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    Abstract  

  There is growing enthusiasm about the potential of tDCS to be of value to 
clinical treatment and cognitive enhancement in neuropsychiatry. Yet despite 
its promise, the use of tDCS in clinical and nonclinical contexts faces several 
scientifi c and ethical challenges, which must be considered to protect against 
unanticipated or even adverse effects on individuals and groups in society. 
Scientifi c challenges include the lack of precise understanding of tDCS 
mechanisms, the present unreliability of predictions for the magnitude and 
nature of an individual’s response to stimulation, the need for tDCS research 
to better capture dynamic effects in highly heterogeneous populations in 
whom comorbid diagnoses and the concurrent use of (multiple) medications 
may interact independently and interactively to affect tDCS response. Ethical 
challenges include issues of safety, character, justice, and autonomy. These 
considerations prompt a need to anticipate the trajectories of current and 
potential future use of tDCS both within and outside of clinical contexts, as 
there are likely to be evolving social and cultural consequences of tDCS use 
within neuropsychiatry. Likewise, neuroethical consequences from nonclini-
cally oriented tDCS use are likely to have an impact on the way tDCS is 
used—and sought out—in clinical contexts. The accessibility of tDCS and its 
likelihood for broad use outside of medical contexts make it especially 
important to consider the promises, potential perils, and likely trajectories of 
tDCS use in  multiple contexts from the outset. In this chapter, we refl ect upon 
the way that the present degree of scientifi c understanding of tDCS moti-
vates, justifi es, and sometimes cautions against tDCS use.  
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      Introduction: Is tDCS Hope or Hype? 

 There is growing enthusiasm about the potential 
of transcranial direct current  stimulation   (tDCS) 
to be of value for  clinical and cognitive enhance-
ment   purposes. With headlines like “Got a prob-
lem—put your electric thinking cap on” or 
“Trying a 9-volt shortcut to expertise,” hundreds 
of enthusiastic print media articles have been 
published in the last few years [ 1 – 3 ]. The major-
ity of media attention to tDCS has been  optimis-
tic   and has praised the putative benefi ts of the 
technology [ 2 ]. However, while the tone of such 
coverage speaks in part to the considerable thera-
peutic potential of tDCS for disorders of cogni-
tion and mood, it also highlights the need to 
distinguish hope from hype. More than that, the 
science of tDCS and its potential  applications   
present practical and ethical obstacles that war-
rant serious contemplation. 

 In many ways, practical and ethical consid-
erations for tDCS mirror those of other forms 
of  brain stimulation      or neural interventions 
more broadly, but there are a few key features 
about tDCS that set it apart. Compared with 
other forms of  noninvasive brain stimulation   
such as transcranial magnetic stimulation 
(TMS), tDCS is cheap, accessible, and porta-
ble. These factors multiply the contexts and 
applications for tDCS, some of which could 
present ethical, legal, and social problems if 
tDCS use were to become more widespread. At 
the same time, its very high level of accessibil-
ity also limits the range of potential actions 
that can be taken to prevent potentially prob-
lematic developments. Its low cost and relative 
technological simplicity make tDCS applicable 
to a broader set of contexts than other forms of 
invasive or even noninvasive brain stimula-
tion, as it doesn’t require  surgery   and can be 
easily self-administered. Consequently, tDCS 
is highly amenable to direct-to-consumer prod-

uct development and marketing, as well as to 
increased use in so-called para-clinical con-
texts for enhancing cognitive and behavioral 
abilities, such as in the workplace, on the bat-
tlefi eld, or as a cosmetic enhancement in daily 
life. This potential for broad use both inside 
and outside of medical contexts calls for spe-
cial consideration of the promises, potential 
perils, and implications for tDCS in the fi eld of 
neuropsychiatry—both in how it is practiced as 
well as how it is perceived. 

 This chapter starts by exploring the promise of 
tDCS, fi rst as a tool in cognitive neuroscience 
research, then as a  clinical intervention  , and 
fi nally as a technology to enhance normal cogni-
tion. Next, the scientifi c and ethical perils of 
tDCS are discussed in terms of the current state 
of the science, and how that informs the ways we 
think about the ethical challenges that tDCS 
poses with respect to safety, justice, character, 
and autonomy. For example, how can and should 
(or should not) knowledge learned in controlled 
research contexts be translated for potential safe 
and effective tDCS administration to complex 
real-world patients with multiple diagnoses, 
often on multiple medications? If cognitive self- 
enhancement becomes a social norm, what 
effects will that have on social structures, per-
sonal development, perhaps even clinical norms 
for what is considered normal versus pathologi-
cal? Finally, we consider the ways in which tDCS 
presents specifi c advantages as well as challenges 
to neuropsychiatry and its role in  society  . 

 The fi eld and scope of tDCS use (and other 
noninvasive brain stimulation and cognitive 
enhancement interventions) may already be 
developing at a rate that exceeds the pace of our 
scientifi c understanding [ 4 ]. One needs only to 
look at the recent and upcoming products released 
by the companies Thync ( Thync ,  Los Gatos ,  CA ) 
and Halo neuroscience ( Halo Neuroscience ,  San 
Fransisco ,  CA )—not to mention their marketing 
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approaches—to glimpse the future role that tDCS 
could come to play in daily life. We may not be 
able to predict the rate at which the potential pit-
falls may develop, but we can be sure that if 
tDCS continues to develop along its present tra-
jectory, ethical, legal, and social issues will even-
tually arise. It is therefore important to consider 
these issues now, so that we can take proactive 
steps to mitigate against potentially unintended 
and undesirable consequences.  

    The Promise of tDCS 

    tDCS as a Cognitive 
 Neuroscience   Tool 

 Noninvasive brain stimulation ( NIBS  ) methods 
are highly useful to cognitive neuroscience, in that 
they are used to modulate activity in brain regions 
or networks with varying degrees of anatomical 
selectivity and functional specifi city. In general, 
NIBS add signifi cant inferential strength to the 
ability of cognitive neuroscience to decipher 
causal brain region-function and network- function 
relationships. Following  stimulation  , subsequent 
changes in cortical activity, measured directly or 
indirectly by probing sensorimotor or cognitive 
behavioral functions, afford improved understand-
ing of how brain activity in one region contributes 
to cognition and behavior. In recent years, tDCS 
has seen increasing use in the cognitive neurosci-
ence community, with the number of publica-
tions published per year increasing over fi vefold 
since 2010 [ 2 ]. TDCS has been applied to a variety 
of cognitive domains, including but not limited 
to skill learning, memory, executive functions, 
creativity, language, spatial processing, and social 
cognition [ 5 ]. This section provides a brief partial 
review of studies in which tDCS has been shown 
to manipulate cognition in informative ways, some 
of which have possible  clinical applications  . 

 With respect to  learning and memory  , acquisi-
tion and retention of new procedural skills has 
been experimentally enhanced using tDCS. One 
study found that, compared to sham stimulation, 
increased motor cortex excitability and enhanced 
learning of motor movements resulted when 
simple repetitive practice was paired with anodal 

tDCS [ 6 ]. Similarly, tDCS delivered over 5 days 
paired with training on a complex motor task 
resulted in increased improvement between daily 
stimulation sessions and persistent superior skill 
retention 3 months after stimulation [ 7 ]. The 
implications of this are that repeated administra-
tion of tDCS may have “off-line” effects that 
consolidate skill acquisition, effectively enhanc-
ing the long-term effects of rehearsal on perfor-
mance. Declarative verbal memory has also been 
investigated using tDCS. For example, stimula-
tion applied to the left dorsolateral prefrontal cor-
tex had the effect of increasing the rate of verbal 
learning [ 8 ]. Consistent with this, another study 
found that tDCS delivered to the same site but 
with the opposite polarity had an inhibitory effect 
on verbal learning [ 9 ]. 

 Various executive functions such as cognitive 
and  behavioral impulse control   and working 
memory have also been investigated with 
tDCS. One study found that orbitofrontal cortex 
stimulation with tDCS enhanced decision making 
and improved cognitive impulse control, without 
any concurrent effects on attention, mood, or 
motor impulse control [ 10 ]. In another study, 
tDCS improved  response inhibition  , which refers 
to the ability to inhibit an action once initiated 
[ 11 ]. For  working memory   (WM) and related 
functions, tDCS-induced improvements of per-
formance on some tasks appear to depend in part 
on the level of cognitive demand of the tasks. For 
example, one group found that stimulation over 
the right cerebellum or left DLPFC increased 
accuracy and decreased response times for an 
arithmetic task that was more diffi cult and atten-
tionally demanding, but not for an easier arithme-
tic task [ 12 ,  13 ]. Similarly, Gill and colleagues 
(2015) found that stimulation effects were readily 
observed when a more cognitively demanding 
working memory task was used during stimula-
tion, but not when the task was less challenging 
[ 14 ]. Importantly, these effects also required that 
domain-specifi c cognitive behaviors be engaged 
during stimulation; stimulation-induced improve-
ments were absent when tDCS was not paired 
with a relevant behavioral task [ 14 ,  15 ]. In other 
work, cathodal tDCS was used to enhance aspects 
of cognitive fl exibility, presumably by inhibiting 
certain frontal lobe functions. This research, 
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which found that subjects could come up with 
more uncommon uses for everyday objects with 
inhibitory stimulation of the left, but not right, 
prefrontal cortex, suggests that creativity could be 
enhanced by stimulation that increases the infl u-
ence of unfi ltered bottom-up information [ 16 ]. 

 It may be possible to signifi cantly enhance the 
ability to learn new languages using tDCS. For 
example, anodal tDCS over  language   regions of 
cortex enhanced new vocabulary learning in 
healthy young adults [ 17 ]. Even without a refer-
ence object to associate with a novel “nonword,” 
tDCS facilitated the acquisition of the phonologi-
cal form of the nonwords into long-term memory, 
beyond the stimulation session [ 18 ]. Reading 
skills may also be enhanced using 
tDCS. Compared with sham stimulation, subjects 
receiving real tDCS subjects exhibited signifi -
cantly better nonword reading effi ciency. 
Curiously, this seemed only to apply consistently 
to below-average readers in the cohort; subjects 
who were more effi cient readers to begin with 
saw much more variable changes in reading per-
formance during real tDCS [ 19 ]. 

 TDCS has been used to manipulate and 
enhance aspects of  visuospatial processing  . For 
example, we showed [ 20 ] that anodal tDCS over 
the right posterior parietal cortex could be used to 
selectively enhance detection of left-sided allo-
centric targets, which is to say that stimulated 
subjects were better able to detect the left side of 
visual targets independent of where the targets 
were in the subjects’ visual fi elds. Interestingly, 
tDCS has also been used to manipulate how spa-
tial and temporal processing contribute to higher 
order mental representations, such as the percep-
tion of cause and effect. In a study by Woods and 
colleagues [ 21 ], subjects were asked to make 
judgments about the causal relationship between 
two virtual objects (i.e., did one object cause the 
other to move by striking it), while the spatial and 
temporal features of the objects’ motions were 
manipulated. Consistent with the role of the pari-
etal cortex in spatial processing, the authors 
found that parietal tDCS selectively infl uenced 
how sensitive subjects were to spatial manipula-
tion as it related to their perception of causality. 
On the other hand, frontal cortex stimulation 
infl uenced both spatial and temporal judgments 

with respect to causality, consistent with the 
overarching role of the frontal cortex in cause- 
and- effect reasoning [ 22 ]. 

  Brain stimulation   has also been used to alter 
social cognition and behaviors, including those 
that affect moral decision making that balances 
 self-interest with social values  . For example, 
individuals will often reject an offer that they per-
ceive as highly unfair, although accepting the 
offer would still be to their benefi t, as reciprocal 
punishment for the perceived unfairness (a con-
cept know as “altruistic punishment”). 
Noninvasive inhibitory stimulation of the right 
DLPFC makes people less likely to reject mar-
ginally benefi cial but unfair offers, even when 
consciously recognized as highly unfair, suggest-
ing that direct current stimulation might also be 
used to calibrate the impact of economic self- 
interest on people’s enforcement of social norms 
[ 23 ,  24 ]. In research on  lie detection  , tDCS has 
been demonstrated to alter individuals’ deception 
skills in fairly specifi c ways, such as infl uencing 
someone’s deceptive abilities when trying to con-
ceal one’s guilt or in situations such as card 
games. Early studies found that the act of lying 
increases cortical excitability on both sides of the 
brain [ 25 ]. People became better liars in a simu-
lated interrogation task when cathodal tDCS was 
used to inhibit the anterior prefrontal cortex. Not 
only did stimulation make people better at con-
cealing guilty knowledge, decreasing the kinds of 
signals that a polygraph detects when someone is 
lying, it also decreased their feelings of guilt over 
deceiving the experimenter [ 26 ]. On the other 
hand, anodal excitation of the dorsolateral pre-
frontal cortex made people worse at pretending 
not to have knowledge about something true, like 
whether a particular card is in their hand; inter-
estingly, this effect did not extend to subject’s 
behavior when bluffi ng or telling the truth [ 27 ]. 

 One of the advantages of NIBS compared to 
classical methods in cognitive neuroscience and 
cognitive neurology like lesion studies is that these 
 technologies   can be used both to interfere with and 
enhance cognitive functions, at least temporarily. 
For example, the aforementioned studies on exec-
utive function and creativity illustrate how invert-
ing the polarity of stimulation over brain regions 
responsible for cognitive control can either result 
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in favoring of cognitive abilities that require heavy 
fi ltering of extraneous information, such as sus-
tained attention and working memory, or in 
favoring cognitive abilities that benefi t from unfi l-
tered intrusion of extraneous information, such as 
divergent thinking and creativity [ 10 – 16 ]. While 
enhancing aspects of cognition using such  manip-
ulation   is a powerful tool for making inferences 
about brain function, it also opens the door to 
considering whether technologies like tDCS could 
be used to facilitate cognitive processes in patients 
with neurologic or psychiatric disorders of cogni-
tion, as well as in cognitively healthy individuals. 
For example, the ability of tDCS to  manipulate   
perception of cause and effect could have impli-
cations for understanding and treatment of psychi-
atric disorders such as schizophrenia and obsessive 
compulsive disorder (OCD), where abnormal 
causal perceptions can contribute to symptoms 
[ 28 ,  29 ]. Moreover, the enhancement of allocen-
tric spatial processing found by Medina and col-
leagues (2013) could have important implications 
for the treatment of spatial neglect in stroke 
patients [ 22 ], and studies related to executive 
function could lead to applications in a wide range 
of neurologic and psychiatric disorders [ 10 – 15 ]. 
Further research will be required so that group-
level results from cognitive neuroscience studies, 
which are principally designed to reveal brain 
function, can be translated to clinical applications 
in which the goal is to alter specifi c functions in 
single individuals.  

    tDCS as a Clinical Intervention 

 With respect to clinical contexts, a growing body 
of literature suggests that tDCS is a potentially 
effective therapy for a wide variety of neuropsy-
chiatric syndromes and symptoms, as well as 
other neurologic conditions affecting cognition 
[ 30 ,  31 ].  Depression and chronic pain   in particu-
lar are two areas in which a substantial number of 
clinical trials support the utility of tDCS to allevi-
ate symptoms [ 32 ,  33 ]. For depression, tDCS to 
the prefrontal cortex has shown promise as a 
treatment and medication adjunct to improve 
therapeutic outcomes [ 34 – 41 ]. With respect to 
tDCS as a treatment for pain, clinical trials for 

tDCS have been performed for chronic lower 
back pain [ 42 ,  43 ], chronic pain in the elderly 
[ 44 ], chronic temporomandibular disorders [ 45 , 
 46 ], chronic pain in irritable bowel syndrome 
[ 47 ], neuropathic pain [ 48 ] such as in fi bromyal-
gia [ 49 ,  50 ], or multiple sclerosis [ 51 ], and 
chronic pain associated with CNS damage from 
 spinal cord injury   [ 52 ] or stroke [ 53 ]. Although 
the results of clinical trials have in some cases 
been mixed [ 54 ], the potential utility of tDCS for 
clinical pain applications has been demonstrated 
in studies that show tDCS can affect aspects of 
nociception, pain thresholds, and affective (i.e., 
emotional) components of pain processing in 
healthy individuals [ 55 – 59 ]. Other neuropsychi-
atric conditions in which tDCS has been investi-
gated include attention defi cit hyperactivity 
disorder ( ADHD  ) [ 60 ], schizophrenia [ 61 – 65 ], 
Alzheimer’s disease [ 66 ] and mild cognitive 
impairment (MCI) [ 67 ], tinnitus [ 68 ], obsessive- 
compulsive disorder (OCD) [ 69 ], and general-
ized anxiety disorder [ 70 ]. TDCS is also being 
considered for  PTSD  , based on observed effects 
in fear extinction [ 71 ] and attentional bias for 
threat in anxiety [ 72 ,  73 ]. 

 Other clinical applications for tDCS include 
disorders characterized by  problematic behaviors   
related to abnormal executive function, including 
addictions and risk-taking behaviors [ 74 ,  75 ]. 
Studies have shown that tDCS may be useful for 
decreasing cigarette cravings and smoking behav-
ior [ 76 – 80 ]. Interestingly, study of risk- taking 
behavior in smokers versus non-smokers found 
that tDCS was associated with  personality- 
dependent effects   [ 75 ], which emphasizes that 
existing cognitive patterns infl uence the specifi c 
nature of tDCS effects. Cravings and substance 
abuse in alcoholism [ 81 – 84 ] and drug addiction to 
methamphetamine [ 85 ] and crack cocaine [ 86 – 88 ] 
were also responsive to tDCS. Preliminary clinical 
studies of tDCS applied to DLPFC to intervene in 
obesity and disordered eating behavior have seen 
positive results. These have mostly examined acute 
tDCS effects on subjective reports of food craving, 
and attentional bias for food as probed with eye 
tracking following a single session of stimulation 
[ 89 – 93 ]. One 8-day, randomized, sham-controlled, 
crossover study found that  anodal DLPFC stimula-
tion   decreased specifi c and nonspecifi c subjective 
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appetite and was associated with a decrease in calo-
rie consumption at a standardized multi-choice test 
buffet by 14 %, with a specifi c reductions in con-
sumed carbohydrates [ 94 ]. 

 Substantial promise has been found for tDCS in 
 post-stroke neurorehabilitation  . Following stroke, 
tDCS has been shown to assist in upper motor 
limb recovery from paresis [ 95 ,  96 ]. Similarly, 
anodal tDCS to the posterior parietal cortex miti-
gated unilateral visuospatial neglect [ 97 ] in one 
study, and in another study the response to prism-
adaptation therapy was improved when therapy 
was paired with tDCS [ 98 ]. Anodal tDCS to the 
right premotor cortex also mitigated one patient’s 
anosognosia for hemiplegia during stimulation 
[ 99 ], and in another case study, cognitive neglect 
therapy paired with biparietal tDCS, but not sham 
stimulation, enhanced the patient’s response to 
therapeutic cognitive training [ 100 ]. Additionally, 
multiple studies have shown that when tDCS is 
paired with speech and language therapy, naming 
ability can be improved in stroke patients with 
aphasia [ 101 – 110 ]. Another  neurorehabilitation 
application   may be to post-stroke attentional 
decline, as anodal tDCS to the left DLPFC also 
improved attention in stroke patients, resulting in 
increased accuracy on a cognitive task of execu-
tive function [ 111 ]. Finally, tDCS is also being 
explored as enhancement to learning and memory 
in normal aging and in states of cognitive impair-
ment [ 112 – 115 ]. 

 Not coincidentally, tDCS has been explored 
clinically in many areas where the underlying 
impaired  cognitive constructs   have been shown 
in cognitive neuroscience research to be manipu-
lable using stimulation. For example, cognitive 
neuroscience studies showing effective tDCS 
modulation on decision-making, including risk- 
taking, reward-seeking, impulsivity, and fairness 
consideration are considered as promising for 
addictive disorders, in which the hallmarks of 
clinical symptomatology are compromises in 
such decision-making capacities [ 116 ]. 

 There are many practical reasons to favor 
tDCS in clinical settings. In addition to being 
small and portable, tDCS is inexpensive com-
pared to other  neuromodulation technologies      like 
TMS. As currently used tDCS protocols are also 
safe, tDCS is an ideal form of neuromodulation to 

pair with existing therapies, and could potentially 
be self-administered by patients who may benefi t 
from repeated stimulation on a regular basis.  

    tDCS to Enhance Normal Cognition 

 In addition to  clinical applications   and cognitive 
neuroscience studies designed to elucidate brain 
function (described above), there has been grow-
ing interest in explicitly enhancing normal cogni-
tion. In particular, tDCS joins a variety of 
neuroscience tools applied to so-called neuroer-
gonomic purposes, referring to applications 
intended to aid human operators in the perfor-
mance of their work duties [ 20 ]. Academic inves-
tigations for this purpose include—and in many 
cases expand upon—cognitive neuroscience 
studies of effects on isolated cognitive  abilities  , 
by examining tDCS effects on the performance 
of more complex tasks. Frequently, these experi-
ments involve more naturalistic paradigms with 
clear applications to specifi c occupational func-
tions, and assess improvements in the cognitive 
functions of implicit memory (e.g., procedural 
and motor learning; probabilistic learning), 
explicit learning and memory (e.g., declarative 
memory encoding with retrieval), working mem-
ory, attention, and perception [ 117 ]. For example, 
tasks in which tDCS has shown accelerated learn-
ing, enhanced performance, and/or prolonged 
training effects include threat detection in virtual- 
reality simulated urban warfare scenes [ 118 –
 120 ], simulated air traffi c controller games [ 121 ], 
a complex multi-task game “Space Fortress” 
[ 122 ], and an image analysis task in which target 
objects must be identifi ed from synthetic aperture 
radar images of terrain with buildings and vehi-
cles [ 123 ]. Not surprisingly, much of this research 
has been funded by the US Department of 
Defense [ 124 ]. 

 On the other end of the spectrum from defense 
and security organizations, a community of indi-
vidual “do-it-yourself” (DIY) tDCS users are also 
actively pursuing cognitive self- improvement [ 125 ]. 
The practices of this community were recently 
described in detail by Wexler [ 126 ]. The  DIY com-
munity   refers collectively to tDCS use outside of pro-
fessional or academic settings, and can be subdivided 

R.P. Wurzman and R.H. Hamilton



369

into those who seek to enhance their cognition and 
those who intend to alleviate clinical symptoms of 
neuropsychiatric disorders [ 126 ]. 

 A burgeoning wearables market is also emerg-
ing, producing tDCS products controlled by com-
panion apps for cognition and  athletic performance   
enhancement, in both healthy individuals and 
clinical populations. Two of these companies sup-
ply direct-to-consumer devices for recreational 
and lifestyle indications (Thync and Foc.us), and 
another has a stimulator intended for healthy and 
“impaired” populations in a well- funded develop-
ment pipeline (Halo Neuroscience;   http://halo-
neuro.com/#science    ) [ 124 ]. These companies are 
at the forefront of trends that could potentially to 
lead to widespread, if not ubiquitous, use of neu-
romodulatory technologies in daily life. 

 However, at present the effects of tDCS are far 
from established. Despite growing excitement 
about the possibility of using tDCS for enhance-
ment of otherwise normal cognition, caution is 
warranted before extrapolating observations and 
lessons learned in cognitive neuroscience and clin-
ical contexts to cognitive enhancement in healthy 
individuals due to fundamental differences in the 
theoretical, practical, and ethical issues related to 
each (as will be discussed in the next section).   

    The Perils of tDCS 

 Despite its promise, the use of tDCS in cognitive 
neuroscience, clinical research, and para-clinical 
applications faces several scientifi c and ethical 
challenges, which must be considered to protect 
against unanticipated or even adverse effects on 
the  bio-psycho-social health   of individuals and 
communities. It is especially important to accu-
rately assess the state of the science, and refl ect 
upon the way that the present degree of scientifi c 
understanding of tDCS motivates, justifi es, and 
sometimes cautions against tDCS use. 

    Scientifi c Challenges 

 Scientifi c challenges stem from the fact that there 
is much that we do not yet understand about the 
underlying neural mechanisms of tDCS. Our 

incomplete understanding of  tDCS mechanisms   
is underscored by data that indicates that the 
effects of stimulation on brain function are nei-
ther monotonic nor invariant. The  initial dogma   
based on studies in motor cortex, which attrib-
uted enhancement or diminishment of cortical 
excitability to  anodal or cathodal stimulation  , 
respectively, often confl icts with experimental 
results. On the contrary, dose-response relation-
ships are still poorly understood. For example, 
one study found that 1 mA cathodal stimulation 
diminished motor cortex excitability, but 2 mA 
cathodal stimulation enhanced it [ 127 ]. Similarly, 
doubling the time of stimulation can reverse the 
 behavioral and cortical excitability effects   [ 128 , 
 129 ]. Moreover, the “anodal-facilitation versus 
cathodal-disruption” schema is a clear over- 
simplifi cation; particularly beyond motor cortex, 
anodal and cathodal stimulation does not have 
equal and opposite effects on behavior. In cogni-
tive studies, anodal and cathodal stimulation is 
sometimes found to have the same net facilitative 
effect on behavior, or only one stimulation polar-
ity over the target will be found to infl uence a 
given behavior [ 11 ]. 

 More broadly, we know that  stimulation 
parameters   matter a lot, but we are limited in 
our knowledge of what difference they actually 
make. For example, fi nite element models of 
tDCS-induced electrical current fl ow tell us that 
the size and location of the “reference” electrode 
strongly infl uences the effects of stimulation 
[ 130 ,  131 ]. Small changes in electrode position 
and individual head shapes can also greatly 
modify current fl ow patterns [ 132 ,  133 ]. 
However, the results of these models vary con-
siderably based on model assumptions [ 134 ]. In 
other words, the best tools we have for under-
standing what stimulation is doing are them-
selves quite limited. 

 Other unknown variables when considering 
the perils of broader applications of tDCS to 
enhance  cognition   are the interactions that brain 
stimulation may have with comorbid diagnoses 
and the concurrent use of medications. The inter-
action of brain stimulation with agents that act on 
different neurotransmitters is of special concern 
in neuropsychiatry, since many (or perhaps most) 
people who suffer from these problems are taking 
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one or more such medications. Some  drugs   have 
been found to have profound, complex and varied 
infl uences on tDCS-induced  neuromodulation   
[ 135 – 137 ]. In one very large clinical study of 
tDCS and depression, an additional naturalistic 
study systematically evaluated how tDCS 
responses were affected by concurrent treatment 
with psychiatric  medications  , including benzodi-
azepines, serotonin-noradrenergic reuptake 
inhibitors (SNRIs), selective serotonin reuptake 
inhibitors (SSRIs), tricyclic antidepressants 
(TCAs), fi rst- and second-generation antipsy-
chotics, and mood stabilizers, and found that 
medication-stimulation interactions are signifi -
cant considerations [ 138 ]. Specifi cally, they con-
fi rmed that antidepressants generally increased 
tDCS effects, but found that taking benzodiaze-
pines actually worsened outcomes. They also 
found that tDCS did not interact with non- 
benzodiazepine anticonvulsants and antipsychot-
ics, which are frequently used as mood stabilizers 
in patients with depression. Considering that 
there have been reports of hypomanic switches 
after tDCS in depression patients [ 139 ,  140 ], 
including an episode of manic psychosis in a 
stimulated patient taking sertraline [ 36 ], these 
fi ndings warrant further investigation in order to 
develop safety guidelines for treating mood dis-
orders with tDCS [ 141 ]. 

 In sum, we have an incomplete understanding 
of how stimulation parameters and other dose 
variables act on the brain or interact with medica-
tions. This lack of precise mechanistic under-
standing limits our ability to predict the effects of 
tDCS in individuals. It is essential that clinicians 
and self-applicators of tDCS temper their enthu-
siasm with an understanding of these  limitations  . 
There are ethical and pragmatic obligations to 
resolve these uncertainties and to seek a more 
detailed mechanistic understanding of tDCS.  

     Ethical    Challenges   

 The potential for tDCS use to become widespread 
raises a number of social and existential risks that 
must be carefully weighed against its benefi ts. By 
their nature, the effects of tDCS on cognition and 

affect blur the distinctions between treatment and 
enhancement. Moreover, its accessibility makes 
its use especially diffi cult to confi ne within the 
bounds of clinical medicine. Thus, ethical issues 
raised by tDCS cannot be viewed solely through 
a clinical ethics lens. Like pharmacological treat-
ments that also have the potential to be used for 
enhancement purposes, the use of tDCS has not 
and will not remain in the medical realm. 
However, there is much still unknown about cog-
nitive enhancement [ 4 ], both in terms of the sci-
ence and in terms of its broader effects in ethical, 
legal, and social spheres. As discussed below, the 
ethical issues surrounding tDCS can be broadly 
categorized into concerns regarding  safety ,  jus-
tice ,  character , and  autonomy . The latter three 
concerns deal with potential trajectories of tDCS 
technology development and use patterns that 
are, at present, still speculative. However, it is 
important to consider the ethical implications of 
possibilities so that the negative consequences 
can be anticipated, and if possible, avoided.  

    Safety 

 In most traditional ways of thinking about  safety  , 
tDCS is of low concern; all current evidence indi-
cates that tDCS delivery by currently applied 
protocols is very safe. While there are some rec-
ognized minor risks associated with tDCS such 
as mild headache and a mild itching or burning 
sensation under the electrodes [ 142 ], the  risk   of 
obvious physical injury from tDCS is extremely 
low. The most severe recognized potential medi-
cal  risks   associated with tDCS are burns to the 
skin and complications resulting from electrical 
equipment failures [ 143 – 145 ], but these are very 
rare and more likely to result from DIY systems 
than commercially manufactured stimulators. 

 The main potential concern with safety is 
that tDCS may alter cognition in unintended 
ways [ 146 ,  147 ]. Evidence suggests that stimu-
lation at different sites may benefi t some cogni-
tive  abilities   but impair others [ 148 ]. 
Additionally, inhibiting or exciting the same 
region of brain can elicit different types of 
benefi ts. For example, anodal stimulation to the 
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lateral prefrontal cortex not only improved 
 working memory  , but also related fronto-execu-
tive functions that require a high degree of cog-
nitive control, such as selective attention and 
set-switching. However, some aspects of cogni-
tive fl exibility and divergent thinking could be 
more consistent with a loosening of cognitive 
 control  , resulting in less “top- down” regulatory 
fi ltering of low-level information. Accordingly, 
cathodal stimulation to lateral prefrontal cortex 
has been shown to enhance cognitive fl exibility 
in tool use [ 16 ]. Viewed together, these studies 
raise theoretical concerns that stimulation deliv-
ered with the intent of enhancing attention or 
working memory could have detrimental trad-
eoffs for cognition associated with creativity. 

 These kinds of tDCS-induced  mental trade- 
offs   have been demonstrated for other aspects of 
cognition [ 148 ]. For instance, Iulcano and 
Kadosh (2013) recently explored how tDCS 
affected two dissociable aspects of learning that 
were relevant to mastery of a novel mathematical 
task: skill acquisition rate, and skill automaticity 
whereby tasks are performed quickly, effort-
lessly, and without conscious intention. Using 
tDCS to brain regions associated with learning 
(posterior parietal cortex; PPC) or  automaticity   
(DLPFC) the investigators demonstrated a dou-
ble dissociation wherein tDCS to the PPC 
enhanced learning rate but impaired automaticity 
while tDCS of the DLPFC enhanced automatic-
ity at the expense of learning rate [ 148 ]. 

 The nature of stimulation benefi ts may be 
specifi c to certain traits or states. For example, 
tDCS improved  arithmetic decision making 
effi ciency   in healthy subjects who had high 
levels of pre- existing math anxiety, but it 
slowed reaction times in healthy subjects who 
had low-math anxiety, whose arithmetic effi -
ciency was already unimpaired [ 149 ]. In sev-
eral studies, state- dependent tDCS effects were 
linked to one’s starting level of ability, with 
factors that lead to better performance at base-
line associated with less improvement, and 
potentially impairment [ 114 ,  150 ,  151 ]. In a 
related fashion, the effects of tDCS on learning 
and memory task may depend on the stage of 
training [ 152 ]. 

 In some cases where tDCS is associated with 
worse outcomes, stimulation does not directly 
cause cognitive  degradation  , but rather may block 
typical improvement by factors such as practice. 
One group discovered this while looking at the 
effects of tDCS on repeated  IQ testing  , employed 
as a means to simultaneously assess multiple 
domains for cognition. The study found that 
practice-related improvements for subtests of 
fl uid intelligence (e.g., perceptual reasoning) 
were specifi cally attenuated when right, left,  or  
bilateral anodal tDCS was delivered before re- 
testing [ 153 ]. While in retrospect these results are 
consistent with expected effects of frontal anodal 
tDCS on cognitive fl exibility, the authors initially 
hypothesized that tDCS would improve IQ test 
performance because previous studies had found 
that other types of task performance were 
improved by such stimulation. Such evidence 
highlights that tDCS is not a panacea, and further 
suggests that perhaps we should consider a more 
nuanced notion than “cognitive enhancement” 
for framing tDCS applications. 

 One of the challenges in understanding the 
risks, benefi ts, and trade-offs of using tDCS to 
enhance cognition is that, while many in the  DIY 
stimulation   community and elsewhere look 
toward the cognitive neuroscience community to 
inform how stimulation for enhancement could 
be pursued, the fundamental approach taken by 
most cognitive neuroscience studies does not 
adequately address the “cognitive  safety  ” of 
enhancement with tDCS in at least two ways. 
First, the scientifi c methodology used in most 
cognitive neuroscience studies of tDCS only test 
one or a very limited number of cognitive func-
tions in order to test specifi c hypotheses about the 
relationships between the brain areas stimulated 
and those specifi c mental operations. They do not 
test to make sure there are no deleterious effects 
on every other intellectual function. Second, cog-
nitive neuroscience studies generally do not test 
for the durations that one might consider relevant 
if one was trying to make  long-term changes   in 
cognition. We simply do not know what the 
effects of increased frequencies and durations of 
stimulation are for individuals with healthy cog-
nition. While this is not terribly relevant for basic 
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cognitive neuroscience studies, it is extremely 
relevant for cognitive enhancement studies, due 
to the increased likelihood of repeated and poten-
tially prolonged stimulation sessions in the latter. 
Similarly patient studies do not wholly inform 
what the likely effects of neural enhancement 
with brain stimulation are because the brains in 
which  therapeutic stimulation   is being applied 
have already been altered by disease. Thus,  safety   
considerations for tDCS underscore that the sci-
ence has yet to support the technical application 
of tDCS for unmitigated cognitive enhancement.  

    Justice 

 Distributive  justice   refers to the equitable distri-
bution of benefi ts. The development of “cos-
metic” tDCS as a boutique service for cognitive 
remediation or enhancement could exacerbate 
social disparities by introducing a new type of 
“cognitive” privilege for those who can afford to 
exogenously treat or augment their own intellect 
[ 154 ]. Moreover, if boutiqued cognitive enhance-
ment becomes a norm that is taken for granted, 
expectations regarding a “normal” range of cog-
nitive abilities could become distorted to the 
point where unaugmented cognition is perceived 
as pathological. This could result in (further) 
medicalization of systemic disadvantage, which 
may introduce further obstacles to the remedia-
tion of social inequality, since access to educa-
tion, medical care, and nutrition are already 
inequitable. Thus, explicit “cognitive health” dis-
parities might further entrench systems of privi-
lege and socioeconomic inequality. In many 
ways, this problem is not new or unique to 
enhancement with NIBS, but is symptomatic of 
the already vast separation in privilege between 
the haves and the have-nots. 

 On the other hand, compared with other tech-
nologies (including pharmaceutical agents) with 
utility as treatments or enhancements, justice may 
arguably constitute less of an issue for tDCS than 
other neurotechnologies, because it is relatively 
inexpensive and easy to create and employ with 
only modest technical training [ 155 ]. Noninvasive 
brain stimulation in healthcare is currently inequi-

table; if tDCS could confer comparable benefi ts 
while requiring less medical or technological 
infrastructure, it could increase justice in medi-
cally oriented neurostimulation [ 156 ].  

    Character 

 Issues of character relate to our essential human-
ity and how we fi nd meaning in life. Ethical 
 issues   of character with brain simulation are 
those that impact our experience of personhood 
[ 157 ]. With its potential to alter our experience of 
behavior and cognition,  brain stimulation   raises 
two key questions. The fi rst question is about 
identity and the integral core constellation of 
mental and behavioral characteristics that defi ne 
us. It asks, “To what extent  can  and  should  we 
have the ability to change the core of who and 
what we are?” In part, the answers depend on the 
degree to which the core traits that distinguish us 
are considered to be stable, consistent, and inte-
grated, and whether tDCS can disintegrate or 
change this subjective “core.” The second 
 question is about Self and the potential long-term 
consequences of  self-enhancement   on character 
building, as well as other more general aspects of 
psychosocial development, both within individu-
als and as a society. What sort of experiences are 
necessary for wisdom and maturity and virtue, 
and what are the consequences of avoiding them? 
These questions have already been deeply 
explored for neural interventions, in particular 
invasive deep brain stimulation ( DBS  ) [ 158 –
 162 ]. However, the scope of access to tDCS adds 
an additional dimension to such ethical consider-
ation, as the potential effects on character devel-
opment or change shifts from being an issue that 
affects select patients and their loved ones to 
something that could extend more directly to 
everyone. 

 Aspects of life experience that are not neces-
sarily subjectively positive are integral to shaping 
a person’s bearing, demeanor, and personality. It 
is a widely accepted social norm that adversity 
breeds character. If cognitive and  emotional chal-
lenges   can all be eased by exogenously stimulat-
ing the brain, how does that affect the resilience 
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and moral quality of a society in which this life of 
convenience is available? On the other hand, how 
much suffering is enough, and who gets to decide? 
After all, we do not consider it a moral failing if a 
person treats pain associated with childbirth or 
medical procedures. At what point, if any, does 
relief from diffi cult experiences diminish us? The 
consequence of tDCS on individual development 
ultimately affects society and culture in ways that 
are evolving and reciprocal, because social 
dynamics among individuals and groups infl u-
ence, and are infl uenced by, the ambient culture. 
Thus, the adoption of widespread  self-enhance-
ment   will bring questions about whether there 
should be limits to alter our fundamental nature to 
the forefront in formulating social and policy 
responses to growing use of tDCS. 

 Despite potential concerns, the effects of 
widespread tDCS use on character may not nec-
essarily be negative. For instance, ongoing 
research is exploring the role of the brain in 
 sports and fatigue   (  http://www.neuroelectrics.
com/use-case/    ), and seeks to leverage this under-
standing to develop stimulation that could remove 
neural obstacles to maximum physical athletic 
performance. One could argue that removing 
obstacles to maximum performance  given maxi-
mum effort  is a categorically different type of 
enhancement than enhancement that makes 
something require  less  effort. In such a context, 
tDCS could be viewed as an  enabling  tool that 
could  enhance character , rather than to act as a 
 substitute  for qualities that character would ordi-
narily supply to ensure success, such as commit-
ment, patience, perseverance, and 
self-transcendence. This distinction is potentially 
relevant not only to athletics, but also to treat-
ment in neuropsychiatry, wherein stimulation 
could potentially enable rather than rather than 
substitute for self-driven efforts to cultivate posi-
tive character traits. For example, enhancement 
of executive function in someone with ADHD to 
improve impulse control and the ability to sustain 
attention might  enable  such individuals to prac-
tice acts of high character, such as fi nishing what 
one has started or keeping commitments. The 
cardinal distinction applying to both situations is 
that high sustained effort is still required, and that 

absent the intervention, there are limits to the 
degree that such effort could affect performance. 
Assuming that the same amount of effort is 
exerted with or without tDCS, what is the true 
nature of the effect, if any, on the character of the 
athlete or individual with ADHD? These are all 
largely philosophical and psychological ques-
tions whose answers hinge on arguments about 
the relative infl uence afforded to   situational con-
text  versus  personality    when assessing of charac-
ter. Although this subject is beyond the scope this 
chapter, it is worth noting that a meaningful dis-
cussion of the impact of tDCS on character may 
require further consideration of a broader  con-
ceptual framework   to address the daunting philo-
sophical challenge of relating concepts such as 
identity and self to behavior and neurobiological 
functions.  

    Autonomy 

  Autonomy   can be thought of as the right to one’s 
own life, to make choices based on reasons and 
motivations that are not the product of manipulat-
ing or distorting external forces. In the context of 
tDCS, autonomy can be considered in terms of 
two types of freedom: (1) the freedom  not  to be 
stimulated, and (2) the freedom  to be  stimulated. 

 The freedom  from  stimulation can be threat-
ened by hard or soft coercion. In hard coercion, 
the individual is forced into an activity for the 
perceived “good of society”. Neuropsychological 
hard coercion is far from unheard of. Examples 
include psychopharmacologic agents given to 
soldiers to maintain battlefi eld performance and 
chemical castration to diminish the libido of 
imprisoned sex offenders [ 163 ,  164 ]. It is not all 
that hard to imagine cognitive enhancement with 
brain stimulation potentially following a similar 
course with similar vulnerable populations. With 
soft coercion, the individual feels societal pres-
sure to keep up with norms and mores. As we 
know from many examples in professional sports, 
in high-stakes competitive environments, indi-
viduals turn readily to performance enhancers to 
give themselves a competitive edge. With respect 
to mental performance, we can see examples of 
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soft coercion currently in individuals who take 
pharmacologic cognitive agents in hopes of opti-
mizing their performance at school or work. With 
respect to neuropsychology, the hazard of soft 
coercion again highlights that tDCS could poten-
tially blur the distinctions between pathologically 
poor brain function and brain function that is nor-
mal but suboptimal for the tasks one desires to 
accomplish. 

 The freedom  to  be stimulated is unlikely to be 
overtly threatened given the accessibility of tDCS 
components. In this, lessons can be learned from 
other examples of cognitive self-enhancement, 
and cosmetic applications of medical technolo-
gies, including neuropharmacology. While it is 
important to remember that individuals are free 
to do as they see fi t with respect to their own bod-
ies and minds, inevitably,  autonomy   must neces-
sarily be balanced with other ethical imperatives 
that arise from pragmatic or moral justifi cations, 
such as the need to consider the health of the 
community. Just as soft coercion can be used to 
encourage stimulation, social pressures can be 
exerted to infl uence the actions of those who 
would elect to use tDCS for medical or enhance-
ment purposes. Given the complexity of the 
issues surrounding the use of tDCS for medical 
or enhancement, monolithic laws are unlikely to 
be helpful—or effective.   

    Ethical Considerations Pertaining 
to Neuropsychiatry 

 It may be taken for granted that the principle  ethi-
cal   considerations for tDCS with respect to the 
practice of neuropsychiatry boil down to whether 
tDCS is an acceptable way to treat patients. To 
this end, it is important to keep in mind that the 
distinction between normal and pathological is 
indiscrete and often culturally determined. 
Importantly, individuals whose thoughts and 
behaviors may objectively deviate from typical 
behavioral norms do not always do so in a way 
that leads to suffering; the moral imperative to 
medically treat dysfunction depends on the  quali-
tative impact   it has on an individual’s life rather 
than the mere presence of abnormality [ 165 ]. 

Indeed,  neurodiversity   is increasingly being rec-
ognized as an intrinsic and valuable part of the 
spectrum of human experience that confers value 
and vigor to our overall ability to cognitively 
adapt to social and environmental changes [ 166 ]. 
Medicalizing neurodiversity pressures individu-
als and professionals (to some extent) into enforc-
ing conformity to sociocultural norms of what is 
considered a “valuable” life. Neuropsychiatry as 
a fi eld should consider tDCS alongside other 
dilemmas involving  neurodiversity   that drive the 
overall societal disposition towards psychiatry. 
These are not necessarily different issues than 
those pertaining to medicating neuropsychiatric 
disorders, but the fact that one doesn’t necessar-
ily need a prescription to self-administer tDCS 
(in some form) could shape perspectives on 
whether neuropsychiatric therapeutic applica-
tions of tDCS are perceived as legitimate, relative 
to other contexts in which tDCS could be used 
for enhancement or recreation. 

 Neuropsychiatry as a fi eld should also be aware 
of the ways that widespread and even  non- medical   
use of tDCS could infl uence perceptions of nor-
mality versus pathology. It can, at times, be diffi -
cult to distinguish between true “diseases” of the 
mind and more mundane dissatisfaction with men-
tal states. Psychological aspects of individuals that 
are considered to be symptoms can often be con-
ceptualized as traits that vary along a continuous 
spectrum of expression, for example, from inatten-
tiveness to an attention defi cit, or from sadness or 
emotional exhaustion to depression. This slippery 
slope of spectrum is especially problematic con-
sidering the  capacity of tDCS   to alter intellectual 
performance or mood. While most neuroscientists 
would argue that we are still far from being able to 
reliably alter mental states on an individualized 
basis using tDCS, the marketing for products like 
Thync and subjective experiences reported by 
 DIY users   indicate that at least the  perception  that 
tDCS can be used to induce targeted changes to 
mood (for example) exists presently. Having the 
power to so easily remedy dissatisfaction with 
one’s mental states using tDCS—or even just 
believing that one has that power—has the poten-
tial to further obscure boundaries between what is 
considered normal, sub-clinical, or pathological. 

R.P. Wurzman and R.H. Hamilton



375

 Clinical fi elds that purport to distinguish 
between  normal and pathological mental func-
tioning   face special obstacles when clinical val-
ues confl ict with sociocultural norms, such as 
individuality or self-reliance. This has  implica-
tions   for clinical uses of tDCS. It is already diffi -
cult to determine when it is ethical to use 
technology to intervene in one’s mental function-
ing. Widespread use of neural enhancement tech-
nologies like tDCS could further pathologize 
aspects of cognitive performance that would oth-
erwise be considered along a spectrum of nor-
malcy. This distortion could have the effect of 
decreasing individual autonomy by exerting posi-
tive pressure on clinical professionals to treat 
patients using neurostimulation or on individuals 
to “treat” themselves. As with  pharmacological 
self-enhancement  , some individuals might seek 
neuropsychiatric treatment for the purpose of 
procuring access to such technology as opposed 
to alleviating the suffering caused by illness. 
Thus neuropsychiatrists run the theoretical risk 
of becoming dispensers of cognitive commodi-
ties in tDCS as well as neuropharmacology. On 
the other hand, if there is general cultural push-
back to increasing use of NIBS for self- 
enhancement, the application of tDCS in 
neuropsychiatric contexts, even where therapeu-
tically benefi cial, could come to be seen as prob-
lematic. Consider, for example, the stigma that 
popular culture has placed on electroconvulsive 
therapy (ECT), a highly effective treatment for 
refractory and life-threatening cases of depres-
sion, and how that stigma has had a sustained 
negative infl uence on its acceptance and use as a 
therapy. If tDCS becomes similarly stigmatized, 
this could raise obstacles to the development 
effective treatments for a variety of neurologic 
and neuropsychiatric  conditions  . 

 Several points raised in this chapter also have 
ethical  implications   for clinician-patient encoun-
ters. Because tDCS is not yet approved for spe-
cifi c clinical indications, we will here consider 
concerns that apply primarily to users of DIY or 
direct-to-consumer products. As public use of 
these technologies becomes more widespread, 
patients may sometimes confi de to their neurolo-
gists or psychiatrists that they are experimenting 

with tDCS for  self-treatment  . In this situation, it 
is important that patients understand the safety 
consequences tDCS, including possible uninten-
tional alteration of cognition or emotions. It will 
also be important for patients to recognize the 
current limits of the scientifi c literature, which 
cannot reliably predict what effects tDCS will 
have in the context of  polypharmacy   or other 
concurrent treatments. Conversations about the 
state of tDCS science and what is and is not 
known about tDCS might help patients to make 
better-informed decisions for themselves. 
However, insofar as there is currently no compel-
ling evidence of serious medical risk posed by 
tDCS, some patients may be inclined to disregard 
the advice of their clinician and continue to self- 
administer tDCS in ways that, at least theoreti-
cally, seem potentially deleterious. This raises 
ethical issues of how best to engage with the 
patients regarding the  risk of tDCS misuse   in the 
absence of clear evidence for or against long- 
term harms. The issue of clinical misuse or over-
use is similarly likely to arise in the event that 
tDCS is approved for specifi c indications such as 
depression or pain. While there is no clear one- 
size- fi ts-all strategy for navigating this topic with 
patients, it is an issue that neurologists and psy-
chiatrists should be aware and ask about in their 
patients, especially as awareness of the therapeu-
tic potential of tDCS becomes much more wide-
spread in the public sphere.  

    Conclusion 

 In sum, there are pragmatic considerations spe-
cifi c to the practice of neuropsychiatry that bear 
weight in assessing both the utility and risks of 
employing tDCS as therapy. As it is presently 
understood, the  mechanism of tDCS   effects may 
be of particular utility for disorders in which dys-
function coincident and overlapping neural cir-
cuits leads to a range of psychiatric and cognitive 
symptoms. Targeting those common neural sub-
strates with tDCS may lead to a variety of salu-
tary effects in patients with complex disorders of 
mood, affect, and cognition. However, stimula-
tion of overlapping neural circuits may also give 
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rise to cognitive tradeoffs that should prompt 
caution, particularly when the intent is to use 
tDCS to enhance normal cognition as opposed to 
treat disease. It is important to consider what is 
known versus what is not known about tDCS 
when designing clinical and cognitive research 
studies, and even more so when developing pub-
lic policy and communicating with potential 
tDCS users (both consumers and patients). 
Clinicians and neuroscientists alike have an ethi-
cal responsibility to ensure that the lay public can 
access accurate information about what is and is 
not known about the mechanisms, effects, and 
safety of tDCS. In some cases, this may mean 
tempering unbridled enthusiasm for tDCS 
expressed in media coverage. The benefi ts and 
risks of tDCS clearly vary according to the con-
text of administration, both with respect to the 
research, clinical, and cosmetic purposes for 
stimulation, as well as the states and traits of indi-
vidual recipients. 

 All these considerations prompt a need to 
anticipate the trajectories of current and potential 
future use of tDCS both within and outside of 
clinical contexts, as there are likely to be dynamic 
broader  social and cultural consequences   of 
tDCS use within neuropsychiatry. Likewise, neu-
roethical consequences from nonclinically ori-
ented tDCS use are also likely to have an impact 
on the way tDCS is used and sought out by 
patients. Thus, the use of tDCS in neuropsychia-
try may have profound impacts not only on the 
social-cultural milieu, but also on the perceptions 
and practices of neuropsychiatry as a fi eld.     
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