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      Computer-Based Models of tDCS 
and tACS                     
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    Abstract  

  Transcranial direct current stimulation (tDCS) and transcranial alternating 
current stimulation (tACS) are noninvasive neuromodulatory techniques 
that deliver low-intensity currents facilitating or inhibiting spontaneous neu-
ronal activity. These techniques have a number of advantages that have been 
applied in clinical settings; in particular, tDCS/tACS dose in principle is 
easily customized by varying electrode number, position, size, shape, and 
current. However, the ability to leverage this customization depends on how 
tDCS/tACS dose modulate the underling brain current fl ow. This relation-
ship is not simple and can benefi t from the use of computational models of 
current fl ow, personalized to individual subjects and cases. Tools for model-
ing range from Finite Element Method models to stand-alone GUI based 
software for clinicians. Many software packages can load individual’s MRI 
scans, allowing individualized therapy design. However, the challenge 
remains to design and interpret these models while remaining aware of their 
limitations. Current fl ow models alone cannot “make dose decisions,” but 
rather inform the rational design of electrotherapy. This is evidenced in 
exemplary studies combining computer modeling and clinical data, several 
examples of which are outlined in this chapter. Though modeling software 
is now widely available, newer generations of algorithms promise more pre-
cision and fl exibility, and thus it is predicted that with increased validation, 
dissemination, simplifi cation and dissemination of modeling tools, compu-
tational forward models of neuromodulation will become useful tools to 
guide the optimization of clinical electrotherapy. Essential for this adoption 
and refi nement is an appreciation by clinicians of the uses and limitations of 
computational models, and conversely understanding by engineers and 
programmers of what software functions are relevant to clinical practice.  
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     Overview of Computational Models 
of Noninvasive Neuromodulation 

 This chapter introduces the rationale and 
approach behind modeling tDCS/tACS as well as 
the technical development and limitations of 
models currently in use. This chapter is intended 
to provide a broad introduction for both clinical 
researchers and engineers interested in transla-
tional work to develop and apply computational 
models of customized tDCS/tACS. A central 
premise of this chapter is that models cannot 
“make decisions” about tDCS/tACS, but rather 
are tools that inform how protocols should be 
interpreted and optimized. As such, it is incum-
bent on clinical researchers to appreciate the 
function and limitations of models, and con-
versely for programmers to consider the goals of 
the end user (investigator) when deciding what 
functionality is relevant for their modeling 
software. 

 Conventionally, stimulation techniques can be 
grouped into two categories: protocols that  induce  
activity of neurons (supra-threshold), and proto-
cols that exert  modulatory  effects on ongoing neu-
ronal activity and excitability (sub-threshold). For 
a complete historical context of terminology see 
ref. [ 1 ]. The fi rst group includes high-intensity 
short-pulse transcranial electrical stimulation 
(TES), transcranial magnetic stimulation (TMS), 
electroconvulsive therapy (ECT), and paired asso-
ciative stimulation (PAS). The second group, 
includes forms of low-intensity sustained tES 
including transcranial direct current stimulation 
(tDCS), transcranial alternating current stimula-
tion (tACS), transcranial pulsed current stimula-
tion (tPCS), and transcranial random noise 
stimulation (tRNS). The electric fi eld intensities 
produced in the brain by supra-threshold tech-
niques are two orders of magnitude above sub-
threshold techniques [ 2 – 10 ] which allows for 

action potentials to be triggered [ 11 ]. However, it 
is important to recognize that supra-threshold 
techniques ultimately affect behavior by modulat-
ing endogenous networks while sub-threshold 
techniques can infl uence fi ring in the active sys-
tem [ 12 ]. Based on the growing evidence that cur-
rent delivered to specifi c brain regions can promote 
desirable plastic changes, stimulation techniques 
are emerging as promising tool in symptom man-
agement [ 13 – 15 ]. However, stimulation should be 
applied in a manner that is within safe and well-
tolerated parameters. Complimentary to other 
brain stimulation approaches (Fig.  4.1 ), tDCS and 
tACS have been gaining considerable interest 
because they are well tolerated, can be used as 
add-on therapies, and have low maintenance costs 
[ 16 ]. This review focuses on low-intensity 
approaches and specifi cally tDCS and tACS (as 
they are most commonly used clinically); how-
ever, many of the conclusions of this chapter can 
be generalized.  

 In contrast to pharmacotherapy, noninvasive 
electrotherapy offers the potential for both ana-
tomically specifi c brain activation and temporal 
control. Anatomical targeting can be achieved 
through the rational selection of electrode num-
ber, shape, and position. In training applications 
such as rehabilitation, neuromodulatory tech-
niques such as tDCS/tACS can combine focal 
stimulation with specifi c training to reinforce a 
particular region of activation [ 17 ] including 
with “functional targeting” [ 18 ,  19 ]. Temporal 
control is possible due to the instantaneous deliv-
ery of electricity to the brain through the scalp. 
There is no electrical “residue” since the gener-
ated brain current disappears as soon as stimula-
tion is paused. The tDCS/tACS dose can also be 
modeled for specifi c subjects and targeted in 
ways not possible with other interventions. 
Specifi cally, the “dose” of electrotherapy (see 
ref. [ 5 ] for defi nition) is readily adjustable by 
determining the location of electrodes (which 
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determines spatial targeting) and selecting the 
stimulation waveform and intensity (which 
together determines the nature and timing of neu-
romodulation). Thus, a single programmable 
electrotherapy device can be simply confi gured 
to provide a diversity of dosages. Though this 
fl exibly underpins the utility of neuromodulation, 
the myriad of potential dosages (stimulator set-
tings and combinations of electrode placements) 
makes the optimal choice diffi cult to readily 
ascertain. The essential issue in dose design is to 
relate each externally controlled dose with the 
associated brain regions targeted (and spared) by 
the resulting current fl ow—and hence the desired 
clinical outcome. Computational forward models 

aim to provide precisely these answers (Fig.  4.2 ), 
and thus need to be leveraged in the rational 
design, interpretation, and optimization of 
neuromodulation.  

 The precise pattern of current fl ow through the 
brain is determined not only by the stimulation 
dose but also by the underlying anatomy and tis-
sue properties. Thus, in predicting brain current 
fl ow using computational models, important to 
not only precisely model both the stimulation 
itself, but also the relevant anatomy upon which 
it is delivered on an individual basis. The latter 
issue remains an area of ongoing technical devel-
opment and is critical to establishing the clinical 
utility of these models. For example, cerebral 

  Fig. 4.1    Comparable stimulation techniques: deep brain 
stimulation, motor cortex stimulation, transcranial mag-
netic stimulation, and spinal cord stimulation ( top row ); 
classic transcranial direct current stimulation (tDCS) via 
sponge pads, optimized high defi nition-tDCS (HD-tDCS), 
and 4 × 1 HD-tDCS ( bottom row ). Transcranial direct cur-
rent stimulation is an increasingly popular investigational 
form of brain stimulation, in part, due to its low cost, por-

tability, usability, and safety. However, there are still 
many of unanswered questions. The number of potential 
stimulation doses is practically limitless. Stimulation can 
be varied by simply changing the electric current wave-
form and electrode shape, size, and position. These varia-
tions can thus be analyzed through computational 
modeling studies that have resulted in montages such as 
HD-tDCS and 4 × 1 HD-tDCS       
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spinal fl uid (CSF) is so highly conductive (a pre-
ferred “super highway” for current fl ow) that 
details of CSF architecture profoundly shape 
current fl ow through adjacent brain regions. 
Especially relevant for rehabilitative applications 
is the recognition that individual anatomical idio-
syncrasies can result in signifi cant distortions in 
current fl ow. This is especially apparent when 
skull defects and brain lesions occur.  

   Methods and Protocols in the 
Generation of Computational 
Forward Models of tDCS/tACS 

 This section outlines the technical steps and pit-
falls of computational models for tDCS/tACS 
and so aimed primarily to the engineers and pro-
grammers developing these tools. However, cli-
nicians and experimentalists interested in 
understanding the technical challenges and limi-
tations of modeling will also benefi t from these 
sections, consistent with our emphasis that these 
are tools to be used by experientialists and clini-
cians—and only by understanding the nature and 
limits of tools can they be applied meaningfully. 

 During tDCS/tACS, current is generated in 
the brain [ 20 ]. While there are intrinsic electric 
fi elds in the brain as recording during electroen-

cephalogram (EEG), models of tDCS/tACS pre-
dict an induced electric fi eld given a source (the 
stimulation electrodes). Solving for the induced 
fi elds from a known source and vice-versa is 
what technically differentiates stimulation mod-
els from source localization models used in EEG. 
These modeling methods are dubbed the “for-
ward” and “inverse” models respectively. 

 Because different electrode montages result in 
distinct brain current fl ow, researchers and clini-
cians can, in principle, adjust the montage to tar-
get or avoid specifi c brain regions in an 
application specifi c manner. Though tDCS/tACS 
montage design often follows basic rules-of-
thumb (e.g., “increased/decreased excitability” 
under the anode/cathode electrode for tDCS and 
“boost oscillating activity” under one electrode 
for tACS), computational forward models of 
brain current fl ow provide more accurate insight 
into detailed current fl ow patterns and in some 
cases, can even challenge simplifi ed electrode-
placement assumptions. 

 We note two common over-simplifi cations 
using rule-of thumb for tDCA/tACS dose design. 
For example, clinical tDCS studies are often 
designed by placing the anode electrode directly 
over the targeted region desired to be excited, 
while the cathode electrode is placed over a far 
removed region from the target to avoid unwanted 

  Fig. 4.2    Role of computational models in rational elec-
trotherapy: ( left ) Neuromodulation is a promising thera-
peutic modality as it affects the brain in a way not possible 
with other techniques with a high degree of individualized 
optimization. The goal of computational models is to 
assist clinicians in leveraging the power and fl exibility of 
neuromodulation ( right ). Computational forward models 

are used to predict brain current fl ow during transcranial 
stimulation to guide clinical practice. As with pharmaco-
therapy, electrotherapy dose is controlled by the operator 
and leads a complex pattern of internal current fl ow that is 
described by the model. In this way, clinicians can apply 
computational models to determine which dose will acti-
vate (or avoid) brain regions of interest       
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reverse effects. This region could be the contra-
lateral hemisphere or in some cases even extrace-
phalic locations like the neck, shoulder or the 
arm. However, the cathode remains active and an 
extracephalic location means extensive deep and 
mid brain current fl ow. More generally, all 
regions  between  electrodes are stimulated. As 
another example, researchers have used smaller 
stimulation electrode sizes and bigger reference 
electrode sizes to offset the focal limitations of 
tDCS/tACS; while clinical neurophysiology has 
established that electrode size can “shape” the 
pattern of current fl ow [ 21 ], the dispersion caused 
before current reaches the brain limits the role of 
electrode size [ 22 ,  23 ]. 

 With the increasingly recognized value of com-
putational forward models in informing tDCS/
tACS montage design and interpretation of results, 
there has been recent advances in modeling tools 
and proliferation of technical publications, e.g., [ 6 , 
 7 ,  10 ,  23 – 36 ]. At this stage, the limitations of 
computational models seem to rest largely in the 
clinical and experimental applications, including 
the continuing validation and refi nement of mod-
eling parameters (e.g., conductivities) and results. 
Nevertheless, careful consideration of the devel-
opment of modeling techniques can provide 
insight on how models can be leveraged. 

 The work done by Miranda and Lomarev [ 32 ] 
was among the earliest numerical modeling 
efforts that specifi cally examined tDCS montages 
and intensities in the context of a “spherical 
head.” Later, the focality of cortical electrical 
fi elds was compared across small electrode con-
fi gurations proposed to achieve targeted modula-
tion [ 29 ]. Wagner et al. (2006) was the fi rst CAD 
(Computer Aided Design) rendered head model 
that analyzed current density distributions for 
various montages, including healthy versus corti-
cal stroke conditions. The more recent modeling 
efforts have been mostly MRI derived. Oostendorp 
et al. [ 33 ] was the fi rst to consider anisotropy in 
the skull and the white matter, specifi cally the 
conductivity of these tissues were a function of 
direction/fi ber alignment. Datta et al. [ 27 ] built 
the fi rst high-resolution head model with gyri/
sulci specifi city. Suh et al. [ 7 ] concluded that skull 
anisotropy causes a large shunting effect and may 

shift the stimulated areas. Sadleir et al. [ 35 ] 
compared modeling predictions of frontal tDCS 
montages to clinical outcomes. Datta et al. [ 28 ] 
studied the effect of tDCS montages on TBI and 
skull defects. Parazzini et al. [ 34 ] was the fi rst to 
analyze current fl ow patterns across subcortical 
structures. Dmochowski et al. [ 37 ] showed how a 
multi-electrode stimulation can be optimized for 
focality and intensity at the target. 

 Recent efforts have focused to build patient-
specifi c models and compare modeling predictions 
to experimental outcomes. In considering new 
electrode montages, especially in potentially vul-
nerable populations (e.g., skull damage, children), 
forward models are the main tool used to relate the 
externally controllable dose parameters (e.g., elec-
trode number, position, size, shape, current) with 
resulting brain current fl ow. While the specifi c 
software applications can vary across groups, in 
general, the approach and workfl ow for model gen-
eration follow a similar pattern (Fig.  4.3 ).  

 The steps for generating high-resolution, ana-
tomically specifi c, forward models of noninva-
sive neuromodulation are adapted from extensive 
prior work on computational modeling. These 
involve: (1) Demarcation of individual tissue 
types such as bone, cerebrospinal fl uid, and brain 
from high-resolution anatomical data (e.g., mag-
netic resonance imaging slices obtained at 1 mm 
slice thickness) using a combination of auto-
mated and manual segmentation tools. 
Specifi cally, from the perspective of stimulating 
current fl ow, it is necessary to distinguish tissues 
by their resistivity; the majority of the effort that 
has gone into the development and implementa-
tion of models has involved this step (see also 
next section). The number and precision of the 
individual masks obtained is pivotal for the gen-
eration of accurate 3D models in order to capture 
critical anatomical details that may infl uence cur-
rent fl ow. (2) Modeling of the exact physical 
properties of the electrodes (e.g., shape and size) 
and precise placement within the segmented 
image data (i.e., along the skin mask outer sur-
face). (3) Generation of accurate meshes (with a 
high quality factor) from the tissue/electrode 
masks, whilst preserving resolution of subject 
anatomical data. The generation of meshes is a 
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process where each mask is divided into small 
contiguous ‘elements’ which allow the current 
fl ow to then be numerically computed—hence 
the term “Finite Element Method” stimulations. 
In modern efforts, the number of elements in 
tDCS models can exceed tn million. (4) Resulting 
volumetric meshes are then imported into a com-
mercial fi nite element (FE) solver. (5) At this 
step, resistivity is assigned to each mask (every 
element in each mask) and the boundary condi-
tions are imposed, including the current applied 
to the electrodes. (6) The standard Laplacian 
equation is solved using the appropriate numeri-
cal solver and tolerance settings. In modern 
efforts the degrees of freedom can exceed 14 mil-
lion. (7) Data is plotted as induced cortical elec-
tric fi eld or current density maps (Fig.  4.3 ). 

 Though each of the above steps is required for 
high-resolution modeling, they rely on personnel 
technical expertise and hence result in variation 
in protocols across groups and publications [ 6 ,  7 , 
 10 ,  23 – 36 ,  38 ,  39 ]. These variations are relevant 
to clinical practice only in the sense that they 
change predictions in current fl ow that meaning-

fully effect dose decisions. The sources and 
impact of these variations are addressed in the 
next section. 

 Initial models of transcranial current fl ow 
assumed simplifi ed geometries such as concen-
tric spheres that could be solved analytically as 
well as numerically [ 29 ,  32 ]. Such concentric 
sphere models are useful to address generic dose 
questions such as the global role of inter-elec-
trode distance, electrode montage, or the rela-
tionship between electrode and brain current 
density, precisely because they exclude regional 
anatomical differences. More realistic models 
started to include explicit representation of 
human anatomy [ 36 ]. Datta et al. [ 27 ] published 
the fi rst model of tDCS with gyri resolution, 
illustrating the importance of anatomical preci-
sion in determining complex brain current fl ow. 
Addition of diffusion tensor imaging (DTI) 
incorporates anisotropic properties in the skull 
and the white matter regions [ 7 ]. Fine resolution 
of gyri/sulci lead to current “hotspots” in the 
sulci, thereby reinforcing the need for high-reso-
lution modeling [ 6 ]. An open-source head model 

  Fig. 4.3    Imaging and computational work-fl ow for the 
generation of high-resolution individualized models: 
Though the specifi c processes and software packages will 
vary across technical groups and applications, in each 
case high-resolution modeling initiated with precise ana-
tomical scans that allow demarcation of key tissues. 
Tissues with distinct resistivity are used to form masks. 
These masks along with the representation of the physical 

electrodes are meshed to allow FEM calculations. The 
boundary conditions (generally simply refl ecting how the 
electrodes are energized) and the governing equations 
(related to ohms law) are well established. The reproduc-
tion of the stimulation dose and the underlying anatomy 
thus allow for the prediction of resulting brain current. 
These current fl ow patterns are represented in false-color 
map and analyzed through various post-processing tools       
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comprising of several different tissue types was 
adapted to analyze current fl ow through cortical, 
subcortical, and brain stem structures [ 34 ]. Such 
models help determine whether current of suffi -
cient magnitude reaches the deeper subcortical 
structures. 

 To this day, only a few studies have attempted 
to more directly link clinical outcomes and model 
predictions—and thus validate model utility. 
Clinical evaluation was combined with model 
predictions to investigate the effects of different 
montages on clinical disorders such as fi bromyal-
gia [ 31 ]. Patient-specifi c models have been used 
to retrospectively analyze the therapeutic success 
of a given experimental stimulation montage [ 26 ] 
and compare model predictions with patterns of 
activation revealed by functional magnetic reso-
nance imaging (fMRI) [ 30 ]. Postmortem “current 
fl ow imaging” has also used to validate general 
model prediction [ 40 ] and individualized tDCS 
models were validated with simultaneous scalp 
potential recordings [ 41 ]. In response to the ana-
tomical localization problem of traditional tDCS, 
a more focal 4 × 1 high-defi nition tDCS was 
developed through computational models and 
then validated in a clinical neurophysiology trial 
[ 42 ]. The focal delivery of current using the 4 × 1 
montage was further validated using supra-
threshold TES) [ 43 ]; moreover, the models pre-
dicted individual variation in sensitivity to 
currents delivery among typical adults of >2×. 
These example applications open the door for 
potentially customizing tDCS on a subject-to-
subject basis within the clinical setting [ 44 ]. 

 In a subsequent section we describe avenues 
for clinicians to practically access computational 
modeling tools, but precisely because this is now 
a “standard” models approach, limitations of 
varied approaches need to be understood. If 
tDCS continues to emerge as an effective tool in 
clinical treatment and cognitive neuroscience, 
and concurrent modeling studies emphasize the 
need for rational (and in cases individualized) 
dose decisions, then it will become important for 
tDCS researchers to understand the applications 
(and limitations) of computational forward mod-
els [ 45 ].  

   Pitfalls and Challenges 
in the Application 
and Interpretation of 
Computational Model 
Predictions 

 Computational models of tDCS range in com-
plexity from concentric sphere models, to biologi-
cally inspired synthetic shapes, to high-resolution 
models based on individuals MRI. The appropri-
ate level of modeling detail depends on the clini-
cal question being asked, as well as the available 
computational resources available. Whereas sim-
ple geometries (e.g., spheres) may be solved 
analytically [ 46 ], realistic geometries employ 
numerical solvers. Regardless of complexity, all 
forward models share the goal of correctly pre-
dicting brain current fl ow during transcranial 
stimulation to guide clinical therapeutic deliv-
ery. Special effort has recently been directed 
towards increasing the precision of tDCS models. 
However, it is important to note that increased 
model complexity does not necessarily equate 
with greater accuracy or clinical value. 

 To meaningfully guide clinical utility, attempts 
to enhance model precision must rationally bal-
ance detail (i.e., complexity) and accuracy. (1) 
Beginning with high-resolution anatomical 
scans, the entire model workfl ow should preserve 
precision. Any human head model is limited by 
the precision and accuracy of tissue segmentation 
(i.e., “masks) and of the assigned conductivity 
values. One hallmark of precision is that the cor-
tical surface used in the fi nal FEM solver should 
capture realistic sulci and gyri anatomy. Models 
incorporating gyri level resolution, starting with 
Datta [ 27 ], clearly show that current is “clus-
tered” in local hot spots correlated with cortical 
folding. (2) Simultaneously, a priori knowledge 
of tissue anatomy and factors known to infl uence 
current fl ow should be applied to further refi ne 
segmentation. We believe that of critical impor-
tance are discontinuities not present in nature that 
result from limited scan resolution, notably both 
unnatural perforations in planar tissues (e.g., ven-
tricular architecture, discontinuities in CSF 
where brain contacts skull, misrepresented skull 
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fi ssures,) and microstructures (e.g., incomplete or 
voxelized vessels) can produce signifi cant devia-
tions in predicted current fl ow. Moreover, 
because of the sensitivity of current fl ow to any 
conductivity boundary, increasingly detailed seg-
mentation (e.g., globe of the eye and related 
structures, glands, and deeper midbrain struc-
tures) without reliable reported human conduc-
tivity values in literature (especially at static 
frequency) may also lead to errors. It is worth 
noting that the respective contribution of the 
automated/manual interventions also depends 
on: (a) sophistication of the particular database or 
automated algorithm employed since they are 
usually not optimized for forward transcranial 
modeling [ 26 ,  47 ] and (b) the need for identifi ca-
tion of anomalies in suspect populations like 
skull defects, lesions, and shunts. Thus, addition 
of complexity without proper parameterization 
can evidently decrease prediction accuracy. An 
improper balance between these factors can 
introduce distortions in predicted brain current 
fl ow. 

 Having mentioned the importance of balanc-
ing increased complexity with clinical access to 
modeling, it is fundamental to emphasize a dif-
ference between the “value” of adding precision 
(complexity) as it is evaluated in engineering 
papers versus clinical translation. Increasingly 
detailed computational approaches have been 
proposed in recent years of varying anatomical 
and physiological detail [ 33 ,  34 ,  48 ]. These 
include whole body models, additional tissues 
and layers with and without anisotropic proper-
ties, and image derived conductivity values using 
effective medium approximations [ 9 ,  49 – 51 ]. At 
the same time, computational models indicate 
subject specifi c variability in susceptibility to the 
same dose [ 44 ,  52 – 54 ], indicating the value of 
individualized modeling, or at least modeling 
across a set of archetypes. Real clinical transla-
tional utility must balance the value of increased 
sophistication with the cost associated with clin-
ical scanning, computational time, and human 
resources/intervention (manual correction/pre- 
and post-processing etc.). Thus the question is 
not if different models will yield different predic-
tions (as must be posed in an engineering paper) 

but rather does increased complexity change 
model predictions in a way that is clinically 
meaningful. While this is a complex and applica-
tion specifi c question, a fi rst step toward system-
atizing value across a myriad of groups and 
efforts is to develop a metric of change versus a 
simpler approach, and then applying a threshold 
based on perceived clinical value and added cost. 

 It is simplistically assumed that added detail/
complexity will enhance model precision and, if 
done rationally, model accuracy [ 5 ,  55 ]. Though 
an engineering group can devote extended 
resources and time to a “case” modeling study, 
the number of potential electrode combinations 
and variations across normal heads [ 44 ] and 
pathological heads means that in clinical trial 
design the exact models will likely not be solved 
for all subjects (e.g., 4 × 1 over FP3 in a female 
head). However, while different models will 
yield different predictions; practical dose deci-
sion is based on study specifi c criterion making a 
meaningful clinical difference. Therefore, addi-
tional complexity and detail is only clinical 
meaningful if it results in a different clinical deci-
sion being made as far as dose individualiza-
tion—otherwise, the additional detail is purely 
academic. Two clinical applications of modeling 
are considered (1) Deciding across montages—
namely which montage is expected to achieves 
the optimal clinical outcomes (safety/effi cacy) in 
a given subject or on average across subjects; (2) 
Deciding on dose variation across subjects—
namely if and how to vary dose based on subject 
specifi c anatomy. These aspects of using compu-
tational models in clinical practice are addressed 
in the next sections. 

 Assuming accurate and precise representation 
of all tissue compartments (anatomy, resistivity, 
anisotropy) relevant to brain current fl ow, it is 
assumed that by using modern numerical solvers, 
the resulting prediction is independent of the 
numerical technique used. Our own experience 
across various commercial solvers confi rms this 
implicit assumption when meshes are of suffi -
cient detail. That is, a precise description in 
methods (use of publically available programs) 
and representation of resulting mesh density and 
quality (in fi gures or methods) as well as tests 
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using various solvers provides explicit control 
for errors generated by the computation itself. 

 Literature regarding forward modeling, or 
more broadly the dissemination of modeling 
analysis to the clinical hands, introduces further 
issues in regard to (1) interpretability, reproduc-
ibility, and accuracy (tissue masks) and (2) 
graphical representation of regions of infl uence 
(degree of “activation). As there is no standard 
protocol for tissue imaging or segmentation, 
diversity in the resulting tissue masks will invari-
ably infl uence predicted current fl ow. As such, it 
is valuable to illustrate each 3D tissue mask in a 
publication’s methods and/or classifi ed serial 
sections. In regard to representation of relative 
activation, studies employ either maps of current 
density (unit of A/m 2 ) or electric fi eld (unit of 
V/m)., but because the two are related linearly by 
local tissue resistivity, when plotting activation in 
a region with uniform resistivity (for example the 
cortical surface), the spatial profi le is identical. 
When plotting activation across tissues (e.g., cor-
onal section), current density may be advanta-
geous to illustrate overall brain current fl ow. 
However, the electric fi eld in the brain is directly 
related to neuronal activation (e.g., for varied 
resistivity, the electric fi eld, but not current den-
sity, provides suffi cient information to predict 
activation). Despite best efforts, fi gure prepara-
tion invariably restricts tissue mask perspectives 
and comprehensive display of volumetric current 
fl ow, which can be supplemented with online 
data publication (  http://www.neuralengr.com/
bonsai    ). 

 When interpreting simulation predictions, it is 
important to recognize that the intensity of cur-
rent fl ow in any specifi c brain region does not 
translate in any simple (linear) manner to the 
degree of brain activation or modulation, even 
when considering current direction. Moreover, 
recent neurophysiological studies indicate 
changes in” excitability “may not be monotonic 
with stimulation [ 4 ]. For example increasing 
stimulation amplitude or duration can invert the 
direction of modulation, as can the level of neu-
ronal background activity [ 56 ]. However, to a 
fi rst approximation, it seems reasonable to pre-
dict that regions with more current fl ow are more 

likely to be affected by stimulation while regions 
with little or no current fl ow will be spared the 
direct effects of stimulation. As a fi rst step to 
understand the mechanism of action of tDCS, a 
relationship between model predicted regional 
current fl ow and changes in functional activation 
has been recently demonstrated [ 30 ]. The “quasi-
uniform” assumption considers that if the electric 
fi eld (or current density) is uniform on the scale 
of a region/neuron of interest, then “excitability” 
may be modulated with local electric fi eld inten-
sity [ 57 ] (see discussion in refs. [ 29 ,  58 ]). Though 
efforts to develop suitably detailed biophysical 
models that consider the myriad of neurons with 
distinct positions and morphologies or ‘contin-
uum’ approximations [ 59 ] of modulation are 
pending, the current state-of-the-art requires 
(implicit) application of the “quasi-uniform” 
assumption. 

 Forward modeling studies and analysis are 
often published as case reports with predictions 
only evaluated on a single head [ 6 ,  10 ,  31 ,  34 ]. 
The suitability of single subject analysis refl ects 
limited available resources and the clinical ques-
tion being addressed. For a given electrode mon-
tage and stimulation dose, the sensitivity of 
global brain current to normal variation in anat-
omy (including across ages, gender) is unknown. 
However, high-resolution modeling suggests 
gyri-specifi c dispersion of current fl ow, which 
could potentially account for individual variabil-
ity. More generally, gross differences in tissue 
dimensions, notably skull thickness and CSF 
architecture, are expected to infl uence current 
fl ow; in some cases, modeling efforts specifi cally 
address the role of individual anatomical pathol-
ogy, such as skull defects [ 28 ] or brain lesions 
[ 26 ]. It is precisely because these studies have 
shown the importance of specifi c defect/lesion 
details, that fi ndings cannot be arbitrarily gener-
alized. This in turn stresses the importance of 
individualized modeling as illustrated in the next 
section. 

 Though this section focused on the technical 
features of modeling, there is a broader concern 
in promoting effective collaboration between 
engineers and clinicians. For analogy, clinicians 
are generally aware of the challenges and pitfalls 
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in post-processing and feature selection of fMRI 
data—and indeed, are thus intimately involved in 
data analysis rather than blindly relying on a 
technician. For computational “forward” models 
of neuromodulation, where results may inform 
study design and patient treatment, it is as impor-
tant to consider the uses and technical limitations 
of modeling approaches—and vigilance and 
skepticism on the part of clinicians will only 
enhance model rigor. Critically, for this reason, 
clinician/investigator experience and judgment 
supersedes all model predictions, even as these 
models form an important tool in dose design.  

   Use of Computational Models in 
Clinical Practice: Consideration for 
Effi cacy 

 Before beginning our sections of consideration 
for clinical practice, we note that the ability of 
clinicians to leverage computational models is 
limited by access to modeling tools. For clini-
cians interested in using computational forward 
models to inform study design or interpretation, 
but who do not have the time and resources to 
establish an independent modeling program, sev-
eral options are available. (1) A collaboration 
with a modeling group [ 10 ] or a company can 
allow for customized exploration of montage 
options; (2) referencing existing published 
reports or databases (  www.neuralengr.com/bon-
sai)    ; [ 60 ]) for comparable montages (with careful 
consideration of the role of individual variation 
and other caveats presented in the next section); 
(3) with some coding experience, using a novel 
process where a desired brain region can be 
selected and the optimized electrode montage is 
proposed within a single step has been developed 
[ 37 ]; (4) Graphical User Interface (GUI) based 
program to simulate arbitrary electrode montages 
in a spherical model is now available (  www.neu-
ralengr.com/spheres    ). GUI-based software using 
gyri-precise brain anatomy has now been devel-
oped as well [ 38 ,  39 ,  60 ]. This last solution illus-
trates an important trend: even as increasingly 
complex and resource expensive modeling tools 
are developed, parallel efforts to simplify and 

automate (high-throughput) model workfl ow are 
needed to facilitate clinical translation. 

 In regard to effi cacy, it is typically the case 
that scientists and clinicians have identifi ed one 
or more brain regions that they desire to modu-
late (e.g., based on fMRI and prior behavioral 
studies; [ 10 ,  61 – 64 ] and typically this modula-
tion is expressed as a desire to enhance or inhibit 
function in the region. While this is a starting 
point for rational dose optimization using com-
putational models, several additional parameters 
and constraints need to be specifi ed. 

 A central issue relates to the concern, if any, 
about current fl ow through other brain regions. In 
one extreme, current fl ow through other regions 
outside of those targeted is considered unimport-
ant for trial outcomes—and in such a case the 
optimization would be for intensity at the target 
while ignoring details of current fl ow through 
other brain regions. Conversely, it may be desired 
to minimize current fl ow through all other brain 
regions while maximizing current fl ow intensity 
in the targeted brain region—in such a case the 
optimization is for focality. The reason this dis-
tinction between optimization for intensity and 
optimization for focality is so critical is that pro-
duces highly divergent “best” dose solutions [ 37 ]. 
Optimization for intensity often produces a bipo-
lar (one anode and one cathode) montage across 
the head, such montages typically produces broad 
current fl ow across both the target and other brain 
regions. Optimization for focality typically pro-
duces a “ring” montage (with one polarity sur-
rounded by another, analogous to the HD-tDCS 
4 × 1;[ 27 ]) that spares much of the brain regions 
outside of the target but also produces less relative 
current fl ow at the target then optimization for 
intensity. In practicality, though distinctions 
between optimization for intensity and optimiza-
tion for focality must be made, the (iterative) pro-
cess of dose optimization may be subtler. Certain 
brains regions outside of the target may be “neu-
tral” as far as collateral stimulation, others may be 
“avoid” regions “and other may in fact be consid-
ered” benefi cial “to the outcomes. A best montage 
therefore is highly dependent on both the trial 
design outcomes and the experimenter’s opinion 
on how distinct brain regions are implicated. 
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 Another critical parameter to consider in trial 
design is the desired electric fi eld intensity at the 
target (s). As emphasized throughout this review, 
optimization based on electric fi eld at the target is 
expected produce more consistent outcomes then 
optimization by external current intensity. None-
the-less, an experimenter may choose to select a 
current level (e.g., 1 mA, 2 mA) simply because 
of historical experience and trends. It is important 
to emphasize that at least for neurophysiological 
measures (such as TMS) and likely for behavioral 
and clinical outcomes, the relationship between 
current and outcomes is not linear and not neces-
sarily monotonic [ 65 ,  66 ]—meaning reversing 
current direction (at the level of electrodes and the 
brain) may not reverse the direction of change, 
and increasing current intensity may not increase, 
and can even reverse, the direction of change. The 
effects of stimulation may vary with the brain 
region (e.g., prefrontal may not response as 
motor) or the state of that region, for example is 
there is ongoing activity (due to a concurrent task) 
or pathology (due to injury or disease; [ 67 ]), in 
ways that remain poorly understood. In general, 
more is thus not more with stimulation intensity 
and thus the decision of what current intensity is 
desired is a complex and critical one for out-
comes. The same challenges applied to selecting a 
desired brain electric fi eld where higher electric 
fi eld at a target may not produce increased neu-
romodulation or more of the type of change 
desired—moreover increasing electric-fi eld inten-
sity at the target by increasing applied current will 
increase electric fi eld intensity at every other 
brain region proportionally. Finally the orienta-
tion of the electric fi eld at the target may be criti-
cal and depending on the orientation different 
montages may be considered. 

 Though the above paints an increasingly com-
plex picture of dose optimization in tDCS it may 
be unwise to simply ignore these issues and use 
“historical” montages (e.g., whatever is popular 
in the literature) and not leverage computational 
models to the extent possible to optimize dose. In 
the face of complexity (and risk), experimenters 
may feel a desire to simply revert to using what 
has already been reported successful in the litera-
ture, but such an approach seems inconsistent 
with broader efforts to advance the fi eld espe-

cially when these previous approach were not 
optimization (and indeed a very limited set of 
montages are used across highly disparate indica-
tions). None-the-less, given the complexity and 
unknowns, historical montages do represent a 
good starting point for dose optimization. 
Practically, we recommend the optimization pro-
cess can begin by simulated previously used suc-
cessful and unsuccessful montages to consider 
the brain current fl ow patterns generated in each 
case, it is against these standards montages that 
any optimized montage can be compared.  

   Use of Computational Models 
in Clinical Practice: Consideration 
for Safety 

 Computational models also provide a tool to sup-
port assessment of safety. tDCS is considered a 
well-tolerated technique [ 16 ] but vigilance is 
always warranted with an investigational tool; 
moreover, given that most montages produce 
current fl ow through many brain regions, com-
bined with the desire to explore increasing inten-
sities and durations/repetitions of treatment, as 
well as stimulation in susceptible subjects 
(e.g., children), computational models, though 
only predictions, provide quantitative methods to 
increase confi dence and identify hazards. 

 We distinguish effects at the skin (which relate 
largely to electrode design/electrochemical issues 
and electrode current density) from effects at the 
brain (which relate to electric fi elds in the brain) 
[ 68 ]. Computational models predict current fl ow 
at both the skin and the brain. Often dose design 
simply avoids crossing (or even approaching) a 
threshold for intensity in any given region both 
inside and outside the target. This threshold is 
often based on historical approaches. Here the 
distinction between dose optimization based only 
on stimulation parameters (e.g., total current) 
verses brain electric fi eld (with leverages compu-
tational models) is evident. Maintaining applied 
current (e.g., 1 mA) but changing electrode mon-
tage and/or subject inclusion (e.g., skull defects) 
may profoundly change current density/electric 
fi eld in the skin and brain. Computational models 
are thus useful to relate new montages/approaches 
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against historically safe ones. It is often the case 
that even when current density/electric fi eld is 
predicted, the experimenter still applied the upper 
limited of applied current. Thus maximum cur-
rent density/eclectic fi eld and maximum current 
intensity become constraints in the effi cacy opti-
mization process.  

   Use of Computational Models in 
Clinical Practice: Consideration for 
Individual Dose Titration 

 There are two general uses for computational 
models in designing rational experiments and 
clinical trials. The fi rst is the selection of the best 
generic dose as discussed above. The second “if” 
to consider is if and how to customize dose to 
individual subjects. Even across normal healthy 
adults there is a twofold difference in the electric 
fi eld generated in the brain for a given applied 
current [ 43 ,  44 ,  49 ]. This variation is potentially 
profoundly signifi cant when considering that 
twofold changes in applied current can invert the 
direction of change (see above). Therefore, ana-
tomical differences, even across healthy adults 
may explain some of the know variation in exist-
ing tDCS studies and normalizing for brain 
electric fi eld across subjects, by leveraging com-
putational models, may in part correct for indi-
vidual differences. 

 When considering extremes of age [ 52 ,  53 ] or 
body mass [ 9 ] or the presence of variable brain or 
skull injuries [ 28 ], the potential for individual 
differences to infl uence current fl ow increases 
[ 63 ]. While it is not unusual for tDCS montages 
to be changed based on individual disease etiol-
ogy (e.g., stroke location) this is often done using 
basic rules of thumb (e.g., position the “active” 
electrode over the brain region) which may not 
always produce the desired brain current fl ow 
[ 26 ]. The need to normalize (wide) individual 
variations in response to tDCS is universally rec-
ognized (along with the desire to increase effi -
cacy), and it is rational that normalizing brain 
electric fi eld, should help reduce variability since 
brain electric fi eld determines outcomes. Yet the 
use of computational models for individual opti-

mization is rare and limited by accessibility to 
rapid modeling tools. 

 We note the value of individualization is evi-
dent in TMS studies when it is almost unheard of 
to apply the same intensity across subjects. It is 
no less important in tDCS, but as tDCS does not 
produce an overt physiological response such as 
TMS, computational models are valuable tool to 
individualize dose.  

   Example Results of Computational 
Analysis in Susceptible Populations 

 We conclude with some case studies to illustrate 
the application of computational models for 
informing clinical guidelines. 

  Case 1: Skull defects : There is interest in the appli-
cation of tDCS during rehabilitation of patients 
with brain lesions or skull defects (i.e., with or 
without skull plates); for example subjects with 
traumatic brain injury (TBI) or patients undergoing 
neurosurgery. As some of the neurological sequelae 
are presumably consequences of disrupted cortical 
activity following the traumatic event, the use of 
tDCS to deliver current to both damaged and com-
pensatory regions in such circumstances can be a 
useful tool to reactivate and restore activity in 
essential neural networks associated with cognitive 
or motor processing. In addition, because of the 
reported anti-seizure effects of tDCS [ 69 ], this 
technique might be useful for patients with refrac-
tory epilepsy who underwent surgery and have 
skull plates or decompressive craniectomy for 
trauma and cerebrovascular disease. 

 Despite rational incentives for investigation of 
tDCS in TBI or patients with other major neuro-
logical defi cits and skull defects, one perceived 
limitation for the use of tDCS in these patients is 
the resulting modifi cation of current fl ow by the 
skull defects and presence of surgical skull plates. 
Modeling studies can provide insight into how 
skull defects and skull plates would affect current 
fl ow through the brain and how to modify tDCS 
dose and/or electrode locations in such cases 
(Fig.  4.4 , adapted from ref. [ 28 ]). For example, 
a skull defect (craniotomy) that is fi lled with 
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relatively highly conductive fl uid or tissue repre-
sents a “shunt” pathway for current entering the 
brain but in a manner highly dependent on defect 
position relative to electrode montage. In such 
cases, the underlying cortex would then be 
exposed to a higher intensity of focused current 
fl ow. This in turn might be either benefi cial in tar-
geting the underlying brain region or hazardous if 
the increased current levels resulted in undesired 
neurophysiologic or pathological changes. Our 
modeling results confi rm the notion that skull 
defects and skull plates can change the distribu-
tion of the current fl ow induced in cortical areas 
by tDCS. However, the details of current modula-
tion depend entirely on the combination of elec-
trode confi guration and nature of the defect/plate, 
thus indicating the importance of individual anal-
ysis. Based on model predictions, application of 
tDCS without accounting for skull defects can 
lead to suboptimal and undesired brain current.  

  Case 2 : Simulation of tDCS in subjects with ide-
alized Deep Brain Stimulation (DBS) leads. 

Combination therapies incorporating tDCS are 
increasingly being investigated in drug-resistant 
instances of psychiatric disorders such as depres-
sion and schizophrenia [ 70 ,  71 ]. Subjects who 
have had DBS electrodes either as a comorbidity 
or due to an indication being investigated with 
tDCS or tACS do not necessarily have to be 
exclude from study. Computational models can 
the estimate the current fl ow artifact due to the 
presence of DBS implantation. At a minimum, 
safety can be inferred by comparing maximum 
current density or electric fi eld in DBS subjects to 
known safe montages in healthy individuals. In 
Fig.  4.5 , four montages were compared, once in a 
healthy-intact head and again in a head with a 
burr-hole defect resulting from the typical place-
ment of subthalamic nucleus DBS. While a realis-
tic DBS implantation would include insulation 
surrounding the lead and a protective cap in the 
skull opening, this model examined a worst case 
scenario in which only the burr hole from implan-
tation is present. As seen in the cross-sectional 
current density images (dashed line), the fl uid 

  Fig. 4.4    Computational model of current fl ow in subjects 
with skull defects/plates. A defect in skull tissue which is 
the most resistive tissue in the head would hypothetically 
affect current fl ow in the underlying brain regions. 
Furthermore, the exact location of the defect (under/
between the stimulation pads) in combination with the 
‘material’ fi lling up the defect with the stimulation mon-
tage employed will infl uence induced current fl ow. Sample 

segmentation masks are shown on the  left . A small defect 
under the anode pad ( top right ) leads to current fl ow in the 
cortex restricted to directly under the defect (avoiding the 
intermediate regions). A similar sized defect placed 
between the pads ( bottom right ) does not signifi cantly alter 
current fl ow patterns in comparison with a healthy head 
with no defects (Adapted from ref. [ 28 ])       
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fi lled implantation defect draws a greater propor-
tion of current than intact healthy tissue. While 
current density and in turn electric fi eld distribu-
tion are affected by the presence of the defect, 
peak electric fi eld has less than a twofold change 
in intensity, which is within the variations seen 
between individuals and common tDCS protocols 
(1–2 mA) [ 9 ,  44 ]. Stimulation amplitude could be 
lowered to 1 mA out of an abundance of caution. 
The use of HD-tDCS electrodes in the 4x1 con-
fi guration (bottom row) can also be used to restrict 
both maximum intensity and spread of current, 
especially to deep brain regions.  

  Case 3: Pediatric populations : There is increas-
ing interest in the use of neuromodulation in 
pediatric populations for a range of indications 
including rehabilitation, cognitive performance, 

and epilepsy treatment [ 72 – 75 ]. However, a 
rational protocol/guideline for the use of tDCS 
on children, has not been formally established. 
Previous modeling studies have shown that cur-
rent fl ow behavior is dependent on  both  the tDCS 
dose (montage and current intensity) and the 
underlying brain anatomy. Because of anatomi-
cal differences (skull thickness, CSF volume, and 
gray/white matter volume) between a growing 
child and an adult it is expected that the resulting 
brain current intensity in a child would be differ-
ent as compared to that in an adult. Evidently, it 
would not be prudent to adjust stimulation dose 
for children through an arbitrary rule of thumb 
(e.g., reduce electrode size and current intensity 
by the ratio of head diameter). Again, computa-
tional forward models provide direct insight into 

  Fig. 4.5    Simulation of tDCS in subjects with idealized 
Deep Brain Stimulation (DBS) leads. Finite element mod-
els of tDCS with and without burr-hole defects typical in 
subthalamic nucleus deep brain stimulation. Common 
sponge (conventional) and HD-tDCS montages for motor 
and cerebellar stimulation are compared. Fluid-fi lled burr 
holes draw a greater amount of current density than what 

would normally exist with healthy tissue ( dashed images ). 
However, peak current density and electric fi eld are mini-
mally affected (less than twofold). HD confi gurations 
have lower deep brain electric fi eld intensities in general 
in addition to being more confi ned. (Adapted from 
Truong, Bikson et al. in preparation)       
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the relation between external tDCS dose and 
resulting brain current and thus can inform dose 
design in children. Figure  4.6  shows an example 
of a model of tDCS in a 12-year-old compared to 
that of a standard adult model. Both the peak and 
spatial distribution of current in the brain is 
altered compared to the typical adult case. In fact, 
for this particular case, the peak electric fi elds, at 
a given intensity, were nearly double in the 
12-year-old as compared to the adult. Though 
questions remain about the impact of gross ana-
tomical differences (e.g., as a function of age or 
gender) in altering generated brain current fl ow 
during neuromodulation, computational “for-
ward” models provide direct insight into this 
question, and may ultimately be used to ratio-
nally adjust stimulation dose.  

  Case 4 : The wide range of uses for tDCS makes it 
applicable to a diverse population that can include 
obese subjects. Montages that have been evalu-
ated for pain, depression, or appetite suppression 
have been modeled in average adults, but unique 
challenges exist in the obese model (Fig.  4.7 , 

adapted from ref. [ 76 ]). The additional subcutane-
ous fat present in the obese model warranted an 
additional layer of complexity beyond the com-
monly used 5 tissue model (skin, skull, CSF, gray 
matter, white matter). Including fat in the model 
of a super obese subject led to an increase in corti-
cal electric fi eld magnitude of approximately 
60 % compared to the model without fat 
(Fig.  4.7a .1–a.3). A shift was also seen in the spa-
tial distribution of the cortical electric fi eld, most 
noticeable on the orbitofrontal cortex.  

 To gain an intuition for how subcutaneous fat 
infl uences cortical electric fi eld and current den-
sity, additional models examined a range of con-
ductivity values from the conductivity of skull 
(0.010 S/m, Fig.  4.7b .1) to the conductivity of 
skin (0.465 S/m, Fig.  4.7b .8). Coincidentally, the 
conductivity commonly used for fat (0.025 S/m, 
Fig.  4.7b .4) was in the range that causes a peak 
increase in cortical electric fi eld magnitude. It 
was postulated that more current was blocked 
by subcutaneous fat at an extremely low con-
ductivity (Fig.  4.7b .1), while more current was 

  Fig. 4.6    Individualized head model of two adolescents 
as compared to an adult: Induced current fl ow for motor 
cortex tDCS at different intensities. 1 mA of stimulation 

in the adolescents is similar to 2 mA of stimulation in 
the adult       
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redirected at an extremely high conductivity. 
This, in effect, led to an “optimum” range of 
infl uence where the conductivity of fat is believed 
to reside. 

 Ultimately, the need to precisely parameterize 
models rests hand-in-hand with the intended use 
of the model. From an engineering perspective, 
the increased complexity of this model caused a 
noteworthy change within the subject modeled, 
but this change would not be clinically notewor-
thy if stimulation dose does not change from sub-
ject to subject. This clinical analysis requires an 
additional comparison between subjects and con-
sideration of the wide variation already inherent 
in “typical” subjects [ 44 ]. What can be con-
cluded, however, is that a comparison between 
models would require consistent parameteriza-
tion of subcutaneous fat. 

 These cases demonstrate the potentially pro-
found infl uence of lesions and skull defects on 

resulting current fl ow, as well as the need to cus-
tomize tDCS montages to gross individual head 
dimensions. If tDCS continues to become a viable 
option for treatment in cases such as chronic 
stroke, the consideration of tDCS-induced current 
fl ow through the brain is of fundamental impor-
tance for the identifi cation of candidates, optimi-
zation of electrotherapies for specifi c brain 
targets, and interpretation of patient-specifi c 
results. Thus, the ability and value of individual-
ized tDCS therapy must be leveraged. Whereas, 
tDCS electrode montages are commonly designed 
using “gross” intuitive general rules (e.g., anode 
electrode positioned “over” the target region), the 
value of applying predictive modeling as one tool 
in the rational design of safe and effective electro-
therapies is becoming increasingly recognized. 

 Electrode montage (i.e., the position and size 
of electrodes) determines the resulting brain cur-
rent fl ow and, as a result, neurophysiological 

  Fig. 4.7    Predicted cortical electric fi eld during inferior 
prefrontal cortex stimulation via 5 × 7 pads. Two condi-
tions, homogenous skin ( a.1 ) and heterogeneous skin 
( a.2 ), are contrasted on the same scale (0.364 V/m per mA 
peak). The homogeneous skin condition is displayed ( a.3 ) 
at a lowered scale (0.228 V/m per mA peak) to compare 
the spatial distribution to the heterogeneous condition 

( a.2 ). The effect due to a range of varying fat conductivi-
ties ( b.1 – b.8 ) is compared on a fi xed scale (0.364 V/m per 
mA peak). The conductivity of fat (0.025 S/m) is within 
an optimum range of infl uence that causes an increase in 
peak cortical electric fi eld when included (Adapted from 
ref. [ 76 ])       
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effects. The ability to customize tDCS treatment 
through electrode montage provides clinical fl ex-
ibility and the potential to individualize therapies 
[ 24 ,  26 ,  31 ]. However, while numerous reports 
have been published in recent years demonstrat-
ing the effects of tDCS upon task performance, 
there remain fundamental questions about the 
optimal design of electrode confi gurations with 
computational “forward” models playing a piv-
otal role.  

   Conclusion 

 While numerous published reports have demon-
strated the benefi cial effects of tDCS upon task 
performance, fundamental questions remain 
regarding the optimal electrode confi guration on 
the scalp. Moreover, it is expected that individual 
anatomical differences in the extreme case mani-
fest as skull defects and lesioned brain tissue 
which consequently will infl uence current fl ow 
and should therefore be considered (and perhaps 
leveraged) in the optimization of neuromodula-
tion therapies. Heterogeneity in clinical responses 
may result from many sources, but the role of 
altered brain current fl ow due to both normal and 
pathological is tractable using computational 
“forward” models, which can then be leveraged 
to individualize therapy. Increasing emphasis on 
high-resolution (subject specifi c) modeling pro-
vides motivation for individual analysis, leading 
to optimized and customized therapy.     
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