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Abstract. We present novel branch-and-check and logic-based Ben-
ders decomposition techniques for the Travelling Purchaser Problem,
an important optimization problem with applications in vehicle routing,
logistics, and warehouse management. Our master problem determines
a set of markets and directed travel arcs that satisfy product purchase
constraints with relaxed travel costs. Our subproblem identifies subtours
within this master assignment and produces a set of generalized subtour
elimination cuts. We show that the proposed technique demonstrates
strong performance on the asymmetric problem variants, finding opti-
mal solutions to previously unsolved instances, while performing com-
petitively on a number of symmetric problem classes. Furthermore, our
model is implemented unchanged for the four problem variants whereas
other state-of-the-art approaches are variant-specific.

1 Introduction

Given a set of markets, each with a set of available products, the Travelling
Purchaser Problem (TPP) aims to determine a simple cycle among a subset of
markets that minimizes the sum of travel cost and purchase cost for the set of
products required by the traveller. The problem is NP-Hard [23] and generalizes
both the Travelling Salesman Problem (TSP) [10] and the Uncapacitated Facility
Location Problem (UFLP) [9].

Our primary contribution is the development of an exact decomposition
model to solve the TPP. The decomposition uses mixed-integer programming
for the master problem and a straightforward subtour identification algorithm
to generate cuts. The method is simple to implement in commercially avail-
able solvers, and does not require sophisticated separation procedures, nor an
in-depth polytope analysis [19,24]. To our knowledge, there is no other single
approach that has been used without modification to efficiently solve the unca-
pacitated, capacitated, asymmetric, and symmetric problem variants. Our app-
roach achieves strong performance on both the capacitated and uncapacitated
asymmetric instances while remaining competitive on symmetric problems.

As far as we are aware, this work is the first application of branch-and-check
and logic-based Benders decomposition (LBBD) for the TPP, though an LBBD-
inspired heuristic approach has been investigated [6] and served as an initial
inspiration for this work.
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2 Background

In this section we define the TPP and review existing relevant work, focusing on
exact algorithms rather than heuristic approaches (e.g., [5,12,13]).

2.1 Problem Definition

Following Laporte et al. [19], consider a set of markets M := {v0, v1, ..., vn},
where v0 is a depot, and a set of available products K := {p1, ..., pm}. The
demand for product pk, the quantity of product that must be purchased, is dk

and the price of pk at vi is bki. Each product, pk, can be purchased at a subset
of the markets, Mk, and the quantity of pk available at vi is qki. We define
M∗ := {v0} ∪ {vi ∈ M : ∃ pk ∈ K such that

∑
vj∈Mk\{vi} qkj < dk} as the set

of required markets. The travel cost between markets vi and vj is cij . We must
find a simple cycle among a subset of markets such that all product demand is
satisfied and the sum of the travel and product purchase costs are minimized.

We present a mixed-integer programming (MIP) model in Fig. 1. The model
is based on Laporte et al. [19] but uses the lifted Miller-Tucker-Zemlin (MTZ)
subtour elimination formulation [8,21]. The decision variables are:

zi := 1 if market vi is visited and 0 otherwise
xij := 1 if market vi is visited directly before vj and 0 otherwise
yki := the purchased quantity of pk at market vi

ui := a positive variable used for MTZ subtour elimination [21]

Equation (1) minimizes the sum of travel and product purchase costs. Con-
straints (2) and (3) represent the degree constraints for each market. Con-
straint (4) ensures that the demand for each product is satisfied while Constraint
(5) ensures that quantity of a product purchased at a market is contingent on
both the decision to visit that market and the product quantity available. Con-
straint (6) represents the lifted MTZ [8,21] formulation for subtour elimination.
Constraint (8) ensures that zi is set to a value of 1 if market vi is a required market.

2.2 Problem Variants

The majority of TPP variants addressed in the literature fall along two dimen-
sions: capacitated vs. uncapacitated, and symmetric vs. asymmetric. A prob-
lem is uncapacitated if each market sells enough of its products to satisfy the
traveller’s demand for those products (i.e., qki ≥ dk,∀vi ∈ Mk, pk ∈ K) and,
therefore, a given product is always satisfied by a single market. In capacitated
problems, the quantity of a product at a market may or may not completely
satisfy the demand (i.e., 0 < qki ≤ dk,∀vi ∈ Mk) and so the traveller may have
to visit several markets to satisfy the demand for a single product. A problem
is symmetric if cij = cji holds, and asymmetric if it does not. These dimensions
combine to form four problem variations: uncapacitated-symmetric (U-STPP),
uncapacitated-asymmetric (U-ATPP), capacitated-symmetric (C-STPP), and
capacitated-asymmetric (C-ATPP).
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Fig. 1. A MIP Model for the Travelling Purchaser Problem based on Laporte et al. [19]
with lifted MTZ subtour elimination constraints [8,21].

The MIP model in Fig. 1 is valid for all four problem variants as the dif-
ferences are embodied in the instance data: the symmetricity difference is due
to the travel cost matrix data and the uncapacitated variants simply assign
dk = 1,∀pk ∈ K and qki = 1,∀pk ∈ K; vi ∈ Mk.

2.3 Related Work

The first exact approach to the TPP was a lexicographic search algorithm capa-
ble of solving the U-STPP and U-ATPP instances with |M | = 12 and |K| = 10
(12×10) [23]. Singh et al. [25] proposed a branch-and-bound method for the
U-STPP and U-ATPP that utilized the relaxation of UFLP constraints to gen-
erate lower bounds. The approach solved asymmetric instances of size 25×50
and symmetric instances of size 25×30. Laporte et al. [19] proposed the first
capacitated formulation of the symmetric TPP and developed a branch-and-
cut approach for the U-STPP and C-STPP. This method solved instances of
size 200×200 and remains a state of the art for symmetric variants. Riera et
al. [24] developed a state-of-the-art branch-and-cut approach for the U-ATPP
and C-ATPP, solving instances of 200×200. More recently, Cambazard et al. [7]
developed a constraint programming approach for the U-STPP, solving instances
of size 250×200, often out-performing Laporte et al.

3 LBBD and Branch-and-Check for the TPP

We investigate both logic-based Benders decomposition (LBBD) and branch-and-
check (B&C), with the notion that the TPP can benefit from the delayed enforce-
ment of certain constraints. The decomposition structure is the same for both
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approaches, the difference concerning whether the sub-problem is solved at opti-
mal or feasible solutions to the master problem. LBBD [15] uses logic-based sub-
problems to produce valid Benders cuts [11] for the master problem. In LBBD, the
master problem is solved to optimality and the solution to this relaxed problem
is utilized to solve the subproblem(s) and generate cuts. The master problem is
then re-solved, and this iterative process continues until the solution to the mas-
ter problem, with all generated cuts, is valid with respect to the subproblems, and
thus is a globally optimal solution. B&C [26] is a variation of LBBD where the
subproblem(s) are solved whenever a feasible solution is found during the branch-
and-bound search of the master problem. Problems with more difficult master
problems, as compared to the subproblems, are more suited for branch-and-check,
whereas difficult subproblems comparatively favor LBBD [4].

Assignment Master Problem. In the decomposition proposed, the master prob-
lem is a relaxation of the full MIP model (Fig. 1) through omission of the sub-
tour elimination constraints and associated variables: that is, the removal of
Constraints (6) and (7). A solution to the master problem consists of an integer
set of assigned markets, zi, and directed travel arcs, xij , that satisfy product
purchase requirements while allowing subtours. It is natural, therefore, for the
subproblem to identify subtours and eliminate them through cut generation.

Subtour Identification Subproblem. Our approach consists of identifying these
subtours, evaluating their candidacy as globally feasible solutions, and producing
generalized subtour elimination [16] cuts when appropriate.

Due to Constraints (2) and (3), the master solution consists of a set of one
or more disjoint tours of the selected markets. Since our master assignments
are integer, a trivial depth first search is sufficient to identify the unique set of
subtours, Sh, in the hth master problem solution where each sh

� ∈ Sh consists of
a set of markets in a subtour.

For each subtour we first assess whether it is, by itself, a feasible solution to
the global problem; that is, does sh

� satisfy all product purchase requirements
and include the depot, v0 ∈ sh

� . While such subtours will not exist for LBBD,
due to the optimality of the master problem solution, for B&C at most one such
subtour may exist per iteration.1 If such a subtour, ŝh, exists, we remove it from
Sh and use it as a new global incumbent solution. At the same time, for each
subtour sh

� ∈ S̄h := Sh \ {ŝh}, we introduce a generalized subtour elimination
cut defined as follows:

∑

vi∈sh
�

∑

vj∈sh
� ,vj �=vi

xij ≤
∑

vi∈sh
�

zi + ψsh
�

− 1 ∀sh
� ∈ S̄h, (12)

ψsh
�

+ zi ≤ 1 ∀vi ∈ sh
� ; sh

� ∈ S̄h, (13)

ψsh
�

∈ {0, 1} ∀sh
� ∈ S̄h. (14)

1 The limit of one per iteration is due to the depot inclusion condition.
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The left hand side of Cut (12) is the number of chosen arcs in the (complete)
sub-graph induced by the markets in subtour sh

� . The right hand side defines
an upper bound for this value, prohibiting the creation of a subtour of any
permutation of the markets as well as removing some, but not all, subtours
among subsets of the markets. The subset prohibitions are achieved through the
use of the

∑
vi∈sh

�
zi term instead of simply the cardinality of the markets, |sh

� |.
The cut adds of a new auxiliary variable, ψsh

�
, for each sh

� ∈ S̄h which, due
to (12), is constrained to the value 1 if none of the markets in the subtour
are chosen in a subsequent iteration (i.e., if

∑
vi∈sh

�
zi = 0) and, due to (13),

is constrained to 0 otherwise. Functionally, ψsh
�

ensures the global validity of
the cut. Without its inclusion, if none of the markets vi ∈ sh

� were chosen in a
subsequent iteration, Cut (12) would reduce to 0 ≤ 0−1, removing a potentially
globally optimal solution.

The validity of the cut is easily seen. Each cut eliminates at least one subtour
from the master solution space and as the removed subtour does not itself con-
stitute a globally feasible solution, no such solutions are removed. Convergence
to optimality is then based on the finite (though large) number of subtours.

This cut has a similar purpose to the one proposed for the Orienteering
Problem [14,16], though is different through the use of variable generation. Initial
experimentation suggests that our cut performs more effectively, in general, than
the one proposed in Laporte et al. [16], though this is an area we intend to explore
more thoroughly. We note that an equivalent generalized connectivity cut [16]
can be used as well, using the cut-set of directed arcs.

In traditional cut-based approaches for cycle problems, subtour constraints
and integrality requirements are relaxed and violated inequalities are separated
based on fractional solutions of the resulting linear program (LP). When the LP
is solved, a max-flow (or min-cut) problem is solved to identify and separate vio-
lated tour constraints [22]. Additional cutting planes are available, most notably
the class of comb inequalities [2]. This standard approach relies heavily on the
performance of the LP solver, requiring active management of model size due
to the large number of valid inequalities introduced via the various separation
procedures. Conversely, subtour elimination based on integer assignments has
been applied to the TSP [18,20], but not to our knowledge the TPP.

4 Computational Results

In this section we present benchmark results of the proposed LBBD and B&C
formulations on the four main variants of the TPP.

4.1 Benchmark Problems

The instance set we use is well-established in the literature [19,24] and consists
of 745 instances across six problems classes. The capacitated instances introduce
a parameter λ that dictates how traveller demand, dk, relates to the available
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quantity of a product, qki: dk := �λ maxvi∈Mk
(qki) + (1 − λ)

∑
vi∈Mk

qki	 [19].
Each instance set consists of five instances for each combination of |M |, |K| and
λ considered.

Class 1. U-STPP [19] where |M | = 33, |K| ∈ {50, 100, 150, 200, 250}, for a
total of N = 25 problem instances.
Class 2 and 3. U-STPP [19] where |M | ∈ {50, 100, 150, 200}, |K| ∈
{50, 100, 150, 200}, for a total of N = 80 problem instances in each.
Class 4. C-STPP [19] where |M | ∈ {50, 100, 150, 200}, |K| ∈ {50, 100, 150, 200},
and λ ∈ {0.5, 0.7, 0.9, 0.99}, for a total of N = 280 problem instances.
Class 1A. U-ATPP [24] where |M | ∈ {50, 100, 150, 200}, |K| ∈
{50, 100, 150, 200}, with a total of N = 80 problem instances.
Class 2A. C-ATPP [24] where |M | ∈ {50, 100}, |K| ∈ {50, 100, 150, 200}, and
λ ∈ {0.5, 0.8, 0.9, 0.95, 0.99} with a total of N = 200 instances.

4.2 Experimental Details

We implement our methods with the CPLEX 12.6.2 mixed-integer programming
solver in C++. For B&C, we utilize lazy constraints to trigger subproblem solving
and cut generation whenever a feasible master solution is found. As CPLEX
does not directly support variable generation within branch-and-bound, we pre-
allocate a number of ψsh

�
variables which the cuts then make use of. This situation

is not ideal, as it leads to a master problem with variables that may never be
utilized. Better B&C performance is likely with true variable generation.2 For the
LBBD approach, since each master iteration is solved anew, we do not require
in-search variable generation and do not suffer the same B&C limitations.

We compare to published results from the aforementioned state-of-the-art
methods. As the four problem variants have never been approached in one study,
we adapt our run-times to be appropriate for different experimental designs in
the literature. We use a run-time limit of 3,600 s for symmetric experiments,
whereas previous papers use longer run-times (7,200 and 18,000 s). For asym-
metric instances, we use a run-time limit of 7,200 s to match the limits in the
existing papers.

Our experiments use a Xeon 3.5 GHz processor machine with 16 GB of RAM
running OS X Yosemite. Laporte et al. and Riera et al. utilize much older Pen-
tium 500 MHz and AMD 1.33 GHz machines, respectively, running Linux with
CPLEX 6.0. The Cambazard paper uses a Xeon 2.66 GHz processor machine
with 16 GB of RAM running Linux 2.6.25 x64 and customized CP software. Due
to the mix of software and hardware, the results should be interpreted with care.

4.3 Results

Table 1 presents the results for the asymmetric variants (Classes 1A and 2A)
where the branch-and-cut approaches of Riera et al. [24] represent the state of
2 Experiments using dynamic variable creation in SCIP [1] show a relative improve-

ment in B&C compared to LBBD though both CPLEX implementations are faster.
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the art. Two methods are presented in Riera et al.: RieraB&CUT that uses a
customized branch-and-cut algorithm with sophisticated separation procedures,
and RieraTRANS, that transforms the ATPP into its symmetric counterpart, and
then uses the branch-and-cut of Laporte et al. [19].

The results for asymmetric instances with our approach show speed-up fac-
tors of 3 to 70 compared to the previous state of the art, including solving a
number of previously unsolved instances. We suspect the reason for this supe-
rior performance is rooted within our master problem relaxation, namely the
market assignment relaxation for the TPP. As demonstrated by Balas et al. [3],
the assignment problem (AP) relaxation for the TSP is very strong when the
cost matrix, cij , is generated randomly based on a uniform distribution, and thus
asymmetric, resulting in near-optimal solutions. Since the instances for Class 1A
and 2A are generated randomly based on a uniform distribution, it would appear
this property holds for the TPP as well. Again, hardware and software differ-
ences make this comparison less clear cut, though we believe they do provide
supporting evidence for our techniques as strong contenders for the new state of
the art on asymmetric TPP problems.

Table 2 presents the results on the symmetric instances (Classes 1–4), com-
pared to the state-of-the-art approaches. LaporteB&CUT [19] utilizes branch-and-
cut with valid inequalities to strengthen the linear relaxation with sophisticated
separation techniques. The Cambazard [7] approach, CambazardCP−PM, uses
a constraint programming (CP) model with a p-median constraint, originally
intended for solving TPP problems with a bounded number of visits.

Our proposed decomposition techniques are competitive with the existing
state of the art on Classes 1 and 2 while falling short on instances of Class 3
and 4 for larger values of |M |. For the symmetric case, our master assignment
relaxation is much weaker [3] for the underlying cycle problem, which tends to
contain many more subtours of size 2 [17] than the asymmetric counterparts,
resulting in excessive computation time for their elimination.

Table 1. Asymmetric results vs. the state of the art. C is the problem class and N the
number of instances for each value of |M |. #F indicates number of instances that were
not proved optimal in 7,200 second limit. Run-times are arithmetic mean CPU values.

Asymmetric problems (U-ATPP, C-ATPP)

Problem B&C LBBD RieraB&CUT RieraTRANS

C N |M | Avg (s) #F Avg (s) #F Avg (s) #F Avg (s) #F

1A 20 50 1.5 0 2.3 0 14.0 0 33.8 0

20 100 24.8 0 67.7 0 1,083.0 0 1,076.9 2

20 150 166.6 0 485.2 1 1,697.6 4 2,779.1 4

20 200 731.9 1 1,147.1 2 3,331.9 11 3,634.2 11

2A 100 50 1.7 0 2.8 0 100.5 0 152.4 0

100 100 34.9 0 86.7 0 2,557.9 24 2,397.0 36
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Table 2. Symmetric results vs. the state of the art. Notation is identical to Table 1
except with a 3,600 second run-time limit. ‘−’ indicates the method was not attempted.

Symmetric problems (U-STPP, C-STPP)

Problem B&C LBBD LaporteB&CUT CambazardCP−PM

C N |M | Avg (s) #F Avg (s) #F Avg (s) #F Avg (s) #F

1 25 33 6.0 0 85.5 0 28.0 0 − −
2 20 50 0.9 0 1.1 0 1.9 0 − −

20 100 9.6 0 6.9 0 12.2 0 − −
20 150 62.4 0 81.5 0 140.4 0 − −
20 200 221.1 0 280.0 0 298.5 1 − −

3 20 50 11.8 0 270.5 0 23.9 0 7.1 0

20 100 1,872.5 8 2,908.7 15 299.8 0 528.6 2

20 150 3,244.6 17 3,513.8 19 1,725.1 1 821.94 2

20 200 3,210.1 16 3,158.5 17 2,621.0 11 1,383.7 7

4 80 50 9.2 0 113.5 0 23.1 0 − −
80 100 677.7 8 1,174.2 19 402.3 2 − −
80 150 1,603.1 24 1,594.4 31 1,281.2 16 − −
40 200 3,020.6 29 2,084.9 20 2,414.6 19 − −

5 Conclusions

We presented strategies for solving the Travelling Purchaser Problem with
branch-and-check and logic-based Benders decomposition. We utilize a MIP
model for the master problem, determining a set of markets that satisfy product
purchase costs while relaxing the tour requirement. Our subproblem produces
generalized subtour elimination cuts with variable generation.

Numerical results indicate strong performance on the asymmetric problem
variants (both capacitated and uncapacitated) with order of magnitude speed-
ups observed, albeit with differing hardware and software. On the symmetric
instances, the performance was weaker, achieving about the same performance
as the existing state of the art (on older hardware) on some problem classes but
not achieving the same performance on others.

Notably, our model is applicable without modification across all four of the
primary variants of the TPP while the current state-of-the-art techniques are
variant-specific, exploiting sophisticated valid inequalities, separation schemes,
and polytope analyses.

We plan to investigate algorithm extensions including primal solution heuris-
tics, alternate cuts (e.g., [27]), as well as to perform a deeper analysis into the
impact of symmetricity in order to improve performance on symmetric instances.
We believe that the methods presented in this paper can be applied to more com-
plex TPP-variants, as well as other routing problems.
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