and advisors! It turns out that both individual investors and their advisors owe
a large debt to Jack, who has had an enormous influence on this group, and I
and many others are fortunate to follow him. Using the platform of the FAJ, Jack
(and his pseudonym, Walter Bagehot) made many contributions to help advisors
better understand the impact of financial economics on their environment. Many
of his articles have focused on active vs. passive management and their relative
benefits, the appropriate use of index funds, and the cost of trading. For many years,
advisors and individual investors have found it difficult to reconcile the message
of thoughtful commentators such as Jack that high costs of management and the
bearing of uncompensated risk can only be harmful to long-term performance in a
context that stridently promotes high cost active management.

Interestingly, as the “baby boomers” move to retire and start dis-investing, the
“millennial” generation has become among the wealthiest demographic sectors of
the population. This demographic has grown up to be highly competent technolog-

2For a detailed description of this development see Rudd, A., & Clasing, H. K. Modern portfolio
theory: The principles of investment management (2nd ed.). Andrew Rudd, 1988, or Grinold, R.,
& Kahn, R. (2000). Active portfolio management (2nd ed.). McGraw-Hill.
3Treynor, J. (2003, July–August). How to regulate a monopoly. Financial Analysts Journal.
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ically, self-assured, and more willing to use social media to gain an understanding
of what they don’t know but feel they need to learn. Fittingly, many of them
have discovered the multiple, lost-cost, passive strategies that have recently been
delivered over automated platforms.4 Ironically, as the investment baton is passed
to a new generation of investors, they have adopted many of the strategies consistent
with those advocated by Jack for a successful investment experience.

Walnut Creek, CA, USA Andrew Rudd
June 30, 2015

4I refer to the so-called Robo-Advisors who have gained considerable notoriety over the last few
years. See the Robo-Advisor entry in Wikipedia at https://en.wikipedia.org/wiki/Robo-Advisor.

https://en.wikipedia.org/wiki/Robo-Advisor


Jack Treynor: An Appreciation1

It is standard fare to use the hackneyed phrase “seminal article” when writing
for the commemorative volume of any scholar. But when that scholar is Jack
Treynor, “seminal article” is impressively ambiguous. Which one? Although this
volume celebrates the 50th anniversary of Treynor’s seminal article on performance
measurement, and many of the chapters will focus on this one contribution, I would
like to present a broader appreciation of Mr. Treynor’s collection of many seminal
articles.

Both practitioners and academics can claim Jack Treynor as one of their own.2

In the course of his long and remarkable career, he has been analyst and manager,
editor and professor. And as author of one of the most influential unpublished
articles in the history of financial economics, Jack Treynor occupies a special place
in the firmament of modern finance.

Originally a Midwesterner, Treynor was born in the small Iowa city of Council
Bluffs. Although a suburb of Omaha today, Council Bluffs during Treynor’s
childhood was the fifth largest railroad center in the country, with eight major
railroad lines passing through the city. The rail system was an important icon
of twentieth century engineering and ingenuity, and Treynor’s early exposure to
trains—he still maintains an elaborate Lionel model train set—may well have
contributed to his unique talent and taste for translating theory into practice.

Despite being born into a family of doctors, Treynor had a youthful passion
for physics. None of his high school teachers had the mathematical background
to help him derive the formulas in his physics textbook, so he independently
invented a form of calculus to prove the equations. This aptitude for independent
invention would become a hallmark of Treynor’s extraordinary career. For example,
he won the 1947 Westinghouse (now Intel) Science Talent Search by submitting
a paper on Finite Differential Calculus—he was the winner for Iowa. But even in

1I thank John Guerard and Betsy Treynor for helpful comments and discussion.
2Biographical information taken from AFA (2007), Bernstein (1992), Mehta (2006), and Trammell
(2007).
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x Jack Treynor: An Appreciation

high school, it was apparent that Treynor had wide-ranging interests; his yearbook
entry lists the following activities and accomplishments: “College Prep R.O.T.C.
Major (highest rank), Logo (Literary Society) Spring semester President, Varsity
Debate, Intersociety Debate, Football. Road Show (drama), German Club, Red
Cross Council.”

Fig. 1 Photos of Jack Treynor from his high school yearbook (courtesy of Elizabeth Treynor)

Treynor originally intended to study physics at Haverford College, but he
discovered that the department only had two faculty members and became a
mathematics major instead. Jack was drafted into the Army as a Private immediately
upon graduating from Haverford and served from 1951 to 1953. It took some
time before training and testing in Chicago was completed, after which he was
sent to Monmouth, NJ, to work at the U.S. Signal Corps Laboratory for the
Army. As the R&D engine of the army’s Signal Corps—the division responsible
for radio communications, target detection, missile guidance systems, and other
sensitive military technologies—this laboratory attracted some of the army’s best
and brightest, as well its share of spies and defectors, including the infamous Julius
Rosenberg.

Treynor served his country using his quantitative gifts and was sent to work
with the man in charge of the Signal Corps, not an officer but a math Ph.D.,
and Treynor recalls that he “worked very hard for him.” In fact, he reported to
two individuals, the Ph.D. and another individual who was a military officer and
periodically reminded Treynor that he was “in the Army and had orders to obey.”

At one point during his service, Treynor was designated “Soldier of the Month,”
and although he was never told why, quite likely it was not just because of his
mathematical prowess. He was an unusual person at Monmouth as he had a college
education and had also trained for football. He worked digging ditches during the
summers, delivered purchases from the Council Bluffs department store on his
bicycle up and down the steep Bluffs in any weather, and was very fit. His Army
boss had him lead miles of running and exercises and told the other soldiers they
did not have to keep up with Treynor.

During this time, Treynor also attended a lecture given by Albert Einstein at
Princeton’s Institute for Advanced Studies—an hour’s drive from Monmouth—and
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Fig. 2 The U.S. Signal Corps Laboratories, Monmouth, NJ (source: http://www.armysignalocs.
com/veteranssalultes/sig_corps_korean_war.html)

spoke with Einstein afterward, noting that Einstein had no ego, was more interested
in asking questions, and was intellectually curious. Fortunately for the rest of us in
finance, Treynor was not seduced by this remarkable encounter. Instead, he applied
to Harvard Business School before leaving the army, was accepted in the Fall of
1953, and graduated with Distinction in 1955. Three professors asked Treynor to
stay on at Harvard. He chose to work with the accounting expert Robert Anthony
for a year, writing case studies about manufacturing companies. Anthony believed
that the Boston consulting firm of Arthur D. Little would be an appropriate fit for
Treynor’s talents. Treynor agreed.

Treynor went on to work in the Operations Research department of ADL,
where he learned of the power of the electronic computer, even becoming an early
programmer, although he modestly recounts, “I wasn’t good at it, because I’m not
very logical.”3 During his summer vacations, he would stay with his parents at their
summer home in the Colorado mountains. In 1958, on a trip to the University of
Denver’s library, he came across Franco Modigliani and Merton Miller’s famous
paper, “The Cost of Capital, Corporation Finance and the Theory of Investment.” It
inspired Treynor. Over the next 3 weeks of his Colorado vacation, Treynor made 44
pages of notes on a problem that had been gnawing at him since his days at Harvard
Business School. Today we know Treynor’s solution as the Capital Asset Pricing
Model.

Many great inventions appear almost simultaneously. We think of Alexander
Graham Bell and Elisha Gray inventing the telephone at the same time, or in

3Bernstein (1982, p. 184).

http://www.armysignalocs.com/veteranssalultes/sig_corps_korean_war.html
http://www.armysignalocs.com/veteranssalultes/sig_corps_korean_war.html
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mathematics, the independent discovery of non-Euclidean geometry by János
Bolyai, N.I. Lobachevsky, and Carl Friedrich Gauss. The CAPM has four nearly
simultaneous inventors: William Sharpe, then at the University of Washington,
whose name is most closely associated with its discovery; John Lintner at Harvard
Business School; the Norwegian economist Jan Mossin; and Jack Treynor at ADL,
who spent his weekends at his office composing a rough draft of his result.4

Unknown to Treynor, a colleague in Operations Research sent a version of his
draft to Merton Miller, who sent a copy to Franco Modigliani, who was moving
to MIT. Modigliani read the draft and contacted Treynor, telling him over lunch that
he needed to come to MIT and study economics.

Treynor took an unplanned sabbatical from ADL in 1962 to learn economics
at MIT under Modigliani’s supervision. Who could pass up such an opportu-
nity? Although ADL was next-door neighbors to MIT in physical location, the
two organizations were mentally thousands of miles apart. Modigliani personally
chose Treynor’s courses and his teachers, while Treynor picked up something of
Modigliani’s idiosyncratic way of looking at the world. But possibly the most
important thing Modigliani did for Treynor was to break his draft in half and give it a
good “social science” title. The resulting paper from the first half, “Toward a Theory
of Market Value of Risky Assets,” would become one of the most influential pieces
of financial samizdat of the century. Twentieth-generation copies of Treynor’s paper
were passed around as if they contained the secrets of the Universe. Nothing quite
so grandiose: they merely contained Treynor’s unique formulation of the CAPM
theorem, made several years before William Sharpe.

Treynor presented his paper at the MIT finance faculty seminar in the Fall of
1962 to only mild interest. Not even Modigliani was aware of its full implications.
Treynor returned to ADL after his year at MIT, where his boss asked him, “Does
any of this stuff that you’ve been doing have any commercial value at all?”5 A few
months later, Modigliani informed Treynor about Sharpe’s parallel research, and
suggested they exchange drafts. They did, but Treynor believed that if Sharpe was
going to publish, there was little point for him to publish as well. One wonders what
other treasures might lie in Treynor’s file drawers?

ADL wanted commercial value from Treynor’s scholarship. Treynor gave it to
them in the form of two papers, “How to Rate Management of Investment Funds,”
which this volume commemorates, and “Can Mutual Funds Outguess the Market?”
(with Kay Knight Mazuy), both of which Treynor submitted to the Harvard Business
Review to drum up business for the firm. Not many people at ADL were interested
in Treynor’s papers. However, there was one new employee who was fascinated
by Treynor’s work: Fischer Black. Although they only overlapped at ADL for 18
months, the two men became friends, and the connection was reinforced when
Black was assigned Treynor’s casework after Treynor’s departure for New York
and Merrill Lynch in 1966. Treynor and Black collaborated on three papers, the first

4See French (2003) for a comparison and detailed chronology of Treynor’s early work.
5AFA (2007, p. 12).
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two on their joint model of portfolio construction, and the third a reworking of the
second half of Treynor’s original draft that Modigliani had cut in two at MIT.

Treynor was hired by future Treasury Secretary Don Regan to set up something
new at Merrill Lynch: a computer-intensive quantitative research group. Here again,
Treynor was well ahead of the curve. But Treynor found Merrill Lynch’s corporate
culture too limiting. “If I had stayed at Merrill, they would have made me into a
narrow quant,” he recounted to Peter Bernstein.6 When the opportunity arose for
him to become editor of the Financial Analysts Journal in 1969, he took it, even
though he had never edited anything before.

As editor of the FAJ, Treynor found himself in a position to shape the intellectual
course of an industry. Using his editorship as a bully pulpit, Treynor promoted the
new quantitative ideas in financial analysis over the objections of the old guard. He
also discovered he had a flair for writing. As editor, Treynor sometimes adopted the
nom de plume of “Walter Bagehot,” in homage to the famous nineteenth-century
editor of The Economist. Under this name he was able to write short pieces that
always cut to the heart of the matter, for example, his classic 1971 article, “The
Only Game In Town,” which explained the real economic role of market makers
in less than four pages, anticipating by over a decade the now-standard models by
Kyle (1985), Glosten and Milgrom (1985), Admati and Pfleiderer (1988), and a
substantial portion of the subsequent literature in market microstructure.

Treynor left the editorship of the FAJ in 1981. However, even as president of
his own capital management firm, Treynor still found time to pass on his ideas in
academic settings. The famous illustration of the “wisdom of crowds,” in which a
group of students guess the correct number of jellybeans in a jar, popularized by
the writer James Surowiecki, actually comes from a classroom experiment Treynor
conducted at the University of Southern California. But Treynor has always rejected
the role of the “narrow quant.” During a period under a noncompetition agreement,
Treynor wrote an award-winning play on the Kennedy assassination, and he remains
fascinated by the boogie-woogie piano music of his youth. Jack Treynor’s career is
proof that any starting point can lead to momentous results by the inquiring mind.

Jack Treynor has been an enduring source of inspiration and intellectual lead-
ership for me and for all my colleagues in academic finance and the financial
industry, and it is a pleasure and an honor for me to be part of this wonderful and
timely celebration of his contributions to performance measurement and financial
economics.

MIT Sloan School of Management Andrew W. Lo
MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA, USA
February 10, 2015

6Bernstein (1992, p. 197).
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Tribute to Jack Treynor

In the early 1970s, I was working for CREF under Roger Murray, who at that time
was the CIO. It was a time when investors were focusing on growth stocks or as
some would characterize these as “one decision stocks”: valuation had no place
in investing and there was little consideration of risk. This mania captivated many
investors including the various institutional investment committees.

Roger Murray was interested in bringing some discipline to investing and wanted
to conduct a risk-adjusted performance study. He asked me to head up a newly
created quantitative group and also retained a consultant: Fischer Black. I did not
know Black but quickly found out that he was the “real deal.” It became a very
effective working relationship.

It turned out that Black also knew Jack Treynor very well since they had worked
together on consulting projects in the past. Black initiated contact with Jack to share
his expertise and he became a third party to the project. This was the beginning
of a long-time relationship; I found Jack to be very knowledgeable, insightful, and
creative—traits that he continued to show throughout our subsequent dealings.

In addition, I have had extensive dealings with Jack as editor of the FAJ journal.
He is probably the best I have dealt with over my years of writing and submitting
manuscripts. He could quickly recognize the worth of a manuscript and where it best
fit in a journal; he would also work with me in making improvements. Two articles
that Jack encouraged and helped expedite were “Homogeneous Stock Groups” and
“Can Active Management Add Value,” coauthored with Keith Ambachtsheer. Jack
was also generous in contributing to a publication by McGraw-Hill of a textbook
that I was writing: Portfolio Management.

One of the controversies of the day was the superiority of either the CAPM or
APT. Jack contributed a superb analysis of these two theories in a chapter of my
book. It was a masterful job of comparing these two and showing the equivalence.

In 1976, I was elected Chairman of the “Q” Group the Institute for Quantitative
Research in Finance. At that time, my major goal was to create programs of the
highest quality, ones that would focus on practical applications of economic and
financial theories that had been developing over prior years.

xv
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Fortuitously, Jack had been a long-standing member of “Q”; he was also one of
the pioneers in developing these theories. As editor of FAJ, he had broad contacts
across the investment business as well as academia, so he became a source of ideas
for topics as well as speakers. Within “Q”, Jack soon became an invaluable member
of the research committee and has continued to contribute new ideas and suggestions
for research themes and papers. As of Spring 2015, the “Q” prizes for excellence of
research will be designated in honor of Jack as the Treynor Prize.

“To live for a time close to great minds is the
best kind of education.”

John Buchan

Thanks, Jack : : :

Jim
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Chapter 1
The Theory of Risk, Return, and Performance
Measurement

John Guerard

The purpose of this introductory chapter is to trace the role that Jack Treynor
played in the development and application of the role of risk in stock price
valuation and portfolio performance measurement.1 In the King’s English, the
author seeks to acquaint readers with the modern theory of portfolio theory,
capital market equilibrium, how institutional investors use modern risk models,
and portfolio performance measures. Jack Treynor was at the forefront of these
topics some 50 years ago and almost every investment text, many professional
journal articles, and the investment practitioner community cite his portfolio
performance ratio. One could describe this chapter as “Treynor for the Masses.”
It is recommended that the reader refer to five reference volumes for this
chapter: (1) Treynor on Institutional Investing; (2) William Sharpe, entitled
Portfolio Theory and Capital Markets; (3) The Founders of Modern Finance: Their
Prize-winning Concepts and 1990 Nobel Lectures; (4) the Christopherson,
Carino, and Ferson monograph, entitled Portfolio Performance Measurement and
Benchmarking; and the Connor, Goldberg, and Korajczyk monograph, entitled
Portfolio Risk Analysis.

Harry Markowitz created a portfolio construction theory in which investors
should be compensated with higher returns for bearing higher risk. The Markowitz
mean-variance analysis (1952, 1956, 1959) provided the framework for measuring
risk, as the portfolio standard deviation. To many people, both academicians
and practitioners, the theory of risk measurement and the risk–return trade-off

1The author appreciates comments of Professors C.F. Lee and Bernell Stone, Anureet Saxena
and Dieter Vandenbussche on earlier drafts of this chapter. Any errors remaining are the sole
responsibility of the author.
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begins with Markowitz’s seminal volume, entitled Portfolio Selection (1959). In
Chap. 4, Markowitz introduced the reader to standard deviation and variances,
and covariance and correlations, as measures of dispersion, or risk. Furthermore,
Markowitz stated that analysts could and would provide measures of expected
returns and variances, but could not reasonably provide estimates of covariance,
which could be derived by means of an electronic computer (page 97). Portfolio
construction and management, as formulated in Markowitz seeks to identify the
efficient frontier, the point at which the portfolio return is maximized for a given
level of risk, or equivalently, portfolio risk is minimized for a given level of portfolio
return. The portfolio expected return, denoted by E(RP), is calculated by taking the
sum of the security weight multiplied by their respective expected return:

E .RP/ D
NX

iD1

wiE .Ri/ (1.1)

The portfolio standard deviation is the sum of the weighted securities covariances:

�2
p D

NX

iD1

NX

jD1

wiwj�ij (1.2)

where N is the number of candidate securities, wi is the weight for security i

such that
NX

iD1

wi D 1 indicating that the portfolio is fully invested, and E(Ri)

is the expected return for security i. The Markowitz framework measures risk
as the portfolio standard deviation, a measure of dispersion or total risk. One
seeks to minimize risk, as measured by the covariance matrix in the Markowitz
framework, holding constant expected returns. The decision variables estimated in
the Markowitz model are the security weights. The Markowitz model minimized the
total risk, or variance, of the portfolio. Investors are compensated for bearing total
risk.

Still in Chap. 4, Markowitz suggested that the analyst’s team could develop
graphical relationships between security returns and the change in the index for
each of the other stocks in the analysis (pages 97–98). Thus, we see that Markowitz
anticipated the need for quick and efficient calculation of data and the estimation of
total and systematic, or market-related, risk. Many readers believe that Markowitz
only regarded risk as being measured by variances and covariance, forgetting to read
Chap. 9 on the semi-variance, or “down-side risk.” Harry recognized the existence of
skewness (page 191), and stated quite clearly and correctly that, for a given expected
return and variance, investors prefer portfolios with the greatest skewness to the
right.

Jack Treynor, in 1962, wrote an unpublished paper that greatly influenced
finance, anticipating much of the Capital Asset Pricing Model. This unpublished
paper was published in Korajczyk (1999) and reprinted in Treynor (2008) and the

http://dx.doi.org/10.1007/978-3-319-33976-4_4
http://dx.doi.org/10.1007/978-3-319-33976-4_4
http://dx.doi.org/10.1007/978-3-319-33976-4_9
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paper followed in the steps of Markowitz and Modigliani and Miller (1958, 1963)
and sought to provide the groundwork for a theory of valuation that incorporates
risk. The unpublished paper is “Toward a Theory of Market Value of Risky Assets.”
Jack considered an idealized capital market to establish how risk premiums implicit
in share prices are related to portfolio decisions of investors without the complexities
of taxes and other frictions that may significantly affect share prices in the real
world. Treynor listed his assumptions: (1) no taxes; (2) frictions, such as brokerage
costs; (3) the individual investor cannot influence the price; (4) investors maximize
expected utility, with primary concern for the first and second moments of the
distribution of outcomes; (5) investors are risk-averse; (6) a perfect lending market
exists; and (7) perfect knowledge, interpreted to mean knowledge of present prices,
and what investors know about the future might have a bearing of future investment
values. Treynor stated that the expected yield to the investor is a return on his capital
at the risk-free lending rate and an expected return for risk-taking.2 Treynor held
that the assumption of risk aversion led to, for a given level of expected returns
(performance) in an optimal process, uncertainty is minimized. Jack recognized that
an optimal portfolio minimized the portfolio variance subject to the constraint that
the expected yield was equal to a constant. The use of Lagrange multipliers led to the
result that all efficient combinations have the same ratio of risk premium to standard
error. The tangency of the locus of efficient combinations with a utility isoquant
determined the expected risk premium for the investor in question. In equilibrium,
on page 56 (Treynor, 2008), Jack stated that in his idealized equity market, the risk
premium per share of the individual investment is proportional to the covariance
of the investment with the total market value of all investments in the market.
Thus, in one sentence, Jack Treynor held that the stock risk premium would be
proportional to its covariance with the market, and an early statement of the Capital
Asset Pricing Model (CAPM). Jack held the econometric problems of estimating
the expected performance and covariance were “outside the scope of this study.”3

Portfolio returns were proportional to the covariances among the stocks, not the total
risk of the stocks. The covariances among stocks would be recognized in the coming
months as stock betas. Jack sought to distinguish risk premium for capital budgeting
problems between risks that are assumed independent of market fluctuations (the
general level of the market), and those which are assumed not to be. Investments that
are risky and independent of market fluctuations are called insurable risks and have
a cost of capital equal to the lending rate. Furthermore, the investor holds shares
in each equity proportional to the total number of shares available in the market
(always positive). As one reads Jack Treynor’s 1962 unpublished manuscript, one
sees how he builds upon Markowitz (1959) and Tobin (1958), and is contemporary
with William (Bill) Sharpe (1963, 1964). Sharpe’s (1963) paper, “A Simplified
Model for Portfolio Selection” developed the Diagonal Model in which returns of
securities are related only through common relationships with an underlying factor;
i.e., the stock market as a whole, or Gross National Product (etc.). The portfolio

2Treynor (2008), pages 49–51.
3Treynor, 2008, p. 57.
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variance was the slope of the estimated diagonal model squared times the variance of
the market. The covariance of two securities was proportional to the product of their
respective slopes of the diagonal model. Sharpe noted that the number of estimates
for 100 securities fell from 5150 to only 302, using the Diagonal Market (and for 200
securities, from 2,003,000 to 6002). The time necessary for 100 stock calculations
fell from 33 min with quadratic programming codes to 30 s in the diagonal code. Bill
Sharpe concluded that the diagonal model “appears to be an excellent choice for the
initial practical applications of the Markowitz technique” (page 72).4 In William
Sharpe’s (1964) paper, “Capital Asset Prices: A Theory of Market Equilibrium
under Conditions of Risk,” Bill stated that capital asset prices must change until
a set of prices is “attained for which every asset enters at least one combination
lying on the capital market line,” the line between risk and expected return, with
a intercept of the risk-free rate. Sharpe then demonstrated a consistent relationship
between individual asset’s expected returns and systematic risk, the responsiveness
of an asset’s rate of return to the level of economic activity.5 Prices adjust until there
is a linear relationship between the magnitude of the responsiveness and expected
returns (page 93).

The Treynor (1999), Sharpe (1964), Lintner (1965a), and Mossin (1966) devel-
opments of the Capital Asset Pricing Model (CAPM) held that investors are
compensated for bearing not total risk, but rather market risk, or systematic risk, as
measured by a stock’s beta; investors are not compensated for bearing stock-specific
risk, which can be diversified away in a portfolio context. A stock’s beta is the slope
of the stock’s return regressed against the market’s return. Modern capital theory
has evolved from one beta, representing market risk, to multi-factor risk models
(MFMs), many with four or more betas. Stone (1970) presented a framework for
asset selection and capital market equilibrium.

Investment managers seeking the maximum return for a given level of risk create
portfolios using many sets of models, based both on historical and expectation data.
In this introductory chapter, we briefly trace the evolution of the estimated models
of risk and show how risk models enhance portfolio construction, management, and
evaluation.

Let us briefly provide a roadmap of the remaining chapter for the reader. First,
the reader is introduced to Capital Market Theory and the relationship between the
Capital Market Line and the Security Market Line. Second, we discuss the historical
developments and approaches to estimation of MFMs. We particularly emphasize
the BARRA MFM, as it is the risk model most widely used by asset managers.

4The Founders of Modern Finance: Their Prize-Winning Concepts and 1990 Nobel Lectures, The
Research Foundation of the Institute of Chartered Financial Analysts. 1991.
5Bill Sharpe noted, in his footnote 7, on page 77, that upon completion of his paper, that he learned
that Mr. Jack L. Treynor, of Arthur D. Little, Inc., had independently developed a model similar
in many respects, to his. Jack’s excellent work, he noted is, at present, unpublished. In summary,
Treynor’s portfolio returns were proportional to the covariances among the stocks and market
index, not the total risk of the stocks. The covariances among stocks and the market index would
be recognized in the coming months as stock betas by Bill Sharpe.
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Third, we introduce the reader to an alternative risk model vendor, Axioma, which
estimates statistical and fundamental risk models that minimizes the tracking error
of portfolios for asset managers. Fourth, we review the Lee, Lee, and Liu (2010)
findings on mutual fund performance using the Treynor (1965) and Treynor–Mazuy
(1966) indexes.

1.1 Capital Market Equilibrium

Let us review portfolio theory and capital market equilibrium. Sharpe (1970)
discusses capital market theory in which investors purchase or sell stocks based
on beliefs, or predictions, of expected returns, standard deviations of returns, and
correlation coefficients of returns. Indeed, all investors have identical expectations
of the predictions, known as homogeneous beliefs. Investors seek to maximize
return while minimizing risk. Investors may lend and borrow as much as they desire
at the pure rate of interest, also known as the risk-free rate of interest. Capital
market theory holds that once equilibrium is established, then it is maintained. In
equilibrium, there is no pressure to change. Sharpe states that capital market theory
asks about relationship between expected returns and risk for (1) portfolios and (2)
securities. The implicit question concerns the appropriate measure of risk for (1) a
portfolio and (2) a security. The optimal combination of risky securities is the market
portfolio, which is the percentage of market value of the security as compared
to the total market value of risky securities. The market portfolio includes only
risky assets, and the actual return on the market portfolio is the weighted average
of the expected returns of the risky securities. A linear line passes from the risk-
free interest rate through the market portfolio on a return-risk graph. An individual
preference curve, known as a indifference curve, determines where along this line,
known as the Capital Market Line, the investor seeks to invest. A conservative
investor might seek to lend money at the risk-free rate and invest the remaining
funds in the market portfolio. An aggressive investor might borrow money at the
risk-free rate and invest more funds than his or her initial endowment in the market
portfolio. To increase expected return along the Capital Market Line, the investor
must accept more risk. Conversely, to reduce risk, an investor must give up expected
return. Sharpe (1970) refers to the slope of the Capital Market Line as the price of
risk reduction (in terms of decreased expected return). All efficient portfolios must
lie along the capital market line where:

E
�
Rp
� D RF C re�p (1.3)

Where E(RP) D expected portfolio return,
re D price of risk reduction for efficient portfolios,
RF D pure (risk-free) rate of interest,
and �p D portfolio standard deviation.
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Fig. 1.1 The Security
Market Line

E(Rp)
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The Capital Market Line, Eq. (1.1), summarizes the simple (linear) relationship
between expected return and risk of efficient portfolios. However, such a relation-
ship does not hold for inefficient portfolios and individual securities.

Sharpe (1970) presents a very reader-friendly derivation of the Security Market
Line (SML). Sharpe assumed that total funds were divided between the market
portfolio, M, and security i. The investor is fully invested; hence

XM C xi D 1

The expected return of the portfolio is:

E
�
Rp
� D xiE .Ri/ C xME .RM/ (1.4)

and the corresponding variance of the portfolio, z, is:

�p D xi
2�i

2 C x2
M �2

M C 2xixM�iM�i�M (1.5)

We saw these equations in the previous chapter and see no reason for numbering
them. Assume that E(Ri) is less than E(RM), as is its standard deviation. Sharpe
presents this graphically as Fig. 1.1.

We know that the slope of the curve connecting the security i and market portfolio
M depends upon the relative weights, xi and xM , and the correlation coefficient, �iM ,
between the security i and market portfolio M.

Rewrite xM D 1�xi and � iM D �iM � i �M .

�p D
q

x2
i �2

i C .1 � xi/
2�2

M C 2xi .1 � xi/ �iM

To find an optimal weight:

@�p

@xi
D xi

�
�2

i C �2
M � 2�iM

�C �iM � �2
M

�z
(1.6)
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In order to minimize portfolio risk, one takes the derivative of total risk relative to
the portfolio decision variable, the security weight.

E
�
Rp
� D xiE .Ri/ C .1 � xi/ E .RM/

@Ep

@xi
D E .Ri/ � E .RM/ (1.7)

One uses Eq. (1.2) and the chain rule to give:

@Ep

@�p
D @Ep=@xi

@�p=@xi
D E .Ri/ � E .RM/

xi.�2
i C�2

M��iM/C�iM��2
M

�z

(1.8)

Equation (1.6) shows the trade-off between expected returns and portfolio standard
deviations. At point M, the market portfolio, xi D 0 and �p D �M , thus:

@Ep

@�p
=xiD0 D E .Ri/ � E .RM/�

�iM � �2
M

�
=�M

D ŒE .Ri/ � E .RM/� �M

�iM � �2
M

(1.9)

In equilibrium, curve iM becomes tangent to the capital Market Line. The investor
must be compensated for bearing risk.

The curve iM and slope of the Capital Market Line must be equal. The trade-
off of expected return and risk for the portfolio must be equal to the capital market
trade-off.

Thus

ŒE .Ri/ � E .RM/� �M

�iM � �2
M

D E .RM/ � RF

�M
(1.10)

or

E .Ri/ � RF D
�

E .RM/ � RF

�2
M

�
�iM (1.11)

and

E .Ri/ D RF C ŒE .RM/ � RF�
�iM

�2
M

(1.12)

Sharpe (1970) discusses the stock beta as the slope of the firm’s characteristic line,
the volatility of the security’s return relative to changes in the market return.

The CAPM holds that the return to a security is a function of the security’s beta.

Rjt D RF C ˇj ŒE .RMt/ –RF� C ejt (1.13)
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where Rjt D expected security j return at time t;
E (RMt) D expected return on the market at time t;
RF D risk-free rate;
ˇj D security beta, a random regression coefficient; and
ej D randomly distributed error term.
Let us examine the Capital Asset Pricing Model beta, its measure of system-

atic risk, from the Capital Market Line equilibrium condition, in an alternative
formulation.

ˇj D Cov
�
Rj; RM

�

Var .RM/
(1.14)

E
�
Rj
� D RF C

h
E.RM/�RF

�M
2

i
Cov

�
Rj; RM

�

D RF C ŒE .RM/ –RF�
Cov.Rj; RM/

Var.RM/

E
�
Rj
� D RF C ŒE .RM/ –RF� ˇj (1.15)

Equation (1.13) defines the Security Market Line (SML), which describes the linear
relationship between the security’s return and its systematic risk, as measured by
beta.

1.2 The Barra Model: The Primary Institutional Risk Model

No sooner was the CAPM developed then its estimations became of concern.
Black, Jensen, and Scholes (1972) found second-pass regressions with smaller than
expected slopes and higher than expected intercepts, implying investor were notes
risk-averse as they “should be.” Elton and gruber (1970), Farrell (1974, 1997),
Stone (1974), Rosenberg and McKibben (1973), and Rosenberg (1974) proposed
and estimated alternative forms of multi-factor models. The majority of institutional
investors have been introduced to risk through the Barra risk model. In 1975,
Barr Rosenberg and his associates introduced the Barra US Equity Model, often
denoted USE1. We spend a great deal of time on the Barra USE1 and USE3 models
because 70 of the 100 largest investment managers use the BARRA US Equity
Risk Models.6 The Barra USE1 Model predicted risk and risk was measured by
the company’s fundamentals, as discussed in Rosenberg and Rudd (1977), Rudd
and Clasing (1982).7 The US Equity Models have been updated and enhanced;
USE2 in 1985, USE3 in 1997, and USE4 in 2011. The first Barra Global Equity

6According to BARRA online advertisements.
7There are several definitive treatments of the Barra system. Rosenberg and Marathe (1979) was
a seminal test of capital asset pricing. Rudd and Clasing (1982), Grinold and Kahn (2000), and
Menchero, Morozov, and Shepard (2010) are some of the most cited Barra model publications.
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Risk Model (GEM) was introduced in 1989. The model was estimated via monthly
cross-sectional regressions using countries, industries, and styles as explanatory
factors, as described by Grinold, Rudd, and Stefek (1989). GEM2 was introduced
in 2008 and published in Menchero et al. (2010). GEM2 incorporated several
advances over the previous model, such as improved estimation techniques, higher-
frequency observations, and the introduction of the World factor to place countries
and industries on an equal footing. GEM3 was introduced in 2011. Given that Barra,
now (Morgan Stanley Capital International) MSCI Barra is the most successful
commercial risk model and most widely used risk model, it seems appropriate for
us to discuss its creation and structure. The reader is referred to Rudd and Clasing
(1982) for a complete treatment of the Barra model development. Much of this
section drawn heavily from Rudd and Clasing.

Barr Rosenberg and Walt McKibben (1973) estimated the determinants of secu-
rity betas and standard deviations. This estimation formed the basis of the Rosenberg
extra-market component study (1974), in which security specific risk could be
modeled as a function of financial descriptors, or known financial characteristics
of the firm. The Rosenberg and Marathe (1979) paper developed the econometric
methodology of investment returns analysis. Capital market equilibrium linked both
first (mean) and second (variance) moments. Rosenberg and Marathe discussed
econometric estimation techniques for second moments.8 The total excess return
for a multiple factor model, referred to as the MFM, in the Rosenberg methodology
for security j, at time t, dropping the subscript t for time, may be written:

E
�
Rj
� D

KX

kD1

ˇjk Qfk C Qej (1.16)

The non-factor, or asset-specific, return on security j, is the residual risk of the
security, after removing the estimated impacts of the K factors. The term, f, is
the rate of return on factor k. A single factor model, in which the market return
is the only estimated factor, is obviously the basis of the Capital Asset Pricing
Model. Accurate characterization of portfolio risk requires an accurate estimate of
the covariance matrix of security returns. A relatively simple way to estimate this
covariance matrix is to use the history of security returns to compute each variance,
covariance and security beta. The use of beta, the covariance of security and market
index returns, is one method of estimating a reasonable cost of equity funds for
firms. However, the approximation obtained from simple models may not yield
the best possible cost of equity. The simple, single index beta estimation approach
suffers from two major drawbacks:

• Estimating a covariance matrix for the Russell 3000 stocks requires a great deal
of data;

8Barr Rosenberg and several coauthors put forth some 12–15 papers during the 1973–1979 time
period that created the intellectual basis of the Barra system. The Rosenberg publications were
both academic and practitioner journals.
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• It is subject to estimation error. Thus, one might expect a higher correlation
between DuPont and Dow than between DuPont and IBM, given that DuPont
and Dow are both chemical firms.

Taking this further, one can argue that firms with similar characteristics, such
as firms in their line of business, should have returns that behave similarly. For
example, DuPont and IBM will all have a common component in their returns
because they would all be affected by news that affects the stock market, measured
by their respective betas. The degree to which each of the three stocks responds to
this stock market component depends on the sensitivity of each stock to the stock
market component.

Additionally, one would expect DuPont and Dow to respond to news effecting
the chemical industry, whereas IBM and Dell would respond to news effecting the
Computer industry. The effects of such news may be captured by the average returns
of stocks in the chemical industry and the computer industry. One can account for
industry effects in the following representation for returns:

QrDD D E ŒQrDD� C ˇ � ŒQrM � E ŒQrM��

C 1 � ŒQrCHEMICAL � E ŒQrCHEMICAL�� C 0 � ŒQrC � E ŒQrDD�� C �P
(1.17)

where:
QrDD D DD’s realized return,
QrM D the realized average stock market return,
QrCHEMICAL D realized average return to chemical stocks,
QrC D the realized average return to computer stocks,
E[.] D expectations
“DD D DD’s sensitivity to stock market returns, and
�DD D the effect of DD specific news on DD returns.
This equation simply states that DD’s realized return consists of an expected

component and an unexpected component. The unexpected component depends
on any unexpected events that affect stock returns in general ŒQrM � E ŒQrM��, any
unexpected events that affect the chemical industry ŒQrCHEMICAL � E ŒQrCHEMICAL��,
and any unexpected events that affect DD alone (�DD). Thus, the sources of variation
in DD’s stock returns, are variations in stock returns, in general, variations in
chemical industry returns, and any variations that are specific to DD. Moreover,
DD and Dow returns are likely to move together because both are exposed to stock
market risk and chemical industry risk. DD, IBM, and D, Dominion Resources,
on the other hand, are likely to move together to a lesser degree because the only
common component in their returns is the market return.

Investors look at the variance of their total portfolios to provide a comprehensive
assessment of risk. To calculate the variance of a portfolio, one needs to calculate
the covariances of all the constituent components. Without the framework of a
multiple-factor model, estimating the covariance of each asset with every other
asset is computationally burdensome and subject to significant estimation errors.
The Barra MFM simplifies these calculations dramatically, replacing individual
company profiles with categories defined by common characteristics (factors). The
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Fig. 1.2 The Barra MFM Risk Model

specific risk is assumed to be uncorrelated among the assets and only the factor
variances and covariances are calculated during model estimation (Fig. 1.2).

The multiple-factor risk model, significantly reduces the number of calculations
inherent in covariance analyses. For example, in the US Equity Model (USE3),
65 factors capture the risk characteristics of equities. This reduces the number of
covariance and variance calculations; moreover, since there are fewer parameters
to determine, they can be estimated with greater precision. The BARRA risk
management system begins with the MFM equation:

Qri D XQf C Qu (1.18)

where:
Qri D excess return on asset i,
X D exposure coefficient on the factor,
Qf D factor return, and
ũ D specific return.
Substituting this relation in the basic equation, we find that:

Risk D Var .Qri/ (1.19)

D Var
�
XQf C Qu� (1.20)

Using the matrix algebra formula for variance, the risk equation becomes:

Risk D XFXT C � (1.21)
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where:
X D exposure matrix of companies upon factors,
F D covariance matrix of factors,
XT D transpose of X matrix, and
� D diagonal matrix of specific risk variances.
This is the basic equation that defines the matrix calculations used in risk analysis

in the BARRA equity models.9 Investment managers seek to maximize portfolio
return for a given level of risk. For many managers, risk is measured by the BARRA
risk model.10

The most frequent approach to predict risk is to use historical price behavior in
the estimation of beta. Beta was defined as the sensitivity of the expected excess rate
of return on the stock to the expected excess rate of return on the market portfolio.
A major assumption has to be made to enable average (realized) rates of return to be
used in place of expected rates of return, which, in turn, permits one to use the slope
of regression line (estimated from realized data) to form the basis for a prediction
of beta.

If this assumption, which essentially states that the future is going to be similar
to the “average past,” is made, then the estimation of historical beta proceeds as
follows. When more data points are used, the accuracy of the estimation procedure
is improved, provided the relationship being estimated does not change. Usually the
relationship does change; therefore, a small number of most recent data points is
preferred so that dated information will not obscure the current relationship. It is
usually accepted that a happy medium is achieved by using 60 monthly returns.11

The security series is then regressed against the market portfolio series. This
provides an estimate of beta (which is equivalent to the slope of the characteristic
line) and the residual variance.

It can be shown that if the regression equation is properly specified and certain
other conditions are fulfilled, then the beta obtained is an optimal estimate (actually,
minimum-variance, unbiased) of the true historical beta averaged over past periods.
However, this does not imply that the historical beta is a good predictor of future
beta. For instance, one defect is that random events impacting the firm in the

9Markowitz discusses the MFM formulation in his second monograph,
Mean-Variance Analysis in Portfolio Choice and Capital Markets, New Hope, PA: Frank J.
Fabozzi Associates, 2000), Chapter 3, pp. 45–47. The Markowitz (1987, 2000) Mean-Variance
Analysis volume requires great patience and thought on the part of the reader, as noted by Bill
Sharpe in his foreword to the 2000 edition.
10Jose Menchero and his colleagues at BARRA authored the “Global Equity Risk Modeling”
article in the Markowitz volume, estimated an eight-risk global index model in the spirit of the
Rosenberg USE3 model, see Guerard (2010).
11We have glossed over a number of econometric subtleties in these few sentences. Those readers
who wish to learn more about these estimation difficulties are directed toward the following
articles and the references contained there: Merton Miller and Myron Scholes, “Rates of Return
in Relation to Risk: A Reexamination of Recent Findings,” in Studies in The Theory of Capital
Markets, ed. Michael Jensen (New York: Praeger Publishers, 1972), pp. 47–48 and Eugene F.
Fama, Foundations of Finance (New York: Basic Books, 1976), Chapter 4.
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past may have coincided with market movements purely by chance, causing the
estimated value to differ from the true value. Thus, the beta obtained by this method
is an estimate of the true historical beta obscured by measurement error. Rudd and
Clasing (1982) discussed beta prediction with respect to the use of historic price
information. Three possible prediction methods for beta were suggested. These are:

1. Naïve: b̌
j D 1.0 for all securities (i.e., every security has the average beta).

2. Historical: b̌
j D Hb̌j, the historical beta obtained as the coefficient form an

ordinary least squares regression.

3. Bayesian adjusted beta: b̌
j D 1:0 C BA

�
Hb̌j � 1

�
, where the historical betas

are adjusted toward the mean value of 1.0.

In each case, the prediction of residual risk is obtained by subtracting the

systematic variance
�
b̌2

j VM

�
from the total variance of the security. The residual

variance is obtained directly from the regression.
However, relying simply upon historical price data is unduly restricting in

that there are excellent sources of information which may help in improving
the prediction of risk. For instance, most analysts would agree that fundamental
information is useful in understanding a company’s prospects.

The historical beta estimate will be an unbiased predictor of the future value of
beta, provided that the expected change between the true value of beta averaged
over the past periods and its value in the future is zero. If this expected change
is not zero, then the historical beta estimate will be misleading (biased). Thus, if
historical betas are used as a prediction of beta, there is an implicit assumption that
the future will be similar to the past. Is this assumption reasonable? The investment
environment changes so rapidly that it would appear imprudent to use averages of
historical (5-year) price data as predictions of the future.

The empirical evidence regarding the construction of the Barra risk models
comes from several well-known publications by Barr Rosenberg. Barr Rosenberg
and Walt McKibben (1973) estimated the determinants of security betas and
standard deviations. This estimation formed the basis of the Rosenberg extra-
market component study (1974), in which security specific risk could be modeled
as a function of financial descriptors, or known financial characteristics of the
firm. Rosenberg and McKibben found that the financial characteristics that were
statistically associated with beta during the 1954–1970 period were:

1. Latest annual proportional change in earnings per share;
2. Liquidity, as measured by die quick ratio;
3. Leverage, as measured by die senior debt-to-total assets ratio;
4. Growth, as measured by the growth in earnings per share;
5. Book-to-Price ratio;
6. Historic beta;
7. Logarithm of stock price;
8. Standard deviation of earnings per share growth;
9. Gross plant per dollar of total assets;

10. Share turnover.
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Rosenberg and McKibben used 32 variables and a 578-firm sample to estimate
the determinants if betas and standard deviations. For betas, Rosenberg and McK-
ibben found that the positive and statistically significant determinants of beta were
the standard deviation of EPS growth, share turnover, the price-to-book multiple,
and the historic beta.12 The statistically significant determinants of the security
systematic risk became the basis of the Barra E1 Model risk indexes.

The Barra USE1 Model predicted risk, which required the evaluation of the firm’s
response to economic events, which were measured by the company’s fundamentals,

12When an analyst forms a judgment on the likely performance of a company, many sources of
information can be synthesized. For instance, an indication of future risk can be found in the
balance sheet and the income statement; an idea as to the growth of the company can be found from
trends in variables measuring the company’s position; the normal business risk of the company
can be determined by the historical variability of the income statement; and so on. The approach
that Rosenberg and Marathe take is conceptually similar to such an analysis since they attempt
to include all sources of relevant information. This set of data includes historical technical and
fundamental accounting data. The resulting information is then used to produce, by regression
methods, the fundamental predictions of beta, specific risk, and the exposure to the common
factors.

The fundamental prediction method of Barra starts by describing the company, see Rudd and
Clasing (1982). The Barra USE1 Model estimated “descriptors,” which are ratios that describe the
fundamental condition of the company. These descriptors are grouped into six categories to indicate
distinct sources of risk. In each case, the category is named so that a higher value is indicative of
greater risk.

1. Market variability. This category is designed to capture the company as perceived by the
market. If the market was completely efficient, then all information on the state of the company
would be reflected in the stock price. Here the historical prices and other market variables are
used in an attempt to reconstruct the state of the company. The descriptors include historical
measures of beta and residual risk, nonlinear functions of them, and various liquidity measures.

2. Earnings variability. This category refers to the unpredictable variation in earnings over time,
so descriptors such as the variability of earnings per share and the variability of cash flow are
included.

3. Low valuation and unsuccess. How successful has the company been, and how is it valued
by the market? If investors are optimistic about future prospects and the company has been
successful in the past (measured by a low book-to-price ratio and growth in per share earnings),
then the implication is that the firm is sound and that future risk is likely to be lower. Conversely,
an unsuccessful and lowly valued company is more risky.

4. Immaturity and smallness. A small, young firm is likely to be more risky than a large, mature
firm. This group of descriptors attempts to capture this difference.

5. Growth orientation. To the extent that a company attempts to provide returns to stockholders by
an aggressive growth strategy requiring the initiation of new projects with uncertain cash flows
rather than the more stable cash flows of existing operations, the company is likely to be more
risky. Thus, the growth in total assets, payout and dividend policy, and the earnings/price ratio
are used to capture the growth characteristics of the company.

6. Financial risk. The more highly levered the financial structure, the greater is the risk to common
stockholders. This risk is captured by measures of leverage and debt to total assets.

Finally industry in which the company operates is another important source of information.
Certain industries, simply because of the nature of their business, are exposed to greater (or lesser)
levels of risk (e.g., compare airlines versus gold stocks). Rosenberg and Marathe used indicator
(dummy) variables for 39 industry groups as the method of introducing industry effects.
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as discussed in Rudd and Clasing (1982). There are three major steps. First, for the
time period during which the model is to be fitted, obtain common stock returns and
company annual reports (for instance, from the COMPUSTAT data base).13 In order
to make comparisons across firms meaningful, the descriptors must be normalized
so that there is a common origin and unit of measurement.

The normalization takes the following form. First, the “raw” descriptor Values
for each company are computed. Next, the capitalization weighted value of each
descriptor for all the securities in the S&P 500 is computed and then subtracted
from each raw descriptor. The transformed descriptors now have the property that
the capitalization weighted value for the S&P 500 stocks is zero. Furthermore,
the standard deviation of each descriptor is calculated within a universe of large
companies (defined as having a capitalization of $50 million or more). The
descriptor is now further transformed by setting the value C 1 to be one standard
deviation above the S&P 500 mean (i.e., one unit of length corresponds to one
standard deviation). Rudd and Clasing (1982) write:

ND D .RD–RD ŒS&P�/ =STDEV ŒRD� ; (1.22)

where

ND D the normalized descriptor value;
RD D the raw descriptor value as computer from the data;
RD[S&P] D the raw descriptor value for the (capitalization-weighted) S&P 500;

and

STDEV[RD] D the standard deviation of the raw descriptor value calculated
from the universe of large companies.

At this stage each company is identified by a series of descriptors which indicate
its fundamental position. If a descriptor value is zero, then the company is “typical”
of the S&P 500 (for this characteristic) because the S&P 500 and the company both
have the same raw value. Conversely, if the descriptor value is nonzero, then the
company is atypical of the S&P 500, and this information may he used to adjust the
prior prediction in order to obtain a better posterior prediction of risk.

In the second step, one groups the monthly data by quarters, and assemble the
descriptors of each company as they would have appeared at the beginning of the
quarter. The prediction rule is then fitted by linear regression which relates each
monthly stock return in that quarter to the previously computed descriptors. These
adjustments are combined as follows. Initially, in the absence of any fundamental
information, the beta is set equal to its historical value. Then each descriptor is
examined in turn, and if it is atypical, the corresponding adjustment to beta is
made. For example, if two companies with the same historical beta are identical
except that they have very different capitalizations, then one adjusts the risk of the

13The COMPUSTAT data base is one of the data bases collected by Investors Management
Sciences, Inc., a subsidiary of Standard & Poor’s Corporation.
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large-capitalization company downward, relative to that of the small-capitalization
company, because large companies typically have less risk than small companies.14

The fundamental knowledge of additional information improves the prediction of
risk. The econometric prediction rule is similar; the prediction is obtained by adding
the adjustments for all descriptors, in addition to the industry effect, to the historical
beta estimate. The prediction rule for the beta of security i, in a given month, can be
written as follows:

b̌
i Dbb0 Cbb1d1i C � � � CbbJdji (1.23)

where

b̌
i D the predicted beta;

bbJ D the estimated response coefficients in the prediction rule;
dji D the normalized descriptor values for security i; and
J D the total number of descriptors.

In this prediction rule we can think of the first descriptor, d1i, as the historical
beta, Hb̌. Thus, if only the first descriptor is used, the prediction rule is similar
to the specification of the Bayesian adjustment, Eq. (1.23). In this case, the linear
regression provides estimates forbb0 andbb1, which indicate the optimal adjustment
to historical beta for predictive purposes. Other descriptors in addition to historical
beta are employed and appear in the prediction rule as d2i.

If the company is completely typical of market (i.e., the descriptors other than
historical beta are all zero), then there is no further adjustment to the Bayesian-
adjusted historical beta. If the company is atypical, then not all the descriptors
(other than historical beta) will be zero. The prediction rule, Eq. (1.23), shows
that the predicted beta is found by adding the adjustment bb2 to the Bayesian-
adjusted historical beta. In general, the total adjustment is the weighted sum
of the coefficients in the prediction rule, where the weights are the normalized
descriptor values which indicate the company’s degree of deviance from the typical
company. The Barra risk model estimates the company’s exposure to each of the
common factors and the prediction of the residual risk components. The first task
is to form summary measures or indices of risk to describe all aspects of the
company’s investment risk. These are obtained by forming the weighted average
of the descriptor values in each of the six categories introduced above, where
the weights are the estimated coefficients from the prediction rule, Eq. (1.23), for
systematic or residual risk. This provides six summary measures of risk, the risk
indices, for each company. Again, these indices are normalized so that the S&P 500
has a value of zero on each index and a value of one corresponds to one standard
deviation among all companies with capitalization of $50 million or more.

14Rosenberg and Marathe (1979) used generalized least squares (GLS) to scale firms in their
universe of 315,000 observations to produce constant variances.
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The prediction of residual risk is now found by performing a regression on the
cross section of all security residual returns as the dependent variable where the
independent variables are the risk indices.15 The form of the regression, in a given
month, is shown in Eq. (1.24):

ri � b̌irM D c1RI1i C � � � C c6RI6i C c7IND1i C � � � C c45IND39;i C ui (1.24)

where

ri D the excess return on security i,
b̌

i D the predicted beta, from Eq. (1.9); and
rM D the excess return on the market portfolio,

so that ri � b̌
irM is the residual return on security i; RI1i, : : : , RI6i, are the six

risk indices for security i, IND1i, : : : , IND39,i are the dummy variables for the 39
industry groups; ui, is the specific return for security i; and c1, : : : , c45 are the 45
coefficients to be estimated.16

The entire risk of the security arises from two sources: the systematic or factor
risk (b2

j Var[f ]), and the nonfactor risk (�2
j ). In this case, however, the nonfactor risk

is completely specific risk since no risk arises from interactions with other securities.
In other words, under these assumptions the single factor, f, is responsible for the
only commonality among security returns; thus, the random return component that
is not related to the factor must be specific to the individual security, j.

If we form a portfolio, P, with weights hP1, hP2, : : : , hPN , from N stocks, then the
random excess return on the portfolio is given by:

RP D †hPjrj D †hPjbjf C †hPjuj D bPf C †hPjuj; (1.25)

where bP D †hPjrj. The mean return and variance are:

E ŒrP� D aP C bPE Œf � ;

where aP D †hPjaj, and

Var ŒrP� D b2
j Var Œf � C †h2

P�2
j (1.26)

15See Barr Rosenberg and Vinay Marathe, “Common Factors in Security Returns: Microeconomic
Determinants and Macroeconomic Correlates,” Proceedings of the Seminar on the Analysis of
Security Prices, University of Chicago, May 1976, pp. 61–115.
16The result from the cross-sectional regression Eq. (1.23) is the specific return and specific risk
on the security, together with the 45 coefficients. These estimated coefficients represent the returns
that can be attributed to the factors in the month of the analysis.



18 J. Guerard

where we have made use of the fact that the security-specific risk is specific, i.e.,
independent across securities and independent of the factor return. The regression
coefficient of an individual stock’s rate of return onto the market, or beta, is
given by:

ˇj D Cov
�
rj; rM

	
=Var ŒrM�

D Cov
�
bif C uj; f C †hMkuk

	
=Var ŒrM�

D
�

bjVar Œf � C �2
j hMj

�
=Var ŒrM�

(1.27)

D �
bjVar Œf � C hMj�

2
j

�
=Var Œf � C †h2

Mj�
2
j

�
;

so that:

ˇP D
�

bPVar Œf � C †hMjhPj�
2
j

�
=Var Œf � C †h2

Mj�
2
j

�
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The domestic BARRA E3 (USE3, or sometimes denoted US-E3) model, with
some 15 years of research and evolution, uses 13 sources of factor, or systematic,
exposures. The sources of extra-market factor exposures are volatility, momentum,
size, size non-linearity, trading activity, growth, earnings yield, value, earnings
variation, leverage, currency sensitivity, dividend yield, and non-estimation uni-
verse.18In November 2011, Barra introduced USE4(L), the Barra US Equity Model

17Rudd and Clasing (1982) note that the regression coefficient on the market and the regression
coefficient on the factor (i.e., bj and ˇj, and bP and ˇP) are close but not identical. In other words,
for well-diversified portfolios, the majority of institutional portfolios, one can approximate the
portfolio beta by its regression coefficient on the factor, and vice versa, that is, ˇP Š bP. In a
multiple factor model, the security beta is a weighted average of the factor betas and the beta of the
specific return of the security, where the weights are simply the factor loadings for the jth security.
18The USE3 extra-market factor are composed of:

1. Volatility is composed of variables including the historic beta, the daily standard deviation,
the logarithm of the stock price, the range of the stock return relative to the risk-free rate,
the options pricing model standard deviation, and the serial dependence of market model
residuals.

2. Momentum is composed of a cumulative 12-month relative strength variable and the historic
alpha from the 60-month regression of the security excess return on the S&P 500 excess return.

3. Size is the log of the security market capitalization.
4. Size Nonlinearity is the cube of the log of the security market capitalization.
5. Trading Activity is composed of annualized share turnover of the past 5 years, 12 months,

quarter, and month, and the ratio of share turnover to security residual variance.
6. Growth is composed of the growth in total assets, 5-year growth in earnings per share, recent

earnings growth, dividend payout ratio, change in financial leverage, and analyst-predicted
earnings growth.

7. Earnings Yield is composed of consensus analyst-predicted earnings to price and the historic
earnings to price ratios.

8. Value is measured by the book to price ratio.
9. Earnings Variability is composed of the coefficient of variation in 5-year earnings, the

variability of cash flow, and the variability of analysts’ forecasts of earnings to price.
10. Leverage is composed of market and book value leverage, and the senior debt ranking.
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Long-Term Version, which featured 12 factors, including beta, momentum, size,
earnings yield, and growth. An asset manager could prefer to employ a price
momentum or earnings growth tilt in the portfolio, and in this case, only the
momentum, growth, earnings yield, and size exposures might (should) be non-
zero.19 The main advances of USE4 are:

1. An innovative eigenvector risk adjustment that improves risk forecasts for
optimized portfolios by reducing the effects of sampling error on the factor
covariance matrix;

2. A Volatility Regime Adjustment designed to calibrate factor volatilities and
specific risk forecasts to current market levels;

3. The introduction of a country factor to separate the pure industry effect from the
overall market and provide timelier correlation forecasts;

4. A new specific risk model based on daily asset-level specific returns;
5. A Bayesian adjustment technique to reduce specific risk biases due to sampling

error;
6. A uniform responsiveness for factor and specific components, providing greater

stability in sources of portfolio risk;
7. A set of multiple industry exposures based on GICS

®
;

8. An independent validation of production code through a double-blind devel-
opment process to assure consistency and fidelity between research code and
production code;

9. A daily update for all components of the model.

The Menchero and Nagy (2015) chapter in this volume employs the USE4 and
GEM3 model to study the effectiveness of portfolio construction emphasizing price
momentum and earnings yield factor in US and Global equity portfolios.20 The
GEM3 and USE4 risk factors are described in the Appendix.

11. Currency Sensitivity is composed of the relationship between the excess return on the stock
and the excess return on the S&P 500 Index. These regression residual returns are regressed
against the contemporaneous and lagged returns on a basket of foreign currencies.

12. Dividend Yield is the Barra-predicted dividend yield.
13. Non-Estimation Universe Indicator is a dummy variable which is set equal to zero if the

company is in the Barra estimation universe and equal to one if the company is outside the
Barra estimation universe.

19Jose Menchero, D.J. Orr, and Jun Wang, “The Barra US Equity Model (USE4): Methodology
Notes, August 2011.
20The Barra Global Equity Model, GEM2, offered statistically significant results for optimized
Value, Momentum, Liquidity, and Size risk factor portfolios. One needed to have a unit exposure to
the particular factor, and zero exposures to all other factors. See Jose Menchero, Andrei Morozov,
and John Guerard, “Capturing Equity Risk Premia,” in C.F. Lee, J. Finnerty. J. Lee, A.C. Lee, and
D. Wort, Security Analysis, Portfolio Management, and Financial Derivatives (Singapore: World
Scientific, 2013, Chapter 25).
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1.3 The Axioma Risk Model: Fundamental and Statistical
Risk Models

The Axioma Robust Risk Model21 is a multi-factor risk model, in the tradition of
the Barra model and Eq. (1.23). Axioma offers both US and World Fundamental
and Statistical Risk Models. The Axoma Risk Models use several statistical
techniques to efficiently estimate factors. The ordinary least squares residuals (OLS)
of Eq. (1.16) are not homoskedastic; that is, when one minimizes the sum of
the squared residuals to estimate factors using OLS, one finds that large assets
exhibit lower volatility than smaller assets. A constant variance of returns is not
found. Axioma uses a weighted least squares (WLS) regression, which scales the
asset residual by the square root of the asset market capitalization (to serve as
a proxy for the inverse of the residual variance). Robust regression, using the
Huber M Estimator, addresses the issue and problem of outliers. (Asymptotic)
Principal components analysis (PCA) is used to estimate the statistical risk factors.
Ross (1976), Ross and Roll (1980) developed and estimated multi-factor models.
Dhrymes, Friend and Gultekin (1984), and Dhrymes, Friend, Gultekin, and Gultekin
(1985) estimated that 4–5 factors were presented in size-created portfolios. A subset
of assets is used to estimate the factors and the exposures and factor returns are
applied to other assets.

Axioma has pioneered two techniques to address the so-called underestimation
of realized tracking errors, particularly during the 2008 Financial Crisis. The first
technique, known as the Alpha Alignment Factor, AAF, recognizes the possibility
of missing systematic risk factors and makes amends to the greatest extent that
is possible without a complete recalibration of the risk model that accounts for
the latent systematic risk in alpha factors explicitly. In the process of doing so,
AAF approach not only improves the accuracy of risk prediction, but also makes
up for the lack of efficiency in the optimal portfolios. The second technique,
known as the Custom Risk Model, CRM, proposes the creation of a custom risk
model by combing the factors used in both the expected-return and risk models,
which does not address the factor alignment problem that is due to constraints.
Several practitioners have decided to perform a “post-mortem” analysis of mean-
variance portfolios, attempted to understand the reasons for the deviation of ex-post
performances from ex-ante targets, and used their analysis to suggest enhancements
to mean-variance optimization inputs, in order to overcome the discrepancy. Lee
and Stefek (2008) and Saxena and Stubbs (2012) define this as a factor alignment
problem (FAP), which arises as a result of the complex interactions between the fac-
tors used for forecasting expected returns, risks and constraints.22 While predicting
expected returns is exclusively a forward-looking activity, risk prediction focuses on

21Axioma Robust Risk Model Handbook, January 2010.
22The author expresses great appreciation for many conversations with Anureet Saxena on this
topic.
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explaining the cross-sectional variability of returns, mostly by using historical data.
Expected-return modelers are interested in the first moment of the equity return
process, while risk modelers focus on the second moments. These differences in
ultimate goals inevitably introduce different factors for expected returns and risks.
Even for the “same” factors, expected-return and risk modelers may choose different
definitions for good reasons. Constraints play an important role in determining the
composition of the optimal portfolio. Most real-life quantitative strategies have other
constraints that model desirable characteristic of the optimal portfolio. For example,
a client may be reluctant to invest in stocks that benefit from alcohol, tobacco or
gambling activities on ethical grounds, or may constrain their portfolio turnover so
as to reduce their tax burden.

The naïve application of the portfolio optimization has the unintended effect of
magnifying the sources of misalignment. The optimized portfolio underestimates
the unknown systematic risk of the portion of the expected returns that is not aligned
with the risk model. Consequently, it overloads the portion of the expected return
that is uncorrelated with the risk factors. The empirical results in a test-bed of real-
life active portfolios based on client data show clearly that the above-mentioned
unknown systematic risk is a significant portion of the overall systematic risk, and
should be addressed accordingly. Saxena and Stubs (2012) reported that the earning-
to-price (E/P) and book-to-price (B/P) ratios used in USER Model and Axioma
Risk Model have average misalignment coefficients of 72 % and 68 %, respectively.
While expected-return and risk models are indispensable components of any active
strategy, there is also a third component, namely the set of constraints that is used
to build a portfolio. Saxena and Stubbs (2012) proposed that the risk variance-
covariance matrix C be augmented with additional auxiliary factors in order to
complete the risk model. The augmented risk model has the form of

Cnew D C C �2
˛˛ � ˛0 C �2

� � � � 0; (1.28)

where ˛ is the alpha alignment factor (AAF), �˛ is the estimated systematic risk
of ˛, � is the auxiliary factor for constrains, and �� is the estimated systematic
risk of � . The alpha alignment factor ˛ is the unitized portion of the uncorrelated
expected-return model, i.e., the orthogonal component, with risk model factors.
Saxena and Stubbs (2012) reported that the AAF process pushed out the traditional
risk model-estimated efficient frontier. Saxena and Stubbs (2015) refer to as alpha
in the augmented regression model as the implied alpha. According to Saxena
and Stubbs (2015), the base risk model, BRM, assumes that any factor portfolio
uncorrelated with X-common risk factors has only idiosyncratic risk. Z is the
exposure matrix associated with systematic risk factors missing from the base risk
model, and the risk model fails to account for the systematic risk of portfolios with
exposure to the Z factors. Saxena and Stubbs (2015) report that there is a small
increment to specific risk compared to its true systematic risk.

Saxena and Stubbs (2012) applied their AAF methodology to the USER model,
running a monthly backtest based on the above strategy over the time period 2001–
2009 for various tracking error values of � chosen from f4 %, 5 % : : : 8 %g. For each
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value of � , the backtests were run on two setups, which were identical in all
respects except one, namely that only the second setup used the AAF methodology
.�˛ D 20%/. Axioma’s fundamental medium-horizon risk model (US2AxiomaMH)
is used to model the active risk constraints. Saxena and Stubbs (2012) analyzed the
time series of misalignment coefficients of alpha, implied alpha and the optimal
portfolio, and found that almost 40–60 % of the alpha is not aligned with the risk
factors. The alignment characteristics of the implied alpha are much better than
those of the alpha. Among other things, this implies that the constraints of the above
strategy, especially the long-only constraints, play a proactive role in containing
the misalignment issue. In addition, not only do the orthogonal components of
both the alpha and the implied alpha have systematic risk, but the magnitude of
the systematic risk is comparable to that of the systematic risk associated with
a median risk factor in US2AxiomMH. Saxena and Stubbs (2012) showed the
predicted and realized active risks for various risk target levels, and noted the
significant downward bias in risk prediction when the AAF methodology is not
employed.23 The realized risk–return frontier demonstrates that not only does using
the AAF methodology improve the accuracy of the risk prediction, it also moves
the ex-post frontier upwards, thereby giving ex-post performance improvements. In
other words, the AAF approach recognizes the possibility of missing systematic risk
factors and makes amends to the greatest extent that is possible without a complete
recalibration of the risk model that accounts for the latent systematic risk in alpha
factors explicitly. In the process of doing so, AAF approach not only improves the
accuracy of risk prediction, but also makes up for the lack of efficiency in the optimal
portfolios.24 Saxena and Stubbs (2015) extended their 2012 Journal of Investing
research and reported positive frontier spreads.

As a further test of the applicability of the Axioma statistical and fundamental
risk models in analyzing US stocks, let us analyze a set of all publically listed US

23The bias statistic shown is a statistical metric that is used to measure the accuracy of risk
prediction; if the ex-ante risk prediction is unbiased, then the bias statistic should be close to
1.0. Clearly, the bias statistics obtained without the aid of the AAF methodology are significantly
above the 95 % confidence interval, which shows that the downward bias in the risk prediction of
optimized portfolios is statistically significant. The AAF methodology recognizes the possibility
of inadequate systematic risk estimation, and guides the optimizer to avoid taking excessive
unintended bets.
24Guerard, Markowitz, and Xu (2013, 2015) created efficient frontiers using both of the
AxiomaRisk Models, and found that the statistically based Axioma Risk Model, the authors
denoted as “STAT,” produced higher geometric means, Sharpe ratios, and information ratios than
the Axioma fundamental Risk Model, denoted as “FUND.” The AAF technique was particularly
useful with composite models of stock selection using fundamental data, momentum, and earnings
expectations data. Furthermore, the geometric means and Sharpe ratios increase with the targeted
tracking errors; however, the information ratios are higher in the lower tracking error range of
3–6 %, with at least 200 stocks, on average, in the optimal portfolios. The Guerard et al. studies
assumed 150 basis points, each way, of transactions costs. The use of ITG cost curves produced
about 115–125 basis points of transactions costs, well under the assumed costs. The Guerard et al.
studies also used the Sungard APT statistical model which produced statistical significant asset
selection in US and global portfolios.
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stocks for the 1999–2013 time period. We test two models, the earnings forecasting
strategy variable, CTEF, of Guerard, Gultekin, and Xu (1997) and Guerard et al.
(2015), and a ten-factor regression-based US expected returns strategy, USER,
tested in Guerard, Gultekin, and Xu (2012) and Saxena and Stubbs (2012). We
simulate US stocks covered by I/B/E/S with the same stipulated conditions: (1)
a 4 % maximum position; (2) 8 % monthly turnover; a 35 basis point threshold
position; and 150 basis points of transactions costs. The two strategies produce
similar results with the respective Axioma risk models and techniques: (1) both
CTEF and USER produce higher active returns as targeted racing errors rise; (2)
active returns and Information Ratios, the portfolio excess return divided by the
portfolio tracking error, TE, are higher with the Axioma statistical model relative
to the Axioma fundamental model; and (3) the Alpha Alignment Factor (AAF) of
20 % portfolios produce raises CTEF IRs with both Axioma risk models relative to
non-AAF portfolios with targeted tracking errors of 5, 8, and 9 % (see Table 1.1).

Table 1.1 Investment variables and Axioma risk models

Axioma risk models
WRDS US Backtest Universe, 1999–2013

CTEF USER
TE Active risk Active returns IRs Active risk Active returns IRs

Axioma world fundamental risk model
4 4.36 3.56 0.816 4:16 2.54 0.551
5 5.41 3.57 0.660 5:82 2.74 0.470
6 6.28 3.43 0.546 6:88 3.17 0.462
7 6.82 3.94 0.578 7:81 2.13 0.273
8 7.72 5.03 0.651 8:56 2.37 0.277
9 8.05 4.55 0.565 9:53 3.08 0.323
10 8.48 4.82 0.569 10:08 3.73 0.370
Axioma world statistical risk model
4 4.70 4.73 1.007 4:71 3.56 0.754
5 5.87 4.57 0.778 6:05 3.99 0.660
6 6.57 5.26 0.790 7:14 3.86 0.540
7 7.66 5.03 0.703 8:00 3.93 0.491
8 8.00 6.53 0.816 8:78 3.94 0.449
9 8.43 5.89 0.698 9:44 4.08 0.432
10 9.12 6.38 0.700 10:28 4.58 0.446
Axioma world statistical risk model, AAF 20 %
4 3.61 2.22 0.642 3:41 3.04 0.893
5 4.40 3.76 0.854 4:58 3.58 0.780
6 5.29 3.92 0.753 5:85 3.06 0.524
7 6.32 4.20 0.665 7:10 3.38 0.476
8 6.83 6.41 0.938 7:45 3.83 0.514
9 7.67 5.59 0.729 8:70 3.74 0.429
10 8.35 5.57 0.667 9:08 4.94 0.544
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One sees in Table 1.1 that the CTEF variable produces higher active returns than
the ten-factor composite model. A similar result was reported for global stocks in
Guerard, Markowitz, and Xu (2015).

Let us extend the previous analysis of CTEF to US stocks for 1999–September
2014. We simulate US stocks covered by I/B/E/S in the USER database, 1999-
September 2014 with the same simulation conditions: (1) a 4 % maximum position;
(2) 8 % monthly turnover; a 35 basis point threshold position; and 150 basis points
of transactions costs. We report simulation results in Table 1.2.

Many of the conclusions a reported for global stock reported in Guerard
et al. (2015): (1) Geometric Means and Information Ratios favor the Statistical
Risk Models relative to the Fundamental Risk Models; (2) Geometric Means and
Information Ratios favor the Statistical Risk Models relative to the Fundamental
Risk Models with an Alpha alignment Factor of 20 %; (3) a names constraint, of
70 stocks, actually enhances portfolio Information Ratios; and (4) one can use only
one factor, F1, and still generate positive and economically meaningful returns. The
reader is referred to Chart 1.1 for a plot of the Markowitz Efficient Frontiers of
CTEF using the Axioma Statistical and Fundamental Risk models, with and without
AAF. The use of the Alpha Alignment Factor of 20 %, consistent with Saxena and
Stubbs (2012), pushed out the frontiers.25 Yes, Virginia, a one-factor model Treynor
Model works, particularly at lower, 4–6 % targeted tracking errors. A four factor
model, using the first four factors of the Axioma Statistical Risk Model, reflecting
the work of Phoebus Dhrymes, Irwin Friend, and Gultekin (1984) and a later paper
where they were joined by and Mustafa Gultekin (1985) works well in the 1999–
September 2014 period, but not as well as the 15 factors of the Axioma Statistical
Risk Model, using the names constraints, see Chart 1.2. Thus, one needs the Axioma
PCA-based factors.

Sivaramakrishnan and Stubbs (2013) proposed the creation of an Axioma
custom risk model by combing the factors used in both the expected-return and
risk models, which does not address the factor alignment problem that is due
to constraints. The Sivaramakrishnan and Stubbs model allowed great interaction
with clients to produce several variations on risk models that were consistent with
particular clients’ needs of risk exposures. Ceria, Sivaramakrishnan and Stubbs
(2015) contributed a chapter to this volume which illustrates how each alpha signal
can be transformed into a factor mimicking portfolio, and how the alpha signals
can be combined into a target portfolio with a mean-variance optimization (MVO)
problem. The new (combined) alpha signal is constructed as the implied alpha of
the target portfolio and used with a custom risk model. The portfolio is consistent
as it satisfies the relevant implementation constraints.

25As the author was revising this chapter, he was delighted to see the Saxena and Stubbs (2015)
AAF analysis.
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1.4 Assessing Mutual Funds: The Treynor Index
and Other Measurement Techniques

This section draws heavily from Lee et al. (2010) and reviews the selectivity,
market timing, and overall performance of equity funds in the USA during January
1990 until September 2005.26 Lee, Lee, and Liu (denoted “LLL”) used Sharpe,
Treynor, and Jensen measures to evaluate the selectivity performance of mutual fund
managers. In addition, we also used the Treynor–Mazuy and Lee–Rahman models
to evaluate the selectivity and timing performance of mutual fund managers. Based
upon these measures and models, LLL reported that about one-third of funds had
significantly positive selectivity ability, and some had timing ability for the mutual
fund managers. Nevertheless, without considering transaction costs and taxes, the
actual investment for most mutual funds compared to a passive investment strategy
still appears to take the lead.

The investment of mutual funds has been extensively studied in finance. Over
the last few decades, there has been a dramatic increase in the development of
instruments measuring the performance of mutual funds. Early researchers (Treynor
(1965), Sharpe (1966), and Jensen (1968)) employed a one parameter indicator to
evaluate the portfolio performance. However, these studies assumed the risk levels
of the examined portfolios to be stationary through time. Fama (1972) and Jensen
(1972) pointed out that the portfolio managers may adjust their risk composition
according to their anticipation for the market. Moreover, Fama (1972) suggested
that the managers’ forecasting skills can be divided into two parts: the selectivity
ability and the market timing ability. The former is also named as micro-forecasting,
involving the identification of the stocks that are undervalued or overvalued relative
to the general stocks. The latter is also named as macro-forecasting, involving the
forecast of future market return. In other words, the selectivity and market timing
abilities of fund managers are viewed as important factors deciding the overall fund
performance.27

Treynor and Mazuy (1966) used a quadratic term of the excess market return
to test for market timing ability. It can be viewed as the extension of the Capital
Asset Pricing model (CAPM). If the fund manager can forecast market trend, he will
change the proportion of the market portfolio in advance. Jensen (1972) developed
the theoretical structure for the timing ability. Under the assumption of a joint
normal distribution of the forecasted and realized returns, Jensen showed that the
correlation between the managers’ forecast and the realized return can be used to

26C. F. Lee, A. Lee, and N. Liu, “Alternative Model to Evaluate Selectivity and Tim-
ing Performance of Mutual Fund Managers: Theory and Evidence,” in J. Guerard, Jr.
Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques (New
York: Springer, 2010).
27However, Brinson, Singer, and Beebower (1991) found that selectivity and market timing abilities
only have small influence on fund performance (<10 %). The overall performance should be mostly
decided by asset allocation between stock and bond markets.
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measure the timing ability. Bhattacharya and Pfleiderer (1983) extended Jensen’s
(1972) work and used a simple regression method to obtain accurate measures of
selectivity and market timing ability. Lee and Rahman (1990) further corrected the
inefficient estimated of parameters by a Generalized Least Squares (GLS) method.
In addition, Henriksson and Merton (1981) used options theory, developed by
Merton to explain the timing ability.

Lee et al. (2010) empirically examined the mutual fund performance by using
six models, proposed respectively by Treynor (1965), Sharpe (1966), Jensen (1968),
Treynor and Mazuy (1966), Henriksson and Merton (1981), and Lee and Rahman
(1990). The monthly returns for 189 months (January 1990 to September 2005) for
a sample of 628 open-end equity funds were used. Let us introduce the reader to the
basic ratios and parameter used in evaluating portfolio performance.

Treynor (1965) uses the concept of the security market line28 drawn from the
CAPM to get a coefficient ˇ. Under the assumption of complete diversification of
asset allocation, it means that we just have systematic risk measured by ˇ. The
Treynor index (TI) measuring the reward per unit of systematic risk for the portfolio
can be showed as follows:

TI D rp � rf

ˇp
; (1.28)

where rp is the average return of the pth mutual fund, and rf is defined as risk-
free rate. The numerator of Treynor index can be viewed as excess return on the
portfolio. This ratio is a risk-adjusted performance value. This indicator is suitable
for valuing the performance of a well-diversified portfolio; this is because it just
takes the systematic risk into account.

Different from Treynor (1965) and Sharpe (1966) argues the phenomenon that
the fund managers will be in favor of fewer stocks. Therefore, it is impossible to
diversify the individual risks completely. In other words, the excess return should
be calculated based on the total risk (including systematic and nonsystematic risks).
The Sharpe Index (SI), applying the concept of the capital market line29 can be
written as:

SI D rp � rf

�p
; (1.29)

where �p is the standard deviation of the portfolio, namely total risk. The Sharpe
index is expressed as the reward per unit of total risk. The higher the two indices
mentioned above, the better the fund’s performance. Because this measure is based
on the total risk, it enables to measure the performance of the portfolio which is not
very diversified.

28At equilibrium, all assets are located on this line.
29In the presence of a risky asset, this straight line is the efficient frontier for all investors.
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Jensen (1968) proposes a regression-based view to measure the performance
of the portfolio. The Jensen index (or called Jensen alpha) utilizes the CAPM to
determine whether a fund manager outperformed the market. It’s formula is as
follows:

Rp;t D ˛p C ˇp;tRm;t C up;t; (1.30)

where Rp,t and Rm,t are the excess returns
�
Rt D rt � rf

�
at time t of the portfolio

return and the market return, respectively. The term of up,t in the formula is
the residual at time t. The coefficient ˛p is used to measure the performance of
mutual funds in the sense of the additional return due to the manager’s choice. It
also represents the fund manager’s selectivity ability without considering timing
ability. A significantly positive and high value of Jensen alpha indicates superior
performance compared with the market index.

Treynor and Mazuy (1966), putting a quadratic term of the excess market return
into Eq. (1.28), provide us with a better framework for the adjustments of the
portfolio’s beta to test a fund manager’s timing ability. The fund manager with
timing ability will be able to adjust the risk exposure from the market. To take a
simple example, if a fund manager expects a coming up (down) market, he will hold
a larger (smaller) proportion of the market portfolio. Therefore, the portfolio return
can be viewed as a convex function of the market return. The equation can be given
below:

Rp;t D ˛p C ˇ1Rm;t C ˇ2R2
m;t C "p;t; (1.31)

where the coefficient ˇ2 is used to measure the timing ability. When ˇ2 is
significantly larger than zero, it represents that, in a up (down) market, the increasing
(decreasing) proportion in the risk premium of the mutual fund is larger than that in
the market portfolio. This model was formulated empirically by Treynor and Mazuy
(1966). It was then theoretically validated by Jensen (1972), and Bhattacharya and
Pfleiderer (1983).

Henriksson and Merton (1981) used options theory to explain the timing ability.
It consists of a modified version of the CAPM which takes the manager’s two
objectives into account, and depends on whether he forecasts that the market return
will or will not be better than the risk-free asset return. They view the coefficient
ˇ as a binary variable. This means that a fund manager with market timing ability
should have different ˇ values in the up and down markets.30 We can express the
equation as:

30Ferson and Schadt (1996) assumed that market prices of securities reflected public information
and allowed betas of stocks and portfolios to change with economic conditions. See Christo-
pherson, Carino, and Ferson (2009), Chap. 12 for a more complete discussion of conditional
performance evaluation.

http://dx.doi.org/10.1007/978-3-319-33976-4_12
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Rp;t D ˛p C ˇ1Rm;t C ˇ2Max .�; Rm;t/ C "p;t: (1.32)

If ˇ2 > 0, this shows that the manager has the ability to forecast a market to be
down or up. For an up market (a down market), the Eq. (1.32) can be expressed as
Rp;t D ˛p C ˇ1Rm;t C "p;t

�
Rp;t D ˛p C .ˇ1 � ˇ2/ Rm;t C "p;t

�
.

Jensen (1972) showed that the timing ability can be measured by the correlation
between the managers’ forecast and the realized return. Bhattacharya and Pfleiderer
(1983) modify Jensen’s (1972) model31 to propose a regression-based model to
evaluate the market timing and selectivity abilities.32

Lee et al. (2010) used the alternative methods to examine the selectivity, market
timing, and overall performance for the open-end equity mutual funds.33 The
samples used were the monthly returns of the 628 mutual funds34 ranging from
January, 1990 to September, 2005, 189 monthly observations. The fund data were
obtained from the CRSP Survivor-Bias-Free US Mutual Fund Database. Then, they
used ICDI’s fund objective codes to sort the objectives of the mutual funds. In
total, there are 23 types of mutual fund objectives; simplifying into as two groups,
growth funds and non-growth funds,35 consisting of 439 growth funds and 189 non-
growth funds. In addition to the CRSP fund data, the S&P 500 stock index obtained
from Datastream is used for the return of the market portfolio. Moreover, they use
the Treasure bill rate with a 3-months holding period as the risk-free return. The
Treasury bill rate is available from the website of the Federal Reserve Board.

We present a summary table, Table 1.3, of the Lee et al. (2010) estimates of
mutual fund performance.

The difference of monthly returns of growth and non-growth funds is quite
substantial. The result for the 1990–2005.09 period shows that 82 % (69 %) of the
growth (non-growth) funds have better performance than the market. This seems to
point out the growth funds are more valuable to be invested than the non-growth

31In a framework of Jensen (1972), the coefficients in the model can’t be estimated efficiently.
However, with some assumptions proposed by Bhattacharya and Pfleiderer (1983), we can get the
efficient estimators. The detail can be found in Lee and Rahman (1990), p. 265–266.
32Lee and Rahman (1990) find that the residual terms of the Bhattacharya and Pfleiderer exists
heteroscedasticity. Thus, the estimated coefficients are not efficient. The way to solve this problem
is to calculate the variance of the residuals, ! t and 	 t.

Lee and Rahman utilized a GLS method with correction for heteroscedasticity to adjust the
weights of the variables in Eqs. (1.8) and (1.10) by �2

! and �2
t .

33In addition to equity funds (the code in CRSP is EQ), Standard & Poor’s Main Category provides
the other four kinds of funds to define fund styles, i.e., fixed income (FI), money market (DG), asset
allocation (AA), and convertible (CT), but they are not analyzed in this study.
34We delete the funds with any missing values in this period. In addition, the funds with over 20
zero returns are also dropped. This is because we view too many zero values as missing data or
lower liquidity for the fund. The list of the fund names is available from the authors on request.
35Three types of mutual funds belongs to the growth group, i.e., aggressive growth (AG), growth
and income (GI), and long term growth (LG); the other 20 types are put in the non-growth group.
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Table 1.3 Summary table of mutual fund performance measurement,
adapted from Lee et al. (2010)

628 mutual funds, 1990–2005.09
Measurement Growth funds Non-growth funds Index

Treynor Index 0.0052 0.0045 0.0032
Sharpe Index 0.1037 0.0824 0.0774
Jensen Index 0.0017 0.0013
Treynor–Mazuy 0.0035 0.0042
Henriksson–Merton

Selectivity 0.0049 0.0069
Timing �0.1956 �0.3435

Lee–Rahman
Selectivity 0.0033 0.0041
Timing 0.0816 0.0982

funds.36 Kosowski, Timmermann, Wermers, and White (2006) reported that the
top 5 % of abnormal-growth funds produced persistent, and statistically significant
excess returns, relative to the four-factor Fama-French (1992) and Carhart (1997)
risk factors, for 2118 open-end US equity funds for the January 1975–December
2002 period. Persistent was determined by two periods, 1975–1989 and 1990–2002
periods. Moreover, Kosowski et al. (2006) reported that the worst two decile of
abnormal-growth significantly underperformed the universe of funds. They found
no evidence of “stars” or significant and persistent outperformance in income funds.

The performance of the Treynor index is mainly based on the systematic risk
obtained from the CAPM. It is appropriate to evaluate the well-diversified portfolio.
Different from the Treynor index, the Sharpe index takes account of the total risk
of the portfolio. The performance measured by the Sharpe index is also given in
Table 1.3. Generally speaking, the Sharpe Index results are consistent with the
Treynor Index results in Table 1.3. Unlike the first two measures, the Jensen index
is calculated by carrying out a simple regression. The Jensen alpha is also based on
the CAPM and measures the share of additional return that is due to the manager’s
choices. Most of the funds have positive Jensen alphas. Lee et al. (2010) reported
that 30 % of the growth funds for the entire period are significantly larger than zero
with 95 % confidence.

The first three indicators assume that the portfolio risk is stationary and only take
the stock selection into account. If we want to modify the level of the portfolio’s
exposure to the market risk, the timing ability has to be adopted. The models
with the ability to test market timing are against the CAPM. This is due to permit
variations in the portfolio’s beta over the investment period. There are three models
for evaluating the selectivity and timing abilities in this study. The Treynor–Mazuy

36LLL did not consider the transaction costs and taxes here. In general, the growth fund will ask
for a higher commission than the non-growth fund.
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model, a quadratic version of the CAPM, tests market timing abilities. Lee, Lee,
and Liu reported that over 80 % of them have negative values of timing ability
and a considerable ratio among them have significantly negative estimates. For the
selectivity ability, a very high ratio of the funds has positive estimates and many
of them are significantly positive. Only very few funds have significantly negative
estimates. The Henriksson–Merton model is also a modified version of the CAPM
which applies a binary choice for the manager. It depends on the market return
will or will not perform better than the risk-free asset return. The estimates of the
selectivity ability even display larger values. Furthermore, the correlations between
the estimates of timing and selectivity ability are �0.85 for the entire period. The
Lee–Rahman model assumes no negative timing ability. The non-growth funds
have better timing ability than the growth funds for all periods. Different from
the previous two models, the correlations between the estimates of timing and
selectivity ability are 0.43 for the entire period. Moreover, 40 of the funds in the
entire period have significantly positive estimates in both selectivity and timing
ability.

What do we know about mutual funds and their relative performance? Bogle
(2000, 2009) tells us that actively managed mutual funds underperform the market
by approximately 200 basis points. Lee et al. (2010) reported that growth funds
outperformed the market for the 1995–2005 period. Kosowski et al. (2006) and Wei,
Wermers, and Yao (2016) reported that contrarian funds outperformed the market
during the 1995–2012 period. Berk and van Binsbergen (2016a, 2016b) demonstrate
that the Treynor CAPM model dominates the Fama-French (1992) and Carhart
(1997) models in assessing mutual fund performance for the 1995–2011 period.
Thus, after 50 years, the work of Jack Treynor and his ranking of mutual funds is
still not only relevant, but dominant, in many studies.

1.5 Conclusions and Summary

This chapter addresses several aspects of risk, return, and performance measure-
ment. It is important to see how quantitative analysis was developed in investment
research and analysis. Harry Markowitz, Bill Sharpe, Jan Mossin, and Jack Treynor
pioneered capital market equilibrium and the creation and estimation of the Capital
Asset Pricing Model. In the 1970s, Barr Rosenberg and his colleagues at Barra
developed and estimated multi-factor risk models. Recent research and commercial-
ization by Axioma has furthered portfolio optimization. Mutual fund performance
measurement, pioneered by Sharpe and Treynor, incorporates risk estimation.



1 The Theory of Risk, Return, and Performance Measurement 35

USE4 Descriptor Definitions

The definitions of the descriptors which underlie the risk indices in USE4
(L, denoting long-term version). The method of combining these descriptors into
risk indices is proprietary to Barra. The USE4 model starts in June 1995 and uses
the US component of MSCI All Country World Investable Market Index (IMI).

1. Beta is the historic beta;
2. Non-Linear Beta is the non-linear historic beta;
3. Residual Volatility is composed of variables explaining returns of high-

volatility stocks not associated with the estimated beta factor including the daily
standard deviation;

4. Momentum is composed of a cumulative 6–12-month relative strength vari-
able;

5. Size is the log of the security market capitalization;
6. Non-Linear Size is the cube of the log of the security market capitalization;
7. Liquidity is composed of annualized share turnover of the past 12 months,

quarter, and month;
8. Growth is composed of the growth in total assets, 5-year growth in earnings

per share, sales growth, and analyst-predicted sales growth;
9. Earnings Yield is composed of consensus analyst-predicted earnings to price

and the historic earnings to price ratios, and cash earnings-to-price ratio;
10. Book-to-Price is measured by the book to price ratio;
11. Leverage is composed of the debt-to-assets ratio, and market and book value

leverage;
12. Dividend Yield is the dividend-to-price ratio.

The GEM3 risk factor indices are identical to the USE4 factor risk indices with
the omission of Non-Linear Beta.
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Chapter 2
Portfolio Theory: Origins, Markowitz
and CAPM Based Selection

Phoebus J. Dhrymes

The valuation of risky assets was initially based on bond valuation theory. Although
the valuation of a bond may fluctuate due to variation in market interest rates, the
coupon was fixed and subject mainly to the risk of default, which was episodic
rather than continuous; prominent in the nature of the instrument were certain legal
safeguards. When applied to stocks (risky assets) frequently the role of the coupon
rate was played by the dividend, which though not fixed was deemed to be steady
and subject only to infrequent changes. This framework, however, is evidently
inappropriate in the case of stocks where the rate of return (principally earnings)
is inherently variable and is not subject to legally binding specification.

The origin of modern finance in this context (portfolio selection) must be traced
to the work of Markowitz (1952, 1956, 1959). Its basic framework is based on the
work of von Neumann and Morgenstern (1944) (VNM) who pioneered the view that
choice under uncertainty may be based on expected utility. The concept of utility is
at least as old as the nineteenth century and the view that consumer choice (of the
basket of goods and services consumed) was a compromise between the consumer’s
desires and the resources available to him (income). Thus, preceding expected utility
constructs, the view prevailed that consumers obtained the most preferred bundle of
goods and services they could attain with their incomes. But how could we import
these concepts into the valuation of risky assets and their subsequent inclusion
in a basket we call portfolio; after all consumers choose various goods because
they satisfy some desire or group of desires. But a consumer (investor) need not
have a preference or desire to own a given security per se. The importance of
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Markowitz’ contribution is that he isolated two aspects of relevance, return and
risk, established a method of ranking them (a utility function), thus recognizing
the inherent riskiness (randomness) of returns, and invoked VNM in the process.
Having done so, it becomes clear that in this formulation the problem is conceptually
broadly similar to the problem of consumer choice, although by no means identical.
He correctly saw that it is not possible simultaneously to increase returns and at
the same time minimize the risk entailed, because of arbitrage. Indeed, many of the
later developments of the subject follow from these insights although not explicitly
detailed in Markowitz (1959).

2.1 Constrained Optimization

Ignoring the utility or expected utility aspects, the (portfolio) selection problem was
defined as: maximize expected returns subject to a variance and scale constraint.1

Setting up the Lagrangian

ƒ D � 0Er C ˛r0 C 
1.k � � 0†�/ C 
2.1 � e0� � ˛/; (2.1)

where E is the expectation operator, r is an n-element column vector containing the
rates of return on the risky assets, r0 is the risk free rate, � D .�1; �2; : : : ; �n/0 is
the portfolio composition, the individual elements �i denoting the proportion of the
portfolio invested in the ith risky asset and ˛ is the portion invested in the risk free
asset; evidently, � 0†� is the variance of the portfolio, or its risk; it is assumed that
at least for the duration of the choice period,

Er D � Cov.r/ D † > 0; Er0 D r0 var.r0/ D 0: (2.2)

If we solve for the first order conditions we find2

� D 1

2
1

†�1.� � er0/; ˛ D 1 � 1

2
1

e0†�1.� � er0/; (2.3)


1 D � 0.� � er0/

2� 0†�
; 
2 D r0; e D .1; 1; 1; : : : 1/0: (2.4)

1How does one explain that only the mean and variance of returns and not other moments play
a role? One can justify this by an implicit assumption that the probability distribution of returns
belongs to a family of distributions described by only two parameters, or that the expected utility
function is of such a form that it depends only on the mean and variance of the relevant distribution.
2It should be noted that Markowitz did not actually solve for � ; rather his version focused only on
risky assets and imposed non-negativity constraints on the elements of � . Thus what he derived
from the first order conditions were rules for inclusion in and/or exclusion from (of securities) in
an optimal portfolio.
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Although the solution was easy to obtain the interpretation of the Lagrange
multiplier, 
1 is clouded by the fact that it is not invariant to scale; thus if we
were to double ˛ and the elements of � , the expression for the Lagrange multiplier
would be halved without any change in other aspects of the procedure; thus any
interpretation given to it in comparisons would be ambiguous and questionable.
To that end we alter the statement of the constraint, thus redefining risk, to3

k D .� 0†�/1=2 D �p:

without changing its substance. In turn this will yield the solution

� D k


1

†�1.� � er0/; ˛ D 1 � k


1

e0†�1.� � er0/; (2.5)


1 D � 0.� � er0/

�p
; 
2 D r0; e D .1; 1; 1; : : : 1/0: (2.6)

Examining the numerator of 
1, i.e. the Lagrange multiplier in the alternative
formulation of the risk constraint we find

� 0.� � er0/ D .� 0� C ˛r0/ � r0; (2.7)

i.e. it is the excess expected return of the portfolio while the denominator is �p,
i.e. the portfolio’s risk! Thus the Lagrange multiplier attached to the risk constraint,
in the Markowitz formulation, gives us the ‘terms of trade’ between reward and risk
at the optimum. Noting further that

@ƒ

@k
D 
1;

3From the point of view of computation, entering the constraint as k2 D � 0†� simplifies
operations, but makes the Lagrange multiplier harder to interpret in terms of common usage in
finance; if, however, we enter the constraint as k D .� 0†�/1=2, we complicate the computations
somewhat, we do not change the nature of the solution, but we can interpret the Lagrange multiplier
in terms of common usage comfortably. We should also bear in mind that if risk is defined in terms
of the standard deviation rather than the variance, a certain intuitive appeal is lost. For example,
it is often said that security returns are subject to two risks, market risk and idiosyncratic risk. If
we also say, as we typically do, that market risk is independent of idiosyncratic risk, then we have
the following situation: denote the market risk by the variance of a certain random variable, say
�2

mar and the idiosyncratic risk by the variance �2
idio then the risk of the security return is the sum

�2
mar C �2

idio. On the other hand, if we define risk in terms of the standard deviation, then the

two risks are not additive, i.e. the risk of the security is not �mar C �idio but
q

�2
mar C �2

idi0, which
is smaller, when we use as usual the positive square root. This problem occurs whenever there is
aggregation of independent risks.
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we may interpret 
1 as the optimal marginal reward for risk or more correctly
the marginal reward for risk at the optimum. All this is, of course, ex ante and
assumes that the investor or the portfolio manager knows with certainty the mean
and variance of the stochastic processes that determine ex post the realized returns.

2.2 Portfolio Selection and CAPM

Another aspect that needs to be considered is whether the index based on the
interpretation of the Lagrange multiplier discussed in connection with the solution
given to the portfolio selection model inv Markowitz (1959) is relevant in the CAPM
context and whether these optimality procedures shed any light on the issue of
composition rules.

For the latter issue, a more recent development along these lines is given in Elton
et al. (2007), where the objective is stated as the maximization of the Sharpe ratio,
which is the ratio of (expected) excess returns to (expected) standard deviation of a
portfolio, using CAPM as the source of the covariance structure of the securities
involved. It does that by means of nonlinear programming; from the first order
conditions it derives rules of inclusion in (and exclusion from) an optimal portfolio.
While similar in objective, this is not equivalent to the Markowitz approach.
Moreover, it is questionable that maximizing the Sharpe ratio is an appropriate way
for constructing portfolios. In particular, a portfolio consisting of a single near risk
free asset with near zero (but positive) risk and a very small return might well
dominate, in terms of the Sharpe ratio, any portfolio consisting of risky assets
in the traditional sense. A ratio can be large if the numerator is large relative
to the denominator, or if the denominator is exceedingly small relative to a
small positive numerator. Consider (10/2) and (.5/0.1) or (.1/0.01). The point
is that given the level of risk it is generally agreed that the higher the Sharpe
ratio the better, however, to put it mildly, it is not generally accepted that the
higher the Sharpe ratio the better, irrespective of risk. Evidently this would depend
on the investor’s or portfolio manager’s tradeoff between risk and reward.

In Markowitz the rates of return are stochastic processes with fixed means and
covariance matrix; thus what is being solved is an essentially static problem. It could
be made somewhat dynamic by allowing these parameters to change over time,
perhaps discontinuously.4 This, however, imposes a considerable computational bur-
den, viz. the re-computation of n means and n.n C 1/=2 variances and covariances.
On the other hand, if we adopt the framework of CAPM suggested, by Sharpe
(1964), Lintner (1965b), Mossin (1966), Treynor (1962)5 and others, as originally

4I say ‘somewhat dynamic’ because we still operate within what used to be called a ‘certainty
equivalent’ environment, in that the underlying randomness is not fully embraced as in option
price theory.
5The intellectual history of the evolution of CAPM is detailed in the excellent and comprehensive
paper by French (2003), which details inter alia the important but largely unacknowledged role
payed by the unpublished paper Treynor (1962). We cite Lintner (1965a) in the cite both Lintner
paper of 1965 in his capital market development.
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formulated, rates of returns are assumed to behave as

rti � rt0 D ˇi.rmt � rt0/ C uti; i D 1; 2; : : : ; n: t D 1; 2; : : : T; (2.8)

where rti, rt0, rmt are, respectively, the rates of return on the ith risky asset, the
riskless asset and the market rate of return, ˇi is a fixed parameter, at least in
the context of the planning period; uti is, for each i, a sequence of independent
identically distributed random variables with mean zero and variance !ii; moreover
uti and ut0j are mutually independent for every pair .t; t0/ and .i; j/. Notice that if we
rewrite the CAPM equation as

rti D .1 � ˇi/rt0 C ˇirmt C uti; (2.9)

this version of CAPM seems to assert that individual returns are, on the average,
linear combinations (more accurately weighted averages for positive betas) of the
risk free and market rates with fixed weights. A more popular recent version is

rti D ci C ˇirmt C uti; (2.10)

where now ci is an unconstrained parameter. If we bear in mind that the risk
free rate is relatively constant it might appear that the two versions are equivalent.
However, when considering applications this is decidedly not so. Some of the
differences are

1. If we attempt to apply a (Markowitz) optimization procedure using the first
version, the component ˛ of the portfolio devoted to risk free assets cannot be
determined and has to be provided a priori. This is due to the fact that in this
version

Erp D rt0 C � 0ˇ.�mt � rt0/;

which is the expected value of the returns on any portfolio .�; ˛/, does not
contain ’ ; since the risk free rate has zero variance and zero covariances with
the risky assets, ˛ is not contained in the variance (variability) of the portfolio
either. Thus, it cannot possibly be determined by the optimization procedure.
With the alternative version, however, we can.

2. Bearing in mind that expected returns and risks are not known and must be
estimated prior to portfolio selection, if we use the first version to determine
an asset’s beta we obtain

Ǒ
i D

PT
tD1.rti � rt0/.rmt � rt0/
PT

tD1.rmt � rt0/2
; Outi D rti � Ǒ

i.rmt � rt0/; O!ii D 1

T

TX

tD1

Ou2
tiI

if we use the alternative (second) formulation of CAPM with an unrestricted
constant term we would obtain
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Q̌
i D

PT
tD1.rti � Nri/.rmt � Nrm/
PT

tD1.rmt � Nrm/2
; Quti D rti � Ǒ

i.rmt � rt0/; Q!ii D 1

T

TX

tD1

Ou2
tiI

If the risk free rate is appreciably smaller than the sample means of individual
asset and market rates of return, the estimates of ˇi could deviate appreciably
from those obtained using the first version.

3. Equation (2.11) implies that every individual asset’s rate of return is a linear
combination of the risk free and market rates but the coefficients of the linear
combination need not be positive. In particular it implies that an asset with
negative beta does not respond to market rates as its beta might indicate, but the
response is modulated by the term .1 � ˇ/rt0, which in this case is positive. In
addition, it may have implications for well-diversified portfolios that have not yet
been explored.

Thus, we shall conduct our analysis on the basis of the alternative (second) version
of CAPM given in Eq. (2.12).

The main difference between our formulation and that in Markowitz is that here
rmt is a random variable with mean �tm and variance �2

tm whose parameters may
vary with t, perhaps discontinuously; it is, however, independent of ut0i, for every
pair .t; t0/ and i; moreover, if we use it as the basis for a Markowitz type procedure
the resulting portfolios would depend on these parameters. Thus they could form
the basis for explicit dynamic adjustment as their parameters vary in response to
different phases in economic activity.

Within each t, the analysis is conditional on rmt. The relation may be written, for
a planning horizon T,

rti D ci C ˇirmt C uti; i D 1; 2; � � � ; n t D 1; 2; � � � ; T (2.11)

where rti, rmt are, respectively, the observations on the risk free and market rates at
time t, ci; ˇi are parameters to be estimated and uti the random variables (error
terms), often referred to as idiosyncratic risk, with mean zero and variance !ii.
Because the analysis is done conditionally on rmt and because by assumption the
uti are independently distributed, and all equations contain the same (right hand,
explanatory) variables, we can estimate the unknown parameters one equation at a
time without loss of efficiency, by means of least squares. Now, can we formulate
a Markowitz like approach in choosing portfolios on the basis of CAPM? Before we
do so it is necessary to address an issue frequently mentioned in the literature, viz.
that by diversification we may eliminate ‘idiosyncratic risk’. What does that mean?
It could simply mean that in a diversified portfolio idiosyncratic risk emanating
from any one risky asset or a small class thereof is negligible relative to market risk,
although it need not be zero. On the other hand, taken literally it means that

lim
n!1

nX

iD1

�i�ti
a:c:! 0; (2.12)
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i.e. this entity converges to zero with probability 1, and thus idiosyncratic risk need
not be taken into account, meaning that for the purpose of portfolio selection we can
use a version of CAPM which does not contain an idiosyncratic risk component.
Formally, what is required of such entity in order to converge (to its zero mean)
with probability one? For example, in the special case where �i � 1=n, a sufficient
condition for Eq. (2.14) to hold is given by Kolmogorov as6

lim
n!1

nX

iD1

�!ii

i2

�
< 1;

which would be satisfied if the !ii are bounded. For another selection of the
components of � it may not be; for example, if �i � n�=n; � > 0 it will not be
satisfied even if the variances are bounded. Since this assertion imposes a restriction
on the vector, � , of an undetermined nature, we prefer to explicitly take into account
idiosyncratic risk in formulating the problem of optimal portfolio selection.

Another aspect that needs to be considered is whether the index based on the
interpretation of the Lagrange multiplier discussed in connection with the solution
given to the portfolio selection model in Markowitz (1959) is relevant in the CAPM
context and whether these optimality procedures shed any light on the issue of
composition rules.

We proceed basically as before except now the variability constraint utilizes the
standard deviation. For clarity, we redefine portfolio returns and the covariance
matrix of the securities involved given the CAPM specification; thus

rp D � 0c C � 0ˇrmt C ˛rt0 C � 0u0
t�; † D 
 C �2

mtˇˇ0; (2.13)

and the solution is obtained by optimizing the Lagrangian

ƒ D � 0c C � 0ˇrmt C ˛rt0 C 
1Œk � .� 0†�/1=2� C 
2.1 � � 0e � ˛/; (2.14)

From the first order conditions we easily obtain

�

 C �2

mtˇˇ0� � D k


1

.c C ˇ�tm � ert0/ (2.15)

˛ D 1 � � 0e; 
2 D rt0; e D .1; 1; : : : 1/0 (2.16)


1 D Erp � rt0

Œ� 0.
 C �2
t ˇˇ0/� �1=2

: (2.17)

6See Dhrymes (2013, pp. 202–203).
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The last equation is easily obtained by premultiplying the first equation above by � 0
and using the definition of Erp implied by Eq. (2.15) above. If we now substitute for

1 we obtain an equation that involves only ˛ and � , i.e.

.� 0c C � 0ˇ�mt C ˛rt0/� D k2
�

 C �2

mtˇˇ0��1
.c C ˇ�mt � ert0/: (2.18)

But, if we use Eq. (2.16) we can eliminate ˛ so that Eq. (2.18) may be rewritten as

�� 0.c C ˇ�mt � ert0/ � �rt0 D k2
�

 C �2

mtˇˇ0��1
.c C ˇ�mt � ert0/; (2.19)

which can now be solved for � .
A number of features of this procedure need to be pointed out:

1. No high dimensional matrix needs to be inverted, due to a result (Corollary 2.5),7

which enables us to write

�

 C �2

mtˇˇ0��1 D 
�1 � �
�1ˇˇ0
�1; � D �2
mt

1 C �2
mtˇ

0
�1ˇ
I

since 
 is diagonal we easily compute

ˇ0
�1ˇ D
nX

iD1



ˇ2

i

!ii

�
; 
�1ˇˇ0
�1 D

�
ˇiˇj

!2
ii

�
;

i.e., it is a matrix whose typical element is ˇiˇj=!2
ii.

2. The number of parameters that we need to estimate prior to optimization is 3nC2,
viz. the elements of the vectors c; ˇ and the variances !ii; all of these can be
obtained from the output of n simple regressions. The other two parameters are
simply the mean and variance of the market rate.

3. The procedure yields a set of equations which are quadratic in � ; the solution is
a function of k2; �mt; �2

mt and can be adjusted relatively easily when updating of
the estimates of �mt; �2

mt is deemed appropriate.
4. It is interesting that the optimal (solution vector) composition vector, � , is a

function of (depends on) the risk parameter k2, not k, i.e. risk is represented
by the variance, not the standard deviation.

We thus see that in the context of CAPM the implementation of optimal
portfolio selection becomes much simpler and computationally more manageable
and, consequently, so is the task of evaluation ex post.

7See Dhrymes (2013, pp. 46–47).
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2.3 Conclusion

In this paper we reconsidered the problem of portfolio selection as formulated
by Markowitz (1959) and proposed an extension based on CAPM. This extension
highlights certain aspects that represent a considerable simplification; it illuminates
issues regarding the estimation of securities betas, the role played by idiosyncratic
risk and leads to the formulation of a set of quadratic equations that define the
optimal composition of efficient portfolios (the elements of the vector � ), as a
function of the selected level of risk and estimates of (expected) market rate and
its risk (variance). The only remaining problem is to find an algorithm that solves
sets of quadratic equations. This should not be very difficult. Given that, it offers
a systematic way in which portfolio managers might insert into the process their
evolving views of market rates and their associated risk, when updating is deemed
necessary.

An interesting by-product is the potential provided by this framework in eval-
uating (managed) portfolio performance. In a now classic paper Sharpe (1966)
evaluates mutual fund performance by considering realized rates of return for a
number of mutual funds over a number of years and computes the standard deviation
of such returns. The evaluation relies on the ratio of average returns to their
standard deviation. Strictly speaking, these two measures do not estimate ‘constant
parameters’ since the composition of the fund is likely to have changed appreciably
over the period; thus their ratio is not a ranking of the fund itself. It is, however, a
ranking of the fund cum manager.

If we use the framework presented in the paper which is based on CAPM we
could, in principle, during each period compute from published data the portfolio
or fund risk as � 0.
 C �2

mˇˇ0/� . Thus, the evaluator will have for each period,
both realized returns and risk. This would make a more satisfactory basis for
evaluation.
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Chapter 3
Market Timing

Ravi Jagannathan and Robert A. Korajczyk

A large fraction of retirement savings, valued at $23 trillion at the end of March 2014
in the USA, is managed by professional money managers (Investment Company
Institute 2014). For example, mutual funds accounted for 60 % of households’
assets in defined contribution retirement plans and 45 % of the assets in individual
retirement account plans. Investment companies and pension funds held almost
40 % of total corporate equities in the first quarter of 2014 (Board of Governors
of the Federal Reserve System 2014). While investors benefit by delegating the
money management function to professional managers with specialized talents and
skills, relying on others creates invisible indirect costs in addition to observable
direct fees that those managers charge. These invisible costs arise from the need to
monitor and evaluate the actions of the managers in order to ensure that those actions
are consistent with investors’ objectives and the explicit and implicit contractual
terms. An investor allocating savings across several managers has to ensure that the
investment objectives are satisfied, the bets that the different managers take do not
cancel out, and the funds allocated to a particular manager are consistent with the
manager’s abilities and investment capacity. Hence, there is a need for a conceptual
framework for evaluating and monitoring delegated fund managers.
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An investor always has the safe-harbor default option of allocating the savings
across judiciously chosen passively managed index funds, each of which represents
an asset class.1 Therefore, it is natural to start with an appropriately chosen
portfolio of such index funds as the benchmark for evaluating the performance of
an active portfolio manager. In order to minimize the hidden and unknown risks that
arise from delegating the portfolio management function, a fund manager’s mandate
will often limit the investment universe to securities that are in the benchmark and
other securities that have certain characteristics. The weights assigned to the various
securities in the manager’s active portfolio will necessarily have to deviate from their
weights in the benchmark if superior performance is to be delivered. The magnitude
of such deviations will be limited by mandate restrictions.

The common practice is to decompose a fund manager’s performance relative to
the benchmark into two components: (a) the ability to identify which asset classes
will perform better (and overweight those asset classes relative to the benchmark)
and (b) the ability to identify securities within each asset class that will do better than
others in the same asset class. The former skill is denoted as “allocation” or “timing”
and the latter as “selection.” Such a decomposition helps in at least three ways. First,
it facilitates assessing the extent to which past performance may carry over into the
future by providing a better understanding of the nature of a manager’s skill set and,
therefore, the predictability of performance. Second, as we will see later, a manager
with timing skill provides the investor with valuable portfolio insurance. Valuing
such insurance features involves the use of contingent claims valuation methods, and
the standard CAPM or linear beta pricing models will typically understate the value
of such features. Third, attempts to add value through security selection and timing
expose investors to different sources of risk. An appropriate decomposition assists
the investor in understanding the exposure attained through a managed portfolio.

When portfolio holdings are observed, attributing the ex post performance to
these two components is straightforward. However, for many investors, managed
portfolio holdings are reported infrequently, typically at quarterly intervals, yet
they are subject to continuous revisions. Further, assessing whether the manager’s
skills are significant enough to consistently outperform the benchmark in the
future requires a theoretical framework. For example, a manager might attempt to
exploit the low-frequency nature of return or holdings observation. The theoretical
underpinnings of such a strategy allow one to design tests for its existence. Our focus
here is on assessing the performance of a fund manager based on the portfolio’s
historical returns and inferring the sources of superior performance, if any.

1The question of how to choose from the vast collection of index funds to construct a portfolio to
meet one’s investment objectives has not received much attention in the academic literature and has
been left to journals catering to the needs of investment advisers and individual and institutional
investors. The exceptions include Elton et al. (2004) and Viceira (2009).
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When the benchmark has only two asset classes, the aggregate market portfolio
and the risk-free asset, allocation is referred to as “market timing.” Treynor and
Mazuy (1966) developed the basic theoretical framework for inferring the market-
timing skills of a portfolio manager based on observations of the returns the manager
generates under the assumption that the return on the market portfolio is unpre-
dictable. Pfleiderer and Bhattacharya (1983) and Admati et al. (1986) examine the
information structure and objectives of fund managers when the Treynor and Mazuy
(1966) quadratic-regression approach can be used to identify the factor-timing skills
of a portfolio manager. Merton (1981) developed the framework for assessing
the value added by a portfolio manager who can successfully time the market.
Henriksson and Merton (1981) empirically evaluate the performance of mutual
fund managers using the Merton (1981) framework to separate their selection and
timing skills. Subsequent researchers have relaxed the assumptions along several
dimensions: Henriksson and Merton (1981) allow for timing across several asset
classes; Jagannathan and Korajczyk (1986) expand the universe of securities to
include assets that have embedded passive market timing-like features; Glosten and
Jagannathan (1994) allow more-general trading and portfolio-rebalancing behavior
on the part of the manager leading to complex option-like features in managed
portfolio returns and show how to assess the value added by such a manager;
and Ferson and Schadt (1996) allow predictability of the market portfolio return,
and funds’ market exposures, based on publicly available information. Ferson and
Mo (2016) show how market return and volatility timing, discussed in Busse (1999),
can be separated when portfolio weights are observed.

The literature that has grown out of the work of Treynor and Mazuy (1966)
allows us to address several critical questions. Is there be a meaningful distinction
between forecasting security-specific returns and forecasting systematic factor
returns, particularly in a world with dynamic trading strategies and portfolio
containing derivative securities? Do standard performance measures give accurate
indications of the sum of selection and timing performance? If the market risk
premium varies through time in predictable ways, how do we distinguish between
timing based on public information versus timing based on true skill?

In Sect. 3.1 we discuss the main focus of this chapter, return-based performance
measurement. We begin with measures that do not explicitly incorporate timing,
the Treynor (1965) and Jensen (1968) measures. These are related to measures that
test for timing ability, particularly the quadratic Treynor and Mazuy (1966) measure
and piecewise-linear Henriksson and Merton (1981) measure. We then discuss the
effects of derivative strategies, dynamic trading strategies at higher frequencies than
return observations, and pseudo timing, on portfolio performance evaluation. The
section finishes with a discussion of performance evaluation when risk premia have
predictable components. Section 3.2 contains a brief discussion of holdings-based
performance measures and Sect. 3.3 concludes.
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3.1 Return-Based Performance Measurement

Modern asset pricing models make the important distinction between the systematic
and idiosyncratic components of asset returns. The former is correlated with
investors’ marginal utility and, therefore, commands a risk premium, while the latter
has no risk premium. This naturally leads to portfolio performance metrics that
decompose portfolio returns into a component due to exposure to systematic risk
and a component due to the ability to forecast the idiosyncratic returns of assets.
The component due to exposure to systematic risk can be obtained through passive
portfolios while the component due to the ability to forecast the idiosyncratic
returns of assets (which are unconditionally unforecastable) represents skill. The
skill component is often referred to as the risk-adjusted return, the abnormal return,
Jensen measure, or alpha of the portfolio. This decomposition—or a scaling of it—is
originally proposed in Treynor (1965) and Jensen (1968).

In the context of the single-index capital asset pricing model (CAPM) of Treynor
(1962, 1999), Sharpe (1964), Lintner (1965), and Mossin (1966), systematic risk is
measured by the sensitivity of asset returns to unexpected returns on the aggregate
market portfolio. Let ri;t denote the return on asset i in period t; rf ;t denote the return
on a riskless asset in period t; Ri;t denote ri;t � rf ;t; Rm;t denote the excess return on
the aggregate market portfolio; and ım;t denote Rm;t � EŒRm;t�. The return generating
process for asset returns is assumed to be

Ri;t D EŒRi;t� C ˇi;mım;t C ui;t: (3.1)

Unexpected asset returns are driven by shocks to the market portfolio, ım;t, and
shocks uncorrelated with the market, "i;t. Under the assumptions of the CAPM,
investors marginal utility is perfectly correlated with returns on the market. There-
fore, investors demand higher returns on assets with greater exposure to market risk,
and expected excess returns on assets are determined by ˇi;m, in equilibrium:

EŒRi;t� D ˇi;mEŒRm;t�: (3.2)

Combining the data generating process (3.1) and the equilibrium model (3.2), we
obtain

Ri;t D ˇi;mŒEŒRm;t� C ım;t� C ui;t; (3.3)

or, equivalently,

Ri;t D ˇi;mRm;t C ui;t: (3.4)

When a portfolio manager possesses superior skills in evaluating individual
assets, that manager’s expected value of the nonsystematic returns on assets will
be nonzero, thus leading to a relation, conditional on the manager’s private signal,

Ri;t D ˛i;t C ˇi;mRm;t C "i;t (3.5)
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where ˛i;t D EŒui;tjXt�1� and Xt�1 is the information set of the informed manager.
For an investor without skill, the unconditional expectation is zero: EŒ˛i;t� D 0.

A portfolio manager with such skills would take active positions in assets with
nonzero values of ˛i;t: That is, the manager will overweight assets, relative to their
market weights, with ˛i;t > 0 and underweight assets with ˛i;t < 0 as in Treynor and
Black (1973). Therefore, the portfolio-return generating process (Rp;t) for a manager
with skill would be

Rp;t D ˛p C ˇp;mRm;t C "p;t; (3.6)

with ˛p > 0. This risk-adjusted performance metric is first suggested in Treynor
(1965) and Jensen (1968) and is commonly called the Jensen measure of per-
formance. Treynor (1965) notes that ˛p is a function of the manager’s skill in
predicting "i;t and the aggressiveness with which the manager uses that information.
For example, two managers with the same risky asset portfolio, but different
levels of leverage, will produce different Jensen measures. Consider a manager
who constructs portfolio p; with performance ˛p, and a manager who takes 50 %
leverage (at the riskless rate) and invests the proceeds in an identical portfolio. Call
this levered portfolio q. Rq;t D 1:5 � Rp;t, which implies ˛q;t D 1:5 � ˛p;t and
ˇq;t D 1:5 � ˇp;t. In this case, the manager of portfolio q has no more skill than the
manager of portfolio p. The higher value of alpha is merely a reflection of manager
q’s higher level of aggressiveness. Treynor (1965) suggests a variant of the Jensen
measure that controls for the aggressiveness of the manager. Treynor’s measure,
which we denote Tp, scales Jensen’s measure by the beta of the portfolio,

Tp D ˛p

ˇp;m
: (3.7)

With this scaling Tq D 1:5�˛p

1:5�ˇp;m
D ˛p

ˇp;m
D Tp, giving a cleaner measure of skill

adjusted for aggressiveness. The Jensen and Treynor measures extend naturally to
other asset pricing models, such as the multifactor models of Merton (1973b) and
Ross (1976), and the use of the single-index CAPM is merely meant to simplify the
exposition.

Treynor and Black (1973) developed the above framework further, showing how
the information in Eq. (3.7) can be used by an investor, who maximizes the expected
return on her wealth portfolio subject to a target variance constraint, to allocate
her wealth across actively managed funds and the market portfolio. Suppose the
market portfolio has an expected return EŒRm�, variance �2

m, there is a single actively
managed portfolio A with Jensen’s alpha, ˛A; and variance of the residual return in
Eq. (3.6), �2

"A: Then the investor who chooses a mean-variance efficient portfolio of
the market portfolio and portfolio A will have a weight wA in A and a weight .1�wA/

in the market portfolio, where
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wA D
�
˛A=�2

"A

	
�
E.Rm/=�2

m

	 :

An investor will in general have access to several actively managed funds,
i; i D 1; 2 : : : N. Treynor and Black (1973) show that the weight wi of the i’th
actively managed fund in the portfolio of actively managed funds, A, will be
given by

wi D
NX

kD1

�
˛i=�2

"i

	
�
˛k=�2

"k

	 : (3.8)

In deriving the above results, Treynor and Black (1973) assumed that
Cov."i; "k/ D 0. With this assumption, an investor can calculate how much to
allocate across actively managed funds and the market portfolio based on knowledge
of the parameters in Eq. (3.6) using a hand-held calculator. With the advent of
personal computers, and spreadsheet software, the use of portfolio optimization has
become prevalent among institutional investors and financial advisers. While the
underlying framework is the same as in Treynor and Black (1973), it is no longer
necessary to assume that Cov."i; "k/ D 0, and multifactor extensions of Eq. (3.8) are
widely used. However, the Treynor and Black (1973) model provides a huge amount
of insight and intuition. It is still the textbook example for expositing the general
principles underlying optimally combining actively managed funds with the market
portfolio.2

In the formulation above, it is assumed that the manager’s skill is in predicting
the asset-specific, nonsystematic component of returns, "i;t. While there are many
investors for whom this is an accurate description of their investment strategy,
there are many other investors whose explicit strategy is to forecast market, or
asset class, returns and adjust exposures to systematic risk (e.g., ˇp;m in the single-
index, CAPM context) to take into account those forecasts. Such strategies have
come under various labels, including market timing, tactical asset allocation, global
macro investing, and others. In the analysis of Treynor and Black (1973), the optimal
overall market exposure is determined by the market Sharpe Ratio expected by the
investor, E.Rm;t/

�m
, scaled by 1

�m
. Therefore, the portfolio beta would vary with the

expected market Sharpe Ratio, consistent with market timing.
As we mentioned earlier, managers who can successfully time the market provide

portfolio insurance, and the standard mean-variance optimization framework is
inadequate in evaluating such fund managers and deciding how much to allocate
to them. Further, the potential existence of market-timing skills raises a number of
important issues for performance evaluation, including:

1. Can there be a meaningful distinction between forecasting security-specific
returns and forecasting systematic factor returns? For example, in the CAPM
example used above, the market return is a market-capitalization weighted
average of the individual asset returns,

2For example, see Bodie et al. (2011, Chap. 27.1).
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Rm;t D
NX

iD1

!j;t�1Ri;t; (3.9)

so having forecasting skills for ui;t must tell you something about Rm;t since
it contains a linear combination of the realizations of ui;t; i D 1; 2; : : : n. One
approach is to think of ˛i;t as the return implied by the manager’s information,
Xt�1, after accounting for any implications for Rm;t [see, Admati et al. (1986,
Sect. I)]. This implies that Xt�1 cannot contain information only about ˛i;t since
the weighted average alpha most be zero. Another approach is to assume that
asset returns are driven by an underlying factor model [see, Admati et al. (1986,
Sect. I)].

2. Will the Jensen and Treynor measures give accurate indications of the sum
of performance due to micro forecasting skills (often referred to as security
selection) and macro forecasting skills (often referred to as market timing or
asset allocation) of the portfolio manager?

3. Given the existence of securities and dynamic trading strategies that yield payoffs
that are nonlinear in market (or factor) returns, can one separately measure
the performance due to security selection and market timing, and does this
dichotomy make sense?

4. Is it possible to create pseudo-timing performance? If so, how would that
manifest itself in asset returns and performance measures?

5. If the market risk premium varies through time in predictable ways, how do we
distinguish between timing based on public information versus timing based on
true skill? For example, consider the following decomposition, where EŒRm� is
the unconditional market risk premium:

�m;t D Rm;t �EŒRm� D ŒRm;t �EŒRm;t��C ŒEŒRm;t��EŒRm�� D ım;t C ı�
m;t: (3.10)

True market-timing ability is the ability to predict Rm;t over and above the
market’s conditional expectation, EŒRm;t�, i.e., the ability to predict ım;t. However,
having ability to predict ı�

m;t reflects one’s ability to measure changes in the
market’s conditional risk premium.

3.1.1 Treynor and Mazuy (1966)

The pioneering paper in the measurement of market-timing ability is Treynor and
Mazuy (1966). The essence of market timing or tactical asset allocation is to
increase the portfolio’s exposure to the market or a particular asset class when
the manager expects high returns in that asset class and to decrease the portfolio’s
exposure when the manager expects low returns. When the manager has ability to
forecast ım;t or uses public information to predict ı�

m;t, there will be a convex relation
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between the return on the portfolio, Rp;t, and the return on the market or asset class,
Rm;t. Treynor and Mazuy propose that the convex relation be approximated by a
quadratic relation,

Rp;t D ap C bp;mRm;t C cp;mR2
m;t C "p;t: (3.11)

In this specification, cp;m > 0 would be consistent with shifting into high-exposure
assets when the manager’s conditional expectation of ım;t is high or when EŒı�

m;t� is
high. Ability to forecast individual-asset nonsystematic returns, ui;t in (3.4), would,
presumably, be captured by ap (in the models of the return generating process
and manager behavior in Jensen (1972) and Pfleiderer and Bhattacharya (1983)
discussed below). That is, ap D ˛S

p , where ˛S
p is the alpha generated by security

selection ability, while timing ability is captured by cp;m.
Treynor and Mazuy (1966) apply their measures to 57 mutual funds over a

10-year period. The requirement of funds having a complete 10 years of data
probably imparts an upward bias to any performance measures. Even so, only one of
the 57 funds has a significantly positive value of Ocp;m at the 5 % level of significance.
Just by chance, one would expect that three funds would show significantly positive
values of Ocp;m since 5 % of 57 is 2.85 (assuming "p;t is independent across funds).
For this one significant fund, the positive value of Ocp;m is accompanied by negative
security selection ( Ǫ S

p < 0). We will address the negative cross-sectional relation
between Ocp;m and Ǫ S

p later.
Treynor and Mazuy conclude that there is little evidence to support the existence

of timing ability in the sample of mutual funds they study.

3.1.2 The Relation Between ˇp;m and Rm;t

The quadratic functional form in (3.11) proposed by Treynor and Mazuy (1966)
is meant to capture the notion that timing ability should exhibit a positive relation
between market exposure, ˇp;m, and Rm;t, which results in a convex relation between
Rp;t and Rm;t. A second-order polynomial is one way to approximate any general
convex relation. The actual relation between Rp;t and Rm;t would be determined by
the manner in which portfolio managers utilize any forecasting ability that they
have.

3.1.2.1 Quadratic Characteristic Line

The quadratic relation is implied by reasonable models of manager behavior, studied
in Jensen (1972), Pfleiderer and Bhattacharya (1983), and Admati et al. (1986).
Assume that �m;t is conditionally normally distributed and that the manager receives
a signal, st�1, about �m;t with st�1 D �m;t C �t, with �t being a zero-mean normally
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distributed random variable independent of �m;t (Jensen (1972) also allows for

biased signals). EŒ�m;tjst�1� D 
 � st�1 with 
 D �2
�

�2
�C�2

�

:

For quadratic utility (Jensen 1972) or constant absolute risk tolerance (Admati
et al. 1986; Pfleiderer and Bhattacharya 1983), the market exposure of the optimal
portfolio is linear in st�1:

ˇp;m;t D ˇp;m C � � 
 � st�1; (3.12)

where � D 1
aVar.�m;tjst�1/

and a is the risk aversion that the manager assumes for
the fund investors. The unconditional average beta is ˇp;m, and the period-by-period
betas deviate from ˇp;m depending on the manager’s signal, st�1. The aggressiveness
with which the manager adjusts market exposure depends on risk aversion and
the quality of the signal the manager receives about �m;t, through the influence
of Var.�m;tjst�1/ on � and through 
: Additionally, the target level of beta (when
st�1 D 0) is given by �EŒRm� (Pfleiderer and Bhattacharya 1983, p. 8). This leads to
the following data generating process for portfolio returns:

Rp;t D ˛S
p C �EŒRm�.1 � 
/Rm;t C �
R2

m;t C up;t; (3.13)

where

up;t D �
Rm;t�t C "p;t:

The expected value of up;t is zero since Rm;t and �t are independent. However, the
residuals in (3.13) exhibit conditional heteroskedasticity. From (3.13) we see that
the parameters in the regression of Treynor and Mazuy (1966) are given by

ap D ˛S
p (3.14)

bp;m D .1 � 
/ˇp;m (3.15)

cp;m D �
: (3.16)

Thus, in this setting the Treynor and Mazuy (1966) intercept (ap) and coefficient
on the quadratic term (cp;m) are consistent estimates of security-selection (˛S

p) and
market-timing (�
) skills. However, the coefficient on the linear term (bp;m) is
a downward-biased estimate of the target beta when the manager has ability to
forecast the market return (
 > 0).

When the manager has both security-selection and market-timing skills and
follows the Pfleiderer and Bhattacharya (1983) investment strategy, the fund data
generating process follows (3.13). One could estimate the Jensen and Treynor
measures specified in (3.6) and (3.7) for the fund. A reasonable assumption is that
the estimated Jensen measure, Ǫp, would reflect both security selection, ˛S

p , and the
fact that the fund earns a higher return than one would expect given its average
market beta, due to market-timing skill. In fact, this is not necessarily true since
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the unconditional fund beta in (3.6) yields a biased estimator of the average beta,
�EŒRm� (Dybvig and Ross 1985; Grant 1977; Jensen 1968, 1972). Using (3.13) and
the definition of the unconditional beta, we can derive the bias under the assumed
manager behavior:

E. Ǒ
p;m/ D Cov.Rp;t; Rm;t/

�2
m

D �.1 C 
/EŒRm� C �
�mSkm; (3.17)

so that

E. Ǒ
p;m/�E.ˇp;m;t/ D �.1C
/EŒRm�C�
�mSkm ��EŒRm� D �
EŒRm�C�
�mSkm;

where Skm D E.Rm;t�EŒRm�/3

�3
m

is the coefficient of skewness of the market return. Under
the assumption of normality of market returns, Skm D 0 and the last term drops
out of the expression. When the manager has no market-timing skills (
 D 0),
E. Ǒ

p;m/ D E.ˇp;m;t/. From (3.17) we can determine the expected value of Jensen’s
performance measure:

E. Ǫp/ D ˛S
p C �
.�2

m � EŒRm�2/ � �
�mEŒRm�Skm: (3.18)

E. Ǫp/ clearly reflects security-selection skill, ˛S
p , but E. Ǫp/ could be either higher

or lower than ˛S
p even when the manager has timing skill. A manager with timing

skill creates a portfolio with non-normal returns even in a world where primitive
assets have normally distributed returns. This is due to the fact that portfolio returns
include terms that are the product of the manager’s normally distributed signal and
normally distributed returns, leading to the quadratic term in (3.13). The linear
specification in Jensen’s alpha does not take into account the skewness induced by
the manager’s skill.

A simple numerical example may be useful here. Let us assume that EŒRm� D
0:10; �m D 0:20; and the market returns are normal. In this case,

E. Ǫp/ D ˛S
p C �
 � 0:03;

so that Jensen’s measure reflects both security selection and timing ability, although
the measured timing ability is likely to be biased. We will return to this issue later.
However, other parameter specifications and market skewness can lead to a Jensen’s
measure that is either above, or below, ˛S

p . When there is no timing ability (
 D 0),
Jensen’s measure provides an unbiased measure of ˛S

p , and this is true regardless
of whether the manager reacts optimally to the signal (Jensen 1972). In this case,
Treynor’s measure, Tp, is also consistent.
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3.1.2.2 Piecewise-Linear Characteristic Line

The quadratic relation between portfolio returns and market returns is consistent
with a world in which managers receive noisy, normally distributed signals about
future market returns and behave as if they maximize a constant absolute risk
tolerance utility function. An alternate assumption about manager behavior is that
managers receive a signal about whether the market excess return will be positive.
They then choose between two levels of exposure to systematic risk: high beta
when they expect positive excess returns and low beta if they expect negative excess
returns. Merton (1981) shows that timing ability in this setting is equivalent to the
manager creating free call options on the market index. Through put–call parity,
timing ability is also equivalent to creating a free protective put strategy. Therefore,
the value created by the timing ability is given by the value of the number of free
options created by timing skill (less the manager’s fee).

Henriksson and Merton (1981) develop both nonparametric and parametric
methods for evaluating timing and security-selection skills. Under the assumed
manager behavior, the data generating process for portfolio returns is

Rp;t D aS
p C ˇU

p;mRm;t C ˇU�D
p;m maxŒ0; �Rm;t� C "p;t: (3.19)

In (3.19) aS
p measures security-selection skill (under the assumed return gen-

erating process and managerial behavior), ˇU
p;m measures the beta of the portfolio

during “up” markets (markets where Rm;t > 0), and ˇU�D
p;m measures the difference

between the portfolio’s beta in “up” markets and its beta in “down” markets.
Successful timing skill should result in a positive value of ˇU�D

p;m . In the option-
based framework, ˇU�D

p;m is the number of free call options on the market generated
by the manager’s skill at timing.

Henriksson (1984) estimates (3.19) for a sample of 116 open ended mutual funds.
The average of the estimated values of ǑU�D

p;m is negative, and 62 % of the funds

studied have negative values of ǑU�D
p;m , consistent with the findings of Treynor and

Mazuy (1966). This seemingly anomalous evidence of negative timing skill (present
whether the quadratic or piecewise-linear specification is estimated) has proven to
be remarkably robust and is observed for both mutual funds (Henriksson 1984;
Jagannathan and Korajczyk 1986; Kon 1983), bond funds (Chen et al. 2010), and
hedge funds (Asness et al. 2001; French and Ko 2006; Connor et al. 2010, Chap. 13),
although not universally observed (Chen and Liang 2007). Hallerbach (2014)
discusses the difference between the quadratic and piecewise-linear specifications
for a portfolio’s information ratio (defined by the conditional expected active return
divided by active risk).
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3.1.3 Derivative Strategies, Frequent Trading, Pseudo Timing,
and Portfolio Performance

3.1.3.1 Derivative Strategies and Pseudo Timing

In evaluating the performance of a portfolio manager based only on observations
of historical returns on a manager’s portfolio, we rely on the assumption that the
return on any primitive asset i is generated according to Eq. (3.4), i.e., primitive asset
excess returns are linearly related to the excess return on the benchmark (market
index) portfolio. This is not an innocuous assumption. A manager who invests in
call options on the market will show spurious market-timing ability, since the value
of a call option is a convex function of the return on the market. Such a manager
will also show negative timing, as the following example, taken from Jagannathan
and Korajczyk (1986), illustrates.

Consider a manager who buys the following one-period European call option on
the total return market index (i.e., the index assumes reinvestment of dividends) at
the beginning of each period. Let the value of the total return market index portfolio
at time t be denoted by Vt. The call option has an exercise price, Kt D Vt.1Crf ;tC1/,
and trades at price Ct: Let ct and pt denote the values of call and put options on the
total return of the market index when the index value is 1:0 and the exercise price is
.1 C rf ;tC1/: The excess return on the call option, Rp;tC1; is given by

Rp;tC1 D Max



VtC1 � Vt.1 C rf ;tC1/

Ct
; 0

�
� .1 C rf ;tC1/

D Vt

Ct
Max



VtC1 � Vt.1 C rf ;tC1/

Vt
; 0

�
� .1 C rf ;tC1/

D Vt

Ct
Max.Rm;tC1; 0/ � .1 C rf ;tC1/

D �.1 C rf ;tC1/ C Vt

Ct
Rm;tC1 � Vt

Ct
Min.Rm;tC1; 0/

D �.1 C rf ;tC1/ C Vt

Ct
Rm;tC1 C Vt

Ct
Max.�Rm;tC1; 0/

� aS
p C ˇU

p;mRm;tC1 C ˇU�D
p;m MaxŒ0; �Rm;tC1� C 0:

Thus, ˇU
p;m D ˇU�D

p;m D Vt
Ct

, and aS
p D �.1 C rf ;tC1/. The excess return on

the manager’s portfolio exactly fits Eq. (3.19), which measures the selection and
timing skills of a manager. The value of selection skill will be the present value
of �.1 C rf ;tC1/ received one period from now (i.e., �1), and the value of timing
skill equals the value of Vt

Ct
one-period put options on the total return market index

with an index value of 1:0 and an exercise price of .1 C rf ;tC1/, that is, Vt
Ct

� pt:

By Theorem 6 of Merton (1973a), this is also equal to the value of 1
ct

one-period
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put options on the total return market index when the index value is 1 and an
exercise price of .1 C rf ;tC1/, or pt

ct
. Even though the manager is not doing any

selection or timing, the managed portfolio returns exhibit positive measured timing
skill and negative measured selection skill when evaluated using the Henriksson and
Merton (1981) model. It can readily be verified, using the put–call parity theorem
for European options, that pt D ct and, therefore, the value of the portfolio’s pseudo
timing is 1. Hence, the excess value provided by the manger is 0; i.e., the value of
timing and the value of selectivity exactly offset each other, and the manger does not
add any value. While this one-for-one trade-off between timing and selection skills
for a manager with no timing skills does not generalize to investing in options with
different exercise prices, it is possible to bound the value of the spurious timing and
selection skills created by a manager with no timing ability.

As Jagannathan and Korajczyk (1986) point out, the returns on certain asset
classes have embedded call option-like features, and therefore a portfolio manager
need not invest directly in options in order to exhibit spurious selection and timing
skills. They find that a manager who holds a passive, equally weighted stock index
portfolio shows significant negative selection skill and positive timing skill when
the value weighted stock index is used as the market index portfolio.

A number of hedge-fund strategies appear to provide nonlinear payoff structures.
This might be due to a number of factors: superior timing ability, direct holding
of option positions, dynamic trading strategies that mimic option positions, or
strategies that are equivalent to either buying or selling insurance. Mitchell and
Pulvino (2001) show that a merger-arbitrage investment strategy looks very much
like a short position in a put option on the market portfolio. Asness et al. (2001) and
Connor et al. (2010) find that the preponderance of hedge-fund indices they study
demonstrate higher down-market betas than up-market betas. Figure 3.1 illustrates
this by plotting the monthly returns on the Credit Suisse Event-Driven Hedge-
Fund Index against the monthly return on the S&P 500 Index over the period from
January 1994 to August 2009. The piecewise-linear relation plotted in the figure is
the fitted Henriksson–Merton timing regression (3.19). The estimated parameters
are aS

p D 0:0087 (10.44 % annualized, t-statistic D 5.35), ˇU
p;m D 0:08 (t-statistic

= 1.80), and ˇU�D
p;m D �0:26 (t-statistic D �3:54). The patterns in the returns to

event-driven strategies look similar to selling insurance on the S&P 500, with the
premiums reflected in the measured security selection, aS

p.

3.1.3.2 Frequent Trading and Pseudo Timing

Much of the market-timing literature implicitly assumes that the interval over which
the observer measures returns corresponds to the portfolio-rebalancing period of the
portfolio manager. That is, if we observe portfolio returns on a monthly basis, then
the manager rebalances on a monthly basis and at the time we observe returns.
In actuality, many active portfolio managers are likely to rebalance on a daily,
or intra-daily, basis. Pfleiderer and Bhattacharya (1983) consider an example of
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Fig. 3.1 Monthly excess returns on the Credit Suisse Event-Driven Hedge-Fund Index versus the
excess returns of the S&P 500 Index. The piecewise-linear relation is the fitted Henriksson–Merton
timing regression (Eq. 3.18). The regression parameter estimates are ˛S D 0:0087 (10.44 %
annualized), ǑU D 0:08, and ǑU�D D �0:26

a manager who has no timing skill but rebalances the portfolio more frequently
than the observation interval for portfolio returns. This manager is a “chartist” who
bases the portfolio’s beta on past market returns. The manager adjusts the portfolio
positions each period, but portfolio returns are observed every second period. The
return on the market from period t to t C 2 is

Rm;t;tC2 D .1 C EŒRm� C �m;tC1/ � .1 C EŒRm� C �m;tC2/ � 1: (3.20)

If the chartist chooses exposure to the market to be a linear function of the lagged
values of �, the chartist’s two-period return is

rc;t;tC2 D Œ1Crf C.b1Cb2�m;t/.EŒRm�C�m;tC1/�

�Œ1Crf C.b1Cb2�m;tC1/.EŒRm�C�m;tC2/�: (3.21)

This involves linear functions of �m;tC1 and �m;tC2 and a quadratic term in
�m;tC1 which will yield a positive regression coefficient on the squared market
return if b2 is positive [see Pfleiderer and Bhattacharya (1983, Sect. 3)]. Since the
chartist is creating measured timing ability without any true skill, the apparent
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timing ability is accompanied by negative measured security selection (˛S
p). Thus,

portfolio rebalancing at a higher frequency than the observation interval used to
evaluate performance causes the same type of difficulty that positions in derivatives
or dynamic trading strategies designed limit losses through synthetic portfolio
insurance. Hence, it will be difficult to identify true timing and selection skills based
only on observations of the managed portfolio returns. One way to detect this type
of pseudo timing is to study the relation of multi-period fund return, rc;t;tC2, to the
higher-frequency market returns. For the pseudo-timing chartist in this example,
rc;t;tC2 is related to �2

m;tC1 but not to �2
m;tC2 while a manager with true timing skill

would have portfolio returns positively correlated with both �2
m;tC1 and �2

m;tC2.
Pfleiderer and Bhattacharya (1983) propose an approach that utilizes the fact

that one often has access to higher-frequency returns on the market or benchmark
portfolios even when the fund returns are observed infrequently. In the example
above, the chartist’s return rc;t;tC2 will be correlated with Rm;tC1 but not with Rm;tC2.
An alternative approach, proposed by Ferson et al. (2006),

3.1.4 A Contingent Claims Framework for Valuing
the Skills of a Portfolio Manager

Glosten and Jagannathan (1994) show that the approach in Jagannathan and
Korajczyk (1986) can be generalized to provide a consistent estimate of the value
added by a portfolio manager due to true as well as pseudo selection and timing
skills when taken together. In order to assess the value added by a portfolio manager
when the portfolio return exhibits option-like features, Glosten and Jagannathan
(1994), following Connor (1984), assume that the intertemporal marginal rate
of substitution of consumption today for consumption tomorrow of the investor
evaluating the abilities of the active portfolio manager is a time-invariant function
of the returns on a few selected asset class portfolios. When the dynamic version of
the Rubinstein (1976) CAPM holds, there will be only one asset class portfolio and
it will be the return on the aggregate market portfolio.

The Glosten and Jagannathan (1994) approach involves regressing the excess
return of the managed portfolio on the excess return on the market index portfolio
and J one-period options on the market index portfolio, corresponding to J different
exercise prices as given below:

rp;t D ˛ C ˇrm;t C
JX

jD1

�jMax.rm;t � Kj; 0/ C "p;t;

where K1 is set equal to 0; and the other J � 1 options are chosen judiciously so that

˛ C ˇrm;t C
JP

jD1

�jMax.rm;t � Kj; 0/ best approximates the return on the managed
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portfolio, rp;t, for some choice of the parameters ˛; ˇ; �j; j D 1; ::J: They show
that the average value of the manager’s skill embodied in rp;t can be reasonably

well approximated by ˛
1Crf ;t

C
JP

jD2

ˇjCj, where Cj is the average value of the one-

period option that pays Max.rm;t � Kj; 0/ at time t by suitably choosing the number
of options and their exercise prices. The valuation approach in Jagannathan and
Korajczyk (1986) corresponds to J D 1 and K1 D rf ;t.

With the advent of hedge funds, investors have access to portfolio managers who
either directly invest in derivative securities or engage in trading behavior that create
option-like features in their returns. As mentioned earlier, Mitchell and Pulvino
(2001) show that the return on merger arbitrage, one particular hedge-fund strategy,
has some of the characteristics of a written put option on the market portfolio. Fung
and Hsieh (2001) show that the return on CTAs, another commonly used hedge-
fund strategy, resembles the return on look-back options. They develop several
benchmark returns that include returns on judiciously chosen options on several
asset classes that are particularly suitable for assessing the performance of hedge-
fund managers, and they are widely used in the academic literature as well as in
practice. These methods build on the generalized Henriksson and Merton (1981)
framework in Glosten and Jagannathan (1994). Ferson et al. (2006) provide an
alternative way of addressing these issues.

3.1.5 Timing and Selection with Return Predictability

In our original formulation, deviations of market returns from their unconditional
mean come from two sources: (a) deviations of market returns from their conditional
mean (true shocks about which skilled managers may have forecasting ability), and
(b) time variation in the conditional mean; �m;t D ım;tCı�

m;t in (3.10). For simplicity
of exposition, we have assumed that market portfolio returns are unpredictable
from public information (i.e., ı�

m;t D 0). A large literature provides evidence for
predictable time variation in the equity risk premium [e.g., Rozeff (1984), Keim and
Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988, 1989), Fama and
French (1988, 1989), Breen et al. (1989)]. Cochrane (2011) observes that “Now it
seems all price-dividend variation corresponds to discount-rate variation,” although
there is some debate about the predictability of market returns [e.g., Goyal and
Welch (2003), Welch and Goyal (2008), Neuhierl and Schlusche (2011), and Cornell
(2014)].

Ferson and Schadt (1996) show how to measure timing and selection when
returns have a predictable component based on publicly available information. They
start with the assumption that the conditional version of Eq. (3.2) and hence the
conditional version of Eq. (3.4) hold, i.e.,
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Ri;t D ˇi;m.Zt�1/Rm;t C ui;t (3.22)

E.ui;tjZt�1/ D 0 (3.23)

E.ui;tRm;tjZt�1/ D 0; (3.24)

where Zt�1 is a vector of instrumental variables that represent the information
available at time t � 1, ˇi;m.Zt�1/ denotes the functional dependence of ˇi;m on
Zt�1, and E.:jZt�1/ denotes the conditional expectations operator based on observing
the vector of instrumental variables Zt�1. Ferson and Schadt (1996) assume that
the function ˇi;m.Zt�1/ can be approximated well by ˇi;m.Zt�1/ D b0p C B0

pzt�1,
where zt�1 D Zt�1 � E.Zt�1/. With this additional assumption, Ferson and Schadt
(1996) derive a conditional version of the Treynor and Mazuy (1966) model for
detecting timing ability:

Rp;t D aS
p C bpRm;t C B0

pzt�1Rm;t C �pR2
m;t C "p;t: (3.25)

B0
p captures the response of the manager’s beta to the public information, � captures

the sensitivity of the manager’s beta to the private market-timing signal, and aS
p is

a measure of the selection ability of the manager. They show that the following
conditional version of the Henriksson–Merton model also holds:

Rp;t D aS
p C ˇdRm;t C B0

dzt�1Rm;t C �cRm;tIfRm;t�E.Rm;tjzt�1/>0g (3.26)

C�0zt�1Rm;tIfRm;t�E.Rm;tjzt�1/>0g C "p;t;

where the function IfRm;t�E.Rm;tjzt�1/>0g takes the value of 1 when Rm;t �E.Rm;tjzt�1/>0

and 0 otherwise.
Using monthly return data on 67 mutual funds during 1968–1990, Ferson and

Schadt (1996) find that the risk exposure of mutual funds changes in response
to publicly available information on the stock index dividend yield, short-term
interest rate, slope of the treasury yield curve, and corporate-bond yield spread.
Unlike the unconditional Jensen’s alpha (selection measure), which is negative on
average across funds, the conditional selection measure is on average zero. When
the conditional models in Eqs. (3.26) and (3.25) are used, the perverse market timing
exhibited by US mutual funds goes away, highlighting the need for controlling
for predictable components in stock returns. However, the data pose an interesting
puzzle since managers seem to pick market exposures that are positively correlated
with ım;t but negatively correlated with ı�

m;t. Ferson and Warther (1996) show
evidence indicating that the anomalous negative correlation between fund betas and
ı�

m;t is caused by flows of funds into mutual funds prior to high market returns. Delay
in allocating those funds from cash to other assets causes a drop in beta prior to high
return periods. Christopherson et al. (1998) find that alphas do not differ between
conditional and unconditional performance measures for pension fund portfolios.
This is consistent with the fund flows argument for perverse timing for mutual funds
if pension funds are less subject to fund flows that are correlated with ı�

m;t. Ferson
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and Qian (2004) expand the time period and cross-sectional sample of funds studies
and find results that are broadly consistent with the earlier conditional performance
evaluation literature.

3.2 Holdings-Based Performance Measurement

We have focussed on returns-based performance evaluation of market timing, in the
spirit of Treynor and Mazuy (1966). When the fund manager’s portfolio holdings
are observed, the investor can use that additional information in measuring the
timing and selection abilities of the manager with more precision. There is a
vast literature on holdings-based performance evaluation going back, at least, to
Fama (1972). Holdings-based performance evaluation is quite common in practice
when the investor is in a position to see the portfolio positions on a frequent
basis. A common practice in industry is to attribute the performance difference
between the managed portfolio and the benchmark into two components: that due to
“allocation” and that due to “selection”. As discussed in Sharpe (1991), allocation
takes the weights assigned by the manager to the different sectors and compare
them with the weights for those sectors in the benchmark, and computes the effect
of those deviations from benchmark allocation weights. The residual is classified as
selection. Daniel et al. (1997) build on these practices to decompose the return on an
actively managed portfolio into three components: characteristics-based selection,
characteristics-based timing, and average characteristics-based style. We cannot do
justice to that literature here but briefly touch on it.

Following Kacperczyk et al. (2014), define timing as follows:

Timingj;t D
NjX

iD1

�
wj

i;t � wm
i;t

�
ˇi;tRm;tC1 D .ˇ

j
p;t � 1/Rm;tC1 (3.27)

where Timingj;t is the timing skill of manager j at time t; wj
i;t is the weight of security

i at time t in manager j0s portfolio, wm
i;t is the corresponding security’s weight in the

market portfolio, Nj
t is the number of securities in manager j0s portfolio at time

t; and ˇi;t is the covariance of security i0s excess return with the excess return on
the market portfolio divided by the variance of the market portfolio’s excess return

based on information available at time t. Note that
�

wj
i;t � wm

i;t

�
ˇi;t is multiplied by

Rm;tC1, the excess return on the market portfolio at time t C 1. We would expect
that a manager with timing ability would construct the portfolio such that there is
positive correlation between ˇ

j
p;t and Rm;tC1. In a similar way, define the selection

skill as
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Selectionj;t D
NjX

iD1

�
wj

i;t � wm
i;t

�
.Ri;tC1 � ˇi;tRm;tC1/ D "

j
p;t: (3.28)

Notice that observing the portfolio holdings of the fund manager facilitates
measuring the systematic risk exposure of the manager’s portfolio at any given
point in time, t, more precisely. When the weights assigned to the securities in
the manager’s portfolio changes over time, the managed fund’s beta will also vary
over time even when the betas of individual securities remain constant. Hence, the
holdings information helps assess the manager’s abilities better.

Kacperczyk et al. (2014) estimate the selection and timing skills of a manager
using the following time-series regressions:

Timingj;t D a0 C a1Recessiont C a2Xj
t C uj

t (3.29)

Selectionj;t D b0 C b1Recessiont C b2Xj
t C v

j
t ; (3.30)

where Recessionj
t is an indicator variable equal to one if the economy in month

t is in a recession as defined by NBER and zero otherwise. Xj
t is a set of fund-

specific control variables, including age, size, expense ratio, turnover, percentage
flow of new money, load fees, other fees, and other fund style characteristics.
The use of a recession dummy variable is based on the evidence that the equity
premium is countercyclical. The authors find that a subset of managers do have
superior skills. The same managers exhibit both superior timing and selection skills.
Superior performance due to timing is more likely during recessions while selection
is dominant during other periods.

3.3 Summary

Most individual and institutional investors rely on professional money managers.
While delegation provides gains through specialization, it also imposes invisi-
ble agency costs: an investor has to evaluate managers as well as select and monitor
the ones with superior skills. Return-based and portfolio holdings-based perfor-
mance measures complement each other in identifying portfolio managers with
superior abilities. While we briefly cover holdings-based performance measures, our
main focus is on return-based performance measures. Treynor (1965) and Treynor
and Mazuy (1966) are the earliest examples of return-based performance measures
assuming constant and variable exposures to market risk, respectively.

Measuring performance requires a conceptual framework. The literature has
evolved by examining whether a representative investor would benefit from access
to an actively managed fund. In order to answer the question, we need to know the
objectives of the representative investor and which portfolio the investor will hold in
the absence of access to the active manager. The CAPM provides a natural starting



68 R. Jagannathan and R.A. Korajczyk

point. According to the CAPM, investors care only about the mean and the variance
of the return on their wealth portfolio and, furthermore, the representative investor
will hold the market portfolio of all assets. Treynor (1965) and Jensen (1968)
develop security-selection ability measures that are valid from the perspective
of such a representative investor. These measures assess value at the margin for
a small incremental investment in the active fund from the perspective of the
representative investor holding the market portfolio. The value at the margin is
not sufficient for deciding how to allocate funds across the market and actively
managed funds, since allocating nontrivial amounts in active funds will lead to
the investor’s portfolio deviating significantly from the market portfolio, and the
marginal valuations will change. Treynor and Black (1973) solve for optimal
portfolio choice when funds or individual assets provide abnormal returns, creating
a framework for asset allocation that provides the conceptual foundation for many
modern-day quantitative investment strategies.

The performance measures of Treynor (1965) and Jensen (1968) and the asset-
allocation framework of Treynor and Black (1973) assume, in addition to the
assumptions leading to the CAPM, that security returns are linearly related to the
return on the market index portfolio; i.e., the up and down market betas of a security
or managed portfolio are the same. Treynor and Mazuy (1966) make the important
observation that the return on the portfolio of a fund manager who successfully
forecasts market returns and adjusts market exposure will resemble the return on a
call option and will be nonlinearly related to the return on the market with higher
beta in up markets. Dybvig and Ingersoll (1982) show that while the CAPM may
provide a reasonable framework for valuing major asset classes, and securities
whose returns are linearly related to the market return, the CAPM will in general
assign the wrong value to payoffs with option-like features. Merton (1981) addresses
this issue by developing a framework for assessing the value, at the margin, of a
successful market-timing fund manager. Pfleiderer and Bhattacharya (1983) and
Admati et al. (1986) provide additional insights by modeling the behavior of a
fund manager with access to informative signals. Their analysis shows the rather
restrictive nature of the assumptions that are needed to support the dichotomous
classification of the abilities of a fund manager into timing and selection.

Jagannathan and Korajczyk (1986) and Glosten and Jagannathan (1994) show
that, while the timing and selection skills of an active fund manager cannot be
disentangled, classifying the skill into two types—selection and market timing
(or asset allocation)—facilitates assessing the correct value, at the margin, created
by the manager; the combined value of timing and asset selection is the crucial
variable of interest, and that can be assessed with reasonable precision. While
zero-value strategies that involve taking positions in securities with option-like
features or mimicking timing skill through frequent rebalancing can show superior
performance in one dimension (timing or selection), that performance will come at
the expense of poor performance in the other dimension. Properly disentangling
selection and performance even when they are spurious allows the investor to
measure the net value added by a fund manager more precisely.
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All these performance-evaluation methods assume that security returns have
little predictability based on publicly available information. While the litera-
ture documenting predictable patterns in stock returns based on publicly available
information has become rather large, the practical relevance of the findings is the
subject of ongoing debate. In a world where risk premiums can be forecasted
with publicly available information, there is a need for performance measures
that distinguish between true timing ability and timing through the use of public
information. Ferson and Schadt (1996) derive measures that allow us to isolate true
skill.
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Chapter 4
Returns, Risk, Portfolio Selection,
and Evaluation

Phoebus J. Dhrymes and John B. Guerard

We present additional evidence on the risk and return of stocks in the USA and
globally in the 1997–2009 period. We use a stock selection model incorporating
fundamental data, momentum, and analysts’ expectations and create portfolios
using fundamental and statistically based risk models. We find additional evidence
to support the use of multifactor models for portfolio construction and risk
control. We created portfolios for the January 1997 to December 2009 period.
We report three conclusions: (1) a stock selection model incorporating reported
fundamental data, such as earnings, book value, cash flow, and sales, and analysts’
earnings forecasts and revisions and momentum can identify mispriced securities;
(2) statistically based risk models produce a more effective return-to-risk portfolio
measures than fundamentally based risk models; and (3) the global portfolio returns
of the multifactor risk-controlled portfolio returns dominate USA-only portfolios.

4.1 Introduction and Summary

How do we conceptualize the operation of markets for risky assets? To do so we
need to take into account of: how the price of individual assets is determined, how
risks and returns are balanced and how groups of such assets (portfolios) are put
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together, i.e., the principles by which they are constructed, how they balance returns
and risks, and once they are brought into being how their performance may be
evaluated.

Evidently, this task begins with the evaluation of what one might expect the
returns of a risky asset to be. Expected returns on assets are not completely explained
by using only historical means (and standard deviations). One can estimate models
of expected return using earnings expectations data, price momentum variables
and other relevant financial data. In this analysis, we construct and estimate a
stock selection model using US stocks and global stocks incorporating reported
financial data earnings, expectations data, and price momentum for the period from
January 1985 to December 2009. Despite the recent volatility of the momentum
factor, momentum is still statistically associated with security returns and can
be used with other factors to rank-order stocks for purchase. A composite value
of momentum, value, and growth factors is estimated for US equities universe
to identify potentially mispriced stocks. In addition, we consider the regression-
weighting of factors, enhanced information coefficients relative to equally weighted
factors. Thus, momentum and analysts’ forecast variables dominate the regression-
based composite model of expected returns. We created portfolios for the January
1997 to December 2009 period. We report three conclusions: We report three
conclusions: (1) a stock selection model incorporating reported fundamental data,
such as earnings, book value, cash flow, sales, analysts’ earnings forecasts, revisions
and momentum can identify mispriced securities; (2) statistically based risk models
produce a more effective return-to-risk portfolio measures than fundamentally
based risk models; and (3) the global portfolio returns of the multifactor risk-
controlled portfolio returns dominate USA-only portfolios. In this study, we review
recent expected returns modeling literature, trace the development of enhanced
multifactor mean-variance portfolio construction models, and show domestic and
global portfolio management and analysis.

4.2 Expected Returns Modeling and Stock Selection Models:
Recent Evidence

There are many approaches to security valuation and the creation of expected
returns. The first approaches to security analysis and stock selection involved the
use of valuation techniques using reported earnings and other financial data. Graham
and Dodd (1934) recommended that stocks be purchased on the basis of the price-
earnings (P/E) ratio. They suggested that no stock should be purchased if its
price-earnings ratio exceeded 1.5 times the P/E multiple of the market. Graham
and Dodd established the P/E criteria, which was discussed in Williams (1938),
the monograph that influenced Harry Markowitz and his thinking on portfolio
construction. It is interesting that Graham and Dodd put forth the low P/E model
at the height of the Great Depression. Basu (1977) reported evidence supporting the
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low P/E model. Dremen (1979, 1998) presented practitioner evidence of low P/E
effectiveness. Academics often prefer to test the low P/E approach by testing its
reciprocal, the “high E/P” approach. The high E/P approach specifically addresses
the issue of negative earnings per share, which can confuse the low P/E test.
Hawawini and Keim (1995) found statistical support for the high EP variable of
NYSE and AMEX stocks from April 1962 to December 1989. At a minimum,
Graham and Dodd also advocated the calculation of a security’s net current asset
value, NCAV, defined as its current assets less all liabilities. A security should be
purchased if its net current value exceeded its current stock price. The price-to-book
(PB) ratio should be calculated, but not used as a measure for stock selection.

There is extensive literature on the impact of individual value ratios on the
cross section of stock returns. We go beyond using just one or two of the standard
value ratios (EP and BP) to include the cash-price ratio (CP) and/or the sales-price
ratio (SP). Research on the combination of value ratios to predict stock returns
that include at least CP and/or SP include Chan, Hamao, and Lakonishok (1991),
Bloch, Guerard, Markowitz, Todd, and Xu (1993), Lakonishok, Shleifer, and Vishny
(1994), and Guerard, Gultekin, and Stone (1997), Haugen and Baker (2010), and
Stone and Guerard (2010). We review these seven papers in some detail and provide
the following comments.

Chan et al. (1991) used seemingly unrelated regression (SUR) to model CAPM
monthly excess returns as functions of CAPM excess returns of the value-weighted
or equal-weighted market index return; EP, BP, CP; size as measured by the natural
logarithm of market capitalization (LS).1 Betas were simultaneously estimated and
cross-sectional correlations of residuals were addressed. When fractile portfolios
were constructed by sorting on the EP ratio, the highest EP quintile portfolio
outperformed the lowest EP quintile portfolio, and the EP effect was not statisti-
cally significant. The highest BP stocks outperformed the lowest BP stocks. The
portfolios composed (sorted) of the highest BP and CP outperformed the portfolios
composed of the lowest BP and CP stocks. In the authors’ multiple regressions,
the size and book-to-market variables were positive and statistically significant.
The EP coefficient was negative and statistically significant at the 10 % level.
Thus, no support was found for the Graham and Dodd low PE approach. In the
monthly univariate SUR analysis, with each month variable being deflated by an
annual (June) cross-sectional mean, Chan et al. (1991) found that the EP coefficient
was negative (but not statistically significant), the size coefficient was negative
(but not statistically significant), the book to market coefficient was positive and
statistically significant, and the cash flow coefficient was positive and statistically
significant. In their multiple regressions, Chan et al. (1991) report BP and CP
variables were positive and statistically significant but EP was not significant.
Applying an adaptation of the Fama and MacBeth (1973) time series of portfolio
cross sections to the Japanese market produced negative and statistically significant

1Chan et al. (1991) define cash as the sum of earnings and depreciation without explicit correction
for other noncash revenue or expenses.
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coefficients on EP and size but positive and statistically significant coefficients for
the BP and CP variables. Chan et al. (1991, p. 1760) summarized their findings:
“The performance of the book to market ratio is especially noteworthy; this variable
is the most important of the four variables investigated.”

In 1991, Markowitz headed the Daiwa Securities Trust Global Portfolio Research
Department (GPRD). The Markowitz team estimated stock selection models using
Graham et al. (1934) fundamental valuation variables, earnings, book value, cash
flow and sales, relative variables, defined as the ratio of the absolute fundamental
variable ratios divided by the 60-month averages of the fundamental variables.
Bloch et al. (1993) reported a set of some 200 simulations of US and Japanese
equity models. Bloch et al. (1993) found that Markowitz (1987) mean-variance
efficient portfolios using the lower EP values in Japan underperformed the universe
benchmark, whereas BP, CP, and SP (sales-to-price, or sales yield) variables
outperformed the universe benchmark. For the US optimized portfolios using BP,
CP, SP, and EP variables, the portfolios outperformed the U.S. S&P 500 index,
giving support to the Graham and Dodd concept of the low price-to-earnings
variable using the relative rankings of value-focused fundamental ratios to select
stocks.2 Bloch et al. (1993) used relative ratios as well as current ratio values. Not
only might an investor want to purchase a low P/E stock, but one might wish to
purchase a low P/E stock when the P/E is at a relatively low value compared to its
historical value, in this case a low relative to its average over the last 5 years.

Let TR denote 3-month-ahead stock return for a stock. Bloch et al. (1993) esti-
mate the following regression equation to assess empirically the relative explanatory
power of each of the eight value ratios in the equation:

TR D w0 C w1EP C w2BP C w3CP C w4SP C w5REP

C w6RBP C w7RCP C w8RSP C et: (4.1)

Given concerns about both outlier distortion and multicollinearity, Bloch et al.
(1993) tested the relative explanatory and predictive merits of alternative regression
estimation procedures: OLS, robust using the Beaton and Tukey (1974) bi-square
criterion to mitigate the impact of outliers, latent root to address the issue of
multicollinearity [see Gunst, Webster, and Mason (1976)], and weighted latent root,
denoted WLRR, a combination of robust and latent root. Bloch et al. (1993) used
the estimated regression coefficients to construct a rolling horizon return forecast.
The predicted returns and predictions of risk parameters were used as input to a
mean-variance optimizer [see Markowitz (1987)] to create mean-variance efficient

2One finds the Price/Earnings, Price/Book, Price/Sales listed among the accounting anomalies in
Levy (1999), p. 434. Levy also discusses the dividend yield as a (positive) stock anomaly. Malkiel
(1996) cites evidence in support of buying low P/E, low P/B, and high D/P (dividend yield) stocks
for outperformance, provided the low P/E stocks have modest growth prospects (pp. 204–210).
Malkiel speaks of a “double bonus”; that is, if growth occurs, earnings increase and the price-to-
earnings multiple may increase, further driving up the price. Of course, should growth fail to occur,
both earnings and the P/E multiple may fall.
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portfolios in both Japan (first section, nonfinancial Tokyo Stock Exchange common
stocks, January 1975 to December 1990) and the USA (the 1000 largest market-
capitalized common stocks, November 1975 to December 1990).3

Bloch et al. (1993) reported several results. First, for both Japanese and the US
financial markets, they compared OLS and WLLR techniques, inputting expected
returns forecasts produced by each method into a mean-variance optimizer. The
WLRR-constructed composite model portfolio produced higher Sharpe Ratios and
geometric means than the OLS-constructed composite variable portfolio in both
Japan and the USA, indicating that controlling for both outliers and multicollinearity
is important in using regression-estimated composite forecasts. Second, Bloch et al.
quantified survivor bias and found it was not statistically significant in Japan and
the USA for the period tested. Third, they investigated period-to-period portfolio
revision and found that tighter turnover and rebalancing triggers led to higher
portfolio returns for value-based strategies. Finally, Markowitz and Xu (1994)
developed a test for data mining. In addition to testing the hypothesis of data mining,
the test can be used to estimate and assess the expected difference between the best
test model and the average of simulated policies.

In a thorough assessment of value versus growth in Japan and the USA,
Lakonishok et al. (1994) examined the intersection of Compustat and CRSP
databases for annual portfolios for NYSE and AMEX common stocks, April
1963 to April 1990. Their value measures were three current value ratios: EP,
BP, and CP. Their growth measure was the 5-year average annual sales growth
(GS). They performed three types of tests: a univariate ranking into annual decile
portfolios for each of the four variables, bivariate rankings on CP (value) and GS
(growth, glamor), and finally a multivariate regression adaptation of the Fama and
MacBeth (1973) time series pooling of cross sectional regressions. Lakonishok
et al. (1994) used the Fama-MacBeth methodology to construct portfolios and pool
(average over time) a time series of twenty-two 1-year cross-sectional univariate
regressions for each of the 22 years in their study period. The univariate regression
coefficient for SG was significantly negative. The EP, BP, and CP coefficients
were all significantly positive. When Lakonishok, Shleifer, and Vishny performed
a multivariate regression using all four variables, they found significantly positive
coefficients for BP and EP (but not CP) and significantly negative coefficients for
SG. Overall, Lakonishok et al. (1994) concluded that buying out-of-favor value
stocks outperformed growth (glamor) over the April 1968 to April 1990 period,
that future growth was difficult to predict from past growth alone and that the actual

3The use of nonfinancial stocks led to a customized index for the Markowitz Global Portfolio
Research Group (GPRD) analysis. The Chan et al. and an initial Guerard presentation occurred
in September 1991 at the Berkeley Program in Finance, Santa Barbara, on Fundamental Analysis.
Bill Ziemba presented a very interesting study comparing US and Japanese fundamental strategies
at the same Berkeley Program meeting. Markowitz refers to this meeting in his Nobel Prize
lecture (1991). Ziemba and Schwartz (1993) used capitalization-weighted regressions. The Chan
et al., Guerard, and Ziemba studies found statistical significance with expectation and reported
fundamental data.
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future growth of the glamor stocks was much lower than past growth relative to the
growth of value stocks, and that the value strategies ex post were not significantly
riskier than growth (glamor) strategies.

Guerard et al. (1997) studied the intersection of Compustat, CRSP and I/B/E/S
databases. This study built on the fundamental forecasting work in Bloch et al.
(1993) in two ways: (1) adding to the Bloch et al. eight-variable regression equation
a growth measure; and then (2) adding three measures of analysts’ forecasts and
forecast revisions from the I/B/E/S database, namely consensus analysts’ forecasts,
forecast revisions, and the direction (net up or down) of the forecast revisions.
We will use the GSG (1997) consensus I/B/E/S variable priority growth variable,
denoted PRGR in the original analysis. In quarterly weighted latent root regressions,
the growth variable averaged a relative weight of 33 % whereas the average relative
weighting of the 8 value variables averaged almost 67 %. In a 9-factor regression
model, instead of having an average coefficient of 0.111, the PRGR variable had
an average coefficient of 0.33, the largest weight in the model. The GGS result
complements that of Lakonishok et al. (1994) in showing that rank-ordered portfolio
returns have both a significant value and growth components.

Adding I/B/E/S variables to the eight value ratios produced more than 2.5 % of
additional annualized return. The finding of significant predictive performance value
for the three I/B/E/S variables indicates that analyst forecast information has value
beyond purely statistical extrapolation of past value and growth measures. Possible
reasons for the additional performance benefit could be that analysts’ forecasts
and forecast revisions reflect information in other return-pertinent variables, or
discontinuities from past data, or serve as a quality screen on otherwise out-of-favor
stocks. The quality screen idea would confirm Graham and Dodd’s argument that
value ratios should be used in the context of the many qualitative and quantitative
factors that they argue are essential to informed investing. In terms of relative
predictive value, Guerard et al. (1997) found the EP, CP, SP, and RSP variables to be
more important than the BP variable. To test the risk-corrected performance value
of the forecasts, Guerard et al. (1997) formed quarterly portfolios with risk being
modeled via a 4-factor APT-based model (created using 5 years of past monthly
data). The portfolios’ quarterly returns averaged 6.18 % before correcting for risks
and transaction costs with excess returns of 3.6 % after correcting for risk and
2.6 % quarterly after subtracting 100 basis points to reflect an estimate of two-way
transactions costs.

Haugen and Baker (2010) extended their 1996 study in a recent volume to
honor Harry Markowitz (Guerard, 2010). Haugen and Baker estimate their model
using weighted least squares. In a given month we will simultaneously estimate the
payoffs to a variety of firm and stock characteristics using a weighted least squares
multiple regression procedure of the following form:

rj;t D
nX

iD1

Pi;tFi;j;t�1 C �j;t (4.2)
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where:
rj,t D the total rate of return to stock j in month t.
Pi,t D estimated weighted least squares regression coefficient (payoff) for factor

i in month t.
Fi,j,t�1 D normalized value for factor i for stock j at the end of month t � 1.
n D the number of factors in the expected return factor model.
�j,t D component of total monthly return for stock j in month t unexplained by

the set of factors.
Haugen and Baker (2008) estimated their equation (4.2) in each month in the

period 1963 through 2007.4 In the manner of Fama and MacBeth (1973), they then
compute the average values for the monthly regression coefficients (payoffs) across
the entire period. Dividing the mean payoffs by their standard errors we obtain t-
statistics. The most significant factors are computed as follows:

• Residual Return is last month’s residual stock return unexplained by the market.
• Cash Flow-to-Price is the 12-month trailing cash flow-per-share divided by the

current price.
• Earnings-to-Price is the 12-month trailing earnings-per-share divided by the

current price.
• Return on Assets is the 12-month trailing total income divided by the most

recently reported total assets.
• Residual Risk is the trailing variance of residual stock return unexplained by

market return.
• 12-month Return is the total return for the stock over the trailing 12 months.
• Return on Equity is the 12-month trailing earnings-per-share divided by the most

recently reported book equity.
• Volatility is the 24-month trailing volatility of total stock return.
• Book-to-Price is the most recently reported book value of equity divided by the

current market price.
• Profit Margin is 12-month trailing earnings before interest divided by 12-month

trailing sales.
• 3-month Return is the total return for the stock over the trailing 3 months.
• Sales-to-Price is 12-month trailing sales-per-share divided by the market price.

Haugen and Baker noted that the t-scores are large as compared to those obtained
by Fama and MacBeth even though the length of the time periods covered by
the studies is comparable.5 Last month’s residual return and the return over the
preceding 3 months have negative predictive power relative to next month’s total
return. This may be induced by the fact that the market tends to overreact to most

4Fifty-seven factors are used in the model. See Haugen and Baker (1996) for definitions.
5In Fama and French (2008) p. 1668, ad hoc cross-section regressions are used in an attempt to
explain the cross-sectional structure of stock returns. They report t-statistics as large as �8.59, but
no attempt is made to investigate the out-of-sample predictive power of their regressions. Fama and
French further research book-to-price and momentum anomalies in their 1995 and 2008 studies.
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information. The overreaction sets up a tendency for the market to reverse itself
upon the receipt of the next piece of related information.

The four measures of cheapness: cash-to-price, earnings-to-price, book-to-price,
and sales-to-price, all have significant positive payoffs. Haugen and Baker (2010)
find statistically significant results for the four fundamental factors as did the
previously studies we reviewed. Measures of cheapness have been frequently
found in the past6 to be associated with relatively high stock returns, so it is not
surprising that four measures of cheapness appear here as significant determinants
of structure in the cross-section. Haugen and Baker (2010) dismiss the problem
of multicollinearity.7 Haugen and Baker present optimization analysis to support
their stock selection modeling, and portfolio trading is controlled through a penalty
function. When available, the optimizations are based on the largest 1000 stocks in
the database. Estimates of portfolio volatility are based on the full covariance matrix
of returns to the 1000 stocks in the previous 24 months. Two years of monthly return
data, from 1963 through 1964, is used to construct the initial portfolios. Estimates
of expected returns to the 1000 stocks are based on the factor model discussed
above. The following constraints are applied to portfolio weights for each quarterly
optimization:

1. The maximum weight in a portfolio that can be assigned to a single stock is
limited to 5 %. The minimum is 0 % (Short selling is not permitted).

2. The maximum invested in any one stock in the portfolio is three times the market
capitalization weight or 0.25 %, whichever is greater, subject to the 5 % limit.

3. The portfolio industry weight is restricted to be within 3 % of the market
capitalization weight of that industry. (Based on the two-digit SIC code.)

4. Turnover in the portfolio is penalized through a linear cost applied to the trading
of each stock. As a simplification, all stocks are subject to the same linear
turnover cost although in practice portfolio managers use differential trading
costs in their optimizations.

These constraints are designed to merely keep the portfolios diversified. Reason-
able changes in the constraints do not materially affect the results. The portfolios
are reoptimized quarterly.8

Trading costs are not reflected in the Haugen and Baker (2010) optimization
analysis; however, the Haugen and Baker (2010) portfolios out-performed the
benchmark by almost 5 % with average annual turnover of 80 % during the 1965–

6See, for example, Fama and French (1992).
7Haugen and Baker (2010) address the argument that these measures of cheapness in the regres-
sions would make the methodology prone to multicolinearity. Significant problems associated
with multicollinearity should result in instability in the estimated regression coefficients from
month to month. However, Haugen and Baker (2010) point to their mean values for these variable
coefficients are very large relative to their standard errors and argue that multicollinearity is clearly
not a significant problem in their analysis.
8With unconstrained optimization, with 24 monthly observations and 1000 stocks, there is no
unique solution. However, given the constraints provided above, unique solutions exist.
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2007 period. Obviously, as Haugen and Baker conclude, transactions costs would
have to be unrealistically extreme to significantly close the gap between the high
and low expected return portfolios. Haugen and Baker (2010) conclude with
the following findings: (1) measures of current profitability and cheapness are
overwhelmingly significant in determining the structure of the cross-section of stock
returns; (2) the statistical significance of risk is also overwhelming, but the payoff
to risk has the wrong sign period after period. The riskiest stocks over measures
including market beta, total return volatility, and residual volatility tend to have
the lowest returns; (3) 1-year momentum pays off positively, and that last month’s
residual return and last quarter’s total return pays off negatively; (4) strikingly,
nearly all of the most significant factors over our total period are highly significant
in our five sub-periods, and all have the same signs as they did in the total period;
and (5) the ad hoc expected return factor model is very powerful in predicting the
future relative returns on stocks.9

Stone and Guerard (2010) and Stone (2016) reestimated the Bloch et al. (1993)
model for the 1967–2004 period and created portfolios using ranking on a forecasted
return score and grouped securities into portfolios ordered on the basis of forecasted
or predicted return score. This return cross section will almost certainly have a wide
range of forecasted return values. However, each portfolio in the cross section will
almost never have the same average values as a set of the control variables. To
the extent values of return impact controls fluctuate randomly about their average
value over the cross section, the variation is a source of noise (and possible loss of
efficiency) in assessing the cross sectional dependency on the return forecast score
on realized returns (and realized return related measures such as standard deviation).
However, to the extent that a control is correlated with the return forecast score, the
systematic variation in the control with the rank ordering will mean the impact of the
control variable is mixed in with the dependency on the return forecast. Reassigning
stocks to produce a new cross section with no portfolio-to-portfolio variation in the
control variable means there is no differential impact on the return cross sections.
In addition to possible improvements in efficiency, making all of the portfolios in a
cross section have the same portfolio-average value for a correlated control variable
means that we can isolate the dependency of realized returns on the return forecast
from any dependency without any differential distortion from the correlated control

9Haugen and Baker (2010, p. 14) actually close their work with the following observations: “High-
return stock deciles tend to be relatively large companies with low risk and they have positive
market price momentum. The profitability of high-return stocks is good and getting better. The
low-return counterparts to these stocks have the opposite profile. A rational investor would likely
find the high-return profile very attractive and the low-return profile very scary. Given the evidence,
and this evidence will be reproduced by others, the following conclusions are undeniable.

• The cross-sectional payoff to risk is highly negative.
• The longitudinal payoff to risk is highly positive.
• The most attractive stock portfolios have the highest expected returns.
• The scariest stock portfolios have the lowest expected returns.

The stock market is inefficient. “Case closed.”
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variable. To produce a cross-sectional match on any of the control variables, they
reassigned stocks. For instance, if we were trying to make each portfolio in the cross
section have the same average beta value, we could move a stock with an above-
average beta value into a portfolio whose average beta value is below the population
average. At the same time, we could shift a stock with a below-average beta value
into the above average portfolio from the below-average portfolio.

Just to produce a match for each portfolio in the cross section on a single
explanatory control variable such as beta clearly entails an immense number
of possible reassignments of stocks across portfolios. Fortunately, we do not
have to use trial-and-error switching of stocks between portfolios to find the
best reassignment that produces a cross-sectional match on beta or any other
control variable. This reassignment problem can be formulated as a mathematical
assignment program (MAP). All fractile portfolios should have explanatory controls
equal to their population average value. Given a cross section of fractile portfolios
formed by rank-ordered grouping on the basis of predicted return, the objective of
the assignment program was to transform this cross section of fractile portfolios
into an associated control-matched cross section to optimize two complementary
attributes of statistical power:

1. Preserving a wide range of well-ordered return forecasts.
2. Preserving within-portfolio homogeneity of forecasted return.

The four constraints are:

1. The portfolio average value of each control variable must equal the population
mean.

2. The initial size (number of securities) of each portfolio must be preserved.
3. Each security must be fully assigned.
4. There can be no short sales.

The crucial constraints were the control matching restrictions. Preserving initial
portfolio size and full use of each security are technical constraints that go with full
use of the sample.

Stone and Guerard (2010) assessed month-to-month return cross sections in each
of the 456 months of the 1968–2004 time period, and imposed progressively more
complete sets of control variables in each month. Obtaining 15 or more control-
matched cross sections in 456 month means solving more than 6700 optimization
runs. Solving this many quadratic programs would be a computational challenge.
However, just as one can approximate the mean-variance portfolio optimization
of Markowitz (1952, 1956, 1959) by solving an associated linear programming
(LP) approximation to the quadratic program [see for instance Stone (1973)], we
can approximate the control-matching quadratic optimization by an associated LP
objective function. The substance of the reassignment process is well understood
by knowing input and output. The input was a cross section formed by ranking
stocks into 30 fractile portfolios, which is the focus of most cross-sectional return
analyses in past work on cross-sectional return dependencies. The output was a
cross section of fractile portfolios that were matched on a specified set of controls
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variables. The MAP found an optimal reassignment of stocks that transformed the
input rank-ordered cross section into a new cross section that is matched on the
portfolio average values of each control variable.

Optimization arises in finding the particular reassignment that optimizes a trade-
off between preserving the widest possible range of well-ordered portfolio values of
forecasted return and also ensuring preservation of within-portfolio homogeneity of
forecasted return. For the LP transformation used to obtain control-matched cross
sections, the linear objective function is a trade-off between preserving as much as
possible a measure of cross-portfolio range while minimizing the shifting of stocks
away from the original rank-order portfolio. Even though we have used an LP to
construct a control-matched cross section, any approximation is in the objective
function and not in meeting any constraints. The constraints requiring that every
portfolio in the cross section have an exact match on each control variable is met
exactly in each month for every control variable in every portfolio.

Stone and Guerard (2010) used nonfinancial stocks during the 1962–2004 period
to form portfolios in the CRSP-COMPUSTAT universe intersections that have been
listed at least 5 years at the time of portfolio formation for which all return and all
financial statement data are available. Because of the sparseness of the Compustat
database in the 1964–1966 5-year start-up period required for variables such as
5 years sales growth, there are only 324 companies in the first forecast month,
January 1968. From 1971 on, there are more than 900 companies in the forecast
sample growing to more than 2000 companies by 1995. The fact that the sample size
shows little growth from the 2003 companies in January 1995 to 2238 companies in
January 2004 indicates that the large number of new IPOs from the mid-1990s on
does not produce an increase in the number of sample companies. The fact that the
Stone and Guerard (2010) sample does not exhibit the same growth as the cross time
increase in publicly listed companies shows that the combination of data availability
and minimum book value restrictions mean that we are primarily studying larger,
more mature companies.

Conventional practice in cross sectional return dependency assessments has been
to form deciles and more recently only quintiles. There are several reasons for
using 30 (fractile) portfolios rather than forming deciles or even quintiles as done
in some recent studies. Using a larger number pertains to the power-efficiency
trade-off. First, grouping (averaging) tends to lose information, especially in the
tails of the distribution while most of the efficiency benefits of measurement error
and omitted variable diversification are accomplished with 20 or fewer stocks in
a fractile. Second, to do regression fits to the return and standard deviation cross
sections, more portfolio observations are clearly preferred to less with at least 20
being desirable. Third, Stone (2003) shows that very low levels of sample correlation
coefficients are magnified nonlinearly when one groups by rank-ordering on any one
variable. Fourth, given that one can group together adjacent portfolios in a control
matched return cross section (as done here in looking at both the top quintile (top
six portfolios grouped) and bottom quintile (bottom six portfolios grouped)), one
should probably err on the side of too many portfolios in a cross section rather than
too few.
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Given a return forecast for each stock in the sample and a rank ordering into
portfolio fractiles, Stone and Guerard (2010) had a return cross-section with no
controls. They input this cross section to the MAP with all reasonable controls and
obtain thereby a well-isolated cross sectional dependency realized return on return
forecast score to the extent that there are no omitted controls. However, rather than
going from no controls to a full set of controls in one step, they added add controls in
a stepwise fashion, initially adding beta, size, and the book-price ratio, the Fama and
French (1992) risk controls, and evaluated the combination of all three risk controls
together. Additionally, they added their three tax controls, Leverage, Earnings Yield,
and Dividend Yield, as a group and then as a group with the three Fama-French risk
controls, and reported that these three tax controls have a significant impact after
imposing the standard risk controls. Thus, from stepwise imposition of controls,
Stone and Guerard (2010) reported that the three standard risk controls alone do
not ensure a well-isolated return-forecast response subsurface. Since the book-price
ratio is a model variable, its use as a control means that any contribution of BP
to return performance is removed from the cross section. The key point here is
that Stone and Guerard (2010) isolated return response from not only non-model
control variables but also forecast model variables. Thus, it is possible to assess
the relative contribution to both return and risk of individual forecast variables or
forecast variable combinations by making them into controls.

Stone and Guerard (2010) used as a starting point for input to the MAP a cross-
section of stocks rank-ordered on forecasted return score and partitioned into 30
fractile portfolios. While one could simply go from this input to a cross section
matched on all the controls, a researcher can learn more about the impact of controls
on the cross section by imposing the control restrictions in a stepwise fashion. The
stepwise imposition of controls outlined here is a progressive exploration of how
the cross section of realized returns depends jointly on the return forecast score
used to form the cross section of fractile portfolios and other return impact variables
that may be correlated or at least partially correlated with the return forecast score.
The process of stepwise imposition of progressively more complete control sets is a
process of moving toward a progressively more well-defined (well-isolated) return-
forecast response subsurface. Stone and Guerard presented evidence to support the
use of Beta, Size, Book-to-Price, Earnings Yield, Dividend Yield, and Leverage risk
controls. The Stone and Guerard (2010) conclusions were:

1. The long run average realized returns had a significant dependency upon forecast
return score, especially for control sets F and beyond.

2. The linear coefficient on standard deviation were generally negative and insignif-
icant when there was just a linear standard deviation term in the cross sectional
regression. When there was also a quadratic term in the regression, the coefficient
on the linear term becomes negative and significant. Either an insignificant or
negative coefficient on standard deviation suggested that the return realizations
were not explained by increasing risk as measured by realized standard deviation.

3. The fact that the skewness coefficient had very little incremental explanatory
value beyond the forecast return score suggested that the realization of greater
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right skewness with increasing return score did not explain the apparently
significant potential for realizing alpha performance from utilization of the
forecast.

Given that investors generally like and presumably correctly price right skew-
ness, it is puzzling that realization of significant positive skewness was seemingly
not priced in the realized return response to the forecast score.

Because standard deviation does not explain most of the performance potential
inherent in the dependency of long run realized returns on return forecast score and
given that there is additional positive skewness, the evidence for a positive alpha
performance on the return response subsurface was even stronger with the positive
skewness than would be the case if there were just this magnitude of returns without
any positive skewness in the high return rank portfolios. Overall, the regressions
summarized indicated that for the cross sections for which the return forecast as
well isolated from other return impact variables, the significant long run realized
return dependency on the forecast was primarily an alpha performance potential
rather than a systematic risk effect.

Guerard, Gultekin, and Xu (2012) extended a stock selection model originally
developed and estimated in Bloch et al. (1993), model, adding a Brush (2001,
2007)-based price momentum variable, taking the price at time t � 1 divided by
the price 12 months ago, t � 12, denoted PM, and the consensus (I/B/E/S) analysts’
earnings forecasts and analysts’ revisions composite variable, CTEF, to the stock
selection model.10 Other momentum strategies can be found in Korajczyk and
Sadka (2004), and Fama and French (2008). Guerard et al. (2012) referred to the
stock selection model as a United States Expected Returns (USER) Model. We can
estimate an expanded stock selection model to use as an input of expected returns
in an optimization analysis. The universe for all analysis consists of all securities
on Wharton Research Data Services (WRDS) platform from which we download
the I/B/E/S database, and the Global Compustat databases. The I/B/E/S database
contains consensus analysts’ earnings per share forecast data and the Global Com-
pustat database contains fundamental data, i.e.; the earnings, book value, cash flow,
depreciation, and sales data, used in this analysis for the January 1990 to December
2010 time period. The information coefficient, IC, is estimated as the slope of a
regression line in which ranked subsequent returns are expressed as a function of
the ranked strategy, at a particular point of time. The high fundamental variables,
earnings, book value, cash flow, and sales produce higher ICs in the Global universe

10Guerard (2012) decomposed the MQ variable into (1) price momentum, (2) the consensus
analysts’ forecasts efficiency variable, CIBF, which itself is composed of forecasted earnings yield,
EP, revisions, EREV, and direction of revisions, EB, identified as breadth, Wheeler (1994), and (3)
the stock standard deviation, identified as a variable with predictive power regarding the stock
price-earnings multiple. Guerard reported that the consensus analysts’ forecast variable dominated
analysts’ forecasted earnings yield, as measured by I/B/E/S 1-year-ahead forecasted earnings yield,
FEP, revisions, and breadth. Guerard reported domestic (US) evidence that the predicted earnings
yield is incorporated into the stock price through the earnings yield risk index. Moreover, CIBF
dominates the historic low price-to-earnings effect, or high earnings-to-price, PE.
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than in the US universe where USER was estimated. Moreover, analysts’ 1-year-
ahead and 2-year ahead revisions, RV1 and RV2, respectively, were much lower in
Global markets, than US market. Breadth, BR, and forecasted earnings yields, FEP,
were positive but less than in the US market. The consensus earnings forecasting
variable, CTEF, and the price momentum variable, PM, dominate the composite
model. We use the CTEF model without addressing the issue of whether analysts’
or rational.11 Analysts’ forecast revisions, breadth, and yields are more effective
than analysts’ forecasts in portfolio construction and management. The PM variable

11Cragg and Malkiel (1968) created a database of five forecasters of long-term earnings forecasts
for 185 companies in 1962 and 1963. These five forecast firms included two New York City banks
(trust departments), an investment banker, a mutual fund manager, and the final firm was a broker
and an investment advisor. The Cragg and Malkiel (1968) forecasts were 5-year average annual
growth rates. The earnings forecasts were highly correlated with one another, the highest paired
correlation was 0.889 (in 1962) and the lowest paired correlation was 0.450 (in 1963) with most
correlations exceeding 0.7. They calculated used the Thiel Inequality Coefficient (1966) to measure
the efficiency of the financial forecasts and found that the correlations of predicted and realized
earnings growth were low, although most were statistically greater than zero. The TICs were large,
according to Cragg and Malkiel (1968), although they were less than 1.0 (showing better than
no-change forecasting). The TICS were lower (better) within sectors; the forecasts in electronics
and electric utility firms were best and foods and oils were the worst firms to forecast earnings
growth. Elton and Gruber (1972) built upon the Cragg and Malkiel study and found similar results.
That is, a simple exponentially weighted moving average was a better forecasting model of annual
earnings than additive or multiplicative exponential smoothing models with trend or regression
models using time as an independent variable. Indeed, a very good model was a naïve model,
which assumed a no-change in annual earnings per shares with the exceptional of the prior change
had occurred in earnings. One can clearly see the random walk with drift concept of earnings
in the Elton and Gruber (1972). Elton and Gruber compared the naïve and time series forecasts
to three financial service firms, and found for their 180 firm sample that two of the three firms
were better forecasters than the naïve models. Elton, Gruber, and Gultekin (1981) build upon the
Cragg and Malkiel (1968) and Elton and Gruber (1972) results and create an earnings forecasting
database that evolves to include over 16,000 companies, the Institutional Brokerage Estimation
Services, Inc. (I/B/E/S). Elton et al. (1981) find than earnings revisions, more than the earnings
forecasts, determine the securities that will outperform the market. Found the I/B/E/S consensus
forecasts were not statistically different than random walk with drift time series forecasts for
648 firms during the 1982–1985 period. Lim (2001), using the I/B/E/S Detailed database from
1984 to December 1996, found forecast bias was associated with small and more volatile stocks,
experienced poor past stock returns, and had prior negative earnings surprises. Moreover, Lim
(2001) found that relative bias was negative associated with the size of the number of analysts in
the brokerage firm. That is, smaller firms with fewer analysts, often with more stale data, produced
more optimistic forecasts. Keane and Runkle (1998) found during the 1983–1991 period that
analysts’ forecasts were rational, once discretionary special charges are removed. The Keane and
Runkle (1998) study is one of the very few studies finding rationality of analysts’ forecasts; most
find analysts are optimistic. Further work by Wheeler (1994) will find that firms where analysts
agree with the direction of earnings revisions, denoted breadth, will outperform stocks with lesser
agreement of earnings revisions. Guerard et al. (1997) combined the work of Elton et al. (1981)
and Wheeler (1994) to create a better earnings forecasting model, CTEF, which we use in this
analysis. The CTEF variable continues to produce statistically significant excess return in backtest
and in identifying real-time security mispricing, see Guerard (2012). See Brown (1999, 2008)
and Ramnath, Rock, and Shane (2008) for an extensive review of financial analysts’ forecasting
efficiences.
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is calculated as the price 1-month ago divided by the price 12 months ago, in the
tradition of Brush and Boles (1983).12

The stock selection model estimated in this chapter, denoted as United States
Expected Returns, USER, and Global Expected Returns, GLER, is:

TRtC1 D a0 C a1EPt C a2BPt C a3CPt C a4SPt C a5REPt

C a6RBPt C a7RCPt C a8RSPt C a9CTEFt C a10PMt C et (4.3)

where:

EP D Œearnings per share�

Œprice per share�
D earnings � price ratioI

BP D Œbook value per share�

Œprice per share�
D book � price ratioI

CP D Œcash flow per share�

Œprice per share�
D cash flow � price ratioI

SP D Œnet sales per share�

Œprice per share�
D sales � price ratioI

REP D Œcurrent EP ratio�

Œaverage EP ratio over the past 5 years�
I

RBP D Œcurrent BP ratio�

Œaverage BP ratio over the past 5 years�
I

RCP D Œcurrent CP ratio�

Œaverage CP ratio over the past 5 years�
I

RSP D Œcurrent SP ratio�

Œaverage SP ratio over the past 5 years�
I

CTEF D consensus earnings-per-share eps forecast; revisions; and breadthI
PM D Price MomentumI

and

e D randomly distributed error term:

The GLER model is estimated using a weighted latent root regression, WLRR,
analysis on Eq. (4.3) to identify variables statistically significant at the 10 % level;
uses the normalized coefficients as weights; and averages the variable weights over

12The ICs on the analysts’ forecast variable, CTEF, and price momentum variable, PM, were lower
than in the US universe, reported in Guerard et al. (2012).
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the past 12 months. The weighting technique used was the Beaton and Tukey
(1974) bisquare procedure for robust regression. The reader is referred to Gunst,
Webster, and Mason (1976) and Gunst and Mason for LRR analysis and Rousseeuw
and LeRoy (1987), Yohai (1987), Yohai, Stahel, and Zamar (1991), and Maronna,
Martin, and Yojai (2006) for more complete discussions of robust regression. The
12-month smoothing is consistent with the four-quarter smoothing in Bloch et
al. (1993). While EP and BP variables are significant in explaining returns, the
majority of the forecast performance is attributable to other model variables, namely
the relative earnings-to-price, relative cash-to-price, relative sales-to-price, price
momentum, and earnings forecast variables. The CTEF and PM variables account
for 48 % of the model average weights, slightly higher than the two variables
combining for 44 % of the weights in the USER Model.

The Time-Average Value of GLER Estimated Coefficients:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

0.048 0.069 0.044 0.047 0.050 0.032 0.039 0.086 0.216 0.257

In terms of information coefficients, ICs, the use of the WLRR procedure
produces a virtually identical IC for the models during the 1990–2010 time period,
0.042, versus the equally weighted IC of 0.043. The GLER model, has compared to
the USER Model in Guerard et al. (2012) has approximately the same ICs. The IC
test of statistical significance can be referred to as a Level I test (Table 4.1).

There is strong support for fundamental variables (particularly earnings and cash
flow), earnings expectations variables, and the momentum variable. An objective
examination of the reported ICs leads one to identify CTEF, PM, EP, and CP as
leading variables for inclusion in stock selection models.

4.3 Constructing Mean-Variance Efficient Portfolios

The origin of modern finance in this context must be traced to the work of
Markowitz (1952, 1956, 1959). The conceptual framework is based on the work
of von Neumann and Morgenstern (1944) who pioneered the view that choice under
uncertainty may be based on expected utility. As initially formulated by Markowitz
this involved the maximization of portfolio returns given a variance constraint.
In practice the standard deviation was substituted for the variance to eliminate
dependence on the units of measurement, e.g., dollars versus thousands of dollars.
If one solves this problem one finds that at the optimum the Lagrange multiplier, 
,
equals what came to be known as the Sharpe ratio. The interpretation of 
 in other
areas of economics is that of a “shadow price” and measures the extent to which the
function to be maximized, here expected portfolio returns, will change by relaxing
the constraint, here risk, at the optimum. Thus it may have the interpretation as the
marginal return on risk, or the reward (or price) of risk at the optimum. This has
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Table 4.1 Global composite
model component ICs
1/1990–9/2009

Variable IC

EP 0.048
BP 0.019
CP 0.042
SP 0.008
DP 0.058
RV1 0.011
RV2 0.019
BR1 0.026
BR2 0.024
FEP1 0.034
FEP2 0.029
CTEF 0.023
PM 0.022
EWC 0.043
GLER 0.042

led to the widespread belief that the portfolio manager should seek to maximize
the portfolio geometric mean (GM) and Sharpe ratio (ShR), as put forth in Latane
(1959) and Markowitz (1959 and 1976).13 However, as formulated in Markowitz
the portfolio manager seeks to identify the efficient frontier, the point at which the
portfolio return is maximized for a given level of risk, or, equivalently, portfolio
risk is minimized for a given level of portfolio return. The portfolio expected return,
denoted by E(Rp), is calculated by taking the sum of the security weight multiplied
by their respective expected return. The portfolio standard deviation is the sum of
the weighted security covariance.

E
�
Rp
� D

NX

iD1

wiE .Ri/ (4.4)

�2
p D

NX

iD1

NX

jD1

wiwj�ij (4.5)

where N is the number of candidate securities, wi is the weight for security i

such that
NX

iD1

wi D 1 indicating that the portfolio is fully invested, and E(Ri) is the

expected return for security i.
The Markowitz framework measures risk as the portfolio standard deviation, a

measure of dispersion or total risk. One seeks to minimize risk, as measured by the
covariance matrix in the Markowitz framework, holding constant expected returns.
Elton, Gruber, Brown, and Goetzman (2007) in fact proposed what they conceived

13See Markowitz (1959), Chapter 9.



90 P.J. Dhrymes and J.B. Guerard

to be an equivalent formulation of the traditional Markowitz mean-variance problem
as a maximization problem, i.e., to maximize

� D E
�
Rp
� � RF

�p
(4.6)

where RF is the risk-free rate (typically measured by the 90-day Treasury bill rate).
A little reflection, however, will show that it is not; in fact these are two conceptually
separate problems.

Implicit in the development of the Capital Asset Pricing Model, CAPM, by
Sharpe (1964), Lintner (1965a, 1965b), and Mossin (1966) is that investors are
compensated for bearing systematic or market risk, not total risk. Systematic risk is
measured by a stock’s beta. Beta is the slope of the market model in which the stock
return is regressed as a function of the market return.14 Sharpe (1963) proposed
what he refers to as the diagonal model to simplify the computations in constructing
portfolios. An investor is not compensated for bearing risk that may be diversified
away from the portfolio. The reader is referred to Rudd and Clasing (1982) and
Stone (1970) for early treatments of the risk-return trade-off and Markowitz (2013)
for the sixty year perspective.

The CAPM holds that the return to a security is a function of the security’s beta.

Rjt D RF C ˇj ŒE .RMt/ � RF� C ej (4.7)

where

Rjt D expected security return at time tI

E .RMt/ D expected return on the market at time tI

RF D risk-free rateI

ˇj D security betaI and

ej D randomly distributed error term:

An examination of the CAPM beta, its measure of systematic risk, from the
Capital Market Line equilibrium condition follows.

14Harry Markowitz reminds readers that he discussed the possibility of looking at security returns
relative to index returns in Chapter 4, footnote 1, page 100, of Portfolio Selection (1959).
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ˇj D Cov
�
Rj; RM

�

Var .RM/
(4.8)

The difficulty of measuring beta and its corresponding Security Market Line,
SML, gave rise to extra-market measures of risk found in the work of Farrell (1974,
1997), Rosenberg (1974), Ross (1976), Ross and Roll (1980), Dhrymes, Friend,
and Gultekin (1984) and Dhrymes, Friend, Gultekin, and Gultekin (1985).15 The
fundamentally based domestic Barra risk model was developed in a series of studies
by Rosenberg and Marathe (1979), Rudd and Rosenberg (1980) and thoroughly
discussed in Rudd and Clasing (1982) and Grinhold and Kahn (1999), Connor and
Korajczyk (1988, 1993, 1995, and 2010), and Connor, Goldberg, and Korajczyk
(2010).

Guerard (2012) demonstrated the effectiveness of the Ross Arbitrage Pricing
Model (APT) and Sungard APT systems in portfolio construction and management.
Let us review the APT approach to portfolio construction. The estimation of security
weights, w, in a portfolio is the primary calculation of Markowitz’s portfolio
management approach. The issue of security weights will be now considered from a
different perspective. The security weight is the proportion of the portfolio’s market
value invested in the individual security.

ws D MVs

MVp
(4.9)

where ws D portfolio weight in security s, MVs D value of security s within the
portfolio and MVp D the total market value of portfolio.

The active weight of the security is calculated by subtracting the security weight
in the (index) benchmark, b, from the security weight in the portfolio, p

ws;p � ws;b (4.10)

Markowitz analysis (1952, 1959) and its efficient frontier minimized risk for a given
level of return. Blin and Bender created APT, Advanced Portfolio Technologies,
Analytics Guide (2011), which built upon the mathematical foundations of their
APT system, published in Blin, Bender, and Guerard (1997). The following analysis
draws upon the APT analytics. Volatility can be broken down into systematic and
specific risk:

�2
p D �2

ˇp C �2
"� (4.11)

where �p D Total Portfolio Volatility, �ˇp D Systematic Portfolio Volatility and
�"� D Specific Portfolio Volatility. Blin and Bender created a multifactor risk model
within their APT risk model based on forecast volatility.

15See Chapter 2 of Guerard (2010) for a history of multi-index and multifactor risk models.
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�p D
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where �p D forecast volatility of annual portfolio return,
C D number of statistical components in the risk model,
wi D Portfolio weight in security i,
ˇi,c D loading (beta) of security i on risk component c,
"i,week D weekly specific volatility of security i.
Portfolio-specific volatility is a forecast of the annualized standard deviation

associated with each security’s specific return.

�"p D
vuut52

sX

iD1

w2
i "2

i;week (4.13)

Tracking error is a measure of volatility applied to the active return of funds (or
portfolio strategies) indexed against a benchmark, which is often an index. Portfolio
tracking error is defined as the standard deviation of the portfolio return less the
benchmark return over 1 year.

�te D
r

E
���

rp � rb
� � E

�
rp � rb

��2�
(4.14)

where � te D annualized tracking error,
rp D actual portfolio annual return,
rb D actual benchmark annual return.
Systematic tracking error of a portfolio is a forecast of the portfolio’s active

annual return as a function of the securities’ returns associated with APT risk model
components. Portfolio-specific tracking error can be written as a forecast of the
annual portfolio active return associated with each security’s specific behavior.

�"te D
vuut52

SX

iD1

�
wi;p � wi;b

�2
"2

i;week (4.15)

The APT calculated portfolio error versus a benchmark is:

�p�b D
q

52
�
wp � wb

�T
.bTb C "T"/

�
wp � wb

�
(4.16)

where �p�b D forecast tracking error
b D A .Nc � Ns/ matrix of component loadings; Nc components in the model and

Ns securities in the portfolio,
" D A diagonal matrix .N .Ns � Ns// of the specific loadings,
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wp � ws D The .Ns � dimensional/ vector security weights.
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where wsp � wsb D portfolio active weights in security s,
bsc D the loading of security s on component c,
"s D weekly specific volatility of security s.
The marginal tracking error is a measure of the sensitivity of the tracking error

of an active portfolio to changes in active weight of a specific security.

@s
�
�p�b

	 D @�p�b

@ws;p�b
(4.18)

where ws;p�b D active portfolio weights in security s.
The APT calculated contribution-to-risk of a security is:

�
�
�p
	 D

�
bTb C "T"

�
w

p
52wT .bTb C "T"/ w

(4.19)

where �[�p] D A .Ns � dimensional/ vector of contribution to volatility for securi-
ties in the portfolio with Ns securities.

The portfolio Value-at-Risk (VaR) is a measure of the distribution of expected
outcomes. If one is concerned with a 95 % confidence level, ˛, and a 30-day time
horizon, then the 95 %, 30-day VaR of the portfolio is the minimum we would expect
to lose 95 % over a 30-day period

P ŒVT < V0 � v .˛; T/� D 1 � ˛ (4.20)

where v(˛, T) D VaR at the confidence interval ˛ for time T,
VT D portfolio value at time T,
˛ D required confidence level.
If the portfolio returns are normally distributed,

vs .˛; T/ D V0 � E ŒVT � � V0��1 .˛/ �T
p (4.21)

where vs(˛, T) D Gaussian VaR,
�T

p D forecast portfolio volatility,
��1 .˛/ D inverse cumulative normal distributed function.
The total VaR is:
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vc .˛; T/ D V0

s
˛

1 � ˛
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�

(4.22)

The Tracking Error at Risk (TaR) is a measure of portfolio risk estimating the
magnitude that the portfolio may deviate from the benchmark over time dt is
the maximum deviation of a portfolio return over the time horizon T at a given
confidence level ˛.

rp�b .˛; T/ D
s� 1p

1 � ˛
�T

ˇp�b
C ��1



1 C ˛

2

�
�2

"p�b
(4.23)

Blin, Bender, and Guerard (1997) used an estimated 20-factor beta model
of covariances based on 3.5 years of weekly stock returns data. The Blin and
Bender Arbitrage Pricing Theory (APT) model followed the Ross factor modeling
theory, but Blin and Bender estimated betas from at least 20 orthogonal factors.
Empirical support is reported in Guerard (2012), for the application of mean-
variance, enhanced index tracking and tracking error at risk optimization techniques.
It is well known that as one raises the portfolio lambda, the expected return of a
portfolio rises and the number of securities in the optimal portfolios fall, see Blin,
Bender, and Guerard (1997). Lambda, a measure of risk-aversion, the inverse of
the risk-aversion acceptance level of the Barra system, is a decision variable to
determine the optimal number of securities in a portfolio. The Blin and Bender
TaR optimization procedure allows a manager to use fewer stocks in his or her
portfolios than a traditional mean-variance optimization technique manager for a
given lambda. In spite of the Markowitz Mean-Variance portfolio construction and
management analysis being six decades old, it does very well in maximizing the
Sharpe Ratio, Geometric Mean, and Information Ratio relative to newer approaches.

4.4 Evaluation of Portfolio Performance: Origins

Earlier we remarked on the interpretation of the Lagrange multiplier, 
, and we
noted that at the optimum it denotes the ratio of expected excess returns to risk
usually denoted by the standard deviation; the latter is of course an ex ante measure
of the worth or reward (in terms of expected returns) per “unit” of risk (standard
deviation or variance) undertaken, at the optimum.

One may think of this construct ex post as a measure or index of the performance
of a portfolio manager. Although this problem was not approached initially with this
perspective, an important paper by Treynor (1965) gave impetus for the research of
such issues. He proposed the index

TI D excess returns=a slope
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Because the concept is represented by a graph we will first give an algebraic
interpretation relabeling what Treynor calls the return to fixed assets, as the risk free
rate r0, for simplicity of reference. In his framework there is a characteristic line for
the typical fund, which I shall interpret as the expected value of the relationship

rp.i/ D a C brm C up.i/;

so that the expected return for a typical portfolio (perhaps only in a certain class) is
a C brm, rm being the market rate. If a given portfolio (ex-post) is characterized by a
pair (rp(i), rm*) according to Treynor’s index, it would be awarded the rank � which
is defined by

� D rm� � .r0 � a/ =bI

this, evidently, was not deemed sufficiently informative so it was rewritten (by
Treynor) as16

� D rm� � �
rp.i/–r0

�
=�; � D �

rp.i/ � r0

�
= .rm� � �/ ;

Notice that � is the tangent of the angle made by the intersection of the horizontal
line beginning on the vertical axis at point r0 and the line a C b rm, (denoted in the
paper by � , although it is not a standard deviation). The intuitive sense of Treynor’s
measure is this: given the characteristic line, no great skill is required to operate
only with fixed (risk free) assets earning r0; in the universe of risky funds with
the characteristic line a C b rm, this (return) would correspond to the market rate
(r0 � a)/b; if a fund manager attains (rp(i), rm*), then what is due to his skill is
rp(i) � r0, i.e., the excess return; moreover, the steeper the characteristic line the
easier it is to attain this prespecified difference; hence it is normalized by the slope.
To further clarify the concept, note that from the characteristic line this excess return
(rp(i) � r0) would correspond to a certain market rate, say rm**. Hence a manager’s
rank is given by rm* � rm**, so that the manager who had the “smaller help from
the market”, in the form of a lower rm**, to gain a given amount of excess return,
rp(i) � r0, gets a higher rating.17 Thus, the Treynor index, in principle, has nothing to
do with the standard deviation of the portfolio, which in fact cannot be determined
given the information in the paper.

In a subsequent paper, joint with K. K. Mazuy (1966), a similar but somewhat
different question is asked, viz. whether fund managers can accurately “guess” the
direction of the market. This paper examines the performance of 57 mutual funds
over the period 1953–1962. The main tool is again the “market or characteristic

16Note that when symbols are assigned their proper meaning the first equation below simply states
� D �.
17Although not perhaps in the Treynor spirit a more useful index might be ı D (rp(i) � r0)/
(a C b rm*), the ratio of excess to market returns, in lieu of the original form TI D (rp(i) � r0)/b.
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line”; here two regimes are posited: either regime has its own characteristic line. It
is argued that if a manager successfully navigates between the two regimes, i.e., he
more or less correctly “reads” the market then the fund’s characteristic line (or at
least its scattergram) should exhibit curvature. He finds this to be approximately true
only for one fund. The reporting requirements of the time do not permit the precise
interpretation of the F statistic on which they base this finding; I take it to mean
that for only one fund did they find a “statistically significant” quadratic term in the
characteristic line. But then with seven degrees of freedom this may be asking for
more than the accuracy of the data may support.

Their conclusion, however, contains very wise advice to portfolio managers and
those who rely on their work.

Another approach to the same problem is given in Sharpe (1966); it involves
using the inverse of the coefficient of variation (mean over the standard deviation)
as a means of evaluating fund performance. The coefficient of variation is well
known from probability theory, where it is used as an index of dispersion of the
distribution of a random variable; its inverse, when based on estimators of the mean
and standard deviation and properly normalized, is t-distributed if the underlying
distribution is normal or is asymptotically normally distributed if the observations
underlying the estimators obey certain conditions which justify the application of
one of the classical central limit theorems. The inverse of the coefficient of variation
in the finance literature is known as the Sharpe ratio18 and was introduced by Sharpe
(1966) in connection with the evaluation of mutual fund performance; it is also
referred to as the reward variability ratio.

Despite its relation to the Lagrange multiplier and its affinity with the t-statistic,
which is used to test statistical hypotheses, it is not clear why the Sharpe ratio is
an appropriate index for judging and ranking the performance of portfolios. For
one thing, a portfolio over a decade has no fixed composition, i.e., the proportions
devoted to its components vary over time. Thus, even if all individual betas remain
reasonably fixed over the period, the parameters of the expected (mean) returns and
risk (standard deviation) vary over time because the components of the portfolio
vary. Thus, a procedure that mimics what we do when we estimate parameters we
assert to be fixed over the sample period, has nothing particularly to recommend
it in this context. For another a portfolio consisting mostly of near risk free assets,
such as money market like assets may have a high Sharpe ratio because even though
its numerator is very small the denominator (risk, standard deviation) may be nearly
zero!

Probably, to measure performance we need to display both excess returns and
risk (standard deviation), so that within each risk class they can be unambiguously
ranked.

18In Sharpe (1966) it is somewhat incorrectly stated that the Sharpe ratio is equivalent to the
Treynor ratio. As is seen from the discussion above noting in particular the modification in footnote
17, this is not true; the Treynor ratio as modified in that footnote is merely the ratio of excess returns
divided by market returns, not the standard deviation.
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Of course, given that all such quantities are estimated from empirical data they
are random entities estimating the underlying parameters and are thus subject to a
margin of error.

While the computational aspects of both indices are very well defined, the
strength or robustness of conclusions derived there from is not evident; for example
if a fund exhibits the Treynor value 	 and another 	 C c and c is relatively small
and positive, is fund 2 better than fund 1? We do not have any sensitivity basis and
we certainly do not have a distribution for the indices. Thus all such rankings are
essentially judgmental and in the case of the Sharpe ratio can only be supported by
vague appeals to the t-statistic like feature of the index. It is clear that the magnitudes
of these indices are related to the astuteness of portfolio managers in choosing the
elements of the vector w in response to market conditions. But this ipso facto could
preclude the consideration of the Sharpe ratio as an estimator of an underlying
parameter of the portfolio, since the latter’s parameters are subject to unspecified
changes over the period being evaluated.

4.5 Portfolio Simulation Results with the USER
and GLER Models

Let us briefly review the Guerard et al. (2012) USER Model simulation to provide
a baseline for comparison with the WRDS GLER Model in global markets during
the 1999–2010 period. The portfolio returns of the USER model with MVTar and a
lambda of 200 are shown in Table 4.2. We report Axioma attribution that the USER
Model produced 10.7 % annual active return, a result consistent with the Barra
attribution results reported in Guerard et al. (2012).19 The active return is derived
from a specific return of 16.3 % annually. The active return has an Information Ratio
of 1.12 and a t-statistic of 3.68. Thus, the USER Model is effective because of
“bottom-up” stock selection. The APT-derived portfolios have active exposures to
Momentum, Value, and Size (0.49, 0.43, and �1.05, respectively) that are “priced”
by the market to produce statistical significant portfolio factor returns with t-
statistics of 4.07, 4.24, and 2.9, respectively.20 The USER Model portfolios have
positive exposure to value and momentum and smaller stocks are purchased.

19The authors are indebted to Vishhu Anand, of Axioma, who ran the Axioma attribution analysis
based on the Axioma Fundamental Risk Model.
20Readers may question the use of a 12-year backtesting period. The USER model was tested
with the Barra USE3 Model for the 1980–2009 period and asset selection of 449 basis points,
annualized, is reported. The t-value on the USER variable is 4.60, which is highly statistically
significant. Stone and Guerard (2010b) found good stock selection returns in the USA and Japan,
1980–2005, using similar models.
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Table 4.2 Characteristics of APT-estimated risk constrained portfolios
(WRDS GLER Model, 1999–2009)

Portfolio performance criteria
NoRC MRC SRC ACWG benchmark

Geometric mean 12.68 % 8.63 % 7.65 % 1.79 %
Information ratio 1.00 0.74 0.68
Sharpe ratio 0.47 0.28 0.24 �0.036

Where NoRC D No Risk Controls GLER L D 200, MRC D Moderate
Risk Controls, SRC D Strong Risk Controls, STD D Portfolio Standard
Deviation

We experimented with the Wormald and van der Merve (2012) risk control
conditions. We find that the No Risk (NoRC) Risk Control condition produced
higher Information Ratios and Geometric Means than the Strong Risk Control
(SRC) or Mild Risk Control (MRC) in our work, particularly in the global market.
The WRDS GLER Model in global markets during the 1999–2009 period, created
with Global Compustat and I/B/E/S data produces highly significant Geometric
Means and Information Ratios, see Table 4.3. We experimented with the Wormald
and van der Merve (2012) risk control conditions.

In the world of business, one does not access academic databases annually,
or even quarterly. Most industry analysis uses FactSet database and the Thomson
Financial (I/B/E/S) earnings forecasting database. We can estimate Eq. (4.3) for all
securities on the Thomson Financial and FactSet databases, some 46,550 firms in
December 2011. We estimated the GLER Model upon the FactSet universe, denoted
FSGLER, of 46,000 stocks for the 1990–2011 period. We restricted the simulations
to securities covered by at least two I/B/E/S analysts, a world of business simulation
condition of McKinley Capital Management, MCM, using the Wormald and van
der Merve (2012) risk control conditions. We find that the No Risk (NoRC) Risk
Control condition produced higher Information Ratios and Geometric Means than
the Strong Risk Control (SRC) or Mild Risk Control (MRC). These results are
shown in Table 4.4.

We have established that the NoRC Model was effective in the FSGLER universe.
The portfolio returns of the FSGLER NoRC model with a lambda of 200 are shown
in Table 4.5. We report that the GLER Model produced 13.0 % annual active return,
a result consistent with the USER attribution results. The active return is derived
from a specific return of 16.3 % annually. The active return has an Information Ratio
of 1.23 and a t-statistic of 4.44.

The GLER Model also is effective because of stock selection. The APT-derived
portfolios have active exposures to Momentum, Value, and Size (0.36, 0.51, and
�.96, respectively) that are “priced” by the market to produce statistical significant
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Table 4.4 Characteristics of APT-estimated risk constrained portfolios
(GLER Model, 2003–2011)

Portfolio performance criteria
NoRC MRC SRC ACWG benchmark

Geometric mean 14.16 % 13.75 % 11.08 % 4.56 %
Information ratio 0.65 0.59 0.54
Sharpe ratio 0.53 0.49 0.41 0.16
Excess returns 9.60 % 9.19 % 6.52 %
STD 23.20 % 24.18 % 22.71 % 17.15 %

Where NoRC D No Risk Controls GLER L D 500, MRC D Moderate
Risk Controls, SRC D Strong Risk Controls, STD D Portfolio Standard
Deviation

portfolio factor returns with t-statistics of 6.88, 2.58, and 8.85, respectively. The
GLER Model portfolios have positive exposure to value and momentum and
smaller stocks are purchased. The USER and GLER portfolios and the respective
attribution analyses report statistically significant active returns based on specific
asset selection. The active returns of the global strategy are larger than the domestic
active returns see Solnik (1974, 2000) and Guerard, Rachev, and Shao (2013) and
Guerard, Markowitz, and Xu (2015).

4.6 Conclusions

Investing with fundamental, expectations, and momentum variables is a good
investment strategy over the long run. Stock selection models often use momentum,
analysts’ expectations, and fundamental data. We find support for composite
modeling using these sources of data. In Chap. 1, Guerard reported that an Axioma
worldwide statistical risk model estimated with all 15 factors outperformed the
statistical model using only one and four factors. The APT risk model, using all
PCA-based factors, is effective in creating portfolios. We find additional evidence
to APT multifactor models for portfolio construction and risk control. We develop
and estimate three levels of testing for stock selection and portfolio construction.
The uses of multifactor risk-controlled portfolio returns allow us to reject the data
mining corrections test null hypothesis. The anomalies literature can be applied in
real-world portfolio construction.
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Chapter 5
Validating Return-Generating Models

Marshall E. Blume, Mustafa N. Gültekin, and N. Bülent Gültekin

Return-generating models and the assessment of conditional expected returns
underlie many important applications in finance. Jensen’s (1969) measures of
investment performance, as well as those based upon the Ross’ (1976) Arbitrage
Pricing Theory (APT), compare the realized return of a portfolio to a benchmark
return. The benchmark return is an expected return conditional on some set of
publicly available information. The assessment of a conditional expected return
requires the specification of some stochastic process to characterize realized returns.
Likewise, studies of the effect of an announcement of an unanticipated event often
measure this effect by the difference between the realized return at the time of
the announcement and some conditional expected return. Again, this measurement
requires the specification of some stochastic process.

An assumption underlying many studies is that the market model, or more
generally a model with one factor common to all securities, generates realized
returns. In such a one-factor model, realized returns are the sum of an asset’s
response to a stochastic factor common to all assets and a factor unique to the
individual asset. In the last decade, there has been much interest in models with more
than one common stochastic factor, using either pre-specified factors, like Fama and
French (1993) 3-factor model, or factors identified through factor analysis or similar
multivariate techniques.1

1Factor analysis and similar factor analytic techniques have on occasion played an important role
in the analysis of returns on common stocks and other types of financial assets. Farrar (1962)
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A typical way to use a return-generating model is to estimate the model with
data from one period of time and then employ the estimated model to calculate
conditional expected returns in a different period of time—often the immediately
following period. Implicit in this use of a model is the assumption that the
underlying model is stationary over time. In fact, it is highly unlikely that any
economic model, except for the most trivial, is stationary over time. The question
is not whether a model is stationary, but rather the degree of sensitivity to non-
stationarity since the accuracy of a predictive model hinges upon the “degree” of
non-stationarity.

This paper will explore the effects of such non-stationarities upon the accuracy
of conditional expectations assessed for time periods following the estimation
period. To this end, this paper will assess the relative accuracy of the conditional
expectations of various commonly used models with data different from those used
in estimating the models. In psychometrics, evaluating the accuracy of a model in
terms of how it is used is termed the validation of a model.

The principal finding of this paper is that, when the criterion of accuracy is
the mean-squared forecast error, multi-factor models estimated with factor analytic
techniques provide more accurate out-of-sample forecasts than the Fama–French
3-factor model and the usual market model. The predictive accuracy of the market
model itself depends critically on the choice of the index—equal-weighted or
value-weighted. The paper also examines one model that includes the pre-specified
macro variables that Chen et al. (1986) have used in a prior study. The empirical
evidence indicates that a model based solely upon these macro variables provides
less accurate forecasts than the usual market model. Overall, the multi-factor models
provide the most accurate forecasts of those models examined.

The organization of the paper is as follows. The first section describes the
design of the empirical tests and proposes the mean-squared error of the forecasts
as a natural statistic to analyze in the context of performance measurement and
announcement studies. The second section examines various factor models to
validate the number of required factors. The third section compares the accuracy

may have been the first to use factor analysis in conjunction with principal component analysis to
assign securities into homogeneous correlation groups. King (1966) used factor analysis to evaluate
the role of market and industry factors in explaining stock returns. These two studies sparked
an interest in multi-index models, and a rich body of empirical work soon emerged. Examples
include Elton and Gruber (1971, 1973), Meyer (1973), Farrell (1974), and Livingston (1977),
among others. The major goal of these earlier studies was to establish the smallest number of
“indexes” needed to construct efficient sets.

Factor models have been used in the tests of arbitrage pricing theory and its variants. See, for
example, Rosenberg (1974), Rosenberg and Marathe (1979), Roll and Ross (1980), Chen (1983),
Brown and Weinstein (1983), Dhrymes et al. (1984), Dhrymes et al. (1985a,b), Gültekin and
Rogalski (1985), and Cho et al. (1984), to cite a few from the large literature. A four-factor model
constructed with the Dhrymes, Friend, Gültekin, and Gültekin (1985b) methodology was used in
conjuction with the Bloch, Guerard, Markowitz, Todd, and Xu (1993) stock selection model to
construct efficient portfolios in the U.S., See Guerard, Gültekin, and Stone (1997).
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of factor analytic models to the usual market model and those using pre-specified
macro variables. The final section contains concluding remarks.2

5.1 The Design of the Experiment

The analysis in this paper for the most part follows a two-step procedure. The
first step assumes the validity of specific return-generating models and utilizes one
sample of data to estimate the parameters of these models. The second step uses
data in a subsequent period to validate the estimated models.

5.1.1 The Validation Criterion

There are numerous ways to validate a statistical model. The specific method of
validating a model hinges upon how a researcher plans to use the model. The
focus of this paper is on the use of return-generating functions in performance
evaluation studies and in analysis of the reaction of stock prices to unanticipated

2A prior and related paper is that of Conway and Reinganum (1988). The primary purpose of their
paper is to assess the adequacy of the likelihood ratio test to determine the number of factors.
They use as their validation criterion the accuracy of the implied variance–covariance matrix from
a factor model estimated on one sample with the estimated variance–covariance matrix from a
different sample in contrast to the focus of this paper on the mean-squared forecast error of the
conditional predictions. These two validation criteria are clearly related, but the one used in this
paper addresses directly the way in which researchers use return-generating models in event studies
and performance evaluation. The reader is referred to Chen (1988) and Stambaugh (1988) for a
further discussion of the differences in these two methods of validation.

Additionally, this study shows that the number of factors and the variance–covariance matrix
of returns vary substantially over time, even over the July 1962–December 1972 time period that
Conway and Reinganum examine. This study explicitly adjusts summary statistics for these non-
stationarities.

There is also a significant difference in the selection of the estimation and validation period
between this study and that of Conway and Reinganum. For the most part, Conway and Reinganum
break their sample into even and odd days, using one set of days to estimate the model and the other
to validate the model. This is appropriate under their assumption that the underlying variance–
covariance matrix is stationary over time. They do present one analysis using the first five years to
estimate a model and the second five years to validate it. This is closer to the spirit of this paper, but
it still does not parallel as closely the usage of return-generating models in studies of events and
performance evaluation where the prediction period is usually much shorter than the estimation
period.

Finally, a major purpose of this study is to compare factor models with estimated factors, factor
models with pre-specified factors, and variants of the usual market model, which was not a goal of
Conway and Reinganum.
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events, frequently termed “event” or “CAR” (cumulative average residual) studies.
A measure consistent with these uses is the mean-squared forecast error.3

In his seminal article, Jensen (1969) proposes a measure of investment perfor-
mance that relies upon the validity of the Capital Asset Pricing Model (CAPM)
and, with the additional assumption of a one-factor generating model, shows
how to estimate this measure with a least-squares regression. Implicit in least-
squares regression is the objective of minimizing squared deviations.4 Connor
and Korajczyk (1988) show that Jensen’s intuition generalizes to the APT and a
multi-factor model. Similarly, event or CAR studies compare realized returns to
conditional predicted returns, and then test the significance of the residuals using
t-tests, which again use a metric based on mean-squared errors.

5.1.2 Conditional Expectations

The first part of this section develops the formulas for assessing conditional
expected returns, assuming that the return-generating process for securities is jointly
normal, stationary, and independent over time and that the parameters of the joint
distribution are known. The second part incorporates factor models into the formulas
and interprets factor models as placing restrictions on the estimated covariance
matrix.

In the formulas developed following notation is used; ri is the return on asset i
less its unconditional expectation, �ii is the variance of the return on asset i, and �ij

is the covariance between the returns of asset i and asset j; there are N assets.
Under normality, the expectation of ri conditional on the returns of the remaining

.N �1/ assets is a linear function of these remaining returns. Specifically, if Ri is the
vector of returns with the return of asset i deleted, the conditional expected return is
given by

EŒrijRi� D
X

k¤i

wkrk ; (5.1)

where wk are weights appropriate to asset k. From normal theory, the weights
themselves are given by

3Other uses would suggest different criteria. An index arbitrageur might want to use a return-
generating model to construct a portfolio of a limited number of stocks to mimic the S&P 500
index. In this case, a natural way to evaluate a model is to use the estimated model to form a
portfolio of securities that maximizes the correlation of its return with the S&P 500 and at the
same time matches the variance of the S&P 500. One way to validate such a model is to compare
in a subsequent period the profits from an arbitrage strategy using the mimicking portfolio with
those using all 500 stocks.
4A Bayesian justification of the use of a mean-squared error rests upon an investor loss function.
If an investor’s loss function is quadratic, the natural measure of loss is the mean-squared error.
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Wi D .†i/�1Ci (5.2)

where Wi is a column vector of the .N � 1/ weights, Ci is a column vector of the
covariances of the returns of asset i with respect to each of the other .N � 1/ assets,
and †i is a square matrix with dimension .N � 1/ obtained by deleting the ith row
and ith column of the full covariance matrix of all N securities.

The weights, given by (5.2), have the important property that they minimize the
variance of ri conditional on Ri.5 This is not a surprising result since these weights
are nothing more than the expected value of the estimated coefficients of a regression
of ri on the returns of the remaining .N � 1/ assets. The essence of least-squares
regression is to minimize mean-squared errors.

Thus, the process of estimating a least-squares regression can be viewed as
consisting of two steps: First, estimate the covariance matrix of the dependent and
independent variables. Second, use this estimated matrix to estimate the regression
coefficients, which can then be used as the weights in Eq. (5.1). Viewing a regression
this way helps clarify the role of factor models in forming conditional expectations.

Using a factor model to assess conditional expected returns is similar to a
regression but with an important exception: Factor models place restrictions on
the structure of the covariance matrix of returns, whereas the usual least-squares
regression places no restrictions on this matrix. To develop these restrictions,
consider the factor model:

rit D
KX

kD1


ikfkt C �it ; (5.3)

where K is the number of factors, 
ik is the so-called factor loading of asset i on
factor k, fkt is the score or value of factor k during interval t, and �it is a mean-zero
independent disturbance. The expected value of fkt is zero, and it is scaled so that
�.fkt/ is 1.0. In addition, estimation of a factor model requires some assumption
about the covariances between the different factors. The usual assumption, which is
also made in this paper, is that Cov.fkt; fjt/ D 0; k ¤ j.

From (5.3), the variance of the return of asset i is

5The vector of weights Wi are those that minimize

E.ri � WiRi/2;

which can be rewritten as

�2.ri/ � Wi0 Ci C Wi0 †iWi:

Minimizing this expression with respect to Wi yields Eq. (5.2) above.
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�2.rit/ D
KX

kD1


2
ik C �2.�it/ ; (5.4)

and the covariance between the returns of assets i and j is

Cov.rit; rjt/ D
KX

kD1


ik
jk : (5.5)

Within the estimation period and within the class of linear estimators, estimates
of the conditional expected returns for asset i that place no restrictions on the
estimated covariance matrix will mathematically produce the minimum mean-
squared errors. However, outside the estimation period, there is no guarantee that
such an unrestricted estimate of the covariance matrix will yield the minimum
mean-squared errors, or even the minimum expected mean-squared errors. If the
restrictions that factor models impose on the covariance matrix are valid, it is
possible that calculating conditional expected returns using a covariance matrix
estimated with restrictions will yield lesser mean-squared errors in the prediction
period than using an unrestricted estimate.

Non-stationarities complicate the story. Without restrictions, an estimate of the
covariance matrix may “discover” non-existent relations among the returns. With
restrictions, an estimate of the covariance matrix may be less prone to discover
non-existent relations. In turn, it is possible that restrictions, even if not perfectly
true, may improve the accuracy of conditional expectations out of the estimation
period. Validating various models with different data from those used in estimating
the models provides some insight into these two issues: restrictions on the estimated
covariance matrix and the effect of non-stationarities.

5.2 The Experiment

The first part of this section describes the data. The second and third parts analyze
the conditional expected returns, or predictions, based upon these models. The
fourth part examines the impact of a January seasonal on the factor results. The
fifth part decomposes the mean-squared forecast errors into the sources of the errors.
The final part compares the predictions of factor models and standard market models
with models that use prespecified macro variables of Chen et al. (1986).

5.2.1 Data

The empirical analyses use monthly returns of 82 sets of size-ranked portfolios
of NYSE stocks constructed from the CRSP file. The first set consists of all
securities in the CRSP files with complete data for the six years 1926 through 1931.
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These securities were ranked by their market value as of December 1930 and then
partitioned into twenty size-ranked portfolios with as close to an equal number of
securities as possible. This process was repeated year by year to 2012. The sixth
year in each set will be used to identify the set, so that the first set is the 1931 set
and the last set is the 2013 set. The total number of securities used in the analysis
starts at 361 for the 1931 set, increases to 763 for the 1949 set, and then gradually
reaches 1790 for the 2012 set. In anticipation of the validation tests, the first five
years of each data set will be used to estimate a model, and the sixth year will be
used to validate the model.

An analysis of the basic data discloses dramatic changes in the variability of the
returns of the portfolios over time. The variability is greatest in the 1930s, but even
in the later years, the variability does change somewhat from one year to the next
(Fig. 5.1). For most years, the smaller portfolios display greater variability in returns
than the larger portfolios.6 These changes in variability make summary measures of
mean-squared errors misleading without some adjustment for these changes, and
such adjustments will be made as discussed below.

For the Fama–French 3-factor model we use the data provided by Kenneth
French.7 The factors Rm � Rf , SMB, and HML are constructed from six size/book-
to-market benchmark portfolios that do not include hold ranges and do not incur
transaction costs.

1. Rm � Rf , the excess return on the market, is the value-weighted return on
all NYSE, AMEX, and NASDAQ stocks (from CRSP) minus the one-month
Treasury bill rate (from Ibbotson Associates).

2. SMB (Small Minus Big) is the average return on three small portfolios minus the
average return on three big portfolios, SMB D 1=3.SmallValueCSmallNeutralC
SmallGrowth/ � 1=3.BigValue C BigNeutral C BigGrowth/.

3. HML (High Minus Low) is the average return on two value portfolios minus the
average return on two growth portfolios, HML D 1=2.SmallValueCBigValue/�
1=2.SmallGrowth C BigGrowth/.

5.2.2 Factor Models

We use the maximum likelihood method to estimate the factor models; the usual
way to assess the number of required factors is to rerun the procedure, successively
increasing the number of factors until the �2 test for the goodness of fit developed by

6Interestingly, there is little change over time in the relative size of the portfolio consisting of the
largest stocks, even though the market value of all of the portfolios increased almost tenfold from
1930 through 2012. In 1930, the market value of the portfolio with the largest companies is 51 %
of the total market value of all twenty portfolios. By 2012, this number is 43 %.
7The data is publicly available from: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Fig. 5.1 Portfolio return volatility and number of factors. This figure shows the unconditional
standard deviation of returns of the smallest and the largest capitalization portfolios and the
adequacy of a k-factor model that generates the monthly stock returns on twenty-size ranked
portfolios based on Bartlett’s chi-squared test at 5X level of significance. Standard deviation and
number of factors are estimated every year using the observations from the previous five years.
Returns are monthly and measured as percentage changes

Bartlett (1954) indicates that the number of factors is sufficient. To use this criterion,
one must specify the level of significance, often arbitrarily set at 1 or 5 %. The
level of significance is important since there is a direct relation between the level
of significance and the number of significant factors. However, there is no direct
relation between this arbitrary level of significance and the criterion of minimizing
the mean-squared errors in the forecast period.

To address the arbitrariness of setting a particular level of significance, this paper
replicated the analysis for three levels of significance: 5, 10, and 20 %. For reasons
to be discussed, the general nature of the results is the same whichever level of
significance is used. To conserve space, the text presents only the results that use a
significance level set at 5 %.

The number of required factors varies over time (Fig. 5.1). More factors are
required at the beginning and the end of the 1930–2012 period than in the mid-part.
Further analysis of the required number of factors reveals a positive relation between
the number of factors and the variability of returns during the estimation period.8

8The Spearman’s rank correlation between number of factors and the standard deviation of the
equally weighted market portfolio over the sample period is 0.563, which is significant at any
conventional level.
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A rationale for this finding is that during periods of relatively low volatility, most
of the volatility is firm-specific and it is difficult to identify the common factors.
In more volatile times, the common factors are relatively more important than the
firm-specific factors, making it easier to identify them.

The changing number of factors over times is strongly suggestive that the factor
models are non-stationary. We conducted a series of simple Chow F-tests to formally
test for stationarity.9 We do not report these tests for brevity. The results confirm that
the F-test rejects stationarity more often than could be attributed to chance and the
�2 statistics are consistent with this impression.10

Since there appear to be significant non-stationarities in these factor models,
validating the model with data different from those used in estimating the model
is a useful tool in gaining insight into the usefulness of the model. As mentioned
above, the process of validation used in this paper involves calculating conditional
expectations following the estimation periods using Eqs. (5.1) and (5.2) and then
analyzing the forecast errors.

The magnitudes of the mean-squared errors vary substantially over time and with
portfolio size. Like the variability of the monthly returns, average mean-squared
errors vary substantially for each twelve-month predictive period as a function of
both time and the number of factors.11 In view of this substantial variation, any
summary measure of these mean-squared errors over time or portfolio size would
be misleading without some form of scaling or normalization.

The scale factor used in this study is the mean-squared error associated with a
naive forecast. The naive forecast is the average return for each portfolio in the
estimation period, that is, an estimate of the unconditional expectation. An analysis
of the scaled mean-squared errors shows that this normalization removes a large
portion of the time trends in the annual mean-squared errors over time for a given
portfolio size. However, substantial differences still remain among the size-ranked

9For alternative tests of non-stationarities and exploration of span of stationarity, see Hsu (1982,
1984).
10The stationarity test utilizes an F-statistic as proposed by Chow (1960). Although the Chow F-
test was originally developed for linear regressions, it can be applied in a similar way to factor
models. Specifically, estimate the factor model on the ten-year period consisting of the first five
years 1926–1930 of the 1931 data set and the first five years 1931–1935 of the 1936 data set and
then reestimate the factor model on the first half of the data and then on the second half, and so
on. If the factor models are non-stationary, the fit of the estimated models in either half of the
data will tend to be better than for the models estimated over the entire period. Specifically, if the
factor model is stationary, the variances of the disturbances, �it in (5.3), should be the same for all
three models. The test of equality of sample variances is an F-test. Under the null hypothesis that
the model is stationary and if the F-statistics are independent across portfolios, the probabilities
of the F-statistics should be uniformly distributed. A �2-test rejects this hypothesis of an uniform
distribution.
11For example, the average mean-squared errors for a twelve-month period ranged from 0.412 in
1944 to 26.931 in 1933 for the largest portfolio and from 1.446 in 1977 to 377.605 in 1935 for the
smallest portfolio.
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Fig. 5.2 Scaled mean squared forecast errors for factor models This figure shows the mean
squared forecast errors scaled by the naive forecasts for size ranked portfolios. Portfolio 1 contains
the smallest firms and portfolio 20 contains the largest firms. Scaled MSFE are averaged over the
period 1931 to 2013

portfolios. As a consequence, the following tables and figures present summary
statistics aggregated over time but not across portfolios of different sizes.

The validation of the factor models confirms the inferences based upon the �2

criterion that more than one factor is needed to represent the stochastic process
generating returns for size-ranked portfolios. As one moves from a one-factor to
a two-factor model, the mean-squared errors drop dramatically for both large and
small portfolios, while there is little change for the mid-size (Fig. 5.2 and Table 5.1).
As one moves to the three- or possibly four-factor model, the mean-squared errors
for the large and small portfolios drop further, though only slightly. In addition, the
minimum mean-squared error for the mid-size portfolios tends to occur with fewer
factors than for the large or small portfolios. While we observe similar patterns for
the Fama–French 3-factor model the mean-squared errors are consistently between
two-factor and three-factor models.

The mean-squared errors in the forecast period for the factor models selected by
the �2 criterion are slightly greater than the mean-squared errors associated with
the best performing factor model in the forecast period for each portfolio size. The
behavior of the mean-squared errors as a function of the number of factors leads
to the conjecture that the arbitrary selection of two or three factors for mid-size
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portfolios and three or four factors for the largest and smallest portfolios leads to
lesser mean-squared errors than using the standard �2 test.

The �2 criterion yields little difference in the mean-squared errors among
different levels of commonly used significance, because any criterion that points
to two to five factors leads to similar mean-squared errors. With a significance level
of 5 %, the median number of factors over the 82 estimation periods is 4; with a
significance level of 10 %, the median number is also 4; and with a significance
level of 20 %, the median number is 3.

For comparison with the predictions in the forecast period, Table 5.1 also
contains the average mean-squared errors for the conditional expectations within the
estimation period. In contrast to the predictions in the validation period, the average
mean-squared errors decrease monotonically for each portfolio as the number of
factors increases from one to five. On the surface, this result suggests that the
greater the number of factors the better. However, the validation of the models with
additional data shows that there is little difference between models with anywhere
from two to five factors.

5.2.3 The Market Model

If more than one factor in the process generates returns, the mean-squared errors
from factor models should be smaller than those from the usual market model, given
by

ri D ˇirm C �i (5.6)

where rm is the return on a market index, again with all returns measured from
their unconditional expectations. The measure of the market is alternatively a value-
weighted or an equally weighted index of NYSE stocks. The associated covariance
matrix for the market model is

"
�2.ri/ ˇi�

2.rm/

ˇi�
2.rm/ �2.rm/

#
(5.7)

Applying Eq. (5.2) yields the conditional expectation E.rijrm/ as ŒCov.ri; rm/=

�2.rm/�rm, the usual conditional forecast for the market model. It should be noted
that asset i is included in the market portfolio, and thus the conditional forecast of
ri is partially conditioned by itself, a fact of importance in explaining the behavior
of the mean-squared errors for the portfolio with the largest companies.

As with the factor models, there is substantial evidence of non-stationarity in the
market models using either the equally weighted index or the value-weighted index.
In view of this possible non-stationarity, it is appropriate to validate either variant
of the market model with subsequent data. Generally, the mean-squared errors for
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Fig. 5.3 Scaled mean squared forecast errors for the market model and the factor model. This
figure compares the mean squared forecast errors scaled by the naive forecasts for market model
and the factor model for size ranked portfolios. For market model equally and value weighted New
York Stock Exchange index are used. Choice of factor model is based upon the chi–square tests of
factor analysis. Scaled forecast errors are averaged over the period 1931–2012

the market model are greater than those for the factor models (Fig. 5.3). The glaring
exception is the largest portfolio using a value-weighted index. Since the stocks in
the largest portfolio represent an extremely large proportion of a value-weighted
index of NYSE stocks and since this index is used to forecast the returns of this
portfolio, this result is not surprising. Except for the largest five portfolios, the
mean-squared errors associated with the equal-weighted index are less than those
associated with the value-weighted index.

5.2.4 A January Seasonal

A large body of literature shows that the distribution of stock returns in January is
different from the distribution of stock returns in other months. Keim (1983) found
significant differences in the returns of small and large stocks in January. Tinic and
West (1984) showed that virtually all of the relation between returns and betas in
tests of the Capital Asset Pricing Model is due to a January seasonal. Gültekin and
Gültekin (1987) demonstrated that the same is true for the two-stage tests of the
Arbitrage Pricing Model.
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Likewise, the factor models estimated in this paper display a January seasonal
in the mean-squared errors. For every size portfolio, the mean-squared errors for
January are uniformly greater than those for the other months of the year. In the
case of the smallest portfolio, the mean-squared errors for January are over three
times as great as the mean-squared errors for the remaining months.

This January seasonal raises the question of whether the better forecasting
characteristics of a multi-factor model may be due solely to the returns in January.
To answer this question, we reestimated the factor models excluding the January
returns in each estimation period. According to the �2 criterion at a level of 5 %, the
median number of required factors drops from four to three.

Even with January excluded, the minimum scaled mean-squared forecast errors
still tend to occur with more than one factor (Table 5.2). For the forecast errors for
February through December, two-factor models yield smaller scaled mean-squared
errors than one-factor models in all cases except one mid-size portfolio. Although
January was excluded in the estimating period, the estimated models still can be
used to forecast January returns. For these January returns, two-factor models yield
smaller scaled mean-squared errors than one-factor models in all but four cases.
Thus, the presence of more than one factor is not due just to a January seasonal.12

5.2.5 Biases and Inefficiencies

Theil’s decomposition shows that most of the mean-squared forecast error is
random, except for the smallest portfolio, regardless of which forecasting model
is used (Table 5.3).13 The random component almost always accounts for over 90 %
of the mean-squared forecast errors, and frequently accounts for over 95 % for all
but the smallest portfolio.

Still, some differences among the various models warrant mention. The biases
associated with the market model using an equal-weighted index of NYSE stocks
are smallest for the mid-size portfolios and increase as the size of the stocks in the
portfolio becomes more extreme—either larger or smaller. The largest bias, 7.6 %,
is associated with the smallest portfolio. The biases for the market model using a
value-weighted portfolio of NYSE stocks are similar for the mid-size portfolios

12To determine the importance of a January seasonal, we replicated the early analysis including,
in addition to the returns on the twenty portfolios, a variable with a value of 1.0 for the months of
January and 0.0 otherwise. According to the �2 criterion at a level of 5 %, the median number of
required factors is four as before. However, there is virtually no improvement in the mean-squared
errors. Again the number of factors that minimize the mean-squared error is less for the mid-size
portfolios than the large or small portfolios.

Although there is a January seasonal, directly incorporating such a variable does not improve
the mean-squared errors. The returns themselves already capture this seasonal. Thus, a January
seasonal of itself does not account for the presence of more than one factor.
13See Theil (1966), and Mincer and Zarnovitz (1969) for details.
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(not reported in the tables). However, the biases are substantially larger for the
large portfolios than for the smallest portfolios.14 The behavior of the biases for
the one-factor model is similar. With two or more factors, the biases are minimal
with the exception of the smallest portfolio. But even for the smallest portfolio, the
percentage biases for a five-factor model (as well as a two-, three-, or four-factor
model) are nearly half of those for either the market or a one-factor model.

For all the models, the forecast errors for the small portfolios display the greatest
inefficiency. As the number of factors increases to two or more, the inefficiency
of the forecasts declines markedly. Again, the multi-factor models’ forecasting
characteristics are better than either the market model or a one-factor model.

5.2.6 Macroeconomic Variables

A growing body of research uses prespecified macroeconomic variables to estimate
conditional moments of stock returns. Prespecifying macroeconomic variables
overcomes one of the major difficulties of factor analysis: how to associate the
estimated factors with observable and economically meaningful variables. As an
example, Chen et al. (1986) used some directly observable macroeconomic variables
as proxies for factors in the two-stage tests of the multi-factor pricing models in a
way analogous to the use of instrumental variables in regression models.

Models incorporating macroeconomic variables can be validated in much the
same way as validating the market model. Estimate the model using one set of data
and validate it with a different set. For each portfolio, a regression of a time series of
returns on the macro variables provides the estimated model. As before, all variables
are measured from their unconditional means as estimated in the estimation period,
and the validation of the estimated models uses data from the 12 months following
the estimation period.

Chen, Roll, and Ross provide a detailed discussion of the selection of their macro
variables. Their final list of variables is the following:

1. the equal- or value-weighted NYSE index
2. the monthly growth rate of the industrial production index, measured as

log.IPItC1=IPIt/, where IPIt is the industrial production index for the month
t

3. unanticipated inflation, measured as the difference between the realized inflation
for the month t and the monthly T-Bill rate at the beginning of the month (see
Fama and Gibbons (1984) for details)

4. the change in the term structure, measured by the difference between the return
of a portfolio of long-term government bonds and the T-Bill rate

14The percentage biases are 9.6, 15.6, and 16.3 % for portfolios 18, 19, and 20, respectively, and
3.0 % for the smallest portfolio.
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5. changing risk premia, measured by the return on BAA rated non-convertible
corporate bonds less the return on a portfolio of long-term government bonds

The validation tests in this section use these same variables. Since the industrial
production data are available only after 1946 and the estimation period requires
five years of data, the first forecast year is 1952 and the last 2013. For comparison
purposes, some of the earlier analyses have been replicated for these years.15

The validation process suggests that the macro variables by themselves have no
forecasting power (Table 5.4), with the scaled mean-squared errors in the validation
period ranging from 1.134 to 1.271. Since these statistics have been scaled by the
mean-squared errors of the naive forecasts, a statistic greater than one indicates that
the naive forecasts are more accurate than those using just the macro variables.
Within the estimation period, the macro variables by themselves do have some
explanatory power, with the scaled mean-squared errors ranging from 0.577 to
0.909. These two results imply that the regression in the estimation period found a
relation that was not there, or that any relation in the estimation was not sufficiently
stationary to provide forecasting power, or some combination of the two.

Adding either the equal-weighted or value-weighted index of NYSE stocks to the
macro variables leads to a substantial reduction in the scaled mean-squared errors
for every portfolio. As an example, the average scaled mean-squared errors for the
largest portfolio is 1.160 with just the macro variables, but drops to 0.461 with the
addition of the equal-weighted index. Even more accurate are the forecasts that drop
the macro variables and include just a stock market index, suggesting that the macro
variables merely add noise to the forecasts. Again, the multi-factor models generally
yield smaller scaled mean-squared errors than either version of the market model.

5.3 Conclusions

The goal of this paper was to validate various stochastic return-generating models
on data different from those used in estimating the models. The specific models ana-
lyzed were factor models, the traditional market model, and models incorporating
prespecified macroeconomic variables. The principal conclusion of this paper is that
factor models with two to five factors yield more accurate predictions than either the
traditional market model or a one-factor model.

A model that included the prespecified macroeconomic variables used by Chen
et al. (1986) had no predictive power. Thus, at least for the macro economic variables
considered here, there is no gain to adding these variables to the traditional market
model. But importantly, the predictions of a multi-factor model were more accurate
than the market model.

Acknowledgements We thank Craig MacKinlay and Jennifer Conrad for their careful and
thoughtful comments.

15The stationarity tests again tend to reject stationarity.
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Table 5.4 Comparison of scaled mean-squared forecast errors using macroeconomic variables,
market model and factor model

Forecast periods 1952–2013

Portfolio
size (1)

Macro
variables
(2)

Macro &
equal-weighted
index (3)

Equal-weighted
index (4)

Macro &
value-weighted
index (5)

Value
weighted
index (6)

Optimal
factor
model
(7)

1-small 1.247 0.386 0.334 0.759 0.625 0.204

2 1.222 0.218 0.203 0.590 0.489 0.124

3 1.227 0.175 0.157 0.520 0.425 0.108

4 1.195 0.150 0.132 0.489 0.394 0.096

5 1.202 0.117 0.104 0.443 0.370 0.091

6 1.226 0.132 0.108 0.469 0.368 0.100

7 1.271 0.132 0.096 0.460 0.328 0.103

8 1.213 0.129 0.100 0.389 0.318 0.110

9 1.215 0.093 0.069 0.335 0.253 0.075

10 1.198 0.099 0.085 0.340 0.276 0.085

11 1.181 0.098 0.083 0.285 0.229 0.079

12 1.212 0.101 0.081 0.248 0.175 0.069

13 1.214 0.098 0.088 0.214 0.165 0.070

14 1.187 0.131 0.119 0.220 0.167 0.091

15 1.134 0.158 0.132 0.187 0.155 0.088

16 1.175 0.171 0.148 0.182 0.137 0.079

17 1.140 0.191 0.158 0.144 0.120 0.081

18 1.172 0.251 0.226 0.146 0.115 0.087

19 1.160 0.282 0.248 0.118 0.101 0.083

20-large 1.160 0.461 0.391 0.116 0.097 0.168

This table compares MSFE produced by four forecasting models. The first model uses a set of
macro economic variables to make conditional forecasts (column 2). The second model includes
market return as an additional exogenous variable to macro economic variables (column 3 for
equally weighted NYSE index and column 5 for value weighted NYSE index). The third model
forecasts are conditional on market returns (column 4 for equal weighted NYSE index and column
6 for value weighted NYSE index). The fourth model uses the optimal factor model based on the
Bartlett’s chi-square test during estimation period (column 7)
Model Parameters are re-estimated every year using the previous 5 years’ data, estimation period;
forecasts and forecast errors are estimated for the next 12 months. The procedure is repeated by
updating the parameter estimates of the models every year as a 5-year moving window. The first
estimation period is from 1947 to 1951 with the corresponding forecast year being 1952. Last year
of forecasts is 2013. Forecast errors for the year are scaled by the root mean squared naive forecast
error. Naive forecast for a year is defined as the mean portfolio returns over the estimation period.
Mean squared forecast errors are the average of squared forecast errors for the period from 1952
to 2013
The macro variable are

1. Unanticipated inflation.
2. Monthly growth rate of industrial production.
3. Yield differential between BAA rated corporate bonds and long-term government bonds.
4. Yield differential between long-term government bonds and T-Bills.

The indexes are for all NYSE stocks
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Chapter 6
Invisible Costs and Profitability

Xiaoxia Lou and Ronnie Sadka

6.1 Introduction

Ever since the signing of the Buttonwood Agreement on May 17, 1792, which
marked the beginning of what became today’s New York Stock Exchange (NYSE),
investors have been constantly seeking to develop new and interesting ways to profit
from various investment strategies. Libraries are filled with textbooks discussing
various investment approaches; a notable example is the influential manuscript of
Graham and Dodd (1934).

The academic literature in this area has long posited seemingly conflicting
puzzles. The efficient market hypothesis, proposed in Fama (1970), asserts that
markets are informationally efficient and, therefore, investors cannot earn abnor-
mal returns. Grossman and Stiglitz (1980) further introduce the concept of near
efficiency, arguing that because information is costly, prices only partially reflect
information. Therefore, arbitragers can earn extra returns by expending resources to
gather information. The academic literature has documented many trading strategies
over the past several decades that generate positive risk-adjusted returns (alphas)
(see McLean and Pontiff 2014, for a recent summary of dozens of such strategies
and their performance after publication in the public domain). At the same time,
the literature documents that most active investors have not been able to outperform
passive investment strategies, such as investing in the market portfolio (see Fama
and French (2010) for a recent review and new evidence).
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Treynor offers his insights on these matters in a series of articles, which generally
argue that transaction costs can explain why portfolio strategies consistently
generate remarkable performances on paper, while their actual returns fail to beat
market averages. He discusses the roles of different market participants and their
interaction resulting in transaction costs. For example, Treynor (1971) points out
that any transaction with a market maker incurs a bid/ask spread cost in addition
to any explicit brokerage commission. The market maker interacts with three types
of traders: information-based traders, liquidity-motivated traders, and noise traders
(those who believe they have new information, while, in fact the information
has already been incorporated into the stock price). The market maker loses to
information-based traders and gains from liquidity-motivated and noise traders.
To justify market making, the bid/ask spread must be large enough to cover the
losses incurred while trading with informed traders. On average, therefore, the
uninformed trader loses in the trading game. The bid/ask spread appears to be hidden
“because oscillations between ‘bid’ and ‘asked’ are camouflaged by the constant
fluctuations in the equilibrium value of the stock.”

Treynor (1981) points out that even without a designated market maker, traders
still incur transactions costs. He points out that trading is a zero-sum game, and
that most active investors have not been successful because they have not excelled
at playing the game. To succeed in the trading game, Treynor argues that the active
investor needs to know that the trader on the other end of the trade is not drawn from
a random sample. Instead, this trader has one of two motives: information or value.
Information traders trade based on information, which affects the fundamental value
of a stock, whereas the latter type of trading is motivated by value traders’ perceived
discrepancy between the market price and intrinsic value. Information-based traders
are time sensitive and demand quick execution, before their possessed information is
impounded into stock prices. The value traders, therefore, essentially act as liquidity
providers, and the buy-sell spread can be viewed as compensation for providing
liquidity. In equilibrium, the transaction costs paid by informed traders will be equal
to their initial information advantage.

In Treynor (1987), both dealers and value-based traders act as market makers.
The bid/ask spread of value-based traders (the outside spread) is higher than that of
dealers (the inside spread). Dealers are valuable because they reduce spreads and
improve the liquidity of the markets; however, dealers are limited in the amount of
capital and the ability to absorb losses, thus setting limits on the positions they are
willing to take to limit the risk of, in Treynor’s words, being “bagged.” When their
limits are reached, dealers will lay off to the value-based traders, who act as market
makers of the last resort. The inside spread is a function of the lay-off price that
dealers face while transacting with value-based traders and is therefore tied to the
outside spread.

Treynor makes a more specific argument about performance and transactions
costs in Treynor (1994). He clarifies that the great majority of trading has adversarial
motives. A trade typically involves the exchange of time for price, where time means
the right to transact quickly. Value traders sell time and information traders buy
time. Both types of traders (the information trader and the value trader) face risk.
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To succeed in the trading game, one needs to know both the value and the cost
of time. In practice, value (information) traders often only know the cost (value)
of time, not the value (cost) of time. The value trader can, therefore, get bagged
and the information trader can pay an exorbitant price for trading quickly. Treynor
coined these invisible trading costs, and argued that they are higher than visible
costs, such as commissions and market impact. Value traders who lose consistently
are those who sell time for less than it is worth. Similarly, information traders who
consistently lose are those who buy time for more than it is worth.

In general, Treynor stresses that to succeed in the trading game, value (infor-
mation) investors must learn the value (cost) of time without revealing the cost
(value) of time in the strategic trading game. In this regard, Kyle (1985) posits that
informed traders partially reveal the value of time through the size of their trades.
Therefore, the non-proportional price impact, that is Kyle’s Lambda, can be used
to gauge the invisible costs discussed by Treynor. The notion of invisible costs of
trading has been the focus of numerous papers providing theoretical explanations1

and empirical estimates2 of such costs. In the early years of the previous decade,
a growing literature on the limits of arbitrage opportunities examined whether
strategies constructed to exploit several prominent asset-pricing anomalies can still
remain profitable after taking into account transaction costs. For example, Knez and
Ready (1996) find that size-based strategies are too costly to trade; Mitchell and
Pulvino (2001) analyze the profits to risk arbitrage of mergers and acquisitions; and
Korajczyk and Sadka (2004) examine the profitability of momentum strategies.3

These empirical studies argue that transaction costs can impose a first-order effect
on profitability.

The purpose of this paper is to provide synthesized thoughts about the prof-
itability of various asset-pricing anomalies under transactions costs. Section 6.2
introduces different trading cost measures. Section 6.3 discusses performance net
of transactions costs. The profitability of some asset-pricing anomalies under
transactions costs is reviewed in Sect. 6.4. Section 6.5 includes evidence on the time
series of liquidity and institutional investment horizon, and Sect. 6.6 concludes.

6.2 Measures of Trading Cost

There are several components of trading costs that differ dramatically both in size
and ease of measurement. The components that can be measured with the least
error are the explicit trading costs of commissions and bid/ask spreads. When

1See, e.g., Kyle (1985), Glosten and Milgrom (1985), Easley and O’hara (1987), Admati and

Pfleiderer (1988), and Huberman and Stanzl (2004).
2See, e.g., Glosten and Harris (1988), Hasbrouck (1991a,b), Breen et al. (2002), and Sadka (2006).
3See also Chen et al. (2005), Lesmond et al. (2004), Mendenhall (2004), Sadka and Scherbina

(2007), Ng et al. (2008), and Chordia et al. (2009).
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trading an institutional-size portfolio, however, these proportional costs can be
modest compared to both the additional nonproportional cost of price impact and
the invisible cost of post-trade adverse price movement (Treynor 1994).

6.2.1 Proportional Costs

The two main measures of proportional cost are quoted spread (QS) and effective
spread (ES). The quoted spread is the difference between the bid and ask prices and
it measures the cost of a round-trip transaction, assuming trades are executed at the
quoted prices. The cost of a single trade is often estimated by the quoted percentage
half-spread (QHS), half the difference between the best ask and bid prices divided
by the average of the best ask and bid prices:

QHS D QA
i;t � QB

i;t

2Mi;t
;

where QB
i;t and QA

i;t are the bid and ask price for security i at time t, respectively, and
Mi;t is the bid/ask midpoint.

The effective (half) spread is defined as the difference between the actual
transaction price and the bid/ask midpoint. The effective percentage half-spread
(EHS) is the absolute value of the difference between the transaction price and the
midpoint of quoted bid and ask prices, divided by the bid/ask midpoint:

EHS D dk � .Pi;k � Mi;t/

Mi;t
; (6.1)

where dk is an indicator variable that equals one if trade k is buyer-initiated and
negative one if seller-initiated, and Pi;k is the transaction price of the trade.

Effective spreads may differ from quoted spreads. Transactions smaller than the
quoted depth, often executed within the bid and ask prices and, hence, exhibit
“price improvement” (Fialkowski and Petersen 1994). Conversely, trades larger
than the quoted depth generally execute outside of the bid/ask spread (Knez and
Ready 1996). Empirically, the effective spread is smaller than the quoted spread, on
average.

Effective spread can be further decomposed into a realized component and a price
impact component. The price impact component is defined as:

PI D dk � .Mi;tCn � Mi;t/

Mi;t
;

where Mi;tCn is the bid/ask midpoint n seconds after the trade time t. It measures the
permanent price movement following the trade within a given look-ahead window n.
The literature has used 1, 5, and 30 min for the length of look-ahead window. This is
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the component of transaction costs that compensates the liquidity provider for the
adverse selection problem. The difference between effect spread and price impact,
the realized spread, is then the compensation f or liquidity providers for the non-
informational cost and risk such as the order processing cost and the inventory risk.

6.2.2 Nonproportional Costs

The economic importance of price impact is demonstrated by Loeb (1983), Keim
and Madhavan (1996, 1997), and Knez and Ready (1996), who show that transaction
costs increase substantially as the size of an order increases. Motivated by the linear
pricing rule of Kyle (1985) which states that price change is a linear function of net
volume, price impact is often estimated by the slope coefficient 
 in regressions of
the following form:

�pi;t D 
i � di;t � Trade Sizei;t C "i;t; (6.2)

where i indexes stock; the dependent variable �pi;t can be percentage return, change
in price, or log return; di;t measures trade direction, an indicator variable that equals
one if the trade is buyer-initiated and negative one if seller-initiated; t can be a
calendar time interval such as a 5-min interval or in some models is defined in terms
of trades.

In Hasbrouck (2009), t denotes a 5-min time interval, the dependent variable �pt

is the log change in the quote midpoint over a 5-min period t, and SVolt is the sum
of the signed square-root of dollar volume in the 5-min period:

ln.mt/ � ln.mt�1/ D 
H
i �

X

k

d.vk/
p

jvkj C "i;t; (6.3)

where mt is the quote midpoint at the end of the time period t; where k denotes the
kth trade in the interval t; d.vk/ is an indicator variable that equals one if the trade
is buyer-initiated and negative one if seller-initiated; vk is the dollar volume of kth

trade in the 5-min interval; and 
H
i is the asset i’s price impact coefficient.

In Breen et al. (2002), the time interval used is 30 min, the dependent variable
is the percentage return, and trade size is measured by net share turnover over the
30-min time periods:

�pi;t

pi;t�1

D 
BHK
i � Turnoveri;t; (6.4)

The model implies a convex price impact function (Korajczyk and Sadka 2004).
The Glosten and Harris (GH) specification allows a decomposition of the price

impact into fixed and variable components. One way to motivate the model is to
assume that fundamental value at trade t, mi;t, is equal to fundamental value at
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trade t � 1 plus two types of news. One piece of news is the revision in perceived
fundamental value due to the information that trade t occurred for qi;t shares (with
the sign of qi;t denoting the direction of the trade initiator). This is given by the price
impact coefficient times qi;t. The other piece of news is information released that is
unrelated to the trade at t, "i;t.

mi;t D mi;t�1 C 
GH
i qi;t C "i;t (6.5)

However, the actual trade price differs from the fundamental value by a temporary
component that compensates those making a market in the stock for the non-
information related costs of market making. The sign of a trade is denoted di;t and
is assigned a value of C1 for a buy and �1 for a sell. The actual traded price, pi;t,
differs from mi;t by di;t‰i:

pi;t D mi;t C di;t‰i: (6.6)

In other words, the traded price is higher than the fundamental value by ‰i for
buyer-initiated trades and is lower than the fundamental value by ‰i for seller-
initiated trades. In essence, ‰i is the effective half-spread for very small trades.
The observed price change from trade t � 1 to trade t, given by:

�pi;t D 
GH
i qi;t C ‰i�di;t C "i;t; (6.7)

where �pi;t is the price change of stock i from trade t �1 to trade t as a consequence
of a (signed) trade of qi;t shares of the stock and the difference between the sign of
a current trade and the previous trade is denoted �di;t. The regression coefficient

GH

i represents the variable cost of trading, which has a permanent effect on price.
Similarly, ‰i represents the fixed cost, which has a temporary effect on the price.
The effective half-spread for small trades is ‰i and the price impact of large trades
is measured by 
GH

i .

6.2.3 Estimation Issues

The estimation of transaction costs has a few challenges. For example, the trade
direction is typically not observed, except for a few proprietary datasets. The most
common trade classification method is the (Lee and Ready 1991) algorithm which
classifies a trade as a buyer-initiated trade if the price is above the quote midpoint, a
seller-initiated trade if the price is below the quote midpoint, and uses the tick test if
the price is equal to the midpoint. The other two methods are from Ellis et al. (2000)
and Chakrabarty et al. (2007).

Many measures of transactions costs require the use of intraday data. The
ISSM (Institute for the Study of Security Markets) and TAQ (Trade and Quote)
datasets provide tick-by-tick data, but only starting in 1983 (ISSM: 1983–1992, and
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TAQ thereafter). In addition, the size of the TAQ data has grown exponentially.
Researchers have developed models and methods to estimate both proportional and
nonproportional transaction costs using the daily CRSP data, which is available
for a much longer time period and has lower demand on computing power. For
example, Hasbrouck (2009) proposes a Bayesian approach to estimate the effective
bid-ask spread using the Center for Research in Security Prices (CRSP) daily
data. Corwin and Schultz (2012) propose a spread proxy based on daily high-low
ratio. The Amihud (2002) measure is built upon the daily absolute return-to-dollar
volume ratio to capture price impact. Goyenko et al. (2009) run a horse race
between various proxies from the CRSP daily data and several high-frequency
benchmarks calculated using the TAQ data and Rule 605 data. They find that several
daily proxies can provide fairly good estimates for proportional transaction costs
such as the percent effective and realized spreads. However, nonproportional price
impact measures using daily data fail to capture the level of the high-frequency
benchmarks for price impact, although the Amihud measure (2002) has reasonably
high correlations with the high-frequency price impact measures.

6.3 Measures of Performance Under Transaction Costs

Transaction costs result in a reduction of the net returns earned by a trading
strategy. For proportional transactions cost models, a trading strategy’s performance
is independent of the size of the portfolio; however, for nonproportional price impact
transactions costs, such costs, as a percentage of trade size, grow with the size of
the portfolio being traded; therefore, the performance of the trading strategy declines
with the size of the portfolio.

Studies that examine the impact of nonproportional transaction costs on trading
profitability are often interested in determining the amount that a single portfolio
manager could invest before the performance of trading strategies breaks even
with that of the benchmark. For example, in Korajczyk and Sadka (2004), the
benchmark asset returns are the Fama-French three-factors; they calculate the size of
the portfolio that (1) eliminates the statistical significance of the portfolio abnormal
return, (2) drives the level of abnormal return to zero, and (3) drives the portfolio
Sharpe ratio (Sharpe 1966) to that of the maximal Sharpe ratio obtained from
combinations of the Fama and French (1993) three-factor portfolios. Novy-Marx
and Velikov (2014) point out that the use of the common notion of abnormal return
relative to a set of explanatory asset returns such as the Fama-French factors can
be somewhat problematic because the factors used to calculate traditional alphas
are themselves gross returns, without considering transaction costs. They therefore
propose a generalized definition of alpha to better evaluate the performance of a
strategy.
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6.4 Are Return Anomalies Robust to Trading Cost?

6.4.1 Return Anomalies

The academic literature has documented many strategies over the past several
decades that generate positive risk-adjusted returns (alphas). Many of these strate-
gies are based on cross-sectional relations between some predetermined variables
and future stock returns. The long list of predictors includes measures such
as market capitalization, price-to-fundamental ratios, firm profitability, net share
issuance, prior returns, idiosyncratic volatility, total accruals, asset growth, and
investment-to-assets. McLean and Pontiff (2014) find that the academic literature
has documented at least 95 such cross-sectional predictors in 78 different papers.

The most notable anomalies are the size premium, the value premium, momen-
tum, and the post-earnings-announcement-drift. The size premium refers to the
historical tendency of stocks with low market capitalizations to outperform stocks
with high market capitalizations (Banz 1981). The value premium refers to phe-
nomenon that stocks with low price to fundamental ratios (value stocks) outperform
stocks with high price-to-fundamental ratios (growth stocks) (Fama and French
1992; Stattman 1980). The momentum, or relative strength, literature finds that,
over horizons such as a week or a month, stock returns have negative serial
correlation (reversals), while at three to twelve month horizons, they exhibit positive
serial correlation (momentum). Over longer three-year to five-year horizons stock
returns again exhibit reversals. The momentum of individual stocks is extensively
examined by Jegadeesh and Titman (1993, 2001) and Chan et al. (1996, 1999).
They show that one can obtain superior returns by holding a zero-cost portfolio that
consists of long positions in stocks that have outperformed in the past (winners),
and short positions in stocks that have underperformed during the same period
(losers). Asness et al. (2013) document value and momentum phenomena across
several markets and asset classes. The post-earnings-announcement drift (PEAD),
or earnings momentum, was first documented by Ball and Brown (1968). Stocks
that just announced surprisingly good earnings subsequently outperform those that
just announced surprisingly bad earnings, that is, stock prices continue to drift in
the direction of earnings surprises for several months after the announcement dates.

The literature has proposed risk-based explanations for many of the aforemen-
tioned anomalies. For example, Sadka (2006) argues that momentum is partially
explained by a liquidity risk premium; however, risk-based models have not been
able to completely explain away many of these anomalies including momentum.
Indeed, Fama and French (1996) view this unexplained persistence of intermediate-
term momentum returns throughout the last several decades as one of the most
serious challenges to the notion of market efficiency.

In the absence of risk premia-based explanations for cross-sectional return
anomalies, an important question is whether there are significant transaction costs
that prevent investors from trading sufficiently large quantities to drive away the
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apparent profits. While transaction costs do not explain the underlying causes for
the existence of seemingly profitable strategies, they may be sufficient to explain
their persistence.

The literature has also found that most of these anomalies are more significant
among small and illiquid stocks. For example, Bhushan (1994) documented that the
PEAD is stronger for smaller, low-priced stocks. Jegadeesh and Titman (2001) find
that the zero-cost portfolio that is long in the top momentum portfolio and short in
the bottom momentum portfolio generates an average return of 1.42 % per month
among small firms in 1965–1998, compared to 0.86 % among large firms.

6.4.2 Performance Net of Transaction Costs

Incorporating explicit trading costs, such as commissions and spreads, into portfolio
returns has occurred in the literature for some time. Incorporating nonproportional
price impacts into trading strategies has only recently received significant attention.
After intraday trade and quote data became available, many studies now rely on TAQ
data to obtain estimates of transaction costs, while several papers, such as Frazzini
et al. (2012), use proprietary trade datasets.

6.4.2.1 The Effect of Proportional Transaction Costs

Schultz (1983) and Stoll and Whaley (1983) are among the earliest studies in this
line of research and investigate the effect of commissions and spreads on size-based
trading strategies. Both papers note that small firms have higher transaction costs
due to lower stock prices and higher bid-ask spreads. The estimates for the average
round-trip transaction costs for the smallest decile portfolio in Schultz (1983) are
about 11.4 % for the NYSE/AMEX stocks in the sample period from 1963 to 1979.
The risk-adjusted returns for the small firms are approximately 31 % per year net
of transaction costs, suggesting that the transaction costs cannot explain away the
higher average returns from small stocks. Stoll and Whaley (1983) consider both the
bid-ask spread and commissions and document that the round-trip transaction costs
are about 6.8 % for the smallest decile portfolio and 2.7 % for the largest decile
portfolio. If round-trip transactions occur only once a year, the size effect remains
significant.

A number of later studies investigate the effects of explicit trading costs on
prior-return based (momentum and contrarian) trading strategies. Ball, Kothari,
and Shanken (1995) show that microstructure effects, such as bid/ask spreads,
significantly reduce the profitability of a contrarian strategy. Grundy and Martin
(2001) calculate that with round-trip transactions costs of 1.5 %, the profits on a
long/short momentum strategy become statistically insignificant. With round-trip
transactions costs of 1.77 %, they find that the profits on the long/short momentum
strategy are driven to zero.
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Novy-Marx and Velikov (2014) study the effect of spread on a broad set of 23
anomalies which vary in terms of the rate of portfolio turnover and are categorized
into three distinct bins based on the turnover rate of the portfolios. For example,
value strategies are in the low turnover category because the portfolios are rebal-
anced annually. The strategies in the mid-turnover group have higher rebalancing
frequencies including the momentum anomaly, the idiosyncratic volatility anomaly,
and the post-earnings-announcement drift. The high-turnover group contains the
strategies that involve frequent rebalancing such as the short-term reversal (e.g.,
Lehmann (1990)) and the seasonality anomaly in Heston and Sadka (2008). Their
measure of transaction cost is the effective bid-ask spread measure in Hasbrouck
(2009). They find that the low-turnover strategies, typically those using annual
rebalancing, survive after taking into account the effect of spread. The transaction
costs in such strategies are often less than 10 bps per month. The middle-turnover
strategies experience average trading costs between 20 bps and 57 bps per month,
typically more than half of these strategies’ gross profits. But quite a few of these
mid-turnover strategies remain profitable even after considering effective spreads.
Trading on the high-turnover anomalies proves to be quite costly and transaction
costs wipe out all of the abnormal profits.

6.4.2.2 The Effect of Nonproportional Transaction Cost

Knez and Ready (1996) study the effects of price impact on the profitability of
a trading strategy based on the weekly cross-autocorrelations between the returns
on large-firm and small-firm portfolios. They find that the trading costs swamp
the abnormal returns of the strategy. Mitchell and Pulvino (2001) incorporate
commissions and price-impact costs into a merger arbitrage portfolio strategy and
find that such costs reduce the profits of the strategy by 300 basis points per year.

Chen et al. (2005)

Chen et al. (2005) implement long-short arbitrage strategies based on the size, book-
to-market, or momentum anomaly in the period from 1963 to 2000. They estimate a
non-linear concave price-impact function on 5,173 stocks traded on the NYSE and
NASDAQ from January 1993 to June 1993. They then estimate the maximal fund
size possible before excess returns become negative after taking into account the
price impact costs, and find that the profitable fund sizes are small. They therefore
conclude that price-impact costs deter agents from exploiting the anomalies and
markets are bounded-rational.
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Korajczyk and Sadka (2004)

Korajczyk and Sadka (2004) focus on the profitability of long positions in winner-
based momentum strategies and incorporate several models of trading costs,
including proportional and nonproportional costs. Two proportional cost models
are based on quoted and effective spreads. They study two alternative price impact
models (nonproportional costs): One based on Glosten and Harris (1988), and one
based on Breen et al. (2002).

Since the TAQ data only begin in 1993 and the momentum strategy can
be implemented in a much larger time period (from 1967 to 1999), Korajczyk
and Sadka (2004) obtain the out-of-sample estimates of transaction costs by (1)
estimating cross-sectional regressions of measures of transaction costs obtained
from TAQ data on firm-specific variables and (2) applying the time series averages
of the estimated coefficients onto the firm-specific variables observable in the out-
of-sample period.

Since non-proportional transaction costs, as a percentage of trade size, grow
with the size of the portfolio being traded. Their main interest is to determine
the size of a single portfolio that will break even with a benchmark. Their main
benchmark returns are the Fama-French three-factors. Specifically, they calculate
the size of the portfolio that (1) eliminates the statistical significance of the portfolio
abnormal return, (2) drives the level of abnormal return to zero, and (3) drives the
portfolio Sharpe ratio (Sharpe 1966) to that of the maximal Sharpe ratio obtained
from combinations of the Fama and French (1993) market, size, and book-to-market
portfolios.

The main sample in Korajczyk and Sadka (2004) contains NYSE stocks from the
time period 1967–1999. They find that proportional transaction costs do not have a
significant impact on the profitability of momentum strategies. They find that equal-
weighted strategies, which are common in the literature, have the highest returns
before price impact but the lowest returns after price impact. Price impact quickly
eliminates the profitability of equal-weighted portfolios. Value-weighted strategies
provide higher post price impact returns than equal-weighted strategies. The break-
even fund size for value-weighted strategies is $2 billion—expressed relative to
market capitalization at the end of December 1999—using the Breen et al. (2002)
price-impact specification. The break-even size is slightly larger with the Glosten
and Harris (1988) specification.

In sum, Korajczyk and Sadka (2004) find that commonly cited strategies (equal-
weighted or value-weighted) cannot be profitably implemented for large portfolios.
They advocate to adopt liquidity-tilted portfolios, which they show perform sub-
stantially better than either equal- or value-weighted portfolio, after price impact
is taken into account. They conclude, therefore, transaction costs—in the form of
spreads and price impacts of trades—do not fully explain the return persistence of
past winner stocks exhibited in the data. They deem their break-even funds sizes
conservative, as their analysis assumes that trading per stock is completed in a
single trade over a 30-min time interval. More sophisticated trading mechanisms
that break-up large trades over the trading day may reduce trading costs and may
further increase the computed break-even fund sizes.
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Frazzini et al. (2012)

Frazzini et al. (2012) examine the net of trading costs returns of the size, value,
momentum, and short-term reversal strategies (SMB, HML, UMD, and STR) by
using a live trading dataset from a large institutional money manager over the time
period from 1998 to 2011 across 19 developed equity markets. The data contain
information about orders, execution prices, and quantities traded. The data are quite
unique insofar as they contain both the actual trade and the intended trade of the
fund manager. The dataset includes $721 billion worth of trades executed using
automated algorithms (trades associated with intra-day high frequency models are
excluded).

Overall, the transaction cost estimates in Frazzini et al. (2012) are less than a
tenth as large as previous studies suggest. At the implied fund size of 15.2 billion
dollars, the transaction cost of the SMB strategy is 1.46 % per year. Using the
historical average gross return of 2.61 % and the implied price impact function they
estimated using actual trading data, they obtain the break-even fund size for the
SMB strategy to be $103 billion. The break-even fund sizes are $82.95 billion for
HML, $52.15 billion for UMD, and $9.51 billion for STR.

A close look at the cost estimates reveals that they are quite similar in magnitude
to those used in Korajczyk and Sadka (2004) over the years for which the
sample periods of the two studies overlap, that is, pre-decimalization. Indeed, after
decimalization trading costs have substantially declined (this can also be seen in
Fig. 6.1 discussed below), suggesting that the change in trading environment makes
some trading strategies feasible although they might not have been in the past.

6.4.3 Optimized Portfolios

Most of the strategies studied in the literature are standard long or long-short
strategies, without taking into account the actions that fund managers can take to
reduce the effect of transaction costs. Strategies that are cost-conscious can sub-
stantially enhance performance. Investors can reduce transaction costs by shifting
towards stocks with lower transaction costs as well as reducing the turnover rate of
portfolios. To improve the net-of-transaction costs performance, one needs to reduce
the transaction cost, while still maintaining adequate exposure to the underlying
signal.

One can start by limiting trades to liquid stocks only. Novy-Marx and Velikov
(2014) find that this approach does not yield significant improvement for mid-
turnover strategies, although the improvement is significant for high-turnover
strategies. They also propose a staggered partial rebalancing technique which
involves lowering the frequency at which a strategy is traded. For example, for
the momentum strategy, traders can use quarterly rebalancing instead of monthly.
But the effect of the staggered partial rebalancing technique turns out to be quite
limited for mid-turnover strategies, probably due to the loss of the exposure to the
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Fig. 6.1 The time series of market liquidity. The figure plots the monthly average of price-impact
components estimated as in Sadka (2006). The fixed component measures the transitory price
impact per trade, from one trade to the next; the variable component measures the permanent price
impact (from one trade to the next) per share traded. Price-impact components per firm are scaled
by beginning-of-month share price, thus interpreted as relative cost values. The vertical grid lines
represent the January month of the year labeled. The universe consists of NYSE-listed firms for
the period January 1983 through December 2012

underlying signal. Novy-Marx and Velikov find that a buy-hold strategy that reduces
the turnover rate while maintaining the exposure to the underlying signal is more
effective. An example in the case of the momentum strategy would be a 10 %/20 %
buy/hold rule, which is modified from the traditional decile portfolio approach and
involves buying a stock when the stock gets into the top 10 % and holding it unless
the stock leaves the top 20 %. The average reduction in the turnover is 41 % with
a 42 % decrease in transaction costs. The buy/hold strategy can also improve the
performance of the high-turnover strategy.

Korajczyk and Sadka (2004) derive a simple liquidity-weighted portfolio rule
that takes into account the price impact costs of trading in exploiting the momentum
anomaly. Specifically, they study a partial, static optimization problem and aim to
maximize, under simplifying assumptions, post-price impact expected return on
the portfolio. They find that liquidity-tilted trading strategies can be implemented
for much larger portfolios. Alpha is driven to zero after $5 billion is invested for
the liquidity-weighted strategy, or the 50/50 weighting of the liquidity-weighted or
value-weighted strategies. Korajczyk and Sadka point out that an extension of the
static optimization to a dynamic setting should result in portfolios of even superior
performance. Performance might also be improved if some simplifying assumptions
are relaxed.
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Frazzini et al. (2012) also study how to maximize after-trading cost returns
while maintaining the style of the original long-short portfolio. Their baseline
optimization problem is to minimize the expected trading cost and in the meantime
require that the ex-ante tracking error be less than 1 % and the trading volume be less
than 5 % of a stock’s average daily trading volume. They find a significant reduction
in transaction costs in the anomalies that they study. For example, the trading cost
for the standard HML strategy is 2.28 % per year; however, their optimized HML
strategy only generates 57 bps of transaction costs per year. Since the optimization
is achieved with the restriction on the tracking error, the optimized portfolios,
therefore, maintain the styles of the original portfolios.

6.5 Liquidity Over Time

One of the key developments in the US equity market over the past several decades
is the substantial increase in institutional investing and index trading. It is well
accepted that increases in institutional investing and index trading have played a
key role in the increases of trading volume and liquidity levels in US equity markets.
The discussion of profitability under transactions costs therefore cannot be complete
without highlighting the time series dimension.

To highlight the reduction in trading costs, Fig. 6.1 plots the time series of
the average price impact measures calculated in Sadka (2006) for the period
1983–2012. Sadka follows the estimation procedure in Glosten and Harris (1988),
with adjustments for the potential autocorrelation in the order flow as well as the
differential impact of large trades. The fixed component of price impact displays a
significant drop in magnitude of the sample period; it exhibits significant declines
around the reductions of tick size (1/8 to 1/16 in June 1997 and to decimals in
January 2001). The level of the fixed component has been stable at a low level
since 2001, except for a slight increase during the financial crisis of 2008–2009.
The variable component of price impact has also declined over time, but at a slower
rate. The financial-crisis period shows high levels of price impact, similar to its
levels during the early 1980s, but they drop back to pre-crisis levels in 2010.

The drop in transaction costs would suggest an increase in profitability of trading
strategies—that is, strategies that would have seem unprofitable under trading costs
in the past, might seem more attractive under the current, low cost regime. However,
there are two noteworthy consequences of the increased liquidity over the years:
(a) increased liquidity commonality and (b) decreased mispricing.

Liquidity Commonality Chordia et al. (2000) document that the time series of
liquidity across a large panel of stocks displays a significant systematic component,
that is, there exists a significant correlation between the liquidity of different firms
over time (see also Hasbrouck and Seppi (2001) and Korajczyk and Sadka (2008)).
This suggests the existence of liquidity risk, which is the risk of experiencing a
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sudden drop in market liquidity—a risk not easily diversifiable across the different
stocks in a portfolio of a given investment manager. Kamara et al. (2008) show that
liquidity commonality has substantially increased over time, especially for large-cap
firms. They show a causal relation between the increase in institutional investing and
liquidity commonality over the period 1963–2005. Lou and Sadka (2011) further
highlight the difference between the liquidity level (as measured by the Amihud
(2002) measure) and the liquidity risk (as measured in Pástor and Stambaugh (2003)
and Sadka (2006)) of a given firm, and show that during the crisis period of 2008–
2009 the liquidity risk subsumed liquidity level in explaining return differences in
the cross-section of stocks. In fact, some large, liquid firms have exhibited high
liquidity risk. Therefore, the conclusion is that although transactions costs have
decreased over time, thereby making the post-transaction-costs expected returns
more attractive, the trend might also be associated with an increase in the liquidity
risk of the investment strategies designed to capture asset-pricing anomalies. This
is of special concern for investment strategies that rely on a substantial amount of
trading because their performance is more exposed to systematic changes in market
liquidity.

Mispricing The informativeness of prices is directly affected by the costs of trading
(for recent works see Sadka and Scherbina (2007) and Kerr et al. (2014)). Therefore,
one might expect the ex-ante profitability of anomaly-based investment strategies
to decline, as more traders are prone to trade them given the reduction in trading
costs. An analysis of the profitability of prominent trading strategies, such as size,
value, price and earnings momentum, and idiosyncratic volatility, over time is
provided in Chordia et al. (2014). They show that, without considering transactions
costs, the “paper” profits of such popular strategies have significantly declined
over time. They attribute this decline in profitability to the increased arbitrage
activity and improvements in market liquidity, and offer this evidence in support
of capital market efficiency. Evidence for increased trading activity is also seen
by the decrease in the average investment horizon of institutional investors over
the past several decades. Figure 6.2 plots the time series of the average Churn
ratio; this ratio is based on the turnover in institutional investors quarterly holdings
gauged from the 13F filings (see Gaspar et al. (2005) and Kamara et al. (2016)). The
plot suggests that institutional investors have increased portfolio turnover, possibly
focusing on shorter horizon investment strategies, which can be more attractive in
the current trading environment. Yet, this increased sensitivity of profitability to the
costs of trading coupled with the aforementioned increase in liquidity risk makes
these investment portfolios riskier.
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Fig. 6.2 The time series of portfolio turnover ratio of institutional investors. The figure plots the
quarterly institution turnover ratio estimated as in Kamara, Korajczyk, Lou, and Sadka (2016). For
each quarter q and institution j from 1980 to 2012, the churn ratio is defined as:

Churnj;q D †jSharesi;j;qPi;q�Sharesi;j;q�1Pi;q�1�Sharesi;j;q�1�Pi;qj

†i.Sharesi;j;qPi;qCSharesi;j;q�1Pi;q�q/=2
;

where Sharesi;j;q is the number of shares of firm i owned by institution j at the end of quarter q
and Pi;q is the price of stock i at the end of quarter q. The institution portfolio turnover ratio is
calculated as the average churn ratio in the four quarters [q�3,q] for each j and q. Plotted is the
time series of the average turnover ratio across all institutions in the 13-F dataset from 1980 to
2012

6.6 Conclusion

This article discusses the various implications of transactions costs for the prof-
itability of investment strategies. In his many papers in this area, Treynor has
substantially contributed to our understanding of the sources of trading costs and
their implications for portfolio management. With the recent advances in trading
systems and the need to use complex trading algorithms to reduce institutional
investors fear of “being skimmed” by high-frequency traders, the concept of the
invisible costs of trading remains a significant and relevant topic of discussion
amongst academics and practitioners.
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Chapter 7
Mean-ETL Portfolio Construction
in US Equity Market

Barret Pengyuan Shao

7.1 Introduction

Fundamental data have been used as the criteria to select stock for a long time in both
industry and academic work. For example, Jaffe, Keim, and Westerfield (1989) find
the relation between stock returns and the earnings to price ratio to be significant.
Fama and French (1992) add fundamental data of stocks, size and book-to-market to
explain stock returns. Jegadeesh and Titman (1993) show the price momentum effect
that buying stocks that performed well in the past and selling stocks that performed
poorly in the past can generate statistically significant positive returns over both
3-month and 12-month holding periods. Bloch, Guerard, Markowitz, Todd, and
Xu (1993) develop an underlying composite model to describe stock returns using
fundamental variables. By adding the consensus earnings forecasting (CTEF) and
price momentum (PM) variables to this model, Guerard, Gültekin, and Stone (1997)
develop the US Expected Returns (USER) stock selection model.

As the pioneering work, Markowitz (1952 1959) uses a mean-variance portfolio
construction model to maximize the portfolio return for a given level of risk. In
Markowitz’s mean-variance portfolio optimization, the portfolio risk is represented
by the portfolio variance. There are many previous works that have been done
to examine the efficiency of mean-variance portfolio on fundamental variables in
the stock markets. For example, Guerard, Rachev, and Shao (2013) show that both
mean-variance and mean-ETL portfolios on global expected returns (GLER) model
are capable of generating statistically significant active returns.

The organization of this chapter is as follows, Sect. 7.2 provides an overview of
the importance of different fundamental variables used in the mean-ETL portfolio
construction. Section 7.3 describes the methodology used to generate the scenarios
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and construct the portfolios based on the fundamental variables. Simulation results
of the mean-ETL portfolios during the period 1990–2013 are presented in Sect. 7.4
and we provide the conclusions in Sect. 7.5.

7.2 Fundamental Variables

In this section, we discuss different fundamental variables that are used to construct
the US mean-ETL portfolio in this study which are consensus temporary earnings
forecasting (CTEF), price momentum (PM), US expected return (USER) and
McKinley Capital Quant Score (MQ) variables.

As one of the most important fundamental variables, earning expectation has
been used for stock selection for many years. Graham, Dodd, and Cottle (1934)
select stocks based on fundamental valuation techniques, and show that stocks with
higher earnings-per-share (EPS) outperform the ones with lower EPS. In 1975,
Lynch, Jones, and Ryan collected and published consensus statistics for EPS fore-
casting, forming the beginning of what is now known as the Institutional Brokerage
Estimation Service (I/B/E/S) database (Brown 1999). Besides the original earnings
yield, Guerard et al. (1997) also find that the earnings revision (EREV) and earnings
breadth (EB) which represents the direction of the revisions are also important in
stock selection. Guerard et al. (1997) create CTEF variable which is a weighted sum
of the forecasted earnings yield (FEP) from I/B/E/S, EREV, and EB. Guerard, Blin,
and Bender (1998) find that a value-based model with CTEF variables produces
statistically significant models for stock selection in the US and Japanese markets.
More recently, using the CTEF variables of global equities, Xia, Min, and Deng
(2015) show that the mean-variance portfolio construction produces robust returns.
Similarly, also using the CTEF variables of global equities, Shao, Rachev, and
Mu (2015) show that robust returns can be generated via the mean-ETL portfolio
construction.

In the global expected return model (see Guerard et al. 2013), CTEF and PM
variables account for the majority of the forecast performance. The role of PM
variable in stock selection has also been studied for a long time (Jegadeesh &
Titman 1993) find that 3-month, quarterly, 6-month, and 1-year PM variables are
statistically significant with excess returns. Grinblatt, Titman, and Wermers (1995)
find that 77 % of the mutual funds are buying stocks with better performance history.
Chan, Hameed, and Tong (2000) report that trading strategies based on PM in
international equity markets generate statistically significant returns. Brush (2001)
shows that quarterly information coefficient (IC) of 3-month PM variable is 0.073,
which is higher than the monthly IC of 0.053. The PM variable in this study is
defined as the price from last month divided by the price from12 months prior
(see Guerard et al. 2013, for details). However, implementing portfolio construction
using PM variable on the US or global markets has not been studied before. We
examine the mean-ETL-PM portfolio construction on US market in this chapter.
We also test the same portfolio construction technique on the McKinley Capital
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Quant Score (MQ) variable which is the equally weighted sum of CTEF and PM
variables.

By adding CTEF and PM variables to the original stock selection model
developed by Bloch et al. (1993), Guerard et al. (1997) construct the USER model
based on fundamental data in US market. The USER variable we use in this study to
construct the portfolio is the same as the one used in the USER model developed by
Guerard et al. (1997). At time t C1 , the USER variable is a weighted sum of certain
fundamental variables and their derivatives at time t. These fundamental variables
and their derivatives include:

1. earnings—price ratio (EP);
2. book value—price ratio (BP);
3. cash flow—price ratio (CP);
4. sales—price ratio (SP);
5. current EP ratio divided by average EP ratio over the last 5 years (REP);
6. current BP ratio divided by average BP ratio over the last 5 years (RBP);
7. current CP ratio divided by average CP ratio over the last 5 years (RCP);
8. current SP ratio divided by average SP ratio over the last 5 years (RSP);
9. csensus temporary earnings forecasting (CTEF);

10. price momentum (PM).

For more details on the methodology and estimation of the USER model, the
reader is referred to Guerard et al. (2013). Guerard et al. (2013) also report the
mean-variance portfolio using USER data can generate an active annual return of
10.70 % with an information ratio of 1.12 and a t-statistic of 3.68 during the period
1999–2009. In this chapter, the mean-ETL portfolio on the USER variable during
the period 2000–2013 is examined.

7.3 Mean-ETL Portfolio Construction

In this section, we describe the mean-ETL portfolio construction methodology used
in this chapter. Markowitz’s mean-variance portfolio optimization (1952, 1959)
is to maximize the portfolio expected return at a given level of portfolio risk. In
Markowitz’s framework, the portfolio expected return is measured by the sum of
the security weights multiplied by their respective expected return, and portfolio
risk is measured by the variance of portfolio. Instead of using the portfolio variance
as the risk measure, mean-ETL portfolio optimization uses expected-tailed loss
(ETL), also known as conditional Value-at-Risk (CVaR) or the expected shortfall
(ES), as the risk measure. Many recent research works show the mean-ETL portfolio
construction can generate robust portfolios. For example, Shao and Rachev (2013)
show that the mean-ETL portfolio construction based on GLER variable generate
statistically significant active return on the global markets.



158 B.P. Shao

7.3.1 Mean-ETL Framework

Before introducing the definition of ETL, we need to give the definition of value-
at-risk (VaR), which is one of the most frequently used risk measures in the finance
industry:

Let X represent the distribution of portfolio returns; then, the VaR of the portfolio
at a .1 � ’/ 100 % confidence level can be defined as the lower ’ quantile of the
return distribution:

VaR’.X/ D � inf .x W P .X � x/ � ˛/ D �F�1
X .’/ (7.1)

Given the definition of VaR, ETL is defined as the average loss beyond the VaR
threshold:

ETL’.X/ D �E
�

X
ˇ̌
ˇX < �VaR’.X/

�
(7.2)

As a coherent risk measure (Artzner, Delbaen, Eber, & Heath 1999), ETL has
many good properties for the purpose of portfolio risk management. Rockafellar
and Uryasev (2000 2002) provide a detailed discussion of the properties of CVaR
when used as a measure of risk. The main reasons that we are using ETL instead
of VaR as the risk measure in portfolio construction are summarized by Rachev,
Martin, Racheva, and Stoyanov (2009): (1) ETL gives a more informative view on
extreme events; (2) mean-ETL portfolio optimization problem is a convex problem,
which has a unique solution; (3) as a coherent risk measure with the sub-additivity
property, ETL accounts for the effect of diversification. For more details on the
calculation of ETL in portfolio optimization, the reader is referred to Shao et al.
(2015).

Using ETL as the risk measure, there are several ways to formulate the mean-
ETL optimization problem (see Rachev, Stoyanov, and Fabozzi (2007) for details).
In this study, we add a few constraints to the portfolio construction: (1) the portfolio
needs to be a long only portfolio; (2) maximum weights of single asset cannot
exceed 4 %; (3) monthly turnover rate of the portfolio is below or equal to 8 %.
We formalize our mean-ETL optimization framework as follows:

max
wt

1
S

SX

sD1

wT
t

OY.s/
t � 
ETL˛

�
wT

t
OYt

�

s:t: 0:04 � wt � 0

eT
1 jwt � wt�1j � 0:16

eT
1 wt D 1

(7.3)

where wt is a column vector of optimal securities weights in the portfolio and OY.s/
t

is a column vector that contains the sth scenario of all N securities:
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OY.s/
t D

h OY.1;s/
t ; OY.2;s/

t ; : : : ; OY.N;s/
t

iT
;

and OYt should be a matrix that consists of all S scenarios at time t:

OYt D
h OY.1/

t ; OY.2/
t ; : : : ; OY.S/

t

i

N�S
:

In this study of mean-ETL portfolio construction, ˛ for ETL is chosen to be 5 %
and the risk-averse parameter 
 is chosen to be 1.

7.3.2 Scenario Generator

With the above-mentioned mean-ETL portfolio construction framework, the scenar-
ios of fundamental variables, OYt, are required for the optimization.

In this study, we use Yn,t to denote fundamental variable values of the nth stock at
time t, where 1 � t � T; 1 � n � N. Here, T and N are the number of data points
and the number of securities, respectively. The fundamental variable is chosen from
USER, CTEF, PM, and MQ in this study. Before fitting the time series model on
the fundamental variable data, we perform the following transformations for the nth

stock:

yn;t D f .x/ D
�

log .Yn;t/ � log .Yn;t�1/ ; t � 2 and k D 1; : : : ; N
0; t D 1 and k D 1; : : : ; N;

(7.4)

where N denotes the number of securities in the portfolio.
We choose the time series model autoregressive moving average (ARMA)

generalized autoregressive conditional heteroskedastic (GARCH) with multivariate
normal tempered stable (MNTS) innovations to model and generate the scenarios
of time series yn,t. The ARMA-GARCH-MNTS model is a flexible model to
capture volatility clustering, heavy tails, asymmetric dependence structure and the
dependency between different stocks. The AMRA-GARCH-MNTS model used to
model time series yn,t in this study is described as follows:

yn;t D cn C anyn;t�1 C bn�n;t�n;t�1 C �n;t�n;t (7.5)

�2
n;t D ˛n;0 C ˛n;1�2

n; t�1�2
n;t�1 C ˇn;1�2

n;t�1; (7.6)

where n D 1; 2; � � � ; N and the joint innovation term �t D .�1;t; �2;t; � � � ; �N;t/ is
generated from MNTS(˛, � , ˇ, � , �, �). And the N-dim MNTS(˛, � , ˇ, � , �, �) is
defined as:

X D .X1; X2; : : : ; XN/ D � C “ .CT � 1/ C ”
p

CT© (7.7)
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where � D .�1; �2; : : : ; �N/T, “ D .ˇ1; ˇ2; : : : ; ˇN/T, ” D .�1; �2; : : : ; �N/T and
” > 0. CT is a classical tempered stable (CTS) subordinator with parameter (˛, � ),
where ˛ 2 .0; 1/ and � > 0. © D ."1; "2; : : : ; "N/T is a N-dim standard normal
distribution with covariance matrix ¡, independent of the subordinator CT > 0. The
reader is referred to Kim, Giacometti, Rachev, Fabozzi and Mignacca (2012) for the
details on the application and estimation of MNTS in portfolio optimization.

In this chapter, we are not going into the details surrounding the estimation of
ARMA-GARCH-MNTS model and the reader is referred to Shao et al. (2015) for
the estimation methodology. With the estimated ARMA-GARCH-MNTS model, we
can generate the scenarios of yn,t, denoted as Oys

n;t and it represents the sth scenario
forecasting the nth stock at time t. To get the scenarios of the fundamental variables
Rn,t, we do the following reverse transformation:

OYs
n;t D exp

�Oys
n;t C log .Yn;t�1/

�
(7.8)

After generating the scenarios OYs
n;t for each stock, we can run the portfolio

optimization on different fundamental variables from US markets. The portfolio
results with empirical data will be discussed in the next section.

7.4 Portfolio Results and Analysis

We generate the optimal mean-ETL portfolios during the period 2000–2013 based
on the scenarios generated from ARMA-GARCH-MNTS. In this chapter, we
use mean-ETL-CTEF, mean-ETL-USER, mean-ETL-MQ, and mean-ETL-PM to
represent the optimal portfolios based on CTEF, USER, MQ, and PM variable,
respectively. In this section, we use the Barra risk model to analyze these portfolios.
The US Barra risk model was developed in Rosenberg and Marathe (1975) based on
company fundamental data. The Barra attribution analyses here use the US Equity
Model (USE3). The benchmark in these attribution reports is chosen to be Russell
3000 Growth index. We also offer the comparison of these portfolios in this section.

7.4.1 Attribution Reports

The attribution of mean-ETL-CTEF portfolio returns is shown in Table 7.1, and
we report that the portfolio generates 14.07 % active (excess) annual return with
an information ratio of 1.11 and a t-statistic of 4.15. The active return is highly
statistically significant. The attribution report also shows that the stock selection
produces statistically significant active annual return of 5.95 % with a t-statistic
of 3.66. Moreover, the earnings yield contributes 1.24 % annual return with a t-
statistic of 3.31. The mean-ETL-CTEF portfolio is based on the CTEF variable
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Table 7.1 Barra attribution of the mean-ETL-CTEF (US) portfolio

Source of return Contribution (%) Avg exposure Risk (%) IR t-stat

Portfolio 16.12 20.87
Benchmark 2.05 18.30
Total active 14.07 12.10 1.11 4.15
Expected active 0.09
Market timing 3.14 5.90 0.47 1.74
Risk Indices 6.07 7.88 0.73 2.73
Volatility �0.31 0.31 2.67 �0.09 �0.33
Momentum 0.53 �0.19 2.99 0.19 0.70
Size 6.24 �1.64 7.15 0.81 3.01
Size non-linearity �1.24 �0.68 3.53 �0.33 �1.23
Trading activity �0.13 �0.21 0.99 �0.12 �0.46
Growth 0.17 �0.42 1.10 0.15 0.56
Earnings yield 1.24 0.10 1.23 0.89 3.31
Value �0.13 0.68 1.87 �0.03 �0.12
Earnings variation �0.04 0.30 0.84 �0.03 �0.10
Leverage �0.30 0.39 1.16 �0.20 �0.73
Currency sensitivity 0.22 �0.26 0.78 0.25 0.92
Yield �0.04 0.15 0.57 �0.06 �0.22
Non-EST universe �0.14 0.12 1.27 �0.11 �0.41
Industries 0.54 4.68 0.12 0.46
Asset selection 5.95 5.87 0.98 3.66
Transaction cost �1.73

which represents the consensus earnings forecasting and revisions. The statistically
significant contribution to the active returns from earnings yield shows the CTEF’s
predictable ability of earnings.

In Table 7.2, we show the attribution of mean-ETL-USER portfolio returns. The
mean-ETL-USER portfolio generates 9.73 % active annual return. The active return
is highly statistically significant with a t-statistic of 4.26 and it has an information
ratio of 1.14 which is higher than the mean-ETL-CTEF portfolio. We find that the
size factor has a factor return of 5.49 % with a t-statistic of 4.05. It is also observed
that the portfolio’s average exposure to the size factor is negative, indicating the
mean-ETL-USER portfolio’s preference for stocks with small capitalization. Xia
et al. (2015) also have the similar observations from the mean-variance portfolio
based on USER variable.

The attribution of mean-ETL-MQ portfolio returns is shown in Table 7.3 and
it also produces highly statistically significant active return, 10.75 % annually.
Moreover, asset selection produces 6.31 % active annual return, which has an
information ratio of 1.36 and a t-statistic of 5.07. Both active return and information
ratio of asset selection’s contribution is the highest among all the four portfolios
under comparison.
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Table 7.2 Barra attribution of the mean-ETL-USER (US) portfolio

Source of return Contribution (%) Avg exposure Risk (%) IR t-stat

Portfolio 11.78 21. 84
Benchmark 2.05 18.30
Total active 9.73 8.67 1.14 4.26
Expected active 0.34
Market timing 0.33 2.62 0.19 0.70
Risk indices 5.57 5.41 1.00 3.71
Volatility 0.05 0.40 2.07 0.04 0.14
Momentum 0.15 0.01 1.08 0.15 0.55
Size 5.49 �1.52 4.81 1.08 4.05
Size non-linearity �0.85 �0.75 2.65 �0.30 �1.11
Trading activity 0.16 �0.06 0.25 0.60 2.25
Growth 0.14 �0.24 0.54 0.26 0.97
Earnings yield 1.22 0.16 0.86 1.26 4.70
Value �0.14 0.57 1.15 �0.08 �0.30
Earnings variation �0.31 0.36 0.69 �0.36 �1.34
Leverage �0.145 0.39 0.74 �0.16 �0.58
Currency sensitivity �0.01 �0.04 0.38 �0.02 �0.09
Yield 0.05 �0.04 0.18 0.28 1.04
Non-EST universe �0.24 0.20 1.48 �0.16 �0.59
Industries 0.51 3.84 0.18 0.68
Asset selection 5.02 4.50 1.09 3.99
Transaction cost �2.04

In Table 7.4 presents the attribution of mean-ETL-PM portfolio returns is
presented. The mean-ETL-PM portfolio generates active annual return of 8.51 %.
The active return is statistically significant and it has an information ratio of 0.86
and a t-statistic of 3.20.

All of the four portfolios produce statistically significant active returns and they
are due mostly to the asset selection. As described previously, ˛ for mean-ETL
portfolio optimization in this study is chosen to be 5 % and we want to know
whether the technique can control the 5 % left tails well. Taking mean-ETL-CTEF
and mean-USER-ETL portfolios as examples, we show the quantile–quantile plots
of the mean-ETL portfolio monthly returns against benchmark’s in Fig 7.1. The
left plot is the mean-ETL-CTEF portfolio against benchmark and the right one is
the mean-ETL-USER portfolio against the benchmark. We find that the left tail of
mean-ETL portfolio returns is thinner than the benchmark’s in most cases. Another
interesting observation is that the return distributions of mean-ETL portfolios have
even heavier right tails than the benchmark. It indicates that controlling the tail risk
of portfolio does not necessarily deteriorate the right tails in this study.



7 Mean-ETL Portfolio Construction in US Equity Market 163

Table 7.3 Barra attribution of the mean-ETL-MQ (US) portfolio

Source of return Contribution (%) Avg exposure Risk (%) IR t-stat

Portfolio 12.80 22.36
Benchmark 2.05 18.30
Total active 10.75 9.72 1.12 4.18
Expected active 0.83
Market timing 1.14 4.07 0.33 1.22
Risk indices 4.88 6.22 0.75 2.81
Volatility �0.39 0.57 3.22 �0.11 �0.43
Momentum 0.10 0.01 1.35 0.10 0.37
Size 5.75 �1.70 5.03 1.08 4.05
Size non-linearity �0.89 �0.86 2.94 �0.30 �1.10
Trading activity 0.02 �0.06 0.28 0.04 0.16
Growth 0.08 �0.20 0.50 0.18 0.67
Earnings yield 0.96 �0.01 0.99 0.83 3.11
Value �0.23 0.54 1.16 �0.15 �0.54
Earnings variation �0.26 0.48 0.98 �0.21 �0.77
Leverage �0.35 0.42 0.85 �0.33 �1.24
Currency sensitivity 0.12 �0.12 0.33 0.33 1.22
Yield 0.14 �0.12 0.38 0.33 1.25
Non-EST universe �0.17 0.21 1.67 �0.11 �0.39
Industries �0.34 3.87 �0.04 �0.14
Asset selection 6.31 4.47 1.36 5.07
Transaction cost �2.07

7.4.2 Comparison

Figure 7.2 below shows the equity curve of mean-ETL portfolios and the benchmark
portfolio during the period 2000–2013. It’s obvious that the mean-ETL-CTEF
portfolio performs better than the other portfolios during this period.

To further compare these portfolios in a more quantitative way, we review
their Treynor ratios and Sharpe ratios. Treynor (1965) proposes to use beta as
the measurement of volatility, which is well known as Treynor ratio, to evaluate the
performance of fund. Treynor ratio is calculated as T D R�Rf

ˇ
, where R is the

portfolio return, Rf is the risk free rate, and ˇ is the portfolio’s beta. One year later,
Sharpe (1966) used standard deviation of returns as the measurement of volatility
instead of using beta. Table 7.5 presents the performance measured by different risk
metrics of the four mean-ETL portfolios under comparison in this study.

All metrics consistently show that the mean-ETL-CTEF portfolio has the best
performance among the four portfolios under comparison. In particular, we find
that the mean-ETL-CTEF portfolio generates the highest returns while maintains
the lowest volatility measured by standard deviation and ˇ. Figure 7.3 presents the
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Table 7.4 Barra attribution of the mean-ETL-PM (US) portfolio

Source of return Contribution (%) Avg Exposure Risk (%) IR t-stat

Portfolio 10.56 25.03
Benchmark 2.05 18.30
Total active 8.51 11.16 0.86 3.20
Expected active 1.16
Market timing �0.99 4.19 �0.06 �0.23
Risk Indices 5.15 7.15 0.71 2.65
Volatility �0.19 0.72 3.68 �0.04 �0.15
Momentum 0.22 0.14 2.00 0.14 0.51
Size 5.66 �1.83 5.43 1.01 3.76
Size non-linearity �0.73 �1.01 3.48 �0.21 �0.80
Trading activity 0.24 �0.06 0.49 0.46 1.72
Growth 0.04 �0.10 0.40 0.11 0.41
Earnings yield 0.55 �0.06 0.71 0.65 2.41
Value �0.18 0.50 1.08 �0.12 �0.46
Earnings variation �0.22 0.54 1.06 �0.15 �0.56
Leverage �0.37 0.52 1.02 �0.31 �1.15
Currency sensitivity 0.06 �0.05 0.26 0.20 0.75
Yield 0.25 �0.26 0.57 0.42 1.56
Non-EST universe �0.16 0.23 1.77 �0.10 �0.38
Industries 0.56 4.44 0.18 0.66
Asset selection 5.09 5.24 0.97 3.63
Transaction cost �2.46

Fig. 7.1 Quantile–Quantile plot of portfolio monthly returns
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Fig. 7.2 Mean-ETL portfolios performance

Table 7.5 Performance criteria of mean-ETL created portfolios (US mar-
ket), 2000–2013

Mean-ETL portfolio
CTEF USER MQ PM Benchmark

Geometric mean 16.12 % 11.78 % 12.80 % 10.56 % 2.05 %
STD 20.87 % 21.84 % 22.86 % 25.03 % 18.30 %
Beta (ˇ) 0.92 1.10 1.10 1.26
Sharpe ratio 0.68 0.45 0.47 0.34
Treynor ratio 0.15 0.09 0.10 0.07

characteristic lines of mean-ETL-CTEF and the benchmark index, showing that the
mean-ETL-CTEF portfolio is outperforming the benchmark index (see Treynor &
Mazuy 1966, for details).

We also find that the mean-ETL-MQ portfolio slightly outperforms the other
portfolios except for the CTEF portfolio as shown in Table 7.5. As we described
before, the MQ variable is a combination of CTEF and PM variables. The better
performance of the mean-ETL-MQ portfolio is partly due to the strong performance
of CTEF variable. The mean-ETL-PM portfolio has the lowest return and highest ˇ,
making it the worst performing portfolio in the four mean-ETL portfolios. Menchero
(2015) also finds that momentum pure factor portfolio is more volatile than the
earnings yield factor portfolio. Nevertheless, the mean-ETL portfolio based on PM
variable still outperform the benchmark and produce statistically significant active
returns as mentioned in the attribution report.
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7.5 Summary

In this study, we focus on US stock markets and apply the mean-ETL portfolio
construction on stocks’ fundamental variables, CTEF, USER, PM, and MQ. We
report that these fundamental variables continue to be very valuable for stock
selection and portfolio construction. Also, the returns of the mean-ETL portfolios
have thinner left tails, while not deteriorating the right tails. Mean-ETL portfolio
with fundamental variables can generate statistically significant active returns in
domestic market through asset selection, similar to its application to the global
markets (see Guerard et al. 2013 & Shao et al. 2015). In this study, we also find
that the mean-ETL-CTEF portfolio has the highest risk-adjusted return.

Disclosure The views and opinions expressed in this chapter are those of the author and do not
represent or reflect those of Crabel Capital Management, LLC.
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Chapter 8
Portfolio Performance Assessment: Statistical
Issues and Methods for Improvement

Bernell K. Stone

8.1 Introduction: Purposes and Overview

8.1.1 Performance Assessment Problems/Frameworks

Building on Markowitz (1952, 1959) mean–variance portfolio theory and the capital
asset pricing model, Treynor (1965), Treynor and Mazuy (1966), Sharpe (1966), and
Jensen (1968) set frameworks for portfolio performance assessment. Investment
texts now all include chapters summarizing these measures. The crux of these
performance assessment frameworks is assessing and explaining the amount that
realized return exceeds a fair return for time and risk.

The primary focus of much performance measurement is after-the-fact assess-
ment of how a managed portfolio performed relative to a before-tax fair return for
time and risk. A related performance measurement problem is the task of evaluating
well methods for active stock selection. The focus here is a full sample backtest
of the performance potential of a stock return forecast. The assumed assessment
structure is a panel framework for a time series of cross sections rank-ordered into
fractile portfolios on the basis of a return forecast.

To assess with high statistical confidence the economic potential of a stock return
forecast, the central backtest problem is to ensure that any apparent ability of a
return forecast to predict future returns is well isolated from risk, tax, and other
nonforecast return variables. The conventional methodology for correcting a cross
section of realized returns for variation in risk is a multivariate regression using one
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of the standard return models. Estimating how well-realized returns or realized risky
returns are explained by a return forecast and any of the APT or multivariate style
models such as the Fama–French three-variable extension of the CAPM is fraught
with measurement and specification problems, especially extreme multicollinearity
problems.

8.1.2 Purposes

This chapter presents and illustrates the use of an alternative return forecast assess-
ment framework. Rather than estimating a multivariate explanation of how realized
returns or realized risky returns depend on a return forecast and other explanatory
variables, the proposed alternative suppresses cross-sectional variation in the other
explanatory variables by transforming the initial cross section of rank-ordered
fractile portfolios into an associated cross section in which every portfolio has the
same portfolio-weighted average value of each pertinent explanatory variable.

Response surface/subsurface statistical designs are intended to assess the
response (dependent variable) to a treatment. Response surface/subsurface designs
are widely used in controlled experiments, e.g., chemical synthesis, petroleum
refining, nuclear reaction yield, etc. In fact, response surface/subsurface designs
are the preferred statistical design framework for most controlled experiments.1

Response surface/subsurface designs are also widely used in partially controlled
experiments such as the illustrative example in Sect. 8.4.2 of health response to
well-controlled variation in drug dosage administered to a patient sample designed
to be matched on other sample attributes that could distort apparent response to the
drug dosages.

Response surface/subsurface statistical designs and methods are not widely
used in economics and finance (or social sciences generally) although response
surface/subsurface methods are implicit in the extensive use of matched-sample and
partially-matched-sample designs, especially in areas like marketing research and
medicine. Regression and related econometric methods are the generally preferred

1There is a large literature on statistical designs for the empirical estimation of multivariate
functional dependencies but primarily focused on controlled or partially controlled studies rather
than the observational samples that typically arise in epidemiology, demographics, the social
sciences including especially economics and business, medicine, and many physical sciences
including astronomy. Treatment response studies were an early statistical design focus and continue
to be an ongoing design estimation concern. Because of the early and ongoing concern for
treatment response studies, it is common to use the term response surface methods to refer to
empirical methods for estimating functional dependencies. Most of the statistical literature pertains
to controlled or partially controlled experiments in process industries, medicine, and advertising.
For background readers are referred to the foundation works by Box (1954) and Box and Draper
(1959); to the review article by Myers, Khuri, and Cornell (1989); and to the books on response
surface methods: Khuri and Cornell (1996), Box and Draper (1987), and Box, Hunter, and Hunter
(2005).
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statistical method for assessing return dependencies in asset pricing studies and
other return-risk modeling. In addition to goodness of fit measures such as standard
forecast error or mean absolute forecast error, the standard procedure for evaluating
a return forecast, i.e., for assessing forecast value, is to use regression to evaluate
how well the cross-section of realized returns for a pertinent stock sample and time
period is explained by the return forecast. As in the case of many return dependency
studies, it is standard procedure to rank order the sample stocks on the predicted
return or an adjusted return prediction measure such as return in excess of estimated
risk. When the realized return response for the rank-ordered sample is estimated via
linear regression, the estimated slope coefficient is referred to as the “information
coefficient.” Return forecast value and reliability is indicated by the magnitude and
significance of the information coefficient.

The key conceptual insight is to view a stock return forecast as a treatment
applied to all the stocks in a sample that is designed to rank order the stocks on
the basis of true performance corrected for specified risk, tax, and other return
impact variables. Rather than matched controls via sample selection, the control
matching for an observation sample of stocks is achieved after the fact by means
of a power optimizing mathematical assignment program that transforms the initial
cross section of forecast rank-ordered portfolios into an associated rank-ordered
cross section matched on key controls.2

In addition to presenting the matched control framework, the intent here is a
systematic structuring of the major design decisions for a panel study based on a
time series of rank-ordered fractile portfolios. Compared to forecast performance
assessment using multivariate regression, the matched control framework has
substantial efficiency/power benefits. Compared to the multicollinearity distortion
in a multivariate regression, control matching on all the pertinent distortion variables
means no correlation between the forecast and any of the return control variables.
For instance, having the same portfolio average value of a variable such as beta
means no cross-sectional variation in beta and therefore no correlation between
beta and the return forecast or in fact any other control variable. Control matching
ensures that the cross-sectional impact of the forecast is well isolated from any
distortion from any of the control variables, because each portfolio in the cross-
section has the same security-weighted average value of each impact variable. Since
there is no variation in the portfolio-average value of each control variable over the

2Most of the statistical design literature cited in the previous footnote focuses on controlled
and especially partially controlled studies. The ability to adapt response surface methods to
observational studies is developed in Stone, Adolphson, and Miller (1993). They extend the use
of response surface methods to observational data for those estimation situations in which it
is pertinent to group data, e.g., to group observations on individual stocks into portfolios or
households into income percentiles. The use of control variables to assess a conditional dependency
(response subsurface) is a basic technique in controlled experiments that we adapt in this study
to obtain a well-isolated portfolio-level dependency of realized risky return on a return forecast.
Fortunately for compatibility with other finance panel studies using rank-ordered grouping, the
optimal control matching can be structured as a power/efficiency improvement to the widely used
relative rank-ordering used in many return dependency studies.
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rank-ordered return cross section, there can be no variation over the cross section in
the impact of any matched control to the extent that its average value is accurately
measured and is a good summary of the impact of each control on the portfolio
return.

Power pertains to correctly assessing sample information. In the context of a
full-sample return forecast assessment, there are three pertinent power attributes.
The most critical is isolation of the forecast from other return impact variables.
The other two pertain to assessing well the magnitude and significance of the
apparent forecast response. Control matching ensures complete isolation of the
return forecast from the impact of other variables to the extent that control variables
are well measured and well summarized by their portfolio average values. Assessing
well the magnitude and significance of the forecast response is achieved via the
use of a reassignment algorithm that transforms an initial forecast rank ordering
into an associated control-matched rank ordering using the reassignment algorithm
formulated in Section 8.5. This algorithm optimizes a trade-off between two
complementary power instruments – having a wide range of well-ordered forecast
values and also having a high level of variable homogeneity within each fractile
portfolio. Variable homogeneity refers to the extent to which values are close to the
portfolio average. Variable homogeneity is measured in this research study by the
variance relative to the mean for each fractile portfolio.

8.1.3 Chapter Organization

The rest of this chapter is organized as follows. Section 8.2 distinguishes between
standard forecast accuracy measures such as standard forecast error and the ability
of a forecast to predict return beyond a fair return for time and risk. Section 8.3
focuses on key statistical designs that determine power and efficiency in estimating
performance potential for a well-isolated return forecast. Section 8.4 compares
multivariate regression with control matching as alternative ways to assess the per-
formance potential of a stock return forecast. Section 8.5 formulates a mathematical
program to transform the starting, presumably correlation-distorted, rank-ordered
cross section into an associated cross section of well-ordered, control-matched
portfolios with zero correlation with a specified set of control variables. The
objective function is to optimize a trade-off between two power measures—cross-
sectional range and within-portfolio variable homogeneity on the rank-ordering
variable. The decision variable is the amount of stock in each fractile portfolio that
is assigned to one or more of the other portfolios. The key constraints are the control
matching requirement that each portfolio in the cross section has the same portfolio-
weighted average value of the specified control variables.

Sections 8.6, 8.7, and 8.8 provide an illustrative performance potential assess-
ment using an implementation of the eight-variable return forecast model of Bloch,
Guerard, Markowitz, Todd, and Xu (1993). Section 8.6 provides an overview of
the return forecast model. Section 8.7 defines and discusses a set of firm-specific
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control variables. With an emphasis on the elimination of risk and tax effects (both
dividend–gain distortion and the tax shield of corporate debt), Sect. 8.8 illustrates
the imposition of matched controls for different combinations of control variables.
Section 8.9 summarizes conclusions and suggests issues for further research.

8.1.4 Overview of Some Key Results/Conclusions

In addition to optimizing statistical power, the imposition of a combination of
risk and tax controls significantly increases statistical efficiency relative to the
uncontrolled cross section. For the illustrative forecast model, tax effects are much
larger than risk effects as measured by the three Fama–French risk variables:
beta, size, and the book-to-market ratio. The three risk variables tend to smooth
both the cross section of realized risky returns and especially the cross section of
realized standard deviations. Both the return and the realized standard deviation
cross sections are nonlinear. The cross section of realize standard deviations is
not only nonlinear but highly nonmonotonic. As expected for a forecast designed
to identify undervalued stocks (high upside potential with limited downside risk)
versus overvalued stocks (limited upside potential with high downside risk), the
distribution of realized returns about the average value exhibits significant skewness,
negative skewness for low return forecasts, very little for the middle of the
distribution, and very large significant skewness for the highest return forecasts.

Both the significant nonmonotonic cross section of realized standard deviations
and the significant cross-sectional variation in realized skewness for the illustrative
forecast attest to the importance of avoiding restrictive distributional assumptions.
Overall, the matched control approach not only ensures a well-isolated return
forecast but also provides significant improvements in both statistical efficiency and
power compared to estimating a multivariate regression.

8.2 The Problem of Assessing the Performance Potential
of a Stock Return Forecast

8.2.1 Forecast Accuracy/Significance Versus
Performance Potential

Standard methodology for evaluating a forecast is to see how well actual values
correspond to predicted values. For a stock return forecast, this realization versus
forecast assessment translates into seeing how well-realized returns correspond
to predicted returns. Standard forecast evaluation measures include the standard
forecast error and the information coefficient. The standard procedure for computing
an information coefficient is to estimate a linear fit of realized returns on predicted
returns. The slope measures the information value of the forecast. A slope that
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is insignificantly different from zero implies no forecast value. Of course, a
significantly negative slope implies negative forecast value. For a significantly
positive slope, the larger the estimated slope and the higher the R2 (the more
significant the estimated slope), the better the forecast.

In commenting on a return forecast model of Timmerman (2008a), Brown (2008)
asserted that high statistical significance for predicting future returns does not ensure
actual ability of a stock return forecast to provide a significant improvement in
performance after correcting returns for risk and other systematic return variables.
In response, Timmerman (2008b) concurred with Brown’s assertion that the
appropriate forecast assessment criterion is the ability to create superior portfolio-
level performance. However, Timmerman observed that such an assessment was
itself problematic. In particular, converting realized return from a forecast into
realized return corrected for time and risk means that the assessment is a joint
test of the forecast and an assumed fair return model. In questioning the ability
to provide a risk correction with a high degree of confidence, Timmerman (2008b)
assumes that correcting realized return for risk requires a fair return model with
its associated limitations. The issues raised by Timmerman are indicative of a need
for a specification-free, distribution-free alternative methodology for obtaining the
well-isolated performance potential assessment demanded by Brown (2008).

8.2.2 Key Specification Issue: Eliminating/Controlling
for Correlation Distortion

The primary requirement for isolating well true return forecast value from risk,
taxes, and other return dependency variables is to ensure that there is no significant
distortion from covariation between the return forecast and these other vari-
ables. While rank-ordered grouping into fractile portfolios can increase statistical
efficiency by mitigating measurement error as discussed further in Sect. 8.3.2, rank-
ordered grouping can exacerbate the problem of eliminating correlation distortion.
Low sample-level correlation between the return forecast and other return impact
variables can be greatly multiplied by the rank-ordered grouping.3 For a sample of
1000 stocks rank-ordered into deciles, relatively low sample-level correlation coef-
ficients of 0.05 to 0.10 can be magnified to portfolio-level correlation coefficients
greater than 0.50 and even as high as 0.80. Getting the measurement error reduction

3The mathematics for correlation magnification is straightforward. The formula for the correlation
coefficient between variables X and Y is covariance(X, Y)/[SD(X)SD(Y)], where SD stands for
standard deviation. Ranking on variable X and grouping into fractile portfolios preserve a wide
range of values for variable X. However, in each of the portfolios, the individual values of variable Y
tend to average out to a value close to the sample average value. Thus, the portfolio-level standard
deviation of Y is reduced, and for a very small number of portfolios (e.g., quintiles or deciles),
SD(Y) tends to approach zero while the covariance in the numerator declines relatively slowly
because of the wide range of portfolio-level values for the ranking variable X.



8 Portfolio Performance Assessment: Statistical Issues and Methods for Improvement 175

benefits of rank-ordered grouping clearly requires a statistical design that explicitly
deals with correlation distortion.

8.2.3 Eliminating/Controlling for Systematic Tax Effects:
Dividends Versus Gains

Tax effects associated with cross-sectional variation in the proportion of return
realized as dividends and capital gains4 are a clear omission from all the standard
before-tax APT and multivariate style models. A forecaster seeking to beat any of
the before-tax return models can generate a rolling time series of forecasts that
exploit the dividend yield tilt, the well-known difference in the before-tax return of
dividends and gains reflecting the differential dividend–gain taxation and possible
differences in the systematic risk of dividends and gains.

Trying to reflect tax effects by adding a dividend yield term or other dividend–
gain mix explanatory term to a before-tax return model can further exacerbate
covariation resolution issues. For instance, dividend yield is correlated or partially
correlated with beta, size, and especially value variables such as the book–price
ratio.

8.3 A Framework for Optimal Statistical Design

8.3.1 Key Design Decisions

Statistical efficiency and power are two complementary dimensions of how well a
researcher can extract information from a data sample. Key attributes of information
extraction include (1) sample size and how well sample information is used; (2)
the usual estimation issues of measurement error, specification error, and omitted
variable distortion; and (3) breakdown in the assumptions that underlie estimation–
inference tests. Of particular concern in isolating return forecast performance from
other return dependency variables is covariation contamination that can significantly
distort efforts to isolate the impact of the return forecast from other variable
dependencies.

4Brennen (1970) shows that dividend yield is a significant omitted variable from the CAPM.
Rosenberg (1974), Rosenberg and Rudd (1977), Rosenberg and Marathe (1979), Blume (1980),
Rosenberg and Rudd (1982) and many subsequent researchers have empirically established the so-
called dividend yield tilt. More recent studies include Peterson, Peterson, and Ang (1985), Fama
and French (1988) and Pilotte (2003). For an extensive review of both dividend valuation and
dividend policy and extensive references in this area, see Lease, Kose, Kalay, Loewenstein, and
Sarig (2000).
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Given the decisions on the forecast, the pertinent stock sample, and the time
frame for the backtest assessment, the major power–efficiency decision is the
methodology used to isolate the return forecast from other return impact variables.
As already indicated, the conventional methodology is a multivariate regression.
The alternative methodology advocated here is the use of matched controls.

8.3.2 The Number of Fractile Portfolios: Measurement Error
Versus Power

Two key decisions for rank-ordering into fractile portfolios are the number of fractile
portfolios in a cross section and the partitioning rule for deciding on the number of
securities in each portfolio. These two decisions are critical for statistical efficiency
related to measurement error versus three statistical power attributes: (1) portfolio
sample size, (2) cross-sectional forecast range, and (3) within-portfolio variable
homogeneity. Within-portfolio variable homogeneity refers to how well the portfolio
average value represents the collection of stocks within the portfolio. Fewer fractile
portfolios and therefore more stocks per portfolio mean that return dependency
variables including the rank-ordering return forecast will generally have greater
dispersion about the portfolio average value. Within-portfolio variance is a measure
of the departure from the mean.5

In addition to reducing nonsystematic return variation, the primary reason for
grouping stocks into fractile portfolios is to reduce measurement error. Early rank-
ordered grouping paradigms established in tests of the capital asset pricing model
in Fama and MacBeth (1973) and in Black, Jensen, and Scholes (1972) used
rank-ordered grouping into deciles to mitigate beta measurement error. Individual
stock betas have relatively large estimation errors and tend to change over time. To
the extent that beta measurement errors are independent of each other,6 estimation
measurement error for a portfolio of 50 stocks is reduced to approximately 1/50 of
the average stock-level measurement error.

5Other dispersion measures could be used, e.g., mean absolute deviation or interquartile range.
Relative to these measures, within-portfolio variance gives greater weight to extreme departures
from the portfolio average.
6Since beta measurement errors are known to regress toward the mean, the assumption of
uncorrelated measurement errors used in the discussion here is almost certainly too strong for
correctly assessing efficiency gains from reducing measurement error by grouping into rank-
ordered fractile portfolios. In particular, beta values that are correlated with the forecast are very
likely to have systematic variation in beta change values over the cross section. The control
matching methodology developed in Sects. 8.4 and 8.5 will mitigate systematic changes in
measurement error such as the well-known regression of betas toward the mean. When every
portfolio in the cross section has the same beta value, each portfolio will have essentially the same
ex post beta change. Hence, control matching provides the benefit of no systematic distortion from
beta regression toward the mean.
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In designing a study to evaluate forecast value, there is a clear need to
trade-off the efficiency gains from measurement error reduction (see for instance
Grunfeld and Griliches (1960) and Griliches (1986) for background) versus the
information/power loss from reduced sample size and the associated power costs of
reduced cross-sectional range (cross-sectional variance) and loss of within-portfolio
variable homogeneity.

To illustrate the efficiency/power trade-off, consider partitioning a sample of
1000 stocks into equal-size portfolios of 200, 100, 50, and 20 stocks per portfolio.
This partitioning results in 5, 10, 20, and 50 portfolios, respectively. Given that a
portfolio of 50 and 20 stocks provides 98 % and 95 % of the measurement error
reduction for uncorrelated measurement errors, collapsing the sample size to just
ten portfolios (deciles) or even more extremely just five portfolios (quintiles) seems
to be a clear case of excessive measurement error reduction relative to lost power
from collapse of the sample size.

8.4 Isolation Methodology Alternatives: Multivariate
Regression Versus Control Matching

8.4.1 Treatment Response Studies

To motivate intuition, it is useful to think of assessing stock return forecasting
performance potential within the broad class of treatment response studies. A stock
return forecast is a treatment applied to a sample of stocks to identify misvalued
stocks. The assessment problem is to be sure that any apparent ability to rank order
a stock sample on the basis of superior return is from the ability to separate true
misvaluation from risk, taxes, and possibly other nonforecast return responses.

A treatment response assessment is a special case of empirically estimating a
functional dependency.7 The response is assumed to depend on the treatment and
other explanatory variables. However, the usual concern in a treatment response
assessment is not necessarily estimating the overall response dependency on the

7There is a large literature on statistical designs for the empirical estimation of multivariate
functional dependencies but primarily focused on controlled or partially controlled studies rather
than the observational samples that typically arise in epidemiology, demographics, the social
sciences including especially economics and business, medicine, and many physical sciences
including astronomy. Treatment response studies were an early statistical design focus and continue
to be an ongoing design estimation concern. Because of the early and ongoing concern for
treatment response studies, it is common to use the term response surface methods to refer to
empirical methods for estimating functional dependencies. Most of the statistical literature pertains
to controlled or partially controlled experiments in process industries, medicine, and advertising.
For background readers are referred to the foundation works by Box (1954) and Box and Draper
(1959); to the review article by Myers, Khuri, and Cornell (1989) and to the books on response
surface methods: Khuri and Cornell (1996), Box and Draper (1987), and Box et al. (2005).
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treatment and all other explanatory variables but rather ensuring that the estimated
response to the treatment is well isolated from distortion from other explanatory
variables. Using regression to estimate a multivariate response dependency is
one way to assess treatment response. However, a good statistical design can
significantly increase both efficiency and power by creating a series of treatment
observations that are matched on the values of one or more of the nontreatment
explanatory variables. The matched variables are called control variables, often
shortened to controls. Matched controls eliminate treatment variation from all the
controls.

While purely controlled experiments such as petroleum blending–refining and
chemical synthesis are a widely studied class of treatment response statistical
designs, partially controlled studies such as drug response and product market
response to pricing are more pertinent analogs for assessing how realized risky
return responds to a stock return forecast.8

8.4.2 Intuition Motivation: Isolating Well Treatment Response
to Drug Dosage Variation

A test of an anti-inflammatory drug could look at dosage per unit of body weight
to assess inflammation reduction. The prototypical treatment response study is
conducted on double-blind subsamples, with treatments ranging from no drug (the
placebo) and then a range of well-structured dosage increases up to a maximum safe
treatment. Each subsample is selected to match each other as much as possible on
control variables such as sex, age distribution, obesity distribution, blood pressure,
etc. The term “control variable” here refers to attributes of the study population
that can impact initial inflammation and inflammation response or otherwise distort
assessment of response to the drug dosage. The creation of the subsamples from
an initial study population is designed to provide identical values on the key control
variables. If all subsamples are matched on all pertinent controls, then inflammation-
dosage response is well isolated from variation in the control variables.

Because of initial subsample differences and especially because of withdrawals
and disqualification of some of the treatment subjects, the cross section of efficacy
assessment subsamples is usually not a perfect match on all controls. Researchers

8Most of the statistical design literature cited in the previous footnote focuses on controlled
and especially partially controlled studies. The ability to adapt response surface methods to
observational studies is developed in Stone et al. (1993). They extend the use of response surface
methods to observational data for those estimation situations in which it is pertinent to group
data, e.g., to group observations on individual stocks into portfolios or households into income
percentiles. The use of control variables to assess a conditional dependency (response subsurface)
is a basic technique in controlled experiments that we adapt in this study to obtain a well-isolated
portfolio-level dependency of realized risky return on a return forecast.
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assessing dosage response must deal with possible distortion from variation in the
unmatched controls.

What is pertinent for intuition about statistical procedure for cross-sectional
assessments of portfolio performance potential are alternative ways that researchers
can deal with cross-sectional variation in unmatched controls to ensure that drug
efficacy assessment is well isolated from distortion in unmatched controls. One
alternative is to use a multivariate regression model that attempts to explain observed
inflammation changes by a combination of dosage variation and a regression-
estimated inflammation response to other variables. Given the very difficult problem
of modeling inflammation response to other variables and given the generally
small departure from a match on the intended controls, the preferred alternative
to a multivariate regression assessment is a transformation of the unmatched cross
section back into a new cross section of control-matched subsamples. In drug
dosage studies, the sample transformation may be accomplished by holding out
some subsample observations. For instance, subsamples with above- and below-
average obesity values can remove some above-average and below-average obesity
observations from the respective subsamples.

Rather than giving some sample observations a de facto weight of zero, the
rematching problem is usually structured as an optimization problem in which
observations in each subsample are reweighted. The objective is to find the overall
reweighting that minimizes the reduction in sample size (measured as the overall
departure of all observation weights from one) while producing a sufficiently near
match on each pertinent control variable. The benefit of the control rematching
approach is that drug efficacy assessment is reduced to the intended evaluation
of a univariate response to the treatment differences. The difficult multivariate
regression estimation problem with its associated limitations in functional form
modeling has been bypassed. Rather than spreading the sample observations
over the estimation of a multivariate dependency, all of the sample data can
be concentrated on the univariate response to the varying dosage treatments.
The statistical properties (explained variation, t-value on treatment, F-stat) of the
univariate response almost always dominate the corresponding statistical measures
for the multivariate estimation.

The key point of this rather long discussion of a prototypical drug treatment
response study is the significant efficiency/power benefits associated with the use
of matched controls. The concern in a treatment response assessment is response
to the treatment, a conditional univariate dependency. Variation in the controls is
a source of distortion in assessing the treatment response. Trying to estimate the
control impact involves the unnecessary use of sample data to eliminate distortion
from control variable variation. Producing a match on each control avoids this
very difficult and generally unnecessary estimation problem and focuses all sample
information on the conditional univariate dependency of concern.

In viewing a forecast as a treatment applied to the stock sample in which we
want to observe the performance response, the concern is again the estimation of a
conditional univariate dependency. The impact of cross-sectional variation in firm-
specific values of risk variables, tax effect variables, and possibly other firm impacts
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such as differences in growth and profitability can be eliminated from the cross
section by transforming the initial rank ordering into an associated cross section
that is matched on key return–risk impact variables.

Control matching is especially pertinent to backtest the return response to a
forecast using time series of rank-ordered portfolios because grouping stocks into
fractile portfolios can magnify sample-level correlation distortion. The magnifi-
cation is nonlinear so that very low stock-level correlations can be multiplied
dramatically when the overall sample is collapsed to a very small number of
portfolios. The control-matched cross section has no cross-sectional variation in the
control variables and thus zero correlation with the rank-ordering variable.

8.4.3 Transforming a Rank-Ordered Cross Section into
a Control-Matched Cross Section

Ranking on forecasted return and grouping into fractile portfolios will produce a
set of portfolios ordered on the basis of predicted return. This return cross section
will almost certainly have a wide range of forecasted return values. However, each
portfolio in the cross section will almost never have the same average values of
explanatory variables such as beta or size or the dividend–gain mix or any of the
other return impact variables listed in Exhibit 8.1.9 To the extent values of return
impact variables fluctuate randomly about their average value over the cross section,
their variation is primarily a source of noise and therefore a source of lost efficiency
in assessing the cross-sectional dependency of realized returns on the return forecast
score.

Much worse than lost efficiency from random variation in systematic risk, tax,
and other return impact variables is the problem of distortion from correlation
or partial correlation between these return dependency variables and the return

9Candidates for control variables are any variable believed to have a significant impact for
explaining or predicting the cross-section of realized returns. Classes of return impacts include
risk measures, e.g., beta, the book-price ratio, and firm size; tax valuation impacts, e.g., dividend
yield, the dividend payout ratio, and possibly the debt tax shield as measured by the percentage of
financing that is debt; and attractiveness measures that are indicative of future cashflow generation
potential and asset usage efficiency, e.g., growth, return on investment, or sales intensity (sales
per dollar of investment). Beta is the standard measure of volatility risk established as a return
explanatory variable in formulations of the capital asset pricing model, for instance Sharpe (1964).
It is also included in multifactor return modeling, as indicated by the Fama-French series, e.g.,
Fama and French (1992, 1996 2008a, 2008b). The variables EP and BP are the reciprocals of
the price-earnings ratio and the price-book ratio, respectively. Their use as valuation and/or risk
variables has been researched extensively beginning with Basu (1977), viewing dependency on
the earnings-price ratio primarily as a valuation anomaly but recognizing the possibility that the
earnings-price ratio could also be a risk instrument. The tax effect associated with the differential
taxation of dividends and capital gains and the debt tax shield are discussed extensively in Sect.
8.7.3.
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VARIABLE NAME SYMBOL VARIABLE DEFINITION

Beta b β = Cov(Rs-Ro, RM – Ro) / Var(RM – Ro) measured over 
3 years of past monthly returns, where Ro is the 
riskless rate and RM is return on a market index.

Book-to-Price Ra�o (Book-
to-Market Ra�o)

BP Ratio of book value to market value. Book value BP
is the latest (at least two-month back) annual CRSP 
value for total common equity. Market value MV
is the current market value of common stock 
(current stock price times number shares 
outstanding).

Size (Market Value of 
Common Stock)

S The market value of common stock at a point in 
time

Earnings-Price Ra�o  
(Earnings Yield)

EP The ratio of Net Income to market value, the 
reciprocal of the price-earnings ratio

Dividend-Price Ra�o 
(Dividend Yield)

DP The ratio of Annual Dividends to Market Value

Financial Structure FL The fraction of Total Investment provided by debt 
and preferred stock

Sales Growth SAG Five-year average sales growth

Sustainable Growth SUG The growth of common equity from retained 
earnings

Return on Investment ROI The ratio of Opera�ng Income (before 
extraordinary income and expenses) to Total 
Investment

Return on Equity ROE The ratio of Net Income to Book Value

Sales Intensity SI The ratio of Sales to Total Investment

Exhibit 8.1 Summary of control variables

forecast. To the extent that a systematic risk or tax variable is correlated with
the return forecast score, the cross-sectional dependence of realized risky return
will reflect the well-ordered cross-sectional change in the correlated variable. For
instance, if a return forecast were positively correlated with beta, the observed
cross section of realized risky returns will include the systematic variation in beta.
An apparent increase in realized risky return from the return forecast will also
include any return to beta risk bearing. Similarly, if the dividend–gain mix increases
systematically with the return forecast, once again, an apparent increase in realized
risky return with the return forecast can be a tax tilt in disguise.

The conventional methodology for separating return forecast potential from
dependence on other variables is multivariate regression. For instance, if the concern
were just to correct for beta risk in the context of the CAPM, a regression that adds
the return forecast to the linear market index model as an additional explanatory
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variable would resolve the relative importance of beta and the return forecast
in explaining the cross section of realized risky returns. For a multivariate risk
correction, adding the return forecast to the three-variable Fama–French return
model might remove the effect of the three risk variables on the cross section of
realized risky returns but clearly incur a multicollinearity problem if the concern
is correlation distortion from the Fama–French risk variables. Trying to correct
as well for systematic tax effects is even more problematic. For instance, adding
a term based on dividend yield to reflect variation in the dividend–gain mix adds
another explanatory variable that is correlated with all the Fama–French variables,
especially the book–price ratio.10 Adding more variables to model better the cross
section of realized risky returns, for instance, combining the return forecast with
all three Fama–French risk variables plus the three tax variables (DP, EP, and FL
in Exhibit 8.1), and then additional variables to reflect differences in growth and
profitability means using up degrees of freedom while incurring more measurement
error and creating an ever worse multicollinearity problem.

As in the previously discussed example of the drug treatment response assess-
ment, isolating well-realized return response to a forecast does not require empiri-
cally measuring an overall return dependency but rather ensuring a well-measured
return-to-forecast response. In the case of a stock return forecast, the primary
isolation requirement is to eliminate distortion from correlated variables in the
context of a good assessment design that appropriately trades off efficiency and
power.

As in the drug treatment response assessment, the contention here is that
the use of matched controls is superior to using a multicollinearity-contaminated
multivariate regression when the goal is isolating the impact of a return forecast
from other return impact variables. The isolation alternative is to transform the
initially rank-ordered cross section into an associated cross section matched on the
variables that would be used as explanatory variables in a regression. A control-
matched variable has the same impact on each portfolio in the cross section. There is
no cross-sectional variation from the matched control and therefore zero correlation
distortion.

The drug treatment example was a partially controlled experiment. Each dosage
subsamples was selected to match every other treatment subsample on key controls.
Rematching to reflect withdrawals and excluded subjects may be accomplished
by pruning and more generally by an optimal reweighting of the subjects in each
subsample. In the drug dosage study, each subsample represents a well-ordered
dosage change. Dosage observations in one subsample would not be mixed with
dosage observations from another subsample. In contrast, each fractile portfolio has
a distribution of return forecasts summarized by their average. Reassigning stocks is

10Trying to put before-tax returns on an after-tax basis is fraught with problems. To put the dividend
component of return on an after-tax basis requires an estimate of a time-varying marginal tax
rate for ordinary income. To put the gain component of return on an after-tax basis requires the
determination of the time-varying effective tax rate on capital gains.
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an alternative way to obtain a match on key explanatory variables. Thus, rather than
either excluding some stocks having extreme values of some control variables11 or
the more general use of portfolio-by portfolio reweighting to produce a transformed
cross section matched on key control variables, the approach developed here is a
reweighting that allows stocks to be reassigned to adjacent portfolios.

8.5 A Power Optimizing Mathematical Assignment Program

As an example of cross-portfolio reassignment, assume trying to make each
portfolio in the cross section have the same average beta value. Cross-portfolio
reassignment could move a stock with an above-average beta value into a portfolio
whose average beta value is below the population average. At the same time, a stock
with a below-average beta value in a below-average beta portfolio could be shifted
into an above-average portfolio.

Just to produce a match for each portfolio in the cross section on a single
explanatory control variable such as beta clearly is computationally complex for a
large stock sample with many fractile portfolios. There is a need for an objective
algorithmic procedure to produce the best control-matched transformation. The
problem of transforming an initial rank-ordered cross section into the best control-
matched cross section can be formulated as a mathematical assignment program.
Given an initial rank ordering, the criterion for “best control match” is to optimize
three power measures. Covariation distortion is suppressed completely by the
control matching while optimizing a trade-off between range and within-portfolio
forecast variance.

8.5.1 Overview: Formulating the Mathematical Assignment
Program

The assumed input to the control matching algorithm is a rank-ordered grouping into
fractile portfolios. In addition to input data, an optimization requires specification
of decision variables, an objective function, and constraints.

Given a cross section of fractile portfolios formed by rank ordering on predicted
return, the objective of the assignment program is to transform this cross section
into an associated control-matched cross section to optimize two complementary
attributes of statistical power:

11In a stock return forecast designed to find misvalued stocks, extreme values of some return
variables are very likely the observations of greatest performance potential.
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1. Preserving a wide range of well-ordered return forecasts
2. Preserving within-portfolio homogeneity of forecasted return.

The following is a verbal statement of four generic constraints.

1. Control match restriction. For each fractile portfolio, make the portfolio average
value of each control variable equal to the mean (average) value of that control
variable in the sample population.

2. Preserving initial portfolio size. In reassigning securities to create the control
matching, keep the number of securities in each of the fractile portfolios the same
as the number of securities in that portfolio in the initial (starting) rank-ordered
cross section.

3. Full assignment. Each security must be fully assigned.
4. No short sales. There can be no short sales.

The crucial constraints are the control matching restrictions. Preserving initial
portfolio size and full use of each security are technical constraints that go with
full use of the sample. Prohibiting short sales prevents one return observation from
canceling out other return observations. Prohibiting short sales is also consistent
with the idea of full use of all sample information in a long-only framework.

8.5.2 Notation Summary

The following summarizes notation and defines key variables.

P D number of rank-based portfolios in the cross section
p D 1 is the portfolio with the smallest value of the rank-ordering variable
p D P is the portfolio with the largest value of the rank-ordering variable
S D total number of securities being assigned to portfolios
s D security subscript
FSs D the forecast score for stock s, s D 1, : : : ,S
Xps D the fraction of security s assigned to fractile portfolio p, 0 � Xps � 1
Fp D the number of securities in fractile p in the starting rank ordering
C D number of control variables
Vc D control variable c, c D 1, : : : ,C
VTARGETc D the target value for control variable c, c D 1, : : : ,C12

Dps D a difference measure of the change in rank for stock s when reassigned to
portfolio p

12In this study, the target average value is always the ex ante sample average value.
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8.5.3 The Power Optimizing Objective Function

Preserving range and minimizing cross-portfolio mixing are two aspects of sta-
tistical power. They are complementary measures in that optimizing one tends
to optimize the other. To reflect the relative importance of these two measures,
let · be a trade-off parameter that defines a relative weighting for range and
within-portfolio variance, where 0 <·< 1. The trade-off between range and within-
portfolio variance can be written as

OBJECTIVE D ˆ ŒRANGE MEASURE� � .1 � ˆ/ ŒWithin-Portfolio Variances�
(8.1)

For each portfolio in the cross section, the within-portfolio variance is the
portfolio-weighted squared deviation of return forecast score from the portfolio
mean forecast return score. It is a quadratic function. Thus, minimizing within-
portfolio variance, actually minimizing a sum of within-portfolio variances over the
cross section, means a quadratic objective function.

In this study in which we assess month-to-month return cross sections in each
of the 456 months of 1967–2004, we impose progressively more complete sets
of control variables in each month. Obtaining 15 or more control-matched cross
sections in 456 months means solving more than 6700 optimization runs. Solving
this many quadratic programs would be a computational challenge. However, just as
one can approximate well the mean–variance portfolio optimization of Markowitz
(1952, 1959) by solving an associated linear programming (LP) approximation
to the quadratic program,13 one can approximate the control matching quadratic
optimization by an associated LP objective function.

The LP approximation objective function is

Maximize W LP OBJECTIVE D ˆ ŒRANGE� � .1 � ˆ/ ŒSHIFTING� (8.2)

The linear measure SHIFTING is the approximation to variance minimization
that we now define.14 Let Dps be the squared difference in the numerical rank
between portfolio p and the natural portfolio rank of security s in the initial rank-
order partitioning into fractile portfolios. The set of Dps can be summarized by a
symmetric PxS matrix. Squaring the difference means that all values are greater
than zero. Squaring the difference also means that large shifts are much worse than
small ones. If a stock stays in the initial portfolio, Dpp is zero for no shifting. If all or

13See, for instance, Sharpe (1963, 1967, 1971) and Stone (1973).
14It is intuitive that minimizing the amount and distance of cross-portfolio shifting tends to
preserve the original within-portfolio forecast distribution including within-portfolio variances.
The substance of this approximation is to use portfolio rank-order distance as a substitute for actual
return forecast differences. Since we map each return forecast into a near uniform distribution on
the (0, 1) interval, we tend to ensure the validity of this approximation.
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part of a stock is shifted up or down by one, two, and three portfolios, the respective
values of Dps are 1, 4, and 8. Thus, reassignments of two or more portfolios up or
down the rank ordering are highly penalized.15

If FSs denotes the value of the forecast score for stock s, then the linear
approximation objective function above can be written in terms of assignment
variables as

Maximize ˆ Œ†sXPsFSs–†sX1sFSs� – .1–ˆ/
�
†p†sXpsDps

	
(8.3)

The mathematical assignment program can be solved for a range of trade-off
values by varying · from zero to 1. In the results reported in Sect. 8.8, the value of
the trade-off parameter · is 0.25. However, experience shows that the solutions are
robust to variation in ·. The reason for the robustness is that these two attributes of
statistical power are complementary objectives. Minimizing cross-fractile shifting
generally preserves most of the range as well as the distribution of return forecast
scores in the starting fractile portfolios.

8.5.4 Control Matching: The Equal Value Constraint for Each
Control Variable

Let Vs denote the security s value of a representative control variable. Let VTAR-
GET denote the target value of this representative control variable for all P portfolios
in the cross section. The representative control constraint can be expressed as

X
s
XpsVs D VTARGET p D 1; : : : ; P and every control variable (8.4)

8.5.5 Security Usage and Short Sales: Technical Constraints

We impose two generic data usage constraints. The first says that each security must
be fully assigned to one or more portfolios, i.e.,

X
p
Xps D 1 s D 1; : : : ; S (8.5)

15The changed difference in changed rank is actually a stronger restriction on changing portfolio
membership than the quadratic variance change it is approximating. Because the LP shifting
measure penalizes very large rank shifts even more than the quadratic, the LP approximation tends
to preclude large shifts in rank order even more than the quadratic. However, comparison of the LP
and quadratic solutions showed that the LP and quadratic solutions were generally close.
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The second security assignment constraint keeps the number of securities in each
matched portfolio the same as the number of securities in the corresponding fractile
of the starting rank-order partitioning of the distribution of V1. Let Fp denote the
number of securities in fractile p. Then this restriction is

X
s
Xps D Fp p D 1; : : : ; P (8.6)

The no short-sale restriction and the natural limitation that no security can be
used more than once require

0 � Xps � 1 s D 1; : : : ; S and p D 1; : : : ; P (8.7)

8.5.6 Synthesis of the Power Optimizing Reassignment
Program

Optimization arises in finding the particular reassignment that optimizes a trade-off
between preserving the widest possible range of well-ordered portfolio values of
forecasted return and also ensuring preservation of within-portfolio homogeneity of
forecasted return.

Given the sample of stocks with variable values for each stock in that time
period, once we pick a number of portfolios P in the cross section and select a
set of control variables, the transformation of the rank-ordered cross section into the
control-matched cross section is defined by the optimization program. The mapping
from the rank-ordered input cross section into the control-matched output cross
section is objective in the sense that the forecaster/researcher exercises no discretion
in how stocks are reassigned. The input cross section and the mathematical program
determine the output cross section.

The substance of the reassignment process is well understood by knowing input
and output. The input is a cross section of fractile portfolios. The rank-ordering
variable is the return forecast. The overall output is a cross section of fractile
portfolios that are matched on a specified set of controls variables. The mathematical
program finds an optimal reassignment of stocks that transforms the input rank-
ordered cross section into a new cross section that is matched on the portfolio
average values of each control variable.

The input values of the assignment variables are the relative weighting of each
stock in each portfolio in the cross section without any controls. The output values
of the assignment variables are the relative weighting of each stock in each portfolio
in the control-matched cross section.

The relative amount of each stock in each portfolio can be used to compute
portfolio average values of pertinent portfolio attributes. Of most concern is the
realized risky return for each portfolio. Given a time series of rank-ordered input
portfolios and a corresponding time series of control-matched output portfolios, it
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is straightforward to compute the average realized risky return for each portfolio
before and after controls and then to assess differences associated with the control
variables.

8.6 Forecast Model Overview

8.6.1 Selecting an Illustrative Forecast Model

To illustrate well the benefits of using controls to isolate forecast performance from
risk, tax, and other nonforecast impacts, a good illustrative forecast model should
have a statistically significant dependency of realized risky returns on the return
forecast. From the point of view of an illustration, it does not matter if the apparent
dependency of realized returns on the stock return forecast is true alpha performance
or is from risk, tax distortion, or other nonmodel return impact variables. In fact,
when it comes to illustrating forecast isolation methodology, it is actually good if
the cross-sectional return dependency is a mixture of effects from the return forecast
itself and from systematic risk variables, tax effects, and other nonmodel return
performance variables. In effect, to illustrate isolation methodology, it is actually
good to have a “dirty return dependency” in the sense that the return dependency
includes apparent performance from variables other than the forecast model itself.

The model selected to illustrate the benefits of the control methodology is an
eight-variable, fundamental value-focused, rolling horizon return forecast model
first published in Bloch, Guerard, Markowitz, Todd, and Xu (1993). We hereafter
refer to this return forecast model as the BGMTX return forecast model. In talking
about the generic approach of using a regression-estimated weighting of their eight
value ratios, we shall refer to the BGMTX forecast approach or BGMTX forecast
framework.

In addition to a very rigorous implementation in terms of only using data publicly
available well ahead of forming the forecast, BGMTX assessed performance
potential by using the model return forecast as the return input for a mean–variance
portfolio optimizer. The other inputs to the mean–variance optimization were rolling
horizon forecasts of security-level risk parameters.16 The mean–variance optimizer
transformed the rolling horizon return and risk forecasts into a time series of pre-
dicted mean–variance efficient portfolios in both Japan (first section, nonfinancial
Tokyo Stock Exchange common stocks, January 1975 to December 1990) and the
United States (the 1000 largest market-capitalized common stocks, November 1975
to December 1990). BGMTX reports that the mean–variance optimized portfolios

16For details on the mean–variance optimization used, see Markowitz (1959, 1987).
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significantly outperformed benchmark indices even after testing for both survivor
and backtest bias.17

8.6.2 Overview of the Illustrative Eight-Variable Forecast
Model18

The BGMTX return forecast model uses a weighted average of eight value ratios19:

EP D Œearnings per share� = Œprice per share� D earnings-price ratio
BP D Œbook value per share� = Œprice per share� D book-price ratio
CP D Œcash flow per share� = Œprice per share� D cash-price ratio
SP D Œnet sales per share� = Œprice per share� D sales-price ratio:

REP D relative earnings-price ratio D EP= Œmost recent five-year average value�

RBP D relative earnings-price ratio D BP= Œmost recent five-year average value�

RCP D relative earnings-price ratio D CP= Œmost recent five-year average value�

RSP D relative earnings-price ratio D SP= Œmost recent five-year average value�

The first four ratios are called current value ratios in a sense of being the most
recently reported values relative to the current price per share. Current value ratios
measure value in terms of attractiveness compared to other peer companies. For
instance, all other things being equal, a relatively high EP or BP ratio for a stock
means that the stock is relatively more value attractive than the peer stocks with
lower values for their EP and/or BP ratios.

The last four ratios defined above are relative value ratios. The “most recent five-
year average value” in the denominator of these four relative value ratios means the
five-year average of the ratio in the numerator. The four relative value ratios each

17Markowitz and Xu (1994) later published the data mining test for backtest bias. Their test allows
assessment of the expected difference between the best test model and an average of simulated
policies.
18BGMTX is a one-step direct forecast of stock returns. The more common return forecast
framework is a two-step return forecast in which an analyst predicts both a future value of a variable
such as earnings and an associated future value multiple for that variable such as a future price–
earnings ratio. These two predictions imply a prediction of future value. Under the assumption that
the current price will converge toward this predicted future value, there is an implied prediction of
a gain return. Given a prediction of future dividends, there is an implied stock return forecast.
For a thorough treatment of the two-step framework and extensive references to the two-step
return prediction literature, readers are referred to the CFA study guide by Stowe et al. (2007).
Because BGMTX is a direct one-step return prediction following a step-by-step determination of
a normalized weighting of current and relative value ratios, it is amenable to a repeatable backtest.
19The ratio BP is of course the book-to-market ratio. BP is defined here as the ratio of book value
per share to price per share. However, multiplying both numerator and denominator by the number
of outstanding shares gives the ratio of book value to market value.
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indicates relative attractiveness compared to a company’s own past values of the
four value ratios in the numerator. Thus, a stock is viewed as attractive not only
when it provides a relatively higher earnings’ yield than peer companies but also
when it provides a high earnings’ yield relative to its own past values. If a stock
has a high relative EP ratio relative to the stock of peer companies, then that stock
has had a greater relative decline in its price–earnings ratio and is thus a relatively
“out-of-favor” stock.

These two types of value ratios arise from two complementary ways that
fundamental value managers say they use value ratios, namely, (1) attractiveness
relative to peer companies and (2) attractiveness relative to a company’s own
past valuations. In this sense, the relative weighting of these eight value variables
can be thought of as a regression-based simulation of the type of fundamental
value analysis advocated in works such as Graham and Dodd (1934) and Williams
(1938).20

8.6.3 Variable Weighting: A Step-By-Step Implementation
Summary

Having identified eight ratio variables as potential return predictors, the forecast
modeling question is how to use these variables to predict future returns. An obvious
way to evaluate relative predictive value is to assess how well they explain recent
past returns. BGMTX uses regression to estimate the relative ability of these eight
variables to explain past returns. Let Rs denote the return on stock s in a sample of S
stocks. A linear regression equation to assess the relative explanatory power of the
eight ratio variables is

Rs D a0 C a1EPs C a2BPs C a3CPs C a4SPs C a5REPs

C a6RBPs C a7RCPs C a8RSPs C "s (8.8)

In the context of a rolling quarterly backtest of the potential benefit of using this
type of ratio-based stock return forecast to improve portfolio performance using a
mean––variance optimizer, BGMTX creates a time series of rolling one-quarter-
ahead return forecasts from the estimated regression coefficients from Eq. (8.8).

20Security analysis, Graham and Dodd (1934), is generally credited with establishing the idea of
value investing. Graham and Dodd influenced Williams (1938), who made particular reference to
their low P/E and net current approaches in The Theory of Investment Value. In turn, Williams
(1938) influenced Markowitz’s thoughts on return and risk as noted in Markowitz (1991). Over
the past 25 years, value-focused fundamental analysts and portfolio managers have expanded their
value measures from primarily price relative to earnings and price relative to book value to include
also price relative to cash flow and even price relative to sales. The choice of the eight fundamental
variables in BGMTX reflects this expansion in focus, especially the expansion to include cash and
sales ratios.
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They use four quarters of past coefficients estimates (four sets of quarterly estimates)
as the basis for a relative weighting of the eight value ratios. For each quarter-
ahead return forecast, BGMTX develops a relative weighting by first modifying the
coefficient estimates as described below to reflect significance and extreme values,
then averaging the modified coefficients from the past four quarters, and finally
normalizing the averaged coefficient values.

Stone and Guerard (2010) replicate the BGMTX forecast procedure: (1) to test
performance after the publication of the model in 1993, (2) to expand the time period
and sample size for the model performance potential evaluated, and (3) to resolve
questions of whether the apparent performance is at least in part a return for risk
or possibly a de facto yield tilt or possibly even from other return impact variables.
The question of a de facto risk tilt is especially pertinent because the Fama–French
return model includes BP as one of its three risk variables and BP is also one of the
BGMTX return forecast variables.

The illustration of the matched control methodology to isolate well forecast
performance from risk and other distortions is based on Stone and Guerard (2010).
As a post publication test of the original model, the only change that Stone and
Guerard (2010) made to the BGMTX return forecast procedure itself is to forecast
monthly returns in a rolling month-to-month framework rather than forecasting
quarterly returns in a rolling quarter-to-quarter framework.

Detailed below is the step-by-step forecast procedure summary as adapted in
Stone and Guerard (2010) for a rolling month-to-month forecast.

1. Regression coefficient estimation. With a two-month delay, estimate each month
for ten months back the regression coefficients fa0, a1, : : : , a8g of Eq. (8.8)
above.

2. Coefficient modification. Adjust/modify regression coefficients a1 to a8 in each
month to reflect significance and/or extreme values in two ways:

(a) Any coefficient with a t-value � 1.96 is set equal to zero.21

(b) Extreme positive values are truncated.

3. Normalized average. Average the last ten months adjusted coefficient values and
normalize these averages to determine relative weights that sum to one. Let wi

denote the normalized forecast coefficient for the ith value variable, i D 1, : : : ,8.
The fwig sum to one.

4. Update ratio variables. For each stock in the sample, update the eight value
ratios using the current stock price and financial statement variables as reported
in Compustat from the “most recent” (at least 2-month back) annual financial
statement and current stock prices.

5. Compute forecasted return. Use the normalized weights from step 3 and the
updated ratios from step 4 to obtain a month-ahead return forecast. If FRs denotes

21When regression coefficients with t-values � 1.96 are made equal to zero, there are no negative
coefficients regardless of significance.
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the forecasted return for stock s, then the formula for the forecasted return for
stock s is the weighted average of the eight value ratios, i.e.,

FRs D w1EPs C w2BPs C w3CPs C w4SPs C w5REPs C w6RBPs

C w7RCPs C w8RSPs (8.9)

The forecast formula in Eq. (8.9) is similar to the cross-sectional return regres-
sion except that:

1. The regression error term is dropped.
2. There is no intercept coefficient.
3. The regression coefficients in Eq. (8.8) are replaced by the 10-month average of

significance-adjusted, outlier-modified, and normalized past coefficient estimates
for each variable.

8.7 Control Variables

8.7.1 Control Constraints

To assess the performance potential return forecast, it is essential to eliminate any
impact from systematic risk, tax effects, or other nonmodel variables such as growth
and profitability that could conceivably be the source of apparent performance
value. Exhibit 8.1 lists a set of risk, tax, growth, and profitability variables that are
candidate control variables.

8.7.2 Risk Controls: ˇ, BP, and Size

The first three variables listed in Exhibit 8.1 are the three Fama–French risk
variables: beta, book–price, and size. The ex ante beta value used in this study was
based on a rolling update using three past years of monthly risky returns (return in
excess of the monthly T-bill rate in that month) relative to the risky return on the
CRSP index.

The book–price ratio BP is the book value per share divided by price per share.
The ex ante book–price value is computed using the book value from the most recent
financial statement lagged at least two months to allow for the financial statement
data to be public information. The price per share is the last closing price in the
prior month. Using BP as a risk variable is consistent with the Fama–French risk
modeling but conceptually different from the Graham–Dodd use of BP as one of
the value ratios that can indicate relative misvaluation of otherwise comparable
companies. Given that BP is one of the eight ratio variables in the BGMTX forecast



8 Portfolio Performance Assessment: Statistical Issues and Methods for Improvement 193

model, the critical performance question is whether the contribution of BP is a
risk effect in disguise or whether it is an indicator of value potential beyond any
systematic risk. Rather than the either–or extremes of being either all risk ala
Fama–French or all performance value ala fundamental value-focused analysts, the
reality is almost certainly a combination of risk and value potential with the critical
performance question being the relative amount of risk and value beyond risk at
a given point in time. The relative amount of each effect in a cross section of
performance-ranked return predictions is almost certain to vary across time. For a
researcher trying to assess true value performance potential, resolving these relative
contributions is a difficult problem. As we discussed further in Sect. 8.8 illustrating
the imposition of risk isolating control variables, it is a very difficult problem to
resolve via the conventional multivariate regression assessment but more treatable
by the matched control methodology.

The size variable S is simply the market value of outstanding equity, the price
per share times the number of outstanding shares. The ex ante value used in this
study is based on the price per share at the close of trading in the prior month.
While the measurement of size has the least measurement error of the three risk
variables, the cross-sectional size distribution is perverse in the sense of having a
large number of relatively small cap companies and a small number of very large cap
companies. To produce a less extreme size distribution that mitigates the extremely
large weight given to the small number of very big companies, Fama–French and
other researchers have used the log of company size as the size measure in assessing
the ability of size to explain the cross section of stock returns. This rather arbitrary
nonlinear transformation mitigates but does not cure the heteroscedasticity problem.
As in a cross-sectional regression, it matters how size is measured when imposing
an equal-size constraint using the power optimizing transformation detailed in
Sect. 8.5. In particular, imposing a size control that makes every portfolio in the
cross section in a given month have the same average size can mean reassigning a
very large company to several portfolios in order to satisfy the equal average size
constraint. As in a cross-sectional regression, using the log of size mitigates but does
not really cure this size distortion. An alternative used in this study was the creation
of a relative size variable. “Relative size” is obtained in a given month by dividing
all companies by the size of the largest company. Thus, the relative size variable
puts all companies on the interval (0,1). The range in cross-sectional variance is
comparable to the range and cross-sectional variance for beta, financial leverage,
and growth and clearly less than the range and cross-sectional variance in other
control variables such as BP, EP, and DP.

8.7.3 Tax Controls: DP, EP, and FL

The ex ante dividend yield variable DP is an annualized value of the most recent
quarterly dividend per share at least 2-months back divided by the share price
at the end of the prior month. Because dividends change slowly, there is very
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little measurement error in using the ex ante dividend as a predictor of the future
dividend. As with BP, most of the uncertainty in DP arises from changes in the price
per share. For this reason, the cross-sectional correlation between BP and DP is
high.

The primary tax control is DP. With the dividend yield control, every portfolio
in the cross section will have the same portfolio average dividend yield. Hence, the
DP control means that every portfolio has the same ex ante expectation for ordinary
income. With the same dividend yield, the cross section of realized returns becomes
a cross section of realized capital gains. Any variation in the dividend–gain mix
over the cross section is a capital gain effect. If beta were also controlled, the ex
ante CAPM expectation is a flat cross section.

Given a normalized set of weights for the BGMTX return forecast, the higher
predicted returns tend to correspond to stocks with higher values of the four current
value ratios, BP, EP, CP, and SP. These are all correlated with dividend yield and
thus the concern that the apparent return performance may actually be a dividend
yield tilt in disguise. Thus, apparent before-tax performance would be significantly
reduced or eliminated if returns were put on an after-tax basis.

Adding a control for the earnings yield EP to the DP control tends to improve
the ability of the ex ante DP variable to be a good control for the dividend-gain
mix. When each portfolio in the cross section has the same average value of both
EP and DP, each portfolio has the same ex ante dividend payout ratio, i.e., the
same portfolio average value of the dividends–earnings ratio. To the extent that the
dividend payout ratio characterizes dividend policy, the combination of the EP and
DP controls together means that each portfolio in the cross section has the same
portfolio average dividend payout policy.

One further comment on the effect of the DP control alone and especially in
combination with the EP and FL controls pertains to the interaction with both size
and beta. Stocks having a high dividend yield and high earnings yield tend to be
larger companies with lower than average beta values. Hence, imposing the DP
control alone and especially the DP and EP controls together tends to move larger
and lower beta stocks to lower-ranked portfolios and vice a versa, to move smaller
and higher beta stocks to higher-ranked portfolios.

It is common to talk about a value/growth trade-off with the assumption being
that high value tends to mean lower growth and vice a versa. Given validity to
the value/growth assumption, value controls like BP, EP, and DP are also
de facto growth controls. Exhibit 8.1 lists two growth control variables: 5-year
past sales growth and sustainable growth. When used in addition to the risk
and tax controls, it is reasonable to assume that these two controls are simply
refining the already established growth control associated with the risk and tax
controls. This point is discussed further after illustrating the use of the risk and tax
controls.

The financial leverage control FL is the ex ante percentage of nonequity
financing. It is measured as one minus the book equity per dollar of total investment,
both values being from the most recent annual financial statement at least 2-months
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back. Aside from preferred stock, FL measures the percentage of total investment
provided by debt financing.

Financial leverage has been included with DP and EP as a tax control. Rather
than controlling for the dividend–gain mix, FL is designed to reflect the corporate
tax shield associated with debt financing and thus a corporate tax performance
impact associated with more return to shareholders and less to the government. Like
many controls, FL reflects more than just the tax shield of debt financing. Use of
debt involves an increase in both refinancing and interest rate risk. One source of
adverse changes in interest rates is a change in inflationary expectations. Hence, the
stock-specific FL control has an element of both company and macro risk control in
addition to reflecting any valuation effect of the corporate tax shield.

Another potentially important role for the FL control pertains to industry
exposure. There is considerable variation across industries in the relative use of
debt financing. Thus, controlling for financial leverage tends to be a de facto control
on the variation in industry mix across portfolios. A check on industry membership
over the uncontrolled cross section of forecast-ranked portfolios compared to cross
sections with the FL control imposed indicates a clear but less-than-perfect tendency
for the FL control to reduce well concentrations of some industries in subsegments
of the uncontrolled cross section.

8.8 Using Control Variables to Isolate Performance Potential

Section 8.8 uses the control variables defined in Sect. 8.7 and the return fore-
cast model summarized in Sect. 8.6 to provide a concrete illustration of the
power/efficiency benefits of the matched control methodology for a full sample
assessment of the performance potential of a stock return forecast. The purpose
here is not to establish value for the BGMTX forecast model per se but rather to use
an actual return forecast to illustrate the power/efficiency benefits of the matched
control methodology.

This illustration emphasizes the major design decisions that impact statistical
power and efficiency.

8.8.1 Alternatives to the Full Sample, Relative Rank-Ordering
Framework

From the viewpoint of having a high-power statistical assessment of the perfor-
mance potential of a stock return forecast, the most important decision is the
selection of the assessment framework. One alternative to the full sample relative
rank ordering advocated here is the use of the forecast to select a stock portfolio
that is then compared to a reference index benchmark. The BGMTX forecast
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evaluation was based on the ability of the return forecast along with a risk forecast
to generate a frontier of mean–variance optimized portfolios that outperformed a
reference index. One problem with this approach is ambiguity with respect to the
relative performance contribution of the return forecast versus the risk forecast
although good sensitivity analysis can reduce this ambiguity.22 The significant
power disadvantage is limiting the forecast evaluation to the selected stocks, i.e.,
the stock subsample that has the best expected risk-adjusted return. Not assessing
performance potential for the full sample means a loss of information and thus a
loss of statistical power.

For the management of active mutual funds and for hedge funds, typical use
of return and risk forecasts is not to generate a mean–variance efficient frontier
but rather to use a stock return forecast as input to an index–tilt portfolio selection
model that seeks to maximize the increase in expected return relative to a benchmark
index subject to constraints on tracking error and a maximum tilt away from tracking
error-related style variables such as beta, size, value/growth, industry, and country.23

For organizations operating in an index tilt environment, the standard backtest
performance potential assessment is to generate a time series of forecasts over a
pertinent past time period and then evaluate the average performance improvement
relative to the benchmark or possibly relative to another forecast or even just the
past performance of the fund. The comparative assessment of alternative forecast
selection approaches is often termed a “performance derby.”

While assessing return forecast benefits in the context of the portfolio tilt
environment in which the forecast is to be used is clearly an essential step in
evaluating the performance potential of a return forecast, such a backtest assessment
of constrained portfolio selection is a logical follow-on after first establishing how
well the forecast performs in a large sample backtest, at a minimum how well
the forecast performs in terms of ability to identify misvalued stocks across at
least all the stocks in the benchmark index plus any stocks that are candidates for
replacement of benchmark stocks.

There are two problems with skipping a full-sample, relative rank-ordering
performance assessment and only assessing benchmark tilt performance. As in the
case of evaluating a return forecast via mean–variance portfolio selection, the tilt to
a relatively small subset of the stocks in a benchmark index means loss of potential
sample information and thus loss of power. The typical benchmark tilt is almost
always a small departure from the benchmark, for instance, a 20 % tilt is generally
viewed as relatively large with significant tracking risk. Thus, for an S&P 500

22Michaud (1989, 1998) recognizes that uncertainty about both the return and risk forecasts and
other portfolio selection parameters is a source of risk/uncertainty in addition to the inherent
uncertainty risk of investment and has formalized a very sophisticated resampling simulation to
structure very thorough sensitivity analysis.
23See Grinold and Kahn (2000) for a thorough description of the MCI-Barra active tilt frameworks.
See Menchero, Korozov, and Shepard (2010) for an updated version of the MCI-Barra equity risk
modeling that includes both industry and country factors, a global equity risk factor, and additional
style factors for value, size, momentum, etc.
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benchmark, the performance of the portfolio is typically more than 80 % benchmark
and at most a 20 % tilt.24 The effective comparison sample is about 100 stocks either
predicted to have the best expected return relative to tracking error for overweighted
stocks or the worst expected return relative to tracking error for underweighted or
excluded stocks. By focusing on a small subset of the pertinent stocks that is
primarily the subset that is predicted to be the extreme best and worst stocks,
a benchmark tilt comparison excludes information on the ability to rank order
the rest of the pertinent stock universe. Compared to a full sample relative rank-
ordering assessment, just using a benchmark tilt assessment is a low power relatively
uninformative performance potential assessment.

The assertion of being uninformative pertains especially to the second problem
with using a benchmark tilt assessment to evaluate a stock return forecast, namely,
mixing any forecast performance value with the effect of predictions of tracking
error and of style alignment/misalignment. Mixing the effect of a return forecast
with tracking error predictions and style and industry alignment/misalignment
obfuscates information about the forecast itself. While extensive statistical and
sensitivity analysis can help separate forecast performance from other factors,25

the clear best solution to having a high-power assessment of forecast performance
potential is to isolate completely return performance from all other return impact
variables. The primary function of the matched control embellishment of the
relative rank ordering is to ensure a well-isolated return forecast. Use of the power
optimizing reassignment programs like that formulated in Sect. 8.5 ensures that
power is optimized.

Within the full sample, relative rank-ordering framework, there are alternatives to
the power optimizing matched control methodology advocated here. The most com-
mon is to use multivariate regression to explain realized returns by a combination
of the return forecast and other known return impact variables such as the control
candidates developed in Sect. 8.7. Another alternative is to use an endogenous
APT to remove all statistically identifiable systematic variation from the return as
illustrated in Guerard, Gültekin, and Stone (1997). The merits of matched controls
compared to these two alternatives are addressed later in the context of illustrating
and evaluating the matched control methodology.

24The magnitude of a tilt is defined as the absolute value of the difference in the relative weighting
of stocks in the benchmark and the tilt portfolio. For instance, if a stock with a weight of 0.5 % is
increased to 0.7 %, the tilt change is 0.2 %. If a stock with a relative weight of 0.15 % is excluded
completely, the tilt change is 0.15 % to the tilt. The overall tilt percentage is the sum of all the tilt
change percentages.
25The resampling simulation approach set forth in Michaud (1989, 1998) is again pertinent here.
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8.8.2 Stepwise Imposition of Control Constraints: Procedure
Overview

In a control-based assessment of how apparent forecast performance value is
distorted by interaction with control variables, the starting point is a collection of
rank-ordered return forecasts with no controls imposed. Inputting the no-control
cross section to the mathematical assignment program for a given set of control
variables produces an output cross section in which each portfolio is now matched
on the specified set of controls. Comparing before and after cross sections and noting
any changes in the cross section enable a forecaster/researcher to assess to what
extent apparent performance potential has been distorted by one or more of the
control variables. Or, in the case of no significant change, a forecaster/researcher
knows that the given set of controls is not distorting apparent performance potential.

Adding controls in a stepwise fashion enables a researcher to explore how
the initial rank-ordered cross section changes by systematically removing the
effect of a control variable or combination of control variables. This stepwise
exploration of how the return dependency changes with changes in combinations
of control variables is generally very informative. Because the primary concern
here is correcting apparent performance for distortion from risk and tax effects,
the stepwise assessment of control impacts focus primarily on cross sections for six
sets of controls summarized below:

1. No controls: the initial rank ordering
2. Individual risk controls: beta, book-to-market, and size as individual controls
3. Three risk controls together: beta, book-to-market, and size together
4. Three tax controls together: the earnings–price ratio, the dividend–price ratio,

and financial leverage together as a combination control for the dividend–gain
mix and other tax effects

5. The combination of risk and tax controls: the three risk and the three tax controls
together, six control variables in all.

After in-depth assessment of the effect of risk and tax controls, the impact of
growth and profitability controls is assessed. Finally, by removing the effect of the
four value ratios BP, EP, CP, and SP, we assess the relative contribution of the four
value ratios and the four relative value ratios to forecast performance.

8.8.3 Study Sample and Time Frame

The backtest study period is January 1967 through December 2004. Developing
a return forecast for every stock in the backtest sample for January 1967 through
December 2004 produces a time series of 456 monthly return forecast cross
sections.
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The data sample is all nonfinancial common stocks in the intersection of CRSP
and Compustat with a book value in excess of $20 million that are included in CRSP
for at least three years with monthly return data necessary to compute a 3-year
rolling beta and in Compustat for at least five years with all necessary financial
statement data. The table below summarizes by year the number of companies in
the 1967–2004 backtest study sample.

Year #Stocks Year #Stocks

1967 198 1986 1660
1968 324 1987 1632
1969 422 1988 1580
1970 564 1989 1621
1971 901 1990 1644
1972 966 1991 1671
1973 1058 1992 1742
1974 1108 1993 1845
1975 1037 1994 1921
1976 1329 1995 2003
1977 1495 1996 2057
1978 1651 1997 2193
1979 1701 1998 2238
1980 1703 1999 2331
1981 1757 2000 2284
1982 1734 2001 2256
1983 1698 2002 2305
1984 1714 2003 2318
1985 1676 2004 2238

Because of the sparseness of the Compustat database in the 1964–1966 5-year
start-up period required for control variables such as 5-year sales growth, there are
only 198 companies in January 1967 and only 324 companies in January 1968.
The table shows that the forecast sample size grows rapidly. From 1971 on, there
are more than 900 companies in the forecast sample growing to more than 2000
companies by 1995.

The fact that the sample size shows little growth from the 2003 stocks in January
1995 to the 2238 stocks in January 2004 indicates that the large number of new
IPOs after the mid-1990s is not producing an increase in the number of sample
companies. The fact that our sample does not exhibit the same growth as the cross
time increase in publicly listed companies shows that the combination of requiring
5 years of past financial statement data plus the minimum book value restrictions
means that we are studying primarily larger more mature companies.
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8.8.4 Key Efficiency/Power Design Decision: The Number
of Fractile Portfolios

In panel studies using rank-ordered cross sections, many return dependency assess-
ments rank stocks into deciles and in some studies only quintiles. However, in each
month of 1967–2004, stocks were ranked into 30 fractile portfolios. As already
discussed, having more fractile portfolios pertains to the power/efficiency trade-
off. Most of the efficiency benefits of measurement error and omitted variable
diversification are accomplished with 20 or fewer stocks in a fractile.

It is pertinent to expand on the greater power benefits of having more fractile
portfolios. First, grouping stocks into a fractile portfolio and using the portfolio-
weighted average to represent the portfolio value of variables tend to average away
information while averaging away measurement error, especially in the tails of the
distribution. Second, cross-sectional plots like those in Exhibits 8.2, 8.3, and 8.4 of
key performance indicators such as average realized return and realized standard
deviation are more useful when there is a high density of data points. Third, when
assessing the cross-sectional dependence of realized returns and realized standard
deviation cross sections on the return forecast, both efficiency and power are
increased from more observations. In particular, regression estimation and related
hypothesis testing have much greater statistical power when there are at least 20
observations. Fourth, adjacent portfolios in a control-matched return cross section
can be merged together and preserve the control matching without having to resolve
the control matching optimization program. For instance, combining adjacent three
tuples in the 30-portfolio cross section produces a cross section of matched deciles
as done in Sect. 8.8.9. Thus, it is methodologically better to error on the side of
too many portfolios in a cross section rather than too few.

8.8.5 The Impact of Individual Risk Controls

Exhibits 8.6 shows cross-sectional plots of average realized return and realized
standard deviation versus portfolio rank for no controls and for just a beta control
for risk. Exhibit 8.3 presents return and risk cross sections for just a size control and
just a BP control.

Plot 2.1 is a cross section showing average realized return for the rank-ordered
cross section with no controls. If there were no forecast information in the return
prediction, the plot would be a random scatter about the overall average return. In
contrast to a random scatter, Plot 2.1 shows an overall tendency for realized return
to increase with an increase in predicted return.

The rate of increase is clearly nonlinear. For portfolios 1–10, the cross section
is noisy and relatively flat. For portfolios 10–20, the realized return increases at a
steady rate. For portfolios 20–30, the average realized return tends to increase at an
accelerating rate with the largest increases being for portfolios 28, 29, and 30.
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Exhibit 8.2 Risky returns, SD, and Sharpe ratio vs. P# (portfolio #): no controls compared to
only a beta control

The realized return range is large and economically significant. The annualized
realized return difference between portfolios 30 and 1 is 8.8 %. The difference
between the realized return for the upper quintile (average for the top six portfolios)
and the realized return on the bottom quintile (average return for the lowest six
portfolios) is 6.5 %.

In effect, before imposing controls, Plot 2.1 indicates that the return forecast has
limited ability to rank order return performance for the bottom third of the sample
other than identifying the bottom third as inferior to the rest of the sample. For
portfolios 10–30, the return forecast tends to rank order on average portfolio-level
realized risky return. The relative rank-ordering ability is especially good for the top
third of the sample, portfolios 21–30. The apparent ability to predict realized risky
return improves with portfolio number and seems especially good for the top two
portfolios.

The vertical axis in Plot 2.1 is average realized risky return. There is no
correction for possible variation in risk. Before imposing controls for risk or



202 B.K. Stone

otherwise correcting for any portfolio-to-portfolio variation in risk, basic insight
on risk variation is provided by measuring the cross-time variation in realized risk.
Plot 2.2 shows the cross-sectional dependence of realized standard deviation on
portfolio number for the case of no controls. For each portfolio number, the realized
standard deviation is computed in accord with the definition by taking the square
root of the mean squared deviation of each annualized monthly return from the
long-run average return. The standard deviation cross section in Plot 2.2 is not a
random scatter. It is also not the steady increase implied by the assumption that
higher predicted returns arises from selecting progressively higher risk stocks. The
very steady portfolio-to-portfolio variation pattern is not only nonlinear but also
nonmonotonic. If an increase in predicted return were associated with a systematic
increase in realized standard deviation risk from either systematic or unsystematic
sources, the cross section of realized standard deviations should be increasing with
an increase in predicted return. Any interaction between risk and predicted return is
more complex than a simple linear association.

The SD cross section in Plot 2.2 is much smoother than the return cross section
return in Plot 2.1. Compared to the 8.8 % return range, the SD cross section has
a smaller range of just 5.19 %.26 Most of this range is from the relatively high
realized standard deviations for the very low return forecasts and the very high-
return forecasts. For the three inner quintiles, portfolio 7 through portfolio 24, all
realized standard deviations are within a range of just 0.70 %.

The very smooth, nonmonotonic SD cross section raises questions. One impli-
cation is that the very high and the very low return forecasts have greater realized
SD risk. One question is whether the greater realized standard deviation risk arises
from greater systematic risk or from unsystematic uncertainty or even possibly
greater forecast uncertainty for the extreme forecasts. Another related question is
whether the higher returns in the upper quintile justify the greater SD. From the
viewpoint of both mean–variance efficiency and tracking error control, whether
the source is systematic, unsystematic, or greater forecast error is a very important
information. Imposing risk control first for beta, size, and BP individually and then
in combination can help answer these questions.

8.8.6 CAPM Performance Assessments

Plot 2.4 is a cross section showing average realized return for the rank-ordered
cross section with a control for just beta risk but with no other controls imposed.
Imposing the same beta control means that every portfolio in the beta-controlled
cross section in Plot 2.4 has the same population average value of beta. Since the

26See Appendix 8.1 for the data to compute the ranges of realized risky return and standard
deviations. Appendices 8.2 to 8.6 provide pertinent data for each of the 30 fractile portfolios for
the cross sections with other control variables.
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rolling three-year risky return beta was calculated relative to the sample average, the
ex ante sample average beta value is one in every month.27

The textbook Treynor Performance Measure is realized risky return divided by
the beta of the portfolio. Thus, with all portfolios having a beta of one, the average
realized return cross section in Plot 2.4 is also a Treynor performance cross
section.

Compared to the no-control cross sections, the beta controls tend to smooth
somewhat the return cross section but with very little systematic change. In contrast,
the beta controls smooth the SD cross section and significantly reduce the range. The
overall range is reduced from 5.19 % with no controls to 4.01 %. More significantly,
the SD range for the 18 interquartile portfolios is reduced from 0.70 % for no
controls to just 0.55 % with beta controls. Given the smoothing and especially the
reduced range, the beta control seems to do a good job of correcting portfolios in
the three inner quartiles for variation in realized standard deviation risk.

The fact that beta controls reduce but do not eliminate the greater standard
deviations for both the very high and very low forecasts is evidence that some of the
SD increase for these portfolios is beta related. However, for the highest predicted
returns, there seems to be more to realized SD uncertainty than just beta.

The widely used CAPM alpha is the realized risky return less beta times the
average risky return on the market index portfolio. When beta is one for every
portfolio, we have

’p DRp–“p .risky index return/!’p DRp– .risky index return/ ; pD1; : : : ; P:

When beta is the same for every portfolio in the cross section in Plot 2.4, the CAPM
alpha is just an additive constant subtracted from the realized risky returns of each
portfolio in the cross section. Thus, to within an additive constant for the average
realized risky return on the market index portfolio, the average realized return
cross section in Plot 2.4 with all portfolios having a beta of one is also a CAPM
alpha performance cross section.

The third standard performance measure is the Sharpe ratio. Like the Treynor
ratio, the Sharpe ratio assesses risky return relative to the associated risk. Rather
than risky return per unit of beta risk, the Sharpe ratio is risky return per unit of
standard deviation risk. Plots 2.3 and 2.6 show the cross section of realized Sharpe
ratios. As expected given the wide range of realized risky returns and relatively
smaller range of realized standard deviations, the overall trend for the Sharpe ratio
without any controls and especially with the beta control is a tendency to increase
with an increase in predicted return. Given the smoothing from the beta control
and especially given the reduced range for realized standard deviations, the beta-
controlled Sharpe ratios are smoother and more nearly monotonically increasing
than the uncontrolled cross section.

27Relative to the CRSP index, stocks in the backtest sample had a lower beta, generally about 10 %
lower. While the backtest sample excluded generally low beta financial stocks, it also tilted toward
larger, more mature companies because of the requirement of inclusion in both Compustat and
CRSP for at least five years. This maturity tilt is the reason for the somewhat lower beta values for
the backtest sample than for the overall CRSP sample.
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Compared to the Treynor and the CAPM alpha, the relatively large realized
standard deviations for the highest predicted returns mean that the beta-controlled
Sharpe ratio performance assessment is less favorable for the highest predicted
returns than either the Treynor or the CAPM alpha.

8.8.7 The Impact of Size and BP Risk Controls

Afterconsidering the CAPM beta-controlled performance, the next logical step is to
evaluate the impact of the two remaining Fama–French risk variables—size and BP.
Assessing the risk impact of BP is especially pertinent since it is one of the eight
predictor variables in the BGMTX return forecast.

Plots 3.1–3.3 in Exhibit 8.3 show the cross sections of realized return, realized
standard deviations, and realized Sharpe ratios when a size control is imposed.
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Exhibit 8.3 Risky return, SD, and Sharpe ratio vs. P# (portfolio #) for a size control only and a
BP control only
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Contrary to what one expects from the tendency of size to be negatively correlated
with the four value ratios BP, EP, CP, and SP, the imposition of the size control alone
has very little impact relative to the uncontrolled cross sections other than a slight
smoothing of each cross section and a modest reduction in the realized return for
the highest return forecasts.

Plots 3.4–3.6 in Exhibit 8.3 show the cross sections with just a control for BP.
Despite the fact that BP is one of the eight variables in the return forecast model,
eliminating any impact of BP on the cross sections has a relatively modest impact
on the range of realized returns.

Imposing just the BP control tends to smooth the three cross sections, especially
for portfolios ten and higher. Consistent with being a risk variable, imposing just the
BP control reduces the range of realized standard deviations.

8.8.8 Imposition of Combinations of Risk and Tax Controls

Exhibits 8.4 and 8.5 repeat plots of the return cross section and SD cross section for
no controls and then show the return and SD cross sections, respectively, for three
key combinations of controls:

1. The Fama–French risk controls: beta, size, and BP
2. Three tax controls: DP, EP, and FL
3. The combination of the three Fama–French risk controls and the three tax

controls
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Exhibit 8.4 Risky returns vs. portfolio number: risk only, tax only, and both risk and tax controls
together
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Plot 4.2 of Exhibit 8.4 summarizes the realized return cross section when all
three Fama–French risk controls, beta, size, and BP, are imposed together. Recall
that making these three variables into control variables means that the transformed
cross section has shifted securities so that each portfolio in the cross section has the
same portfolio average value of each of these three variables. There is no portfolio-
to-portfolio variation in the value of beta, size, or the book–price ratio. Thus, in
each month, these three variables will have the same contribution to portfolio return.
Realized risky return is now well-isolated from any differential impact from any of
these three risk variables. The portfolio-to-portfolio variation in return must arise
from the forecast variables other than the now-controlled book–price ratio, possibly
taxes, or other return impact variables but not from beta, size, or BP.

Comparing Plots 4.1 and 4.2 shows a similar range and pattern but with much
less portfolio-to-portfolio variation in average realized return. The net effect of the
three risk controls is to smooth the curve without changing the overall nonlinear
pattern or the range of realized risky returns. Moreover, the smoothing effect makes
the nonlinearity much more pronounced. For the no-control plot and especially risk
control plot, the cross section of average realized returns is flat to slightly declining
for portfolios 1–15. For portfolio 15 on, the cross section has a steady monotonic
increase with the rate of increase being the greatest for the top three portfolios.

Plot 4.3 of Exhibit 8.4 summarizes the realized return cross section with three tax
controls: EP, DP, and FL. Making each portfolio in the cross section have the same
average value of the dividend price ratio by itself tends to ensure that the percentage
of return realized as dividends is the same as the percentage of return realized as
capital gains. When both EP and DP are the same in every portfolio, this amounts to
each portfolio having the same dividend payout ratio, which is an additional control
on dividend policy. Financial leverage has been included as a tax control to reflect
the tax deductibility of corporate interest payments. The combination of having
the same earnings price ratio and therefore almost the same average earnings for
each of the portfolios plus the same percentage of debt means roughly the same
average percentage of earnings are shielded from taxes. Financial leverage also
tends to reflect both company debt capacity and exposure to interest rate risk and
may reflect some performance and risk beyond the three control variables that we
have characterized as “risk controls.”

Comparing Plot 4.3 with Plots 4.1 and 4.2 indicates significant changes in the
cross section of realized returns compared to no controls and especially compared
to the cross section with all three risk controls together. The largest changes are for
portfolios 1–15. Realized returns are reduced on average and rank-ordered much
better for portfolios 1–15 than for the plot for no controls or also for all three risk
controls together. The overall monotonic increase is now much steadier and more
nearly linear. Tax effects clearly exhibit very significant systematic variation
over the cross section of forecast rank-ordered portfolios compared to both
the uncontrolled and the risk-controlled cross sections!

Plot 4.4with both risk and tax controls is similar to Plot 4.3. Adding risk controls
to the tax controls does not significantly change the cross-sectional return plot.
Having controls on both DP and “ together for the combination of risk and tax
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Exhibit 8.5 Standard deviation vs. portfolio number: risk only, tax only, and both risk and tax
controls together

controls tends to ensure even more completely that the percentage of returns realized
as dividends and as capital gains is the same over the cross section.28

Exhibit 8.5 contains plots of realized standard deviation versus portfolio number
for no controls, for all three risk controls together, for just the three tax controls
together without any risk controls, and then for all three risk and tax controls
together. All four plots are nonlinear and nonmonotonic. Plot 5.1 with no controls
has a range of realized standard deviation values from a low of about 5.5 % in the

28It is easy to check how well DP alone and DP and “ in combination actually control for cross-
sectional variation in the dividend–gain mix. For the forecast rank ordering in this study, in all
time periods of 5 years or longer after 1972, the DP control alone does a good job of controlling
for cross-sectional variation in the ex post dividend–gain mix. The term “good job” means that
the average ex post dividend–gain ratio in each portfolio is very close to the sample average
with no systematic variation over the cross section. Controlling for DP and EP together improves
the control for variation in the dividend–gain mix by eliminating portfolio-to-portfolio variation
and making most portfolios very close to the average. Controlling for DP and “ in combination
improves the control since high beta tends to be lower dividend payout. Likewise controlling for
DP and size in combination improves the control for the dividend–gain mix for similar reasons,
namely, the fact that small size tends to be higher beta and often zero or token dividend payout.
Thus, the combination of tax controls and risk controls together improves on the tax controls alone
in terms of ensuring very little portfolio-to-portfolio variation in the dividend–gain mix, especially
for all time periods after 1972. The main caveat is slighter greater variation about the average
dividend–gain mix for the three lowest-ranked and the three highest-ranked portfolios. This greater
variation about the mean for the low-ranked and high-ranked portfolios is consistent with the much
greater realized standard deviation for these portfolios as shown in Exhibit 8.5 as well as the much
greater positive skewness for the three highest-ranked portfolios.
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middle of the cross section to a high of 11.5 % for portfolio 30, a high-low range of
6 %. The portfolio-to-portfolio changes are remarkably smooth. After portfolio 2,
realized standard deviations first smoothly decrease toward the middle of the cross
section and then smoothly increase at an accelerating rate with the highest realized
standard deviation occurring for portfolio 30.

As expected, adding the three risk controls in Plot 5.2 of Exhibit 8.5 tends to
reduce realized risk variation as reflected in the reduced range of realized standard
deviations from 6 % to less than 3.5 %. Moreover, realized standard deviation varies
by no more than 1 % from portfolio 4 to portfolio 20. Most of the increase in realized
standard deviation at the low and high end of the cross section is attributable to
skewness, negative skewness for the low end, and significant positive skewness for
the high end.

Plot 5.3 for tax controls only is similar to Plot 5.2 for just risk controls except
for slightly higher realized standard deviations at the low and high extremes and
a slightly greater asymmetry. The fact that both risk and tax controls have similar
effects in terms of controlling for realized standard deviation risk is surprising. It
suggests risk control impacts from some combination of the dividend–gain mix and
possibly financial leverage risk. Plot 5.4 with both risk and tax controls together
supports this conjecture of risk control benefit from the three tax controls beyond
the risk control provided by beta, book–price, and size. For portfolio 1–21, the cross
section of realized standard deviations varies by just a little more than 1 %. For
these 21 portfolios, the combination of the conventional risk variables plus the tax
controls does an excellent job of controlling for realized risk as measured by realized
standard deviation.

As indicated by the skewness data in the Table in Appendix 8.6, the increase
in realized standard deviation in Plot 5.4 is well explained by the corresponding
increase in significantly positive realized skewness for the highest return portfo-
lios.29

Exhibit 8.6 shows cross-sectional plots of the Sharpe ratio for the four control
sets. As a synthesis of the respective return and standard deviation plots, they show
that the overall increase in returns is outweighed by the very modest increase in
realized standard deviations. Hence, the plots in Exhibit 8.6 indicate significant
performance potential for the basic BGMTX return forecast framework, with the
most pertinent Sharpe ratio cross section being Plot 6.4 since it eliminates distortion
from both risk and tax effects.

29A plot of realized semi-standard deviation for the case of all risk and all tax controls together
is flat for the top 25 portfolios in the cross section, strong support for the assertion that the
greater standard deviation for the top four portfolios is primarily a positive skewness effect and
not downside uncertainty.
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The primary purpose of this control matching example is to illustrate the benefits
of using matched controls in assessing forecast performance potential rather than to
establish value to the eight-variable BGMTX forecast model.30

8.8.9 Stepwise Imposition of Risk and Tax Controls:
High-Minus-Low Differences

Exhibit 8.7 summarizes high-minus-low returns for major constraint sets. The first
column names the constraint set. In addition to the risk and tax controls used in
looking at the impact of risk and taxes on the cross-sectional plots, Exhibit 8.6 lists
a more detailed stepwise imposition of control matching constraints. In particular, it
adds to the risk and tax controls additional controls for growth and profitability.

The next three columns in Exhibit 8.7 give high-minus-low returns. For 30
fractile portfolios in column 2, this high-minus-low value is the long-run average
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Exhibit 8.6 Sharpe ratio vs. portfolio #: risk only, tax only, and both risk and tax controls together

30Forecast value for mean–variance portfolio selection was established in BGMTX for 1978–1990.
Guerard, Gultekin, and Stone (1997) added to the evidence of forecast value for the return forecast
itself by using an endogenous APT to remove all explainable systematic return. Others have added
both growth and momentum to show performance value well after the 1993 publication time.
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return on portfolio 30 (the fractile portfolio with the highest forecast score) less the
long-run average return on portfolio 1 (the fractile with the lowest forecast score).
Column 3 is the average return for the two highest fractiles minus the average return
for the two lowest fractiles. Column 4 for deciles31 is the average of the top three
fractiles minus the average of the bottom three fractiles. Since all portfolios in each
cross section are matched to the ex ante values of the listed factor controls, the
high-minus-low values are the long-run realized returns on a factor-neutral
arbitrage portfolio, i.e., a portfolio that is long in one or more of the top 30
fractile portfolios and short in the corresponding low score portfolios. It is factor
neutral in the ex ante values of each of the imposed control variables because each of
the portfolios in each cross section has been matched to the sample average value of

CONTROL VARIABLES 30-�les Deciles Quin�les

No Constraints  0.088 0.074 0.065

β(Beta) 0.121 0.091 0.066

S(Size) 0.086 0.075 0.064

BP(Book-to-Market ) 0.076 0.068 0.055

β, S, BP 0.087 0.079 0.056

FL, EP, DP 0.196 0.176 0.137

β, S, BP, FL, EP, DP 0.211 0.165 0.128

β, S, DP, FL, Sag5, Sug3 0.239 0.187 0.147

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE 0.267 0.193 0.143

β, S, BP, FL, EP, DP, Sag5, Sug3, ROI 0.250 0.190 0.143

β, S, BP, FL, EP, DP, Sag5, Sug3, SI 0.254 0.194 0.143

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE, SI 0.276 0.198 0.145

β,S,BP,FL,EP,DP,SAG5,SUG3,ROE,SI,CP,SP 0.191 0.142 0.111

Notes:

1. For 30-tiles, the high-minus-low values for each control set are computed by taking the difference
between the average realized return for portfolio 30 and for portfolio 1.

2. For deciles, the high-minus-low value is the difference between the average realized returns for the
top 3 portfolios minus the average realized return for the bottom 3 portfolios.

3. For quintiles, the high-minus-low value is the difference between the average realized return in the
top six portfolios minus the average realized return for the bottom six portfolios.

Exhibit 8.7 High-minus-low values for 1968–2004 average returns: how imposing controls
changes the extreme high and low returns

31With 30 fractile portfolios in the cross sections of conditional return response observations, the
difference for the top three returns combined and the bottom three portfolios combined represents
a high-minus-low return for the top and bottom deciles of the cross section.



8 Portfolio Performance Assessment: Statistical Issues and Methods for Improvement 211

the imposed controls. Therefore, a long–short combination of any two portfolios
has zero ex ante exposure to the imposed controls.

The high-minus-low values are the annualized average of 458 monthly values.
Thus, they indicate the economic significance of the composite value score before
any transaction costs for a naive factor-neutral portfolio strategy.

The term “naïve” refers to the fact that these portfolios are formed on the
basis of return forecast data alone without using any information about vari-
ances, covariances, or higher moments such as skewness. Given that past values
of both variance and covariance are fairly good predictions of month-ahead
values, use of the value-focused return scores with mean–variance optimiza-
tion should always produce superior market-neutral hedge portfolios in terms
of Sharpe ratios. The Sharpe ratios reported for these three market-neutral
portfolios are lower bounds on the mean–variance optimized factor-neutral
portfolios.

The high-minus-low ranges and associated Sharpe ratios both exhibit a strong
dependency on the imposed controls. The return cross section with no controls has
a range of 8.8%, the Fama-French three factor control set has a range of 8.7%. In
contrast to the is very small change from imposing the three risk controls, imposing
the three tax controls results in a high-minus-low range of 19.6%. Imposing the
three risk controls and the three tax controls together further increases the 30-fractile
high-minus-low range to 21.1%.

Adding growth controls increases the hml to more than 24 %, triples the range for
the unranked cross section, and more than doubles the range when the only control
variables are the conventional Fama–French three-factor risk instruments. Adding
sales intensity and profitability controls further increases the range and improves the
Sharpe ratios.

8.8.10 Estimates of the Dependence of the Return and SD
Cross Sections on the Return Forecast

Exhibits 8.8, 8.9, and 8.10 summarize regression tests of the ability of the return
forecast score to explain the long-run realized cross sections of average returns,
Sharpe ratios, standard deviations, and skewness coefficients.

For the stepwise imposition of a series of control constraints, the first table in
Exhibit 8.8 summarizes linear regressions of the long-run 456 month average value
of realized risky return on return forecast score for a series of progressively more
complete sets of control variables.
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Rp = C0 + C1(FSp) + εpControl Variables   

slope t R2 p-value
No Constraints  .079 7.23 .651 <.0001
β(Beta) .086 7.47 .666 <.0001
S(Size) .080 7.91 .691 <.0001
BP(Book-to-Market ) .071 7.77 .683 <.0001
β, S, BP .079 6.44 .597 <.0001
FL, EP, DP .181 17.81 .919 <.0001
β, S, BP, FL, EP, DP .192 18.97 .928 <.0001
β, S, DP, FL, Sag5, Sug3 .206 16.4 .906 <.0001
β, S, BP, FL, EP, DP, Sag5, Sug3, ROE .217 14.57 .884 <.0001
β, S, BP, FL, EP, DP, Sag5, Sug3, ROI .215 16.44 .906 <.0001
β, S, BP, FL, EP, DP, Sag5, Sug3, SI .216 15.66 .898 <.0001
β, S, BP, FL, EP, DP, Sag5, Sug3, ROE, SI .220 14.24 .879 <.0001
β,S,BP,FL,EP,DP,SAG5,SUG3,ROE,SI,CP,SP .186 16.56 .907 <.0001

Exhibit 8.8 The changing ability of forecast score to explain realized returns and Sharpe ratios

All of the regressions in Exhibit 8.8 have very high R-squared values, large and
significant t-values, and p-values less than 0.0001. Given that all of the regressions
have p-values less than 0.0001, the change in the t-values for the coefficient on return
forecast score and the change in R-squared are the best indicators of the effect on the
cross section of imposing additional control constraints, especially in terms of the
extent to which we are obtaining a return forecast dependency that is better isolated
from the effect of nonforecast variables. Thus, we focus most of our attention here
on the changes in the t-values and R-squared values as we impose different sets of
control constraints.

The cross section of realized returns with no controls and with the three risk
controls imposed individually and in combination results in very modest changes
in both the estimated slope and the associated t-value. For instance, the imposition
of the three risk controls together produces a t-value on the slope coefficient of
0.597 with an associated t-value of 6.44 compared to the no-control case of a slope
coefficient of 0.079 and a t-value of 7.23.

The most significant structural feature is the jump in R-squared values and t-
values when we impose the tax controls alone or impose the tax controls along with
the three systematic risk factors. Imposing the three tax controls alone produces
a t-value of 17.81. The control set with both systematic risk and tax controls
has a t-value of 18.97, a clearly significant increase in the slope estimate and its
significance.

These results are a surprise! First, the negligible impact of the three Fama–French
risk controls on the long-run cross section of realized returns means that apparent
return potential is not a systematic risk effect in disguise, at least in terms of the three
Fama–French risk variables. The major surprise is the large and very significant tax
effect. Most surprising is the direction of the tax effect on the assessment of
performance potential. In noting the issue of distortion from regularly recurring
systematic tax effects, the concern was that the very high correlation of the four
current value ratios with dividend yield could mean that apparent forecast potential
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could be a dividend yield tilt in disguise rather than finding truly misvalued stocks
that would produce superior returns as the market recognized the undervaluation.

Also surprising is the fact that imposing the combination of risk and tax controls
means that all portfolios in the cross section have the same portfolio average values
of BP and EP, two of the eight variables weighted in the return forecast prediction.
In effect, any contribution of these two variables to realized return performance is
suppressed for the combination of risk and tax controls. The apparently large and
significant performance is from the other six variables. It is pertinent to note that
a benefit of the control approach is a straightforward assessment of the relative
contribution of one or more of the forecast variables in a multivariate forecasting
model. Contrary to much empirical evidence on the value of BP and EP for explain-
ing the cross section of realized returns, it appears that for the cross section based
on the BGMTX forecast model, neither BP nor EP are an important part of the very
significant performance potential indicated by the plots, the high-minus-low returns,
and especially the very significant slope for the linear regression fit. This analysis
indicates that most of the forecast potential must arise from the other six variables.

In order to gain more insight on forecast potential, it is useful to add to the risk
and tax controls additional controls for growth and profitability and also to assess the
impact on the return cross section of suppressing other model variables. The next
control sets summarized in Exhibit 8.8 add to the Fama–French risk controls and
the set of tax controls two growth controls (5-year sales growth, 3-year sustainable
growth) plus a profitability control (either ROE, ROI, or sales intensity SI). In all
three cases the estimated slope coefficient increases to more than 0.20, but both
the t-value and R2 decrease slightly. The increased slope coefficient with poorer fit
makes sense if one also considers the high-minus-low data in Exhibit 8.7. The effect
of adding growth and profitability controls is to increase primarily the very high
returns and to decrease the very low returns and to thereby increase the departure
from linearity. Hence, there is more range and more performance potential for the
very high predicted returns but a departure from linearity and a poorer linear fit.

The final control set adds controls for two more forecast variables: CP and SP.
Hence, for this control set there is no cross-sectional impact from any of the four
current value ratios: BP, EP, CP, and SP. The large significant slope coefficient is
attributable solely to the four relative value ratios. If we use the estimated slope
coefficient as an indicator of overall ability of the return forecast to predict
risk-controlled, tax-controlled, growth–profitability controlled realized return
predictions, the suppression of CP and SP indicates that the relative value
ratios are responsible for about 80 % of the apparent return forecast potential,
CP and SP contribute about 20 % of the apparent return forecast potential,
and BP and EP seem to contribute very little to the apparent return forecast
potential.
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8.8.11 The Cross Sections of Realized Standard Deviations
for Different Combinations of Controls

Exhibit 8.9 summarizes regressions of the realized cross-time standard deviations
on return forecast score for different combinations of controls.

The coefficient on the linear term C1 is insignificant until tax controls (FL, EP,
and DP) are imposed. The large jump in the t-value with the imposition of tax
controls alone or in combination with other variables again indicates that controlling
for tax effects is critical to isolate return forecast performance from other distorting
return factors. For the cross section of realized standard deviations, it appears
systematic tax effects are the most pertinent set of control variables rather than the
usual systematic risk variables.

In all of the cross-sectional plots summarizing the dependence of realized
standard deviation on portfolio number such as in Exhibit 8.5, the dependence of
realized standard deviation on portfolio number is clearly nonlinear and nonmono-
tonic. In particular, the standard deviations for low portfolio numbers (low forecast
scores) and for high portfolio numbers (high forecast scores) were all substantially
greater than the standard deviations for the middle of the cross section. Visual
inspection of the cross-sectional plots suggests a quadratic dependency. For this
reason, the regressions summarized in Exhibit 8.9 designed to assess the cross-
sectional dependence of realized standard deviations on return forecast score include
a quadratic term as well as a linear term. Because the concern is assessing the impact
of below average and above average forecast scores relative to the average, the
quadratic dependency is expressed as a squared deviation of return forecast score

SDp = C0 + C1(FSp) + C2(FSp - mean(FSp))2 + εpControl Variables   

C1 t C2 t Adj R2 p-value 

No Constraints  0.07 2.30 0.02 18.21 0.920 <.0001

β(Beta) 0.11 3.74 0.01 12.45 0.852 <.0001

S(Size) 0.07 2.31 0.02 18.36 0.921 <.0001

BP(Book-to-Market ) 0.11 3.89 0.02 22.24 0.946 <.0001

β, S, BP 0.14 5.50 0.02 15.46 0.902 <.0001

FL, EP, DP 0.18 6.46 0.02 17.32 0.928 <.0001

β, S, BP, FL, EP, DP 0.20 9.98 0.01 16.57 0.934 <.0001

β, S, DP, FL, Sag5, Sug3 0.18 7.18 0.01 13.27 0.895 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE 0.21 9.24 0.01 14.80 0.918 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROI 0.20 10.20 0.01 16.20 0.931 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, SI 0.21 9.44 0.01 15.04 0.921 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE, SI 0.21 9.62 0.01 15.11 0.922 <.0001

β,S,BP,FL,EP,DP,SAG5,SUG3,ROE,SI,CP,SP 0.17 11.06 0.01 17.13 0.936 <.0001

Exhibit 8.9 The ability of forecast score to explain the cross section of standard deviations
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from the average forecast score. In the regressions in Exhibit 8.9, the t-values for
the quadratic coefficient C2 are much larger and thus much more significant than
the t-values for the linear coefficient C1. The very high adjusted R-square values
for all of the regressions in Exhibit 8.9 strongly indicate that the combination of
a linear and quadratic dependency explains most of the cross-sectional variation in
the realized standard deviations. The much higher significance for the quadratic term
is confirmation of the importance of the nonlinear, nonmonotonic apparently near-
quadratic dependency suggested by the cross-sectional plots such as Exhibit 8.5.

8.8.12 The Cross Section of Realized Skewness Coefficients

Exhibit 8.10 is a cross-sectional regression on the long-run realized skewness as
measured by the skewness coefficient.

The skewness is significant even with no control constraints. This jump in the
t-value from imposing the beta control alone suggests that controlling for market
movements by means of the beta control increases the isolation of nonsystematic
skewness from any market skewness. Interestingly, neither the size control alone
nor the book-to-market control alone significantly changes the skewness. However,
the three systematic risk controls together increase the increase skewness.

In contrast to the regressions for realized standard deviation, tax controls alone
do not seem to help isolate skewness effects. However, the three risk controls plus
the three tax controls together do increase the coefficients and associated t-values.

SDp = C0 + C1(FSp) + C2(FSp - mean(FSp))2 + εpControl Variables   

C0 t C1 t C2 t Adj R2 p-value

No Constraints  -1.272 -14.36 0.014 10.7 0.001 13.67 0.911 <.0001

β(Beta) -1.252 -14.06 0.017 12.13 0.000 8.55 0.883 <.0001

S(Size) -1.274 -13.42 0.014 9.95 0.001 12.84 0.900 <.0001

BP(Book-to-Market ) -1.375 -15.84 0.016 11.7 0.001 14.68 0.923 <.0001

β, S, BP -1.340 -21.18 0.018 17.84 0.000 12.14 0.941 <.0001

FL, EP, DP -1.164 -9.15 0.013 5.92 0.001 9.16 0.822 <.0001

β, S, BP, FL, EP, DP -1.365 -17.42 0.019 14.07 0.000 7.93 0.907 <.0001

β, S, DP, FL, Sag5, Sug3 -1.347 -21.04 0.018 17.12 0.001 11.15 0.940 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE -1.408 -18.3 0.020 15.07 0.000 8.2 0.916 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROI -1.411 -23.11 0.020 19.17 0.000 10 0.945 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, SI -1.427 -19.23 0.020 15.88 0.001 9.24 0.926 <.0001

β, S, BP, FL, EP, DP, Sag5, Sug3, ROE, SI -1.418 -21.82 0.020 18.03 0.000 10.02 0.940 <.0001

β,S,BP,FL,EP,DP,SAG5,SUG3,ROE,SI,CP,SP -1.150 -18.14 0.016 14.51 0.000 5.89 0.896 <.0001

Exhibit 8.10 The ability of forecast score to explain the cross section of skewness coefficients
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Adding our two growth controls and other company-specific controls does
increase significantly the ability of return forecast score to explain the cross-
sectional skewness coefficient. We conclude that isolating nonsystematic value-
related skewness associated with the illustrative value-focused return forecasting
model requires that we isolate these value-related return and risk effects from growth
in particular.

In the final set of controls in Exhibit 8.10, we add two more controls for two of
the forecast model variables, namely, CP and SP. Given that the control set already
contains the BP and EP ratios, the net effect of this final control set is to remove
from the cross section the contribution to realized returns of all four current value
ratios. Thus, this final set thus measures the skewness response for just the relative
value ratios. It is interesting that the t-value is the greatest for this set of control
constraints. This high t-value for the response of realized skewness to the relative
value subset of the eight forecast variables is strong evidence that the significant
cross-sectional dependency of skewness on return forecast score is primarily
from the relative value ratios rather than the current value ratios.

Since the relative value ratios measure attractiveness for a company relative to
its own past value ratios, this result suggests, or at least is consistent with, company
values returning to a moving mean. In other words, this result indicates that when
current value ratios are well below their 5-year average value, there is an apparently
strong likelihood that the stock price will increase in order to return the company
to its recent average valuation. This result is consistent with the value analyst
use of relative value ratios to find stocks with limited downside risk and upside
potential. It also suggest turning point performance, rather than trend (momentum)
as the primary source of unpriced, unsystematic skewness.

8.9 Further Research

Having good return forecasts is the primary requirement for successful active
portfolio management. Given one or more return forecasting alternatives, the central
problem for making decisions about return forecast centers on the ability to conduct
high power, high efficiency backtest assessments. The focus here has been to
illustrate the use of a mathematical assignment program to optimize the construction
of control-matched cross-sections of rank-ordered return forecasts. The central
requirement for high-quality return forecast assessments is the ability to isolate the
impact of the return forecast from the impact of other return variables. The control
matching framework is an alternative to the use of multivariate regression to evaluate
return forecasts.

The BGMTX forecast model has been used as an illustrative multivariate return
forecast. There are several ways to extend this forecast assessment. A very important
question for forecast performance is cross-time consistency. The majority of this
chapter has looked at the very long 1967-2004 for time period. Stone and Gerard
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(2010) report comparable performance results for this United States sample for four
subperiods of 1967–2004.

Additional performance concerns are relative ability to perform in up-markets
versus down-markets as well as performance in other markets or market subsectors.
Stone and Gerard (2011) use control matching to evaluate performance for Japan
including subperiods of net market decline. The Japan assessment shows that the
BGMTX forecast model rank orders return performance over extended net market
declines in Japan, for instance excellent relative rank ordering for control matched
cross-sections when every fractile portfolio except the highest ranked has a negative
return.

Tracking error pertains to cross-time consistency. Given a sample of control
matched cross-sections for a forecast time period such as the 456 monthly control
matched cross-sections used in this illustration of the methodology, a researcher can
evaluate tracking error by looking at moving averages, e.g., 12-month, 24-month,
and 60-month rolling averages to obtain an indication of one-year, two-year, and
five-year performance consistency risk. Observing moving average performance
provides insights to not only tracking consistency but also relative performance in
net up markets, net down markets, and over market reversals. Relative performance
in up, down, and reversal markets provides insight on the extent to which a particular
forecast is momentum focused (trend extrapolating) versus turning-point focused.
For the BGMTX forecast model used in this illustration of control matching, one-
year moving averages indicate that much of the performance value occurred over
marker reversals, both transition from a bear to bull market and also transition from
a bull market to a bear market. This reversal performance is consistent with the fact
that suppressing the effect of the four value ratios indicated that roughly 80% of the
high-minus-low performance summarized in Exhibit 8.7 was attributable to the four
relative value (return reversal) variables in the BGMTX forecast model.

The key idea implicit in the preceding discussion is many alternative performance
assessment insights beyond the statistical tests used in this chapter. Having a time
series of control matched forecast cross sections allows a researcher to investigate
not only statistical return performance but also cross-sectional risk (tracking error,
standard deviations, skewness, etc).

Looking at performance value without noise from other return variables lets
a researcher experiment with forecast performance without distortion from other
return impact variables. Moreover, looking at performance for alternative control
sets provides important information on interaction with other return impact vari-
ables. For instance, the fact that the two growth controls had an impact on the
high-minus-low performance even after controlling for both risk and tax effects
suggests a nonsystematic growth effect and therefore potential value to adding one
or more growth variables to the BGMTX forecast model.
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8.10 Conclusions

The BGMTX forecast model shows significant return performance potential as
established in other studies. Compared to studies that do not use matched controls,
the use of risk, tax, growth, and profitability controls provides additional informa-
tion.

1. Both the return and the realized standard deviations cross sections are nonlinear.
The cross section of realized standard deviations is a relatively small range
compared to the range in the cross section of realized returns. The cross section
of realize standard deviations is not only nonlinear but highly nonmonotonic.

2. The distribution of realized returns about the average value exhibits skewness,
negative skewness for low return forecasts, very little for the middle of the
distribution, and very large significant skewness for the highest return forecasts.

3. The three risk control variables tend to smooth the cross sections of realized
returns; however, risk variables appear not to have a significant effect on the
long-run cross section of realized returns. These risk variables are not a source
of systematic performance bias.

4. The three risk controls in combination tend to smooth the cross sections of
realized standard deviations. More importantly, the three risk controls together
reduce the range of realized standard deviations.

5. Tax effects are very significant for the illustrative BGMTX forecast model.
Contrary to the hypothesis of apparent return potential being a tax tilt, imposing
the three tax controls to eliminate cross-sectional variation in the dividend–gain
mix significantly increases the slope and range of the realized return cross section
and moderately reduces realized standard deviation.

6. The power optimizing imposition of a combination of risk and tax controls
significantly increases statistical efficiency relative to the uncontrolled cross
section. Adding growth and profitability controls adds additional value in
assessing return potential.

7. Suppressing the four current value ratios in the cross section of realized returns
reduces the slope of the realized return cross section only modestly, about 20 %.
The relative value ratios are the major source of realized return potential and the
significant positive skewness for the high-return forecast part of the cross section.

The main methodology benefit for full sample assessments of performance
potential of a return forecast is the control matching framework itself. Using a
power optimizing reassignment program like that formulated in Sect. 8.5 makes
it possible to eliminate return performance distortion from other return impacting
variables without having to make any assumptions about the distribution or form
of the functional dependency for any of the control variables. One simply has
to assume a possible dependency on the return variables. Imposing the control
constraint eliminates any portfolio-to-portfolio impact from the matched controls.
The distribution-free, specification-free attribute avoids functional form specifica-
tion errors and the estimation limitations associated with distributional assumptions.
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Compared to using a multivariate regression to estimate jointly the sensitivity of
realized returns to the forecast and also to estimate an assumed dependency for
all the other possible return impact variables for risk, taxes, growth, profitability,
etc., the use of controls to suppress cross-sectional variation in the other variable
dependencies means only the need to estimate a univariate dependency on the
return forecast under the assumption that any effect of other return impact variables
has been suppressed. Concentrating all sample data on a conditional univariate
dependency rather than estimating a multivariate dependency means much more
efficient, more powerful extraction of sample information relative to making
restrictive assumptions to estimate multiple dependencies when the concern is a
single well-isolated conditional dependency.

The use of tax controls illustrates the benefit of avoiding functional specification
to remove a potential source of realized return distortion. By simply making every
portfolio in the cross section have the same dividend yield, dividend payout ratio,
and same benefit from the debt tax shield, it is not necessary to estimate time-varying
marginal tax rates for dividends and gains. Similarly, using FL as a financial control
avoided the need to assess the value of the debt tax shield and the simultaneous
need to correct for distortion from other possible but not known valuation effects of
financial leverage.

In addition to the benefits of concentrating data on a univariate dependency
and avoiding distribution and specification assumptions, the control matching
framework completely eliminates bias/distortion from covariability effects between
the return forecast and any of the control variables. Complete elimination of
covariability contamination is a significant power benefit!

Another efficiency/power design concern is the number of portfolios in the cross
section. The efficiency benefit of grouping observations is reduced measurement
error and possibly reduced specification and omitted variable error. Grouping
observations loses power by reducing the number of sample observations. The
point made in this paper is the need to explicitly recognize the relative benefit of
reduced measurement error versus loss of power from reduction in the number of
sample observations and the associated loss of information from using averages
to represent a collection of observations. In the control matching framework, it is
possible to consolidate control-matched fractiles and preserve the control matching.
This consolidation is illustrated in Sect. 8.8.9 assessing the high-minus-low realized
return differences for 30 tiles and the consolidation to 15 tiles and deciles.

Return forecasting is very much an art using knowledge of valuation and statis-
tics. Assessing return forecast performance potential is also an art. The matched
control framework aided by an optimal reassignment algorithm is a decision support
framework for exploring return performance potential that avoids many limitations
of multivariate regression assessments including especially collinearity distortion
and the restrictions of distributional and functional form assumptions.
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Appendices

Appendix 8.1. Rank-ordered portfolio data: no controls

P# FS Rtn% SD% Skew S Ratio

1 2.98 10.29 8.96 0.802 0.096
2 3.90 6.22 9.11 0.279 0.057
3 6.99 8.84 7.96 0.065 0.093
4 11.70 7.72 7.01 �0.231 0.092
5 14.38 6.10 6.81 �0.300 0.075
6 18.02 8.89 6.41 �0.543 0.116
7 21.51 7.94 6.13 �0.509 0.108
8 24.98 7.75 6.09 �0.519 0.106
9 28.05 9.18 5.76 �0.682 0.133
10 31.50 7.85 5.68 �0.593 0.115
11 34.84 6.48 5.54 �0.714 0.097
12 37.98 7.96 5.56 �0.606 0.119
13 41.04 9.92 5.48 �0.591 0.151
14 44.48 9.20 5.43 �0.528 0.141
15 47.98 9.39 5.39 �0.503 0.145
16 51.03 9.42 5.35 �0.384 0.147
17 54.45 8.79 5.35 �0.417 0.137
18 57.89 9.93 5.54 �0.213 0.149
19 60.96 9.48 5.50 �0.209 0.144
20 64.44 11.74 5.56 �0.241 0.176
21 67.87 9.97 5.69 �0.077 0.146
22 70.89 10.04 5.78 0.034 0.145
23 73.96 10.36 6.08 0.462 0.142
24 77.43 12.39 6.35 0.287 0.163
25 80.87 11.95 6.49 0.530 0.154
26 84.41 12.93 6.95 0.421 0.155
27 87.06 14.29 7.35 1.061 0.162
28 91.08 13.03 8.26 0.993 0.131
29 94.29 15.50 9.57 1.271 0.135
30 96.59 19.12 10.62 2.308 0.150
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Appendix 8.2. Rank-ordered portfolio data: only a beta control

P# FS Rtn% SD% Skew S Ratio

1 4.21 7.77 7.36 �0.248 0.088
2 5.20 5.74 7.59 0.080 0.063
3 8.54 9.37 7.14 �0.447 0.109
4 13.52 7.72 6.22 �0.617 0.103
5 16.19 7.64 6.40 �0.636 0.099
6 19.69 9.61 5.83 �0.565 0.137
7 23.12 7.73 5.98 �0.612 0.108
8 26.27 7.60 5.81 �0.477 0.109
9 29.14 7.56 5.78 �0.507 0.109
10 32.34 9.83 5.68 �0.629 0.144
11 35.49 7.94 5.56 �0.400 0.119
12 38.51 7.73 5.77 �0.541 0.112
13 41.44 7.68 5.61 �0.567 0.114
14 44.72 8.70 5.64 �0.402 0.128
15 48.02 8.08 5.54 �0.484 0.121
16 50.97 9.39 5.65 �0.404 0.139
17 54.24 8.85 5.59 �0.290 0.132
18 57.51 9.04 5.76 �0.034 0.131
19 60.47 9.17 5.75 0.197 0.133
20 63.79 11.05 5.84 �0.012 0.158
21 67.07 10.47 5.78 �0.180 0.151
22 69.96 10.37 5.92 0.149 0.146
23 72.92 10.89 5.85 �0.010 0.155
24 76.15 12.23 6.09 0.042 0.167
25 79.65 12.76 6.07 0.287 0.175
26 83.18 11.10 6.50 0.632 0.142
27 85.85 13.27 6.78 0.247 0.163
28 89.97 15.10 7.65 1.263 0.164
29 93.48 15.11 8.68 1.483 0.145
30 95.94 19.89 9.55 1.585 0.173
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Appendix 8.3. Rank-ordered portfolio data: only a size control

P# FS Rtn% SD% Skew S Ratio

1 3.28 10.31 8.90 0.914 0.097
2 4.22 6.77 9.08 0.159 0.062
3 7.31 7.73 7.93 0.137 0.081
4 12.00 7.91 7.03 �0.313 0.094
5 14.65 6.35 6.85 �0.200 0.077
6 18.28 8.70 6.33 �0.556 0.115
7 21.86 8.06 6.06 �0.621 0.111
8 25.20 7.79 6.10 �0.538 0.106
9 28.29 9.07 5.84 �0.602 0.130
10 31.67 7.09 5.61 �0.704 0.105
11 34.97 6.80 5.54 �0.640 0.102
12 38.11 8.49 5.54 �0.537 0.128
13 41.16 9.49 5.47 �0.581 0.145
14 44.51 9.05 5.35 �0.604 0.141
15 47.99 9.34 5.44 �0.413 0.143
16 51.09 9.30 5.33 �0.375 0.145
17 54.40 8.84 5.36 �0.478 0.137
18 57.82 10.07 5.58 �0.279 0.150
19 60.90 9.79 5.42 �0.198 0.150
20 64.26 11.35 5.51 �0.196 0.172
21 67.67 10.17 5.62 �0.035 0.151
22 70.68 10.91 5.95 0.266 0.153
23 73.75 10.31 5.96 0.189 0.144
24 77.07 12.86 6.31 0.340 0.170
25 80.63 11.73 6.52 0.322 0.150
26 84.15 12.78 6.96 0.514 0.153
27 86.80 14.43 7.29 1.045 0.165
28 90.80 13.24 8.21 1.017 0.134
29 94.01 15.06 9.58 1.261 0.131
30 96.28 18.87 10.55 2.329 0.149



8 Portfolio Performance Assessment: Statistical Issues and Methods for Improvement 223

Appendix 8.4. Rank-ordered portfolio data: only a BP control

P# FS Rtn% SD% Skew S Ratio

1 4.03 10.27 8.83 0.805 0.097
2 5.47 7.47 8.89 0.276 0.070
3 9.10 7.66 7.64 �0.064 0.083
4 14.47 7.46 6.83 �0.460 0.091
5 17.26 8.51 6.71 �0.495 0.106
6 21.01 8.60 6.45 �0.292 0.111
7 24.59 9.23 5.94 �0.657 0.129
8 27.75 7.76 5.88 �0.745 0.110
9 30.61 8.45 5.87 �0.772 0.120
10 33.74 8.09 5.67 �0.515 0.119
11 36.75 7.70 5.38 �0.824 0.119
12 39.56 10.29 5.55 �0.547 0.154
13 42.27 9.68 5.51 �0.690 0.146
14 45.27 8.96 5.38 �0.569 0.139
15 48.26 8.93 5.25 �0.594 0.142
16 50.89 9.74 5.35 �0.425 0.152
17 53.84 9.24 5.33 �0.381 0.144
18 56.82 10.67 5.37 �0.310 0.166
19 59.50 10.67 5.51 �0.077 0.161
20 62.58 10.70 5.49 �0.173 0.162
21 65.68 9.64 5.72 �0.105 0.140
22 68.44 10.50 5.83 �0.038 0.150
23 71.36 11.25 6.02 0.177 0.156
24 74.60 10.88 6.30 0.220 0.144
25 78.16 11.75 6.70 0.565 0.146
26 81.86 12.03 6.92 0.373 0.145
27 84.69 13.33 7.15 0.707 0.155
28 89.21 12.84 8.44 1.469 0.127
29 92.95 15.15 9.62 1.342 0.131
30 95.83 17.85 10.65 2.186 0.140
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Appendix 8.5. Rank-ordered portfolio data: risk controls only

P# FS Rtn% SD% Skew S Ratio

1 4.21 7.77 7.36 �0.248 0.088
2 5.20 5.74 7.59 0.080 0.063
3 8.54 9.37 7.14 �0.447 0.109
4 13.52 7.72 6.22 �0.617 0.103
5 16.19 7.64 6.40 �0.636 0.099
6 19.69 9.61 5.83 �0.565 0.137
7 23.12 7.73 5.98 �0.612 0.108
8 26.27 7.60 5.81 �0.477 0.109
9 29.14 7.56 5.78 �0.507 0.109
10 32.34 9.83 5.68 �0.629 0.144
11 35.49 7.94 5.56 �0.400 0.119
12 38.51 7.73 5.77 �0.541 0.112
13 41.44 7.68 5.61 �0.567 0.114
14 44.72 8.70 5.64 �0.402 0.128
15 48.02 8.08 5.54 �0.484 0.121
16 50.97 9.39 5.65 �0.404 0.139
17 54.24 8.85 5.59 �0.290 0.132
18 57.51 9.04 5.76 �0.034 0.131
19 60.47 9.17 5.75 0.197 0.133
20 63.79 11.05 5.84 �0.012 0.158
21 67.07 10.47 5.78 �0.180 0.151
22 69.96 10.37 5.92 0.149 0.146
23 72.92 10.89 5.85 �0.010 0.155
24 76.15 12.23 6.09 0.042 0.167
25 79.65 12.76 6.07 0.287 0.175
26 83.18 11.10 6.50 0.632 0.142
27 85.85 13.27 6.78 0.247 0.163
28 89.97 15.10 7.65 1.263 0.164
29 93.48 15.11 8.68 1.483 0.145
30 95.94 19.89 9.55 1.585 0.173
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Appendix 8.6. Rank-ordered portfolio data: tax controls only

P# FS Rtn% SD% Skew S Ratio

1 10.42 0.30 6.50 �0.420 0.004
2 11.42 0.15 6.45 �0.393 0.002
3 15.46 4.50 6.35 �0.600 0.059
4 20.52 6.09 5.89 �0.737 0.086
5 22.84 4.93 5.98 �0.495 0.069
6 25.76 4.61 5.87 �0.728 0.065
7 28.62 4.90 5.67 �0.642 0.072
8 31.02 6.47 5.57 �0.729 0.097
9 33.27 6.75 5.59 �0.490 0.100
10 35.77 8.13 5.60 �0.638 0.121
11 38.14 7.96 5.47 �0.645 0.121
12 40.46 8.12 5.49 �0.587 0.123
13 42.74 7.33 5.47 �0.607 0.112
14 45.30 8.78 5.59 �0.522 0.131
15 47.90 8.26 5.70 �0.377 0.121
16 50.26 10.91 5.51 �0.407 0.165
17 52.94 9.86 5.60 �0.277 0.147
18 55.63 11.84 5.77 �0.077 0.171
19 58.13 12.02 5.72 �0.269 0.175
20 60.96 11.56 5.83 �0.010 0.165
21 63.80 11.84 5.92 0.047 0.167
22 66.32 10.84 6.02 0.019 0.150
23 68.98 11.79 6.07 0.147 0.162
24 71.98 14.23 6.05 0.069 0.196
25 75.37 12.79 6.38 0.144 0.167
26 78.92 13.99 6.39 0.121 0.182
27 81.66 16.00 6.90 0.604 0.193
28 86.26 14.75 7.38 0.515 0.166
29 90.47 18.25 8.38 0.987 0.181
30 93.65 21.40 8.92 1.789 0.200



226 B.K. Stone

Appendix 8.7. Rank-ordered portfolio data: risk and tax controls

P# FS Rtn% SD% Skew S Ratio

1 10.42 0.30 6.50 �0.420 0.004
2 11.42 0.15 6.45 �0.393 0.002
3 15.46 4.50 6.35 �0.600 0.059
4 20.52 6.09 5.89 �0.737 0.086
5 22.84 4.93 5.98 �0.495 0.069
6 25.76 4.61 5.87 �0.728 0.065
7 28.62 4.90 5.67 �0.642 0.072
8 31.02 6.47 5.57 �0.729 0.097
9 33.27 6.75 5.59 �0.490 0.100
10 35.77 8.13 5.60 �0.638 0.121
11 38.14 7.96 5.47 �0.645 0.121
12 40.46 8.12 5.49 �0.587 0.123
13 42.74 7.33 5.47 �0.607 0.112
14 45.30 8.78 5.59 �0.522 0.131
15 47.90 8.26 5.70 �0.377 0.121
16 50.26 10.91 5.51 �0.407 0.165
17 52.94 9.86 5.60 �0.277 0.147
18 55.63 11.84 5.77 �0.077 0.171
19 58.13 12.02 5.72 �0.269 0.175
20 60.96 11.56 5.83 �0.010 0.165
21 63.80 11.84 5.92 0.047 0.167
22 66.32 10.84 6.02 0.019 0.150
23 68.98 11.79 6.07 0.147 0.162
24 71.98 14.23 6.05 0.069 0.196
25 75.37 12.79 6.38 0.144 0.167
26 78.92 13.99 6.39 0.121 0.182
27 81.66 16.00 6.90 0.604 0.193
28 86.26 14.75 7.38 0.515 0.166
29 90.47 18.25 8.38 0.987 0.181
30 93.65 21.40 8.92 1.789 0.200
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Chapter 9
The Duality of Value and Mean Reversion

Noah Beck, Shingo Goto, Jason Hsu, and Vitali Kalesnik

9.1 Introduction

Value investing is the strategy of buying stocks with high fundamentals-to-price
ratios and selling stocks with low fundamentals-to-price ratios. A mean reversion
strategy, also known as a long-term return reversal strategy,1 entails buying stocks
which have been significantly underperforming and selling stocks which have been
outperforming the market over several years. Both value and mean reversion are
viewed by market participants as premium-generating strategies. Intuitively, the
value and mean reversion strategies are related: Both favor stocks with low prices
and dislike stocks with high prices. In the case of value, the low or high prices
are appraised relative to company fundamentals. In the case of mean reversion, the
prices are evaluated relative to past prices. In this chapter we explore how value and
mean reversion are related and what makes them different.

1We use the mean reversion terminology to refer to reversal effects throughout this paper.
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We begin with an overview of value and long-term mean reversion in prices,
including a comparison of the risk–return characteristics of fundamentals-based and
mean reversion investment strategies. (We use the price-to-book-value ratio, or P/B,
as the value metric.) Empirical evidence suggests that value and mean reversion
benefit from the same source of value added. The performance of the value strategy,
however, dominates the performance of a mean reverting strategy. We summarize
pertinent aspects of Fama and French’s (2007) study of stocks’ migration across size
and style portfolios as an explanation of the small size and value premia. We argue
that size, value, and mean reversion strategies outperform as the stock prices migrate
from extreme to more average levels. Finally, we explore what it is about the value
strategy that gives it an edge over the mean reversion strategy. We demonstrate that,
while security prices are mean-reverting, company fundamentals are not. Positive
or negative economic shocks are reflected both in company fundamentals and in
company price.

By offsetting permanent variations in stock prices driven by corporate funda-
mentals, the value ratio helps distill the transitory component of the stock price that
exhibits mean reversion. For example, we can express the P/B ratio as follows:

Price
Book Value per Share D q�Permanent ComponentCTransitory Component

Permanent Component

D q C Transitory Component
Permanent Component

Here q represents the long-run mean of the P/B ratio. Assuming that the level
of q has relatively small variation across stocks, the P/B ratio provides a useful
signal about the transitory variation of the stock price that is likely to be reversed
subsequently.2 We can also see that the P/B ratio itself exhibits a tendency to revert
to its long-run mean level q. Consequently, value ratios like P/B should predict mean
reversion (reversal) effects of stock prices.

On the other hand, long-term mean reversion strategies rely on the ratio of a
stock’s recent price to its past price (or past cumulative returns), a ratio that reflects
changes in both the transitory and permanent components of stock prices. This ratio
is not as efficient as value ratios in capturing transitory (mean-reverting) variations
in stock prices. This is why value ratios contain cleaner information about future
price movements than do signals derived from prices alone. The value strategy gains
a performance advantage over the mean reversion strategy because it is attuned to a
purer signal.

2Of course it would be useful to examine the importance of this assumption. For example, if the
level of q varies across different industries, then we can use an industry control to improve the
return predictability of the P/B ratio. However, because the goal of this paper is to compare general
value strategies with general mean reversion (long-term reversal) strategies, we will use a few
simplifying assumptions.
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9.2 Short-Term Momentum and Long-Term Mean Reversion

It is well known that stock returns are affected by short-term momentum and long-
term mean reversion in prices. Short-term momentum can be effectively captured
with trading strategies that rebalance portfolio holdings monthly. The basic trading
rule is to buy the stocks which outperformed, and sell those which underperformed,
over the preceding 12 months.

Researchers investigating long-term mean reversion in stock prices usually build
portfolios of the stocks whose prices fell over the 4-year period from 5 years ago
to 1 year ago. They skip the most recent year because it is largely dominated by
momentum. Long-term mean reversion occurs over a period up to 10 years, but
researchers typically choose the shorter timespan over which the effect is strongest.
The portfolio would buy the loser stocks, whose prices went down the most in this
period, and sell the winner stocks, whose prices concurrently went up the most.3

Table 9.1 shows the hypothetical performance statistics for the long-term mean
reversion strategy in comparison to other strategies known to have generated
significant returns in the past. From January 1931 through August 2013, long-term
mean reversion in U.S. equities produced on average about 3.5 % excess return
per annum with a Sharpe ratio of 0.35 and a t-statistic of 3.14. The risk–reward
characteristics of the long-term mean reversion strategy are roughly in line with
those of the other major drivers of return.

Practitioners usually do not employ the researchers’ simplistic mean-reversion
strategy. Instead, they generally look at certain price-to-smoothed-fundamental
ratios to capture mean reversion. Academicians have preferred the price-to-book
value (P/B) ratio; practitioners have additionally taken into account the ratios of
price to the past 5 years of cash flow, sales, and dividends. (Technical analysts

Table 9.1 Risk–return characteristics—U.S. equities (January 1931�August 2013)

Momentum Long-term mean reversion Value Size Market

Geometric
average excess
return (Ann.)

5.9 % 3.5 % 4.5 % 2.9 % 6.3 %

Arithmetic
average excess
return (Ann.)

7.3 % 4.2 % 5.2 % 3.5 % 7.9 %

Volatility (Ann.) 16.7 % 12.1 % 12.3 % 11.3 % 18.6 %
Sharpe ratio 0.44 0.35 0.42 0.31 0.42
t-Statistic 4.00 3.14 3.80 2.81 3.85

Source: Research Affiliates, LLC, based on data from Kenneth French’s website. The value
and size factors are HML and SMB, respectively. We use an ad hoc long-term reversal factor
for the long-term mean reversion strategy

3We borrow the “winner” and “loser” terminology from De Bondt and Thaler (1985).
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tend to use the ratio of price to a T-year moving average price.) Table 9.1 shows
the results for a value strategy, which buys “value” stocks with high book-to-price
(B/P) ratios and sells “growth” stocks with low B/P ratios. The fact that practitioners
prefer the value strategy is not surprising. It has a Sharpe ratio of 0.42—appreciably
higher than the 0.35 Sharpe ratio registered by the naïve mean reversion strategy.

9.3 Links Between Value and Mean Reversion Strategies

Both the value and the long-term mean-reversion strategies buy stocks with low
prices and sell stocks with high prices. The value strategy looks at price-to-
fundamental ratios; the mean-reversion strategy looks at current prices relative
to past prices. It is not surprising, then, that both strategies should essentially
capture the same sources of value-added returns. Table 9.2 displays the correlations
between the different return-generating strategies we previously considered. As one
would expect, the long-term mean reversion and value strategies have the highest
correlation (0.62).

Because value and long-term mean reversion are overlapping strategies, it is
natural to ask which is better. We have seen that the value strategy has the higher
Sharpe ratio, but that may be due to additional market exposure or an unintentional
small stock bias. In order to answer the question directly, we employed a regression-
based attribution model whose output is reported in Table 9.3. Panel A shows how
the four traditional risk factors contributed to the excess return earned by the long-
term mean reversion strategy. The strategy’s alpha is not meaningfully different
from zero; a significant value factor loading explains the bulk of the mean reversion
strategy premium.

Panel B presents a performance attribution analysis from the opposite direction:
it traces the value premium to its sources, including the traditional market, size,
and momentum factors and an ad hoc long-term mean reversion (LTMR) factor.
As anticipated, the value strategy has a significant loading on long-term mean
reversion. More importantly, however, mean reversion does not explain the value
premium completely. The risk-adjusted alpha is about 4.47 % per annum and is

Table 9.2 Return correlation matrix—U.S. equities (January 1931�August 2013)

Momentum Long-term mean reversion Value Size Market

Momentum 1:00

Long-term mean reversion �0:23 1.00
Value �0:40 0.62 1.00
Size �0:15 0.41 0.11 1.00
Market �0:34 0.26 0.24 0.34 1.00

Source: Research Affiliates, LLC, based on data from Kenneth French’s website
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Table 9.3 Factor-based return attribution analysis—U.S. equities (Jan-
uary 1931�August 2013)

Panel A. Long-term mean reversion strategy
Alpha (Ann.) Market Size Value Momentum

Coefficient �0.69 % 0.01 0.38 0.59 0.05
t-Statistic �0.71 0.85 14.81 24.66 2.64
Panel B. Value strategy

Alpha (Ann.) Market Size LTMR Momentum
Coefficient 4.47 % 0.04 �0.23 0.64 �0.20
t-Statistic 4.43 2.06 �8.15 24.66 �10.73

Source: Research Affiliates, LLC, based upon data from Kenneth
French’s website

strongly statistically significant. When a value strategy anchors on fundamentals,
it benefits substantially from additional information that is not captured by long-
term mean reversion in prices.4

9.3.1 The Value Premium

Value investing generates a significant premium over cap-weighting as a strategy.
Although the interpretation of the premium is vigorously debated, the mechanics
are well accepted. Value stocks outperform by becoming less value-oriented over
time. That is to say, much of the observed outperformance of the value strategy
is driven by the stocks with low price-to-fundamental ratios becoming stocks with
higher ones. Value stocks with perennially low price-to-fundamental ratios do not
appear to generate meaningful excess returns over time.5

More interestingly, value stocks typically migrate toward being “less value”—
that is, having a higher price-to-fundamental ratio—not because the denominator
falls but because the numerator rises. This observation that value stocks deliver
greater performance because they tend to experience price appreciation is the
basis for inferring that value characteristics forecast positive price mean reversion.
On the other hand, growth stocks’ underperformance is substantially driven by
their initially high price-to-fundamental ratios drifting lower; the corresponding
inference is that growth characteristics forecast negative price mean reversion. Both
hypotheses are borne out by empirical observation.

To illustrate the effect of changing P/B value ratios, we reproduce findings from
the Fama and French (2007) study, “Migration.” Table 9.4 displays the average

4These results are consistent with Fama and French (1996) and Daniel and Titman (2006), who
show that value effects subsume long-term return reversal effects.
5However, Fama and French (2007) state, “value stocks that do not migrate have higher average
returns than growth stocks that do not migrate.” See Table 9.4.
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Table 9.4 Migration effect (June 1927–June 2006)

Average contribution to portfolio’s average excess return
Portfolio Average excess return Minus Same Plus Change in size

Small growth 2.2 �5.3 �1.5 0.5 8.5
Small neutral 5.6 �2.7 0.6 2.6 5.1
Small value 9.2 �0.2 �0.5 4.2 5.6
Big growth �0.9 �1.2 0.6 0.1 �0.4
Big neutral 1.2 �0.9 0.3 2.2 �0.4
Big value 4.8 0.0 2.3 3.3 �0.7

Source: Fama and French (2007), Table 9.3

excess returns of value, neutral, and growth portfolios composed of small-cap or big-
cap stocks. The average returns in excess of the market return demonstrate that, over
the 80-year period from June 1927 through June 2006, value stocks outperformed
growth stocks and small stocks outperformed big stocks. In addition, each year
Fama and French constructed six portfolios holding stocks with similar size and
P/B value characteristics (e.g., a small value portfolio) and broke out the returns of
portfolios that:

• Moved from growth (high P/B) toward value (low P/B)—the Minus transition
• Stayed in the same size/price-to-book value group
• Moved from value toward growth—the Plus transition
• Moved from small to big or vice versa—the Change in Size transition

Also shown in Table 9.4 are the sources and amounts of positive and negative
contributions to the excess return. Small stocks outperform big principally because
small stocks migrate to large stock groups as their prices appreciate. The resulting
size premium is partially offset by big stocks moving in the other direction. Value
stocks outperform growth stocks mostly because Plus transitions due to price
increases occur more often for value than for growth stocks, while Minus transitions
are more likely for growth stocks. In addition, value stocks that remain in the same
portfolio from year to year have higher average excess returns than growth stocks
that do not move from one portfolio to another.

Value and size strategies select stocks with extreme prices. The migration study
shows that, as prices tend to revert to more average levels, the value and size
strategies outperform. In this sense these strategies are related to the mean-reversion
strategy, which explicitly bets that extreme prices will tend to move to more average
levels.

9.3.2 Using Price Ratios to Predict Mean Reversion Effects

It is instructive to see how using a price-to-fundamental ratio can be an effective
approach to forecasting the price mean-reversion effect. Generally, the denominator
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Table 9.5 Correlation
between book value changes
and U.S. stock returns
(1962–2012)

Average cross-sectional correlation between
% change in book value and stock returna

Correlation 0.11
t-Statistic 8.89

Source: Research Affiliates, LLC, based on data from
Compustat and CRSP
a1962�2012 (Annual frequency)

of a price-to-fundamental ratio varies slowly and smoothly. In fact, the choice of the
fundamental variable that serves as the denominator matters very little, as long as
it is significantly less volatile than price and is co-integrated with price over time.
Examples of variables that are co-integrated with price, or that trend over time with
price, are firm characteristics such as book value or cash flow. Generally, variables
that provide information on firm scale satisfy this criterion.

Because stock market participants often exhibit documented behavioral biases,
there is a chance they will move prices from the levels that would be purely reflective
of companies’ fundamental valuations. And there is strong evidence that they do so.

• Shiller (1981) showed that market prices are too volatile to be set by rational
investors incorporating information about company fundamentals. His evidence
indicated that a significant fraction of stock price changes is due to transitory
variations in investors’ expectations (fundamentals, discount rates) and hence
stock prices contain transitory, mean-reverting, components. Empirical studies
by Fama and French (1988) and Poterba and Summers (1988) show that stock
prices indeed contain transitory components.

• Roll (1984) studied the U.S. orange juice futures market. Because the demand for
orange juice is stable and production is geographically limited, he argued, news
about the weather should be the primary driver of price fluctuations. Surprisingly,
however, he found that weather related news accounts for very little of the price
fluctuations.

• Roll (1988) extended his research to stocks. Using monthly data, he found that
at most 35 % of total stock price variation can be explained by publicly available
news or by the movement of a close substitute. (Using daily data, that figure
dropped to 2 % at most.)

Studies like Shiller’s and Roll’s confirm that stock price movements come from
market participants’ aggregate sales or purchases based significantly on consider-
ations other than fundamentals. In other words, many market participants trade
on “noise” rather than information, providing depth to the market that facilitates
efficient price formation. Meanwhile, their trades may produce transitory deviations
in stock prices from their fundamental values.

Price changes have two components: one that is co-integrated with changes in
fundamentals, and a mean-reverting component. Table 9.5 shows the cross-sectional
correlation between annual U.S. stock returns and changes in book value over the
1962–2012 period. The average correlation, 0.1, is strongly statistically significant.
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Table 9.6 Differences in growth rates between U.S. book value
winners and losers (1962�2012)

Fastest-growing companies’ subsequent
growth rates—slowest-growing companies’
subsequent growth rates
1 Year 2–5 Years 6–10 Years

Difference in growth 7.94 % �2.52 % 1.92 %
t-Statistic 3.54 �0.76 0.57

Source: Research Affiliates based upon data from Compustat and
CRSP

We have already observed that stock prices are mean reverting. Are fundamental
values mean reverting, too?

To answer this question, for each year over the period 1962–2012 we formed
portfolios of stocks on the basis of prior growth in book value, and observed the
growth in book value over the subsequent year. The portfolios were created using
three different versions of prior growth in book value: growth over the previous 1
year, growth from 2 to 5 years ago, and growth from 6 to 10 years ago. Table 9.6
shows the differences in book value growth between “winners” and “losers” from
those time periods. (In this context, winners/losers are in the top/bottom 30 % using
NYSE breakpoints of book value growth. Specifically, winners are stocks with a
greater prior book value growth than the 70th percentile stock on the NYSE. Losers
are stocks with a lower book value growth than the 30th percentile stock on the
NYSE.)

In the first year after portfolio formation, book values tend to exhibit momentum,
but book value growth information older than 1 year has no statistical impact on
subsequent growth.6 This is in contrast to prices, which continue to revert toward
the mean for up to 10 years. Unlike prices, fundamentals do not revert toward the
mean. This result logically implies that fundamentals provide a stable anchor for
value strategies.

When a slow-moving co-integrated variable is used in the denominator of the
price ratio, most of the change in the ratio over time is driven by price movements.
When the price of a stock appreciates significantly, the price ratio also rises, and vice
versa. Thus, the change in the price ratio directly measures the past price movement
standardized for the company’s fundamental scale. The price ratio is the highest for
stocks that have had the best cumulative returns relative to their fundamental trend
line growth.

The price-to-fundamentals ratio has the additional benefit of encapsulating mean-
reversion periodicity; that is, when comparing price ratios among stocks, we need

6This cross-sectional evidence is reminiscent of Cochrane’s (2005, 2008) time-series evidence
that dividend growth is difficult to predict. The result is also related to Daniel and Titman’s
(2006) finding that “intangible” returns, that cannot be explained by changes in fundamentals,
are subsequently reversed.
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not be concerned about differences in their mean-reversion periodicity. Moreover,
the mean-reversion effect is driven less by periodicity (as seen in momentum
strategies) than by the magnitude of the deviation from the long-term trend. If one
stock’s price ratio is significantly higher (lower) than others’, then it is a strong
predictor of low (high) future returns because the mean-reversion effect is likely to
be stronger for that stock than for other stocks. Thus, selling high P/B stocks, and
buying low P/B stocks, is a sound rule for rebalancing a value portfolio. Our research
indicates that a fundamentals-based value strategy stands to gain significantly from
long-term mean reversion in prices.

9.4 Conclusion

Our major findings are easily summarized: The hypothetical long-term mean-
reversion strategy results in risk–reward characteristics that are tolerably close to
those of established factor-based strategies, and its return series is most highly
correlated with the returns of a hypothetical fundamentals-based value strategy.
Attribution analysis reveals that the value strategy premium is largely due to a
significant mean reversion factor loading; correlatively, the excess return to the
mean-reversion strategy proves to have a large value factor loading. However, value
strategy performance is superior to that of the mean-reversion strategy. This implies
that a value strategy that selects stocks on the basis of fundamentals (in this case,
the P/B ratio) reflects more information than a naïve long-term mean-reversion
strategy. The evidence presented in Fama and French (2007) demonstrates that
the size and value premia are attributable to stocks’ transitioning across size/style
portfolios. In addition to its inherent interest, this outcome reveals links between the
value, size, and mean reversion strategies. Extreme prices tend to converge to more
average levels, generating the premia.7 Finally, we find that company fundamentals
themselves are not mean-reverting variables, and that the P/B ratio can be useful
in predicting stock returns. We conclude that selling high P/B stocks and buying
low P/B stocks is a sound trading guideline—and that a fundamentals-based value
strategy can be expected to benefit from long-term mean reversion in stock prices.

Acknowledgement We would like to thank Philip Lawton for his extensive comments and his
tireless editorial work.

7We have put forth our thesis that the value premium is driven by mispricing in Arnott and Hsu
(2008), Arnott et al. (2011), and Chaves et al. (2013).
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Chapter 10
Performance of Earnings Yield and Momentum
Factors in US and International Equity Markets

Jose Menchero and Zoltán Nagy

10.1 Introduction

At an intuitive level, savvy investors have long appreciated the notion of diversifica-
tion. Not until Markowitz (1952), however, was the concept of trading-off risk and
return placed on a firm theoretical foundation. The pioneering work of Markowitz
introduced mean-variance optimization as an investment tool and gave birth to
Modern Portfolio Theory. The required inputs to solve the Markowitz optimization
problem were the expected returns of each asset, the asset covariance matrix, and a
specification of investment constraints.

Markowitz defined an “efficient” portfolio as one with the highest expected return
for a given level of risk—or equivalently, the lowest risk for a fixed expected return.
The set of all such portfolios maps out the so-called efficient frontier. According to
Markowitz, rational investors will choose to hold a specific portfolio on the efficient
frontier consistent with their risk tolerance.

Tobin (1958) extended the Markowitz theory in a simple yet profound way.
By merely treating cash as another investable asset, Tobin showed that all efficient
portfolios fell onto a straight line known as the “Capital Market Line.” This line
connected the risk/return of cash with the risk/return of a “special” portfolio on
the efficient frontier holding only risky assets. This special portfolio had the highest
expected return per unit of risk of all portfolios on the efficient frontier. This implied
that a mean-variance investor would select a portfolio that was a combination of cash
and the special portfolio of risky assets on the efficient frontier. This result became
known as the two-fund separation theorem.
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Sharpe (1964) extended the ideas of Markowitz and Tobin with the development
of the Capital Asset Pricing Model (CAPM). By employing certain assumptions,
such as each investor having mean-variance preferences and homogeneous expec-
tations, Sharpe was able to show that the special portfolio on the efficient frontier
with the maximum expected return per unit of risk was none other than the market
portfolio itself. Furthermore, the CAPM made the important prediction that the
expected return of any asset was given by the market beta of the asset multiplied
by the expected return of the market portfolio.

Interestingly, in an unpublished manuscript from 1962, Treynor (1962) also
arrived at the core result of the CAPM. More specifically, Treynor showed that
under the standard assumptions, the expected return of any asset was proportional
to its covariance with the market portfolio held collectively by all investors. In
other words, high stock volatility did not necessarily imply high expected returns;
correlations were also important.

While the CAPM represents an elegant theoretical framework, it has not held
up well to empirical scrutiny. Academics began to discover and document several
“pricing anomalies” in apparent violation of the CAPM. For instance, Basu (1977)
documented the value premium, in which stocks with high earnings yield (E/P
ratios) tended to outperform. Similarly, Jegadeesh and Titman (1993) documented
the momentum effect, whereby recent “winners” tended to outperform recent
“losers.” One of the most serious empirical criticisms of CAPM came from Fama
and French (1992), who showed that market beta did not appear to have a return
premium, in direct violation of the most basic prediction of CAPM.

Many quantitative investors have sought to outperform the market by exploiting
such pricing anomalies. Two of the most common “quant signals” are earnings yield
and momentum. In this article, we study the performance of these two strategies
in both the US and International markets. We consider both pure factor portfolios
and optimized factor portfolios. We analyze the period from January 1997 through
August 2014. This period contains several interesting events, such as the Internet
Bubble, the Quant Meltdown, and the Financial Crisis.

10.2 Pure Factor Portfolios

Pure factor portfolios are very useful for studying the performance of investment
strategies, as they isolate the effect of the underlying signal. As described by
Menchero (2010), pure factor portfolios are formed by multivariate cross-sectional
regression of stock returns against a set of factor exposures. For an individual
country, the factors typically consist of styles and industries. Pure style factor
portfolios have unit exposure to the particular style, and zero exposure to all other
styles and industries. Hence, these portfolios capture the performance of the style in
that particular country, net of other styles and industries. In a global setting, country
factors are typically added as explanatory variables. In this case, the pure style factor
portfolios are neutral to all other styles, industries, and countries.



10 Performance of Earnings Yield and Momentum Factors in US. . . 241

Pure factor portfolios are not unique as their holdings depend on the regression-
weighting scheme. In this paper, we consider three distinct regression-weighting
schemes: (a) market capitalization, (b) square-root of market capitalization, and (c)
equal. In the cap-weighted case, the pure factor portfolios are naturally dominated
by large-cap stocks. By contrast, small-cap stocks dominate the pure factor portfo-
lios for equal-weighted regression. Root-cap weighting is intermediate, assigning
more weight to large-cap stocks, but not so much as in the cap-weighted scheme.

Two additional items are required to fully specify the pure factor portfolios. The
first is the factor exposure matrix. For US portfolios, we take the exposures from the
Barra US Equity Model (USE4). For International portfolios, exposures are taken
from the Barra Global Equity Model (GEM3).

The second item we must specify is the estimation universe over which the cross-
sectional regressions are to be performed. Our estimation universe is derived from
the MSCI All Country World Investable Market Index (ACWI IMI), a broad global
equity index spanning both developed and emerging markets. For US portfolios, we
carve out the US portion of the index (USA IMI). For International portfolios, we
exclude all US stocks from ACWI IMI. All pure factor portfolios are rebalanced on
a monthly basis.

For official reporting purposes it is of course essential to use geometrically com-
pounded returns. However, for purposes of understanding the behavior of a portfolio
over an extended time period, it is often advantageous to use arithmetic returns.
This makes it much easier to compare the performance of the factor over different
time periods without the visual distortions that accompany geometric compounding.
Therefore, in this paper, we ignore the effects of geometric compounding and simply
plot the cumulative arithmetic returns of the portfolios. The annualized volatilities
of the portfolios are computed as the standard deviation of monthly returns scaled
by the square root of 12. Similarly, the annualized returns are computed as the mean
monthly return multiplied by 12.

In Fig. 10.1, we present the cumulative performance of pure earnings yield
factor portfolios for the US market. On the whole, the strategies performed well,
with cumulative returns over the sample period ranging from 30 to 40 %. The
most prominent feature occurred during the Internet Bubble, when earnings yield
strongly underperformed prior to the peak (1999) before recovering spectacularly
following its collapse (2000–2001). Another notable feature is the poor performance
of earnings yield from the time of the Quant Meltdown in August 2007 through the
end of 2008. In 2009, earnings yield strongly recovered but performance has been
modest since that time. The pure earnings yield strategy returns in U.S. stocks are
largely independent of the capitalization-weighting of the variable; see how (a), (b),
and (c) lines move in the very similar magnitudes.

While the cumulative performance over the entire sample period was largely
similar for the three portfolios, during individual subperiods the differences were
sometimes quite significant. For example, during the Internet Bubble the cap-
weighted strategy performed much worse than the equal-weighted strategy prior
to the peak of the bubble, but recovered much more strongly after its collapse in
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Fig. 10.1 USA pure earnings yield factor portfolios. Cumulative performance is reported for
(a) market-capitalization regression weights, (b) root-cap regression weights, and (c) equal
regression weights

early 2000. This suggests that during the Internet Bubble, earnings yield was driven
primarily by large-cap stocks.

In Fig. 10.2, we plot the cumulative performance of pure earnings yield factor
portfolios for International equities. The three strategies tracked each other quite
closely over the sample period, suggesting that earnings yield behaved similarly in
the large-cap and small-cap segments. By the end of the sample period, cumulative
returns in each case exceeded 40 %. What is particularly striking is that International
earnings yield did not suffer the same severe drawdown witnessed in the US market
during the Internet Bubble. In fact, from the start of the sample period until the
peak of the Internet Bubble, all three strategies earned positive cumulative returns,
in stark contrast to the performance in the US market. It is also worth noting that
International earnings yield performed poorly from the Quant Meltdown through
the end of 2008, similar to what was observed in the US market. Since early 2009,
International earnings yield has performed quite strongly.

In Fig. 10.3 we plot the cumulative performance of momentum pure factor
portfolios in the US equity market. We see that the equal-weighted strategy
outperformed the cap-weighted strategy. Furthermore, comparing Figs. 10.3 to 10.1,
it is apparent that momentum was considerably more volatile than earnings yield in
the US market. Momentum in the US market was characterized by some periods
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Pure Earnings Yield (International)
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Fig. 10.2 International pure earnings yield factor portfolios. Cumulative performance is reported
for (a) market-capitalization regression weights, (b) root-cap regression weights, and (c) equal
regression weights

of extremely strong performance (e.g., 1997–2001), and other periods of severe
drawdown. The two strongest drawdowns occurred in late 2002 and early 2009,
both coinciding with the bottom of bear markets. While US momentum strategies
partially recovered during the period 2010–2013, subsequent performance has been
flat. Moreover, momentum strategies in the US are still well below their high-water
marks of 2008.

It is interesting to consider whether momentum may be prone to crashes near
the bottom of bear markets. Such periods are characterized by pervasive pessimism
among investors. Most stocks will have negative performance during a bear market,
but negative momentum stocks by definition will have performed even worse than
average. These are likely to be companies whose prospects appear particularly bleak
during the bear market. When the market eventually rebounds, optimism returns
and investors may conclude that the negative momentum stocks have been oversold.
These stocks are then likely to rebound more strongly than the overall market. Since
negative momentum stocks are short in the pure factor portfolio, they can have the
effect of “torpedoing” the momentum factor performance.

Daniel and Moskowitz (2013) investigated the performance of momentum
strategies across multiple asset classes going back to the Great Depression. They
found evidence that momentum strategies were prone to crashing during “panic”
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Pure Momentum (USA)
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Fig. 10.3 USA pure momentum factor portfolios. Cumulative performance is reported for (a)
market-capitalization regression weights, (b) root-cap regression weights, and (c) equal regression
weights

states, which correspond to periods following steep market declines coupled with
high volatility. They also found that the momentum crashes were contemporaneous
with market rebounds.

In Fig. 10.4, we show the cumulative performance of pure momentum in
International equity markets. Similar to US momentum, the equal-weighted strategy
outperformed the cap-weighted strategy. By contrast, the cumulative performance of
momentum in International markets was considerably stronger than in the US. It is
also interesting to observe that there was no significant drawdown to International
momentum in 2002, unlike the US market. Furthermore, the momentum crash of
2009 was less severe than in the US market. Finally, we see that in 2010 momentum
rebounded much more strongly in International markets than for the US market. As
a result, the cumulative performance of momentum is at or above the pre-peak levels
of 2008.

In Table 10.1, we summarize the risk and return characteristics of the various
pure factor portfolios. Several points are worth highlighting. For earnings yield, we
see that the cap-weighted strategy outperformed the equal-weighted strategy. For
momentum, however, the opposite was true. We also see that the equal-weighted
regressions produced the lowest volatility portfolios. This was due to excessive
concentration in the portfolios constructed using cap-weighted regression. Finally,
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Pure Momentum (International)
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Fig. 10.4 International pure momentum factor portfolios. Cumulative performance is reported
for (a) market-capitalization regression weights, (b) root-cap regression weights, and (c) equal
regression weights

Table 10.1 Pure factor portfolios under three distinct regression-weighting schemes

Variable Market segment Factor name Cap weight Root-cap weight Equal weight

Return USA Earnings Yield 2:31 2:08 1:81

Risk USA Earnings Yield 5:23 3:72 3:22

IR USA Earnings Yield 0:44 0:56 0:56

Return International Earnings Yield 2:38 2:37 2:35

Risk International Earnings Yield 2:53 1:71 1:48

IR International Earnings Yield 0:94 1:38 1:59

Return USA Momentum 1:37 1:66 1:85

Risk USA Momentum 7:08 6:48 6:39

IR USA Momentum 0:19 0:26 0:29

Return International Momentum 3:30 4:52 5:16

Risk International Momentum 5:05 4:18 3:87

IR International Momentum 0:65 1:08 1:33

Factor exposures were equal to 1 in all cases. The sample period is from January 1997 through
August 2014
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we note that the International strategies had much higher information ratios than
their US counterparts. This was due to the combined effect of higher returns and
lower risk.

10.3 Optimized Factor Portfolios

Optimized factor portfolios are constructed by mean-variance optimization. The
required inputs are (a) the expected returns of the assets, (b) the asset covariance
matrix, and (c) a set of investment constraints. The expected returns are often taken
as proportional to a factor exposure, or perhaps a combination of factor exposures.
The asset covariance matrix is typically obtained by means of a multifactor risk
model. For a fixed-exposure constraint, the optimized factor portfolio will have
the minimum risk of all portfolios with the same exposure. For a fixed-volatility
constraint, the optimized portfolio will have the maximum factor exposure of all
portfolios with the same volatility.

Mean-variance optimization employs the risk model to reduce volatility in two
ways. First, factor covariances are exploited to hedge the risk of the factor on which
the portfolio is tilting. Second, the optimizer uses specific risk forecasts to diversify
the idiosyncratic volatility of the portfolio.

We consider optimized portfolios constructed in two distinct ways. The first
targets a fixed exposure to the desired factor; the second targets a fixed level of
risk. If no further constraints are imposed, then the two portfolios are simply scaled
or levered versions of one another. That is, the ex ante information ratios of the
two portfolios are the same. However, if additional constraints (e.g., turnover) are
imposed, then the two portfolios will in general have different ex ante information
ratios. Even without additional constraints, the ex post information ratios will be
different. This is due to the fact that the fixed-risk portfolio must effectively de-
lever during volatile periods to maintain the volatility target, whereas the constant
exposure portfolio will experience higher volatility.

We consider several other types of constraints in this paper. The first is the full-
investment constraint, which says that the portfolio weights must sum to unity.
All portfolios considered in this paper are subject to the full-investment constraint.
Consequently, the active portfolios are strictly dollar neutral. The second constraint
that we consider is the long-only constraint, which disallows negative weights in the
portfolio. The third constraint is the turnover constraint, which limits the amount of
trading that can be carried out at each portfolio rebalancing.

Constraints restrict the ability of the optimizer to reduce risk through hedging and
diversification. As a result, compared with an unconstrained optimization, the con-
strained portfolios will have a higher level of ex ante risk for a given exposure to the
factor. Alternatively, constraints lower the expected return for a given level of risk.
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10.4 Unit-Exposure Optimized Portfolios

We now consider the performance of unit-exposure optimized earnings yield
portfolios in the US equity market. The earnings yield factor was taken from the
Barra US Equity Risk Model (USE4), which was also used to supply the asset
covariance matrix. The investment universe was the MSCI USA IMI index.

We consider three distinct optimized factor portfolios. The first portfolio has no
constraints other than the full-investment constraint. The second portfolio has the
long-only and full-investment constraints, but no limit on portfolio turnover. The
third portfolio is also long-only and fully invested, but adds a one-way monthly
turnover limit of 4 %.

In Fig. 10.5, we report the cumulative performance of the three optimized
portfolios for the US equity market. If we suppose that stock alphas are proportional
to earnings yield exposure, then these optimized portfolios all have the same
expected return since they have the same exposure to alpha. In addition, they would
have the same expected return as the pure factor portfolios presented in Fig. 10.1,
which also have unit exposure to the factor. We see that the cumulative performance
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Fig. 10.5 USA optimized earnings yield portfolios (unit exposure). Cumulative performance is
reported for (a) unconstrained, (b) long-only constraint, and (c) long-only with 4 % monthly one-
way turnover
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Optimized Earnings Yield (International)
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Fig. 10.6 International optimized earnings yield portfolios (unit exposure). Cumulative perfor-
mance is reported for (a) unconstrained, (b) long-only constraint, and (c) long-only with 4 %
monthly one-way turnover

of the portfolios in Fig. 10.1 is indeed quite similar to the cumulative returns in
Fig. 10.5. Also note that the return patterns in Fig. 10.5 are broadly similar to those
in Fig. 10.1. Namely, the earnings yield strategy underperformed during the Internet
Bubble, recovered strongly after its collapse, performed poorly between the Quant
Meltdown and the end of 2008, and experienced positive returns since early 2009.

In Fig. 10.6, we report the cumulative performance of unit-exposure optimized
earnings yield portfolios in the International market. The earnings yield factor in
this case was taken from the Barra Global Equity Model (GEM3), which was also
used in the optimization. The investment universe was the MSCI ACWI IMI index,
excluding USA. Cumulative performance of the optimized portfolios ranged from
40 to 55 %, similar to the performance of the pure factor portfolios in Fig. 10.2. Also
note that the broad features of Fig. 10.2 are clearly reflected in Fig. 10.6.

While the realized returns of the three optimized portfolios were similar, the
volatilities were dramatically different. The lowest volatility portfolio was the
unconstrained one, whereas the constrained portfolios exhibited significantly higher
volatility. This is to be expected, since in the unconstrained case the optimizer is
better able to diversify and construct risk-reducing hedges.
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Fig. 10.7 USA optimized momentum portfolios (unit exposure). Cumulative performance is
reported for (a) unconstrained, (b) long-only constraint, and (c) long-only with 8 % monthly one-
way turnover

In Fig. 10.7, we report the cumulative performance of unit-exposure optimized
momentum portfolios in the US market. The momentum factor was taken from the
Barra USE4 model. In order to better capture the faster-moving momentum signal,
we now extend the monthly turnover limit to 8 %. Here we find dramatically differ-
ent performance for the three optimized portfolios. The unconstrained portfolio had
the worst cumulative performance, at about 5 %. By contrast, the portfolio with the
long-only and turnover constraints had cumulative returns of roughly 70 %.

There are two possible explanations to account for the large return differences
observed in Fig. 10.7. The first possibility is that the expected alphas were not
proportional to momentum exposure. In that case, the unconstrained momentum
optimal portfolio may inadvertently tilt in a negative alpha direction, thus detracting
from the performance.

A second possibility is that this seemingly large difference is attributable to
chance. If true alphas are assumed to be proportional to momentum exposure, then
the portfolios should have the same expected return. The tracking error between the
two portfolios was about 7.7 % annualized. Using square root of time scaling, this
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Optimized Momentum (International)
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Fig. 10.8 International optimized momentum portfolios (unit exposure). Cumulative performance
is reported for (a) unconstrained, (b) long-only constraint, and (c) long-only with 8 % monthly one-
way turnover

translates into a standard deviation of about 32 % over the roughly 17-year sample
period. The observed difference of 65 % represents roughly two standard deviations,
thus placing the observation just on the borderline of statistical significance.

In Fig. 10.8, we report the cumulative performance of unit-exposure optimized
momentum portfolios in the International market. Here the cumulative returns
are similar in magnitude to the returns of the pure factor portfolios in Fig. 10.4.
Qualitatively, the return patterns are also broadly similar to those in Fig. 10.4. That
is, both figures are characterized by strong performance with a significant drawdown
in 2009.

In Table 10.2, we report summary risk and return characteristics for the unit-
exposure optimized portfolios. It is interesting to note that in every case, volatility
increased as we imposed additional constraints. For example, the US unconstrained
earnings yield portfolio had a realized volatility of 2.73 %, versus 4.70% when the
long-only constraint was imposed, and 5.94 % when the turnover constraint was
applied.

It is also interesting to compare the volatilities of the optimized portfolios
in Table 10.2 with the pure factor portfolios of Table 10.1. In every case, the
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Table 10.2 Optimized factor portfolios for fixed exposure

Variable Market segment Factor name No constraint Long-only constraint
LO and TO
constraint

Return USA Earnings Yield 2:30 2:65 1.87
Risk USA Earnings Yield 2:73 4:70 5.94
IR USA Earnings Yield 0:84 0:56 0.32
Return International Earnings Yield 2:70 3:09 2.32
Risk International Earnings Yield 1:38 2:15 2.26
IR International Earnings Yield 1:96 1:44 1.03
Return USA Momentum 0:34 2:84 4.10
Risk USA Momentum 6:10 6:63 8.97
IR USA Momentum 0:06 0:43 0.46
Return International Momentum 4:45 5:71 4.71
Risk International Momentum 3:63 4:31 6.54
IR International Momentum 1:22 1:33 0.72

The target factor exposure was equal to 1 in all cases. Monthly turnover constraints were set
to 4.0 % for earnings yield, and 8.0 % for momentum. The sample period is from January 1997
through August 2014

unconstrained optimal portfolio had lower volatility than any of the corresponding
pure factor portfolios. This indicates that the risk model was successful in reducing
portfolio volatility. Of course, once constraints are imposed, there is no guarantee
that the risk of an optimized portfolio will be lower than that of a pure factor
portfolio. For instance, the 5.94 % volatility for the US earnings yield optimized
portfolio with long-only and turnover constraints was greater than the volatilities of
the corresponding pure factor portfolios in Table 10.1.

10.5 Fixed-Volatility Optimized Portfolios

We now consider optimized portfolios that are rebalanced each month to have a
fixed ex ante tracking error. In all cases, we set the tracking error target to 4 %.
We again take the factor exposures from the Barra USE4 and GEM3 models. The
investment universes are the same as before.

In Fig. 10.9, we report cumulative performance for US optimized earnings yield
portfolios. In this case, the unconstrained portfolio will have the largest average
exposure to the factor. If alphas are assumed proportional to earnings yield exposure,
then the unconstrained optimal portfolio will have the highest expected return. From
Fig. 10.9, we see that the realized returns were in fact greatest for the unconstrained
optimal portfolio, and least for the most highly constrained portfolio.
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Fig. 10.9 USA optimized earnings yield portfolios (4 % tracking error). Cumulative performance
is reported for (a) unconstrained, (b) long-only constraint, and (c) long-only with 4 % monthly
one-way turnover

In Fig. 10.10, we report cumulative performance for International optimized
earnings yield portfolios. Once again, we find that the unconstrained portfolio had
the highest realized returns, consistent with expectations. Similarly, the portfolio
with both long-only and turnover constraints had the lowest realized returns.

In Fig. 10.11, we report cumulative performance for US optimized momentum
portfolios with fixed tracking error of 4 %. In this case, we obtain the unexpected
result that the unconstrained portfolio had the worst performance, whereas the most
constrained portfolio had the highest realized returns. This is consistent with the
results shown in Fig. 10.7.

In Fig. 10.12, we report cumulative returns for International optimized momen-
tum portfolios. Again, the ex ante tracking error was fixed at 4 % at the start of each
month. Here we find that the unconstrained portfolio had the best performance, but
only by a slight margin. It is interesting to compare the cumulative performance of
the fixed-risk optimized portfolios in Fig. 10.12 with the fixed-exposure optimized
portfolios of Fig. 10.8. It is apparent that the 2009 drawdown was much smaller
for the fixed-risk portfolios than for the fixed-exposure portfolios. This is because
the fixed-risk portfolio effectively was forced to de-lever when momentum volatility



10 Performance of Earnings Yield and Momentum Factors in US. . . 253

Optimized Earnings Yield (International)
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Fig. 10.10 International optimized earnings yield portfolios (4% tracking error). Cumulative
performance is reported for (a) unconstrained, (b) long-only constraint, and (c) long-only with
4 % monthly one-way turnover

shot up in early 2009. By contrast, the fixed exposure portfolios were forced to “ride
out the storm.”

In Table 10.3, we report summary risk and return characteristics for the fixed-
volatility optimized portfolios. We see that the realized volatilities of the portfolios
were in the 4–5% range, close to the predicted risk of 4 %. We also see that the
unconstrained portfolios had the highest realized returns, with the exception of US
momentum. Finally, comparing the information ratios of Table 10.3 with those of
Table 10.2, we find that for momentum they were higher for fixed risk, but for
earnings yield they were comparable. We attribute this to the fact that the fixed-
risk case for momentum effectively avoided the worst of the drawdown in 2009.
Note also that the International strategies had much higher information ratios than
their US counterparts.
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Optimized Momentum (USA)
4% Tracking Error
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Fig. 10.11 USA optimized momentum portfolios (4 % tracking error). Cumulative performance
is reported for (a) unconstrained, (b) long-only constraint, and (c) long-only with 8 % monthly
one-way turnover

10.6 Summary

We studied the performance of earnings yield and momentum signals in the US
and International equity markets. The sample period covered January 1997 through
August 2014. We constructed both pure factor portfolios and optimized factor
portfolios. For the latter, we considered both fixed-exposure and fixed-volatility
portfolios under a variety of investment constraints. In every case, we found that
the International strategies outperformed their US counterparts over the sample
period. We also found that for the same unit exposure, the unconstrained optimized
portfolios had lower realized volatility than the corresponding pure factor portfolios.
For the fixed-volatility optimized portfolios, with the exception of US momentum,
the unconstrained portfolios had the highest risk-adjusted returns.
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Optimized Momentum (International)
4% Tracking Error
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Fig. 10.12 International optimized momentum portfolios (4 % tracking error). Cumulative per-
formance is reported for (a) unconstrained, (b) long-only constraint, and (c) long-only with 8 %
monthly one-way turnover

Table 10.3 Optimized factor portfolios for fixed tracking error

Variable Market segment Factor name No constraint Long-only constraint
LO and TO
constraint

Return USA Earnings Yield 3.57 1.71 1.35
Risk USA Earnings Yield 4.26 5.01 4.37
IR USA Earnings Yield 0.84 0.34 0.31
Return International Earnings Yield 8.99 4.87 3.94
Risk International Earnings Yield 4.03 5.10 5.07
IR International Earnings Yield 2.23 0.95 0.78
Return USA Momentum 2.14 2.24 2.70
Risk USA Momentum 4.41 4.16 4.08
IR USA Momentum 0.48 0.54 0.66
Return International Momentum 8.42 7.24 7.36
Risk International Momentum 4.50 4.66 4.74
IR International Momentum 1.87 1.55 1.55

The ex ante tracking error target was set to 400 bps annualized for both earnings yield and
momentum. Monthly turnover constraints were set to 4.0 % for earnings yield, and 8.0 % for
momentum. The sample period is from January 1997 through August 2014
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Chapter 11
Alpha Construction in a Consistent
Investment Process

Sebastián Ceria, Kartik Sivaramakrishnan, and Robert A. Stubbs

11.1 Introduction

Markowitz (1952, 1991) developed the mean variance optimization (MVO) model
that is widely used in portfolio management. The MVO model achieves an optimal
tradeoff between risk and return by solving a quadratic optimization problem that
is based on a quadratic utility function that considers the first two moments of asset
returns, namely the mean and the variance, to measure the return and the risk of the
portfolio, respectively. In addition to trading off risk and return, the MVO model
has been extended to include a set of constraints that model additional business
requirements imposed by asset owners, regulators, risk managers, and trading desks
alike. Additional constraints are also frequently used by portfolio managers to
implement investment insights or in order to overcome some of the shortcomings
of the MVO model itself.

In this paper we concentrate on studying how these three main ingredients of the
MVO model interact with the optimizer to produce optimal portfolios. These inputs
to the MVO model include: the alpha vector, representing the expected returns;
the risk model, that is used to measure the variance of the portfolio, and a set of
constraints. In the traditional quantitative investment process, these three inputs
to the MVO model may be developed independently of each other, without much
regard to the interaction between them. The main challenge with this independent
approach to the generation of the optimal portfolio is that this portfolio may not
consistently represent the views of the portfolio manager that are expressed in the
expected returns. This problem was first addressed more than forty years ago by
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Treynor and Black (1973) where they developed a model that uses “appraisal ratios”
to determine the allocation to a market proxy and to each asset. Treynor and Black
(1973) said

If [the investor] has special insights, he will get little, if any, help from the portfolio-
balancing literature on how to translate these insights into the expected returns, variance,
and covariances the algorithms [of Markowitz] require as inputs.

Since the development of the Treynor-Black model, this problem has been studied
by many and evolved considerably (see Black and Litterman 1990, 1992; Grinold
and Kahn 2000; Sefton et al. 2004). However, the art and science of constructing
relevant inputs for mean-variance optimization remains as important and relevant
today as it did when Treynor had such original insights more than forty years ago.

This paper uses the consistent investment process outlined in Stubbs (2013)
that builds on earlier work in Black and Litterman (1990, 1992), Grinold and
Kahn (2000), and Sefton et al. (2004) to propose a portfolio construction process
that takes into account the interaction between all the components of the MVO
model to yield a more transparent process that translates superior expected returns
into outperforming portfolios. Sivaramakrishnan and Stubbs (2013) showed the
advantages of being consistent between the factors used to construct expected
returns and those used to construct a risk model, but the consistent investment
approach goes beyond that. The consistent investment approach, which is described
in more detail in Sect. 11.3, generates the optimal portfolios in three steps: (a) by
converting the signals the portfolio manager uses to construct the expected returns
into individual portfolios, called factor mimicking portfolios (FMP); (b) by linearly
combining the factor mimicking portfolios into a target portfolio, which represents
an idealized portfolio that optimally combines the signals; and (c) by finding the
optimal portfolio as a portfolio that is similar to the target portfolio, but that also
satisfies all the additional constraints imposed by the portfolio manager. In contrast
to the consistent investment approach, the traditional use of MVO solves a single
portfolio optimization problem based on expected returns and risk model that are
constructed exogenously to the portfolio construction problem and to each other.

Specifically, in this paper, we illustrate the effectiveness and versatility of
the consistent investment approach in enabling the portfolio manager to create a
portfolio whose active positions and risks are based on her views and her views only
to the extent possible after considering all other frictions such as trading costs and
mandated constraints. Moreover, we show how to consider these frictions directly
in the three-step consistent process. By considering the constraints that will be in
the final portfolio construction problem directly in the computation of our expected
returns, we are able to achieve a greater transfer coefficient. Rather than working
forecasts of individual asset returns, our examples utilize views based on factors
having persistent risk premia. While we do not focus on attribution of returns
in this paper, the combination of a greater transfer coefficient and the consistent
construction of our MVO inputs leads to greater performance measures such as
information ratio, Treynor ratio (see Treynor 1966), and Jensen’s alpha (see Jensen
1968). The improvement in these performance measures is a direct consequence of
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creating an active portfolio that tries to optimally reflect the persistent risk premia
of the factors we consider.

The paper is organized as follows: Sect. 11.2 provides a brief overview of the
MVO model and discusses various challenges. Section 11.3 describes the main steps
of the consistent investment process in detail. The consistent investment process is
illustrated on a practical example in Sect. 11.4. Section 11.5 presents some of our
conclusions. We discuss some technical details in Appendix A.

11.2 Mean Variance Optimization

There are three main ingredients to an MVO model: the ˛ vector representing
the expected returns, the risk model Q, and the constraint set C that defines the
strategy employed by the portfolio manager. Consider a portfolio with an investment
universe of n assets. Let hi denote the weight (proportion of total funds) invested in
the ith asset. Let ˛i denote the portfolio manager’s estimate of the expected return
for the ith asset.

We define a signal or factor as a vector of asset characteristics that explains
the cross-section of returns. Throughout this paper, we will differentiate between
two types of factors: alpha factors that exhibit a long term predictable return trend,
and risk factors that do not exhibit such a predictable trend. Examples of alpha
factors include value, momentum, and growth while examples of risk factors include
industries and countries.

Let XA and XR denote the asset exposures to the alpha and risk factors,
respectively.1 Let m be the number of alpha factors and let k be the number of risk
factors. Assume that the portfolio manager constructs the overall alpha factor from
m different factors in XA. The risk model is given by

Q D X
XT C �2 (11.1)

where

X D �
XA XR

	

is the combined matrix of factor exposures,


 D
�


A 
AR


RA 
R

�

1The cross sectional regression model has the form

r D XAfA C XRfR C rres

where r, fA, fR represent the excess (over the risk free rate) asset, alpha factor, and risk factor,
returns, respectively. So, the exposures XA and XR actually represent the betas or sensitivities of
the assets to the alpha and the risk factors in the model.
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is the factor covariance matrix, and �2 is a diagonal matrix of specific variances.
The overall MVO model is given by

max
h2C ˛Th � 


2
hTQh; (11.2)

where 
 > 0 is an appropriate risk aversion parameter and C contains the different
constraints in the MVO model.

We conclude this section by introducing some concepts that will be used later in
the paper. The information ratio (IR) of a portfolio is a measure of the risk-adjusted
return of the portfolio, namely, the expected active return of the portfolio divided by
the standard deviation of the expected active return. Given a portfolio h� and a risk
model Q, the implied alpha is the alpha vector that would yield h� as the solution
to the MVO problem without any constraints. Let Q̨ denote the implied alpha of the
portfolio. It is easy to demonstrate that

Q̨ D Qh�: (11.3)

Clarke et al. (2006) developed the Transfer Coefficient (TC), which is used to
measure the efficiency with which the alpha signal is transferred to the optimal
portfolio. The transfer coefficient (TC) is given by

TC D ˛Th
p

˛TQ�1˛
p

hTQh
;

D corr.Q�1=2˛; Q1=2h/:

(11.4)

The TC can be interpreted as the correlation between the risk-adjusted alpha,
Q�1=2˛, and the risk-weighted portfolio, Q1=2h.2 The TC also represents the corre-
lation between the risk-weighted final portfolio and the risk-weighted unconstrained
MVO portfolio (where there are no constraints). In a sense, the TC measures how
close the final portfolio is to the unconstrained MVO portfolio. Constraints such as
turnover and asset bounds in a realistic strategy lower the TC from its ideal value
of 1.

11.3 The Consistent Investment Process

There are three main steps in the consistent investment process proposed in Stubbs
(2013). We first provide a brief description of these steps and then discuss them in
detail in Sects. 11.3.1, 11.3.2, and 11.3.3.

2TC represents the correlation between Q�1=2˛ and Q1=2h only if the means of ˛ and h are zero.
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1. Transform each alpha signal into factor mimicking portfolios: Each alpha
factor (signal) is transformed into a factor mimicking portfolio (FMP). The FMP
is generated by solving an optimization problem which minimizes some measure
of the portfolio risk while controlling the exposure of the FMP to other risk and
alpha factors. The goal of this optimization problem is to have the FMP replicate
the alpha factor returns, while neutralizing other factor exposures. Because we
use an optimization model to construct the FMP, we can add constraints to this
problem in order to generate a more realistic FMP. We will illustrate the benefits
of adding constraints to this optimization problem in Sect. 11.4.

2. Combine the FMPs into a target portfolio: The second phase of the consistent
investment process is combination of the individual FMPs into a portfolio called
the target portfolio. We propose to construct this portfolio through the solution of
an optimization problem that trades off the risk and expected return of the FMPs.
Once again, the procedure is designed to be highly flexible and allows for the
inclusion of constraints in order to generate a more realistic target portfolio.

3. Solve the final portfolio construction problem: While the target portfolio
generated in Step 2 is the portfolio that the PM ideally would like to hold, it
may not be investable and/or violate some of the other constraints that are part of
the PM’s mandates. The goal of this step is to generate a realistic portfolio that is
as similar as possible to the target portfolio while satisfying all of the additional
practical considerations and constraints. We solve this problem by using an MVO
model once again with the following characteristics: (a) The expected returns
vector is the implied alpha of the target portfolio, (b) The risk model is the matrix
Q, and (c) the constraints include the relevant implementation constraints and any
additional constraints that are part of the PM’s mandate.

11.3.1 Transforming Each Alpha Signal into Factor
Mimicking Portfolios

A factor mimicking portfolio (FMP) is a long-short, dollar-neutral portfolio that
represents a factor. Fama and French (1992) describe simple procedures based on
fractile analysis to construct such portfolios, which are also called Fama-French
portfolios or FF portfolios. Although their approach to the generation of FMPs is
heuristic in nature, Fama and French (1992) also neutralize other factor exposures
when generating FF portfolios. For example, Fama and French (1992) neutralize
their size (SMB) factor to the momentum and book/price attributes. Practitioners
use similar techniques to neutralize their alpha signals to industry and country
factors. For example, Asness (1997) neutralizes value (book to price) to industries
by subtracting the market-cap weighted industry book to price average from each
assets’ (within that industry) book to price value.
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Let m be the number of alpha signals considered by the portfolio manager. These
alpha signals are represented as columns of the factor exposure matrix XA in the risk
model. The FMP associated with the jth signal is the solution, hj, to

min hTWh;

s.t. XT
R h D 0;

XT
A h D ej;

h 2 NC
(11.5)

where W is an appropriate weighting matrix, ej is the vector with 1 in the jth position
and zeros elsewhere, and NC contains a set of additional constraints. We will define a
pure FMP as a dollar-neutral portfolio that has minimum total risk, has unit exposure
to the alpha factor, and is neutral (zero exposure) to the other alpha factors as well
as all the risk factors. For a pure FMP, the set NC is empty.

We can build an FMP that is not pure through alternative formulations of (11.5)
along the following lines:

1. Choosing the set of neutral factors: A pure FMP is neutral to all the other
factors in the risk model. Alternatively, we can impose that the FMP be neutral
to only some of the risk factors in XR and XA. We show in the technical appendix
that neutralizing for the industry factors in (11.5) is equivalent to some of the
common heuristic industry purification schemes used in practice. The following
are some alternatives we consider in the solution to (11.5):

(a) The final portfolio may be required to have null or very small (active)
exposure to some of the factors in the risk model. In this case, it may be
beneficial to make each FMP neutral to such factors.

(b) A particular factor may negatively contribute to the return of the final
portfolio. In this case, it is better to neutralize the exposure to that factor
in the generation of the FMP.

2. Choosing the weighting matrix W: We mention three popular choices:

(a) W is the identity matrix, which orients the FMP towards an equal-weighted
quantile spread portfolio.

(b) W D M�1 where M is a diagonal matrix whose entries are the asset
market capitalizations. This orients the FMP towards a market-cap weighted
quantile spread portfolio, where assets with a larger market capitalization are
preferred.

(c) W D Q, where Q is the risk model used in the portfolio construction process.
In the case of pure FMPs, the covariance matrix W D Q in (11.5) can be
replaced with its diagonal specific variance component W D �2. On the
other hand, if we do not neutralize exposures to all other factors, the resulting
FMP may be unintuitive because of the correlations in Q. For example, a
value FMP constructed in this way could well take large negative exposures
to assets with high book to price values.
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3. Incorporating additional constraints: Constraints from the final portfolio
construction problem can also be added to (11.5). We mention two examples
below:

(a) The exposure of the FMP to some additional factors can be controlled if the
exposure of the final portfolio to that particular factor may have a negative
impact on the return of the final portfolio.

(b) If signals have predictive abilities which are dependent on the investment
horizon, we may require that the different FMPs have exposures which are
related to the investment horizon of those signals. For example, Qian et al.
(2007) and Gerard et al. (2012) introduce the concept of horizon IC to
measure the strength and the persistence of the alpha signal.

11.3.2 Combining Factor Mimicking Portfolios
into a Target Portfolio

The second phase of the consistent investment process linearly combines the FMPs
of the m different alpha signals hj into the target portfolio. Let wj, j D 1; : : : ; m be a
given set of weights. We call

htp D
mX

jD1

wjh
j (11.6)

the target portfolio. The weights are determined by optimally trading off the risk
and the return of the different FMPs in an MVO framework.

Given a time series of returns for an FMP for each alpha signal, there are several
ways to estimate the return EŒf i� for each FMP and the covariance matrix ‚ across
all FMPs. We describe our choice below:

1. EŒf i� D 1

T

X

t

.rt/T.hit/, i D 1; : : : ; m, where T is the total number of time

periods; and rt and hit denote the time series of realized asset returns and FMP
holdings, respectively.

2. Let Q denote the custom risk model that is used in portfolio construction. We
have

‚ij D .hi/TQ.hj/; i; j D 1; : : : ; m:

Note that

.htp/TQhtp D wT‚w:
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The optimization problem that generates the target portfolio can be written as

max
w

mX

iD1

EŒf i�wi � 
wT‚w (11.7)

where 
 > 0 is an appropriate risk threshold. We prefer to use the following
equivalent formulation

max
w;htp

mX

iD1

EŒf i�wi � 
.htp/TQhtp;

s.t. htp �
mX

iD1

wih
i D 0

(11.8)

for the target portfolio as it better highlights the relationship between the
optimization problems in the three stages of the consistent investment process.
Note that one can also force the target portfolio to satisfy some of the additional
constraints in C. If this is the case, then one can also add the constraints htp 2 Ctp,
where Ctp is subset of the constraints in the final portfolio construction problem,
to the MVO optimization problem (11.8).

3. If the FMPs hi used to generate the target portfolio are all pure, then the FMP
returns represent the underlying alpha factor returns if the alpha factors are also
in the risk model. These factor returns are usually constructed from a cross-
sectional regression model. In this case, one can set ‚ D 
A in (11.7), where

A is the factor covariance matrix constructed from the factor returns. The
corresponding problem (11.8) has Q constructed from the factor portion X
XT

of the custom risk model Q.

We must emphasize that for the target portfolio optimization problem (11.8) we
only have m unknowns, i.e., the number of FMPs that need to be combined to
form the target portfolio. Usually, m << n, where n is the number of assets in
the portfolio. As a result, asset-level constraints in the target portfolio problem may
be too restrictive.

11.3.3 Solving the Portfolio Construction Problem

The target portfolio generated in the second phase of the consistent process can
violate some of the constraints in the final portfolio construction problem which
are included in C. The third phase of the consistent investment process constructs
a final active portfolio that satisfies all the constraints in C and is as close to the
target portfolio as possible. This problem is solved with an MVO model that uses
the implied alpha of the target portfolio as the vector of expected returns. In other
words, the vector of expected returns is chosen as
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Q̨ tp D Qhtp (11.9)

where Q is the risk model in 11.1. The portfolio optimization in the third phase can
be written as

max
h2C . Q̨ tp/Th � 


2
hTQh (11.10)

where 
 > 0 is an appropriate risk aversion parameter and C contains all the
constraints in the final portfolio optimization problem. One can easily show (by
completing the square) that (11.10) can also be written as

min
h2C

1
2
.htp � 
h/TQ.htp � 
h/: (11.11)

This, in turn, implies that choosing the alpha as the implied alpha of the target
portfolio actually gives us a final portfolio h that is close to a multiple of the target
portfolio htp.

11.4 Illustrative Example

Consider a portfolio manager who wants to combine three alpha signals in a
consistent investment process. The three alpha signals are Value (Sales to Price),
Momentum (assets cumulative return over the last 250 trading days), and Quality
(Return on Equity). The asset universe and the benchmark is restricted to be the
FTSE All-World. The objective is to maximize the expected return subject to

1. Long-Only and Fully Invested.
2. Round-Trip (two-way) Turnover restricted to be at most 15 % per month.
3. Active Predicted Beta Bounds of ˙2 %.
4. Active Industry and Country Bounds of ˙2 %.
5. Maximum Predicted Active Risk of 3 %.
6. Axioma Style Exposure Bounds of ˙10 % on Liquidity, Leverage, Size,

Exchange-Rate Sensitivity, and Volatility.

Our backtest period is from December 2000 to August 2012 where the portfolio
is rebalanced at the end of each month. We construct a custom risk model using
Axioma’s Risk Model Machine (RMM) that also includes the Value, Momentum,
and Quality alpha signals.

We now discuss the three stages of the consistent investment process as applied
to this example.

1. The Value, Momentum, and Quality FMPs are constructed with W D M�1 where
M is the diagonal matrix whose entries are the asset market-caps.

(a) The Value FMP is neutral to countries.
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Table 11.1 Factor return
contribution in dollar-neutral
value FMP

Source of return Contribution IR

FMP 2.49 % 0.51

Factor Contribution 3.61 % 0.64

Axioma Style 2.21 % 1.27

Custom Style 2.57 % 0.72

Country �1.72 % �0.48

Industry 0.70 % 0.37

Currency �0.15 % �0.08

Market 0.00 % �0.31

Specific Return �1.12 % �0.50

(b) The Momentum FMP is neutral to industries.
(c) The Quality FMP is neutral to industries and size.

We will motivate our choices for these FMPs below.
2. The optimization problem that generates the target portfolio is

max
w�0;htp2Ctp

3X

iD1

EŒf i�wi C .htp/TQhtp;

p
.htp/TQhtp � 3 %;

htp �
3X

iD1

wih
i D 0;

(11.12)

where we additionally impose that htp belong to the set Ctp. We will highlight
some of our choices of this set later in this section. Note that we impose a risk
constraint on the target portfolio that is also one of the constraints in our final
strategy. Since we expect each of the alpha signals to add value, we also impose
a non-negativity restriction of the FMP weights. The EŒf i� is taken to be the long-
term average return for the three FMPs and is constant for the backtest.

3. The expected return for the final portfolio problem is the implied alpha of the
target portfolio.

Let us highlight how we arrived at our choice for country neutrality constraints for
the Value FMP. For each time period, we first constructed a simple dollar-neutral
Value FMP with W D M�1 with no factor neutrality constraints. We then ran
Axioma’s factor Performance Attribution Tool to analyze the resulting FMP. The
results are presented in Tables 11.1 and 11.2. Table 11.1 indicates that the FMP
has a large negative return betting on countries. Table 11.2 further indicates that
the FMP is taking significant positive and negative exposures on countries. For
example, the FMP has a large negative exposure to Japan (�14:15 %) and a large
positive exposure (8:00 %) to UK. So, we made the FMP neutral to all the countries
to force it to bet on stocks within countries rather than on individual countries.
The resulting FMP is the country-neutral value FMP and it is the value FMP that
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Table 11.2 Factors with the
largest exposures in
dollar-neutral Value FMP

Source of return Return contribution Avg exposure

Notable factors

Volatility 1.51 % �8.28 %

Value 2.61 % 100 %

China �0.08 % �2.34 %

France �0.24 % 5.59 %

Germany �0.20 % 5.81 %

Japan �0.28 % �14.15 %

Korea �0.07 % �2.16 %

UK �0.33 % 8.00 %

USA 0.11 % 8.10 %

Banks 0.05 % �6.74 %

Food & Staples �0.12 % 4.78 %

Oil, Gas & 0.54 % 6.47 %
Consumable Fuels

Table 11.3 Comparing dollar-neutral and country-neutral value FMPs

Country-neutral value FMP Dollar-neutral value FMP

Return Contribution Risk IR Contribution Risk IR

FMP 3.87 % 4.90 % 0.79 2.49 % 4.90 % 0.51

Factor 4.92 % 5.21 % 0.94 3.61 % 5.67 % 0.64

Axioma Style 1.51 % 1.84 % 0.82 2.21 % 1.74 % 1.27

Custom Style 2.57 % 3.61 % 0.71 2.67 % 3.59 % 0.72

Country 0.00 % 0.00 % — �1.72 % 3.59 % �0.48

Industry 0.83 % 2.26 % 0.37 0.70 % 1.91 % 0.37

Currency 0.00 % 0.00 % — �0.15 % 1.84 % �0.08

Market 0.00 % 0.00 % — 0.00 % 0.00 % —

Specific Return �1.04 % 2.06 % �0.51 �1.12 % 2.26 % �0.5

we will use in the rest of the section. Table 11.3 compares the dollar-neutral and the
country-neutral value FMPs. Note that country-neutral FMPs are also dollar-neutral.
Enforcing country-neutrality removes the negative contribution to the return from
the country factors. The portfolio IR improves from 0:51 to 0:79. We experimented
with different neutrality settings for the Value, Momentum, and Quality FMPs. The
IRs for these different settings are summarized in Table 11.4. The Value FMPs
perform better with the market-cap weighting. We chose the FMP that was neutral
to the country factors; this had the best IR in Table 11.4. For Momentum, we first
constructed a dollar-neutral FMP with market-cap weighting. A factor performance
attribution analysis indicated that this FMP did not take any sizeable exposures
to the industry and country factors. We settled on the Momentum FMP with
market-cap weighting that is neutral to the industries since available literature (see
Asness (1997)) indicates that Momentum performs better with industry neutrality.
Similarly, for Quality, we first constructed a dollar-neutral FMP with market-cap
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Table 11.4 IRs for different value, momentum, and quality FMPs

Weighting IR
FMP (W) None IndNeutral CountryNeutral IndAndCountryNeutral

Value M�1 0.50 0.20 0.78 0.60

Value I 0.12 0.05 0.70 0.56

Momentum M�1 0.30 0.24 0.24 0.12

Momentum I 0.36 0.26 0.36 0.22

Quality M�1 0.56 0.53 0.44 0.28

Quality I 0.77 0.74 0.52 0.48

Table 11.5 Base backtest
summary

Base

Annualized active return 2.27 %

Avg annualized active risk 2.83 %

Avg turnover 14.89 %

Information ratio 0.801

weighting. A factor PA analysis indicated that this FMP had a 10:78 % exposure
to the size factor that translated into a negative return of �0:48 %. Moreover, the
Quality FMP did not take any sizeable exposures to the industry and country factors
either. We finally chose the Quality FMP with market cap weighting that is both
industry and size neutral.

We ran our Base backtest with these FMPs and following the consistent invest-
ment process that we outlined earlier. The results are summarized in Table 11.5.
Figure 11.1 compares the average active long holdings of the final portfolio to the
average six month horizon ICs for the three alpha signals in each sector of the
economy. Note that the quality of the three alpha signals varies substantially in each
sector. Also, note that average six month sector ICs for the Value signal are very
poor and so we focus on the strength of the Momentum and the Quality signals in
each sector. These signals both appear to be very strong in the Telecommunication
Services sector but the Base portfolio seems to take relatively small bets in this
sector. In general, we see that the sector bets of the Base portfolio are not
proportional to the sector ICs of the Momentum and Quality signals. This is not
surprising since the active beta, industry, and country bound constraints require the
portfolio to take very small exposures to these factors. As a result, the portfolio bets
are concentrated in certain sectors or countries. So, we add additional constraints
to the final strategy that limits the long holding in each sector to be at most 5 % of
the portfolio size. We refer to these new constraints as the active share constraints.
We ran a second backtest called Base C CAS (CAS D Constrained Active Share)
that is identical to the base strategy with the only difference being the active share
constraints in the final strategy. The results of this backtest are given in Table 11.6.
Note that the IR of the portfolio has improved from 0:8 to 0:85. This is the typical
process employed by most portfolio managers where additional constraints are
added in the final portfolio problem to overcome some shortcomings. The addition
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Average Long Active Share for “Base” Portfolio
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Fig. 11.1 Comparing the average long active holdings to the average six month horizons ICs for
alpha signals in each sector. (a) Active Share in each sector. (b) Average six month sector ICs
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Table 11.6 Base + CAS
backtest summary

Base + CAS

Annualized active return 2.36 %

Avg annualized active risk 2.78 %

Avg turnover 14.89 %

Information ratio 0.85

Table 11.7 BaseCFMP
backtest summary

BaseCFMP

Annualized active return 2.95 %

Avg annualized active risk 2.94 %

Avg turnover 14.89 %

Information ratio 1.01

of the constraints in the final portfolio, however, reduces the TC. Our objective in
the consistent investment process is to target a high TC in order to improve the
transparency of the portfolio construction process. With this in mind, we construct
our FMPs and the target portfolio to reflect these active share constraints.

We constructed a second set of momentum and quality FMPs where the active
share in each sector is restricted to 5 % of the portfolio size. Note that the quality
of the value signal is quite poor in most of the sectors and so we persist with
the same value FMP. We generated a new target portfolio and implied alpha by
combining these modified momentum and quality FMPs and the original value FMP.
We ran a third backtest called BaseCFMP (CFMP D Constrained FMP), where the
active share constraints are used in the FMP generation (phase 1) of the consistent
investment process rather than the final strategy. The results are summarized in
Table 11.7. Note that IR has further increased to 1:01. Next we ran a backtest called
BaseCTP (CTP D Constrained Target Portfolio), where the active share constraints
are used in the target portfolio construction (phase 2) of the consistent investment
process. The results are summarized in Table 11.8. This further increases the IR to
1:10. Note that the only difference between Base + CAS, BaseCFMP, and BaseCTP
is that the active share constraints are imposed at different stages of the consistent
investment process. Each approach incrementally improved the IR of the portfolio.

We then ran three more backtests BaseCTP C CAS, where the active share
constraints are imposed both in the target and final portfolios; Base CFMPTP
(CFMPTP D Constrained FMP and Target Portfolio), where the active share
constraints are imposed in the momentum and quality FMPs and the final portfolio;
and finally Base CFMPTP C CAS, where the active share constraints are imposed
in all the stages of the consistent investment process, i.e., in the generation of the
momentum and quality FMPs, the target portfolio, as well as the final portfolio.
The results are summarized in Table 11.9. We note that adding the active share
constraints to the final portfolio ensures that the final portfolio also satisfies these
constraints. Moreover, the addition of these constraints also improves the IR for
the BaseCFTP and BaseCFMPTP backtests.
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Table 11.8 BaseCFMP
backtest summary

BaseCTP

Annualized active return 3.29 %

Avg annualized active risk 2.99 %

Avg turnover 14.89 %

Information ratio 1.10

Table 11.9 BaseCFTP C CAS, Base CFMPTP, and BaseCFMPTP C CAS summaries

BaseCTP C CAS BaseCFMPTP BaseCFMPTP C CAS

Annualized active return 3.29 % 3.37 % 3.32 %

Avg annualized active risk 2.84 % 3.08 % 2.94 %

Avg turnover 14.89 % 14.89 % 14.89 %

Information ratio 1.15 1.09 1.13

Fig. 11.2 Change in the TCs after the addition of the Active Share constraints

We conclude this section with Fig. 11.2 that compares the differences in the TCs
between the (BaseCTP C CAS) and BaseCTP backtests with the corresponding
differences between the (Base C CAS) and Base backtests. Note that there is less
deterioration in the TC when one adds the active share constraints in the final
portfolio problem in the BaseCTP backtest. This highlights our comment that it
is useful to consider some of the final portfolio constraints in the construction of the
implied alpha signal. Ensuring that the target portfolio also satisfies these constraints
helps limit the deterioration of the TC in the realistic portfolio construction problem.
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11.5 Conclusions

We presented a use case for the consistent investment approach presented in Stubbs
(2013). The process breaks the original portfolio construction into three portfolio
optimization problems that

1. Transform each alpha signal in the alpha factor into a factor mimicking portfolio
(FMP) that represents the signal. Some of the signal specific constraints in the
final portfolio problem can be added to the optimization problem that generates
the FMP.

2. Combine the factor mimicking portfolios into a target portfolio by solving
an MVO optimization problem. Some of the constraints in the final portfolio
problem can be added to the optimization problem that generates the target
portfolio.

3. Solve the actual portfolio construction problem with two changes: The first
is a new alpha signal that is constructed as the implied alpha of the target
portfolio and the use of a custom risk model. The second is that this portfolio
problem only has the relevant implementation constraints. The final stage of the
consistent process generates a portfolio that satisfies the relevant implementation
constraints, and is also close to the target portfolio that is constructed in Step 2.
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A Technical Appendix

Proposition 1. The FMP (11.5) with only the industry neutrality constraints
carries out the equal and market cap weighted industry purifications when W D I
and W D M�1 where M is the diagonal matrix whose entries are the asset market-
caps, respectively.

Proof. Consider the FMP problem

min
h

1
2
hTWh

s.t. XT
I h D 0;

˛Th D 1

(11.13)

that is neutral to the industry factors and where ˛ is our alpha signal. In this case,
the optimal portfolio h� has the following expression

h� D �W�1=2
�

I � W�1=2XI
�
XT

I W�1XI
��1

XT
I W�1=2

�
W�1=2˛ (11.14)

where

� D ˛TW�1=2
�

I � W�1=2XI
�
XT

I W�1XI
��1

XT
I W�1=2

�
W�1=2˛ (11.15)

is a positive constant. The equal and the market-cap weighted industry purifications
update the ˛ as

N̨ D .I � XI.XT
I W�1XI/

�1XT
I W�1/˛; (11.16)

where W D I and W D M�1, respectively. Consider the unconstrained MVO
problem

minh N̨ Th � 1
2�

hTWh (11.17)

with the industry purified alpha, where � is given by (11.15). The solution to this
problem is given by
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hMVO D �W�1 N̨
D �W�1

�
I � XI

�
XT

I W�1XI
��1

XT
I W�1

�
˛

D �W�1=2
�

I � W�1=2XI
�
XT

I W�1XI
��1

XT
I W�1=2

�
W�1=2˛:

(11.18)

Note that h� in (11.14) is identical to the hMVO in (11.18). In other words, the
optimization problem (11.13) is implicitly neutralizing the alpha signal over the
industries using the weighted projection in (11.16).



Chapter 12
Empirical Analysis of Market Connectedness
as a Risk Factor for Explaining Expected
Stock Returns

Shijie Deng, Min Sim, and Xiaoming Huo

12.1 Introduction

Analyzing financial asset returns by identifying market-wide risk drivers and
common firm-level characteristics that contribute to the explanation of expected
asset returns has evolved into one major research field in the development of the
modern asset pricing theory. The Capital Asset Pricing Model (CAPM) developed
by Treynor (1962, 1961, Market value, time, and risk, “unpublished”),1 Sharpe
(1964), Lintner (1965a,b), and Mossin (1966) initiated this strand of research,
which is referred to as the single-factor model. The single-factor model identifies
a single index, or a market portfolio, as the sole driver of the return of financial
assets and decomposes individual asset return risk into systematic and idiosyncratic
components.

Empirical studies based on the single-factor model report mixed findings in
validating CAPM as a positive economic model. Early studies such as Black et al.
(1972) and Fama and MacBeth (1973) find evidence supporting a linear relationship
between the average asset returns. A quantity measuring how asset returns covary
with the return of market portfolio, termed market beta, is found when the data
period is long. However, subsequent studies such as Fama and French (1992)
and Davis (1994) provide only weak evidence in supporting CAPM. Roll (1977)
points out that the CAPM cannot be empirically tested conclusively because of
the difficulty in measuring the risk-return characteristics of the market portfolio.

1See French (2003) for details of these references.
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Roll and Ross (1994), Kandel and Stambaugh (1995) demonstrate that even very
small deviations from the efficient portfolio can yield the linear relationship between
risk and expected returns insignificant.

The inconclusive empirical testing results of the single-factor model combined
with evidence on that firm-level fundamental variables such as earnings-to-price
(E/P) ratio (Basu (1977)) predict higher asset returns than those predicted by market
beta prompt that the market beta alone may not be able to explain the cross-sectional
variation in the asset returns. This leads to a growing research literature on extending
the single-factor CAPM to a multi-factor model by using firm-level fundamental
variables such as E/P ratio (Basu (1977)) and market value to book value ratio
(e.g., Rosenberg et al. (1985), De Bondt and Thaler (1987)), market-level variables
such as price momentum (Jegadeesh and Titman (1993)), and macroeconomic
variables such as trading liquidity (Paster and Stambaugh (2003)) to explain the
expected asset returns.

Even with the extended multi-factor models such as Rosenberg (1974), Roll and
Ross (1980), and Fama and French (1993), empirical studies with equity market data
still do not generate clear-cut positive results. Researchers are constantly searching
for alternative risk factors that may have stronger explanatory variables for the
cross-sectional asset returns. Paster and Stambaugh (2003) is one such example in
which the authors show that individual stock’s sensitivity to market level liquidity
innovation can be a significant driver for asset return variations. In a similar vein,
Sim et al. (2014) show that individual stock’s sensitivity to the overall market
connectedness forms a promising risk factor that helps to explain the expected stock
returns.

In this article, we introduce a quantitative measure for the connectedness of
financial markets as proposed in Sim et al. (2014). We demonstrate via empirical
tests using a two-factor model that the market connectedness measure holds
explanatory power the expected stock returns. The remainder of this article is
organized as follows. Section 12.2 presents the classical approaches for empirically
testing CAPM and its multi-factor extensions. The description of the alternative
measure for market connectedness and its construction are given in Sect. 12.3.
Empirical tests on whether the market connectedness corresponds to a new source
of systematic risk driving the stock returns are performed in Sect. 12.4. Finally, we
present results and conclude in Sect. 12.5.

12.2 CAPM and the Multi-Factor Asset Pricing Model

Let Rs, RM , Rf denote the returns of an asset s, the market portfolio M, and the risk-
free asset, respectively. CAPM specifies a linear relationship between the return of
any individual financial asset and that of a market portfolio. Namely,

EŒRs� D Rf C ˇs;M.EŒRM� � Rf / (12.1)
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where EŒ�� denotes expected value, and ˇs;M � Cov.Rs;RM/

�2
M

D �s;M
�s
�M

is the market

beta of asset s measuring the systematic risk exposure of the excess return of s to
the risk of the market portfolio M. In the definition of ˇs;M , �R and �s;M denote,
respectively, the volatility of R and the correlation coefficient between the returns
Rs and RM .

12.2.1 Empirical Testing of CAPM

Equation (12.1) is often referred to as the Security Market Line (SML) and it leads
to the usual form of the testing hypothesis of the empirical investigation of CAPM.

As CAPM is a single-period ex ante model and asset returns are not known in ex
ante, researchers use ex post returns to test CAPM instead. Specifically, market beta
of asset s is estimated through the following equation using historical data:

rs;t � rf ;t D as C ˇs;M.rM;t � rf ;t/ C �s;t; (12.2)

where in each period as is a constant return earned by asset s, rs;t is the return of
asset s at time t, rf ;t is the risk-free rate at time t, and �s;t is the noise in the realized
return of s. The estimated market beta ˇs;M is used as explanatory variable to test
the cross-sectional equation (12.3).

rs;t D ˛0 C ˛1ˇs;M C �s;t; (12.3)

where ˛0 is the expected return of a risk-free asset (or, a zero-beta portfolio), ˛1

is the expected excess return of the market portfolio (or, the market risk premium),
and �s;t is the noise term. If the cross-sectional test yields a statistically significant
value of ˛1, then the validity of CAPM is supported.

While initial empirical research such as Black et al. (1972), Fama and MacBeth
(1973) found supporting evidence of high beta assets tend to generate high level
of returns that is consistent with the linear relationship in (12.2), later research
working with a larger amount of historical data (e.g., Fama and French (1992),
Davis (1994)) found that the empirical evidence is rather weak. Further evidence
on the market portfolio falling short in fully explaining asset returns such as Basu
(1977), Banz (1981), Rosenberg et al. (1985), Jegadeesh and Titman (1993) sparks
a vast body of research on extending the CAPM model, in the spirit of the arbitrage-
pricing model of Ross (1976), to a multi-factor model as proposed by Fama and
French (1993, 1996), Carhart (1997), Frankel and Lee (1998), Paster and Stambaugh
(2003), among others.
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12.2.2 Multi-Factor Asset Return Model

In a general multi-factor asset return model, the excess return of asset s (namely, the
amount in excess to the risk-free return rate rf ), denoted by Nrs, is attributed to its
exposure to a set of Nc non-diversified systematic risk factors. Specifically, we have

Nrs D ˛ C
NcX

cD1

ˇs;cNfc C �s; (12.4)

where Nfc is the excess return of the cth systematic risk factor, �s is the asset-specific
residual after removing the impact of all factors from the excess return of asset s.
It represents the diversifiable risk that is specific to asset s, and ˇs;c measures the
exposure of the excess return of asset s to the systematic risk-factor c and is termed
factor beta.

Various types of observable variables have been proposed as alternative sys-
tematic risk factors. These include firm-level variables (e.g., earnings-to-price,
book-to-market, market capitalization level), market-level variables such as price
momentum, and macro-economics level variables such as liquidity. There are also
pure statistical factors obtained through analyzing the covariance matrix of asset
returns directly (see Connor and Korajczyk (2010) for an extensive review of the
risk factor models).

12.3 Market-Connectedness and Systematic Risk
in Asset Returns

As the scope of financial markets has been expanded tremendously over the recent
decades through introductions of vast amounts of stocks and diverse derivatives
products, a question arises as to whether this yields a more expanded investment
opportunity set for investors in general.

Anecdotal evidences indicate that the levels of interactions within and among
financial markets have increased significantly over the last decade. Thus the
expanding landscape of financial markets may not result in a much expanded
investment opportunity set. In fact, markets with highly correlated traded assets,
even with the total market capitalization being large, do not necessarily provide
diverse investment opportunities to market participants. Market participants must
comprehend the inter-related structures in markets in order to truly assess the
investment opportunity set so that they can practice portfolio diversification and
risk managements effectively.



12 Empirical Analysis of Market Connectedness as a Risk Factor for. . . 279

12.3.1 Alternative Measures for Financial Market
Connectedness

The research strand on the study of market connectedness2 has been growing and
focusing on quantifying the level of association in financial assets in order to assess
overall market structures from the perspective of a graph or a network. For example,
Billio et al. (2012) and Diebold and Yilmaz (2011) construct their connectedness
measures in financial institutions to measure the level of systemic risk during the
global recession period in 2007–2008 and provide empirical evidence that their
measures are related to the cycle of economy.

In analyzing the connectedness of financial markets and its impact on the
investment opportunity set, Sim et al. (2014) propose a market connectedness
measure, termed modularity, to quantify the level of connectedness of financial
markets. They take a different approach to quantify the market connectedness
through analyzing the clustering tendency in stock markets.

According to recent studies, the cluster property, where entities with similar
characteristics tend to form a subgroup or a cell, is one of the most evident
and important structural properties in financial markets. Materassi and Innocenti
(2009) provide empirical evidence that the major stocks in the US can be drawn
in tree structure, a special case of cluster structure, where branches of the tree
connect the highly correlated stocks together. Pojarliev and Levich (2010) classify
foreign exchange investing funds into two groups and proposed a few crowdedness
measures for co-movement tendency of market participants. Chandrasekaran et al.
(2012) conduct an empirical analysis on the US stock market through a hidden
Gaussian graphical model, which shows that the clustering tendency across the
universe of stocks is observable even after eliminating a few common drivers of
the stock market.

Following the clustering studies in Materassi and Innocenti (2009) and Chan-
drasekaran et al. (2012), Sim et al. (2014) classify the correlation elements in
stock markets into two groups: one group containing stocks that tend to be highly
correlated with each other and the other group containing stocks that fluctuate along
with the flucturation of the cycle of economy. Connectedness measures are then
constructed by measuring the relative difference between the respective average cor-
relations of the two groups. The relationship between the proposed connectedness
measure and the movements of individual stocks are further explored.

2The development of this line of study is largely grounded in the development of graph theory or
network theory that are actively studied in the various disciplines such as combinatorics, computer
science, physics, and (bio)-statistics.
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12.3.2 Market Connectedness Measure: Modularity

This section offers a bottom-to-top approach for constructing the modularity
measure using Pearson’s pairwise correlation. Let C.i; j/ denote Pearson’s pairwise
correlation between two stock returns. Namely,

C.i; j/ � �i;j D Cov.ri; rj/

std:dev:.ri/std:dev:.rj/
(12.5)

where ri and rj are the returns of stock i and j, respectively. Using pairwise
correlations as a building block, the connectedness between two groups of stocks
is defined as follows:

C.A; B/ WD Mean .fC.i; j/j8i 2 A; 8j 2 B; i ¤ jg/ (12.6)

where A and B are two groups of stocks, and Mean.�/ calculates the mean of
elements in a set. Note that the groups A and B are allowed to have overlaps (or, even
be identical to each other). The condition i ¤ j excludes trivial self-correlations for
overlapping stocks.

Let V denote the universe of stocks considered for investment in the market.
A partition P of V is defined as P D fV1; V2; : : : ; Vkg, where V D Sk

cD1 Vc; Vi \
Vj D ;, and Vi denotes the ith sub-group of stocks. Each sub-group is termed a
cell. Clustering or cluster analysis on correlation matrix is a task of finding the best
partition P for V such that the pairwise correlation of returns between stocks within
each cell are generally higher than the return correlations of stocks that belong to
different cells.

The connectedness of stock returns in universe V is defined with respect to a
given partition P. Specifically, the inner-sector connectedness (INSC) is the average
of all pairwise correlations within the cells in the partition P,

INSC.P/ WD Mean

 
k[

cD1

fC.i; j/j.i; j/ 2 .Vc; Vc/; i ¤ jg
!

: (12.7)

Similarly, the inter-sector connectedness (ITSC) is defined as the average of all
correlations across the cells in the partition P. Namely,

ITSC.P/ WD Mean

0

@
k�1[

c1D1

k[

c2Dc1C1

fC.i; j/j.i; j/ 2 .Vc1 ; Vc2 /g
1

A : (12.8)

If the partition P exhibits a prominent cluster structure in the asset return correlation
matrix, then INSC(P) is expected to be much higher than ITSC(P), meaning that the
returns of assets in each cell of P are much more dependent on each other in their
own cell than they are with the returns of stocks in other cells. Therefore, a high
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INSC(P) in conjunction with a low ITSC(P) implies that the partition P represents
a very prominent clustering of asset returns in universe V while a low INSC(P)
combined with a high ITSC(P) implies the contrary.

The modularity of the asset returns in universe V with respect to the partition P is
defined as the difference between INSC(P) and ITSC(P) with an intuitive meaning
of capturing the significance of a clustering structure represented by partition P.
Namely,

MOD.P/ WD INSC.P/ � ITSC.P/: (12.9)

Clearly, identifying a clustering structure among the myriad of financial assets
traded in the markets, if such a structure exists, is a first important step towards
the understanding of connectedness of various financial markets. Sim et al. (2014)
adopt the Modulated Modularity Clustering (MMC) method proposed by Stone and
Ayroles (2009) for detecting the clustering structure in the financial security returns.

12.4 Modularity Index as a Systematic Risk Factor:
Empirical Analysis

In this section, we take 60 major stocks from the top of the Fortune 500 U.S.
firms, ranked by their operating revenue in 2011, as the universe of investment
opportunities and report the clustering structure obtained by applying the MMC
method. Pairwise return correlations are calculated based on daily return data from
the The Center for Research in Security Prices (CRSP) Database provided by
Wharton Research Data Services (WRDS).

Using the identified clusters as a partition, the market connectedness measures
and the modularity index are computed. We demonstrate that one may construct
portfolios using US equities based on their sorted beta with respect to the modularity
index and generate excess returns, which is greater than what is predicted by a
CAPM model.

12.4.1 Clusters of Asset Returns over a Long Period

The pairwise return correlations of the 60 stocks (full-list given in Table 12.1) are
computed using the daily close price in CRSP from 1/1/2002 to 12/31/2011 to form
a sample correlation matrix. Twelve clusters (or, cells) are obtained after applying
the MMC algorithm to this sample correlation matrix. The identified clusters are
given in Fig. 12.1. Note that the partitioning clusters identified by the MMC method
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Fig. 12.1 Cluster analysis with 10 years returns of 60 major stocks by MMC algorithm

do not exactly match with those categorized by the Standard Industry Classification
(SIC) codes (see Table 12.1). Based on this cluster partition, a modularity index,
MOD, is constructed from Eqs. (12.7), (12.8) and (12.9).

12.4.2 Modularity: A Systematic Risk Factor

To empirically test whether the modularity index MOD is a valid systematic risk
factor, we conjecture that the decile portfolio sorted by the individual stock’s
sensitivity to MOD would show significant differences in return. We follow a similar
regression procedure as that used by Fama and MacBeth (1973) to estimate the beta
of each stock with respect to MODt over time based on a two-factor model (namely,
setting Nc D 2 in model (12.4)). The detailed steps of the procedure are described
in Sim et al. (2014). After getting the beta-to-MOD of each stock, we construct
the decile portfolios based on sorted values of beta-to-MOD, where the top decile
portfolio consists of stocks with the least beta-to-MOD values.

Using data from the period of January 1992 to December 2011, Table 12.2
shows that beta-to-MOD sorted decile portfolio creates systematic return difference
that are not explained by CAPM. The first row presents the annualized return
and standard deviation of each decile portfolio. The last column corresponds to
the difference of 1-portfolio and 10-portfolio that is equivalent to the net zero
investment portfolio where investors buy the first decile and sell the last decile in



286 S. Deng et al.

Ta
bl

e
12

.2
R

et
ur

ns
an

d
al

ph
as

of
th

e
de

ci
le

po
rt

fo
lio

s
(J

an
ua

ry
19

92
–D

ec
em

be
r

20
11

)

1
2

3
4

5
6

7
8

9
10

‘1
–1

0’

R
et

ur
n

(p
.a

.)
1
3
:9

9
1
0
:2

3
1
0
:2

9
1
1
:4

1
1
0
:0

6
8
:2

1
8
:4

8
1
1
:1

1
7
:7

2
6
:4

7
:5

9

s.
d.

(p
.a

.)
2
0
:9

4
1
7
:1

1
4
:2

9
1
4
:2

5
1
4
:4

5
1
4
:7

8
1
4
:9

9
1
5
:6

7
1
8
:5

2
0
:9

1
4
:8

C
A

PM
al

ph
a

4
:2

5
1
:4

3
2
:5

1
3
:5

4
2

0
:2

5
0
:3

5
2
:6

�1
:6

9
�3

:6
6

7
:9

2

(t
-s

ta
tis

tic
s)

.1
:6

6
/

.0
:7

9
/

.1
:5

8
/

.2
:3

9
/

.1
:4

6
/

.0
:1

5
/

.0
:2

3
/

.1
:8

4
/

.�
0
:9

4
/

.�
1
:6

6
/

.2
:3

8
/



12 Empirical Analysis of Market Connectedness as a Risk Factor for. . . 287

800

700

600

500

MKT+20%MODp

MKT+10%MODp

MKT

400

300

200

100

0

19
91

 D
ec

19
92

 D
ec

19
95

 D
ec

19
96

 D
ec

19
97

 D
ec

19
98

 D
ec

19
99

 D
ec

20
00

 D
ec

20
01

 D
ec

20
03

 D
ec

20
04

 D
ec

20
05

 D
ec

20
06

 D
ec

20
07

 D
ec

20
08

 D
ec

20
09

 D
ec

20
10

 D
ec

20
11

 D
ec

20
02

 D
ec

19
94

 D
ec

19
93

 D
ec

19
93

 J
un

19
95

 J
un

19
96

 J
un

19
97

 J
un

19
98

 J
un

19
99

 J
un

20
00

 J
un

20
01

 J
un

20
02

 J
un

20
03

 J
un

20
04

 J
un

20
05

 J
un

20
06

 J
un

20
07

 J
un

20
08

 J
un

20
09

 J
un

20
10

 J
un

20
11

 J
un

19
92

 J
un

19
94

 J
un

Fig. 12.2 Cumulative return on enhancement scenarios with MODP

Table 12.3 Performance of enhanced market index portfolio (January
1992–December 2011)

MKT MKTC10 % MODs MKTC20 % MODs

Return (p.a.) 8:94 % 9:69 % 10:45 %

Std (p.a.) 15:46 % 15:44 % 15:57 %

SR (monthly) 0:109 0:123 0:136

the same amount. The second row present the level of alphas (and the t-statistics for
the null hypothesis of alphas being zero) when fitting the excess returns of the decile
portfolios to CAPM. Clearly, the return of the 1–10 portfolio reported in Table 12.2
cannot be fully attributed to that of the market portfolio in CAPM.

Indeed, the 1–10 portfolio based on the MOD factor enlarges the investment
opportunity set for investors. Figure 12.2 illustrates that, if one adds different
weights, such as 10 % and 20 %, of the 1–10 portfolio to the proxy market portfolio,
then the resulting overall portfolio outperforms the proxy market portfolio. The
corresponding Sharpe ratios are higher than that of the proxy market portfolio (see
the last row of Table 12.3).

12.5 Conclusion

In this article, a quantitative measure for quantifying the connectedness of financial
markets is briefly introduced. Through empirical tests, we demonstrate that this
alternative measure for market connectedness, termed modularity in Sim et al.
(2014), can act as a new risk factor for explaining the expected stock returns under
the multi-factor asset pricing model framework. Using the U.S. equity market data
from 1992 to 2011, decile portfolio analysis based on the beta-to-modularity indeed
generates significant excess returns that cannot be explained by CAPM. Empirical
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tests also reveal that the properly constructed decile portfolios based on asset return
sensitivity to market connectedness enhances investment performance by enlarging
the existing investment opportunity set.
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Chapter 13
The Behaviour of Sentiment-Induced Share
Returns: Measurement When Fundamentals
Are Observable

Richard A. Brealey, Ian A. Cooper, and Evi Kaplanis

JEL classification: G11, G12, G14

In this article we investigate the relationships between investor sentiment and
deviations of share prices from fundamental values. To do this we use a sample
of shares for which a large part of the fundamental value is observable: upstream
oil stocks. We measure their fundamental values using oil and gas prices and the
forward oil price contango.

We focus on upstream oil stocks because there is a direct relationship between
the present value of these stocks and the oil price. In a world where output
prices minus extraction costs obey the Hotelling Principle, the value of natural
resource companies depends only on current prices less extraction costs. Miller
and Upton (1985a, 1985b) test this proposition and find that it provides a good
explanation of the variation in value of a sample of oil producers. Hence a large
part of the fundamental value of upstream oil stocks is observable. We make use
of this present value condition to split the return on our sample into the part that
represents fundamentals and the part that is a deviation from fundamentals. The
attraction of the Hotelling Principle is that it avoids the need to forecast future
cash flows and to estimate discount rates. A more general and less parsimonious
model might include additional variables, such as exchange rates and proxies for
the discount rate.

Following Baker–Wurgler (2006), we test the impact of sentiment using a
portfolio that is long high-variance stocks and short low-variance stocks (the “Hi-
Lo” portfolio). We find that two types of sentiment predict returns: retail sentiment,
which predicts momentum, and the Baker–Wurgler (2006) measure of sentiment,
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which predicts reversion to fundamentals. We find that the influence of sentiment
in each case is time-varying. In particular, the ability of sentiment to predict returns
appears only after 2000. Contrary to the theory that sentiment mainly affects the
deviations from fundamental value of hard-to-arbitrage stocks, we find that both
measures of sentiment influence prices through the fundamentals themselves rather
than through deviations from fundamentals.

If the Hi and Lo portfolios had similar loadings on fundamental variables, the
net Hi-Lo portfolio would be hedged against fundamental effects and we should not
observe fundamentals affecting the returns on this portfolio. However, in our data
the loadings on fundamental factors of the Hi and Lo portfolios are different, so
the combination of a long and short position in this portfolio does not eliminate its
exposure to fundamentals. Methodologically, this raises the issue that tests based on
such portfolios do not avoid the need to control for fundamentals.

The remainder of the chapter is organised as follows. In Section 13.1 we give
a brief review of related literature. In Sect. 13.2 we develop our tests and in
Sect. 13.3 we describe our data. Section 13.4 presents our main tests of the influence
of sentiment on returns with and without controls for fundamentals. Section 13.5
provides some robustness tests. Section 13.6 concludes.

13.1 Related Literature

Our work is broadly related to a number of studies that have found evidence
of serial dependence in returns. Evidence of momentum over periods of six to
twelve months is provided by amongst others Lehmann (1990), Jegadeesh (1990),
Jegadeesh and Titman (1993, 2001), Asness, Moskowitz, and Pedersen (2013), and
Moskowitz, Ooi, and Pedersen (2011). Evidence that this medium-term momentum
is followed by longer-term mean reversion comes from variance-ratio tests (Poterba
& Summers, 1988, Lo & MacKinlay, 1988, Cutler, Poterba, & Summers, 1991) and
autocorrelation tests (Fama & French, 1988). Evidence that high short-term variance
is related to deviations from fundamentals comes from excess variance tests (Shiller,
1981, LeRoy & Porter, 1981).

Sentiment-based explanations of momentum, mean-reversion, and deviations
from fundamentals envisage these effects as arising from behavioural biases by
naïve investors combined with costs of arbitrage. For example, Daniel, Hirsh-
leifer, and Subrahmanyam (1998) present a model in which a combination of
overconfidence and biased self-attribution create both under- and over-reaction.
Similarly, Barberis, Shleifer, and Vishny (1998) appeal to the behavioural biases
of representativeness and conservatism to show how these can result in under-
and over-reaction. In both papers asset prices can be decomposed into one part
that reflects fundamentals and another consisting of deviations from fundamentals.
The effect of sentiment on asset prices operates through the deviations from
fundamentals.
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Empirical evidence on the link between sentiment and returns requires a measure
of sentiment. A number of suggestions have been proposed. Many of these reflect
the view that sentiment changes are driven by retail investors. Possible proxies
include flows into mutual funds (Brown, Goetzmann, Hiraki, Shirishi, & Watanabe,
2003), buy–sell imbalances by retail investors (Kumar & Lee, 2006), IPO volume
and initial returns (Baker & Wurgler, 2006), market turnover (Baker & Wurgler,
2006), closed-end fund discounts, (Lee, Shleifer, & Thaler, 1991, Chen, Kan, &
Miller, 1993, Swaminathan, 1996, and Neal & Wheatley, 1998), the growth stock
premium (Baker & Wurgler, 2006), and survey data (Qiu & Welch, 2004, Brown
& Cliff, 2004, 2005). These data have been used either singly or in combination as
sentiment measures to test hypotheses about the relationship between sentiment and
subsequent stock returns.

Our tests of the effect of sentiment are most closely related to Baker and Wurgler
(2006, 2007, 2012) and Baker, Wurgler, and Yuan (2012). Baker and Wurgler divide
their sample of stocks into ten portfolios on the basis of their prior volatility, which
serves as a proxy for difficulty of arbitrage. They find that returns on the more
volatile stocks are lower following a time of optimism, and that returns are higher
following a time of pessimism. For the less volatile stocks that are easier to arbitrage
the reverse is true. They develop a measure of investor sentiment which they find
predicts returns for portfolios that are long the more volatile stocks and short less
volatile stocks. This finding is consistent with a combination of behavioural biases
and limits to arbitrage.

Barberis, Shleifer and Wurgler (2005) stress the importance of controlling for
fundamentals when measuring the effect of sentiment on security prices. For exam-
ple, Derrien and Kecskés (2009) show that the effect of sentiment on equity issuance
disappears once controls for fundamentals are included. Baker and Wurgler’s use of
a Hi-Lo portfolio will be effective in controlling for fundamentals only if the long
and short positions have equal loadings on fundamental factors. The alternative is
to attempt to control directly for fundamentals. Brown and Cliff (2005) use as their
dependent variable estimates of deviations from fundamental value based on the
dividend discount model. They find that these deviations are positively related to a
sentiment measure derived from survey data. However, the dividend discount model
gives a very noisy observation of fundamental value. For our sample of stocks, we
have a more direct measure of fundamental value than Brown and Cliff and so are
able to perform a more powerful test of the way that sentiment is transmitted to
share prices and returns.

13.2 Hypotheses and Tests

We test the implications of the hard-to-arbitrage hypothesis using a simple empirical
procedure that relates sentiment measures to deviations of share prices from
fundamentals and also to the fundamentals themselves. We split the log share price,
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Pt, into a component reflecting fundamental value, Ft, and a separate component,
NFt, which is the deviation from fundamental value:

NFt D Pt � Ft (13.1)

We assume that prices are affected by the actions of two types of traders. One
type is an arbitrageur, whose behaviour is captured by the Baker–Wurgler sentiment
measure St. The other type is a naïve trend-follower, whose behaviour is captured
by a bullish retail sentiment measure, Bt. Fundamentals and non-fundamentals may
respond to both sentiment variables:

Ft � Ft�1 D �Ft D �B;FBt�1 C �S;FSt�1 C eFt (13.2)

NFt � NFt�1 D �NFt D ™B;NFBt�1 C ™S;NFSt�1 C eNFt (13.3)

We model the response to Baker–Wurgler sentiment by assuming that arbitrageurs
push prices down when this sentiment variable is high, making �S,F < 0 and ™S,NF < 0.
The effect of naïve trend-followers pushes prices up when Bullish sentiment is high,
making ™B,F > 0 and ™B,NF > 0.

The Baker–Wurgler sentiment variable is a measure of mispricing and so should
rise when the deviation from fundamentals increases:

St D ™S;SSt�1 C ™S;NF�NFt C eSt (13.4)

where ™S,NF > 0. We expect St to be highly persistent, reflecting the long cycle of
swings in mispricing. We hypothesise that the bullish sentiment indicator reflects
trend-following behaviour:

Bt D �B;BBt�1 C �B;P .Pt � Pt�1/ C eBt (13.5)

™B,P > 0. We expect Bt to be less persistent than St, reflecting shorter cycles in
momentum sentiment.

We stack Eqs. (13.2)–(13.5) to form the system shown below, which we estimate
using VAR. Our null hypothesis is that the sentiment variables affect deviations
from fundamentals but not the fundamentals themselves. This would be consistent
with the limits-to-arbitrage hypothesis, whereby sentiment causes deviations from
fundamentals when such deviations are hard to arbitrage. The indicated signs of the
key parameters under the null hypothesis are shown in Table 13.1. In particular,
the standard hypothesis is that sentiment affects deviations from fundamentals,
implying ™S,F D 0, ™B,F D 0, ™S,NF < 0, ™B,NF > 0. As an alternative, we test the
hypothesis that the influence of sentiment occurs via its effect on fundamentals,
which implies that ™S,F < 0, ™B,F > 0, ™S,NF D 0, ™B,NF D 0.
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Table 13.1 Structure of the VAR and hypotheses about coefficients

Equation
(1) (2) (3) (4)
Dependent variable

Independent variables Ft � Ft � 1 NFt � NFt � 1 St Bt

Ft � 1 � Ft � 2 ™F,F D 0 ™F,NF D 0 ™F,S D 0 ™B,P > 0
NFt � 1 � NFt � 2 ™NF,F D 0 ™NF,NF D ? ™S > 0 ™B,P > 0
St � 1 ™S,F D 0 ™S,NF < 0 ™S,S > > 0 ™S,B D ?
Bt � 1 ™B,F D 0 ™B,NF > 0 ™B,B D ? ™B,B > 0

13.3 Data

Our sample consists of the stocks of the 121 US oil exploration and production
companies quoted on the NYSE during the period March 1983 to January 2011.
We define an exploration or production company as one with a North American
Industrial Classification (NAIC) of 211111 or a Standard Industrial Classification
(SIC) of 1311. By limiting our sample in this way, we exclude refining companies
that are likely to have very different loadings on the oil and gas factors.

We assume that fundamental value is a function of the month-end spot price of
West Texas Intermediate oil and the spot wellhead price of West Texas natural gas.
We also use the change in the contango in oil prices, where contango is measured
as the log of the price of the sixth most distant futures contract less that of the price
of the closest futures contract1. The Appendix gives our data sources.

To investigate the behaviour of returns we form portfolios of oil stocks. We proxy
the behaviour of all upstream oil stocks by the equally weighted portfolio of all
stocks with return data for a given month (the “All-stocks” portfolio). The hard-to-
arbitrage hypothesis suggests that sentiment-induced deviations from fundamental
value should be greater in the more volatile stocks. We therefore form sub-portfolios
of our sample of stocks consisting of the tercile of stocks with the highest variance
of returns over the preceding 60 months and the tercile with the lowest variance.
Following Baker–Wurgler, we form a portfolio that is long the tercile of high-
variance stocks and short the tercile of low-variance stocks (the “Hi-Lo” portfolio).
These portfolios are formed out of sample, and so represent a viable trading strategy.

We employ two measures of sentiment: the Baker–Wurgler index (“BW senti-
ment”) and the proportion of individual investors who report that they are bullish in
the regular survey conducted by the American Association of Individual Investors
(“Bullish sentiment”). Both measures are available for the period July 1987 to
January 2011. To facilitate comparison between the two sentiment measures, we

1Our results are robust to varying the definition of these variables. For example, using spot Brent
prices or a closer futures contract does not affect our conclusions. Equally, we obtain qualitatively
similar, but somewhat less strong, results using the Datastream index of US oil stocks rather than
our equally weighted portfolio of upstream stocks only.
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Fig. 13.1 Measures of sentiment. This figure shows plots of the Baker–Wurgler and Bullish
sentiment indexes from July 1987 to January 2011. In both cases the index has been standardised
to have a mean of zero and standard deviation of unity

recalibrate the index values in terms of the number of standard deviations from
the mean for the total period. Figure 13.1 provides a plot of these two rescaled
measures. The Baker–Wurgler index is characterised by long swings in sentiment
with a marked peak in value in February 2001. By contrast, Bullish sentiment is
more noisy and less persistent. The first-order autocorrelation coefficient in the
Baker–Wurgler index is .96, and the serial correlation in the index persists at least
through lag 6. By contrast, the first-order autocorrelation coefficient in the AAII
measure is .45 and the lower order serial correlations fall away rapidly.

The monthly levels of the two sentiment indexes are only weakly related with a
correlation of .09. The Baker–Wurgler index more closely resembles a cumulative



13 The Behaviour of Sentiment-Induced Share Returns: Measurement When. . . 297

Table 13.2 Summary statistics

Panel A: Means and standard deviations of portfolio returns and changes in
fundamental variables

Lo Hi All Hi-Lo �WTI �Gas �Cont
Mean .010 .014 .012 .006 .005 0.003 .0003
Std. Dev. .069 .104 .082 .064 .093 0.196 0.036
Panel B: Correlation coefficients. Below the diagonal is the Pearson coefficient and
above the diagonal in italics is the Spearman’s rank coefficient. Bold face indicates
coefficient is significantly different from zero at the 95 % confidence level. St � 1 is the
Baker Wurgler sentiment index lagged 1 month, and Bt � 1 is the percentage of bullish
respondents to AAII survey lagged 1 month

Lot Hit Allt Hit–Lot St � 1 Bt�1 �WTIt �Gast �Contt
Lot .77 .92 .25 .02 .08 .45 .42 �.19
Hit .82 .94 .77 �.04 .12 .47 .39 �.23
Allt .95 .95 .54 �.01 .10 .48 .43 �.23
Hit-Lot .30 .79 .57 �.08 .14 .25 .20 �.15

St � 1 .00 �.05 �.03 �.08 .09 �.04 �.03 .03

Bt � 1 .10 .16 .12 .15 .08 .14 .09 �.08

�WTIt .48 .49 .50 .30 �.09 .12 .27 �.71
�Gast .41 .41 .44 .24 �.07 .11 .24 �.18
�Contt �.15 �.21 �.18 �.21 .06 �.07 �.73 �.12

The table shows summary statistics for portfolio returns and log changes in the fundamental
variables, monthly data 1988.01–2011.01. The underlying stock prices are for a balanced
sample of 121 upstream oil firms. Lo is the return on the portfolio of stocks in the lowest
volatility tercile. Hi is the return on the portfolio in the highest volatility tercile. All is the
return on the portfolio of the entire sample. Hi–Lo is the return on the portfolio that is long the
Hi portfolio and short the Lo portfolio. � WTI is the first difference of the log spot price of
WTI. � Gas is the first difference of the log spot natural gas price. �Cont is the first difference
in the log of the WTI contango, where contango is defined as the ratio of the price of the sixth
most distant futures contract to that of the nearest contract

sum of past values of the Bullish measure2, which is consistent with the Baker–
Wurgler index capturing cumulative deviation from fundamentals rather than short-
term swings in sentiment.

Table 13.2 shows descriptive statistics for our variables. Panel A shows the
means and standard deviations of the oil portfolio returns and of the changes in the
fundamental values. Although the portfolios are formed out-of-sample, the standard
deviation of the high-volatility portfolio is 50 % higher than that of the low-volatility
portfolio. The volatility of the Hi-Lo portfolio which should, in principle, be hedged
against changes in fundamentals is almost as high as that of the Hi volatility
portfolio, suggesting that the long-short strategy may have only limited effect in
controlling risk.

2A regression of the Baker–Wurgler index on the concurrent and nine lagged values of the AAII
measure gives a positive loading on each of the independent variables with a multiple correlation
of .34.
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Panel B of Table 13.2 shows the correlation matrix for the entire period. Several
features of the matrix are of interest and point to issues that are explored in more
depth later.

1. The correlations between the returns on oil stocks and the three fundamental
variables are quite high. Taken together, the three fundamental variables explain
41 % of the variance in the returns on the portfolio of all oil stocks.

2. The long-short portfolio of oil stocks (Hi-Lo) is not well hedged against funda-
mentals, and its returns remain quite highly correlated with all three fundamental
variables. In other words, the high-volatility stocks are not only more difficult to
arbitrage, but they also have different loadings on the fundamental factors.

3. There is little correlation between the fundamental variables and lagged sen-
timent. This suggests that controlling for fundamentals may not substantially
change any estimate of the effect of sentiment, but also may make it easier to
decompose portfolio returns into fundamental and sentiment components.

4. The correlations between returns and lagged sentiment are larger in absolute
value for the high-variance portfolio and the long-short portfolio. This is
consistent with the Baker–Wurgler cost-of-arbitrage hypothesis.

13.4 Sentiment and Returns

In this section we examine the influence of sentiment on returns. In Sect. 13.4.1 we
provide evidence that the returns on the portfolios of oil stocks are characterised
by momentum and longer-term mean reversion. We then examine the returns to see
whether these patterns in returns are a function of our two measures of sentiment. In
Sects. 13.4.2 and 13.4.3 we go on to decompose the returns into a fundamental and
residual component and we analyse the relationship between these two components
and our sentiment measures. In Sect. 13.4.4 we then examine the relationship
between stock returns and “deep” fundamentals based on demand and supply in
the oil market.

13.4.1 The Influence of Sentiment on the Hi-Lo Portfolio

Before testing for the effect of sentiment on returns, we first examine the serial
properties of returns on the All-stock portfolio and the relationship of these returns
to fundamentals. Table 13.3 shows for our portfolio of oil stocks the variance rates
at differing intervals expressed as a proportion of the 1-month variance rate using
the variance ratio test with overlapping data proposed by Lo and MacKinlay (1988).
Consistent with standard results, the variance ratio rises for 6–9 months reflecting
medium-term momentum and then falls back over the following year reflecting
longer-term mean reversion.
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Table 13.3 Variance ratios of the All-stocks portfolio

Interval (months)

1 3 6 9 12 15 18 21 24
1983–2012 1.0 1.14 1.23 1.20 1.12 1.09 1.05 .99 .95

The table shows the variance of the All-stocks portfolio over different
intervals as a proportion of the 1-month variance rate, measured over
1983.01–2012.12. The portfolio invests equal amounts each month in all
US oil production and exploration stocks listed on the New York Stock
Exchange

We examine the influence of sentiment by regressing total returns on the two
lagged sentiment measures:

Rt D a C �S;RSt�1C C �B;RBt�1 C ei;t (13.6)

To investigate the role of fundamentals we augment this regression with controls for
the fundamental variables:

Rt D a C �S;RSt�1C C �B;RBt�1 C �F;R�Ft C ei;t (13.7)

Where �Ft is the vector of fundamental variables3.
Table 13.4 reports the result of regressions (13.6) and (13.7) for the All-stock

portfolio and the Hi-Lo portfolio over the period 1988–20114. For the All-stock
portfolio before controlling for fundamentals the coefficient on the BW sentiment
measure has the predicted negative sign but is insignificant, whilst the coefficient
for the Bullish measure is positive and significant, as predicted. Including the
fundamentals raises the R2 of the regression from .00 to .41. All three fundamental
variables are highly significant with an unexpected 1 % increase in the oil price
resulting in an increase of .59 % in the value of oil stocks. The coefficient on the
change in the contango is positive suggesting that when the value of the future
relative to the spot rises, there is a positive impact on the price of oil stocks. In
other words, given the spot price of oil, the value of companies owning oil reserves
increases when the futures price rises relative to the spot. Once these controls for
fundamentals are included, the significance of the Bullish measure disappears and
both sentiment measures become insignificant. The high R2 on the regression with
fundamentals and the change in the significance of the sentiment measures shows
the importance of controlling for fundamentals in testing the effect of sentiment.

3We also estimated Eq. (13.7) using estimates of the innovations in the fundamental variables.
These were estimated from an AR process with the optimal (i.e. not pre-specified) number of lags.
The results were not sensitive to whether the fundamental variables were whitened.
4Note that the regressions employ data only from 1988. The first 60 months of data are used to
form the initial high- and low-variance portfolios.
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Table 13.4 Regression of portfolio returns on lagged sentiment with and without controls for
fundamentals

All-stocks portfolio Hi-Lo portfolio

No controls
Fundamental
controls No controls

Fundamental
controls

Baker–Wurgler sentiment �.003 (�.69) .002 (.51) �.006 (�1.47) �.003 (�.91)
Bullish sentiment .010 (2.11)** .003 (.70) .010 (2.68)*** .007 (1.91)*
Oil return .587 (9.81)*** .170 (2.97)***
Gas return .129 (6.54)*** .053 (2.82)***
Oil contango change .805 (5.35)*** .018(.13)
Rbar2 .01 .41 .02 .12

The table summarises the results of a regression of returns on each of two oil portfolios
against two lagged sentiment measures, St � 1 and Bt � 1, for the period 1988.01–2011.01.
The coefficients on the sentiment measures are shown without and with controls for the
effect of fundamentals. The All-stocks portfolio invests equal amounts each month in all US
oil production and exploration stocks listed on the New York Stock Exchange. The Hi-Lo
portfolio has long positions in the tercile of stocks with the highest variance over the prior 60-
month period and short positions in the tercile of stocks with the lowest variance over the prior
60-month period. The regressions are estimated from monthly data using OLS with a constant
(not reported). t-statistics in parentheses. * denotes 10 % significance, ** 5 % significance,
and *** 1 % significance

The hard-to-arbitrage hypothesis predicts that the influence of sentiment will be
most marked for high-variance stocks. Therefore, following Baker–Wurgler, we also
report in Table 13.4 the result of regressions (13.6) and (13.7) for the portfolio that is
long high-variance stocks and short low-variance stocks. The high-variance stocks
are characterised by a heavier loading on the three fundamental factors. This may
stem from the higher relative importance of exploration (as opposed to production)
activity as proxied by a low ratio of revenues to assets.5 Thus, despite its apparent
hedged position, the Hi-Lo portfolio remains significantly exposed to oil and
gas returns After controlling for fundamentals, the coefficients on both sentiment
measures have the predicted sign, but only the Bullish variable is significant at the
10 % level.

For the Hi-Lo portfolio we also estimate these regressions for two sub-periods
divided at 2000. The motivation for looking separately at the sub-periods is the sharp
increase in institutional investment in oil futures after 2000 (Buyuksahin and Robe
(2012) and Singleton (2011)). In the ten years to 2010 open interest in crude oil
futures by non-commercial traders was 5.6 times its level over the previous 15 years
(Fig. 13.2). Figure 13.3 shows that there was also a sharp rise in the cumulative cash
flows into managed futures funds, which increased from $9.3 billion in September
2002 to $137.0 billion in March 2008 before losing most of these gains in 2009.

5It is also possible that the lower exposure of low-variance stocks to energy prices reflects hedging
activity, although Haushalter (2000) suggests that hedging is more commonly used by the more
risky oil and gas firms.



13 The Behaviour of Sentiment-Induced Share Returns: Measurement When. . . 301

Fig. 13.2 Open interest in oil futures. This figure shows on a log scale the level of open interest in
crude oil futures by non-commercial traders from January 1986 to December 2012. Source: CFTC

Fig. 13.3 Cumulative flows into commodity hedge funds. This figure shows on a log scale the
cumulative quarterly cash flows into Managed Futures Funds in millions of dollars from first
quarter 1994 to the third quarter 2010. Source: TASS Research
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Table 13.5 Sub-period regressions of Hi-Lo portfolio returns on lagged
sentiment with and without controls for fundamentals

Hi-Lo portfolio
No controls Fundamental controls
Panel A: 1988–2000

Baker–Wurgler sentiment .008 (1.06) .007 (.85)
Bullish sentiment .004 (.63) .001 (.17)
Oil return .214 (2.23)**
Gas return .093 (2.59)**
Oil contango change .085 (.40)
Rbar2 .00 .10

Panel B: 2001–2011
Baker–Wurgler sentiment �.009 (�.2.41)** �.007 (�1.90)*
Bullish sentiment .014 (2.76)*** .011 (2.28)**
Oil return .150 (2.28)**
Gas return .023 (1.28)
Oil contango change �.016 (�.08)
Rbar2 .10 .18

The table summarises the results of a regression of returns on the Hi-
Lo portfolio against two lagged sentiment measures, St � 1 and Bt � 1,
for the two sub-periods (1988.01–2000.12 and 2001.01–2011.01). The
coefficients on the sentiment measures are shown without and with
controls for the effect of fundamentals. The Hi-Lo portfolio invests in
US oil production and exploration stocks listed on the New York Stock
Exchange. It holds long positions in the tercile of stocks with the highest
variance over the prior 60-month period and short positions in the tercile
of stocks with the lowest variance over the prior 60-month period. The
regressions are estimated from monthly data using OLS with a constant
(not reported). t-statistics in parentheses. * denotes 10 % significance, **
5 % significance, and *** 1 % significance

Table 13.5 repeats regressions (13.6) and (13.7) for the two sub-periods. There
is a substantial difference between the sub-periods both in the coefficients and
their significance. In the earlier period even before controlling for fundamentals
neither of the sentiment coefficients is significant and the coefficient for the Baker–
Wurgler measure has the wrong sign. In the second period, even after controlling
for fundamentals, both sentiment measures have the predicted signs and remain
significant at the 10 % level or better.

13.4.2 Tests Using Fundamentals and Deviations
from Fundamentals

We now test the hypothesis that sentiment operates by affecting deviations from
fundamental value. To do so, we first decompose returns on the Hi-Lo portfolio
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into a fundamental component and a residual, and we then estimate the rela-
tionship between our sentiment measures and each of these two components.
Since the loadings of this portfolio on the fundamental factors may be time-varying
we estimate the loadings using rolling 60-month regressions of portfolio returns on
the fundamental variables:

Rit D ai C bi� WTIt C ci� Gast C di� Contt C uit (13.8)

We use the coefficients from this regression over the prior 60 months combined with
the change in the month’s fundamentals to estimate that part of the month’s return
that was due to fundamentals. The difference between the actual return in a month
and the fundamental return is the residual, or non-fundamental, return.

We estimate the VAR system Eqs.(13.2)–(13.5) using GMM with the Newey–
West correction for standard errors. Table 13.6 shows the results for the entire
period 1988–20116. Contrary to the “deviations from fundamentals” hypothesis
all the coefficients of the regression of these deviations on lagged variables in
column (2) are insignificant, and the Rbar2 is negative. In contrast, the regression of
fundamental returns on lagged sentiment (column (1)) has an Rbar2 of 5 %. There
is a negative coefficient on lagged B–W sentiment and a positive coefficient on
the lagged bullish variable. Both coefficients are strongly significant. This result is
consistent with sentiment-based trading operating largely through the fundamentals

Table 13.6 VAR of fundamental values for the Hi-Lo portfolio, deviations from fundamentals,
Baker–Wurgler sentiment, and Bullish sentiment

(1) (2) (3) (4)
Dependent variable
Ft � Ft � 1 NFt � NFt � 1 St Bt

Ft � 1 � Ft � 2 �.0312 (�.48) .0349 (.27) 2.1492 (3.09)*** �1.0366 (�.43)
NFt � 1 � NFt � 2 �.0014 (�.06) .0109 (.19) .3230 (1.17) �.8704 (�.93)
St � 1 �.0045(�2.43)** �.0010 (�.25) .9668 (33.78)*** .0543 (.75)
Bt � 1 .0047 (3.17)*** .0054 (1.49) .0240 (1.50) .4478 (6.68)***
Rbar2 .05 �.01 0.92 0.20

The table shows a VAR of the return to fundamentals (Ft � Ft � 1) for the Hi-Lo portfolio, return to
deviations from fundamentals (NFt � NFt � 1) for the Hi-Lo portfolio, Baker–Wurgler sentiment
(St � 1), and Bullish sentiment (Bt � 1). Monthly data 1988.01–2011.01. The Hi-Lo portfolio has
long positions in the tercile of stocks with the highest variance over the prior 60-month period and
short positions in the tercile of stocks with the lowest variance over the prior 60-month period.
Returns on the portfolio each month are split between fundamental returns and deviations from
fundamentals. Fundamental returns are based on a regression of the portfolio return on the oil price
return, gas price return, and the change in contango in the oil market, using a rolling window of
60 months prior to the month for which the stock return is split. The system is estimated using
GMM with Newey–West correction for the standard errors. t-statistics in parentheses. * denotes
10 % significance, ** 5 % significance, and *** 1 % significance

6The period is reduced by 5 years because the first 60 months are used to estimate Eq. (13.8).
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themselves, rather than through the deviations in the share price from fundamentals.
The negative coefficient on lagged B-W sentiment is consistent with high sentiment
signalling that the oil market is above its equilibrium and likely to fall. The positive
coefficient on the Bullish variable is consistent with short-term momentum pushing
the oil market upwards when retail investors are bullish.

Column (3) shows that the Baker–Wurgler sentiment variable is persistent, with
a partial serial correlation of 0.97 consistent with a half-life of 20 months. The
variable also responds to lagged changes in fundamentals, but not to lagged changes
in deviations from fundamentals. Again, this is consistent with sentiment operating
through the fundamentals themselves and not through deviations of share prices
from fundamentals. Column (4) shows that the Bullish variable is much less
persistent, with a half-life of less than a month. It has positive serial correlation
and positively responds to past fundamental returns.

Table 13.7 decomposes the Hi-Lo portfolio data into two sub-periods, divided at
the end of 2000. Column (1) shows the results for the entire period, and columns
(2) and (3) for the two sub-periods. The two sentiment variables have no significant
effect on deviations from fundamentals in any period, though the coefficients on
the Bullish variable consistently have the correct sign. The coefficients from the
regression of the fundamental component of returns on the two lagged sentiment
variables have the correct sign but are insignificant in the first sub-period. By

Table 13.7 Sub-period VAR results

(1) (2) (3)
1988–2011 1988–2000 2001–2011

Regression of fundamental return on lagged sentiment
Baker–Wurgler sentiment: ™S,F �.0045 (�2.43)** �.0011 (�.41) �.0059 (�2.52)**
Bullish sentiment: ™B,F .0047 (3.17)*** .0022 (1.21) .0069 (2.60)***
Rbar2 .05 �.01 .08
Regression of deviations from fundamentals on lagged sentiment
Baker–Wurgler sentiment: ™S,NF �.0010 (�.25) .0092 (1.29) �.0046 (�1.06)
Bullish sentiment: ™B,NF .0054 (1.49) .0018 (.33) .0049 (1.20)
Rbar2 �.01 �.01 .01
Partial serial correlation coefficient of
Baker–Wurgler sentiment: ™S,S .9668 (33.78)*** 1.008 (31.31)*** .9555 (30.60)***
Bullish sentiment: ™B,B .4478 (6.68)*** .3583 (5.65)*** .4383 (4.02)***

The table shows a VAR of the return to fundamentals (Ft � Ft � 1) for the Hi-Lo portfolio, return to
deviations from fundamentals (NFt � NFt � 1) for the Hi-Lo portfolio, Baker–Wurgler sentiment,
S, and bullish sentiment, B. Monthly data 1988.01–2011.01, divided at 2000.12. Stock returns
each month are split between fundamental returns and deviations from fundamentals based on a
regression of the stock return on the oil price return, gas price return, and the change in contango in
the oil market, using a rolling window of 60 months prior to the month for which the stock return
is split. Coefficient ™i,j measures the autoregression coefficient of variable j on the lagged value
of variable i. The system is estimated using GMM with Newey–West correction for the standard
errors. t-statistics in parentheses. * denotes 10 % significance, ** 5 % significance, and *** 1 %
significance
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contrast, in the second period the corresponding coefficients are strongly significant.
Although the time-series behaviour of the sentiment variables appears to be the
similar in the two sub-periods, the effect of sentiment on stock returns changes
completely in the second period. Consistent with the result that sentiment affects
prices largely via fundamentals, the effect occurs only once there is significant
investment interest in the fundamental markets post-20007.

13.4.3 The Effect of the Differencing Interval

Table 13.8 shows the effect of increasing the differencing interval to 3 months and
12 months. The results are shown for the entire period (Panel A) and the two sub-
periods (Panels B and C). The VAR is estimated using GMM with overlapping
observations and Newey–West corrected standard errors. In the regression of
fundamental returns the effect of moving from a 1-month to 3-month differencing
interval is to increase the magnitude and significance on both of the lagged sentiment
measures in all three periods. The Rbar2 of the regression of fundamentals on
sentiment increases dramatically, rising to .29 for a 12-month differencing interval
in the second sub-period. Thus the sentiment measures appear to have a prolonged
effect on the fundamental returns. In contrast, the longer differencing intervals have
almost no effect on the coefficients for the deviations from fundamentals, which
remain insignificant at all intervals and in all periods.

13.4.4 Deep Fundamentals

Our measure of the fundamental return on the portfolio of oil stocks is equivalent to
a weighted average of the contemporaneous change in the price of oil and gas and
the change in the contango. The evidence that this weighted average is a function of
the prior level of sentiment implies that oil and gas prices are themselves influenced
by sentiment (Pindyck, 1993). Thus it appears that sentiment drives oil prices away
from equilibrium values in a way that leads to predictable returns on oil stocks. This
effect increases after 2000 when interest in commodities as an asset class increased
significantly. 1-month returns are slightly predictable using sentiment, but returns
over a 1-year horizon are highly predictable. Overall, the results appear to reflect a
slowly changing but predictable component of oil and gas prices that is related to

7The sharp changes in cumulative flows into commodity hedge funds prompted us to examine
(more in hope than expectation) the effect within the VAR of interacting the cumulative flows with
the sentiment variables. There was no evidence that the impact of sentiment on returns was related
to the cumulative flows into managed futures funds.
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sentiment and generates a predictable return on oil stocks. Sentiment appears to have
no effect on the price of oil stocks other than through the prices of the commodities
themselves.

We can gain some further insight by examining the relationship between the
change in oil prices and prior sentiment while controlling for the deeper funda-
mentals that determine oil prices.

�WTIt D a C �SSt�1 C �BBt�1 C �F�DFt C et (13.9)

where �DFt is the vector of the underlying determinants of the change in oil prices.
The main problem in estimating Eq. (13.9) is the lack of good proxies for

deeper fundamentals that are available at sufficiently high frequency. We proxy
the fundamental determinants oil prices by changes in world oil production and
consumption, changes in world proven reserves (annual data only), changes in oil
inventories (monthly data only), and a measure of economic growth. We estimate
Eq. (13.9) using annual data, overlapping 12-month data and overlapping 3-month
data. In the case of the annual data estimates are for the period 1988–2011 and in the
case of the regressions using monthly data estimates are for the period 1994–2011.
The results are summarised in Table 13.9.

The controls for fundamental variables have little explanatory power in the
overlapping 3-month data regressions but in each case the coefficients on the
Baker–Wurgler measure are negative and those on the Bullish measure are positive.
However, with relatively few independent observations, the tests lack power and in
only two cases is the coefficient on sentiment significant at the 10 % level. Thus the
table provides mild direct support that sentiment affects energy prices and thereby
the return on oil stocks.

13.5 Robustness Tests

We have already noted that our findings are robust to (a) pre-whitening the
fundamental variables, (b) using different definitions of the crude oil price and the
oil contango, (c) using the Datastream index of oil stocks.

13.5.1 Long-Only Portfolios

To the extent that the Hi-Lo portfolio is better hedged against fundamental factors
than long-only portfolios, the fundamental component of returns will be relatively
small. We therefore repeated the VAR estimates with long-only portfolios. The
results for the tercile of stocks with the highest variance were very similar to
those for the Hi-Lo portfolio. In particular, the effects of sentiment on returns
were significant only for the second period, and sentiment impacted returns largely
through the fundamental component.
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13.5.2 Nasadaq Stocks

To test further the robustness of these results to a different sample of oil stocks,
we extended the sample to include 274 stocks of US oil and exploration companies
that were traded on Nasdaq. Although this produced a larger sample, the quality
of the Nasdaq data appears to be inferior with shorter time series for many
stocks, leptokurtic returns and more zero returns. Unsurprisingly, the high variance
portfolio tended to have a high concentration in Nasdaq stocks.

Table 13.10 summarises estimates of regression Eq. (13.8) for the expanded
sample of NYSE and Nasdaq stocks. The expanded portfolio is better hedged against
fundamental factors and the addition of these factors has therefore less effect on
estimates of the sentiment effect. Otherwise, the results are similar to those reported
in Tables 13.4 and 13.5. The coefficients on B–W are consistently negative and those
on Bullish consistently positive. However, there continues to be a big difference
between the two periods with the coefficients being significant only in the later
period.

13.5.3 The Effect of Lagged Market Returns

To evaluate the role of market returns in generating sentiment, we augmented the
VAR system by including the lagged market return in each of the regressions.
This did not significantly change the relationships between either of the sentiment
variables and either of the returns. It did not increase the R2’s for the prediction
of returns. The Bullish sentiment variable is not significantly related to the lagged
market return in the second sub-period, where the main sentiment effect is apparent.
This suggests that the momentum generated by the positive relationship between
fundamental returns and lagged Bullish sentiment is not simply a proxy for the
effect of lagged market returns.

13.5.4 Lagged Fundamentals

We also added to the VAR system more lags of the fundamental returns. These were
generally insignificant and did not change the basic results. The sentiment variables
remained significant in the second sub-period and the effect of sentiment showed up
only in the fundamental regression and not the deviations from fundamentals.
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Table 13.10 Regression of portfolio returns on lagged measures of sen-
timent with and without controls for fundamentals. The portfolio is an
expanded long-short portfolio of NYSE and Nasdaq oil stocks (the Hi-Lo
portfolio)

Hi-Lo portfolio
No controls Fundamental controls
Panel A: 1988–2011

Baker–Wurgler sentiment �.012 (�3.69)*** �.012 (�3.57)***
Bullish sentiment .007 (2.14)** .007 (2.00)**
Oil return .101 (1.93)*
Gas return �.018 (�1.04)
Oil contango change .130 (.99)
Rbar2 .05 .06

Panel B: 1988–2000
Baker–Wurgler sentiment �.008 (1.20) �.006 (�.90)
Bullish sentiment .003 (.60) .003 (.64)
Oil return .042 (.51)
Gas return �.046 (�1.50)
Oil contango change .032 (.17)
Rbar2 �.00 �.01

Panel C: 2001–2011
Baker–Wurgler sentiment �.013 (�.3.23)*** �.012 (�3.01)***
Bullish sentiment .011 (2.24)** .010 (2.04)**
Oil return .140 (2.08)**
Gas return �.010 (�.49)
Oil contango change .178 (86)
Rbar2 .11 .13

The table summarises the results of a regression of returns on a portfolio of
oil stocks against two lagged sentiment measures, St � 1 and Bt � 1, for the
period 2001.01–2011.01. The portfolio is constructed from an expanded
sample of 395 upstream oil stocks traded on the NYSE and Nasdaq. The
coefficients on the sentiment measures are shown without and with controls
for the fundamentals. The Hi-Lo portfolio has long positions in the tercile
of stocks with the highest variance over the prior 60-month period and short
positions in the tercile of stocks with the lowest variance over the prior 60-
month period. The regressions are estimated from monthly data using OLS
with a constant (not reported). t-statistics in parentheses. * denotes 10 %
significance, ** 5 % significance, and *** 1 % significance

13.6 Conclusions

Using a sample of upstream oil stocks where we have a good proxy for fundamental
value, we show that sentiment predicts returns. However, the effect is highly time-
varying, appearing only after the post-2000 increased interest in oil-related assets.

Sentiment effects come in two forms: retail investor sentiment predicts short-term
momentum, and Baker–Wurgler sentiment predicts medium-term mean reversion
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of fundamental factors. Whilst the sentiment variables explain only a negligible
proportion of the variance of returns, the additional return due to a change in
sentiment is not unimportant. For example, in the second period for the portfolio
of all oil stocks a one standard deviation rise in the level of investor sentiment added
about .3 % to the following month’s return; during the same period a similar one-
standard-deviation rise in the Baker–Wurgler index reduced return by about .3 %.

Contrary to the hard-to-arbitrage hypothesis, sentiment affects returns on these
stocks through fundamentals rather than through deviations from fundamentals.
Overall, it appears that retail sentiment drives the prices of oil and gas futures away
from their deeper fundamental values until the deviation is sufficiently large that
arbitrageurs drive the prices back towards their equilibrium values. This process for
the fundamentals is then reflected in the prices of upstream oil stocks.

These effects appear even in a portfolio that is long hard-to-arbitrage stocks
and short easy-to-arbitrage stocks, because this portfolio has a net exposure to
fundamentals. This has implications for tests of the hard-to-arbitrage hypothesis,
showing that it is important to have effective controls for fundamentals even when
the long-short portfolio is used.

Our finding that sentiment affects upstream oil stocks through the fundamentals
raises the issue as to whether this is also the case with other industries that
invest in assets that are traded in speculative markets. Obvious examples would be
stocks in other extractive industries but a similar effect could characterise financial
institutions. It also prompts the question whether the magnitude of any sentiment
effects depends on the extent to which the fundamentals are tradeable. If this is the
case, sentiment effects might vary not just with ease of arbitrage but with the nature
of the company’s fundamentals. The sharp increase in the significance of sentiment
effects in the post-2000 period was accompanied by an increase in speculative
activity in energy futures. If these effects are truly linked, then it raises the question
as to the effect of trading activity on the influence of sentiment. These would appear
to be fruitful, if difficult, areas for future research.

Acknowledgements The authors appreciate the comments of Bernell Stone, the reviewer of the
manuscript.

Appendix: Principal Data Sources

Stock samples: All common stocks with NAIC code of 211111 or SIC code of
1311 (oil production or exploration) that were listed on the NYSE or Nasdaq and
whose issuers were incorporated in the USA. Returns data were taken from the
CRSP monthly database. Portfolio returns were constructed from equally weighted
holdings in all stocks with valid returns data for that month. Portfolio returns were
then converted to continuously compounded returns.

Oil prices: Month-end spot prices for West Texas Intermediate taken from the
Energy Administration website at www.eia.gov.

http://www.eia.gov/
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Natural gas prices: Monthly spot prices for Natural Gas Wellhead Price taken
from Globalfindata. Prices are month averages from March 1983–December 1995
and end-of-month from January 1996–January 2011.

Contango: NYMEX futures prices are taken from Quandl at www.quandl.com.
The contango is defined as the price of the contract that is sixth nearest to delivery
divided by the price of the contract that is closest to delivery. The change in contango
is defined as ln(contangot) � ln(contangot � 1).

Baker–Wurgler Sentiment Index: SENT1 constructed from IPO volume, IPO
first-day returns, market turnover, and the market-book ratio of high-volatility stocks
relative to that of low-volatility stocks. See http://people.stern.nyu.edu/jwurgler/.
The index is rescaled to have mean zero and unit standard deviation.

American Association of Individual Investors (AAII) Investor Sentiment
Survey: Proportion of investors reporting they are bullish divided by the total pro-
portion reporting that they are either bullish or bearish (i.e. not neutral). Taken from
final week’s survey in each month as reported on www.aaii.com/sentimentsurvey.
The index is rescaled to have mean zero and unit standard deviation. Data are
available from July 1987.
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Chapter 14
Constructing Mean Variance Efficient Frontiers
Using Foreign Large Blend Mutual Funds

Ganlin Xu, Harry Markowitz, Minyee Wang, and John B. Guerard

14.1 Introduction

Mutual funds are efficient investment vehicle for small investors. The buy and hold
strategy is the prevailing way of investing in mutual funds because of the trading
cost and tax considerations. Since the emergence of online trading platforms, the
trading cost has come down significantly. Now it is the time to evaluate strategies
of more actively managed portfolios of mutual funds. In this study, we show how to
use mean-variance portfolio selection methods to construct and manage portfolios
of mutual funds, with the focus on funds categorized as foreign large blend by
Morningstar. There are two reasons we choose this category of mutual funds. First,
total foreign equity markets are as large as the US equity market now, and mutual
funds are still the best way to get exposures to it. Second, this category of mutual
fund is under-studied. Most researchers focus on the relative performance of US
equity mutual funds. We report that: (1) The performance predictive variables that
work for US equity mutual funds can also work for foreign large blend mutual funds;
(2) the mean-variance approach can effectively diversify the risk of portfolios for
this category of mutual funds too. The risk of the minimum variance portfolio could
be 6 percentage points less than the risk of the expected-return maximizing portfolio
while the realized return is only about 2 percentage points less; (3) the mean-
variance approach can produce portfolios with higher Sharpe ratios than the Sharpe
ratio of either the index funds or the category average which are the benchmark of
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this study. Some efficient portfolios can outperform these two benchmarks by more
than 2 percentage points while having the same risk levels even after transaction
cost.

This paper is organized as following. In Sect. 14.2, we briefly state the single-
period mean-variance portfolio selection problem with turnover constraints, and
describe how we compute the ex post mean-variance efficient sets. In Sect. 14.3,
we present two variance-covariance models and also a broad review of expected
return models used for US equity mutual funds. In Sect. 14.4, we describe the data
source, define the investable universe, and discuss the assumptions on transaction
cost. In Sect. 14.5, we present various ex post efficient frontiers by varying
expected return models, risk models, turnover constraints, and upper bounds. We
conclude that various expected return models can be used as input for mean-variance
optimizations to generate 2 percentage points more returns than benchmarks while
having the same or less risk.

14.2 Single-Period and Ex Post Mean Variance Efficient
Frontier

The mean variance portfolio construction method proposed by Markowitz (1952,
1959) assumes that an investor should maximize the expected portfolio return for a
given risk level, or equivalently, minimize the risk for a given expected portfolio
return. The complete efficient portfolio set can be traced out by the quadratic
problem:

min xTCx � 
E�Tx (14.1)

where � is the expected return vector, C is the variance-covariance matrix, and x
is the portfolio weights, 
E � 0 is the risk return trade off parameter. The choice
of 
E reflects the investor’s risk tolerance. The more risk adverse an investor is, the
smaller would be his 
E.

In this study, we impose the no-shorting constraint, i.e., xi � 0 for all i, an
universal upper bound, i.e.,

xi � upper bound; for all i; (14.2)

and budget constraints
P

xi D 1, i.e., fully invested. We also consider turnover
constraints in terms of total buying and selling

�XN

iD1

ˇ̌
xi � xo

i

ˇ̌�
=2 � turnover (14.3)

where xo
i is previous period’s portfolio weight of security i in the universe.
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Using the mean-variance framework requires the investor to estimate the mean-
variance parameters (�, C), and make decisions on upper bounds, turnover, and 
E.
We refer the estimation methodology of (�, C) together with decisions on upper
bounds and turnover constraints as an investment strategy. For each period t and

E, the transaction cost-adjusted return R(t, 
E) can be easily calculated for the
corresponding efficient portfolio generated at the beginning of the period. The 
E

parametric realized mean-variance set of returns R(t, 
E) (for t D 0 to period T)
generated by the same strategy for all 
E are called the ex post efficient frontier. We
will use ex post efficient frontier as the criteria to evaluate investment strategies.

14.3 Risk Models and Expected Return Models

The multifactor linear model is the standard risk model. Here we assumes that the
return of any mutual fund can be modeled by Eq. (14.4) with four factors, i.e.,
market factor RM, size factor RSMB (small cap portfolio minus large cap portfolio),
value factor RHML (high Book/Price portfolio minus low Book/Price portfolio), and
momentum factor RWML (last year winner portfolio minus loser portfolio).

Rp � Rf D ˛p C ˇmp
�
RM � Rf

� C ˇsmbp 	 RSMB C ˇhmlpRHML C ˇwmlp 	 RWML C �p

(14.4)

Once the betas were estimated by regressing mutual fund returns to factor returns,
the variance-covariance risk matrix C can be calculated by

C D ˇFˇ0 C
X

(14.5)

where F is variance-covariance of factor returns and
P

is the residual diagonal risk
matrix. Fama and French (1992, 1996) developed this factor model for stocks. It has
been adopted by mutual fund researchers since Carhart (1997). The factor returns
used in this study are downloaded from French’s data library. Table 14.1 shows the
sample statistics of the factor returns.

The relatively low correlations and negative correlations among the factor returns
make it a very attractive risk model. One can skip the regressions in Eq. (14.4) and
calculate the variance-covariance matrix directly from fund’s historical returns by
Eq. 14.6.

Cij D
XT

tD0

�
Rit � Ri

� 	 �Rjt � Rj
�
=T (14.6)

We call Eq. (14.6) the historical model and will compare it with the factor model
(Eq. 14.5). At the beginning of each period, previous 5 years’ monthly returns are
used to estimate betas of Eq. (14.4), factor model (Eq. 14.5), and historical model
(Eq. 14.6).
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Table 14.1 Global factor
returns, February
2004–January 2014

Start date Mkt SMB HML WML

200402 12.77 7.42 8.68 3.75
200502 19.32 6.13 5.85 22.19
200602 17.00 �4.50 7.92 �0.70
200702 0.16 �8.19 �1.84 11.80
200802 �40.93 0.69 �5.13 19.53
200902 38.67 7.39 2.99 �40.31
201002 20.97 6.46 �0.76 13.07
201102 �3.64 �2.20 �8.42 2.19
201202 16.79 �4.19 9.19 10.56
201302 17.93 2.32 1.81 22.03
Average 9.90 1.13 2.03 6.41
Std 21.27 5.69 6.05 18.30
Corr
Mkt 1.00 0.36 0.59 �0.48
SMB 1.00 0.18 �0.21
HML 1.00 �0.11
WML 1.00

There are numerous ways to estimate the expected return vector �. Three groups
of data have been shown to contain information of future returns. The first group of
data consists of the raw returns, like past year’s return, past 3 years’ return, etc. The
second group of data consists of risk-adjusted returns, like Treynor Index, Sharpe
Ratio, and Jensen’s alpha. This group of data measures the fund manager’s stock
selection skills by taking into account the portfolio’s risk. The third group of data is
the mutual fund’s characteristics, like expense ratios, annual turnover rates, and top
holdings concentrations. These three groups of data have been studied extensively
in the literatures for US equity funds. We will review them in detail accordingly.

14.3.1 Raw Return

Can past performance of mutual funds be indicative of future performance?
Hendricks et al. (1993) found strong evidence that last year’s winners will continue
to do well this year for US growth equity mutual funds using data from 1974 to
1988. Carhart (1997) studied the all equity mutual fund data from 1962 to 1993 and
concluded that funds with the highest returns last year will have higher returns than
average fund returns this year. Carlson (1970) using data from 1948 to 1967, and
Brown and Goetzmann (1995) using data from 1970 to 1989, also found support
of persistence of raw returns. However some researchers, like Brown et al. (1992),
argue that the persistence is the result of survivor bias of the test database. In this
study we show that the performance still persists even after control for survivor bias.
Since the return from the manager’s skill is small when compared to the return of
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risk factors, the underlying risk exposures and the persistence of risk factor returns
are the main determinants of persistence of raw performance. If raw returns are
used as the sole selection criteria for mutual fund, then high risk mutual funds are
most likely to be recommended. If the risk factor returns reverse themselves, then
last year’s winners will perform poorly. Table 14.3 shows that the 2007s top winner
decile portfolio underperformed the bottom loser decile portfolio by almost 4 %
during the 2008 market crash. When the market reversed itself in 2009, the 2008s
winner decile portfolio underperformed the loser decile portfolio by 9.04 %.

14.3.2 Risk-Adjusted Return

The risk-adjusted return is the standard performance measurement. The risk model
has evolved from the single factor model to multifactor models like Eq. (14.4).
Treynor (1965) is the first one to adjust raw returns to evaluate mutual fund
performance. He created the Treynor Index, which is the raw return divided by the
mutual fund’s beta against market. Sharpe (1966) created the Sharpe ratio as the
mutual fund performance measurement, which is the excess return divided by the
standard deviation of the mutual fund’s return. The Shape ratios based on the return
and volatility from 1954 to 1963 are positively correlated with the Sharpe ratios
calculated using the data from 1944 to 1953. Jensen (1969) used the regression
alpha of fund returns to market returns to evaluate the performance of mutual funds.
More recently, Carhart (1997) proposed the four factor model Eq. (14.4) to study the
risk-adjusted returns using data from 1962 to 1993. He found the top decile portfolio
based on previous years’ returns did outperform the bottom decile. Most researchers,
like Pastor and Stambaugh (2002a, b), Elton et al. (1996), Carhart (1997) found
that the relative risk-adjusted performance persist from formation period to post
formation period.

14.3.3 Mutual Fund Characteristics

The Index fund industry and academies have long argued that active fund managers
can’t beat the market on average because of the expenses. Kinnel (2010) reported
that expense ratio is the most reliable predictor of mutual fund’s future success.
He sorted funds into quintiles by expense ratios and category, and found that
least expensive fund group always out performs the most expensive fund group.
Academies have studied the fund characteristics too. Carhart (1997) documented a
negative effect for fees. Cremers and Petajisto (2009) found a negative effect of fund
size on performance.

All the researchers mentioned above concluded that past relative performance
can be used to forecast future relative performance. Based on the conclusion of
previous studies, we will study the following information variables (Table 14.2).
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Table 14.2 Definition of information variables

Alpha D regression alpha of Eq. (14.4) using previous 5 years’ monthly returns. It is the
long-term risk-adjusted return
ERatio D reported fund expense ratio for the previous year
LQRet D the previous quarterly return before the formation time
LY1Ret D the previous year’s return before the formation time
LY3Ret D the previous 3 years’ cumulative return before the formation time
TI1 D LY1Ret/ˇmp, where ˇmp is the market beta in Eq. (14.4) estimated by using previous 5
years’ monthly returns. This is the modified 1-year Trenyor Index
TI3 D LY3Ret/ˇmp, where ˇmp is the market beta in Eq. (14.4) estimated by using previous 5
years’ monthly returns. This is the modified 3-year Tranyor Index
SR1 D LY1Ret/�p, where �p is the monthly standard deviation estimated by using previous 5
years’ monthly returns. This is the modified 1-year Sharpe ratio
SR3 D LY3Ret/�p, where �p is the monthly standard deviation estimated by using previous 5
years’ monthly returns. This is the modified 3-year Sharpe ratio
Assets D the asset under management at the end of the previous year

14.4 Data and Universe

All the mutual fund data are from Morningstar Principia. Morningstar assigns each
mutual fund to a category according to the fund’s objective. Starting from January
2000, we download the monthly return, expense ratio, total net asset value, turnover
ratio, and Morningstar ratings for all the mutual funds. At the end of January of
each year, by that time the mutual fund’s characteristic data is available, we will
reconstruct our universe by considering only those mutual funds that have more than
$100 million assets under management. Elton et al. (1996) found that 1-year survival
rate is 98% for fund with AUM more than 15 million. Our AUM cutoff makes our
universe free of survivor bias. For the foreign large blend category, there are 117
funds with average expense ratio 1.28% at end of year 2003, and 264 funds with
average expense ratio 0.90% at the year end of 2013. Since we need 5 year’s return
data to calculate alpha and betas in (Eq. 14.4), we further eliminate those mutual
funds which don’t have 5 years returns. The reported annual return is cumulative
return from February of the report year to the January of the next year. The bottom
decile return is calculated as the larger returns of the worst two decile portfolio
returns. We do this because Carhart (1997) has shown that the difference in returns
from the worst two decile portfolios is un-proportionally large when compared to
the difference in returns from other adjacent decile portfolios. Table 14.3 reports the
return differences.

Another way to look at the predictive power of variables is to examine the
information coefficient (Table 14.4). The Table 14.4 presents the results for some
of the variables listed in Table 14.2.
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Table 14.3 Difference of top decile portfolio return to bottom decile portfolio return

Starting
date ERatio Alpha LQRet LY1Ret TI1 SR1 LY3Ret TI3 SR3 Assets

200402 0.64 1.40 �0.40 2.71 2.47 3.08 3.68 3.40 3.41 �0.30
200502 �2.36 4.22 10.61 2.87 2.16 �6.32 3.78 0.36 �1.03 �0.27
200602 2.36 1.12 1.23 2.68 1.42 1.52 3.76 �1.22 �0.77 �2.00
200702 1.57 5.29 4.59 3.86 1.85 3.12 6.16 3.67 2.92 2.03
200802 1.25 2.05 1.34 �3.93 �1.30 �0.05 �4.63 �0.36 �3.28 3.15
200902 2.18 9.94 �11.76 �9.04 7.23 8.53 5.65 8.03 6.20 1.86
201002 0.34 2.50 4.75 4.41 3.04 2.98 1.47 1.42 1.61 0.06
201102 2.11 0.58 0.61 �2.82 �2.11 �1.94 0.40 0.37 0.26 �1.16
201202 1.96 0.23 1.32 �1.72 �0.76 1.00 �2.44 �2.47 �3.61 4.06
201302 �2.41 0.88 0.90 7.51 6.38 6.88 �0.05 0.23 �0.92 3.22
Average 0.76 2.82 1.32 0.65 2.04 1.88 1.78 1.34 0.48 1.07
Std 1.79 2.98 5.61 4.91 3.05 4.21 3.50 3.01 3.08 2.07
T 1.35 2.99 0.74 0.42 2.11 1.41 1.61 1.41 0.49 1.63

Table 14.4 Annual information ratios

Starting date ERatio Alpha LY1Ret LY3Ret TI1 SR1 TI3 SR3

200402 0.23 0.21 0.29 0.48 0.38 0.33 0.49 0.49
200502 0.02 0.30 0.13 0.23 0.17 0.06 0.25 0.22
200602 0.27 0.00 0.02 0.24 �0.02 0.02 0.15 0.18
200702 0.20 0.15 0.03 0.35 �0.09 �0.03 0.26 0.28
200802 0.15 0.19 0.02 �0.08 0.10 0.11 0.06 0.06
200902 0.10 0.36 �0.02 0.13 0.14 0.22 0.14 0.15
201002 0.04 0.23 0.26 0.13 0.19 0.22 0.15 0.15
201102 0.20 0.26 0.08 0.30 0.12 0.13 0.28 0.28
201202 0.21 �0.12 0.01 �0.24 0.00 0.02 �0.26 �0.26
201302 �0.09 �0.03 0.49 0.10 0.45 0.44 0.07 0.07
Average 0.13 0.16 0.13 0.16 0.14 0.15 0.16 0.16
Std 0.11 0.15 0.15 0.20 0.16 0.14 0.18 0.18
T 3.93 3.34 2.70 2.61 2.84 3.37 2.72 2.79

Table 14.5 Distribution of
minimum initial investment at
2013

Minimum initial
investment 0 �2500 �5000 �100,000

Count 30 39 4 52

The positive decile return differences and statistically significant positive infor-
mation coefficients confirm that these variables are viable expected return models.
The data period under consideration is a very special period. We experienced the
great financial crises. The market tanked in 2008 and started to bounce back in 2009.
Most variables failed in year 2009. In particular, the momentum variables (LQRet,
LY1Ret, and LY3Ret) failed more than the risk-adjusted variables like TI3 and SR3.
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14.4.1 Transaction Cost, Turnover, and Upper Bound

One of the decision variables of using mean-variance portfolio construction and
management process (Eq. 14.1) is the turnover constraint from period to period.
The optimal turnover depends on what expected return model to use and what
transaction cost per trade the investor expects. The cost per trade is from 7 to 10
dollars for most online trading platforms. So the percentage cost of trading depends
on the actual dollars amount traded. For example, 10 dollar fee for 2000 dollar
trade translates into 50 basis points of cost, and 10 dollar fee for 4000 dollar trade
translates into 25 basis points of cost. This makes higher upper bound a way of
lowing transaction cost. For this reason we will run our simulation with two levels
of transaction cost and two levels of upper bounds. The two levels of cost are 25
basis points and 0 basis points per trade. The two upper bounds are 10 and 20 %.
There are other trade frictions too. One of them is the minimum initial investment.
In order to implement the mean-variance portfolio weights, we remove those mutual
funds with minimum initial investment more than 2500 dollars from our simulation
universe. This deletion does not affect our simulation results. Another trade friction
is the fee imposed by mutual funds for frequent traders. They are usually 2 and 1 %
if the holding period of the fund is less than 3 and 6 months respectively. For this
reason, we will simulate our portfolio construction process on an annual basis.

14.5 Ex Post Efficient Frontiers

We will run a series of simulations by varying the expected returns, turnover
constraints, risk models, transaction cost, and upper bound. First we would like to
settle what risk model to use. Table 14.6 compares the risk-return trade-off curves
generated with factor risk model and historical risk model, using Alpha as expected
returns with no transaction costs, no turnover constraints, and upper bounds of 10 %.
There are no statistically significant differences for these two efficient sets. This is
true for other expected return models. From now on we will report ex-post efficient
frontiers using factor risk model only.

The next three exhibits validate our expected return models. Tables 14.7, 14.8,
and Fig. 14.1 show the benchmark returns, and the efficient frontiers using different
expected return models with no transaction cost, and no turnover constraints. The
category average returns are reported by Morningstar. Index funds returns are
calculated by the average return of the 10 least expensive funds, which turned
out to be index funds. The long-term risk-adjusted return Alpha dominates the
1-year momentum variable LY1Ret, which dominates the fund expensive ratio
variable ERatio. Alpha mean-variance efficient portfolios with comparable risks are
2 percentage points better than the benchmarks. LY1Ret and ERatio mean-variance
efficient portfolios are as good as benchmarks.
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Table 14.6 February, 2004–January, 2014, no cost, no turnover constraint

Expected return: Alpha
Risk model Factor Historical
œ Mean Std Sharpe ratio Mean Std Sharpe ratio

9 12.24 25.75 0.42 12.24 25.76 0.42
8 11.95 24.96 0.42 12.07 25.03 0.42
7 11.52 23.98 0.42 11.69 24.00 0.42
6 11.38 23.19 0.43 11.42 23.02 0.43
5 11.28 22.07 0.44 11.33 22.04 0.45
4 11.11 21.05 0.46 11.02 21.19 0.45
3 10.94 20.56 0.46 10.93 20.74 0.45
2 10.73 20.51 0.45 10.65 20.31 0.45
1 10.49 20.15 0.45 10.21 19.75 0.44

Table 14.7 Benchmark
returns: February,
2004–January, 2014

Category average Index funds

Mean Std Sharpe ratio Mean Std Sharpe ratio
9.28 23.37 0.33 8.81 21.24 0.34

Table 14.8 February, 2004–January, 2014, no cost, no turnover constraints

Expected return LY1Ret Alpha ERatio

œ Mean Std
Sharpe
ratio Mean Std

Sharpe
ratio Mean Std

Sharpe
ratio

9 10.22 24.12 0.36 12.24 25.75 0.42 8.81 21.24 0.34
8 9.98 23.54 0.36 11.95 24.96 0.42 8.94 21.15 0.35
7 9.50 22.80 0.35 11.52 23.98 0.42 8.82 20.99 0.35
6 9.11 22.09 0.34 11.38 23.19 0.43 8.67 20.83 0.34
5 8.98 20.88 0.36 11.28 22.07 0.44 8.57 20.69 0.34
4 8.92 20.12 0.37 11.11 21.05 0.46 8.55 20.44 0.34
3 9.00 20.04 0.37 10.94 20.56 0.46 8.34 19.93 0.34
2 8.79 20.02 0.36 10.73 20.51 0.45 8.41 19.46 0.35
1 8.90 19.13 0.39 10.49 20.15 0.45 8.61 19.08 0.37

The ex post efficient frontier is not as smooth and as concave as ex ante
efficient frontier. The main cause is the imperfect estimation of expected returns.
Nevertheless, the portfolios with less risk-tolerant parameter, i.e., lower œE in ex-
ante, do realize less total risk in ex post. The mean-variance process is very effective
on controlling portfolio risk. In particular, the minimum variance portfolio trades
off only 2 % return with 6 % less risk when compared to the return-maximizing
portfolio for Alpha model. The conservative portfolios have higher Sharpe ratios
than the more risk taking portfolios. The performance of expensive ratio is not as
good as expected since it has an average positive IC of 0.13 and highest t statistic of
3.93. On the other hand, the least expensive funds are dominated by index funds so
one should not expect them to outperform the index fund benchmark. The positive
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Fig. 14.1 February, 2004–January, 2014, no cost, no turnover constraints

decile portfolio spread and positive IC suggest that we should either combine it with
other variables or use it as a constraint to avoid the most expensive funds.

In the presence of transaction cost, we expect the efficient portfolios to underper-
form no cost-efficient ones by

2 � Cost � Turnover (14.7)

Table 14.9 shows the cost effects on momentum LY1Ret model and Alpha model.
The performance deduction on LY1Ret model confirms to Eq. (14.7). The resulting
portfolios underperform the benchmarks. However, there are no performance
deductions for Alpha model. It is possible because the optimizer takes into account
the transaction cost, and the portfolios are different. The portfolios with transaction
cost turned out to be better for the Alpha model even after the cost.

On one hand, imposing turnover constraints puts an upper bound (Eq. 14.7) on
trading cost. On the other hand, it may prevent the optimizer from fully utilizing the
predictive information. Table 14.10, Figs. 14.2 and 14.3 show the overall effect of
turnover and cost. Adding turnover constraints, the LY1Ret model performs almost
1 % better while Alpha model performs 1 % worse respectively.

All the above simulations are done with 10 % as the upper bound for each
position to enforce some diversification. Table 14.11 and Figs. 14.4 and 14.5 show
the efficient frontiers by loosening the upper bound from 10 to 20 %. For Alpha
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Table 14.9 February, 2004–January, 2014, cost D 0.25%, no turnover constraints

Expected return LY1Ret Alpha
œ Mean Std Sharpe ratio Mean Std Sharpe ratio

9 9.69 24.09 0.34 12.18 25.82 0.41
8 9.41 23.21 0.34 11.96 24.56 0.43
7 8.92 22.97 0.32 12.05 23.57 0.45
6 8.73 21.82 0.33 11.30 22.58 0.43
5 9.01 20.83 0.36 11.42 21.90 0.45
4 8.83 20.21 0.36 11.06 20.97 0.46
3 8.90 20.01 0.37 10.81 20.46 0.46
2 8.57 20.05 0.35 10.61 20.49 0.44
1 8.75 19.24 0.38 10.31 20.26 0.43

Table 14.10 February, 2004–January, 2014, cost D 0.25, turnover�0.25

Expected return LY1Ret Alpha
ƒ Mean Std Sharpe ratio Mean Std Sharpe ratio

9 11.17 25.36 0.38 11.50 25.04 0.40
8 10.34 22.85 0.39 10.40 22.55 0.39
7 10.08 21.66 0.40 10.30 21.64 0.41
6 10.24 21.51 0.41 10.28 21.50 0.41
5 10.13 20.73 0.42 9.79 20.79 0.40
4 9.64 20.38 0.40 10.70 20.35 0.45
3 9.24 19.56 0.40 10.40 20.28 0.44
2 9.02 19.22 0.39 10.13 20.16 0.43
1 8.73 19.03 0.38 9.68 19.72 0.41

model, the whole efficient frontier shifts to upper-left more than 1 %. The return is
more and risk is less. For LY1Ret model, the effect is mixed. The riskier portfolios
underperform and the conservative portfolio outperform than the tighter constrained
portfolios.

14.5.1 Conclusion

This paper discusses the nontrivial aspects of applying the mean-variance opti-
mization technique to manager portfolios of foreign large blend mutual funds.
There are numerous viable expected return models from past performance and fund
characteristics. With the right turnover constraints, upper bound, and appropriate
risk-return trade-off parameter, efficient portfolios with comparable risk as the
benchmarks can outperform the benchmarks more than 2 %.
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Fig. 14.2 Turnover and cost effect of Alpha model

Fig. 14.3 Turnover and cost effect of LY1 model
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Table 14.11 February, 2004–January, 2014, cost D 0.0, turnover�25 %, upper bound�0.20

Expected return LY1Ret Alpha
œ Mean Std Sharpe ratio Mean Std Sharpe ratio

9 10.25 25.01 0.35 11.32 23.74 0.41
8 9.36 22.65 0.35 10.73 21.27 0.43
7 9.26 21.44 0.36 11.33 20.23 0.49
6 9.92 20.50 0.41 10.80 18.96 0.49
5 10.23 19.53 0.45 10.02 18.66 0.46
4 9.72 19.31 0.43 10.18 18.78 0.46
3 9.38 18.41 0.43 9.74 18.56 0.44
2 9.09 17.57 0.43 9.88 18.27 0.46
1 9.21 17.36 0.44 10.02 18.35 0.46

Fig. 14.4 Alpha model with cost D 0.0, turnover�25 %, upper bound�0.20
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Fig. 14.5 LY1Ret model with cost D 0.0, Turnover�25 %, upper bound�0.20
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Chapter 15
Fundamental Versus Traditional Indexation
for International Mutual Funds: Evaluating
DFA, WisdomTree, and RAFI PowerShares

Heehyun Lim and Edward Tower

The fundamental index fund is a hybrid of active and passive management.
Fundamental indexation is passive in that it uses rules for portfolio selection. It
is active in the sense that its portfolio weights deviate from market cap weights,
and therefore fundamental indexation takes an active position relative to the cap-
weighted market.

Do fundamental index funds beat traditional ones? The major companies that
offer the new fundamental index international mutual funds are Dimensional
Fund Advisors (DFA), Research Affiliates, and WisdomTree. A major provider of
traditional international index funds is DFA. We compare various fundamental index
fund portfolios from these companies with individualized benchmark portfolios
composed of DFA traditional funds.

Jeremy Siegel said in an interview with the New York Times in 2006, traditional
index funds overweight overvalued stocks while they underweight undervalued
stocks, causing investors to buy fashionable assets at high prices (Anderson, 2006).
Robert Arnott, Chairman of Research Affiliates, succinctly describes fundamental
indexation (PowerShares, 2012 p. 3): “Fundamental Index strategies use Funda-
mentals, various measures of firm size, including dividends, earnings, cash flow,
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sales, book-equity values, and so on.” For more complete descriptions of active and
fundamental index strategies see Arnott and Fabozzi (1992) and Arnott et al. (2008).

The opponents of fundamental index funds, however, claim that the excess return
generated from fundamental indexation is minor and that the additional costs,
including turnover costs, and tax inefficiencies, cancel out the advantage of this
alternative index fund, if there is any.

Tower and Yang (2013) compare DFA, Research Affiliates, and WisdomTree US
fundamental index funds with portfolios constructed out of Vanguard index funds.
Here, by examining international funds we complete the inquiry that Tower & Yang
initiated.

We use a modified “style analysis” of Sharpe (1992) to compare the performance
of traditional index funds and fundamental index funds of international stocks.
Vanguard has a limited range of international index funds, so instead of using
Vanguard traditional index funds to benchmark, here we employ DFA traditional
index funds to do the job.

Tower and Yang (2013) compare Vanguard, a traditional index fund manager,
with leading fundamental index fund families, DFA-Core and Vector funds, Power
shares-Research Affiliates (RAFI for short), and WisdomTree. They use two
Fama-French models as well as Sharpe’s style analysis (Sharpe 1992). They find
that the RAFI funds and WisdomTree funds outreturned their Vanguard clones,
whereas DFA core slightly underreturned. Instead of supporting either fundamental
or traditional funds, their study produces the conflicted result: “two cheers for
enhanced [or more properly fundamental] indexation and one for traditional.” Their
results for the Fama-French models and the Sharpe style analysis models were quite
similar. So here we simplify matters by using only the Sharpe (1992) style analysis.

To clarify terminology, one set of readers (identified in the acknowledgements)
wrote, “Enhanced index funds are the standard term used in the finance industry to
denote funds which manage off a given benchmark index, usually with an implicit
or explicit tracking error constraint. RAFI and WT index funds do not fall into
this category. We would suggest using the term ‘smart beta,’ ‘alternative index’ or
‘strategic index,’ instead.” There are advocates for all three. We choose the term
“fundamental index funds.”

15.1 Style Analysis

Sharpe (1992) introduces a useful way of comparing fund performance. He con-
structs a clone portfolio of indexes that minimizes the variance of the difference
between the return on the fund and the synthetic portfolio. The clone portfolio is
a combination of indexes that reflects the manager’s asset mix. For example, if
a manager maintains a portfolio consisting of 25 % small value stocks and 75 %
large growth stocks, running a regression of the return of the mutual fund on the
returns of a set of indexes, not suppressing the constant term, and constraining the
sum of the portfolio weights, represented by the regression coefficients, to add up
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to 1, should yield a coefficient of 0.25 for the small value index and 0.75 for the
large growth index. Lucas and Riepe (1966) also provide a transparent discussion of
returns-based style analysis.

We use a modified version of style analysis as Tower (2009) more comprehen-
sively explains, replacing indices with index funds. Using 11 DFA international
traditional index funds, we create the clone portfolio as that which best mimics the
pattern of returns of each individual international fundamental fund or portfolio of
fundamental funds, henceforth, simply fundamental fund.

15.2 How Do We Create the Clone Portfolio?

We instruct Microsoft Excel Solver to find the weighted sum of each traditional
fund’s return to produce the fundamental fund’s return. By allowing the weights,
which must sum up to 1, to vary, we can find the particular set of weights that
minimizes the standard deviation of return differentials between the fund and its
clone portfolio. In short, solver finds the set of coefficients that minimizes the
variance of the return differentials between the fundamental fund and the traditional
fund portfolio. Thus we regress the return of the fundamental fund on the returns
of the traditional funds, while constraining the portfolio weights to sum to 1. We
assume that the managers of the fundamental index fund portfolio and the clone
portfolio rebalance once each month in order to maintain the portfolio weights.

15.3 Why Use a Clone Portfolio and Style Analysis?

We compare each fundamental fund portfolio with the collection of DFA traditional
funds which tracks it best. The geometric average excess return of the fundamental
fund, continuously compounded, is ’. It represents how much value has been added
by fundamental indexation.

Our readers noted “Since the clone portfolio uses traditional indexes that vary
across regions (like Asia, Europe, Japan, developed and emerging markets, etc.)
and across sizes (small cap, large cap) and styles (value and growth), measuring an
index against its clone will remove all outperformance or underperformance due to
region, size and style. The remaining alpha, therefore is the “skill” that must be due
to something other than picking the right region, size or style.”

“It is important to note that the clone portfolios are created ex post. So even if
a manager has tremendous foresight and can pick the region/size/style combination
that will perform the best over the sample period, he is evaluated relative to a clone
portfolio that has the benefit of picking that region/size/style after the fact. : : :

[Thus we] “are looking for skill that goes beyond this, such as picking stocks within
these buckets or dynamically shifting allocation among these buckets in a way that
generates alpha.”
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15.4 Why Use Continuous Compounding and Geometric
Average Return?

In order to measure the average rate of return over multiple time periods, we employ
continuously compounded geometric average return. A portfolio that returns 50 %
1 year and �50 % the next year does not have an average return of zero % per year.
But a portfolio that returns a continuously compounded 50 % in 1 year and �50 %
in the next year does have a geometric average return of 0 % over the 2 years. Thus,
the geometric average return over a span is the average of the geometric average
returns over the periods that comprise the span.

15.5 Why Use Equally Weighted Portfolios and Risk-Averse
Portfolios?

To compare the performance of traditional indexation and fundamental indexation,
we consider two types of portfolio composed of fundamental index funds from
each fund family. This approach is more relevant than looking at individual funds,
because typical investors hold a variety of funds. Thus, in addition to looking at each
fund separately, we create an equally weighted portfolio and a risk-averse portfolio
to compare the returns with a traditional clone portfolio. While the equally weighted
portfolio is not necessarily optimal, it is by far the simplest way to look at the overall
performance of the assets in a fund family.

The risk-averse portfolio, however, is perhaps more useful, especially when
we account for the investment atmosphere after the financial crisis, with the
obvious need to make safe decisions, and we recognize that some funds, such as
WisdomTree’s India Earnings Fund, are highly specialized and would constitute
a small proportion of a diversified portfolio. Therefore, in order to reflect the
preference for less risk, we create a risk-averse portfolio of each fund family. The
weights of each risk-averse fundamental index fund portfolio were determined to
minimize the standard deviation of the return of the portfolio, again using Microsoft
Excel Solver.

15.6 Why Do Some of Our Portfolios Allow Short Selling?

The Sharpe style analysis constrains the portfolio weights to be nonnegative. In
other words, it does not allow holding short positions in any fund to create a
clone portfolio. However, when an investor who initially held traditional funds
buys a fundamental fund, in some cases, he needs to increase his holdings of some
traditional funds to imitate his previous style.
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For example, suppose the fundamental fund is more focused on growth compa-
nies than any of the DFA traditional funds. Our investor has an initial portfolio of
DFA traditional funds. She invests a dollar in the fundamental fund. She maintains
her style by selling two dollars of her DFA traditional blend fund and buying
one dollar worth of the DFA traditional value fund. Then the clone portfolio is
200 % DFA traditional blend and �100 % DFA traditional value. Regressing the
fundamental fund return on the traditional fund returns, while constraining the
coefficients to sum to one and not repressing the constant term, would yield a
coefficient of 2 for the DFA traditional blend fund and �1 for the DFA traditional
value fund.

Therefore, a negative coefficient for a particular fund in the clone portfolio
signals that the funds with positive coefficients in the clone portfolio are leveraged
in order to achieve the same style as before, and the investor buys more of the
traditional fund with the negative coefficient to maintain portfolio balance when she
buys the fundamental fund. The coefficients show the net sales of each traditional
fund necessary to maintain style when a dollar’s worth of the traditional fund is
purchased. While traditional index funds cannot be sold short, ETFs can be sold
short, and some ETFs mimic traditional index funds.

15.7 Data

The ideal pick of funds is mutually exclusive but exhaustive (Sharpe, 1992). The
data were selected to conform as much as possible to these criteria by eliminating
the funds with redundant components. For example we only use one of the DFA
International Value funds. The data on monthly returns were collected from the
Center for Research in Security Prices (CRSP), and some missing data were filled
from Yahoo Finance and Morningstar. In this study, the portfolios of fundamental
DFA funds have monthly returns spanning from between May 2005 and September
2008 to June 2014, those for RAFI span from between July 2007 and October
2007 to June 2014, and those for WisdomTree span from between July 2006 and
December 2009 to June 2014. We examined all the fundamental international stock
mutual funds from the three fund families that existed during our time frame except
for sector funds.

15.8 The Exhibits

To construct the clone portfolios, we use 11 DFA traditional index funds. They are
listed alphabetically by ticker next to the bottoms of Exhibits 15.1, 15.2, 15.3, 15.4,
15.5, and 15.6. In all the Exhibits,
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Exhibit 15.5 WISDOMTREE. Fundamental index funds. No shorts

Ticker and name
All figures in %

AUSE
Australia
Dividend

AXJL
Asia
Pacific
ex-Japan

DEM
Emg
Mkts
Equity
Income

DFE
Europe
SmallCap
Dividend

DFJ
Japan
SmallCap
Dividend

DGS
Emg
Mkts
SmallCap
Divdnd

DIM Intl
MidCap
Dividend

DLS Intl
SmallCap
Dividend

DNL
Global
ex-US
Growth

DOL Intl
LargeCap
Dividend

Inception date Jun-06 Jun-06 Jul-07 Jun-06 Jun-06 Oct-07 Jun-06 Jun-06 Jun-06 Jun-06

’. %/year 0.71 0.80 1.45 0.41 �0.74 0.19 �0.22 �0.55 �1.29 �0.20

Excess St. D of
fund %/month

0.30 �0.04 �0.36 0.27 �0.22 �0.30 �0.01 �0.02 �0.26 �0.06

St. D. of predict
error %/mo

2.56 1.67 1.79 1.49 1.12 1.68 0.90 1.06 2.87 1.07

Correlation 93.9 96.6 96.7 97.9 96.7 97.5 98.9 98.4 83.8 98.3

Significance one
tail

41 35 27 41 30 47 42 34 36 44

DEMSX Emg
Mkts Small Cap

0 0 0 0 0 60 7 6 0 0

DFALX Large
Cap Intl

17 22 0 0 0 0 35 0 73 98

DFCSX
Continental Small
Co

0 0 0 64 0 0 24 30 0 2

DFEMX
Emerging
Markets

12 56 80 0 0 25 0 0 1 0

DFEVX Emg
Mkts Value

0 0 0 0 0 0 0 0 0 0

DFISX Intl Small
Co

0 0 0 0 0 0 0 17 0 0

DFIVX
International
Value

11 0 0 0 0 0 10 0 0 0

DFJSX Japanese
Small Co

3 8 9 0 96 4 11 21 23 0

DFRSX Asia
Pacific Small Co

51 15 0 0 0 0 0 7 0 0

DFUKX U.K.
Small Co

0 0 11 36 4 12 13 18 3 1

DISVX Intl Small
Cap Value

6 0 0 0 0 0 0 0 0 0

Sum of shorts 0 0 0 0 0 0 0 0 0 0

’ 1st half. %/year 3.66 0.72 6.49 �2.64 �0.45 3.18 �1.14 �0.09 2.22 �0.48

’ 2nd half.
%/year

�0.61 0.74 �1.11 5.94 �0.62 �1.49 �0.82 0.68 �1.39 0.04

’ average.
%/year

1.53 0.73 2.69 1.65 �0.54 0.85 �0.98 0.30 0.42 �0.22
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DOO Intl
Divend
ex-Financials

DTH
DEFA
Equity
Income

DWM
DEFA

DXJ
Japan
Dividend

EPI
India
Earnings

GULF
Middle
East
Dividend

HEDJ
European
Hedged
Equity

WT
Equal
Weights

WT Risk
Averse. 75 %
DNL &
25 % DFJ

Avg for
individual
funds

Median
for
individual
funds

Jun-06 Jun-06 Jun-06 Jun-06 Feb-08 Jul-08 Nov-09 Feb-08 Jun-06 Jan-07 Jun-06

�0.27 �0.62 �0.14 �2.50 �5.13 �6.33 �0.02 �0.94 �1.08 �0.85 �0.22

0.02 0.14 1.39 0.32 1.68 0.82 �0.38 �0.16 �0.44 0.22 0.01

1.32 1.43 3.46 2.53 4.91 6.33 5.01 0.91 2.18 2.51 1.74

97.7 97.7 80.2 84.9 87.8 31.7 6.4 98.9 88.9 81.9 96.7

43 35 49 22 23 24 50 23 34 35 35

1 0 0 0 48 0 0 10 0 7 0

55 69 0 32 0 0 6 28 54 22 3

8 9 0 0 0 0 0 11 0 8 0

2 0 6 0 0 0 15 23 1 13 1

0 0 0 0 52 0 0 0 0 3 0

0 0 0 0 0 0 0 0 0 2 0

30 19 0 0 0 0 0 0 0 4 0

0 0 72 67 0 60 79 18 41 27 10

0 0 0 0 0 0 0 0 0 5 0

5 4 21 1 0 40 0 10 4 9 4

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

�0.84 �1.89 �0.19 �3.60 �9.47 �18.41 �10.67 �1.74 1.63 �1.98 �0.48

�0.33 1.06 0.25 �1.40 �3.65 6.16 11.02 0.66 �1.09 0.85 �0.33

�0.59 �0.42 0.03 �2.50 �6.56 �6.13 0.18 �0.54 0.27 �0.56 �0.41
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Exhibit 15.6 WISDOMTREE. Fundamental index funds. Shorts permitted

Ticker and name
All figures in %

AUSE
Australia
Dividend

AXJL
Asia
Pacific
ex-Japan

DEM
Emg
Mkts
Equity
Income

DFE
Europe
SmallCap
Dividend

DFJ
Japan
SmallCap
Dividend

DGS
Emg
Mkts
SmallCap

DIM Intl
MidCap
Dividend

DLS Intl
SmallCap
Dividend

DNL
Global
ex-US
Growth

DOL Intl
LargeCap
Dividend

Inception date Jun-06 Jun-06 Jul-07 Jun-06 Jun-06 Oct-07 Jun-06 Jun-06 Jun-06 Jun-06

’. %/year �0.66 0.71 0.59 �0.87 �0.88 �1.75 �0.51 �1.04 �3.26 �0.60

Excess St. D of
fund %/month

0.33 0.17 �0.08 0.03 �0.01 �0.04 0.07 0.04 0.25 0.04

St. D. of predict
error %/mo

0.02 0.02 0.02 0.01 0.01 0.01 0.86 1.04 2.06 0.92

Correlation 95.6 97.1 96.7 98.2 96.9 98.2 99.0 98.4 90.8 98.7

Significance one
tail

40 35 39 30 25 17 32 21 10 30

DEMSX Emg
Mkts Small Cap

�27 2 11 16 17 91 25 18 47 15

DFALX Large
Cap Intl

�6 22 19 4 9 6 38 �4 231 124

DFCSX
Continental Small
Co

75 �5 10 83 �16 12 25 32 �18 41

DFEMX
Emerging
Markets

123 100 117 1 7 75 10 19 38 13

DFEVX Emg
Mkts Value

�84 �48 �29 �9 �17 �49 �21 �28 �54 �20

DFISX Intl Small
Co

�228 32 �18 �66 52 �46 �10 7 �79 �75

DFIVX
International
Value

5 0 �34 �25 �7 �39 11 �1 �161 �12

DFJSX Japanese
Small Co

43 3 6 3 84 4 9 20 �12 13

DFRSX Asia
Pacific Small Co

111 26 �11 �2 �14 �13 �8 11 �30 2

DFUKX U.K.
Small Co

26 �5 11 47 �4 15 9 15 �8 14

DISVX Intl Small
Cap Value

63 �28 18 48 �10 46 11 11 146 �14

Sum of shorts �346 �86 �91 �102 �69 �147 �38 �33 �363 �121

’ 1st half. %/year 0.69 0.93 5.87 �3.82 1.76 2.04 �1.22 �1.02 5.20 �1.33

’ 2nd half.
%/year

0.69 1.00 0.29 5.73 �0.85 �4.07 �1.45 0.46 �2.02 0.90

’ average.
%/year

0.69 0.97 3.08 0.96 0.46 �1.02 �1.34 �0.28 1.59 �0.22
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DOO Intl
Divend
ex-Financials

DTH
DEFA
Equity
Income

DWM
DEFA

DXJ
Japan
Dividend

EPI
India
Earnings

GULF
Middle
East
Dividend

HEDJ
European
Hedged
Equity

WT
Equal
Weights

WT Risk
Averse. 75 %
DNL &
25 % DFJ

Avg for
individual
funds

Median
for
individual
funds

Jun-06 Jun-06 Jun-06 Jun-06 Feb-08 Jul-08 Nov-09 Feb-08 Jun-06 Jan-07 Jun-06

�0.81 �1.01 �0.68 �3.06 �3.06 �6.05 1.90 �1.71 �2.60 �1.24 �0.87

0.09 0.04 0.04 0.53 1.14 2.24 0.55 0.01 0.08 0.35 0.08

1.15 1.23 0.85 2.29 4.43 5.57 4.26 0.81 1.53 1.38 0.89

98.3 98.2 98.9 87.5 90.1 36.9 11.7 99.1 93.6 85.9 97.0

29 24 26 14 22 23 40 6 9 28 29

23 14 16 54 66 11 46 29 40 19 17

49 89 105 122 29 9 18 50 176 48 21

47 58 36 �11 72 �43 �32 26 �17 27 7

30 16 11 �28 �13 146 182 39 30 57 25

�40 �27 �20 �13 141 �97 �167 �26 �45 �34 �27

�47 �97 �56 �78 �171 234 417 �56 �46 5 �46

45 17 �11 �49 �78 �30 0 �21 �123 �26 �14

14 18 11 55 42 22 7 21 12 22 13

4 9 0 �30 �40 �57 �91 �1 �26 �6 �5

15 22 13 4 25 40 �107 13 �7 7 13

�41 �18 �5 74 28 �136 �172 26 107 �20 3

�127 �142 �92 �209 �302 �362 �569 �104 �265 �212 �134

�0.95 �2.56 �1.19 �2.76 �13.03 �19.22 �8.62 �2.45 4.37 �2.31 �1.19

0.69 1.96 0.58 �3.36 �3.03 �3.03 12.80 0.32 �1.70 0.43 0.46

�0.13 �0.30 �0.31 �3.06 �8.03 �11.13 2.09 �1.07 1.34 �0.94 �0.37
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• ’ is the annual average continuously compounded excess return of the funda-
mental portfolio over that of the traditional index clone over the entire period,
continuously compounded, and expressed in percentage points per year.

• Significance of ’. In all of our exhibits “significance” is the significance of ’

on a one tail test. It denotes the probability that the sign of ’ for our sample is
different from the sign of the ’ for the universe from which the sample is drawn.
For example, from the top line of Exhibit 15.1. the DFA fund with ticker DFCCX
outreturned its clone traditional portfolio with no shorts permitted by ’ equal to
0.14 % per year, continuously compounded, and the significance of 33 % tells that
the probability is 33 % that ’ for the universe is negative rather than positive.
The statistical significance test is done using the Paired 2-Sample t-Test from
the Microsoft Excel Data Analysis Package, using continuously compounded
monthly returns.

• Correlation is the correlation of the continuously compounded monthly returns
for the fundamental fund and its clone.

• Excess standard deviation of fund is the excess volatility of the fundamental
portfolio compared to that of the traditional portfolio.

• Standard deviation of prediction error measures the standard deviation of
the return differentials, not continuously compounded. During modeling, we
constrained this value to be minimized through Solver.

• The numbers near the bottom boxes are the weights in percent given to each
DFA traditional index fund to make the portfolio that mimics the compared
fundamental portfolio. In every column, they add up to 100.

• Sum of shorts is the share of the mimic portfolio that is held short, expressed as
a percent. It is zero when shorts are prohibited.

• ’ 1st half and ’ 2nd half are the ’s for the two half periods, and ’ average
is the average of these two ’s. Dividing the period allows closer tracking of the
style changes.

15.9 DFA Individual Funds

We use both traditional index funds and fundamental index funds from Dimensional
Fund Advisors (DFA). The DFA traditional index funds constitute the clone
portfolio to compare with fundamental funds. The overall investment strategy of
DFA on international investment can be found at the DFA homepage (2014). More
details of each fund are described in DFA’s most recent prospectus (2014).

DFA’s fundamental index funds are called DFA core and DFA vector funds. The
weights of stocks in their portfolios are determined by fundamentals and market
capitalization. Among fundamentals, growth and value are assessed by factors, such
as price-to-cash flow or price-to-earnings ratios (DFA Prospectus (2014)). Six DFA
fundamental index funds were selected. They are listed, proceeded by their tickers,
in Exhibit 15.1. for long positions only in the clone portfolios and Exhibit 15.2. for
shorts permitted.
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DFA funds can only be purchased through an adviser, who charges a fee. For a
list of advisors see the Retire Early Home Page (2007). Drawing from that page,
for example, Asset Builder (2013) charges 0.45 % of assets annually for portfolios
between $50 thousand and $250 thousand dollars and 0.30 % of assets for portfolios
between $1 million and $4 million. In addition there are custodial and transactions
fees. Thus, since we are using DFA traditional funds as benchmarks, these fees
increase the attractiveness of RAFI and WisdomTree, beyond those presented here.

15.10 RAFI Individual Funds

RAFI funds are the PowerShares FTSE RAFI portfolios. These portfolios incor-
porate four fundamental factors—dividends, cash flow, sales, and book equity
value—to determine each fund’s weights. We examine four RAFI fundamental
index funds. They are presented in Exhibits 15.3 and 15.4.

The major outlier with a low correlation and a no-shorts ’ of 2.87 %/year is
PAF (FTSE RAFI Asia Pacific ex-Japan. In November 2011 it invested 42.1 % of
its assets in Australia and 36.2 % in the Republic of Korea. In April 2014 its top
ten holdings were also from those two countries. There were no comparable DFA
traditional index funds, so the huge ’ averages of close to 4 %/year may reflect
the outperformance of the average stocks in those countries rather than better than
average stock selection from those two countries. The RAFI funds are described in
Powershares (2014) and ResearchAffiliates (2014).

15.11 WisdomTree Individual Funds

As described on its website, WisdomTree considers fundamentals such as dividends
and earnings to reflect a company’s appeal (WisdomTree (2014)). So the funds focus
either on dividends or earnings. Seventeen fundamental index funds were selected
from WisdomTree. They are presented in Exhibits 15.5 and 15.6.

15.12 The Individual Fundamental Index Funds

For the individual funds 17/24ths (71 %) of the DFA ’s are negative, 12/16ths (75 %)
of the RAFI ’s are positive and 44/68ths (65 %) of the WT ’s are negative. The
average individual-fund ’s have the same sign pattern.

Thus, focusing on average and median ’s, DFA and WisdomTree fundamental
index funds had lower returns and RAFI fundamental funds had higher returns than
DFA’s corresponding traditional index fund portfolios. The weak significance levels
mean that these calculations provide some but not a lot of guidance for what to
expect from these families in the future.
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15.13 Fundamental Index Portfolios

Exhibits 15.1, 15.2, 15.3, 15.4, 15.5, and 15.6 also describe the simulations for
equally weighted portfolios, and for the portfolios with minimum risk. Minimum
risk is minimum standard deviation of return over the sample period. Portfolio
weights are constant. Both the fundamental and the clone portfolios are rebalanced
monthly. The minimum risk portfolios are

• For DFA 100 % in the International Sustainability Core I fund.
• For RAFI 94.3 % in the FTSE RAFI Developed Market ex-US Small-Mid fund

and 5.7 % in the FTSE RAFI Developed Markets ex-US fund.
• For WisdomTree we constrained the maximum value of the portfolio in Japanese

equities to be 25 %. The constrained risk-averse portfolio is 75 % in the Global
ex-US Growth fund and 25 % in the Japan SmallCap Dividend fund.

15.14 DFA Aggregates

Calculations for the aggregates are in the right four columns in Exhibits 15.1, 15.2,
15.3, 15.4, 15.5, and 15.6. For each fund family, they consist of the calculations for
the two portfolios and the average and median values for individual funds.

Although August 2008 marks the latest inception of a DFA fundamental index
fund, the data was obtainable only from September 2008. We use monthly returns
data, which are calculated at the end of each month. For the DFA equally weighted
fundamental index portfolio we have observations: from September 2008 to June
2014, and for the risk-averse portfolio we have observations from April 2008 to
June 2014.

From Exhibits 15.1 and 15.2, 14 of the 16 aggregate DFA ’s are negative. Our
benchmark is traditional funds issued by the same company, so the smallness of
these numbers for the equally weighted portfolio is not surprising, nor is the weak
significance. The large negative ’s for the risk adverse portfolio are a surprise.

Minimum, median, average and maximum values for the 16 portfolio alphas are
reported in Exhibit 15.7. For DFA the average of the aggregate ’s is �0.33 %/year.
Our take-away is that the DFA fundamental funds offer similar returns to the
traditional DFA funds. This is also reflected in the very high correlations of returns:
all over 99.9 %. The poor level of significance means that we cannot say with any
confidence that the fundamental funds are inferior to traditional funds, but we can
say that no evidence is offered for the superiority of DFA’s fundamental funds
over DFA’s traditional index funds. The DFA simulations show that an investor
who is meticulous about rebalancing would have done slightly better (aside from
rebalancing costs) by holding traditional funds.

For the equal weight no-short fundamental portfolio, the expense ratio in 2010 is
0.04 % higher than for its clone portfolio, and the ’ is a comparable �0.06 %.
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15.15 RAFI Aggregates

The evaluation of RAFI portfolios starts from October 2007, when all the RAFI
fundamental funds were active and like the others carries through June 2014.

From Exhibits 15.3, 15.4, and 15.7 all of the aggregate RAFI ’s are positive,
ranging from 0.04 %/year to C2.65 % per year with median and average values of
0.92 %/year and 1.08 % per year respectively. The correlations for all the aggregates
are all at least 96.8 %. The average excess standard deviation of return is slightly
negative. Thus, the RAFI funds provided excess returns with slightly lower risk
than their traditional DFA clones.

15.16 WisdomTree Aggregates

The evaluation of WisdomTree equal-weight portfolio starts from March 2008,
when all the WisdomTree fundamental funds were active, except HEDJ and GULF
which we excluded from the equal-weight portfolios and possible risk-averse
portfolios.

From Exhibits 15.5, 15.6 and 15.7, 14/16ths of the WisdomTree aggregate ’s
are negative, ranging from �2.60 %/year to 1.34 %/year with median and average
values of �0.86 %/year and �0.74 %/year respectively. All of the correlations for
the aggregates are at least 81.9 %. Six out of eight of the excess standard deviations
of the aggregates are positive, with an average value of 0.019 %/month.

15.17 Does the First Half Period ’ Predict the Second Half
Period ’?

Does the ’ for a fundamental mutual fund in the first half of the period predict the
’ for the second period? Each fund family has four aggregates. This gives us eight
first half ’s and eight second half ’s per family. We take averages for the first and
second halves of the period: ’1 and ’2. These are graphed in Exhibit 15.8. The
graph shows that the regression indicates a one percentage point increase in the first
period ’ predicts a 0.57 percentage point increase in the second period ’. The R2

for the relationship is 0.93. Thus for this particular data set the relationship between
the ’s is positive, but the variance in the second period is smaller than that in the
first period.

Our readers note the much smaller range for alphas in the second period than in
the first. They write “Our guess would be that this is because the global financial
crisis is in the first half of the sample, and the second half is much less turbulent by
comparison. If that is the reason for the change in dispersion of alpha from the first
half of the sample to the second half, then that would explain the low slope.”
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Exhibit 15.8 ’1 predicts ’2 for average aggregates

15.18 Are the ’S Explained by Different Sector Returns?

Bill Bernstein suggested that some of our ’s might be explained by the different
sectors that different funds invest in. For example, the WT equally weighted
portfolio invested roughly 5 % more of its portfolio over the period in financial
services and roughly 5 % less in technology than did its DFA clone (shorts
permitted).

From the January 2012 Morningstar Principia disk, we drew data on the average
share of investment in 11 sectors for the RAFI and WT equally weighted portfolios
and their DFA clones. For convenience, we used the 3-year average ending in
September 30, 2011, rather than the precise average over the entire period. We
calculated the fundamental fund share in each sector minus that for the DFA clone:
call it the share difference. Fidelity has sector funds that correspond to each of the
11 sectors. They are labeled Fidelity Select funds. We used Yahoo finance to gather
the geometric average, continuously compounded rate of return for each Fidelity
fund over the life of the equally weighted portfolio: call it return. We assumed that
these Fidelity returns are good proxies for the returns to the corresponding sectors
worldwide. We multiplied share difference by return for each sector and summed
over the entire 11 sectors to get: the part of ’ that is explained by share difference:
call it ’Share.

The ’ for the equally weighted WT portfolio versus the short DFA clone
through December 2012 is minus 2.15 %/year. The corresponding ’Share is minus
1.22 %/year. Thus over half of the ’ is explained by sector choice.
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The ’ for the equally weighted WT portfolio versus the long DFA clone, also
ending in December 2012, is minus 1.35 %/year. The corresponding ’Share is
minus 0.40 %/year. Thus 30 % of the ’ is explained by sector choice.

For the RAFI equal-weight portfolio compared with the no-shorts clone the ’

calculated through December 2012 is C0.91 %/year. The ’Share is C0.075/year.
Thus less than 10 % of its ’ is explained by sectoral choice.

The Fidelity Select funds are primarily composed of US stocks, so they are not
a great proxy for the performance of the international sectors, so it is likely that we
have under-estimated the impacts of sectoral differences in our clone portfolios.

15.19 Conclusion

We have analyzed portfolio returns for the international fundamental index funds
from DFA, RAFI, and WisdomTree, relative to the corresponding traditional index
funds from DFA. These average ’s for the 16 calculations for the four aggregates
for each of the three fund families are �0.33, 1.08, and �0.74 % per year. The
corresponding average significance levels on a one tailed test are 20, 35, and 25 %.
Thus DFA slightly under-returned, RAFI out-returned, and WT under-returned, but
the ’s are not significant at standard levels.

The average standard deviations of the returns of each of the aggregates for the
fundamental index funds for DFA and WisdomTree were higher than the clone
portfolios (both by 0.019 %/month), but for RAFI it was lower (�0.040 %/month).
In the Tower Yang (2013) paper the corresponding averages were all higher.

The corresponding average ’s for US fundamental index fund portfolios relative
to Vanguard US index funds from Tower and Yang (2013) are �1.43, C2.57, and
2.21 %/year. Thus both domestic and international DFA under-returned, while both
domestic and international RAFI out-returned. The WisdomTree US portfolio out-
returned but the WisdomTree international aggregates under-returned. Putting the
conclusions of both studies together: three cheers for fundamental indexation and
three cheers for traditional indexation. Thus on average, based on these calculations,
we cannot rank the two methods of indexing.

These calculations are for short periods, so we hesitate to make too much of them.
Still, we do not know a better way to form priors for what future excess returns of
fundamental index funds are likely to be. We hope others using additional data and
alternative approaches will shine a brighter light on the question.

Research Affiliates is a definite winner from this study. This rash conclusion,
however, should be tested further with longer time span in the future. The study
presented in the chapter, with its mixed results, can be summarized by the same
quotation from Bernstein (2006) with which Tower and Yang concluded their study:
“The prospective shareholder needs to consider not only the selection paradigm
used, but just who is executing it.”
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Chapter 16
Forecasting Implied Volatilities for Options
on Index Futures: Time-Series
and Cross-Sectional Analysis versus Constant
Elasticity of Variance (CEV) Model

Tzu Tai and Cheng Few Lee

16.1 Introduction

Forecasting volatility is crucial to risk management and financial decision for future
uncertainty. Previous studies have found that the volatility changes are predictable
(Engle, 1982; Pagan & Schwert, 1990; Harvey & Whaley, 1991, 1992a, 1992b;
Day & Lewis, 1992; Fleming, 1998). In perfectly frictionless and rational markets,
options and their underlying assets should simultaneously and properly change
prices to reflect new information. Otherwise, costless arbitrage profits would happen
in portfolios combined by options and their underlying assets. However, prices in
security and option markets may differently and inconsistently change to respond
to news because transaction costs vary cross financial markets (Phillips & Smith,
1980). Based on trading cost hypothesis, the market with the lowest trading costs
would quickly respond to new information. The price changes of options on index
and options on index futures lead price changes in the index stocks because trading
costs of index option markets are lower than the cost of trading an equivalent stock
portfolio (Fleming, Ostdiek, & Whaley, 1996). Therefore, the dynamic behavior of
market volatility can be captured by forecasting implied volatilities in index option
markets (Dumas, Fleming, & Whaley, 1998; Harvey & Whaley, 1992a).

In this chapter, we use option prices instead of relying on the past behavior of
asset prices to infer volatility expectations of underlying assets. The derivation and
use of the implied volatility (called IV hereafter) for an option as originated by
Latane and Rendleman (1976) has become a widely used methodology for variance

T. Tai (�)
Mezocliq, LLC, New York, NY 10019-5905, USA
e-mail: tzutai30@gmail.com

C.F. Lee
Rutgers University, New Brunswick, NJ 08901, USA
e-mail: lee@business.rutgers.edu

© Springer International Publishing Switzerland 2017
J.B. Guerard, Jr. (ed.), Portfolio Construction, Measurement, and Efficiency,
DOI 10.1007/978-3-319-33976-4_16

355

mailto:tzutai30@gmail.com
mailto:lee@business.rutgers.edu


356 T. Tai and C.F. Lee

estimation. The IV derived from option prices depends on the assumptions of option
valuation formula. For example, IV in Black-Scholes-Merton option pricing model
(called BSM hereafter) tends to differ across exercise price and times to maturity,
which violates the assumption of the constant volatility of underlying asset in model.
The fact that there are as many BSM IV estimates for an underlying asset as
there are options on it, as well as the observable nonconstant nature, has attracted
considerable attention from practitioner and theoretician alike.

For the academician, previous studies have been proposed to capture the
characteristics of implied volatility by either using statistical models or stochastic
diffusion process approaches. Statistical models such as autoregressive conditional
heteroskedasticity (ARCH) models (Engle, 1982) and GARCH model (Day &
Lewis, 1992) have been used to capture time-series nature of IV dynamic behavior.
On the other hand, stochastic process models such as constant-elasticity-of-variance
(CEV) model (Cox, 1975; Cox & Ross, 1976; Beckers, 1980; Chen & Lee, 1993;
DelBaen & Sirakawa, 2002; Emanuel & MacBeth, 1982; MacBeth & Merville,
1980; Hsu et al., 2008; Schroder, 1989; Singh & Ahmad, 2011; Pun & Wong,
2013; Larguinho et al., 2013) and stochastic volatility models (Hull & White, 1987;
Heston, 1993; Scott, 1997; Lewis, 2000; Lee, 2001; Jones, 2003; Medvedev &
Scaillet, 2007) incorporate the interactive behaviors of an asset and its volatilities
in option pricing model. From the practitioner’s point of view, the implementation
and computational costs are the principal criteria of selecting option pricing models
to estimate IV. Therefore, we use cross-sectional time-series regression and CEV
model to forecast IV with less computational costs.

The two alternative approaches used in this chapter give different perspective
of estimating IV. The cross-sectional time-series analysis focuses on the dynamic
behavior of volatility in each option contracts. The predicted IV obtained from the
time-series model is the estimated conditional volatility based on the information
of IV extracted from BSM. Although the estimated IVs in a time-series model
vary across option contracts, this kind of model can seize the specification of time-
vary characteristic that links ex post volatility to ex ante volatility for each option
contract. In addition, cross-sectional analysis can capture other trading behaviors
such as week effect and in/out of the money effect. On the other hand, CEV model
generalizes implied volatility surface as a function of asset price. It can reduce more
computational and implementation costs rather than the complex models such as
jump-diffusion stochastic volatility models because there is only one more variable
compared with BSM. Although the constant estimated IV for each trading day may
cause low forecast power of whole option contacts, it is more reasonable that the
IVs of underlying assets are independent of different strike prices and times to
expiration.

The focuses of this chapter are (1) to improve the ability to forecast the IV by
cross-sectional time-series analysis and CEV model, (2) to explain the significance
of variables in each approaches, (3) compare prediction power of these two
alternative methods, and (4) test market efficiency by building an arbitrage trading
strategy. If volatility changes are predictable by using cross-sectional time-series
analysis and CEV model, the prediction power of these two methods can draw
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specific implications as to how BSM might be misspecified. If the abnormal returns
are impossible in a trading strategy which takes transaction costs into account, we
would claim that option markets are efficient.

The structure of this chapter is as follows. Section 16.2 reviews previous option
pricing models and related empirical works concerning the viability and use of these
models. The data and methodology are described in Sect. 16.3. Section 16.4 shows
the empirical analysis and devise the trading and hedging strategies to determine if
arbitrage profit can be obtained. Finally, in Sect. 16.5, the implications of the results
are summarized from both an academic and practitioner view.

16.2 Literature Review

The amount of option pricing research is substantial. This section briefly surveys the
major studies which form the impetus for this research effect. Then we introduce
previous literature using time-series analysis as an alternative approach to forecast
implied volatilities.

16.2.1 Black-Scholes-Merton Option Pricing Model (BSM)
and CEV Model

Option pricing is a central issue in the derivatives literature. After the seminal papers
by Black and Scholes (1973) and Merton (1973), there has been an explosion in
option pricing models developed over the last few decades (Black, 1975; Brenner
et al., 1985; Chance, 1986; Ramaswamy & Sundaresan, 1985; Wolf, 1982; Hull,
2011). BSM formula for a European call option on a stock with dividend yield rate,
q, is:

Ct D Ste
�q£N .d1/ � Ke�r£N .d2/ (16.1)
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distribution function for a standardized normal distribution, 	 is time to maturity, r
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variance of stock returns, Ct is the theoretical BSM option price at time t.
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where CF
t is the model price for a call option on future at time t, Ft is the underlying

futures price at time t, K is the exercise price of the call option, 	 is the option’s
remaining time to maturity in terms of a year, r is the continuous annualized risk-free
rate, � f

2 is the instantaneous variance of returns of the underlying futures contract
over the remaining life of the option.

Although it is well known that the BSM model exhibits biases in its pricing of
deep-in and out-of-the-money options and those with a very short or very long term
to maturity, the direction of the bias has not been consistent across studies. Black
(1975) found that the BSM model systematically over-priced options which were
deep-in-the-money and underpriced those being deep-out-of-the-money. However,
MacBeth and Merville (1979) reported an exactly opposite type of systematic bias.
To make matters even more imprecise, Merton (1976) notes that practitioners often
claim that the BSM underprices both deep-in and out-of-the-money options. In
regards to time to maturity, it is generally maintained that the BSM underprices
short-maturity and overprices long-maturity options. But again, the evidence con-
tains discrepancies, particularly when the bias relative to both exercise price and
maturity are considered. All these authors conclude that, to some degree, the pricing
bias is related to the volatility parameter which is typically observed not to be
proportionally constant over time. Jarrow and Rudd (1982) focus on the potential
effects from distributional misspecification of the underlying return-generating
process. Thus, their model takes into account pricing biases which might arise due
to differences between the second, third and fourth moments of the assumed and
“true” distributions.

Previous studies have shown that the constant volatility assumption is inap-
propriate, and the evidence of our empirical results presents as well. Several
more generalized models have been proposed to overcome the BSM restriction
on the volatility parameter. Cox (1975) and Cox and Ross (1976) developed the
“constant elasticity of variance (CEV) model” which incorporates an observed
market phenomenon that the underlying asset variance tends to fall as the asset
price increases (and vice versa). The advantage of CEV model is that it can describe
the interrelationship between stock prices and its volatility. The constant elasticity
of variance (CEV) model for a stock price, S, can be represented as follows:

dS D .r � q/ Sdt C ıS˛dZ (16.3)

where r is the risk-free rate, q is the dividend yield, dZ is a Wiener process, ı is
a volatility parameter, and ˛ is a positive constant. The relationship between the
instantaneous volatility of the asset return, � (S, t), and parameters in CEV model
can be represented as:

� .S; t/ D ıS˛�1 (16.4)

When ˛ D 1, the CEV model is the geometric Brownian motion model we
have been using up to now. When ˛ < 1, the volatility increases as the stock price
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decreases. This creates a probability distribution similar to that observed for equities
with a heavy left tail and a less heavy right tail. When ˛ > 1, the volatility increases
as the stock price increases, giving a probability distribution with a heavy right tail
and a less left tail. This corresponds to a volatility smile where the implied volatility
is an increasing function of the strike price. This type of volatility smile is sometimes
observed for options on futures.

The formula for pricing a European call option in CEV model is:
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and ¦2(z, k, v) is the cumulative probability that a variable with a noncentral ¦2

distribution1 with noncentrality parameter v and k degrees of freedom is less than z.
Hsu, Lin and Lee (2008) provided the detailed derivation of approximative formula
for CEV model. Based on the approximated formula, CEV model can reduce
computational and implementation costs rather than the complex models such as
jump-diffusion stochastic volatility model. Therefore, CVE model with one more
parameter than BSM can be a better choice to improve the performance of predicting
implied volatilities of index options (Singh & Ahmad, 2011).

Beckers (1980) investigate the relationship between the stock price and its
variance of returns by using an approximative closed-form formulas for CEV model
based on two special cases of the constant elasticity class (˛ D 1 or 0). Based on
the significant relationship between the stock price and its volatility in the empirical
results, Beckers (1980) claimed that CEV model in terms of noncentral Chi-square
distribution performs better than BC model in terms of log-normal distribution in
description of stock price behavior. MacBeth and Merville (1980) is the first paper
to empirically test the performance of CEV model. Their empirical results show
the negative relationship between stock prices and its volatility of returns; that is,
the elasticity class is less than 2 (i.e., ˛ < 2). Jackwerth and Rubinstein (2001)
and Lee, Wu, and Chen (2004) used S&P 500 index options to do empirical work
and found that CEV model performed well because it took account the negative
correlation between the index level and volatility into model assumption. Pun and
Wong (2013) combine asymptotics approach with CEV model to price American
options. Larguinho et al. (2013) compute Greek letters under CEV model to measure
different dimension to the risk in option positions and investigate leverage effects
in option markets. Tsai (2014) applied CEV model to portfolio hedge strategy and
found CEV model can reduce replication error of barrier call options.

1The calculation process of ¦2(z, k, v) value can be referred to Ding (1992). The complementary
noncentral chi-square distribution function can be expressed as an infinite double sum of gamma
function, which can be referred to Benton and Krishnamoorthy (2003).
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Merton (1976) derived a model based on a jump-diffusion process for the
underlying security that allows for discontinuous jumps in price due to unexpected
information flows. Geske (1979) derived a compound-option formula which con-
siders the firm’s equity to be an option underlying the exchange traded option. An
interesting feature of Geske’s model is that by incorporating the effects of a firm’s
leverage on its option the model allows for a nonconstant variance. Alternative
option pricing models to describe nonconstant volatility is stochastic volatility
models which consider the volatility of the stock as a separate stochastic factor
(Scott, 1987; Wiggins, 1987; Stein & Stein, 1991; Heston, 1993; Lewis, 2000;
Lee, 2001; Jones, 2003; Medvedev & Scaillet, 2007). Heston (1993) assumes the
dynamics of instantaneous variance, V, as a stochastic process:

dS D �Sdt C p
VSdZ1 (16.6)

dV D .˛ C ˇV/ dt C �
p

VdZ2 (16.7)

where dZ1 and dZ2 are Wiener processes with correlation �. For the complex
implied volatility model without closed-form solutions, advanced techniques such
as partial differential equations (PDEs) or Monte Carlo simulation are used to
estimate the approximation of implied volatility under non-tractable models. Lewis
(2000) and Lee (2001) estimate implied volatility under stochastic volatility model
without jumps. Jones (2003) extends the Heston model and proposes a more general
stochastic volatility models in the CEV class as follows:

dS D �Sdt C p
VSdZ1 (16.8)

dV D .˛ C ˇV/ dt C �1V�1dZ1 C �2V�2dZ2 (16.9)

where dZ1 and dZ2 are independent Wiener processes under the risk-neutral proba-
bility measure. The model setting in Jones (2003) allows the correlation of the price
and variance processes to depend on the level of instantaneous variance. Recently,
Medvedev and Scaillet (2007) deal with a two-factor jump-diffusion stochastic
volatility model where there is a jump term in stock price and volatility follows
another stochastic process related to stock price’s Brownian motion term with
constant correlation �. Medvedev and Scaillet (2007) empirical results advocate the
necessary of introducing jumps in stock price process. They found that jumps are
significant in returns. The evidence also supports the specification of the stochastic
volatility in CEV model (Jones, 2003; Heston, 1993).

The optimal selection of an option pricing model should be based on a trade-
off between its flexibility and its analytical tractability. The more complicated
model it is, the less applicable implementation the model has. Although jump-
diffusion stochastic volatility models can general volatility surface as a deterministic
function of exercise price and time, the computational costs such as parameter
calibration or model implementation are high. Chen, Lee and Lee (2009) indicated
that CEV model should be better candidate rather than other complex jump-
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diffusion stochastic volatility models because of fast computational speed and less
implementation costs. Therefore, we decide to use CEV model for forecasting
implied volatilities in our empirical study.

16.2.2 Time-Varying Volatility and Time-Series Analysis

Several studies have attempted to improve the estimation of the volatility term
required by the BSM and Black models. Harvey and Whaley (1992a, 1992b) stated
that market volatility changes are predictable by forecasting the volatility implied
in index options. Their findings are consistent with the trading cost hypothesis that
the index futures and option price changes lead price changes in the stock market
(Stephan & Whaley, 1990; Fleming, Ostdiek, & Whaley, 1996). Therefore, we can
employ the predicted IV to do hedge strategy and risk management.

All the studies involving IV estimation point out to one degree or another that
for any day, the individual IV’s for all the options on a particular asset (stock or
futures contract) will all be different, and will change over time. Yet as MacBeth
and Merville (1979) aptly note, different exercise prices should not imply differing
IV’s since the IV pertains to the underlying asset itself and not the exercise price. In
what might be considered a preliminary basis for this study, MacBeth and Merville
(1979) relate systematic pricing differences between market and BSM option prices
to the systematic differences that occur among individual IV’s relative to exercise
price and time to maturity.

Since Latana and Rendleman’s (1976) development of the IV concept, numerous
researchers have studied different weighting schemes in calculating the IV. The
majority of studies, including Schmalensee and Trippi (1978) and Chiras and
Manaster (1978), devise weighting schemes which aim at deriving a single weighted
IV from among all individual IV’s for input into the BSM model. Whaley (1981;
1982) and Park and Sears (1985) utilized an OLS regression procedure to weight
and segregate IV’s by maturity date. The major finding of the Park and Sears (1985)
study, which used option on stock index futures data, was a “time-to-maturity” effect
in the pattern of the weighted IV’s over time. The authors interpreted their findings
as being consistent with Merton’s (1973) option pricing model with stochastic
interest rate. This is a portion of the IV’s instability is due to the diminishing
instantaneous variance of the riskless security.

Another rather foreshadowing study conducted by Brenner and Galai (1981)
not only found significant divergence between the daily individual IV’s and some
time-series average IV, but that the distributions of the average IV’s were not
invariant over time. Finally, Rubenstein (1985) used individual IV’s to test five
alternative option pricing models versus the BSM formulation, and attempted to
explain observed pricing biases. Rubenstein (1985) reported that the direction of
pricing bias changed over time. This instability could be a function not only of a
time-varying volatility term, but also stochastic interest rates and a changing stock
market climate. Harvey and Whaley (1992a, 1992b) utilized OLS regression of the
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change in IV on S&P 100 index option on lagged IV, week effect dummy variables,
and interest rate measures to test if IV is predictable. The significant abnormal
returns obtained in Harvey and Whaley (1992a, 1992b) indicated that the market
volatility is predictable time-varying variable and can be estimated by time-series
analysis.

16.3 Data and Methodology

16.3.1 Data

The data for this study of individual option IV’s included the use of call options on
the S&P 500 index futures which are traded at the Chicago Mercantile Exchange
(CME).2 The Data is the options on S&P 500 index futures expired within January
1, 2010 to December 31, 2013. The reason for using options on S&P 500 index
futures instead of S&P 500 index is to eliminate from nonsimultaneous price effects
between options and its underlying assets (Harvey & Whaley, 1991). The option
and future markets are closed at 3:15pm Central Time (CT), while stock market is
closed at 3pm CT. Therefore, using closing option prices to estimate the volatility of
underlying stock return is problematic even though the correct option pricing model
is used. In addition to no nonsynchronous price issue, the underlying assets, S&P
500 index futures, do not need to be adjusted for discrete dividends. Therefore, we
can reduce the pricing error in accordance with the needless dividend adjustment.
According to the suggestions in Harvey and Whaley (1991, 1992a, 1992b), we select
simultaneous index option prices and index future prices to do empirical analysis.

The risk free rate used in Black model and CEV model is based on 1-year
Treasury Bill from Federal Reserve Bank of ST. LOUIS.3 Daily closing price and
trading volumes of options on S&P 500 index futures and its underlying asset can
be obtained from Datastream.

There are two ways to select data in respect to two alternative methodologies used
in this chapter. For time-series and cross-sectional analysis, we ignore transaction
information and choose the futures options according to the length of trading period.
The futures options expired on March, June and September in both 2010 and 2011
are selected because they have over 1 year trading date (above 252 observations)
while other options only have more or less 100 observations. Studying futures option
contracts with same expired months in 2010 and 2011 will allow the examination of

2Nowadays Chicago Mercantile Exchange (CME), Chicago Board of Trade (CBOT), New York
Mercantile Exchange (NYMEX), and Commodity Exchange (COMEX) are merged and operate
as designated contract markets (DCM) of the CME Group which is the world’s leading and most
diverse derivatives marketplace. Website of CME group: http://www.cmegroup.com/
3Website of Federal Reserve Bank of ST. LOUIS: http://research.stlouisfed.org/

http://www.cmegroup.com/
http://research.stlouisfed.org/
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IV characteristics and movements over time as well as the effects of different market
climates.

In order to ensure reliable estimation of IV, we estimate market volatility by using
multiple option transactions instead of a single contract. For comparing prediction
power of Black model and CEV model, we use all futures options expired in 2010
and 2013 to generate implied volatility surface. Here we exclude the data based on
the following criteria: (1) BS IV cannot be computed, (2) trading volume is lower
than 10 for excluding minuscule transactions, (3) time-to-maturity is less than 10
days for avoiding liquidity-related biases, (4) quotes not satisfying the arbitrage
restriction: excluding option contact if its price larger than the difference between
S&P500 index future and exercise price, and (5) deep-in/out-of-money contacts
where the ratio of S&P500 index future price to exercise price is either above 1.2 or
below 0.8.

After arranging data based on these criteria, we still have 30,364 observations of
future options which are expired within the period of 2010 to 2013. The period of
option prices is from March 19, 2009 to November 5, 2013.

16.3.2 Methodology

In this section, two alternative approaches to estimate IVs are introduced. We first
illustrate how to obtain BSM IV for each option contract in MATLAB. Then,
based on BSM IVs, we forecast future BSM IVs for each option contract by time-
series analysis and cross-sectional regression. Finally, the second method to estimate
future IV is based on CEV model. To deal with moneyness- and maturity-related
biases, we use the “implied-volatility matrix” to find proper parameters in CEV
model. Then, the IV surface can be represented for predicting future IV in different
moneyness and time-to-maturity categories.

16.3.2.1 Estimating BSM IV

This chapter can utilize financial toolbox in MATLAB to calculate the implied
volatility for futures option that the code of function is as follows:

Volatility D blsimpv .Price; Strike; Rate; Time; Value; Limit; Tolerance; Class/

where the blsimpv is the function name; Price, Strike, Rate, Time, Value, Limit,
Tolerance, and Class are input variables; Volatility is the annualized IV.4 The

4Detailed information of the function and example of calculating the implied volatility for futures
option can be found on MathWorks website: http://www.mathworks.com/help/toolbox/finance/
blkimpv.html

http://www.mathworks.com/help/toolbox/finance/blkimpv.html
http://www.mathworks.com/help/toolbox/finance/blkimpv.html
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advantages of this function are the allowance of the upper bound of implied volatility
(Limit variable) and the adjustment of the implied volatility termination tolerance
(Tolerance variable), in general, equal to 0.000001. The algorithm used in blsimpv
function is Newton’s method.

When we do the comparison of performance between CEV model and Black
model, the implied volatility of Black model for each group at time t can be obtained
by following steps:

1. Let CF
i,n,t is market price of the nth option contract in category i, CbFi;n;t .�/ is the

model option price determined by Black model in Eq. (16.2) with the volatility
parameters, � . For nth option contract in category i at date t, the difference
between market price and model option price can be described as:

"F
i;n;t D CF

i;n;t � CbFi;n;t .�/ (16.10)

2. For each date t, we can obtain the optimal parameters in each group by solving
the minimum value of absolute pricing errors (minAPE) as:

minAPEi;t D min
�

NX

nD1

ˇ̌
"F

i;n;t

ˇ̌
(16.11)

Where N is total number of option contracts in group i at time t.

3. Using MTALAB optimization function to find optimal �0 in a fixed interval. The
function code is as follows:

Œ¢0; fvalBls� D fminbnd .fun; x1; x2/ ; (16.12)

Where �0 is an optimal implied volatility in Black model that locally minimize
function of minAPE, fvalBls is the minimum value of minAPE, fun is MATLAB
function describing Eq. (16.11). The implied volatility, �0, is constrained in the
interval between x1 and x2, that is, x1 � �0 � x2. The algorithm of fminbnd function
is based on golden section search and parabolic interpolation.

16.3.2.2 Forecasting IV by Cross-Sectional and Time-Series Analysis

Time-Series Analysis

Box and Jenkins (1970) time-series model building techniques are used to identify,
estimate, and check models describing particular generating processes. These
models are of the form

xt � ˆ1xt�1 � � � � � ˆpxt�p D "t � �1"t�1 � � � � � �q"t�q (16.13)
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where xt is an observation from a covariance stationary series meaning that


	 D cov .xt; xt�	 / (16.14)

is independent of t for all 	 . The ˆ and � terms represent the autoregressive (AR)
and moving average (MA) coefficients and "t is white noise.

A developed technique motivated by Hannan and Rissanen (1982) seems to
provide a good practical basis for model selection. The process involves two stages
of computation. The purpose of the first stage is to obtain estimates of the innovation
errors of model. This is accomplished by running successively higher order auto-
regressive models and using the AIC of Akaike (1969) to determine the optimal
order from among them. The innovation errors are estimated by

b"t D xt � b̂
1xt�1 � � � � � b̂kxt�k (16.15)

where k is the optimal autoregressive order suggested by the AIC. The second stage
involves fitting all different combinations of ARMA (p, q) models where, instead of
using full maximum likelihood estimation, the innovation errors estimated in stage
one are used as the regressors upon which the moving average parameter estimates
are based. This allows use of least squares. The different ARMA (p, q) models are
then compared using the AIC of Akaike (1977) and SBC of Schwarz (1978) and
the appropriate model is chosen on that basis. A simulation study conducted by
Ansley and Newbold (1980) has found that exact maximum likelihood estimation
outperforms least squares when the series are of moderate size and moving average
terms are involved. An approximation to the full maximum likelihood function has
been derived by Hillmer and Tiao (1979).

In addition, alternative simple time-series methods are taken into account to
compare with the forecastability indicators from optimal ARMA models. There are
five alternative models to generate IV indicators which are used in cross-sectional
regression model in next section. These time-series models are as follows:

1. ARMA model (ARMA): IVt D a0 C
pX

iD1

aiIVt�i C "t C
qX

iD1

bi"t�i

2. Lag IV method (LIV): IVt D IVt�1

3. 5-day moving average method (MAV5): IVt D
X5

iD1
IVt�i

5

4. 5-day exponential moving average method (EMA5): IVt D
X5

iD1
2i�1IVt�i

X5

iD1
2i�1

5. Regression on lag IV (RGN): IVt D a0 C a1IVt�1 C "t

The optimal ARMA model is autoregressive-moving-average model with order
of the autoregressive part, p, and the order of the moving average part, q where the
suitable p and q are based on the goodness-of-fit indicators, AIC and SBC, and the
forecastability indicators, RMSE, MAE, and MAPE. The 5-day moving average and
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the 5-day exponential moving average methods can be expressed as the special cases
of the general AR(5) model. Lag IV and the regression on lag IV methods belong to
AR(1) process.

Cross-Sectional Predictive Regression Model

A significant amount of information has been shown to exist in a time series of IV.
The five alternative time-series models used to describe the generating processes
of the IV series examined are all clearly preferred to random walk or “white
noise” alternatives. These models do not give the final word on the subject of IV
forecasting, however. There are several cross-contract effects that may exist which,
if isolated properly, will provide further predictive power. To learn more about these
different influences, a large cross-sectional time-series predictive regression model
was formulated. The cross-sectional time-series predictive regression model is

yit D ˇ0 C ˇ1x1it�1 C ˇ2x2it�1 C � � � C ˇ14x14it�1 C "it (16.16)

where yit is IV of the ith option contract at time t; x1it � 1 is the time-series predictor
of ith contract for time t based on information known at time t � 1 and one of
forecasting time-series methods; x2it � 1 is time to maturity of the ith option contract
at time t � 1 which is the unit of year; x3it � 1 is proportional in-the-money that
is equal to the value of (future price at time t � 1—strike price)/(strike price) if
the value is positive, otherwise is zero; x4it � 1 is proportion out-of-the-money that
is equal to the value of (strike price—futures price at time t � 1)/(strike price) if
the value is positive, otherwise is zero; x5it � 1 and x6it � 1 are standard deviation of
the IV based on previous 5 and 20 observations, respectively; x7it � 1 and x7it � 1

are skewness and kurtosis of IV distribution over the previous 20 observations,
respectively; x9it � 1 and x10it � 1 are the standard deviations of the rate of returns of
the underlying future price on previous 5 and 20 observations, respectively; x11it � 1,
x12it � 1, x13it � 1, and x14it � 1 are dummy variables that equals 1 if the trading date at
time t � 1 is Tuesday, Wednesday, Thursday, and Friday, respectively.

The time-to-maturity variable was included because, as was indicated by Park
and Sears (1985), there tends to be a certain point close to maturity where the IV’s
begin to decrease. The third and fourth independent variables have been included
to see if deep-in-the-money options and far-out-of-the-money options tend toward
higher or lower than expected IV’s. Previous studies have had conflicting answers
to this important question (see Jarrow & Rudd, 1983). The next two independent
variables are included to determine whether or not the standard deviations of the
IVs have any positive or negative effect on the IVs themselves. The third and fourth
moments of the distribution of 20 previous IV observations were also included
in the regression equation to see what, if any, influence they have in determining
current IV.

The two measures of the standard deviations of the rate of returns of the underly-
ing future price are of great interest as regressors since these have traditionally been
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approximations of the variable used in the BSM model to determine the theoretical
option price. The final four explanatory variables are weekday effect dummies
which are intended to see if certain days give rise to higher IV than others. For
example, certain economic announcements are regularly made on particular days of
the week and this may have a weekday effect on IV. Note that only four dummy
variables are needed to describe the 5 days of the week in order to avoid perfect
multi-collinearity with the constant term.

16.3.2.3 Forecasting IV by CEV Model

To deal with moneyness- and expiration- related biases in estimating BSM IV,
we use the “implied-volatility matrix” to separate option contracts and estimate
parameters of CEV model in each category. The option contracts are divided into
nine categories by moneyness and time-to-maturity. Option contracts are classified
by moneyness level as at-the-money (ATM), out-of-the-money (OTM), or in-the-
money (ITM) based on the ratio of underlying asset price, S, to exercise price, K.
If an option contract with S/K ratio is between 0.95 and 1.01, it belongs to ATM
category. If its S/K ratio is higher (lower) than 1.01 (0.95), the option contract
belongs to ITM (OTM) category. According to the large observations in ATM and
OTM, we divide moneyness-level group into five levels: ratio above 1.01, ratio
between 0.98 and 1.01, ratio between 0.95 and 0.98, ratio between 0.90 and 0.95,
and ratio below 0.90. By expiration day, we classified option contracts into short-
term (less than 30 trading days), medium-term (between 30 and 60 trading days),
and long-term (more than 60 trading days).

Since for all assets the future price equals the expected future spot price in a
risk-neutral measurement, the S&P 500 index futures prices have same distribution
property of S&P 500 index prices. Therefore, for a call option on index futures can
be given by Eq. (16.5) with St replaced by Ft and q D r as Eq. (16.17)5:

CF
t D

�
e�r	

�
Ft
�
1 � ¦2 .a; b C 2; c/

	 � K¦2 .c; b; a/
�

when ˛ < 1

e�r	
�
Ft
�
1 � ¦2 .c; �b; a/

	 � K¦2 .a; 2 � b; c/
�

when ˛ > 1

(16.17)

where

a D K2.1�˛/

.1 � ˛/2�
; b D 1

1 � ˛
; c D Ft

2.1�˛/

.1 � ˛/2�
; � D ı2	

5When substituting q D r into � D ı2

2.r�q/.˛�1/

�
e2.r�q/.˛�1/	 � 1

	
, we can use L’Hospital’s Rule

to obtain ¤. Let x D r � q, then

lim
x!0

ı2Œe2x.˛�1/	
�1�

2x.˛�1/ D lim
x!0

@ı2Œe2x.˛�1/	
�1�

@x
@2x.˛�1/

@x

D lim
x!0

.2.˛�1/	/ı2Œe2x.˛�1/	 �
2.˛�1/ D lim

x!0

	ı2Œe2x.˛�1/	 �
1

D 	ı2:



368 T. Tai and C.F. Lee

The procedures to obtain estimated parameters of CEV model in each category of
implied-volatility matrix are as follows:

1. Let CF
i,n,t is market price of the nth option contract in category i, bCF

i;n;t .ı0; ˛0/ is
the model option price determined by CEV model in Eq. (16.17) with the initial
value of parameters, ı D ı0 and ˛ D ˛0. For nth option contract in category
i at date t, the difference between market price and model option price can be
described as:

"F
i;n;t D CF

i;n;t � bCF
i;n;t .ı0; ˛0/ (16.18)

2. For each date t, we can obtain the optimal parameters in each group by solving
the minimum value of absolute pricing errors (minAPE) as:

minAPEi;t D min
ı0;˛0

NX

nD1

ˇ̌
"F

i;n;t

ˇ̌
(16.19)

Where N is total number of option contracts in group i at time t.

3. Using optimization function in MATLAB to find a minimum value of the
unconstrained multivariable function. The function code is as follows:

Œx; fval� D fminunc .fun; x0/ (16.20)

where x is the optimal parameters of CEV model, fval is the local minimum value
of minAPE, fun is the specified MATLAB function of Eq. (16.19), and x0 is the
initial points of parameters obtained in step (1). The algorithm of fminunc function
is based on quasi-Newton method.

16.4 Empirical Analysis

In the empirical study section, we present the forecastability of S&P 500 index
option price for two alternative models: time-series and cross-sectional analysis and
CEV model. First, the statistical analysis for time-series futures option prices of
the contracts expired on March, June and September in both 2010 and 2011 is
summarized. Then we use time-series and cross-sectional models to analyze each
individual contract and compare their forecastability of IV. Finally, we estimated IV
by using CEV model and compare its pricing accuracy with Black model.
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Table 16.1 Distributional Statistics for Individual IV’s

Option Seriesa Mean Std. Dev. CVb Skewness Kurtosis
Studentized
Rangec Observation

Call Futures Options in 2010

MAR10 1075 0.230 0.032 0.141 2.908 14.898 10:336 251
JUN10 1050 0.263 0.050 0.191 0.987 0.943 6:729 434
JUN10 1100 0.247 0.047 0.189 0.718 �0.569 4:299 434
SEP10 1100 0.216 0.024 0.111 0.928 1.539 6:092 259
SEP10 1200 0.191 0.022 0.117 0.982 2.194 6:178 257
Call Futures Options in 2011

MAR11 1200 0.206 0.040 0.195 5.108 36.483 10:190 384
MAR11 1250 0.188 0.027 0.145 3.739 25.527 10:636 324
MAR11 1300 0.176 0.021 0.118 1.104 4.787 8:588 384
JUN11 1325 0.165 0.016 0.095 �1.831 12.656 10:103 200
JUN11 1350 0.161 0.018 0.113 �0.228 1.856 8:653 234
SEP11 1250 0.200 0.031 0.152 2.274 6.875 7:562 248
SEP11 1300 0.185 0.024 0.131 2.279 6.861 7:399 253
SEP11 1350 0.170 0.025 0.147 2.212 5.848 6:040 470

aOption series contain the name and code of futures options with information of the strike price and
the expired month, for example, SEP11 1350 represents that the futures call option is expired on
September, 2011 with the strike price $1350 and the parentheses is the code of this futures option
in Datastream
bCV represents the coefficient of variation that is standard deviation of option series divided by
their mean value
cStudentized range is the difference of the maximum and minimum of the observations divided by
the standard deviation of the sample

16.4.1 Distributional Qualities of IV time series

A summary of individual IV distributional statistics for S&P 500 index futures call
options in 2010 and 2011 appears in Table 16.1. Comparing the mean IV’s across
time periods, it is quite evident that the 2011 IV’s are significantly smaller. Also,
the time-to-maturity effect observed by Park and Sears (1985) can be identified.
The September options in 2011 possess higher mean IV’s than those maturing in
June and March with the same strike price.

The other statistical measures listed in Table 16.1 are the relative skewness
and relative kurtosis of the IV series, along with the studentized range. Skewness
measures lopsidedness in the distribution and might be considered indicative of a
series of large outliers at some point in the time series of the IV’s. Kurtosis measures
the peakedness of the distribution relative to the normal and has been found to
affect the stability of variance (Lee & Wu, 1985). The studentized range gives an
overall indication as to whether the measured degrees of skewness and kurtosis have
significantly deviated from the levels implied by a normality assumption for the IV
series.
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Using significance tests on the results of Table 16.1 in accordance with Jarque–
Bera test, the 2010 and 2011 skewness and kurtosis measures indicate a higher
proportion of statistical significance. We also utilize simple back-of-the-envelope
test based on the studentized range to identify whether the individual IV series
approximate a normal distribution. The studentized range larger than 4 in both 2010
and 2011 indicates that a normal distribution significantly understates the maximum
magnitude of deviation in individual IV series.

As a final point to this brief examination of the IV skewness and kurtosis, note the
statistics for MAR10 1075, MAR11 1200, and MAR11 1250 contracts. The relative
size of this contract’s skewness and kurtosis measures reflect the high degree of
instability that its IV exhibited during the last 10 days of the contract’s life. Such
instability is consistent across contracts.

However, these distortions remain in the computed skewness and kurtosis
measures only for these particular contracts to emphasize how a few large outliers
can magnify the size of these statistics. For example, the evidence that S&P 500
future price jumped on January 18, 2010 and plunged on February 2, 2011 cause
the IV of these particular contracts sharply increasing on that dates. Thus, while still
of interest, any skewness and kurtosis measures must be calculated and interpreted
with caution.

16.4.2 Time-Series and Cross-Sectional Analysis for IV Series

The optimal ARMA models for the IV series are based on the goodness-of-fit
indicators, AIC and SBC, and the forecastability indicators, root mean square error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).

Table 16.2 shows the results of the regression model in Eq. (16.16). The
time-series predictor variables calculated by different forecasting models are all
significant, which should come as no surprise—IV depends on past IV value.
However, the fact that other regressors were found to be significant indicates that
not all of the variation in IV series is explained by the past. Time-to-maturity has
the predicted positive effect. The closer an option is to expiration, the lower the
IV. The in-the-money effect is significantly positive; however, the out-of-the-money
give mixed insignificant influence on IV series. Merton (1976) shows that large
deviations from the strike price tend to bias the BSM theoretical price downward.
Therefore it is logical to expect the IV of the deep-in-the-money and far-out-of-
the-money contracts to be higher because the writer of these calls runs a greater
risk of being stuck in his position. However, in this study, the selected IV time
series calculated by BSM model cannot show the downward characteristic obviously
because the longest trading data is the option contract with the strike price close to
the underlying asset.

The coefficients on the standard deviation of the IV variables give the signif-
icantly positive signals based on previous 20 observations, but show the negative
effect based on previous 5 observations when the short term effect is of significance.
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The skewness and kurtosis terms have consistently slight effects over two sample
periods even though sometimes the effects have statistical significance. Perhaps
what can be said about the lower relationship between these two statistic measures
and predicted IV is that the influence of the outliers bringing about the skewness and
kurtosis is already captured by other independent variables such as the time-series
predictor estimated by forecasting model or the standard deviation of IV series. The
coefficient on the standard deviation of the rate of returns of the underlying future
price only has significantly large positive effect on IV for the 20-day measure. The
strong relationship to historical standard deviations of underlying assets seems that
the IV series not only response to market deviation from the functional specification
of the BSM model but also reflect the market assessment of the standard deviation
of underlying assets.

The weekday effect dummies indicate a significantly small Friday effect where
the IV are slightly higher. This may be related to the fact that certain economic
announcements are made on Friday such as employment situation or lag response
to the announcements made on Thursday such as money supply and jobless claims.
These economic announcements will alter the market perception of asset price
volatility, especially currently the situation of economics that just came through
the financial crisis and is suffering from European sovereign-debt crisis. The Friday
effect might also be related to option market inactivity the day before the weekend.
Further study may investigate this apparent weekday effect to explain why Friday’s
market may be out of line with that of other days.

Whether the estimated models change significantly over time is an important
question. The parameter estimates obtained for this cross-sectional time-series
model seems not consistent in 2010 and 2011 sample periods. A Chow test6

statistic indicating structural change based on five forecasting methods are obtained
in Table 16.2 for the 2010 and 2011 regressions. These values exceed the table
value of 2.04 for an F random variable at the 99 % level. The chow test indicated
the significant change of structure in the cross-sectional time-series predictive
regression model on 2010 and 2011. It would therefore be wise for the practitioner
to update parameter estimates periodically even though both 2010 and 2011 sample
periods are suffering from global financial crisis.

16.4.3 Ex-Post Test for Forecastability of Time-Series
and Cross-Sectional Regression Models

In this section, the practical monetary value of the IV estimates versus more naive
methods is tested, to determine which might be superior from a trader’s point of

6Chow test Fq;n�k D e0

�
e�=˛

e0e=.n�k/ where e
0

*e* is restricted SSE, e0e is unrestricted SSE, ˛ represents
the number of restrictions, and k is number of regression coefficients estimated in unrestricted
regression.
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view. In addition, we hope that these results will further support the theoretical
and practical superiority of using individual IV estimates versus some weighted-IV
measure.

Trading rule tests in this chapter utilize seven different estimates for IV as
follows: (1) a 5-day equally weighted moving average of the IV (MAV5); (2) a
5-day exponentially weighted average of the IV (EMA5); (3) a 1-day lag of the
actual IV for the option (LIV); (4) 1-day ahead simple regression forecasts of the
IV (RGN); (5) 1-day ahead ARMA forecasts of the IV (ARMA); (6) 1-day ahead
cross-sectional time-series predictive regression forecasts of the IV based on Eq.
(16.16) (CSTS); (7) a simple-constant mean of an individual IV time series for the
estimated IV of that option (MEAN).

The trading rule used is simply to buy underpriced and sell overpriced options,
while taking an opposite position in the underlying futures contract according to
the hedge ratio computed by the estimated IV. The holdout periods for each option
are 20 trading days. Here the day count convention in Black option pricing model
is used actual/actual basis. Mispricing will be identified by comparing the market
price for an option with the price calculated by Black option pricing model using
one of the seven IV estimates. The overpriced (underpriced) options are defined as
the situation that the theoretical price calculated by Black option pricing model is
smaller (larger) than the market price. The trading behavior is buying (selling) the
underpriced (overpriced) future option and selling (buying) S&P 500 index future
for hedge. In order to magnify the mispricing as might be seen from the eyes of
a trader, ten options and ten times the hedge ratio of futures are sold or bought in
opposite position respectively in each transaction. Positions are closed out once the
absolute value of mispricing diminishes to a predetermined minimum level equal to
0.1. If the mispricing has reversed and is of a great enough significance larger than
0.1, the trading rule is utilized again.

In order to ascribe as much realism as possible to these tests, the following market
trading costs are considered. Transaction fee per transaction of $2.3 is determined
by CME group which provides CME Globex trading platform for 24-h global
access to electronic markets. Total transaction fees is transaction costs of option
position C transaction costs of future position:

nX

iD1

.$2:3 � 10/ C
nX

iD1

.$2:3 � 10 � hedge ratioTi/

where n is the total number of times a position is opened at time Ti.
Although a portion of the margin required of a trader enter into a futures position

can be put up in the form of interest earning T-bills, a substantial portion required for
maintaining the margin account by the clearinghouse must be strictly in cash even
for a hedge or spread position. Consequently, there is a real interest cost involved,
for which we will further reduce gross trading income:

Margin Interest Costs D
nX

iD1

�
RMM � NFTi � RTi

� 	i
�
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where RMM is required maintenance margin from CME group,7 NFTi indicate the
number of futures contracts entered into trading which is equal to ten times hedge
ratio at time Ti, RTi is the risk free rate defined as the 3-month T-bill rate used in
Black option pricing model, 	 i is the length of futures position holding until maturity
in annual terms, and n is the total number of times a futures position is entered.

Furthermore, there is little assurance that one could buy or sell these contracts and
expect to receive the closing prices reported in the paper when the market reopens
the next morning. To approximate such market costs the position is penalized each
time a futures position is entered and existed by “one tick” equal to 0.1 index
points D $25 per contract8:

Futures Liquidity Costs D
nX

iD1

.$50 � NFTi/

where $50 D 2 � $25 represented the entered and existed cost by one tick, the market
value of two price ticks; NFTi is defined as the number of futures contracts entered
into trading which is equal to ten times hedge ratio at time Ti,, and n is the number
of times a futures position is entered. More severe liquidity and timing costs are
calculated and deducted for each option transaction:

Option Liquidity costs D
nX

iD1

Œ$250 � .NEPATi C NMMOT i/�

where $250 D 10, (number of options bought or sold) � $250 (the market value
multiplier for the option premium) � 0.1 (one tick price as the correspondingly
liquidity), NEPA represented the number of exercise prices in out-of-the-money
options are $5 away from underlying future prices at time Ti, and NMMO
represented the percentage of maturity months out. For example, a option assumed
to be expired on September 2010 and this option start to be traded on February
2010, then the NMMO on June 2010 is equal to the number of month of the period
between February and June divided by the number of month of the period between
February and September, that is, (6–2)/(9–2) D 4/7.

The test results are summarized in Tables 16.5. We use seven alternative methods,
a cross-sectional time-series regression and six time-series models, to compute
tomorrow’s IV for each contract. The cross-sectional time-series (CSTS) model

7The minimum required maintenance for S&P 500 index futures is various in different period. For
example, from Jan 28, 2008 to Oct 1st, 2008, the maintenance cost is $18,000 per future contract.
However, the period during Oct 1st, 2008 to Oct 17, 2008, the required maintenance is changed to
$20,250. The maintenance costs are $22,500, $24,750, $22,500, and $20,000 for other periods Oct
17, 2008–Oct 30, 2008; Oct 30, 2008–Mar 20, 2009; Mar 20, 2009–Jun 2nd, 2011; and Jun 2nd,
2011 until now.
8The detailed contract specifications for S&P 500 futures and options on futures can be found in
CME group website: http://www.cmegroup.com/trading/equity-index/files/SxP500_FC.pdf

http://www.cmegroup.com/trading/equity-index/files/SxP500_FC.pdf
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Table 16.3 Cumulative survey of trading results for samples in holdout period

IV estimate
Gross value
of all trades

Total trading
costs

Net value of
all trades

Number of
trade made

Net profit or
loss per trade

(a) 2010
MAV5 1,673,339 785,469.1 887,869.8 95 9,345.997
EMA5 1,185,108 735,197.1 449,910.6 95 4,735.901
LIV 1,325,712 405,671 920,041.3 95 9,684.645
RGN 1,077,990 432,747.3 645,243.1 95 6,792.033
ARMA 535,833.8 462,131 73,702.82 95 7,75.8192
CSTS 413,830.8 618,588.4 �204,758 95 �2,155.34
MEAN 454,006.3 1,714,191 �1,260,185 95 �13,265.1
(b) 2011
MAV5 840,926.2 706,118.6 134,807.6 152 886.8921
EMA5 �794,276 784,070.1 �1,578,346 152 �10,383.9
LIV 2,433,862 500,012.3 1,933,850 152 12,722.7
RGN 3,170,605 1,090,987 2,079,618 152 13,681.7
ARMA 679,499.3 786,602.5 �107,103 152 �704.63
CSTS �4,119,967 600,665.3 �4,720,633 152 �31,056.8
MEAN 4,168,410 2,752,602 1,415,807 152 9,314.522

The holdout period is the last 20 days of each S&P 500 index futures option contracts. There
are seven IV estimates for the trading rule test: MAV5 is the 5-day moving averages method,
EMA5 is the 5-day exponential moving averages method, LIV is Previous IV method, RGN
is the Regression method, ARMA is autoregressive-moving-average model, CSTS is the
cross-sectional time-series predictive regression model represented in Eq. (16.16) where
using ARMA as predictor method, and MEAN is the constant value over the entire period
equal to the mean of individual IV series. The definitions of first five IV estimates are
indicated in Tables 16.2 and 16.3. The gross value of all trades are included the bought
and sold price of options plus the value in the end of maturity if the trades are not closed out
before maturity. Total trading costs are included the total transaction fees, margin interest
costs, future liquidity costs, and option liquidity costs. The net value of all equals to gross
value of all trades minus total trading costs. The net profit or loss per trade is the value of
net value of all trades divided by number of trade

utilized some of the insights of time-series analysis as would be impounded in
the optimal time-series predictors, ARMA model. Also, it takes into account the
historical 5-days and 20-days standard deviation of the continuous return for the
underlying futures contract, the short-term variability and skewness and kurtosis
of the IV, the time-to-maturity, and weekday effects. Table 16.3a, b summarize
the cumulative trading results for the selected options contract in Table 16.1. For
both years, EMA5, LIV, and RGN perform better than the sophisticated model
such as cross-sectional time-series predictive regression. The results implied that
the ARMA model may have over-fitting problem and thus make CSTS model
perform worse. The worse prediction is using MEAN model to estimate IV. MEAN
model’s IV is constant for entire period of contract; thus, MEAN model neither
deal with the fluctuation of option market nor response to everyday’s new important
information. It also implied that the constant volatility setting in BSM model may
be misspecified.
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Implied Volatilities of Options on S&P500 Index Futures
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Fig. 16.1 Implied volatilities in black model

16.4.4 Structural Parameter Estimation and Performance
of CEV Model

In Fig. 16.1, we find that each contract’s Black IV varies across moneyness and
time-to-maturity. This graph shows volatility skew (or smile) in options on S&P
500 index futures, i.e., the implied volatilities decrease as the strike price increases
(the moneyness level decreases).

Even though everyday implied volatility surface changes, this characteristic still
exists. Therefore, we divided future option contracts into a six by four matrix based
on moneyness and time-to-maturity levels when we estimate implied volatilities
of futures options in CEV model framework in accordance with this character.
The whole option samples expired within the period of 2010 to 2013 contains
30,364 observations. The whole period of option prices is from March 19, 2009
to November 5, 2013. The observations for each group are presented in Table 16.4.

Since most trades are in the futures options with short time-to-maturity, the
estimated implied volatility of the option samples in 2009 may be significantly
biased because we did not collect the futures options expired in 2009. Therefore, we
only use option prices in the period between January 1, 2010 and November 5, 2013
to estimate parameters of CEV model. In order to find global optimization instead of
local minimum of absolute pricing errors, the ranges for searching suitable ı0 and ˛0

are set as ı0 2 Œ0:01; 0:81� with interval 0.05, and ˛0 2 Œ�0:81; 1:39� with interval
0.1, respectively. First, we find the value of parameters, (b•0;b̨0), within the ranges
such that minimize value of absolute pricing errors in Eq. (16.19). Then we use
this pair of parameters, (b•0;b̨0), as optimal initial estimates in the procedure of
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Table 16.5 Initial parameters of CEV model for estimation procedure

Time-to-Maturity (TM) TM < 30 305TM5 60 TM > 60 All TM
Moneyness (S/K ratio) ˛0 ı0. ˛0 ı0 ˛0 ı0 ˛0 ı0

S/K ratio >1.01 0.677 0.400 0.690 0.433 0.814 0.448 0.692 0.429
0.985S/K ratio5 1.01 0.602 0.333 0.659 0.373 0.567 0.361 0.647 0.345
0.955S/K ratio < 0.98 0.513 0.331 0.555 0.321 0.545 0.349 0.586 0.343
0.95S/K ratio < 0.95 0.502 0.344 0.538 0.332 0.547 0.318 0.578 0.321
S/K ratio <0.9 0.777 0.457 0.526 0.468 0.726 0.423 0.709 0.423
All Ratio 0.854 0.517 0.846 0.512 0.847 0.534 0.835 0.504

The sample period of option prices is from January 1, 2010 to November 5, 2013. During the
estimating procedure for initial parameters of CEV model, the volatility for S&P 500 index
futures equals to •0S’0�1

Table 16.6 Total number of observations and trading days in each group

Time-to-Maturity (TM) TM < 30 305TM5 60 TM > 60 All TM
Moneyness (S/K ratio) Days Total Obs. Days Total Obs. Days Total Obs. Days Total Obs.

S/K ratio >1.01 172 272 104 163 81 122 249 557
0.985S/K ratio51.01 377 1,695 354 984 268 592 448 3,271
0.955S/K ratio < 0.98 362 1,958 405 1,828 349 1,074 457 4,860
0.95S/K ratio < 0.95 315 919 380 1,399 375 1,318 440 3,636
S/K ratio <0.9 32 35 40 73 105 173 134 281
All Ratio 441 4,879 440 4,447 418 3,279 461 12,605

The subsample period of option prices is from January 1, 2012 to November 5, 2013. Total
observations is 13, 434. The lengths of period in groups are various. The range of lengths is from
47 (group with ratio below 0.90 and time-to-maturity within 30 days) to 1,100 (whole samples).
The range of daily observations is from 1 to 30

estimating local minimum minAPE based on steps (1)–(3) in Sect. 16.3.2.3. To
compare with the option pricing performance of Black model, we set the interval
between 0.01 and 0.08 to find optimal implied volatility via estimation procedure
in Sect. 16.3.2.1. The initial parameter setting of CEV model is presented in
Table 16.5.

In Table 16.5, the average sigma are almost the same while the average alpha
value in either each group or whole sample is less than one. This evidence implies
that the alpha of CEV model can capture the negative relationship between S&P
500 index future prices and its volatilities shown in Fig. 16.1. The instant volatility
of S&P 500 index future prices equals to •0S˛0�1 where S is S&P 500 index future
prices, •0 and ˛0 are the parameters in CEV model. The estimated parameters in
Table 16.9 are similar across time-to-maturity level but volatile across moneyness.

Because of the implementation and computational costs, we select the sub-period
from January 2012 to November 2013 to analyze the performance of CEV model.
The total number of observations and the length of trading days in each group are
presented in Table 16.6. The estimated parameters in Table 16.7 are similar across
time-to-maturity level but volatile across moneyness. Therefore, we investigate the
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performance of all groups except the groups on the bottom row of Table 16.8. The
performance of models can be measured by either the implied volatility graph or
the average absolute pricing errors (AveAPE). The implied volatility graph should
be flat across different moneyness level and time-to-maturity. We use subsample
like Bakshi et al. (1997) and Chen et al. (2009) did to test implied volatility
consistency among moneyness-maturity categories. Using the subsample data from
January 2012 to May 2013 to test in-the-sample fitness, the average daily implied
volatility of both CEV and Black models, and average alpha of CEV model are
computed in Table 16.7. The fitness performance is shown in Table 16.8. The
implied volatility graphs for both models are shown in Fig. 16.2. In Table 16.7, we
estimate the optimal parameters of CEV model by using a more efficient program.
In this efficient program, we scale the strike price and future price to speed up the
program where the implied volatility of CEV model equals to •

�
ratio˛�1

�
, ratio is

the moneyness level, • and ˛ are the optimal parameters of program which are not
the parameters of CEV model in Eq. (16.17). In Table 16.8, we found that CEV
model perform well at in-the-money group.

Figure 16.2 shows the IV computed by CEV and Black models. Although
their implied volatility graphs are similar in each group, the reasons to cause
volatility smile are totally different. In Black model, the constant volatility setting
is misspecified. The volatility parameter of Black model in Fig. 16.2b varies across
moneyless and time-to-maturity levels while the IV in CEV model is a function
of the underlying price and the elasticity of variance (alpha parameter). Therefore,
we can image that the prediction power of CEV model will be better than Black
model because of the explicit function of IV in CEV model. We can use alpha to
measure the sensitivity of relationship between option price and its underlying asset.
For example, in Fig. 16.2c, the in-the-money future options near expired date have
significantly negative relationship between future price and its volatility.

The better performance of CEV model may result from the over-fitting issue
that will hurt the forecastability of CEV model. Therefore, we use out-of-sample
data from June 2013 to November 2013 to compare the prediction power of Black
and CEV models. We use the estimated parameters in previous day as the current
day’s input variables of model. Then, the theoretical option price computed by
either Black or CEV model can calculate bias between theoretical price and market
price. Thus, we can calculate the average absolute pricing errors (AveAPE) for both
models. The lower value of a model’s AveAPE, the higher pricing prediction power
of the model. The pricing errors of out-of-sample data are presented in Table 16.9.
Here we find that CEV model can predict options on S&P 500 index futures more
precisely than Black model. Based on the better performance in both in-sample and
out-of-sample, we claim that CEV model can describe the options of S&P 500 index
futures more precisely than Black model.
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Fig. 16.2 Implied volatilities and CEV Alpha Graph
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Table 16.9 AveAPE performance for out-of-sample

Time-to-Maturity (TM) TM < 30 305TM5 60 TM > 60 All TM
Moneyness (S/K ratio) CEV Black CEV Black CEV Black CEV Black

S/K ratio >1.01 3.22 3.62 3.38 4.94 8.96 13.86 4.25 5.47
0.985S/K ratio5 1.01 2.21 2.35 2.63 2.53 3.47 3.56 2.72 2.75
0.955S/K ratio < 0.98 0.88 1.04 1.42 1.46 1.97 1.95 1.44 1.45
0.95 S/K ratio < 0.95 0.34 0.53 0.61 0.62 1.40 1.40 0.88 0.90
S/K ratio <0.9 0.23 0.79 0.25 0.30 1.28 1.27 1.03 1.66

16.5 Conclusion

The purpose of this essay has been to improve the interpretation and forecasting of
individual implied volatility (IV) for call options on S&P500 index futures in 2010
to 2013. The two alternative methods used in this essay are cross-sectional time-
series analysis and CEV model. These two alternative approaches give different
perspective of estimating IV. The cross-sectional time-series analysis focuses on the
dynamic behavior of volatility in each option contracts and captures other trading
behaviors such as week effect and in/out of the money effect. On the other hand,
CEV model generalizes implied volatility surface as a function of asset price.

By empirically explaining the composition through time-series analysis and
cross-sectional time-series regression models, the disadvantages to evaluating an
option IV by Black model have been demonstrated. More importantly, the results
based on our trading strategy provide some evidence as to how the Black option
pricing model might be misspecified, or jointly, how the market might be inef-
ficient. Though the original model implicitly assumes a frictionless market and
a constant volatility term, market realities along with past studies would not be
able to substantiate these types of assumptions. The forecasting performances of
seven time-series regression models based on our trading strategy show that the
simple regression models perform better than sophisticated cross-sectional time-
series models because of over-fitting problem in the advanced models. In addition,
although our trading rules based on the prediction of these models can make profit,
the net profit depends on the transaction costs. Therefore, the setting of trading
strategy should be necessarily adjusted to the transaction costs.

We also show that CEV model performs better than Black model in aspects of
either in-sample fitness or out-of-sample prediction. The setting of CEV model is
more reasonable to depict the negative relationship between S&P 500 index future
price and its volatilities. The elasticity of variance parameter in CEV model captures
the level of this characteristic. The stable volatility parameter in CEV model in our
empirical results implies that the instantaneous volatility of index future is mainly
determined by current future price and the level of elasticity of variance parameter.

In sum, we suggest predict individual option contract by using simple regression
analysis instead of advanced cross-sectional time-series model. Even though the
moneyness and week effect have significant influence on index future option prices,
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the over-fitting problem in an advanced cross-sectional time-series model will
decrease its pricing forecastability. With regard to generate implied volatility surface
to capture whole prediction of the future option market, the CEV model is the better
choice than Black model because it not only captures the skewness and kurtosis
effects of options on index futures but also has less computational costs than other
jump-diffusion stochastic volatility models. In future research, we can apply CEV
model and its Greek measures to other liquid option markets to test market efficiency
based on our trading rules.
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Chapter 17
The Swiss Black Swan Unpegging Bad Scenario:
The Losers and the Winners

Sebastien Lleo and William T. Ziemba

JEL codes: B 41, C12, C52, G01, G11

17.1 The Swiss Franc Peg

The Swiss National Bank (SNB) pegged the Swiss franc (CHF) to the euro at 1.20
on September 6, 2011, thereby tracking the euro in its moves against all other
currencies. The peg was adopted in the midst of the European debt crisis as the
Swiss currency experienced massive safe haven inflows. These flows of funds were
both threatening the competitiveness of the Swiss economy and creating significant
asset bubbles within Switzerland, notably property. In pegging, the SNB moved
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away from merely intervening in the currency markets to a defined target franc-euro
exchange rate. However, both approaches would have significantly expanded their
balance sheet.

This was an agreement to buy euros at that rate even with a growing desire in the
market to sell euros which, unpegged, would have driven the euro-franc rate down.
This meant that the SNB was pledging to printing Swiss francs on demand, to buy
large amounts of other currencies. According to Table 17.1 the SNB “lost” about
CHF78 billion, which is about 12 % of the Swiss GDP. They made some CHF38
billion during 2014.

The dual purposes of the SNB are to make money for its investors (about 55 % of
the SNB’s shares are held by public institutions such as cantons, while the remaining
45 % are openly traded on the stock market) and to use its balance sheet as a means
of meeting its monetary policy goals including fighting deflation; see Article 5 of
the Federal Act on the Swiss National Bank (The Federal Assembly of the Swiss
Confederation, March 2012). This unique structure of the SNB, compared to most
other Central Banks, meant that the two mandates conflicted preventing the SNB
from achieving its monetary policy goals.

Central bank reserve accumulation tends to be negative for its returns, since they
have to effectively take on a negative carry, or accept the risk of future losses. If their
accumulation was the main reason why the CHF was staying weak at some point,
they would have to take losses.

Moreover, the recent gold referendum (even though it failed) was a sign that
the political costs of expanding the balance sheet had increased and that the Swiss
public might not have been happy about an increase in the fiscal cost of keeping
the floor. A sharper move of the European Central bank (ECB) toward Quantitative
Easing (QE), a return of the Eurozone (EZ) crisis in the name of Greece or Russia
related uncertainties, effectively could put pressure on the exchange rate and thus
require it to expand its balance sheet even more by buying a lot of euros.

The initial aim of the EUR/CHF floor/peg was about to even more appreciation
of the CHF which was being buffeted by capital inflows during the euro crisis and
more recently. However, the conflict between the SNB’s mandates and the fact that
the Swiss were questioning the effectiveness of the peg made the political costs of
maintaining the peg too high to bear.

Arguably, Switzerland is not the only country directly exposed to the variation
of the Euro and to fundamental changes in the ECB’s policies. Denmark, whose
Krone is pegged to the Euro,1 was forced to cut interest four times in just 18 days
to defend the fixed exchange rate. Their move, on February 5th, 2015, made the
headline by slashing the Danmarks Nationalbank’s interest rate on certificates of
deposit by 0.25 % points to a negative interest rate of �0.75 %. In an effort to defend

1The Danish Krone was part of the original European Exchange Rate Mechanism (ERM) in force
before the creation of the Euro. Following a referendum in 2000, which saw a rejection of the
Euro, Denmark kept its Krone but pegged it closely to the Euro within an updated version of the
ERM, called ERM II. Denmark is currently the only country left in ERM II after Greece officially
adopted the Euro in 2001. While the ERM II officially allows currencies to float within a range of
C=�15 % with respect to the euro, Denmark has opted for a narrow C=�2.25 % band.
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the peg, the central bank’s currency reserves have increased close to 100 % in recent
months. They now amount to more than USD 110 billions, which is about one third
of Denmark’s 2014 GDP.2

Swiss policy is a form of QE but because Swiss is a small open economy, rather
than printing money directly, they committed to buy Euros to weaken the CHF.

These costs were deemed too great, and the SNB is now relying on negative
interest rates (�0.75 %) to try to weaken CHF vs EUR. It is not clear if this will
be effective. Moreover, there could be a lot of collateral damage if investors avoid
putting on any hedges since they trusted the floor and policy.

The SNB did a poor job of managing expectations and the risk is that they will
end up having made a policy mistake since they are even more mired in deflation,
but there were political pressures.

If the SNB was just focused on reflationary policies they would have imple-
mented policies, that yield a weaker exchange rate. What surprised market actors
was the fact that if anything with US$/EUR moving so much in anticipation of
ECB QE, and the weaker oil price adding to global/european deflationary trends,
the EUR/CHF should have weakened.

In early February the SNB unofficially began targeting an exchange rate corridor
of 1.05–1.10 CHF/euro. The bank was willing to incur losses of a further CHF10
billion over a period of time that they did not specify. This was another non-
transparent action by the SNB. But it amounts to a revaluation of the Swiss franc by
10–15 %.

17.2 Why Did the SNB Start the Peg and Why Did
They Eliminate It?

Why They Did It The peg was installed on September 6, 2011 (Swiss National
Bank 2011). The trigger for the SNB’s decision to end the peg so precipitously,
following an earlier announcement in the same week that they were maintaining it,
was probably the ECB’s hints that it was ready to announce a large scale program
of quantitative easing to attempt to move the EuroZone out of deflation. Indeed, the
ECB officially announced the details of its QE programme on January 22, 2015,
one week exactly after Switzerland removed its peg. The programme calls for a
e60 billion monthly bond purchase, totalling about e1 trillion to start in March
2015 until September 2016.

Could the SNB have eliminated the peg gradually? We don’t think so. They could
have announced it over a weekend to soften the blow but the final effect would have
been similar.

The peg was effectively fixed at 1.20. Hong Kong is in a similar situation as its
currency is pegged to the US$.

2We thank Rachel Ziemba for providing us with this data.
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During the Asian financial crisis, the Hong Kong Monetary Authority (HKMA)
was among the first central banks to engage in quantitative easing. The HKMA was
willing to expand its balance sheet massively, including by purchasing local equity.

Both Hong Kong and Switzerland have small economies with the peg against a
much larger economy. Both have been affected by the larger economy’s monetary
policy. Both are financial centres. This situation can result in shocks. In the case
of Hong Kong, the attempt to balance between the USA and China will complicate
the maintenance of the peg over the longer term. For Switzerland, the shock was
the prospect of the ECB’s QE. Krugman (2015a) argues that the situations of
Switzerland and Hong Kong are different: “the institutional setup and history of
Hong Kong plays every differently with the hard-money ideology than the Swiss
peg did . . . .” Hong Kong has a currency board to maintain the peg, and the HKMA
does not have the mixed ownership structure of the SNB. The Swiss could have
maintained the peg forever but it was nagging from hard money types that led to
the change in priority. The Swiss currency intervention was the result of a huge
expansion of the central bank’s balance sheet and printing money even if the goal
was to keep it from getting stronger.

17.3 How Does Quantitative Easing Work and What
Are It Is Costs and Benefits?

To see why talks about an ECB-led Quantitative Easing programme most probably
delivered the final blow to the Swiss peg, we need to understand how quantitative
easing work and what its effects have been so far.

Although Quantitative Easing is new in the Eurozone, it has been used for more
than 6 years in the US. The track record of QE in the USA is checkered at best. QE
managed to relfate asset markets while failing to support final demand and pushing
investors into higher yielding assets. According to Sandra Schwartz (2015):

We have been sold a bill of goods on quantitative easing. It is not a new monetary policy,
but a variant, only the Instruments are different - buying up the debt of banks and others
rather than buying up government debt.

With quantitative easing all economic policy has been placed on the shoulders of
monetary policy and this has been very indirect and has led primarily to an asset bubble.

With fiscal policy, that is running a government deficit, good and services are bought
directly. Quantitative easing happens when the bank buys the debt that the government
has created to facilitate it. When there is unemployment this does not crowd out private
investment but gets the economy moving. It could build infrastructure that directly will
later help private investment. As it is directly spent on goods and services, it does not create
an asset bubble but it creates jobs, employment and income.

The USA took an approach to stimulate the economy and not have austerity
measures imposed on the companies and people. This has led to a robust economy
and a stock market up three times since the March 6 low. Figure 17.1 displays the
evolution of the S&P500 since the start of QE 1 in late November 2008. The level of
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Fig. 17.1 Effect of quantitative easing on the US equity market: evolution of the S&P 500 between
November 15, 2008 and September 21, 2015

the S&P500 has increased by 144 % between November 15th, 2008 and its peak on
May 21st, 2015. At the time of writing, the Federal Reserve has stopped purchasing
assets and the S&P 500 has declined, is still 122 % above its November 15th, 2008
level. The Federal Reserve now faces the decision of how to deal with a balance
sheet worth US$ 4 trillion balance sheet: should it start unwinding its positions
or simply wait until the bonds it has purchased mature? Neither exit strategies are
expected to cause much trouble on the financial markets.

Europe faces a complex situation with more players. Europe took a different
route—austerity. This has caused trouble in many places, pushing unemployment
among the youths to between 25 % and 50 %. The worst case is Greece and, in 2015,
there was a lot of trouble. The 60 billion per month, out of some 1.2 trillion bond
buying, will have to delicately balance inflation and deflation. A serious negotiation
is taking place between Germany, who as a major exporter benefits from a situation
where the EuroZone does not implode, and Greece, who cannot continue with the
heavy austerity. While both countries have vastly different political and economic
structures, they both benefit from a weaker Euro. So a political compromise ironed
out but the states and a quantitative easing sponsored by the European Central
Bank are coming at the same time to the Eurozone. With the Euro weakening, the
anticipation of a sharp increase of foreign capitals flowing into Switzerland triggered
the Swiss currency move.
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The real problem with quantitative easing in the USA and Europe is where the
money goes: to banks, whereas channeling it to people would be more effective. The
expectation has been that bank would reorientate toward their historical financial
intermediation role after the credit crisis of 2007–2009. Chuptka (2015) following
Peter Schiff of Euro Capital argues as we to do that unemployment is the key
problem.

17.4 The Currency Moves

Currencies tend to trend and reverse sharply. A typical example is the US$/EUR
from 2002 to 2007 when the euro gradually fell until it sharply reversed. The trade
to sell puts out of the money on the US$/EUR exchange rate was very successful but
it ended badly when the currency turned. For example, puts that were 2 cents one
day, 4 cents the next day, and then 28 cents the next ended up at $4. Figure 17.2
shows the Euro exchange rate from its start on January 1, 1999 to September
21, 2015. Physical Euros coins and banknotes came in use across the Eurozone
on January 1, 2002. Currently, the Eurozone includes the following 19 of the 28
member states of the European Union: Austria, Belgium, Cyprus, Estonia, Finland,
France, Germany, Greece, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Portugal, Slovakia, Slovenia, and Spain.

Usually currencies move 0.5–1 % or even 2 % per day on a large move. The
SNB’s drop of the peg caused an immediate 39 % increase in the CHF vs the EUR.
See the January 15, 2015 move in Fig. 17.3.

Figure 17.4 displays the evolution of the Swiss Franc against the four major
currencies: Euro (EUR), British Pound (GBP), US Dollar (US$), and Japanese Yen
(JPY).

Figure 17.5 shows the evolution of the Swiss Franc against the other European
currencies: Danish Krone (DKK), Norwegian Krone (NOK), Czech Koruna (CZK),
Hungarian Forint (HUF), Polish Zloty (PLN), Russian Ruble (RUB), Swedish
Krona (SEK).

Figure 17.6 shows the evolution of the Swiss Franc against the currencies of
commodity producing countries: Canadian Dollar (CAD), Brazilian Real (BRL),
South African Rand (ZAR), Australian Dollar (AUD), and New Zealand Dollar
(NZD).

Figure 17.7 displays the relative performance of the CHF/EUR exchange rate
against the Swiss equity market index, the Swiss Market Index (SMI), and the SNB’s
stock price from January 1, 2014 to September 20, 2015. In the aftermath of the
January 15th decision to remove the peg, the SNB’s stock price fared far better than
the swiss market and the exchange rate. The Swiss stock market and SNB stock
price have recovered: they are both up 6.5 % over their December 1st level. On the
other hand, the Swiss franc is still 11.3 % lower than on December 1st against the
euro.
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Fig. 17.2 The US$/EUR exchange rate from January 1, 1999 to September 21, 2015. The Euro
became an effective currency on January 1, 2002 when the first coins and banknotes started
circulating (closing EUR/USD rate on December 31, 2001= 0.9038, source: ECB)

Figure 17.8 shows the performance of the SMI versus the DAX 30, CAC 40, and
FTSE in their local currencies between January 1, 2014 and September 20, 2015.
While the Swiss stock market was leading the DAX 30, CAC 40, and FTSE 100
from January 1, 2014 through to the first half of January, the decision to remove the
peg has had a noticeable impact on the performance of the SMI. Over the period
January 1, 2014 to May 31, 2015, the SMI is trailing the DAX 30 by around 10 %,
the CAC 40 by around 5 %, but it led the FTSE by more than 8 %. As of September
20th, the SMI is leading the DAX 30, CAC 40, and FTSE 100 by 0.5 %, 0.9 % and
more than 16 %, respectively.

17.5 Review of How to Lose Money Trading Derivatives

The SNB’s decision to remove the peg caused significant, and in some cases
disastrous, losses at banks, hedge funds, brokerage firms, and individual traders
both in and outside of Switzerland.

In this section, we discuss typical ways to lose money while trading derivatives.
The underlying theme is that most disasters occur when one is not diversified in all
scenarios, is overbet, and a bad scenario occurs. We can then categorize losers in the
CHF black swan. Understanding how to lose helps one avoid losses!



17 The Swiss Black Swan Unpegging Bad Scenario: The Losers and the Winners 397

a

b

Fig. 17.3 Swiss franc U-turn. (a) 1-day move in the CHF/EUR exchange rate on January 15, 2015.
(b) Evolution of the CHF/EUR from January 1, 2014 to September 21, 2015 (source: ECB)
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a

b

Fig. 17.4 Swiss franc U-turn: evolution of the Swiss franc against major international currencies.
(a) Evolution of the CHF against major international currencies from January 1, 1999 to August
31, 2015 (exchange rate, source: SNB). (b) Evolution of the CHF against major international
currencies from January 1, 1999 to August 31, 2015 (index value = 100 on January 1, 1999)
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a

b

Fig. 17.5 Swiss franc U-turn: evolution of the Swiss franc against other European currencies. (a)
Evolution of the CHF against other European currencies from January 1, 1999 to August 31, 2015
(exchange rate, source: SNB). (b) Evolution of the CHF against other European currencies from
January 1, 1999 to August 31, 2015 (index value = 100 on January 1, 1999)
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a

b

Fig. 17.6 Swiss franc U-turn: evolution of the Swiss franc against other European currencies.
(a) Evolution of the CHF against the currencies of commodity producing countries from January
1, 1999 to August 31, 2015 (exchange rate, source: SNB). (b) Evolution of the CHF against the
currencies of commodity producing countries from January 1, 1999 to August 31, 2015 (index
value = 100 on January 1, 1999)
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Fig. 17.7 Relative performance of the CHF/EUR exchange rate (blue), SNB’s stock price (SNBN,
green) and of the Swiss Market Index (SMI, red) from January 1, 2014 to September 20, 2015
(source: Yahoo! Finance) (Color figure online)

Fig. 17.8 Relative performance of the Swiss Market Index (SMI, blue) against the DAX 30 (red),
CAC 40 (green) and FTSE 100 (purple) from January 1, 2014 to September 20, 2015 in their local
currencies (source: Yahoo! Finance) (Color figure online)

The derivative futures industry deals with products in which one party gains
what the other party loses. These are zero sum games situations. Hence there will
be large winners and large losers. The size of the gains and losses is magnified
by the leverage and overbetting, leading invariably to large losses when a bad
scenario occurs. This industry now totals over $700 trillion of which the majority
is in interest and bond derivatives with a smaller, but substantial, amount in equity
derivatives. Figlewiski (1994) attempted to categorize derivative disasters and this
chapter discusses and expands on that (see also Lleo and Ziemba 2015, 2014, for a
discussion of banking, hedge fund and trading disasters):
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1. Hedge
In an ordinary hedge, one loses money on one side of the transaction in an

effort to reduce risk. To evaluate the performance of a hedge one must consider
all aspects of the transaction. In hedges where one delta hedges but is a net seller
of options, there is volatility (gamma) risk which could lead to losses if there is
a large price move up or down and the volatility rises. Also accounting problems
can lead to losses if gains and losses on both sides of a derivatives hedge are
recorded in the firm’s financial statements at the same time.

2. Counterparty default
Credit risk is the fastest growing area of derivatives and a common hedge fund

strategy is to be short overpriced credit default derivatives. There are many ways
to lose money on these shorts if they are not hedged correctly, even if they have
a mathematical advantage. In addition, one may lose more if the counterparty
defaults because of fraud or following the theft of funds, as was the case with
MF Global.

3. Speculation
Derivatives have many purposes including transferring risk from those who do

not wish it (hedgers) to those who do (speculators). Speculators who take naked
unhedged positions take the purest bet and win or lose money related to the size
of the move of the underlying security. Bets on currencies, interest rates, bonds,
and stock market index moves are common futures and futures options trades.

Human agency problems frequently lead to larger losses for traders who are
holding losing positions that if cashed out would lead to lost jobs or bonus. Some
traders increase exposure exactly when they should reduce it in the hopes that a
market turnaround will allow them to cash out with a small gain before their
superiors find out about the true situation and force them to liquidate. Since the
job or bonus may have already been lost, the trader’s interests are in conflict with
objectives of the firm and huge losses may occur. Writing options, and more
generally selling volatility or insurance, which typically gain small profits most
of the time but can lead to large losses, is a common vehicle for this problem
because the size of the position accelerates quickly when the underlying security
moves in the wrong direction as in the Victor Niederhoffer hedge fund disaster
caused by the the Asian currency crisis of 1997. Since trades between large
institutions frequently are not collateralized mark-to-market large paper losses
can accumulate without visible signs such as a margin call. Nick Leeson’s loss
betting on short puts and calls on the Nikkei is one of many such examples. The
Kobe earthquake was the bad scenario that bankrupted Barings.

A proper accounting of trading success evaluates all gains and losses so that
the extent of some current loss is weighed against previous gains. Derivative
losses should also be compared to losses on underlying securities. For example,
from January 3 to June 30, 1994, the 30-year T-bonds fell 13.6 %. Hence holders
of bonds lost considerable sums as well since interest rates rose quickly and
significantly.
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4. Forced liquidation at unfavorable prices
Gap moves through stops are one example of forced liquidation. Portfolio

insurance strategies based on selling futures during the October 18, 1987 stock
market crash were unable to keep up with the rapidly declining market. The
futures fell 29 % that day compared to �22 % for the S&P500 cash market.
Forced liquidation due to margin problems is made more difficult when others
have similar positions and predicaments and this leads to contagion. The August
1998 problems of Long Term Capital Management in bond and other markets
were more difficult because others had followed their lead with similar positions.
When trouble arose, buyers were scarce and sellers were everywhere. Another
example is Metallgellschaft’s crude oil futures hedging losses of over $1.3
billion. They had long term contracts to supply oil at fixed prices for several
years. These commitments were hedged with long oil futures. But when spot
oil prices fell rapidly, the contracts to sell oil at high prices rose in value but
did not provide current cash to cover the mark to the market futures losses.
A management error led to the unwinding of the hedge near the bottom of the oil
market and the disaster.

Potential problems are greater in illiquid markets. Such positions are typically
long term and liquidation must be done matching sales with available buyers.
Hence, forced liquidation can lead to large bid-ask spreads. Askin Capital’s
failure in the bond market in 1994 was exacerbated because they held very
sophisticated securities which were only traded by very few counterparties so
contagion occurred. Once they learned of Askin’s liquidity problems and weak
bargaining position, they lowered their bids even more and were then able to gain
large liquidity premiums.

5. Misunderstanding the risk exposure
As derivative securities have become more complex, so has their full under-

standing. The (Shaw et al. 1995) Nikkei put warrant trade (discussed in Ziemba
and Ziemba (2013), Chapter 12) was successful because we did a careful analysis
to fairly price the securities. In many cases, losses are the result of trading in high-
risk financial instruments by unsophisticated investors. Lawsuits have arisen by
such investors attempting to recover some of their losses with claims that they
were misled or not properly briefed on the risks of the positions taken. Since
the general public and thus judges and juries find derivatives confusing and
risky, even when they are used to reduce risk, such cases or their threat may
be successful.

A great risk exposure is the extreme scenario which often investors assume
has zero probability when in fact they have low but positive probability. Investors
are frequently unprepared for interest rate, currency or stock price changes
so large and so fast that they are considered to be impossible to occur. The
move of some bond interest rate spreads from 3 % a year earlier to 17 % in
August/September 1998 led even savvy investors and very sophisticated Long
Term Capital Management researchers and traders down this road. They had done
extensive stress testing with a VaR risk model which failed as the extreme events
such as the August 1998 Russian default had both the extreme low probability
event plus changing correlations.
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There was a similar failure of VaR and C-VaR models because of the Swiss
currency unpegging, see Daníelson (2015) for discussion and some calculations.
For current regulations, see Basel Committee on Banking Supervision (2013).
What is needed as we argue below are convex penalty risk measures that penalize
drawdowns enough to avoid the disasters. Unfortunately these types of risk
functions are not yet in regulations of risk models although some applications
have shown their superiority to the VaR and C-VaR models, see Geyer and
Ziemba (2008), and Ziemba (2003, 2007).

Several scenario dependent correlation matrices rather then simulations
around the past correlations from one correlation matrix is suggested. This
is implemented, for example, in the Innovest pension plan model which does not
involve levered derivative positions (see Ziemba and Ziemba 2013, Chapter 14).
The key for staying out of trouble especially with highly levered positions is to
fully consider the possible futures and have enough capital or access to capital to
weather bad scenario storms so that any required liquidation can be done orderly.

Figlewiski (1994) observes that the risk in mortgage backed securities is
especially difficult to understand. Interest only (IO) securities, which provide
only the interest part of the underlying mortgage pool’s payment stream, are a
good example. When interest rates rise, IOs rise since payments are reduced
and the stream of interest payments is larger. But when rates rise sharply, the
IO falls in value like other fixed-income instruments because the future interest
payments are more heavily discounted. This signal of changing interest rate
exposure was one of the difficulties in Askin’s losses in 1994. Similarly the sign
change between stocks and bonds during stock market crashes as in 2000 to
2003 has caused other similar losses. Scenario dependent matrices are especially
useful and needed in such situations.

6. Forgetting that high returns involve high risk
If investors seek high returns, then they will usually have some large losses.

The Kelly criterion strategy and its variants provide a theory to achieve very high
long term returns but large losses will also occur. These losses are magnified with
derivative securities and especially with large derivative positions relative to the
investor’s available capital.

7. How over betting occurs
Figure 17.9 shows how the typical over bet situation occurs assuming a Kelly

strategy is being used. The top of the growth rate curve is at the full Kelly bet
level that’s the asset allocation maximizing the expected value of the log of the
final wealth subject to the constraints of the model. To the left of this point are the
fractional Kelly strategies which under a lognormal asset distribution assumption
use a negative power utility function rather than log. So ˛w˛ , for ˛ < 0 gives
the fractional Kelly weight f D 1

1�˛
. So u.w/ D �1

w corresponds to 1
2

Kelly
with ˛ D �1. Overbetting is to the right of the full Kelly strategy and it is clear
that betting more than full Kelly gives more risk measured by the probability of
reaching a high goal before a lower level curve on the figure. It is this area way
to the right where over betting occurs. And virtually all of the disasters occur
because of the over betting.
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Fig. 17.9 Relative growth and probabilities of doubling, tripling, and quadrupling initial wealth
for various fractions of wealth bet for the gamble win $2 with probability 0.4 and lose $1 with
probability 0.6

It is easy to over bet with derivative positions as the size depends on the
volatility and other parameters and is always changing. So a position safe one
day can become very risky very fast. A full treatment of the pros and cons of
Kelly betting is in Ziemba (2015).

Stochastic programming models provide a good way to try to avoid problems 1–6
by carefully modeling the situation at hand and considering the possible economic
futures in an organized way.

Hedge fund and bank trading disasters usually occur because traders overbet,
the portfolio is not truly diversified and then trouble arises when a bad scenario
occurs. Lleo and Ziemba (2015) discuss a number of sensational failures including
Metalgesllshart (1993), LTCM (1998), Niederhoffer (1997), Amaranth Advisors
(2006), Merrill Lynch (2007), Société Généralé (2008), Lehman (2008), AIG
(2008), Citigroup (2008), MF Global (2012), and Monte Paschi (2013). Stochastic
programming models provide a way to deal with the risk control of such portfolios
using an overall approach to position size, taking into account various possible sce-
narios that may be beyond the range of previous historical data. Since correlations
are scenario dependent, this approach is useful to model the overall position size.
The model will not allow the hedge fund to maintain positions so large and so under
diversified that a major disaster can occur. Also the model will force consideration
of how the fund will attempt to deal with the bad scenario because once there
is a derivative disaster, it is very difficult to resolve the problem. More cash is
immediately needed and there are liquidity and other considerations. Ziemba and
Ziemba (2013), Chapter 14 explores more deeply such models in the context of
pension fund as well as hedge fund management.
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Litzenberger and Modest (2009), who were on the firing line for the LTCM
failure, propose a modification of standard finance CAPM type theory modified for
fat tails and C-VaR or expected tail losses for the losses. Ziemba (2003, 2007, 2013)
presents his approach using convex risk measures and three scenario dependent cor-
relation matrices depending upon volatility using stochastic programming scenario
optimization. Both of these approaches would mitigate such losses. The key is not
to over bet and have access to capital once a crisis occurs and to plan in advance for
such events.

17.6 The Folly of the Misleading Value at Risk Measure

Value at risk (VaR) is the most widely used risk measure and has held a central place
in the development of international banking regulations in general and of the Basel
Accord in particular. The VaR of a portfolio represents the maximum loss within a
confidence level of 1 � ˛ (with a between 0 and 1) that the portfolio could incur
over a specified time period, for instance a d-days horizon (see Fig. 17.10). For
example, if the 10-day 95 % VaR of a portfolio is $10 million, then the expectation
with 95 % confidence is that the portfolio will not lose more than $10 million during
any 10-day period. The (1 - ˛) VaR of a portfolio with (random) P&L X is defined as

VaR.XI ˛/ D � fXjF.X/ � ˛g ;

which reads “minus the loss X (so the VaR is a positive number) chosen such that a
greater loss than X occurs in no more than a percent of cases.”

Jorion (2006) presents a comprehensive and highly readable reference on VaR
and its use in the banking industry, while Embrechts et al. (2005) cover risk
management from a mathematical and technical perspective. Value at Risk has the
advantage of being a particularly simple risk measure, because it corresponds to
minus the ˛-quantile of the P&L distribution:

VaR.XI ˛/ D �q˛.X/:

VaR is also elicitable (see Ziegel 2014), a property shared by all the quantiles.
An alternative definition for the VaR of a portfolio is the minimum amount

that a portfolio is expected to lose within a specified time period and at a given
confidence level of a reveals a crucial weakness. The VaR has a well-documented
“blind spot” in the ˛-tail of the distribution, which means that it is impossible to
evaluate the probability and severity of truly extreme events. The P&L distributions
for investments X and Y in Fig. 17.11 have the same VaR, but the P&L distribution
of Y is riskier because it has larger potential losses.

Artzner et al. (1999) defined coherent risk measures as the class of monetary risk
measures satisfying four “coherence” axioms. VaR is not a coherent risk measure.
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Fig. 17.10 Value-at-Risk in terms of both PDF and CDF

Monetary risk measures, introduced by Artzner et al. (1999), is a class of risk
measures that equate the risk of an investment with the minimum amount of cash,
or capital, that one needs to add to a specific risky investment to make its risk
acceptable to the investor or regulator. A monetary measure of risk r is defined as
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Fig. 17.11 Two investments with same Value-at-Risk, but different degrees of desirability
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�.X/ WD min
k�0

Œan investment in a position .X C k/ is acceptable� ;

where k represents an amount of cash or capital and X is the monetary profit and loss
(P&L) of some investment or portfolio during a given time horizon, and discounted
back to the initial time.

The coherence axioms are

1. Monotonicity: if the return of asset X is always less than that of asset Y, then the
risk of asset X must be greater. This translates into

X � Y in all states of the world ) �.X/ � �.Y/: (A1)

2. Subadditivity: the risk of a portfolio of assets cannot be more than the sum of
the risks of the individual positions. Formally, if an investor has two positions in
investments X and Y, then

�.X C Y/ � �.X/ C �.Y/: (A2)

This property guarantees that the risk of a portfolio cannot be more (and should
generally be less) than the sum of the risks of its positions, and hence it
can be viewed as an extension of the concept of diversification introduced by
Markowitz. This property is important for portfolio managers and banks trying
to aggregate their risks among several trading desks. VaR is not subadditive,
so VaR may not reward diversification, which potentially results in increased
concentration risk.

3. Homogeneity: if a position in asset X is increased by some proportion k, then the
risk of the position increases by the same proportion k. Mathematically,

�.kX/ D k�.X/: (A3)

This property guarantees that risk scales according to the size of the positions
taken. This property, however, does not reflect the increased liquidity risk that
may arise when a position increases. For example, owning 500,000 shares of
company XYZ might be riskier than owning 100 shares because in the event of a
crisis, selling 500,000 shares will be more difficult, costly, and require more time.
As a remedy, Artzner, Delbaen, Eber, and Heath proposed to adjust X directly to
reflect the increased liquidity risk of a larger position.

4. Translation invariance or risk-free condition: adding cash to an existing position
reduces the risk of the position by an equivalent amount. For an investment with
value X and an amount of cash r,

�.X C r/ D �.X/ � r: (A4)

Stress testing complements VaR by helping address the blind spot in the ˛-tail
of the distribution. In stress testing, the risk manager analyzes the behavior of the
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portfolio under a number of extreme market scenarios that may include historical
scenarios as well as scenarios designed by the risk manager. The choice of scenarios
and the ability to fully price the portfolio in each situation are critical to the success
of stress testing. Jorion (2006) discussed stress testing and how it complements VaR.

Conditional VaR (CVaR) is an improvement over VaR. Conditional VaR is the
average of all the d-day losses exceeding the d-day .1 � ˛/ VaR (see Fig. 17.12).
Thus, the CVaR cannot be less than the VaR, and the computation of the d-day
.1 � ˛/ VaR is embedded in the calculation of the d-day .1 � ˛/ CVaR.

Formally, the d-day .1 � ˛/ CVaR of an asset or portfolio X is defined as

CVaR.XI ˛/ D �E
�
XjX � F�1

X
.˛/
	

: (A5)

This formula takes the inverse CDF of the confidence level, a, to give a monetary
loss threshold (equal to the VaR). The CVaR is then obtained by taking the
expectation, or mean value of all the possible losses in the left tail of the distribution,
beyond the threshold. CVaR is a coherent risk measure, implying that it accounts for
diversification, and it can be used efficiently to optimize portfolios (see Rockafellar
and Uryasev 2000, 2002).

However, CVaR is not elicitable, depends heavily on the quality of tail data, and
only introduces a linear penalization for the loss. This last point comes from the
definition CVaR as the mean tail loss operator, implying that CVaR computes risk
as a linear function of tail loss.

As an alternative, Ziemba (2013) has argued for convex risk measures that
penalize losses more and more as the losses mount. Rockafellar and Ziemba (2000,
2013) define convex risk measures as monetary risk measures satisfying the five
following axioms:

�.X C ˛ � r/ D �.X/ � ˛: (R1)

�.
X C .1 � 
/ Y/ � 
�.X/ C .1 � 
/ �.Y/; 0 � 
 � 1: (R2)

X � Y ) �.X/ � �.Y/: (R3)

X < 0 ) �.X/ > 0: (R4)

�.0/ D 0: (R5)

In Rockafellar and Ziemba’s definition, axioms (R2) and (R5) replace the more
restrictive coherence axioms (A2) and (A3). Separately, Föllmer and Schied (2002)
proposed an alternate definition of convex risk measure simply replacing coherence
axioms (A2) and (A3) by the convexity property (R2).

However, the industry still uses the flawed value at risk which penalizes a loss of
1 billion the same as 1 million if 1 million is the VaR number to be exceeded only
5 % of the time. Shorting the CHF was a popular trade and most firms would lever
their position some 20 times or more. With such leverage a 5 % move against the
position wipes out all the value. Yet the trades were seen as relatively low risk using
VaR models at financial institutions because volatility of the CHF was reduced by
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Fig. 17.12 Conditional Value-at-Risk in terms of both PDF and CDF

the SNB’s cap. See Daníelson (2015) for an analysis of the failure of VaR and C-Var
risk models around the time of the Swiss currency unpegging. An important point
here is that the regulations do not include the more realistic convex risk measures.

Regardless of the risk measure, the design of scenarios and stress tests is crucial.
Ziemba (2003, 2007) makes the following remark and establishes a list of factors
that should be considered when designing scenarios:
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The generation of good scenarios that well represent the future evolution of the key
parameters is crucial to the success of the modeling effort. Scenario generation, sampling,
and aggregation are complex subjects, and I will discuss them by describing key elements
and providing various developed and implemented models.
Scenarios should consider:

• mean reversion of asset prices;
• volatility clumping, in which a period of high volatility is followed by another period of

high volatility;
• volatility increases when prices fall and decreases when they rise; trending of currency,

interest rates, and bond prices;
• ways to estimate mean returns;
• ways to estimate fat tails; and
• ways to eliminate arbitrage opportunities or minimize their effects.

Depending on the specificities of the problem, we could use either of the
following five methods to generate scenarios:

1. full knowledge of the exact probability distribution, P;
2. use a known parametric family of statistical or probabilistic models;
3. moment matching;
4. historical simulation;
5. expert opinion

We could also combine several methods. For example, the Black–Litterman
model (see Black and Litterman, 1992) and its descendants combine a parametric
approach with expert opinions.

17.7 Losers and How It Affected Them

The major economic activity in Switzerland is money storage and management.
They produce watches, chocolate, pharmaceuticals and tourist activities such as
skiing, hiking, and visiting the beautiful countryside. Half the GDP comes from
exports. Dhubat (2015) discusses the Canadian-Swiss chocolate market. The CAD
went from 0.85 to 0.74 CHF with the unpegging, some 13.75 % more expensive.
When Ziemba sold a VW camper bus in Zurich in 1973 each CAD was worth
4 CHF. Ziemba got CHF12,000 for a six-month-old camper that cost C$3,000
when purchased. This CHF 12,000 is now worth C$15,751.60 after the revaluation.
This reminds us that the CHF has changed dramatically overtime. Canada has
about US$2.7 billion in chocolate sales versus total North American sales of
about US$20.2. Toronto-based Swiss national chocolatier Ingrid Laderach who sells
mostly Swiss made chocolate: “it was a huge shock, and being Swiss myself, I was
kind of disappointed at my countrymen to be honest with you.” She expects that the
SNB’s move would impact Valentine’s day and Easter when chocolate demand is
high. This of course is a plus for local Canadian producers.
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Ski resorts in Switzerland have been hit hard as their prices are about double
those in France and Austria. So Swiss resorts have needed to lower their prices—
especially for foreigners.

Swiss research institutes have lowered growth forecasts by 75 %. Companies are
squeezing employees with lower pay and more hours of work. Retailers are cutting
prices and have the added problem of cross border shopping into France, Germany,
and Italy. High end products such as the top watches made by TAG Heuer and others
are less hit as their very high profit margins act as a buffer against currency shocks.
Private wealth management banks face significant difficulties because they are
forced to be more transparent. In addition their traditional competitive advantages,
such as secrecy and a perception of safety are declining.

17.8 Banks and Hedge Funds

The losses are in the billions: Citigroup Inc, Deutche Bank AG, and Barclays PLC
together lost US$400 million. Marco Dimitrojevic’s US$830 million hedge fund
was hit so bad that it had to be closed.

Interactive Brokers (IB) is a web-based brokerage firm that is growing rapidly,
offering attractive terms to traders. IB has been rated #1 by Barron’s 3 years in a
row, is a stock pick of Motley Fool, and is highly regarded. They have low fees for
electronic trading. They are aware of possible losses and do certain things to prevent
them. They reported that several customers suffered losses in excess of their account
capital, amounting to about $120 million which is about 2.5 % of the net worth of
the company. Ziemba has accounts with them: what they do is charge an insurance
fee if you have positions such that a 30 % up or down move would wipe out all
your capital. It is not clear whether they buy the puts for this or simply pocket the
money as part of their business (a form of self-insurance). Possibly because of the
120 million loss they are doubling the exposure fee, see Fig. 17.13.

Very big losers were small time individual retail FOREX traders and the firms
they traded with. These individuals expect to win but in fact most lost because of the
volatility of the market and the fact that they are undercapitalized (or in other words,
over levered). The Aite Group LLC found that 11 % of such traders expect to lose
while the other 89 % expect to win, fully 41 % expect to gain 10 % per month. Citi
estimated worldwide that there are some 4 million such traders with about 150,000
in the USA. The NFA estimated that 72 % lose money. Alpari which folded on
Friday after the January 15 2015 unpegging had about 70,000 such clients. Gain
Capital was growing customer trading volume at 90 % per year and their income was
growing even faster from US$7 million in 2004 to US$230 million in 2008. The firm
was allowing huge leverage, for example, a cash account with $5,000 could control
$1 million in currency positions which is 200:1 leverage. Some firms, like Gain,
take the other side of the trades, so these small traders were not client customers but
simply counterparties. Gain, of course and others like them, won. With such leverage
and high volatility, most clients are losers. In the USA the NFA required large capital
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Fig. 17.13 Interactive Brokers portfolio insurance charges for risky positions in the USA

and permitted a 50:1 leverage so much of the business moved to London where
leverage up to 500:1 was allowed and in Cyprus 1000:1 leverage was possible. To
get more customers, such firms have extensive marketing because old customers
are blowing up and leaving, but there is always another sucker out there for them.
Spot FOREX trading is not regulated in London or Europe. In London, the financial
conduct authority (FCA) only takes action if there is fraud or boiler rooms in action
(of course, one could suggest that this entire segment of the industry is fraudulent).

A prime example with a different type of operating procedure was Drew Nir’s
firm FXGM as reported by Evans (2015) and Lex team (2015). FXGM has a 157
page prospectus which has one dangerous provision for themselves: they do not try
to obtain more funds or sue clients who lose money or go into negative equity. They
allowed 29 % of their clients to use credit cards even though that is not allowed and
they are not on the other side but they are supposed to hedge. Their clients lost about
$225 million. FXGM are allowed forced sale of customer positions in deficit but in
this case the currency move was way too fast to do much of this. Before January
15, they had a market cap of $1.4 billion and $300 million capital, which was $200
million above the $100 million required by the regulators. Its shares had been listed
in 2010 at $14. They handled $1.4 trillion of trades in Q4:2014. Post peg the stock in
FXGM fell 87.33 % to $1.60 and as low as 98 cents from a pre-January 15 price of
about $12.63. They needed a bailout and after the market closed on Friday, Jeffries
arranged a $300 million loan at 10 % interest from Leucadia National Corp. The
shares rebounded and were worth $2.43 on January 23, 2015.
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Another problem is co-mingled funds which is always a big danger. Stock and
future funds do not legally allow co-mingling of client and firm funds. MF Global
(see Lleo and Ziemba 2015, 2014) is one example where this policy was violated.
In FXGM’s case, this inadvertent co-mingling led to their large losses.

17.9 What Types of Traders Lost Money

Actually one did not have to be doing trades to lose money. Anyone in Switzerland
holding foreign currencies took losses if they want to spend their money at home.

One Swiss colleague who is a professor and trader had the trading firm’s capital
in US$ since many of their trades are in US$. Another professor colleague who is
German but at a university in Switzerland plans a retirement in Germany so his CHF
holdings including his university pension gained in EUR terms but his other assets
in other currencies loss in CHF terms, he writes that he gained 10 % in EUR and
lost 10 % in CHF in his overall situation.

Some traders that lost money:

1. Short puts on the EUR/CHF cross. One bets that the EUR will not fall and
collects a small premium. The tails here follow typical deep out of the money
favorite-longshot bias characteristics. Ziegler and Ziemba (2015) study returns
from buying and selling hedged and unhedged puts and calls from 1985 to 2010
on the S&P 500 futures. These types of trades usually win but if there is a big
move in the wrong direction, the losses can be very large. The Niederhoffer
bankruptcy from the Asian currency crisis in 1997 is a typical example (Ziemba
and Ziemba 2013). $120 million in his hedge fund was turned into $70 million
by buying cheap Thai stocks which continued to drop. Then the $70 million
was turned into �$20 million by shorting out of the money S&P puts. It turned
out that the puts expired worthless the next month and Nieferhoffer would have
survived if he had more capital. This is another reminder that one needs to be
sufficiently capitalized for the type of trading one is doing. Usually one must have
a large capital being each short position to try to weather storms. In the CHF case,
a 15 % move yielded large losses. All this depends on how fast the brokerage firm
is checking the positions. Minutes after the announcement the CHF was up 38 %
and then settled at 15 % ahead. Of course, those who were long CHF with short
calls on the EUR/CHF would gain but only the premium. So the losses are much
greater than the gains in this case.

2. Short strangles and straddles: these involve selling both sides of the market,
that is short puts and short calls, collecting two premiums. One has a strike
at the money and the other is out of the money. Those like in (1) would have
large losses less the two premiums which would not lower the loss much. The
opposite position, buying the puts and calls, paying two premiums, which is
usually a losing strategy, in this case would have had had huge gains on the
long CHF side.
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17.10 Mortgage Losses

Swiss fixed interest rates on mortgages are as low as 1.5 %. With the exchange rate
fixed, borrowing in Swiss for homeowners in Austria, Hungary, Poland, and other
countries in central and eastern Europe seemed like a good decision.3 During the
real estate bubble of 2005–2007, mortgage rates in these countries were over 10 %.
In addition, the local currencies were rising in value as investors anticipated Poland
and Hungary joining the eurozone. But in 2008, these currencies fell relative to the
strong Swiss franc so the payments increased. Poland banned new CHF lending and
Hungary added the increased payments to the principal owing.

There was a disconnect between western Europe and eastern Europe Swiss franc
borrowers. Those in the west are concentrated in the business and financial sectors
and more care was taken to hedge the currency risk. But in eastern Europe, it was
mortgages, some 566,000 Polish, 150,000 Romanian and 60,000 Croatian. And in
Hungary, half of all households in the country had foreign currency debt with most
in Swiss francs. The mortgages are not transparent as mostly the interest is paid in
local currency although it is computed in Swiss francs at a non-Swiss bank.

In 2011 the same flight to safety that devalued the Polish zloty and Hungarian
forint in 2008 devalued the euro against the Swiss franc so all costs in francs
increased such as these loans.

Croatia pegged its currency, the kuna to the franc for one year. This had a large
cost of at least 30 % of its currency reserves. And if the franc continues to rise
against the euro, Crotatian goods will be more expensive for French, German, Italian
and other customers. Other countries such as Romania are considering similar
moves. In contrast, Hungary reacted by forcing all mortgages such as these to
convert their Swiss franc loans to Hungarian forints. Foreign banks, and in particular
Austrian banks, had to bear the adjustment cost.

17.11 Final Remarks

The Quantitative Easing programme implemented by the US Federal Reserve as
a remedy for the 2007–9 financial crisis has led to a massive increase in US stock
prices, tripling the S&P 500 index since the March 2009 low. Unemployment is now
much lower even though wages have not increased. This sets the stage for gradual
interest rate hike, limited in scope by the huge debt loads of the US government.
With its USD 4 trillion balance sheet, the Federal reserve Bank has a tricky policy
road ahead and there likely will be some bumps along the way. We see this already
with daily up and down moves in the US stock market as the probability of when
the first rate rise will occur is reassessed daily.

3This section is based on Frum (2015) and other sources.
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Now, the European Central Bank is embarking on the same path. The money they
spend to buy bonds does not directly go to the real problem, namely unemployment.
But rather it will basically go to the banks and lower interest rates. The divergence
between US rates heading up and European rates going down has helped fuel a
massive shift to the US dollar with most countries currencies dropping. The Swiss
franc has historically been a safe haven and it has been for many years on a
monotone increase in value. Jim Rogers noted this as did Ziemba’s car sale in the
1970s.

Since then the franc has increased fivefold and is continuing to strengthen.
Although many aspects of the Swiss banking advantage are declining, there is still
much demand for the currency even with negative interest rates. This paper concerns
the January 15, 2015 unpegging on the Euro Franc exchange rate at 1.20. Since
2011, the Swiss central bank, partially owned by the cantons, had been buying
various currencies to keep the euro exchange rate at this level. This caused them
considerable losses. These losses were a factor in their decision to exit the peg. We
discussed this abrupt action that caused a large, fast move in currency prices and
triggered large losses for many individuals and institutions.

After the markets calmed down the currencies were roughly 15 % lower. The
Swiss National Bank subsequently announced a loose target zone of 1.05–1.10
for the Euro. They were prepared to spend considerable funds to keep this range.
Meanwhile the Euro has declined steeply against the US Dollar. Even short covering
rallies are met with more selling. The Euro, which once fetched 1.60 US dollars and
was 1.40 in May 2014, was down to 1.05 when we went to press.

There are conflicting views of the situation. Some forecasters, such as Deutsche
Bank, predicted a move to 1.00 by the end of 2015 and a new cycle low of 85 cents
by 2017. Their reasoning articulates around the concept of a “Euro glut.” Deutsche
Bank explains: “simply put, it argues that the euro-area’s gigantic current account
surplus, combined with the European Central Bank’s Quantitative Easing program,
and with negative interest rates will continue to cause the Euro to tumble?” Robin
Winkler and George Saravelos of the Deutsche Bank say that the region, which
is currently a debtor to the world, must become a net creditor to the word. To
that end, its investment position needing to reach 30 % of GDP versus its current
�10 % before the current account surplus is sustainable. This can only happen with
net capital outflows of at least 4 trillion Euros. In fact, European outflows in the
last six months have been high, putting downward pressure on the Euro/US dollar
exchange rate.

Rachel Ziemba disagrees with this and argues that the EuroZone has net foreign
assets (stock) and net surplus (flow). Until the Euro crisis, Europe’s balance of
payments was roughly balanced since the net surplus from the core countries
especially Germany offsets deficits in the periphery countries. Currently these latter
countries are doing (a) fiscal adjustment, (b) structural reforms, and (c) deleveraging
to some extent. Hence the deficits have shrunk even though the stock of debt is high.
She argues that the Deutsche bank conflates two drivers of Euro weakness, namely
the Quantitative easing and lower rate differential versus the US with one (current
account surplus) that is supportive of Euro strength. Should the trade and capital
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flows reverse because of these ECB actions, the Euro weakness could extend, but
the weaker Euro lowers imports and increases exports.

So what does this mean for the Swiss Franc? For Switzerland as for the USA, it
certainly seems that a continued increase in the respective values is likely until the
exchange rate greatly affects the economy of Switzerland and the USA. As we go
to press in September 2015, the Euro/Franc exchange rare is near the bottom of its
target range about 1.08 and the US dollar is close to par with the Swiss Franc with
a 0.9719 exchange rate.
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Chapter 18
Leveling the Playing Field

Jonathan B. Berk and Jules H. van Binsbergen

The development of what has become known as the Capital Asset Pricing Model
(CAPM) by Jack Treynor and others was a watershed event in financial economics.1

It marked the birth of modern asset pricing because for the first time financial
economists had a formal method for estimating the expected return of a risky
investment opportunity. Within a short period of time after the model was developed,
researchers set about collecting stock market data to determine whether or not the
model actually worked. Early results were encouraging—beta appeared to explain
cross sectional differences in realized returns.2 However, as researchers subjected
the model to more powerful tests, cracks began to appear. In particular, researchers
were able to group assets into portfolios using variables such as size, book-to-
market, and past returns (momentum) and show that even though these portfolios
displayed large cross sectional variation in realized returns, this was not mirrored
in an equivalent cross sectional variation in beta. In response to these empirical

This article summarizes research originally published in Berk and van Binsbergen (2016b).
1The model was developed independently by Lintner (1965), Mossin (1966), Sharpe (1964), and
Treynor (1961), see French (2003) for an analysis of who deserves attribution.
2See, Black et al. (1972) and Fama and MacBeth (1973).
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shortcomings, a number of extensions to the original model have been proposed.
The most notable are the factor specifications proposed by Fama and French (1993)
and Carhart (1997) which are motivated by theoretical developments in Ross (1976)
and Merton (1973).

The new models have been subjected to the same level of empirical scrutiny as
the CAPM, and for the most part they have fared better. This has led many financial
economists to conclude that, to adjust for risk, the CAPM should be replaced by one
of the new models. The problem with this logic is that it ignores a subtle distinction
between the models. The CAPM was developed using theory alone—stock market
data did not exist in electronic format when Jack wrote his original paper. The new
models were developed only after observing the data. Indeed, they were actually
derived with one goal in mind, to fit return data better. What that means is that they
have an inherent advantage over the CAPM when they are evaluated using the data
they were designed to explain. This is true even if you only test the model using data
collected after the models were first proposed.

The easiest way to understand why, when you compare the performance of the
new models to the CAPM, the tests are biased in favor of the new models, is to
consider the following analogy. Early astronomers could not reconcile the motion of
the planets with the dominant theory of the day—the Ptolemaic theory that had the
Earth at the center of the universe. Rather than look for an alternative theory, these
astronomers reacted to the inability of the Ptolemaic theory to predict the motion of
the planets by “fixing” each observational inconsistency. Just as modern financial
economists added new risk factors to the CAPM, the early astronomers added
epicycles to the theory. For example, because the Ptolemaic theory did not account
for the motion of the Earth, it could not explain the fact that, when viewed from the
Earth, the planets sometimes move backwards. An epicycle fixes this problem by
adding a circular orbit within another circular orbit. The net result was that by the
time Copernicus proposed the correct theory that the Earth revolved around the Sun,
the Ptolemaic theory had been fixed so many times, it better explained the motion
of the planets than the Copernican system.3 The lesson here is if you test a theory
using the data it was designed to explain, it should not be surprising to find that the
theory works. A real test of a theory is when it explains data it was not designed to
explain.

Although the extensions to the CAPM better explain the cross section of stock
returns, it is hard to know, using traditional tests, whether these extensions represent
true progress towards a better measure of risk or simply the asset pricing equivalent
of an epicycle. To determine whether any extension to the CAPM better explains
risk, one needs to confront the models with facts they were not specifically designed
to explain. At first glance it might appear that this approach is a lost cause. How can
you test a model of risk without using stock return data? The answer is that instead
of looking at stock returns, we look at what investors actually do. That is, we infer
what risk model investors use by observing their investment decisions.

3Copernicus incorrectly assumed that the planets followed circular orbits when in fact their orbits
are ellipses.
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To understand the basis of our new test, it is helpful to recall how prices and
returns are determined in any risk model. All models of risk assume that investors
compete with each other to find attractive investment opportunities. When investors
find such opportunities, they react by submitting buy or sell orders. Prices are then
determined so that the market clears, that is, total demand equals total supply. As
a consequence of this competition, equilibrium prices are set so that the expected
return of every asset is solely a function of its risk. Consequently these buy and sell
orders reveal the preferences of investors and therefore they reveal which risk model
investors are using. By observing these orders we can infer whether investors price
risk at all, and if so, which risk model they are using.

There are two criteria that are required to implement this idea. First, one needs
a mechanism that identifies attractive investment opportunities. Second, one needs
to observe investor reactions to these opportunities. We can satisfy both criteria if
we implement the method using mutual fund data. Using this dataset we infer, from
a set of candidate models, the model that is closest to the risk model investors are
actually using. We will restrict attention to the time period after the new models
were developed, that is 1996–2011. Here we follow the lead of Guerard Jr, Deng,
Gillam, Markowitz, Wang, and Xu (2015) who test Bloch, Guerard Jr, Markowitz,
Todd, and Xu (1993) in the 1997-2014 period.

What we find is somewhat of a triumph for economic theory. Even without
the benefit of the last 50 years of data, we find that the model derived in the
early 1960s, the CAPM, is the best description of investor behavior. None of the
extensions that have been proposed do better. Importantly, the CAPM better explains
investor behavior than no model at all, indicating that investors do price risk.
Most surprisingly, the CAPM also outperforms a naive model in which investors
ignore beta and simply chase any outperformance relative to the market portfolio.
Investors’ capital allocation decisions reveal that they adjust for risk using the
CAPM beta. The poor performance of the extensions to the CAPM implies that
although these extensions might better explain cross sectional variation in realized
returns, they do not help explain how investors measure risk. In short, we are no
closer to understanding the risk-return relation today than we were when the CAPM
was originally developed more than half a century ago.

18.1 Methodology and Data

In earlier work we explain how the mutual fund market equilibrates.4 When
investors find an investment in a particular mutual fund to be attractive, they invest
capital in the fund. As the fund grows, the expected return of the fund declines as the
fund manager’s attractive investment ideas are exhausted. The flow of capital ceases

4Berk and Green (2004), Berk (2005), Berk and van Binsbergen (2016b), and Berk and van
Binsbergen (2016c).
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when the expected return the mutual fund delivers to its investors is solely a function
of the risk of the fund. That is, competition between investors drives the fund’s net
alpha to zero. What this implies is that the flows of capital in and out of mutual
funds are the buy and sell orders mentioned in the introduction. Thus, the flow of
funds reveals which investment opportunities mutual fund investors considered to
be attractive.

Notice that when the market is in equilibrium, all mutual funds have a zero
net alpha. Now consider what happens when new information arrives that allows
investors to make a better inference about a fund’s alpha. One example of new
information is the fund’s return itself. If the fund’s return exceeds the risk adjusted
return predicted by the risk model investors are using, investors will positively
update their beliefs about the skill level of the fund’s manager and infer that at
the fund’s current size, the alpha is positive. Similarly, if the fund’s realized return
is less than the risk adjusted return predicted by the risk model, investors will
negatively update their beliefs about the skill level of the manager and infer that
at the fund’s current size, the alpha is negative. In short, the fund’s realized return
reveals attractive investment opportunities, and the subsequent flow of funds reveals
investor reactions to these opportunities.

We are now ready to describe our test. Each risk model we consider uniquely
determines which funds outperform and which funds underperform. We then
observe the subsequent flow of funds. The model for which outperformance best
drives capital flows is the model that comes closest to the model that investors are
actually using to price risk. We use the mutual fund data set described in Berk and
van Binsbergen (2015). Because the focus of this article is to ensure that we test
all models on an equal footing, we will only conduct our test using data that was
not available at the time all the models were developed. In practice that means we
restrict attention to the time period from 1996–2011.5

We implement this idea as follows. We compute the fraction of times we observe
an inflow when the fund’s realized return exceeds the risk adjusted return and the
fraction of times we observe an outflow when the fund’s realized return is less than
the risk adjusted return, as defined by the risk model. Our measure of fit is the
average of these two fractions. We show in Berk and van Binsbergen (2016b) that
this average can also be estimated by running a simple linear regression of the sign
of flows on the sign of outperformance. The latter approach is preferable because,
as we show in the same paper, the t-statistics of this regression is an accurate
measure of statistical significance. In particular, if the coefficient using one risk
model statistically significantly exceeds the coefficient using a second risk model,
then we can say the first model is closer to the risk model investors are actually
using.

5In a related paper, Berk and van Binsbergen (2016c), we provide an equivalent summary of the
results of Berk and van Binsbergen (2016b) but for the full sample period, that is, 1977–2011.
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18.2 Results

There are two practical issues that we need to confront in order to run this test. The
first concerns what a flow actually is. A fund’s assets under management changes
for two reasons. Either the prices of the underlying stocks change or investors invest
or withdraw capital. Although both mechanisms change assets under management,
they are unlikely to equally affect the fund’s alpha. For example, increases in fund
sizes that result from inflation are unlikely to affect the alpha generating process.
Similarly, the fund’s alpha generating process is unlikely to be affected by changes
in fund size that result from changes in the price level of the market as a whole.
Consequently, in our empirical specification, we only consider capital flows into
and out of funds net of what would have happened had investors not invested or
withdrawn capital and had the fund manager adopted a purely passive strategy and
invested in Vanguard index funds. That is, we measure the flow of funds as

SIGN.qit � qit�T.1 C RV
it //; (18.1)

where qit is the size of fund i at time t, and RV
it is the cumulative return, over

the horizon from t � T to t, to investors of the collection of available Vanguard
index funds that comes closest to matching the fund under consideration. Under this
definition of capital flows, we are assuming that, in making their capital allocation
decisions, investors take into account changes in the size of the fund that result from
returns due to managerial outperformance alone. That said, all of our results are
robust to replacing RV

it with the fund’s own return in (18.1).
The second practical issue that we need to confront is the horizon length

over which to measure the effects. For most of our sample funds report
their AUMs monthly, however, in the early part of the sample many funds
report their AUMs only quarterly. In order not to introduce a selection bias
by dropping these funds, the shortest horizon we will consider is three months.
If investors react to new information immediately, then flows should immediately
respond to performance and the appropriate horizon to measure the effect would be
the shortest horizon possible. But in reality, there is evidence that some investors do
not respond immediately. For this reason, we also consider longer horizons (up to
four years). The downside of using longer horizons is that longer horizons tend to
put less weight on investors who update immediately, and these investors are also
the investors more likely to be marginal in setting prices.

We will consider the following models of risk. Because the market portfolio
is not observable, we will test two versions of the CAPM that correspond to two
different market proxies, the CRSP value weighted index of stocks and the S&P
500 index. We will also test the factor models proposed in Fama and French (1993),
hereafter the FF factor specification and Carhart (1997), hereafter the FFC factor
specification. In addition we will consider three “no model” benchmarks. The first
uses the actual return of the fund, which corresponds to investors using no model at
all. The second uses the return of the fund in excess of the risk free return. Investors
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Table 18.1 Flow of funds outperformance relationship (1996–
2011): The table reports the average of the fraction of times
we observe an inflow when the fund’s realized return exceeds
the risk adjusted return and the fraction of times we observe
an outflow when the fund’s realized return is less than the
risk adjusted return. Each row corresponds to a different risk
model. The first two rows report the results for the market model
(CAPM) using the CRSP value-weighted index and the S&P 500
index as the market portfolio. The next three rows report the
results of using as the benchmark return, three rules of thumb:
(1) the fund’s actual return, (2) the fund’s return in excess of the
risk-free rate, and (3) the fund’s return in excess of the return
on the market as measured by the CRSP value-weighted index.
The next two rows are the FF and FFC factor specifications. The
largest value in each column is shown in boldface

Horizon

Model 3 month 6 month 1 year

Market models (CAPM)

CRSP value weighted 62.74 62.68 62.70

S&P 500 61.44 61.23 60.77

No model

Return 57.94 59.48 57.45

Excess return 57.67 59.27 57.44

Return in excess of the market 61.18 61.31 60.33

Multifactor Models

FF 62.42 62.20 62.80
FFC 62.57 62.35 62.71

would use this measure of risk if they were risk neutral. Finally, we will consider a
model where the performance of the fund is just the fund’s return minus the return of
the market (as measured by the CRSP value weighted index). Although similar to the
CAPM, in this model investors ignore beta. All they care about is outperformance
relative to the market.

Which model best approximates the true asset pricing model? Table 18.1 reports
the average of the fraction of times we observe an inflow when the fund’s realized
return exceeds the risk adjusted return and the fraction of times we observe an
outflow when the fund’s realized return is less than the risk adjusted return. If flows
and outperformance are unrelated, we would expect this average to equal 50 %. The
first takeaway from Table 18.1 is that none of our candidate models can be rejected,6

implying that regardless of the risk adjustment, a flow-performance relation exists.
On the other hand, none of the models perform better than 63 %. It appears that

6The second column of Table 18.2 reports the double-clustered (by fund and time) t-statistics under
the null that flows and performance are unrelated.
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a large fraction of flows remain unexplained. Investors appear to be using other
criteria to make a non-trivial fraction of their investment decisions.

The CAPM with the CRSP value weighted index as the market proxy performs
best at the 3- and 6-month horizon, and the FFC model performs best at the 1-year
horizon. To assess whether the difference in performance between the CAPM and
the other models is statistically significant, we report, in Table 18.2, the double-
clustered (by fund and time) t-statistics. Recall that because the new models nest
the CAPM, for researchers to reject those models in favor of the CAPM, they must
statistically outperform the CAPM. Yet as Table 18.2 shows, no model statistically
outperforms the CAPM at any horizon.

To assess the relative performance of the models, we begin by first focusing
on the behavioral model that investors just react to past returns without adjusting
for risk, the column marked “Ret” in the table. By looking down that column
in Table 18.2, one can see that the factor models all statistically significantly
outperform this model at horizons of less than two years. For example, the t-statistic
reported in Table 18.2 that the CAPM outperforms this no model benchmark at
the 3-month horizon is 4.98, indicating that we can reject the hypothesis that the
behavioral model is a better approximation of the true model than the CAPM. Based
on these results, we can reject the hypothesis that investors just react to past returns.
The next possibility is that investors are risk neutral. In an economy with risk-neutral
investors, we would find that the excess return (the difference between the fund’s
return and the risk free rate) best explains flows, so the performance of this model
can be assessed by looking at the columns labeled “Ex. ret.” Notice that all the risk
models nest this model, so to conclude that a risk model better approximates the true
model, the risk model must statistically outperform this model. For horizons less
than 2 years, all the risk models satisfy this criterion. Finally, one might hypothesize
that investors benchmark their investments relative to the market portfolio alone, that
is, they do not adjust for any risk differences (beta) between their investment and
the market. The performance of this model is reported in the column labeled “Ex.
mkt.” The CAPM statistically significantly outperforms this model at all horizons—
investors’ actions reveal that they use betas to allocate resources.

Next, we use our method to discriminate between the risk models. Recall that
both the FF and FFC factor specifications nest the CAPM (the first factor in
each specification is the market), so to conclude that either factor model better
approximates the true model, it must statistically significantly outperform the
CAPM. The test of this hypothesis is in the columns labeled “CAPM.” Neither
factor model statistically outperforms the CAPM at any horizon implying that the
additional factors add no explanatory power for flows.

It is also informative to compare the tests of statistical significance across hori-
zons. The ability to statistically discriminate between the models deteriorates as
the horizon increases. This is what one would expect to observe if investors
instantaneously moved capital in response to the information in realized returns.
Thus, this evidence is consistent with the idea that capital does in fact move quickly
to attractive investment opportunities.
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Table 18.2 Tests of statistical significance: The first column in the table reports the
average of the fraction of times we observe an inflow when the fund’s realized return
exceeds the risk adjusted return and the fraction of times we observe an outflow when the
fund’s realized return is less than the risk adjusted return. The second column provides
the t-statistic of the test of whether this average is significantly different from 50 %. The
rest of the columns provide the statistical significance of the pairwise test of whether the
models are better approximations of the true asset pricing model. For each model in a
column, the table displays the t-statistic of the test that the model in the row is a better
approximation of the true asset pricing model. The rows (and columns) are ordered by the
probabilities in the first column, with the best performing model on top. All t-statistics
are double clustered by fund and time (see Thompson (2011))

Panel A: 3-Month horizon

Univ CAPM Ex. Ex.
Model ˇF" t-stat CAPM FFC FF SP500 mkt Ret ret

CAPM 62.74 % 21.48 0.00 0.43 0.81 4.94 6.32 4.33 4.94

FFC 62.57 % 24.38 �0.43 0.00 0.71 2.23 3.16 3.95 4.53

FF 62.42 % 23.81 �0.81 �0.71 0.00 1.92 2.76 3.87 4.45

CAPM SP500 61.43 % 16.94 �4.94 �2.23 �1.92 0.00 0.64 3.19 3.68

Excess market 61.18 % 18.39 �6.32 �3.16 �2.76 �0.64 0.00 2.88 3.32

Return 57.94 % 8.86 �4.33 �3.95 �3.87 �3.19 �2.88 0.00 1.19

Excess return 57.67 % 8.32 �4.94 �4.53 �4.45 �3.68 �3.32 �1.19 0.00

Panel B: 6-Month horizon

Univ Ex CAPM Ex
Model ˇF" t-stat CAPM FFC FF mkt SP500 Ret ret

CAPM 62.68 % 17.08 0.00 0.52 0.73 3.57 3.44 2.12 2.54

FFC 62.35 % 18.17 �0.52 0.00 0.52 1.40 1.34 1.80 2.16

FF 62.20 % 18.90 �0.73 �0.52 0.00 1.20 1.09 1.65 1.97

Excess market 61.31 % 13.00 �3.57 �1.40 �1.20 0.00 0.13 1.10 1.34

CAPM SP500 61.23 % 11.13 �3.44 �1.34 �1.09 �0.13 0.00 1.16 1.39

Return 59.48 % 7.24 �2.12 �1.80 �1.65 �1.10 �1.16 0.00 0.58

Excess return 59.27 % 6.98 �2.54 �2.16 �1.97 �1.34 �1.39 �0.58 0.00

Panel C: 1-Year horizon

Univ CAPM Ex Ex
Model ˇF" t-stat FF FFC CAPM SP500 mkt Ret ret

FF 62.80 % 12.65 0.00 0.33 0.12 1.72 2.59 1.94 2.29

FFC 62.71 % 12.21 �0.33 0.00 0.02 1.77 2.54 1.96 2.35

CAPM 62.70 % 11.16 �0.12 �0.02 0.00 3.40 6.32 1.98 2.43

CAPM SP500 60.77 % 6.47 �1.72 �1.77 �3.40 0.00 0.48 1.35 1.57

Excess market 60.33 % 8.26 �2.59 �2.54 �6.32 �0.48 0.00 0.97 1.14

Return 57.45 % 3.54 �1.94 �1.96 �1.98 �1.35 �0.97 0.00 0.02

Excess return 57.44 % 3.46 �2.29 �2.35 �2.43 �1.57 �1.14 �0.02 0.00

18.3 Conclusion

Our empirical finding that no model outperforms the CAPM is, in some sense,
startling. The model was developed at a time when the mutual fund sector was
tiny. In 1962, there were just 172 equity mutual funds in existence. In the interim
an entirely new sector of investing developed, so that today there are more funds
then there are stocks. The other models we evaluated were all developed after the
mutual fund sector started to experience explosive growth. Yet none of those models
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are better able to explain investor behavior. That Jack Treynor was able to predict
behavior in a sector that essentially did not exist when he first developed the CAPM
is a remarkable achievement in the field of economics. His subsequent application
of the CAPM and beta to mutual fund performance (Treynor (1965) and Treynor
and Mazuy (1966)) measurement was a great innovation in financial economics.

Yet the fact remains that the CAPM does a poor job explaining cross-sectional
variation in expected returns. The profession’s answer to this shortcoming has been
to attempt to improve the CAPM. What our results show is that the reason these
“improved” models better explain cross-sectional variation is simply because that is
what they have been designed to do. We are therefore no closer at explaining what,
if any, other factors determine expected returns than we were when the CAPM was
first developed.

This raises a number of possibilities about the relation between risk and return.
The first possibility, and the one most often considered in the existing literature, is
that this finding does not invalidate the neoclassical paradigm that requires expected
returns to be a function solely of risk. Instead, it merely indicates that the CAPM is
not the correct model of risk, and, more importantly, a better model of risk exists.

The second possibility is that the poor performance of the CAPM is a conse-
quence of the fact that there is no relation between risk and return. That is, that
expected returns are determined by non-risk based effects. The final possibility is
that risk only partially explains expected returns, and that other, non-risk based
factors, also explain expected returns. The results in this paper shed new light on
the relative likelihood of these possibilities.

The fact that we find that the factor models all statistically significantly outper-
form our “no model” benchmarks implies that the second possibility is unlikely.
That leaves the question of whether the failure of the CAPM to explain the cross
section of expected stock returns results because a better model of risk exists, or
because factors other than risk also explain expected returns. To conclude that a
better risk model exists, one has to show that the part of the variation in asset returns
not explained by the CAPM can be explained by variation in risk. This is what the
flow of funds data allow us to do. If variation in asset returns that is not explained by
the CAPM attracts flows, as is the case for the extensions of the CAPM we tested,
then one can conclude that this variation is not compensation for risk.
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Chapter 19
Against the ‘Wisdom of Crowds’:
The Investment Performance of Contrarian
Funds

Kelsey D. Wei, Russ Wermers, and Tong Yao

19.1 Introduction

In an article published in the Financial Analysts Journal (Treynor, 1987), Jack
Treynor wrote about a series of “bean jar” experiments he conducted with students
in his investments courses at the University of Southern California. In the first set
of experiments, he asked students to independently estimate the number of beans
contained in a full jar. While most students’ individual estimates missed the actual
number by a wide margin, surprisingly, the average estimates were pretty close
to being correct. In the second set of experiments, he first provided students with
advice on properties of the jar, such as the air space at the top of the jar, and materials
of the jar. While such information supposedly could help improve the accuracy of
students’ estimates, the resulting average estimates, alas, had much larger errors
than those from the first set of experiments. It seems his advice did nothing more
than cause common errors among students!

This work draws from, and adds discussion to, our Management Science publication, Wei,
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Treynor’s first set of experiments was made famous by the popular book of James
Surowiecki (2004) as early evidence of the “wisdom of crowds.” A substantial part
of Treynor’s FAJ article, however, was about the second set of experiments, and
their implications for potential shared errors in the stock market. He remarked that
investors may be persuaded to give up their independent information and, instead,
rely on certain common sources of information, such as published analyst research
reports, and that this may actually do damage to market efficiency. In the FAJ article,
he further contemplated a strategy to take advantage of such investor behavior, by
waiting “until propagation [of the research among investors] is complete, or almost
complete, and then copper it.” However, he also cautioned about the considerable
challenges for doing so given the difficulty of estimating the “shared error.”

Treynor’s notion of investors giving up their independent opinions to follow
influential common advice is also known as “herding,” and those who attempt to
trade against herds are known as “contrarians.” In this article, we examine contrarian
investment behavior in the mutual fund industry, and uncover interesting empirical
findings related to the characteristics and performance of contrarian funds. In
particular, we find that there are mutual funds that systematically act in a contrarian
fashion, as contemplated by Treynor (1987), and which are capable of delivering
outperformance even after we take into account the different types of risks to which
they are exposed.1

Prior to our study, academic researchers have focused their attention primarily on
the herds—investors who follow each other in pursuing similar trades. These studies
include, for example, Lakonishok, Shleifer, and Vishny (1992), Wermers (1999),
Sias (2004), Dasgupta, Prat, and Verardo (2011a), and Brown, Wei, and Wermers
(2014). The collective wisdom drawn from these studies is that, in less recent times
(e.g., prior to the mid-1990s), mutual fund herding was relatively weak, and does
not substantially distort stock prices; however, in more recent years, herding has
become more prevalent, and herds tend to cause a significant price impact, followed
by a return reversal.2

These strong results for funds that herd bring about an important question:
do funds that do not herd, or that even “anti-herd,” (actively invest against the
crowd),exhibit different strategies and performance from their more conventional
counterparts? For example, given the time-trend of increasing price impact caused
by trades of herds, it is natural to wonder if sophisticated investors have emerged
in recent years who choose to deviate from the crowd and take advantage of the

1We note that Treynor created a methodology to rate investment funds in Treynor (1965) and
Treynor and Mazuy (1966), and the Fama–MacBeth (1973) regressions that we use for identifying
the relation between “contrarianism” and “the abnormal returns of stocks” by contrarian funds
build on this work.
2There is also a debate on whether herds indeed irrationally give up their own opinion and rely
too much on certain influential common information sources. For example, Sias (2004) argues that
herds merely infer information from each other’s trades.
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temporary price dislocations created by herds. Further, are contrarians “smarter”
than herding funds in researching stock fundamentals? We address those questions
in this article.

Anecdotal evidence suggests that some household names in the investment
industry are contrarian investors. For example, in Wikipedia (which arguably
represents the “wisdom of the crowd”), the entry for “contrarian investing” includes
the “notable contrarian investors” Warren Buffett, Marc Faber, David Dreman, and
John Neff. Successful mutual fund managers such as Peter Lynch, Bill Miller,
and John Templeton have also been known to have strong contrarian elements in
their investment themes. While such anecdotes are interesting, we would like to
know whether a successful track-record belongs to only a rare few, or whether
contrarian investing, in general, is rewarded. Also, by parsing through their positions
and trades, as we do in this article, we hope to learn about the characteristics
of a successful contrarian, as well as the specific sources of contrarian investor
performance.

19.2 Identifying Contrarian Funds

There are various ways to define contrarian investing. For example, if we think
of contrarian investing as a deep-value investing style, we can look at how funds
trade on fundamental value indicators. Alternatively, we can define contrarian
funds as those buying stocks whose prices have fallen dramatically. Treynor (1987)
suggests influential analyst research reports as a prominent stimulus of herding
by investors; thus, one can also define contrarian investing as trading against
analyst recommendations. However, perhaps the most straightforward definition of
contrarian funds would be those trading against herds, which is the definition that
we adopt in our study. The advantage of this approach, in our belief, is that we need
not assume a particular trading strategy to define contrarian funds or the specific
source of common errors that they avoid (e.g., analyst reports). Instead, we can
simply identify those funds that most frequently trade against herds, and let the data
tell us what strategies that they tend to follow in doing so.

To construct a fund-level contrarian measure, we first classify, for a given fund,
each trade into either a “herding” trade or a “contrarian” trade during a particular
quarter (we infer “trades” by examining changes in quarterly portfolio holdings
data available from Thomson Reuters). A herding trade is one in the same trading
direction as the majority of funds (i.e., the “crowd”), while a contrarian trade is one
in the opposite direction of the majority. For example, if a fund sells a stock when
the majority of the funds are buying, or if a fund buys a stock when the majority of
funds are selling, such a trade is contrarian; if the fund buys or sells with the crowd,
that trade is a herding trade.

However, we first need a formula that identifies when a group of funds trading
a stock can be considered a herd; more to the point, we need a measure of how
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strong or weak a herd is. Here, we rely on a stock-level measure of herding by the
pioneering paper of Lakonishok, Shleifer, and Vishny (Lakonishok et al., 1992):

HMi;t D jpi;t � ptj � E .jpi;t � ptj/ ; (19.1)

where pi,t is the proportion of mutual funds buying stock i during quarter t, out of all
funds trading that stock during quarter t. Note that pt, a proxy for the expected value
of pi,t, is the cross-sectional mean of pi,t over all stocks traded by all funds during
quarter t. E(jpi,t � ptj) is an adjustment factor, which equals the expected value of
jpi,t � ptj under the null of no herding.3

Intuitively, this measure defines herding as the tendency with which a group of
funds exhibit similarity in trading activity, above what would have been expected as
a result of random occurrences of same-side trading by funds in the same stock.
Depending on the direction of herding, we can further define conditional buy-
herding (BHMit) and sell-herding (SHMit) measures as follows:

BHMi;t D HMi;t

ˇ̌
ˇpi;t > pt (19.2)

SHMi;t D HMi;t

ˇ̌
ˇpi;t < pt: (19.3)

A positive value of BHM indicates that the majority of funds are buyers of the stock
(hence, herding on the buy side), and a positive value of SHM indicates that the
majority funds are sellers (hence, herding on the sell side).

Each quarter, we separately rank stocks into quintiles, based on the magnitude of
BHM and SHM, and further assign negative signs to the quintile ranks of the SHM
stocks. Thus, during a given quarter, BHM stocks are assigned ranks of 1 (least
amount of buy herding) to 5 (most amount of buy herding), while SHM stocks are
assigned ranks from �1 (least amount of sell herding) to �5 (most amount of sell
herding). This way, we combine the buy-herding and sell-herding measures into a
single variable, HERD, that takes on integer values from �5 to C5 (excluding 0),
and that summarizes both the direction (buy or sell) and the strength of the herd.

We then measure the extent to which fund j conducts contrarian versus herding
trades by computing the weighted average of the HERD measure across all stocks
traded by that fund during a particular quarter, where the weights are proportional
to the dollar values of the trades, and are denoted as ! ijt,

CONjt D �
NX

iD1

!ijtHERDit: (19.4)

3This value is calculated assuming, under the null of no herding in stock-quarter i,t, that funds trade
randomly and independently of each other. With this assumption, pi,t can be assumed to follow a
binomial distribution with parameters (n, pt), where n D the number of funds that trade stock i
during quarter t.
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We term this measure the fund-level “contrarian index” or CON. Note that ! ijt has
a positive (negative) value for buy (sell) trades, whereas HERDit has a positive
(negative) value for buy-herding (sell-herding) stocks. The value of CON is, thus,
positively correlated with the (dollar) proportion of contrarian trades, and negatively
correlated with the proportion of herding trades executed by a fund. In summary, a
highly positive contrarian index identifies a contrarian fund, while a highly negative
contrarian index identifies a herding fund.

The following example helps to illustrate the economic meaning of our definition.
If almost all mutual funds are buying IBM and selling Cisco during a particular
quarter, then a fund that sells IBM and buys Cisco during that quarter would be
assigned a very high contrarian index. Note that this definition of contrarianism
does not necessarily imply that contrarians are all alike, and form a small herd of
their own. For example, some contrarians might sell IBM without buying Cisco,
while others might buy Cisco without selling IBM.

19.3 Distribution and Characteristics of Contrarian/Herding
Funds

Table 19.1 displays the cross-sectional distribution of the contrarian index. One eye-
catching pattern is that the majority of funds have negative contrarian index (CON)
values. The average value of the index across funds is �0.84, and even the 75th
percentile is negative, at �0.33. This suggests that most funds are herds, while
funds systematically pursuing strong contrarian investing constitute a relatively
small group. This is not surprising, as, by definition, the majority of funds must
be those that herd.

One important issue is whether the contrarian index is capable of capturing
certain systematic differences in fund investment strategies, as opposed to being a
mere statistical fluke. We address this issue using two different approaches. First,
we ask what the distribution of CON would have looked like in an alternative
world, where there were no intentional herding funds and no intentional contrarians.
To answer this question, we randomly assign the trades observed in our data to
sample funds—that is, keeping the actual trades in the data, but reshuffling the
identities of which funds execute the trades. We find that, after reshuffling, the
resulting contrarian indexes of individual funds exhibit a much smaller variability,
relative to what are observed in the actual data. That is, we find far fewer funds
heavily engaging in herding or contrarian trading in the randomized data. Thus,
the distribution of the contrarian index in our data is extremely unlikely to result
from random trading activities among our sample of funds, where some funds just
happened to trade against the crowd frequently (by chance alone).

Second, we find that the contrarian index is quite persistent over time. Funds
with high contrarian indices in one quarter tend to continue to have high contrarian
indices for at least the following eight subsequent quarters. Therefore, the classi-
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fication of funds into herding versus contrarian funds based upon our contrarian
index likely reflects the purposeful pursuit of different investment strategies by some
funds.

What types of funds are likely to be contrarian funds? Do they behave any
differently from prior-examined funds that pursue unique strategies? In Table 19.2,
we first characterize the holdings of contrarian funds. Specifically, each quarter, we
sort funds into quintile portfolios based upon their contrarian indexes, then report
the average characteristics of the stock holdings of each portfolio of funds. The
specific holdings-based fund characteristics we report include the average size, B/M,
momentum, and illiquidity quintile ranks of fund stock holdings. Table 19.2 shows
that, relative to herding funds, contrarian funds tend to invest in stocks with a larger
market capitalization, a higher book-to-market ratio, lower past returns, and having
slightly lower liquidity. While some of these characteristics of fund holdings are
consistent with various alternative definitions of “contrarianism” based upon self-
designated investment styles frequently shown on fund prospectuses, we note that
contrarian funds do not substantially tilt toward value stocks and low past-return
stocks. Our definition of a contrarian investment strategy is, therefore, not equivalent
to simple deep value investing or negative stock price feedback trading.

To further illustrate the fund characteristics associated with contrarian investing,
we report fund size, expense ratio, turnover, age, past fund performance, and past
flows in Table 19.2. Consistent with the idea that contrarian funds tend to be long-
term investors with reduced short-term career concerns, the results indicate that
contrarian funds tend to be large funds with a low portfolio turnover ratio. They also
have higher risk-adjusted performance and higher Morningstar star performance
ratings. Moreover, they tend to have lower performance volatility, suggesting that
they are unlikely to be those with merely good recent performance—who could be
expected to be able to afford to that deviate from the crowd occasionally without
much risk. Consistent with their good past performance and low performance
volatility, contrarian funds appear to attract much larger investor inflows than other
funds.

Lastly, we contrast the contrarian index with several measures of fund strat-
egy uniqueness examined in the literature. By construction, contrarian funds are
those that deviate from the crowd, which suggest that they may be those funds
that tend to deviate more from their style benchmarks. We, therefore, examine
differences between our contrarian index and three prior-documented measures of
fund strategy uniqueness: Industry Concentration Index (ICI; Kacperczyk, Sialm, &
Zheng, 2005), Active Share (Cremers & Petajisto, 2009), and Reliance on Public
Information (RPI; Kacperczyk & Seru, 2007).

Table 19.2 shows that both funds with a very low contrarian index (i.e., herding
funds) and those with a very high contrarian index (i.e., contrarian funds) tend
to have a greater ICI and RPI. This is not surprising, as both herding funds
and contrarian funds need to take extreme positions, and, therefore, deviate from
their benchmarks, even though the motivation behind their departure from the
benchmarks is very different. For example, in unreported analyses, we show that,
while herding funds tend to have a high RPI measure (as analyst recommendations
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are an important catalyst of herding), contrarian funds tend to trade in the opposite
direction of analyst recommendations, resulting in a higher negative correlation of
their trades with analyst recommendations and, thus, a higher RPI.4 Lastly, the
relation between the contrarian index and Active Share is also non-monotonic.
In summary, we conclude that contrarianism is different from prior measures of
deviation from benchmarks or fund strategy uniqueness.

19.4 Performance of Contrarian and Herding Funds

While contrarian behavior could be driven by superior private information in the
context of Treynor (1987), it may also be driven by overconfidence. That is,
certain fund managers might overweight their private information and underweight
useful commonly observed information, due to overconfidence (Daniel, Hirshleifer,
& Subrahmanyam, 1998). Under this scenario, contrarian funds would tend to
underperform. Moreover, contrarian funds are likely to underperform, as well, if
their departure from herds result from fund manager incentives to gamble on fund
performance, as illustrated in the risk-shifting literature (Brown, Harlow, & Starks,
1996; Chevalier & Ellison, 1997; and Huang, Sialm, & Zhang, 2011).

We, therefore, compare the performance of contrarian and herding funds to
gain insight into the motivation behind contrarianism. We employ three different
performance measures. The first is reported net fund return, after deducting fund
expenses. The second is the characteristic-adjusted abnormal return, using a method
developed by Daniel, Grinblatt, Titman, and Wermers (1997). Briefly, this method
calculates the abnormal returns of each stock held by a fund, then portfolio weights
this abnormal return across stocks held by the fund. The abnormal return is the
return of that stock, in excess of the return of an appropriate benchmark portfolio.
The benchmark portfolio for a stock is the value-weighted portfolio of stocks with
similar characteristics—in terms of market capitalization, book-to-market equity
ratio, and price momentum—to the stock being examined. The third performance
measure is the risk-adjusted fund performance based on the four-factor model of
Carhart (1997). The risk-adjusted fund performance, or the “four-factor alpha,” is
the intercept from regressing fund returns onto four factors—the market minus T-
bills factor, size, and book-to-market factors, and, additionally, a price momentum
factor.

Table 19.3 shows that contrarian funds—funds ranked in the top quintile by
their contrarian index—are able to generate much better performance than herding
funds (those ranked in the bottom quintile). The net fund return, characteristic-
adjusted return, and four-factor alpha of the contrarian funds are 2.88 %, 0.21 %,
and �0.08 %, respectively, during the quarter after fund ranking. By contrast,

4Note that RPI is the correlation, either positive or negative, between fund trading and public
information.
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the corresponding numbers for herding funds are 2.77 %, 0.09 %, and �0.44 %,
respectively. The differences between contrarian funds and herding funds in these
three sets of performance measures are 0.11 %, 0.12 %, and 0.36 % per quarter.

The table also shows that performance differences remain significant for several
quarters after the initial fund ranking. For example, the cumulative net return
of contrarian funds is 11.21 % during the four quarters after the fund ranking,
significantly higher than that of herding funds, 9.31 %.

Recall that Table 19.2 indicates that contrarian funds differ from herding funds
in terms of fund size, turnover, and investor flows, as well as characteristics of
fund holdings. Some of these characteristics have previously been documented to
be correlated with fund performance.5 To more robustly test whether managers of
contrarian funds are truly more skilled, we perform a multivariate regression of
fund performance on the contraian index, with added control variables included
for these fund characteristics that may be related to fund performance. In addition,
since we know that contrarian funds tend to have higher measures of strategy
activeness, we also wish to control for these factors, to see whether the contrarian
index has any explanatory power for performance beyond that of prior-documented
measures of strategy activeness (or uniqueness). The dependent variable of this
panel regression is the cumulative Carhart (1997) four-factor adjusted return for a
fund over the four quarters after we measure that fund’s contrarian index (and other
fund characteristics).

While we do not present a table (this can be found as Table 5 in Wei, Wermers,
and Yao, 2015), we find that the results from this model are consistent with the
aforementioned results using our simple approach of ranking funds in Table 19.3.
That is, contrarian funds consistently deliver better performance than herding funds,
controlling for their differing characteristics. Specifically, a fund that buys (sells)
stocks that have a buy- (sell-) herding measure that is one-quintile lower exhibits
almost a 0.19 % per year higher four factor alpha during the following year.6

Moreover, the significant return predictive power of the contrarian index remains
strong after we add control variables for industry concentration, Active Share, and
RPI, measures of strategy activeness or uniqueness that have been shown to help
predict fund alphas. Thus, the success of contrarian funds is not limited to a few
well-known cases, but appears to be a general phenomenon. More interestingly, the
outperformance of contrarian funds suggests that contrarian managers do not appear
to simply be overconfident. Given their greater past performance and inflows, and,
thus, lower short-term career concerns, their contrarian trading strategies are likely
motivated by their reliance on superior private information.

5For example, Chen, Hong, Huang, and Kubik (2004) document decreasing returns-to-scale among
mutual funds.
6Recall that buying stocks (selling stocks) with a lower buy-herding (sell-herding) measure means
that the fund tends to trade against the crowd; i.e., the fund is more contrarian in its trading
behavior.
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19.5 What Does It Take to Be A Successful Contrarian?
Parsing Through Fund Trades

What is the source of outperformance by contrarian funds? Prior studies (e.g.,
Dasgupta et al., 2011a and Dasgupta, Prat, & Verardo, 2011b; Brown et al., 2014)
show that fund herding results in a significant short-term price impact that tends to
reverse in the long-run. Is it that contrarian funds simply profit from the temporary
price pressure effect of herding? If so, it seems that many investors could potentially
mimic their success by simply taking the opposite position of mutual fund herds. On
the other hand, if contrarian funds profit from their superior information, they should
outperform, regardless of whether they trade with or against herds.

To answer this question, we parse through fund trades to examine what types
of trades contribute to contrarian fund outperformance. We break down all fund
trades into 40 (5x2x4) groups. First, we classify funds, by their contrarian index,
into quintiles. Then, within each contrarian index quintile, we group fund trades,
by direction, into buy and sell trades. Finally, within each fund quintile rank and
trade direction category, we further break trades into four types, depending on
the contrarian/herding nature of the trades. Type 1 consists of contrarian trades
of strongly herded stocks, Type 2 for contrarian trades of weakly herded stocks,
Type 3 for herding trades of strongly herded stocks, and Type 4 for herding trades
of weakly herded stocks. A stock is considered a “strong herding stock” if either
its buy-herding measure (BHM) or sell herding (SHM) measure is ranked in the top
two BHM or SHM quintiles, respectively, among all stocks during the same quarter;
otherwise the stock is considered a “weak herding stock. We then report the quarter-
by-quarter performance of the resulting 40 trade portfolios (5 fund quintiles, 2 trade
directions, and 4 trade types) during the following four quarters.

Table 19.4 displays the quarter-by-quarter, as well as cumulative abnormal
returns (characteristic-adjusted returns described earlier; for robustness, the four-
factor alphas of the return difference between contrarian and herding funds is also
presented) during the 4 quarters after trading, of the 40 different types of trades.
Let us focus on the buy trades first. Contrarian funds outperform herding funds on
Type-1 buys, i.e., contrarian buys of stocks strongly sold by herds. Consistent with
the documented short-term price impact of institutional herding, contrarian fund
Type-1 buys initially do not outperform during the first quarter, but significantly
outperform starting from the second quarter.

Interestingly, contrarian funds also outperform (relative to the same types of
trades by herding funds) in the other three types of buy trades—contrarian buys
of weakly herded stocks (Type 2), and herding buys on strongly and weakly herded
stocks (Type 3 and 4). For example Contrarians also outperform in their contrarian
buys of weak herding stocks (i.e., type-2 trades), where the profit from riding on the
reversals of the price-pressure effect is likely small. More interestingly, contrarian
fund buy trades outperform those of herding funds, even when they trade with herds
(Types 3 and 4 trades). Specifically, while herding funds experience significantly
negative returns in their herding trades of strong-herding stocks during quarters
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t C 3 and t C 4 (when the initial price pressure of fund herding reverses), contrarian
funds generate zero abnormal returns on those trades. Therefore, contrarians trade
on the same side as the crowd for certain stock when their own private information
conforms to that of the crowd. In this case, herding is associated with a permanent
price impact.

These findings suggest that, although, by construction, contrarian funds are more
likely to trade away from the crowd; they do not just mechanically trade against the
crowd. In fact, contrarians often end up trading with herds, as a significant portion
of their trades are in the same direction as herds (Table 19.2). Therefore, the success
of contrarian funds is not merely due to taking advantage of the price-pressure effect
of herding (i.e., their contrarian trades). They are likely to have profited from their
own source of information, even though such information may or may not conform
to that of the crowd.

Next, we turn to the performance of the sell trades. The exhibit shows that there
exist very small performance differences between contrarian funds and herding
funds among Type-2 and Type-3 sell trades, although stocks sold by contrarian funds
actually earn higher returns than stocks sold by herding funds in their Type-1 and
Type-4 trades. In addition, unlike buy-trades, returns to sell-trades do not follow a
particular time pattern. This result is consistent with the findings of previous studies
(e.g., Chen, Jegadeesh, & Wermers, 2000; Wermers et al., 2012) that stocks sold
by skilled funds tend to have higher returns than stocks sold by funds deemed
unskilled. Since mutual funds generally do not short-sell stocks, the stocks they
sell to finance purchases of other attractive stocks must come from their existing
holdings. While the stocks contrarian funds sell may be expected to underperform
those they buy given their superior overall performance, such stocks may not
necessarily underperform those held or sold by herding funds, if the latter funds are
less skillful in selecting stocks to begin with. In addition, sell trades of contrarian
funds may be driven by liquidity needs (to meet investor flows) as well as to fund
even more attractive stock purchases.

Overall, the trade-based analysis reveals that contrarian managers do not simply
benefit from, mechanically, the price-pressure caused by fund herding. Rather,
they appear to possess superior private information, as they trade independently
and may end up trading with or against the crowd, depending on whether their
information conforms to that of other funds. Such private information, rather than
overconfidence or gambling incentives, is likely to be the source of their contrarian
trading behavior and consequently their outperformance.

19.6 Extracting Stock Selection Information
From Contrarian Fund Holdings

Following the observation that contrarian funds may possess superior private
information, we further extract such information and aggregate it into a stock
selection signal. To do so, we adopt an approach developed by Wermers et al.



19 Against the ‘Wisdom of Crowds’: The Investment Performance. . . 449

(2012) to construct a stock-level contrarian score from fund holdings and the fund
contrarian index. This contrarian score measures the relative degree to which a
stock is held by contrarian funds versus herding funds. Intuitively, if a stock is held
heavily by contrarian funds and held lightly by herding funds, this score is high.
But, if a stock is held equally by contrarian funds and herding funds, the score is
neutral. Intuitively, since contrarian funds possess superior investment skills, their
investment choices as extracted from their portfolio holdings can be used to locate
stocks with superior future returns.

Specifically, we construct a stock level contrarian score by adopting the fund
level contrarian index as the fund skill proxy in Wermers et al. (2012). In our setting,
the generalized inverse approach in Wermers et al. (2012) leads to the following
stock-level contrarian score:

˛CON D �
V0DCV

�
X0CON; (19.5)

where CON is the M X 1 vector consisting of elements CONjt (the fund-j contrarian
index score at the end of quarter t), X is the M X N matrix of fund portfolio weights,
xijt, V is the first K eigenvectors of X0X, corresponding to the K largest eigenvalues.
DC is a M X M diagonal matrix whose first K diagonal elements are the inverse
of the largest K eigenvalues of X0X, with the remaining M-K diagonal elements
being zeros. Following Wermers et al. (2012), K is set to M/2. The higher a stock’s
contrarian score, ’CON, the more heavily the stock is held by contrarian funds, as
oppossed to herding funds. If contrarian funds possess superior investment skills,
we would expect stocks with a higher ’CON score to earn higher abnormal returns
in the future.

Before we examine this prediction, we compare the stock-level contrarian score
with various quantitative stock selection factors, in order to understand whether
contrarian fund investment strategies are systematically related to certain stock
characteristics that also help to predict stock returns. Table 19.5 shows that stocks
with higher contrarian scores have stronger value-oriented characteristics, fewer
investment and financing activities, higher operating efficiency, more intangible
investments, and greater illiquidity. Further, they have lower earnings momentum,
higher uncertainty, and lower profitability. By and large, these results are consistent
with the view that contrarian funds prefer value stocks and shy away from
glamorous, profitable, or liquid stocks.

Lastly, we conduct regression analyses to examine how much price-pressure,
public valuation signals, or private information each contribute to the superior
performance of stocks preferred by contrarian funds. Specifically, we perform
Fama–MacBeth regressions of DGTW-adjusted abnormal returns of stocks, during
each of the four quarters after we measure the contrarian score, on their contrarian
score, controlling for the price-pressure effect associated with herding, and the
various valuation signals that are correlated with the contrarian score. We show,
in Table 19.6, that the contrarian score significantly predicts stock returns during
the subsequent four quarters after signal construction. The return-predictive power
of the contrarian score is robust to controlling for the price impact of herding funds,
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Table 19.6 Contrarian Score and Stock Returns: Controlling for Herding and Return-Predictive
Stock Characteristics

Explanatory variables (1) (2) (3) (4)

’CON 0.0090 0.0072 0.0063 0.0049
(8.46) (7.22) (6.05) (3.36)

HERD (Q 0) �0.0439 �0.0481
(�2.42) (�2.22)

HERD (Q � 1) �0.0721 �0.0794
(�4.35) (�4.34)

HERD (Q � 2) �0.0639 �0.0680
(�4.15) (�3.91)

HERD (Q � 3) �0.0399 �0.0557
(�2.53) (�2.96)

GIV 3.3926 3.6866
(4.24) (3.74)

VAL �0.0055 �0.0062
(�1.55) (�1.81)

INVFN �0.0026 �0.0041
(�0.77) (�1.21)

EQAL 0.0039 0.0038
(3.46) (3.37)

EFF 0.0346 0.0343
(9.67) (9.67)

INTAG 0.0219 0.0216
(5.31) (5.28)

EMOM 0.0005 0.0023
(0.25) (1.15)

PROF �0.0159 �0.0171
(�2.80) (�3.06)

UNCT 0.0095 0.0097
(2.68) (2.70)

ILLIQ 0.0135 0.0141
(3.54) (3.76)

R-squared 0.0004 0.0024 0.0243 0.0255

Notes. This table reports coefficients from quarterly Fama–MacBeth regressions of individual
stocks’ DGTW-characteristic-adjusted stock returns in each of the four quarters after portfolio
formation (quarter C1, quarter C4) on ˛CON . Coefficients reported in the table, following the
“JT4” overlapping portfolio approach, are those averaged over four different regressions with stock
returns (the dependent variable) in the same quarter, but the explanatory variables measured over
each of the past four quarters. The main explanatory variable is cross-sectional percentile rank
of the contrarian score for individual stocks, ˛CON. The control variables include the adjusted
herding intensity measure HERD in the most recent four quarters (quarter �3, quarter 0), the
generalized alpha from Wermers et al. (2012), and nine categorical stock characteristics measured
at the portfolio formation quarter (quarter 0). To avoid a significant reduction of sample size,
missing quantitative stock characteristics are replaced by simulated values using a multiple
imputation procedure and time-series t-statistics reported in parentheses are adjusted to account
for such simulated regressors; R-squared is the average adjusted R-squared of the Fama–MacBeth
regressions
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as well as well-known quantitative stock selection factors. These stock-level results
further confirm our conjecture that the stock selection information possessed by
contrarian funds is private, and goes beyond the mere exploitation of price-pressure
caused by herds or publicly available quantitative signals.

19.7 Conclusions

A short article by Treynor (1987) offers insights on potential mispricing caused
by investors’ herding behavior, and muses on strategies to take advantage of such
mispricing. The findings of our recent study echo his insights. We identify contrarian
and herding mutual funds and examine their characteristics, performance, and
trades. We find that contrarian funds outperform herding funds by a significant
margin. The success of the contrarian funds depends in part on their contrarian
trades against herds. However, it appears that contrarian funds also possess private
stock selection information. Thus, merely mimicking their contrarian trades will not
make one as successful.
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