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Preface

The 13th International Conference on Integration of Artificial Intelligence and Oper-
ations Research Techniques in Constraint Programming, was held in Banff, Canada,
May 29 to June 1, 2016. It was co-located with CORS 2016, the conference of the
Canadian Operational Research Society.

The aim of the conference is to bring together interested researchers from constraint
programming (CP), artificial intelligence (AI), and operations research (OR) to present
new techniques or applications in combinatorial optimization and to provide an
opportunity for researchers in one area to learn about techniques in the others. A main
objective of this conference series is also to give these researchers the opportunity to
show how the integration of techniques from different fields can lead to interesting
results on large and complex problems. Therefore, papers that actively combine,
integrate, or contrast approaches from more than one of the areas were especially
solicited. High-quality papers from a single area were also welcome, provided that they
are of interest to other communities involved. Application papers showcasing
CP/AI/OR techniques on novel and challenging applications or experience reports on
such applications were strongly encouraged.

There were 51 papers submitted. Each paper received at least three independent peer
reviews. From this process, 33 papers were accepted. Among these accepted papers,
four were published in the journal Constraints.

The conference included an invited talk given by Pascal Van Hentenryck. The first
day of the conference was a Master Class about decomposition methods. Jean-François
Cordeau, John Hooker, Christopher Beck, Bernard Gendron, Willem-Jan van Hoeve,
and Louis-Martin Rouseau gave a one-hour talk on topics covering the classic and
logic-based Benders decomposition, the Lagrangian relaxation in MIP and CP, as well
as column generation.

March 2016 Claude-Guy Quimper
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Breaking Symmetries in Graph Coloring
Problems with Degree Matrices:

The Ramsey Number R(4, 3, 3) = 30

Michael Codish1, Michael Frank1, Avraham Itzhakov1,
and Alice Miller2

1 Department of Computer Science,
Ben-Gurion University of the Negev, Beersheba, Israel

2 School of Computing Science, University of Glasgow, Glasgow, Scotland

Ramsey numbers are notoriously hard graph coloring problems. An ðr1; . . .; rk; nÞ
Ramsey coloring is a graph coloring in k colors of the complete graph Kn that does not
contain a monochromatic complete sub-graph Kri in color i for each 1� i� k. The set
of all such colorings is denoted Rðr1; . . .; rk; nÞ. The Ramsey number Rðr1; . . .; rkÞ is
the least n[ 0 such that no ðr1; . . .; rk; nÞ coloring exists.

The Ramsey number Rð4; 3; 3Þ is often presented as the unknown Ramsey number
with the best chance of being found “soon”. Yet, its precise value has remained
unknown for more than 50 years. This paper presents a methodology based on ab-
straction and symmetry breaking that is demonstrated by using it to compute the value
Rð4; 3; 3Þ ¼ 30.

It was previously known that 30�Rð4; 3; 3Þ� 31 [4]. Kalbfleisch [2] proved in
1966 that Rð4; 3; 3Þ� 30, Piwakowski [3] proved in 1997 that Rð4; 3; 3Þ� 32, and one
year later Piwakowski and Radziszowski [4] proved that Rð4; 3; 3Þ� 31. We demon-
strate how our methodology applies to computationally prove that Rð4; 3; 3Þ ¼ 30. Our
approach involves applying an embedding technique to conclude that if a ð4; 3; 3; 30Þ
Ramsey coloring exists then it must be h13; 8; 8i regular. To determine if there exists a
h13; 8; 8i regular ð4; 3; 3; 30Þ Ramsey coloring required first computing the previously
unknown set Rð3; 3; 3; 13Þ, which was shown to have size 78,892. To do this we
demonstrate that an existing symmetry breaking technique combining SAT solving
with symmetry breaking [1] works for smaller instances but not for Rð3; 3; 3; 13Þ.
Instead we use a new abstraction referred to as degree matrices. Having determined
Rð3; 3; 3; 13Þ we then use it within the embedding approach to achieve the major result
of this paper: that there is no ð4; 3; 3; 30Þ Ramsey coloring, and so Rð4; 3; 3Þ ¼ 30.

Supported by the Israel Science Foundation, grant 82/13. Computational resources provided
by an IBM Shared University Award (Israel).
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Multi-language Evaluation of Exact Solvers
in Graphical Model Discrete Optimization

(Summary)

Barry Hurley1, Barry O’Sullivan1, David Allouche2,
George Katsirelos2, Thomas Schiex2, Matthias Zytnicki2,

and Simon de Givry2

1 Insight Centre for Data Analytics, University College Cork, Cork, Ireland
{barry.hurley,barry.osullivan}@insight-centre.org

2 MIAT, UR-875, INRA, 31320 Castanet Tolosan, France
{david.allouche,george.katsirelos,thomas.schiex,

matthias.zytnicki,simon.givry}@toulouse.inra.fr

By representing the constraints and objective function in factorized form, graphical
models can concisely define various NP-hard optimization problems. They are,
therefore, extensively used in several areas of computer science and artificial intelli-
gence. Graphical models can be deterministic, e.g., Constraint Networks (in Minizinc
mzn format) and weighted variants such as Cost Function Networks, aka Weighted
Constraint Satisfaction Problems (wcsp), or stochastic, e.g., Bayesian Networks and
Markov Random Fields (uai). They optimize a sum or product of local functions
(constraints being represented as functions with values in f0;1g or f0; 1g resp.),
defining a joint cost or probability distribution for discrete variables. Simple trans-
formations exist between these two types of models, but also with MaxSAT (wcnf) and
linear programming (lp).

We report on a large comparison of exact solvers which are all state-of-the-art for
their own target language. These solvers are all evaluated on deterministic and prob-
abilistic graphical models coming from the Probabilistic Inference Challenge 2011, the
Computer Vision and Pattern Recognition OpenGM2 benchmark, the Weighted Partial
MaxSAT Evaluation 2013, the MaxCSP 2008 Competition, the MiniZinc Challenge
2012 & 2013, and the CFN-Lib, a library of Cost Function Networks.

3026 problems divided into 43 categories DAOOPT TOULBAR2 CPLEX CPLEXtuple MAXHS MAXHStuple GECODE

Nb. of problems solved in less than 1 hour 1832 2433 1273 1862 1417 1567 202

Borda-score (see Minizinc Chal., norm. by nb. of applicable categories) 2.08 [5] 4.24 [1] 3.01 [2] 2.86 [3] 2.66 [4] 1.65 [7] 1.84 [6]

All 3026 instances are made available in five different formats (mzn, wcsp, uai,
wcnf, lp) and seven formulations (two encodings for wcnf and lp, including one based

Supported by grants SFI/10/IN.1/I3032, SFI/12/RC/2289, and the GenoToul Bioinfo. platform.



on the so-called local polytope)1. The results show that a small number of evaluated
solvers are able to perform well on multiple areas. By exploiting the variability and
complementarity of solver performances, we show that a portfolio approach based on
TOULBAR22, MPLP23, and CPLEX 12.6, can be very effective, winning the 2014 Uncertainty
in Artificial Intelligence (UAI) Evaluation4,5. We hope that our collection of bench-
marks, available in many formats, will enrich the various competitions in CP, AI, and
OR, leading to more robust solvers and new solving strategies.

XIV B. Hurley et al.

1 http://genoweb.toulouse.inra.fr/~degivry/evalgm.
2 http://www.inra.fr/mia/T/toulbar2 (version 0.9.8, parameters -A -V -dee -hbfs).
3 http://cs.nyu.edu/~dsontag/ (version 2).
4 http://www.hlt.utdallas.edu/~vgogate/uai14-competition/leaders.html (MAP/Proteus).
5 https://github.com/9thbit/uai-proteus.
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Breaking Symmetries in Graph Search
with Canonizing Sets

Avraham Itzhakov and Michael Codish

Department of Computer Science,
Ben-Gurion University of the Negev, Beersheba, Israel

There are many complex combinatorial problems which involve searching for an
undirected graph satisfying given constraints. Such graph search problems are often
highly challenging because of the large number of isomorphic representations of their
solutions. One common approach to eliminate symmetries is to introduce symmetry
breaking constraints [2–4] which rule out isomorphic solutions thus reducing the size
of the search space while preserving the set of solutions. A complete symmetry
breaking constraint eliminates all symmetries. But, the standard approach to define
complete symmetry breaking constraints introduces constraints for each permutation
of the graph vertices and is too large to be considered practical. Previous work specifies
compact but partial symmetry breaking constraints for graphs [1]. These eliminate
some but not all of the symmetries. This paper introduces effective and compact,
complete symmetry breaking constraints for small graph search problems with up to 10
vertices. We show that for 10 vertices, instead of considering 10! = 3,628,800 per-
mutations of the vertices, it suffices to consider only 7853 permutations. For small
search problems with a larger number of vertices we demonstrate the computation of
instance dependent symmetry breaking constraints which are complete. We illustrate
the application of complete symmetry breaking constraints to extend two known
sequences from the OEIS related to graph enumeration. We also demonstrate the
application of a generalization of our approach to fully-interchangeable matrix search
problems.
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A Branch-and-Price-and-Check Model
for the Vehicle Routing Problem

with Location Congestion

Edward Lam1,2, and Pascal Van Hentenryck3

1 University of Melbourne, Parkville, VIC 3010, Australia
2 NICTA, Eveleigh, NSW 2015, Australia

3 University of Michigan, Ann Arbor, MI 48109-2117, USA

Abstract. The vehicle routing family of problems are combinatorial optimiza-
tion problems that aim to construct routes for a fleet of vehicles that service
requests while minimizing some cost function. Some of these problems may
feature additional side constraints, such as time windows that restrict the time at
which service of requests can commence. This paper considers a Vehicle
Routing Problem with Pickup and Delivery, Time Windows, and Location
Congestion (VRPPDTWLC, or VRPLC for short). In the VRPLC, requests are
situated at a number of locations. Each location provides cumulative resources
that are utilized by vehicles either during service (e.g., forklifts) or for the
entirety of their visit (e.g., parking bays). Locations can become congested if
insufficient resources are available, upon which vehicles must wait until a
resource becomes available before proceeding. Modeling location congestion
leads to temporal dependencies between vehicles, and a scheduling substructure
not present in conventional vehicle routing problems. Specifically, the VRPLC
incorporates both a vehicle routing problem and a resource-constrained project
scheduling problem, making it exceptionally challenging from a computational
standpoint. The main contribution of this paper is a branch-and-price-and-check
(BPC) model that uses a branch-and-price algorithm that solves the underlying
vehicle routing problem, and a constraint programming subproblem that checks
the feasibility of the resource constraints, and adds combinatorial Benders cuts
(or nogoods) to the master problem if any resource constraint is violated.
The BPC model is compared to a regular mixed integer programming model and
a constraint programming model. The three models are evaluated on instances
with up to 300 requests (150 pickup and delivery requests) and both types of
resources. Results indicate that the BPC algorithm scales better than both the
mixed integer programming and the constraint programming models, optimally
solves instances with up to 80 requests in under 10 minutes, and finds high
quality solutions to larger problems. The BPC model nicely exploits the
strengths of constraint programming for scheduling and branch-and-price for
vehicle routing.
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On CNF Encodings of Decision Diagrams

Ignasi Ab́ıo1, Graeme Gange3, Valentin Mayer-Eichberger1,2(B),
and Peter J. Stuckey1,3

1 NICTA, West Melbourne, Australia
{ignasi.abio,valentin.mayer-eichberger,peter.stuckey}@nicta.com.au

2 University of New South Wales, Sydney, Australia
3 University of Melbourne, Melbourne, Australia

gkgange@unimelb.edu.au

Abstract. Decisions diagrams such as Binary Decision Diagrams
(BDDs), Multi-valued Decision Diagrams (MDDs) and Negation Nor-
mal Forms (NNFs) provide succinct ways of representing Boolean and
other finite functions. Hence they provide a powerful tool for modelling
complex constraints in discrete satisfaction and optimization problems.
Generic propagators for these global constraints exist, but they are com-
plex and hard to implement. An alternative approach to making use
of them for solving is to encode them to CNF, using SAT style solving
technology to implement them efficiently. This may also have advantages
since it is naturally incremental and exposes intermediate literals which
may well be useful as search decisions for solving the problem.

In this paper we explore different ways that we can map these con-
straints to CNF, and the different properties these mappings maintain.
Surprisingly the most used encoding of BDDs does not maintain domain
consistency in arbitrary BDDs. We also consider the strength of prop-
agation with respect to the intermediate literals. We give experiments
which compare the performance of the different encodings.

1 Introduction

Decisions diagrams such as Binary Decision Diagrams (BDDs), Multi Decision
Diagrams (MDDs) and Negation Normal Forms (NNFs) provide succinct ways of
representing Boolean and other finite functions. Hence they provide a powerful
tool for modelling complex constraints in discrete satisfaction and optimization
problems.

Constraint programming solvers include generic propagators for propagating
constraints represented by BDDs [16], MDDs [8] and NNFs [15], since they are
highly flexible, and hence useful in many different models. But these propagators
are complex and hard to implement.

An alternative approach to making use of them for solving is to encode them
to CNF, using SAT style solving technology to implement them efficiently. If the
remainder of the problem is naturally modelled in CNF then this allows a SAT
solver to tackle the problem.

c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 1–17, 2016.
DOI: 10.1007/978-3-319-33954-2 1



2 I. Ab́ıo et al.

A SAT encoding may also be preferable within a CP solver, as it avoids
the need for implementing complex propagators, is naturally incremental, and
exposes intermediate literals as candidates for search and learning. A good encod-
ing is critical in lazy decomposition approaches [1], where a propagator that par-
ticipates in many conflicts is replaced by a CNF decomposition during runtime.

In this paper we explore different approaches for encoding decision diagrams
to CNF.1 The contributions of this paper are:

– An investigation of a large design space for encoding decision diagrams.
– We clarify the picture of BDD/MDD/NNF encodings, analyse their propaga-

tion strength and correct some misunderstandings in the literature.
– We introduce an encoding of BDDs and MDDs where unit propagation imple-

ments propagation completeness.
– Experiments which compare the performance of the different encodings.

2 Preliminaries

2.1 SAT Solving

We denote the Boolean value true by � and false by ⊥.
Let Y = {y1, y2, . . .} be a fixed set of propositional variables. If y ∈ Y then y

and ¬y are positive and negative literals, respectively. The negation of a literal l,
written ¬l, denotes ¬y if l is y, and y if l is ¬y. A clause is a disjunction of literals
¬y1∨· · ·∨¬yp∨yp+1∨· · ·∨yn, sometimes written as y1∧· · ·∧yp → yp+1∨· · ·∨yn.
A CNF formula F is a conjunction of clauses.

A set of literals A is contradictory if ∃y.{y,¬y} ⊂ A. A (partial) assignment
A is a set of literals which is not contradictory. A literal l is true in A if l ∈ A,
is false in A if ¬l ∈ A, and is undefined in A otherwise. An extension of an
assignment A is an assignment A′ where A′ ⊃ A. A complete assignment is an
assignment with no undefined literals. Given a partial assignment A, a completion
of A is an extension of A which is a complete assignment.

A complete assignment A satisfies formula φ if replacing each y in φ which
is true in A with � and replacing each y in φ which is false in A with ⊥ gives
an expression which evaluates to �. A partial assignment A satisfies formula φ,
written A |= φ if every completion of A satisfies φ.

Systems that decide whether a CNF formula F has any model are called SAT
solvers, and the main inference rule they implement is unit propagation: given
a CNF F and an assignment A, find a clause in F such that all its literals are
false in A except at most one, say l, which is undefined, add l to A and repeat
the process until reaching a fix-point. See e.g. [21] for more details.

For some set of clauses C, we shall use UPC(A) to denote the set of lit-
erals inferred by unit propagation on C starting from assignment A. We will
omit the C subscript when clear from the context. Note that UPC(A) may be
contradictory, in which case unit propagation has detected unsatisfiability.
1 A longer version of this paper including proofs of all Theorems can be found at

http://people.eng.unimelb.edu.au/pstuckey/mddenc.pdf.

http://people.eng.unimelb.edu.au/pstuckey/mddenc.pdf
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2.2 Propositional Encodings

Problems of interest rarely (if ever) begin in CNF form. Boolean formulae φ
must be first converted into some equisatisfiable conjunction of clauses Fφ. The
seminal work here is the Tseytin transformation [25], later refined by Plaisted
and Greenbaum [22], which introduces a variable for each sub-formula and adds
clauses to enforce the semantics of each connective.

While equisatisfiability is sufficient for correctness, the choice of decomposi-
tion can have a great impact on solver performance. A major consideration here
is propagation strength – that is, given some partial assignment A and formula φ,
what can be said of UPFφ

(A).
There are a number of properties we may wish of Fφ.

– An encoding Fφ for a formula φ is correct if any complete assignment A
on vars(φ) where A |= φ, then A has an extension satisfying Fφ, and any
complete assignment A |= ¬φ has no extension satisfying Fφ.

– An encoding Fφ for a formula φ implements consistency if for every assignment
A over vars(φ) where A |= ¬φ, then UPFφ

(A) is contradictory.
– An encoding Fφ for a formula φ implements domain consistency when for

each literal l over vars(φ), if A |= φ → l then l ∈ UPFφ
(A).

– An encoding Fφ for a formula φ implements unit refutation completeness [26]
(also called SLUR [19]) when for assignment B over vars(Fφ) where B |=
¬Fφ, then UPFφ

(B) is contradictory.
– An encoding Fφ for a formula φ implements propagation completeness [6,19]

when for each literal l over vars(Fφ), B |= Fφ → l then l ∈ UPFφ
(B).

Another important consideration is the encoding size. In general, smaller
encodings are more efficient than larger ones, if both have the same propagation
strength.

2.3 At-most-one and Exactly-one Constraints

Given a set of literals l1, . . . , ln, the At-most-one (AMO) constraint over these
literals is defined as l1 + l2 + . . . + ln ≤ 1.

There are several ways to encode AMO into SAT [3,7,14]. Here, we consider
the ladder encoding. It introduces variables {ai := l1 ∨ . . . ∨ li | 1 ≤ i < n} and
clauses {ai → ai+1, li → ai, li+1 → ¬ai}. It is easy to see that this encoding is
propagation complete.

Given a set of literals l1, . . . , ln, the Exactly-one (EO) constraint over these
literals is defined as l1 + l2 + . . . + ln = 1. Notice that

EO({l1, . . . , ln}) = AMO({l1, . . . , ln}) ∧ (l1 ∨ . . . ∨ ln)

This defines a propagation complete encoding for EO given a propagation com-
plete encoding of AMO.
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2.4 Direct Encoding for Integer Variables

There are different methods for encoding integer variables into SAT (see for
instance [18,27]). In this paper we use the direct encoding.

Let x be an integer variable with domain [a, b]. The direct encoding introduces
Boolean variables [[x = i]] for a ≤ i ≤ b. A variable [[x = i]] is true iff x = i. The
encoding also introduces the constraint EO({[[x = i]] | a ≤ i ≤ b}).

We will sometimes treat Boolean variables b as integers with domain [0,1].
We will implicitly assume that the direct encoding clauses EO({[[x = i]] | a ≤

i ≤ b}) are part of any encoding of formula using integers x. We also assume all
assignments A are closed under unit propagation of these clauses.

We extend the notion of satisfaction to formulae involving integer vari-
ables, as follows. A complete assignment A satisfies φ if replacing each Boolean
variable as before, and each integer variable xi by j if [[xi = j]] ∈ A (since
A |= EO({[[xi = j]] | a ≤ j ≤ b}) there must be exactly one) and evaluating the
resulting ground expression gives �. We extend the notation A |= φ as before.

2.5 Multi-valued Decision Diagrams

A directed acyclic graph M is called an ordered Multi-valued Decision Diagram
(MDD) if it satisfies the following properties:

– It has two terminal nodes, namely T (true) and F (false).
– Each non-terminal node is labeled by an integer variable {x1, x2, · · · , xn}.

This variable is called selector variable.
– Every node labeled by xi has the same number of outgoing edges, namely

bi − ai + 1, where [ai, bi] is the domain of xi.
– If an edge connects a node with a selector variable xi and a node with a

selector variable xj , then j > i.

The MDD is quasi-reduced if no isomorphic subgraphs exist. It is reduced if,
moreover, no nodes with only one child exist. A long edge is an edge connecting
two nodes with selector variables xi and xj such that j > i+1. In the following we
only consider quasi-reduced ordered MDDs without long edges, and we just refer
to them as MDDs for simplicity.2 We refer to [24] for further details about MDDs.

Given an MDD M we use ρ to refer to its root node. Given a node ν ∈ M,
we write var(ν) = xj when node ν is labelled by xj . Given an edge ε ∈ M, we
write ε = edge(ν, μ, [[xi = j]]) if ε joins the node ν and μ when xi = j.

An MDD represents a formula over integer variables: a MDD node ν with
selector x with domain [a, b] and children νa, νa+1, . . . , νb represents the formula
φν where

φν ≡
∨

i∈[a,b]

x = i ∧ φνi

where φνi
is the formula represented by node νi, and φT = � and φF = ⊥.

2 Notice, however, that every result in this paper holds for non-reduced MDDs without
long edges, and with some modifications of the rules the results also extend to non-
reduced MDDs with long edges.
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Fig. 1. (a) MDD of x2 = 0 ∨ (x3 = 0 ∧ x2 − x1 = 1) and (b) BDD of x2 ∧ (x1 ∨ x3)

Example 1. Let us consider the MDD encoding of x2 = 0∨(x3 = 0∧x2−x1 = 1),
with x1, x3 ∈ {0, 1} and x2 ∈ {0, 1, 2}, shown in Fig. 1(a). In this case ρ = ν1,
var(ν3) = x2, and the rightmost edge from ν3 is edge(ν3, ν6, x2 = 1). φν4 ↔ �,
φν5 ↔ x3 = 0, φν6 ↔ ⊥, and hence φν2 ↔ (x2 = 0∧�)∨(x2 = 1∧x3 = 0)∨(x2 =
2 ∧ ⊥) or equivalently φν2 ↔ x2 = 0 ∨ (x2 = 1 ∧ x3 = 0). ��

A binary decision diagram (BDD) is an MDD with only Boolean variables.
For a BDD M we can consider a non-terminal node ν as a triple (x, t, f) where
there are two outgoing edges edge(ν, t, x) and edge(ν, f,¬x). The BDD node ν
represents the formula φν ≡ ITE(x, φt, φf ) or equivalently (x ∧ φt) ∨ (¬x ∧ φf ).

2.6 Negation Normal Form Formulae

A negation normal form formula (NNF) is a rooted, directed acyclic graph
(DAG) where each leaf node is labeled with x or ¬x and each internal node
is labeled with ∧ or ∨ and can have arbitrarily many children.

NNFs are a more general form of decision diagram than BDDs, and can be
exponentially more compact to represent the same formula [11]. We can use
NNFs to express formulae over finite domain integer variables using the direct
encoding.

But NNFs in general are too expressive, so usually we require some additional
properties, such as:

Decomposable. An NNF N is decomposable if for each conjunction φ in N , the
conjuncts of φ do not share variables. That is, if φ1, . . . , φn are the children
of and-node φ, then vars(φi) ∩ vars(φj) = ∅ for i �= j.

Deterministic. An NNF N is deterministic if for each disjunction φ in N , each
two disjuncts of φ are logically contradictory. That is, if φ1, . . . , φn are the
children of or-node φ, then φi ∧ φj |= ⊥ for i �= j.
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Smooth. An NNF N is smooth if for each disjunction φ in N , each disjunct
of φ mentions the same variables. That is, if φ1, . . . , φn are the children of
or-node φ, then vars(φi) = vars(φj) for i �= j.

3 Encoding MDDs

3.1 Encoding BDDs

The BDD encoding of MiniSat+ [13] is defined as follows: For each non-terminal
BDD node ν = (x, t, f) we generate a Boolean variable ν which represents the
truth value of the BDD rooted at ν.

For each non-terminal node ν = (x, t, f), we generate the following clauses:

B1 t ∧ x → ν.
B2 ¬t ∧ x → ¬ν.
B3 f ∧ ¬x → ν.

B4 ¬f ∧ ¬x → ¬ν.
B5 t ∧ f → ν.
B6 ¬t ∧ ¬f → ¬ν.

Define encoding MiniSAT as B1–B6, together with the terminal and root
clauses: T (the true terminal is true), ¬F (the false terminal is false) and ρ (the
root of the tree must be true).

Note while Een and Sorensen [13] refer to this as a Tseytin encoding, it is
not since Tseytin [25] does not include an ITE constructor, so in the Tseytin
encoding ITE(x, t, f) needs to be encoded as (x ∧ t) ∨ (¬x ∧ f).

The encoding contains O(s) variables and clauses, where s is the size of the
BDD.

Een and Sorensen [13] show that this encoding maintains domain consistency
when used to encode (sorted) pseudo-Boolean constraints.

Theorem 1 ([13]). Unit propagation on the MiniSAT encoding for a BDD for
pseudo-Boolean constraint

∑n
i=1 cixi ≥ d maintains domain consistency, assum-

ing the coefficients ci are in non-increasing order. ��
This theorem does not hold without the ordering criterion. Consider the BDD

encoding x1 + 2x2 + x3 ≥ 3 (or equivalently x2 ∧ (x1 ∨ x3)) shown in Fig. 1(b).
Any solution of the BDD requires x2 is �. Unit propagation on the MiniSAT
encoding generates ¬F , T , ν1,¬ν4, ν6 and nothing else.

Theorem 2. Unit propagation on the clauses (B2), (B4), (B6), ¬F , ρ for a
BDD maintains consistency. ��

All in all, the encoding is compact (especially if only clauses (B2), (B4), (B6),
¬F and ρ are used), but the propagation strength is low.

3.2 Encodings MDDs with One Variable Per Node

The first set of encodings for MDDs, used for example in [2], are generalizations
of the MiniSat+ encoding. This is natural since they are also used to encode
pseudo-Boolean and linear constraints.

For each node ν at level i, with children νai
, νai+1, . . . , νbi

, where the domain
of xi is [ai, bi].
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M1 ¬νj ∧ [[xi = j]] → ¬ν (generalizes B2 and B4).
M2 νj ∧ [[xi = j]] → ν (generalizes B1 and B3).
M3 νai

∧ νai+1 ∧ · · · ∧ νbi
→ ν (weakly generalizes B5).

M4 ¬νai
∧ ¬νai+1 ∧ · · · ∧ ¬νbi

→ ¬ν (weakly generalizes B6).

With these clauses, we can define different encodings:

Minimal: Clauses M1, ¬F , ρ.
GenMiniSAT: Clauses M1–M4, T , ¬F , ρ.

Minimal is very compact, but its propagation strength is low, moreover when
the original variables are fixed it does not necessarily fix all the node variables,
and hence does not preserve solution counts. GenMiniSAT is the natural gener-
alization of the BDD encoding from [13] to MDDs. Again, it is not the Tseytin
encoding [25] of the MDD. Both encodings use O(s) variables and O(sd) clauses,
where s is the MDD size and d is the maximum domain size of variables x.

Proposition 1. Let A = {[[xi = vi]] | 1 ≤ i ≤ n} be a complete assignment on
variables x satisfying the MDD M. Then, there exists a complete assignment
B ⊃ A over the variables x, ν satisfying clauses GenMiniSAT. ��
Proposition 2. Let A = {[[xi = vi]] | 1 ≤ i ≤ n} be a complete assignment on
variables x not satisfying the MDD M, then clauses ρ and M1 propagate F . ��
Corollary 1. Minimal and GenMiniSAT are correct. ��

These two encodings, however, do not detect inconsistencies:

Example 2. Consider again the MDD of x2 = 0 ∨ (x3 = 0 ∧ x2 − x1 = 1), with
x1, x3 ∈ {0, 1} and x2 ∈ {0, 1, 2} shown in Fig. 1(a).

After simplification, GenMiniSAT consists of the following clauses:

¬[[x1 = 0]] ∨ ν2, ¬[[x1 = 1]] ∨ ν3, ν2 ∨ ν3, ¬[[x2 = 0]] ∨ ν2,
¬ν4 ∨ ¬[[x2 = 1]] ∨ ν2, ν4 ∨ ¬[[x2 = 1]] ∨ ¬ν2, ¬[[x2 = 2]] ∨ ¬ν2 ¬[[x2 = 0]] ∨ ν3,
¬ν4 ∨ ¬[[x2 = 2]] ∨ ν3, ν4 ∨ ¬[[x2 = 2]] ∨ ¬ν3, ¬[[x2 = 1]] ∨ ¬ν3 ¬[[x3 = 0]] ∨ ν4,
¬[[x3 = 1]] ∨ ¬ν4.

Consider the partial assignment A = {¬[[x2 = 0]],¬[[x3 = 0]], [[x3 = 1]]}. It
cannot be extended to a complete assignment satisfying the MDD. However,
unit propagation does not fail.

The same happens with Minimal, since it is a subset of GenMiniSAT. ��

3.3 Tseytin Encoding of an MDD

In this section we describe an alternative encodings for an MDD, the Tseytin
encoding [25]. It detects inconsistencies with respect to the original variables but
does not enforce domain consistency.

The Tseytin encoding introduce Boolean variables representing the formula
of each edge. Let ν be a node at level i, with outgoing edges {εj | j ∈ J}. Let
ε = edge(ν, μ, [[xi = j]]) be an edge of M, then the Boolean variable ε encoding
the edge represents the formula [[xi = j]] ∧ φμ.

The clauses of the Tseytin encoding are, for each node ν and edge ε
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T1 ν →
∨

j εj .
T2 ε → ν.
T3 ε → μ.
T4 ε → [[xi = j]].
T5 μ ∧ [[xi = j]] → ε.

The Tseytin encoding, Tseytin, consists of clauses T1–T5, T , ¬F and ρ. There-
fore, it consists in O(sd) variables and clauses, where s is the MDD size and d
the maximum domain size of variables x.

Proposition 3. Let A = {[[xi = vi]] | 1 ≤ i ≤ n} be a complete assignment on
variables x satisfying the MDD M. Then, there exists a complete assignment
B ⊃ A over the variables x, ν, ε satisfying clauses Tseytin. ��

Proposition 4. Let A be a partial assignment on variables {xi, xi+1, . . . , xn},
and let ν be a node of M at level i. Assume that there is no completion A′ of A
satisfying the MDD rooted at ν. Then, unit propagation on clauses Tseytin and
A enforces ¬ν. ��

As a corollary, we can prove:

Theorem 3. Tseytin is correct; i.e., given a complete assignment of the input
variables, this encoding finds an inconsistency if and only if the assignment does
not satisfy M. Moreover, it implements consistency. ��

However, Tseytin does not preserve domain consistency.

Example 3. Let us consider the BDD of x2 ∧ (x1 ∨ x3), shown in Fig. 1(b).
Tseytin, once simplified, generates the following clauses:

ε1,0 ∨ ε1,1, ¬ν2 ∨ x1 ∨ ε1,0, ¬ε1,0 ∨ ¬x1, ¬ε1,0 ∨ ν2,
¬ν3 ∨ ¬x1 ∨ ε1,1, ¬ε1,1 ∨ x1, ¬ε1,0 ∨ ν3, ¬ν2 ∨ ε2,1,
¬ν5 ∨ ¬x2 ∨ ε2,1, ¬ε2,1 ∨ ν2, ¬ε2,1 ∨ x2, ¬ε2,1 ∨ ν5,
¬ν3 ∨ ε3,1, ¬x2 ∨ ε3,1, ¬ε3,1 ∨ ν3, ¬ε3,1 ∨ x2,
¬ν5 ∨ ε5,1, ¬x3 ∨ ε5,1, ¬ε5,1 ∨ ν5, ¬ε5,1 ∨ x3.

Consider the partial assignment A = ∅. Notice that x2 is not propagated
even though that there is no solution of M with ¬x2. Clause x2 ∨ ε2,0 ∨ ε3,0

would propagate x2. ��

Also, Tseytin does not implement unit refutation completeness:

Example 4. Consider the BDD of the constraint XOR(x1, x2, x3, x4) shown in
Fig. 2. Node ν2 represents the constraint XOR(x2, x3, x4), and node ν3 represents
¬XOR(x2, x3, x4). It is clear, therefore, that the partial assignment B = {ν2, ν3}
cannot be extended to a complete assignment satisfying M. However, Tseytin
does not find any conflict. ��
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3.4 Path-Based Encodings

Under the encodings described in Sects. 3.2 and 3.3, the semantics of variables
match the Boolean formula they represent – a node/edge variable is true (in a
complete assignment) iff the corresponding formula is true.

In this section, we describe a set of path-based encodings. Like the Tseytin
encoding these introduce one variable per node and per edge, but the interpre-
tation of these variables is different. Under a path-based encoding, ν (or ε) is
true iff the path from the root r to T defined by the selector variables passes
through ν (resp. ε).

Unlike the previous encodings, the variables introduced here cannot be re-
used if a sub-formula occurs in multiple constraints. However, we shall see that
this interpretation allows us to make much stronger inferences.

A related treatment of path-based encodings of the regular constraint to
CNF can be found in Bacchus work in [4] and by Quimper and Walsh in [23]
in context of the grammar constraint. Our study provides a complete analysis
of such encodings for decision diagrams and introduces a novel encoding with
stronger propagation properties.

We generate clauses for each node ν and connecting it to each of its outgoing
edge εj and each of it incoming edges δj , as well as clauses for each edge ε =
edge(ν, μ, [[xi = j]]).

P1 ν ∧ [[xi = j]] → εj .
P2 ν →

∨
j δj where ν �= ρ.

P3 [[xi = j]] →
∨

{ε′ | ε′ = edge(ν, μ, [[xi = j]]) for some ν, μ ∈ M}.
P4 EO({ν′ ∈ M | Level(ν′) = i}).

Clauses P1 enforce that a node on the path puts its outgoing edge on the
path. Clauses P2 require each node on the path (except the root) has an incoming
edge. Clauses P3 require that each integer value has an edge that supports it.
Clauses P4 require that exactly one node on each level is �.

With these clauses, we can define different encodings:

BasicPath: Clauses P1–P2, T1–T4, T , ¬F , ρ.
NNFPath: BasicPath and clauses P3.
LevelPath: BasicPath and clauses P4.
CompletePath: BasicPath and clauses P3–P4.

All the encodings require O(sd) variables and clauses, where s is the MDD
size and d the maximum domain size of variables x.

A complete assignment A over the variables xi defines a path in M in the
obvious way. This path is denoted by ν1 = ρ, ε1, ν2, ε2, . . . By definition of the
MDD, the assignment is compatible with M if and only if νn+1 = T .

A complete assignment B over variables xi, ν, ε is compatible with M if

– A := B∩({[[xi = j]] | 1 ≤ i ≤ n, j ∈ [ai, bi]}{¬[[xi = j]] | 1 ≤ i ≤ n, j ∈ [ai, bi]})
is compatible with M.
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– ν ∈ B iff ν = νi for some i on the path defined by A.
– ε ∈ B iff ε = εi for some i on the path defined by A.

Proposition 5. Given a complete assignment A on the variables x compatible
with M, there exists a complete assignment B ⊃ A over the variables x, ν, ε
satisfying clauses CompletePath. ��

Proposition 6. Let A be a partial assignment on variables x. Let UP(A) be the
set of propagated literals with BasicPath. Let ν be a node of M, and ε be an edge
of M. Then:

– ¬ν ∈ UP(A) if A ∧ ν |= ¬M.
– ¬ε ∈ UP(A) if A ∧ ε |= ¬M. ��

Let us explain the idea behind the proof. If ν has not been propagated to false,
we can create a path from ρ to T passing through ν, where all the nodes of this
path have not been propagated to false. This path will define a completion B
satisfying M with ν ∈ B.

To build this path, we start from ν. Since ¬ν �∈ UP(A), ν must have a parent
that has also not been propagated to false. This node, again, has a parent that
has not been propagated to false, etc. That gives a path from ρ to ν. In the same
way, ν has a child that has not been propagated to false, and this child has a
child that has not been propagated to false, etc. That gives a path from ν to T .
Concatenating both paths, we obtain the desired path from ρ to T .

Theorem 4. BasicPath maintains consistency by unit propagation. ��

BasicPath, however, does not maintain domain consistency. For that we need
clauses P3.

Example 5. Let us consider the BDD of x2 ∧ (x1 ∨ x3), shown at Fig. 1(b).
BasicPath, once simplified, generates the following clauses:

x1 ∨ ε1,0, ¬x1 ∨ ε1,1, ¬ν2 ∨ x2, ¬ν3 ∨ x2,
¬ν5 ∨ x3, ε1,0 ∨ ε1,1, ¬ν2 ∨ ε2,1, ¬ν3 ∨ ε3,1,
¬ν5 ∨ ε5,1, ¬ν2 ∨ ε1,0, ¬ν3 ∨ ε1,1, ¬ν5 ∨ ε2,1,
ε3,1 ∨ ε5,1 ¬ε2,1 ∨ ν2, ¬ε3,1 ∨ ν3, ¬ε5,1 ∨ ν5,
¬ε1,0 ∨ ν2, ¬ε1,1 ∨ ν3, ¬ε2,1 ∨ ν5, ¬ε1,0 ∨ ¬x1,
¬ε1,1 ∨ x1, ¬ε2,1 ∨ x2, ¬ε3,1 ∨ x2, ¬ε5,1 ∨ x3.

Consider the partial assignment A = ∅. Then, unit propagation does not
propagate x2 even though that there is no solution of M with ¬x2. Clause
x2 ∨ ε2,0 ∨ ε3,0, from P3, would propagate x2. ��

As Corollary of Proposition 5 and Theorem 4, it follows that

Theorem 5. Encodings BasicPath, NNFPath, LevelPath and CompletePath are
correct; i.e., given a complete assignment of the input variables, these encodings
find an inconsistency if and only if the assignment does not satisfy M. ��
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Theorem 6. NNFPath maintains domain consistency by unit propagation. ��

NNFPath maintains domain consistency with respect to the original variables.
However, since a SAT solver will not differentiate between original variables and
auxiliary ones, partial assignments, in general, contain both type of variables.
And, without clauses P4, the encodings are not propagation complete:
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Fig. 2. BDD of XOR(x1, x2, x3, x4)

Example 6. Consider the MDD shown in Fig. 2, representing the constraint
XOR(x1, x2, x3, x4). Consider the partial assignment B = {ν4, ν5}. It is clear
that B cannot be extended to a complete assignment satisfying M, since no
path can contain two nodes on the same level. However, NNFPath does not find
any conflict. ��

To maintain consistency with respect to all variables, clauses P4 are needed.
In that case, we can generalize the previous results to assignments containing
auxiliary variables:

Proposition 7. Let B be a partial assignment on all the variables. Let UP(B)
be the set of propagated literals with LevelPath. Let ν be a node of M, and ε be
an edge of M. Then:

1. ¬ν ∈ UP(B) if B ∧ ν |= ¬M.
2. ¬ε ∈ UP(B) if B ∧ ε |= ¬M.
3. ν ∈ UP(B) if B ∧ ¬ν |= ¬M.
4. ε ∈ UP(B) if B ∧ ¬ε |= ¬M.

Theorem 7. LevelPath is unit refutation complete. ��

LevelPath does not maintain domain consistency on all variables, though.
Example 5 shows a counterexample. To obtain domain consistency we once more
need the clauses P3.
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Theorem 8. CompletePath is propagation complete. ��

The path based encoding do have one weakness compared to the Tseytin
encoding. Since they require only a single path throught the MDD, we cannot
allow different MDD constraints that share a sub-MDD to reuse the same encod-
ing, we need a different copy of the encoding for each constraint. This is not the
case for Tseytin encdings where the node variable ν just represents the truth
value of the sub-formula encoded by the MDD rooted at ν. To our knowledge
this restriction is not very significant in the CP context. No such sharing exists
in any of our benchmarks. The bulk of nodes in an MDD are in the middle and
unlikely to be shared. Moreover, separating MDDs per constraint for translation
allows us to use different variable orderings for each MDD and thus reduce the
number of nodes required. On the other hand, if substantial sharing of nodes
among the different MDDs happens then a Tseytin encoding could be beneficial,
since it translates this sharing to the CNF level.

The table below shows the sizes and propagation strength of the different
encodings. As before, s is the size of the MDD, d is the maximum domain size
of variables x and n is the number of variables x. Notice that usually n � s.

Minimal GMinisat Tseytin BasicP NNFP LevelP ComplP

Variables s s s(d + 1) s(d + 1) s(d + 1) s(d + 2) s(d + 2)

Clauses sd s(2d + 2) s(4d + 1) s(4d + 2) s(4d+ 2)
+nd

s(4d + 5) s(4d+ 5)
+ nd

Consisistent ✘ ✘ ✔ ✔ ✔ ✔ ✔

Dom. Consis. ✘ ✘ ✘ ✘ ✔ ✘ ✔

Ref. Compl. ✘ ✘ ✘ ✘ ✘ ✔ ✔

Prop. Compl ✘ ✘ ✘ ✘ ✘ ✘ ✔

4 Encoding NNFs

BDDs are a special case of NNFs and hence NNF encodings provide an alter-
nate approach to encoding BDDs. There is an existing encoding for NNFs given
by [20]. When applied correctly to MDDs it results in the NNFPath (hence the
name). But care has to be taken in NNF encodings, without the right restrictions
on the form of the NNF the encodings are incorrect!

An encoding of an NNF N to clauses is given by [20]. Each node ν is asso-
ciated with a literal, also called ν. For leaf nodes the literal is just the label of
the node. For non-leaf nodes the literal is a new Boolean variable. The clauses
we make use of are

N1 ν → ν1 ∨ · · · ∨ νk for each ∨-node ν with children ν1, . . . , νk

N2 ν → νi, 1 ≤ i ≤ k for each ∧-node ν with children ν1, . . . , νk

N3 ν → p1∨· · ·∨pm for each node ν with incoming edges from nodes p1, . . . , pm.
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∨∨

∨

∧∧

ν1

ν2 ν3

ν4 ν5

x ¬x

p q ¬p ¬q

(a)

∧∧

∨
ν1

ν2 ν3

q ¬qp

(b)

Fig. 3. NNF for formula (a) (x∧ (p∨ q)) ∨ (¬x∧ (¬p∨ ¬q)) and (b) (¬q ∧ p) ∨ (p∧ q)

We consider two encodings: BaseNNF Clauses N1–N2 and ρ, and ExtNNF
Clauses N1–N3 and ρ as defined in [20].

Theorem 9. Given an NNF N then BaseNNF is a correct encoding. ��

Note that this correctness result does not apply to ExtNNF unless the NNF
is smooth and decomposable. Jung [20] also claim that ExtNNF enforces domain
consistency for decomposable NNFs, but this too is incorrect.

Example 7. The NNF shown in Fig. 3(a) is decomposable, deterministic but
not smooth (e.g. the two children of node ν4 do not mention the same variables).
The ExtNNF encoding is

N1 : ν1 → ν2 ∨ ν3 ν4 → p ∨ q ν5 → ¬p ∨ ¬q
N2 : ν2 → x ν2 → ν4 ν3 → ¬x ν3 → ν5
N3 : ν2 → ν1 ν3 → ν1 x → ν2 ν4 → ν2 ¬x → ν3

ν5 → ν3 p → ν4 q → ν4 ¬p → ν5 ¬q → ν5
ρ : ν1

Consider the assignment A = {x,¬q} unit propagation determines ν1, ν2, ν4,
p, ν5, ν3,¬x and hence a contradiction. This is wrong since there is a model of
the NNF {x,¬q, p}. ��

Example 8. Consider the smooth, decomposable and deterministic NNF for
(¬q ∧ p) ∨ (p ∧ q) shown in Fig. 3(b). Then the clauses of ExtNNF are

ρ : ν1 N1 : ν1 → ν2 ∨ ν3
N2 : ν2 → ¬q ν2 → p ν3 → p ν3 → q
N3 : ν2 → ν1 ν3 → ν1 ¬q → ν2 p → ν2 ∨ ν3 q → ν3

Any model of the formula must make p true, but unit propagation on these
clauses derives only ν1. What is missing is information that ¬p does not appear
in the NNF. This means p must hold! ��
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Table 1. Results on nurse rostering, shift scheduling and pentominoes.

Bench Type Search #Inst Prop Minimal GMinisat Tseytin BasicP NNFP LevelP ComplP

Nurse SAT VSIDS 286 #sol 282 88 195 184 150 185 157 187

78 com 1.97 – 5.33 27.81 58.73 14.09 42.51 24.86

286 all 23.82 903.64 395.26 473.05 617.42 457.79 607.16 457.85

prog 179 #sol 132 143 151 156 156 108 156 104

80 com 3.42 – 6.19 6.61 18.39 54.63 29.96 50.86

179 all 329.63 284.73 212.5 181.65 171.95 516.36 177.19 526.63

UNSAT VSIDS 46 #sol 32 29 46 27 31 33 32 32

26 com 42.73 – 8.09 229.45 98.31 26.87 71.55 69.26

46 all 402.57 626.02 231.34 631.03 450.35 380.4 413.69 437.38

Shift OPT VSIDS 120 #sol 114 85 96 97 116 115 110 116

78 com 109.8 – 166.51 161.91 51.54 88.07 68.91 117.44

120 all 213.84 535.59 457.94 444.8 174.65 252.11 224.41 276.17

prog 56 #sol 49 48 56 48 55 50 52 48

48 com 100.11 – 28.64 113.06 24.52 74.09 34.02 79.97

56 all 257.02 240.44 60.42 268.34 161.76 232.17 176.28 239.97

Pent ALL prog 14 #sol 14 12 12 6 12 9 12 6

6 com 6.67 – 8.21 18.27 14.57 16.02 8.8 15.36

14 all 279.43 352.82 505.92 693.54 626.07 653.08 387.67 692.3

To fix Jung’s encoding we add the following clauses

N4 ¬l for each literal l for vars(N ) which does not appear in N .

We denote by FullNNF Clauses N1–N4 and ρ.

Theorem 10. Given a smooth decomposable NNF N then FullNNF is a correct
encoding.

Theorem 11. Given a smooth decomposable NNF N , then unit propagation on
FullNNF enforces domain consistency. ��

It follows that FullNNF is equivalent to NNFPath if applied to MDDs rewritten
as NNF. To summarise the results in this section we provide the following table.

BaseNNF ExtNNF FullNNF

Clauses N1–N2 N1–N3 N1–N4

Correctness Always Smooth and Decomposable Smooth and Decomposable

Domain consistent ✘ ✘ ✔

5 Experiments

We show results on three benchmarks: nurse rostering, shift scheduling and pen-
tominoes (Nurse, Shift and Pent).3 The MDD encodings are implemented as eager
translations of MDDs within the LCG solver Chuffed [9,10] and compared with
a native MDD propagator with learning [17]. We use SAT branching heuristics

3 Benchmarks are available from http://people.eng.unimelb.edu.au/pstuckey/mddenc.
tar.gz.

http://people.eng.unimelb.edu.au/pstuckey/mddenc.tar.gz
http://people.eng.unimelb.edu.au/pstuckey/mddenc.tar.gz
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(VSIDS) and the programmed search as specified in the models (prog). We omit
instances not solved by any solver using that search. For each model we show:
(#sol) the number of instances solved (SAT and UNSAT for Nurse, to optimal-
ity for Shift, all solutions for Pent); (com) the mean solving time in seconds for all
benchmarks solved by all solvers (exceptMinimal); and (all) the mean solving time
of all benchmarks using timeout (1200 s) for unsolved instances. The results on the
encoding Minimal are omitted for com and for Pent since it does not preserve solu-
tion counting. Best results are in bold, and second best are underlined (Table 1).

In case of satisfiable instances of Nurse the results show that encodings do not
compete with the native propagator. This is not surprising as the search quickly
finds the solutions without being disturbed by the complete CNF model gener-
ated by the eager encodings. For the UNSAT instances decompositions and their
intermediate literals show their strength and beat the propagator. GenMiniSAT
shows best performance for these UNSAT instances with VSIDS. The encodings
also have an advantage over the propagator when programmed search is used, but
it is unclear which one dominates.

For Shift the results show that when using activity based search and branch-
ing takes place on auxiliary variables, the path based approaches are generally
superior.

The main advantage of the native propagator is that its explanations are built
in a more deterministic fashion and hence tend to be more reusable. Furthermore,
since the propagator only generates a fraction of the variables of the eager encod-
ing, the search is less likely get trapped in an unfruitful search space using VSIDS.
The difference in results on SAT and UNSAT instances of Nurse clearly indicate
that a combination of the propagator and a lazy encoding as in [1] would be a
strong approach.

6 Conclusion and FutureWork

This paper resulted from discussions that uncovered our own misunderstanding
of the strength of decision diagram encodings. We were surprised to discover that
the usual BDD encoding is not domain consistent. In this paper we seek to remove
this confusion, and demonstrate a wealth of different encoding possibilities, with
different properties.

The experimental results show that there is unlikely to be one single best
encoding for MDDs, and hence an important direction of future work is to deter-
mine when each encoding is best. Possibly a portfolio approach varying over
encodings of each constraint is a fruitful and pragmatic technique to solve hard
problems in practice.

Another interesting direction of future work is to determine a propagation
complete encoding for NNFs. It appears the result may require restricting to Sen-
tential Decision Diagrams [12] a form of NNF with a uniform V-tree.

The literature on CNF encodings focuses on consistencies wrt. primary vari-
ables of the constraint, whereas we have shown that consistency on auxiliary vari-
ables are worthwhile to look at. Our work concentrated on translations of deci-
sion diagrams and we would like to extend this research to other constraints like
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linear and sequence. State-of-the-art CNF encodings of cardinality are the
next candidate for this investigation.

In case of theoretical results, an interesting direction is to establish lower
bounds on the size of encodings implementing certain consistencies for concrete
constraints. The strong relationship between CNF encodings and monotone cir-
cuits established in [5,19] demonstrates a powerful tool for this purpose.

Acknowledgement. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.
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Abstract. A checker for a constraint on a variable sequence can often be
compactly specified by an automaton, possibly with accumulators, that
consumes the sequence of values taken by the variables; such an automa-
ton can also be used to decompose its specified constraint into a conjunc-
tion of logical constraints. The inference achieved by this decomposition
in a CP solver can be boosted by automatically generated implied con-
straints on the accumulators, provided the latter are updated in the
automaton transitions by linear expressions. Automata with non-linear
accumulator updates can be automatically synthesised for a large family
of time-series constraints. In this paper, we describe and evaluate exten-
sions to those techniques. First, we improve the automaton synthesis to
generate automata with fewer accumulators. Second, we decompose a
constraint specified by an automaton with accumulators into a conjunc-
tion of linear inequalities, for use by a MIP solver. Third, we generalise
the implied constraint generation to cover the entire family of time-series
constraints. The newly synthesised automata for time-series constraints
outperform the old ones, for both the CP and MIP decompositions, and
the generated implied constraints boost the inference, again for both the
CP and MIP decompositions. We evaluate CP and MIP solvers on a
prototypical application modelled using time-series constraints.

1 Context and Motivation

Frameworks are given in [4,14] for specifying a constraint on a sequence of vari-
ables in a high-level way by means of a finite automaton, possibly augmented
with accumulators in the framework of [4]. An automaton can be seen as a
checker for ground instances of the specified constraint. For example, in a nono-
gram puzzle, a row constrained to contain two stretches of black cells, of lengths
4 and 3 in this order, separated by at least one white cell but preceded and

c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 18–34, 2016.
DOI: 10.1007/978-3-319-33954-2 2
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followed by any amounts of white cells, can be checked by an automaton equiv-
alent to the regular expression w∗b4w+b3w∗, where the row is represented by a
sequence of variables whose domain value ‘w’ stands for white and ‘b’ for black.
Accumulators enable the specification of a constraint γ on a variable sequence X
by an automaton whose size does not depend on the length of X: accumulators
are initialised at the start state and are updated through the transitions; upon
acceptance, the accumulators are linked to another variable of γ via an arith-
metic constraint. For example, one could constrain the number of white cells
between the two black stretches in the nonogram constraint above to be at most
half the length of the row.

The framework of [14] lifts an automaton without accumulators into a propa-
gator for the specified constraint; it maintains domain consistency in polynomial
time. The more general framework of [4] lifts an automaton, possibly with accu-
mulators, into a decomposition of the specified constraint in terms of constraints
with existing propagators; in the presence of accumulators, this decomposition
does not maintain domain consistency in general [2]. Encoding the potential
accumulator values in the states of the automaton may lead to an exponentially
large automaton. In this paper, we focus on automata with accumulators.

The propagation achieved by the automaton decomposition of [4] in a CP
solver can be boosted by invariants, seen as implied constraints, on the accumula-
tors. If the latter are updated in the automaton transitions by linear expressions
on the accumulators — such as increments and decrements by constant amounts
(as in c := c + 1) or by other accumulators (as in c := c + r), or resets (as in
c := 0) — then such implied constraints can be automatically generated [11].

Automata with non-linear accumulator updates can be automatically syn-
thesised for a large family of structural time-series constraints [3]. A time series
is here a sequence of integers, corresponding to measurements taken over a time
interval. Time series are common in many application areas, such as the power
output of electric power stations over multiple days, or environmental data (tem-
perature, humidity, CO2 level) in buildings. Time series are constrained by phys-
ical or organisational limits, which restrict the evolution of the series.

After a summary of the background material in Sect. 2, the contributions
and impact of this paper are as follows:

– We improve the automated automaton synthesis of [3] so as to synthesise
automata with fewer accumulators and simpler accumulator updates, using
fewer ‘min’ and ‘max’ operators, say (Sect. 3).

– We decompose a constraint specified by an automaton with accumulators into
a linear-sized conjunction of linear inequalities, for use by a mixed-integer
programming (MIP) solver (Sect. 4).

– We generalise the implied constraint generation of [11] so as to cover the
entire family of time-series constraints of [3] and to rank the generated implied
constraints by decreasing propagation strength, thereby easing the human
selection of which implied constraints actually to use (Sect. 5).

– We show that the newly synthesised automata for time-series constraints out-
perform the automata of [3], for both the CP and MIP decompositions, and
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that the newly generated implied constraints boost the inference, again for
both the CP and MIP decompositions (Sect. 6).

– We evaluate CP and MIP solvers on a prototypical application modelled with
the help of time-series constraints (Sect. 7).

2 Specifying (Time-Series) Constraints Using Automata

We showed in [3] that many constraints γ(N, 〈X0, . . . , Xn−1〉) on an unknown
time series 〈X0, . . . , Xn−1〉 of given length n can be specified as a triple 〈p, f, g〉,
where p is a regular expression over the alphabet {<,=, >} and is called the
pattern; f ∈ {max, min, one, range, surface, width} is called the feature; and
g ∈ {Max, Min, Sum} is called the aggregator. The semantics is that integer
variable N is required to be the aggregation, computed using g, of the list of
features f of all maximal words matching p within the sequence 〈S0, . . . , Sn−2〉
of variables, called the signature sequence, which is linked to the time series via
the signature constraints (Xi < Xi+1 ⇔ Si = ‘<’) ∧ (Xi = Xi+1 ⇔ Si =
‘=’) ∧ (Xi > Xi+1 ⇔ Si = ‘>’) for all i ∈ [0, n − 2]. A list of 23 patterns was
identified, giving 266 constraints. We now introduce our running example.

Example 1. The MaxWidthStrictlyDecreasingSequence(N,X) con-
straint, requiring N to be the maximum width of the maximal strictly decreasing
sequences within the time series X, is specified by the pattern >+, the feature
width, and the aggregator Max. The time series 〈4, 4, 3, 2, 2, 6, 3, 5〉 contains two
maximal strictly decreasing sequences, namely 4 > 3 > 2 and 6 > 3, of widths
3 and 2, so their maximum width is N = 3. The following figure shows how to
check MaxWidthStrictlyDecreasingSequence(3, 〈4, 4, 3, 2, 2, 6, 3, 5〉) by
(I) building the signature sequence by comparing adjacent time-series values;
(II) finding all maximal words matching the regular expression >+; (III) comput-
ing the feature width of each such strictly decreasing sequence; and (IV) aggre-
gating the feature values using the Max aggregator:

Max

width

>+

= > > = < > <

>> >> >>

3 2

3

An automaton with a memory of m ≥ 0 integer accumulators [4] is a tuple
〈Q,Σ, δ, q0, I, A, α〉, where Q is the set of states, Σ the alphabet, δ:(Q×Z

m)×Σ →
Q × Z

m the transition function, q0 ∈ Q the start state, I the m-tuple of initial
values of the accumulators, A ⊆ Q the set of accepting states, and α : Z

m → Z

the acceptance function, transforming the memory of an accepting state into an
integer. If the left-to-right consumption of the symbols of a word w in Σ∗ transits
from q0 to some accepting state and the m-tuple C of current accumulator values,
then the automaton returns the value α(C), else it fails.
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s

{〈c, r〉 := 〈0, 0〉}

u

>
{〈c, r〉 := 〈2,max(r, 2)〉}

<,=
{〈c, r〉 := 〈c, r〉}

>
{〈c, r〉 := 〈c + 1,max(r, c + 1)〉}<,=

{〈c, r〉 := 〈0, r〉}

return r

Fig. 1. Automaton for MaxWidthStrictlyDecreasingSequence

Example 2. A ground instance of the constraint of Example 1 holds if and only
if its value of N is returned by the automaton in Fig. 1 after consuming the
signature sequence linked to its time series X. The automaton uses m = 2 accu-
mulators: at any moment, accumulator c has the length of the current strictly
decreasing sequence, while r has the length of the longest strictly decreasing
sequence seen so far. The state set Q is {s, u}: at s the current sequence is not
strictly decreasing, and at u the current sequence is strictly decreasing. The start
state q0 = s is indicated by an arc coming from nowhere, annotated within braces
by the initialisation to zero of both c and r, hence I = 〈0, 0〉. The alphabet Σ
is {<,=, >}. The arc from s to u depicts the transition of δ from s to u upon
consuming symbol >, and is annotated within braces by accumulator updates:
r is updated to its maximum with 2, and c is set to 2. All states are accepting,
hence A = Q. The acceptance function α transforms a memory 〈c, r〉 into r at
both states, and is given in a box linked to s and u by dotted lines. 
�

An automaton can be seen as a constraint checker. The framework of [14] lifts
an automaton with m = 0 accumulators into a CP propagator for the specified
constraint; it maintains domain consistency in time polynomial in the automaton
size and sequence length. The more general framework of [4] lifts an automaton
with m ≥ 0 accumulators into a CP decomposition of the specified constraint in
terms of constraints with existing CP propagators; when m ≥ 1, this decomposi-
tion does not maintain domain consistency in general [2]. Encoding the potential
accumulator values in the states of the automaton, so as to get an automaton
with m = 0 accumulators, may lead to a large automaton.

In this paper, we focus on automata with m ≥ 1 accumulators, motivated [4]
by the wish to specify a constraint on a sequence X by an automaton whose size
does not depend on the length of X; this is the case for the automaton in Fig. 1. In
Sect. 3, we improve our synthesiser [3] of automata from 〈p, f, g〉 specifications
of time-series constraints, so that it automatically synthesises automata with
fewer accumulators and simpler accumulator updates, namely linear accumulator
updates rather than updates involving the min and max operators. In Sect. 4,
we lift an automaton with m ≥ 1 accumulators into a MIP decomposition of
linear inequalities. In Sect. 5, we boost the inference achieved for the CP and
MIP decompositions by generalising our generator [11] of constraints implied by
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an automaton, so that it covers the entire family of time-series constraints of
this section and [3]. Those sections are orthogonal and any subset thereof can
be read in any sequence.

3 Simplification of Synthesised Time-Series Automata

In [3] we synthesise automatically an automaton from a triple 〈p, f, g〉 specifying
a time-series constraint. The synthesis relies on a declarative encoding of proce-
dural knowledge into what we call decoration tables [3]. Each pattern is specified
by a transducer [6,15] obeying wellformedness conditions. The decoration tables
are parametrised by features and aggregators, and define substitution rules on
the transducers that allow an automaton with m = 3 accumulators to be syn-
thesised. The future work in [3] included simplifying the synthesised automata,
as they often have more accumulators and more complex accumulator updates
than manually designed ones: this may slow down the checker and weaken CP or
MIP decompositions of the constraint specified by the synthesised automaton.

In this paper, we largely overcome this bottleneck. Rather than designing
a procedural minimisation algorithm for automata with accumulators, we have
again opted for capturing such procedural knowledge in a declarative and thus
more easily reusable way: it suffices to specialise the decoration tables of [3] for
some combinations of algebraic properties of pattern-feature-aggregator triples.

First, we recall the concept of pattern e-occurrence from [3], capturing where
a feature value is extracted from the time series.

Definition 1. Given a pattern p; a sequence X0, . . . , Xn−1; its signature
sequence S0, . . . , Sn−2; and a non-empty subsequence Si, Si+1, . . . , Sj forming
a maximal word that matches p, with 0 ≤ i ≤ j ≤ n−2; the e-occurrence of that
maximal word is the interval [�, u] of corresponding indices within X0, . . . , Xn−1.

In Example 1, the sequence X = 〈4, 4, 3, 2, 2, 6, 3, 5〉 gives the signature
sequence S = 〈=, >,>,=, <,>,<〉, which contains two maximal words matching
the pattern >+ of strictly decreasing sequences, namely 〈S1, S2〉 = 〈>,>〉 and
〈S5〉 = 〈>〉, corresponding to the strictly decreasing sequences 〈X1,X2,X3〉 =
〈4, 3, 2〉 and 〈X5,X6〉 = 〈6, 3〉, hence the e-occurrences are [1, 3] and [5, 6]. A pat-
tern occurrence 〈Si, . . . , Sj〉 within the signature sequence has the e-occurrence
[i, j + 1] for this constraint, but it could be [i + 1, j] for other constraints [3].

All synthesised automata in [3] have the accumulators c, d, and r, which
respectively denote the feature value of the current pattern e-occurrence (such
as accumulator c in Fig. 1); the feature value of a potential part of a pattern
e-occurrence (no such accumulator is needed in Fig. 1, and achieving this is the
purpose of this section); and the aggregated result value for the feature values of
the pattern e-occurrences already encountered (such as accumulator r in Fig. 1).
Figure 2B and C gives the functions used to compute the feature and aggre-
gation values. If the pattern, feature, and aggregator satisfy some properties,
then either it is enough to perform the accumulator update only on one specific
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g g,f

Max minf

Min maxf

Sum 0

f f minf maxf φf δif

one 1 1 1 1 1
width 0 0 n + 1
surface 0 −∞ +∞ + Xi

max −∞ −∞ +∞ max Xi

min +∞ −∞ +∞ min Xi

range 0 0 +∞ Xi

Fig. 2. (A) Percentage, among the 266 time-series constraints, of automata that can be
simplified using the discovered properties. (C) Features: their identity, minimum, and
maximum values; the functions φf and δi

f are used to compute recursively the feature

value vu of a sequence 〈X�, . . . , Xu〉 by v� = φf (idf , δ�
f ) and vi = φf (vi−1, δ

i
f ) for i > �;

note that δi
f provides the contribution of Xi to the value of feature f ; (B) Aggregators

and their default values.

transition of the automaton, as in Definition 3, or it is possible to start aggregat-
ing immediately upon finding an e-occurrence, as in Definition 4. To state these
properties, we need another concept.

Definition 2. A transition from state q to state q′ in an automaton is called a
‘found’ transition if it is the only transition on some path from the initial state q0
to q′ that modifies the accumulator c.

For example, the transition from the start state s to state u in Fig. 1 is a
‘found’ transition, as it sets c to 2.

Definition 3. Given a time-series constraint γ on feature f , an e-occurrence
[�, u] of its pattern such that Xs triggers a ‘found’ transition of its automa-
ton, with s ∈ [�, u], we say that γ is an aggregate-once constraint if δs

f equals
φf (φf (. . . φf (idf , δ�

f ), . . . , δu−1
f ), δu

f ), where φf and δi
f are as in Fig. 2B.

For aggregate-once constraints the feature value of an e-occurrence depends
only on the value of δs

f , hence we need only one counter for aggregating.
For example, any constraint with feature f = one, i.e., any constraint

counting the number of occurrences of a pattern, is an aggregate-once con-
straint, because for any e-occurrence [�, u] and any i, i + 1 ∈ [�, u] we have
φf (δi

f , δi+1
f ) = δ�

f = δ�+1
f = · · · = δu

f = 1. Also, consider any constraint with
feature f = max and pattern ‘< (< | =) ∗ (> | =)∗ >’, which means there is
a strict increase followed by a non-strictly increasing subsequence, possibly a
plateau, and then a non-strictly decreasing subsequence, followed by a strict
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decrease. The maximal value δs
f of an e-occurrence [�, u] of that pattern is

found already when we traverse the ‘found’ transition for s ∈ [�, u], which is
the first transition on signature symbol ‘>’: there is no need then to consider
other elements of the e-occurrence because the rest of the pattern is a non-
strictly decreasing sequence, so we can aggregate once we know δs

f . Formally,
such a constraint is an aggregate-once constraint, because for any e-occurrence
[�, u] we have that φf (φf (. . . φf (idf , δ�

f ), . . . , δu−1
f ), δu

f ) = max(idf , δ�
f , . . . , δu

f ) =
max(idf ,X�

f , . . . , Xu
f ) = Xs = δs

f , where Xs triggers a ‘found’ transition of the
automaton, with s ∈ [�, u].

The second kind of time-series constraints, in Definition 4 below, is charac-
terised by a combination of feature and pattern properties for which we can start
aggregating a current feature value into the result accumulator r as soon as when
we find out that we are within a pattern e-occurrence, i.e., without waiting for the
end of that pattern e-occurrence. To understand how a synthesised automaton
works, we define the following functions, parametrised by entries from Fig. 2B
and C, representing the updates of the accumulators c and r:

– Ff : Z × Z → Z × Z (ci, ri) �→ (φf (ci, δ
i
f ), ri)

– G′
f,g: Z × Z → Z × Z (ci, ri) �→ (idf , g(ri, φf (ci, δ

i
f )))

– G′′
f,g: Z × Z → Z × Z (ci, ri) �→ (φf (ci, δ

i
f ), g(ri, φf (ci, δ

i
f )))

When a synthesised automaton from [3] computes the value of feature f for an
e-occurrence [�, u] and aggregates it into the result accumulator r, the new value
of r is computed by first applying u− � times the function Ff and then applying
the function G′

f,g. However it is often possible to aggregate this feature value into
r without waiting for the end of the e-occurrence. There are two such situations:
either (a) before aggregating, we must evolve the feature value of the e-occurrence
in accumulator c; or (b) we need not evolve this feature value in c, but after each
aggregation c is reset to the idf value from Fig. 2B. We apply u − � times the
function G′′

f,g or G′
f,g for the situations (a) and (b) respectively. Finally G′

f,g is
applied once for both (a) and (b), since we do not have to keep in accumulator c
the feature value when we are at the end of the e-occurrence. The old [3] order
of accumulator updates corresponds to G′

f,g ◦Ff ◦ · · · ◦Ff , called order (1), while
the new order of updates corresponds to either G′

f,g ◦ G′
f,g ◦ · · · ◦ G′

f,g, called
order (2), or G′

f,g ◦ G′′
f,g ◦ · · · ◦ G′′

f,g, called order (3).

Definition 4. A time-series constraint is an immediate-aggregation constraint
if for any e-occurrence the use of order (1) has the same result as using either
order (2) or order (3).

Due to the immediate-aggregation property, we do not have to distinguish
the potential and current parts anymore. In [3], updating r is done after the end
of an e-occurrence, taking into account the current feature value in c. However,
we need not aggregate after the end of an e-occurrence, as the update of r
should happen when we are sure that the current element Xi belongs to the
e-occurrence, so we can use c for keeping both the potential and current parts.
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· · · u − � u − � + 1

c c� = c�−1 + 1 · · · cu−1 = cu−2 + 1 cu = 0
r r� = r�−1 · · · ru−1 = ru−2 ru = max(ru−1, cu−1 + 1)
(c, r) (0, r�−1) (1, r�−1) · · · (u − �, r�−1) (0,max(r�−1, u − � + 1))

c c� = c�−1 + 1 · · · cu−1 = cu−2 + 1 cu = 0
r r� = max(r�−1, c�−1 + 1) · · · ru−1 = max(ru−2, cu−2 + 1) ru = max(ru−1, cu−1 + 1)
(c, r) (0, r�−1) (1,max(r�−1, 1)) · · · (u − �,max(r�−1, u − �)) (0,max(r�−1, u − � + 1))

Fig. 3. MaxWidthStrictlyDecreasingSequence immediately aggregates

For example, the MaxWidthStrictlyDecreasingSequence constraint is
an immediate-aggregation constraint. This is illustrated in Fig. 3, where ci and
ri respectively denote the values of accumulators c and r after consuming Xi: we
consider an e-occurrence [�, u] and apply the two orders (1) and (3); after the last
update, the value of the accumulator r coincides for both orders. The column
‘before’ contains the value of the accumulators just before the e-occurrence [�, u].
The simplified automaton for this constraint is given in Fig. 1.

The percentage of constraints for which we can simplify the automata using
the different types of simplifications is given in Fig. 2A.

4 MIP Decomposition of Automaton-Based Constraints

Consider a constraint γ(N, 〈X0, . . . , Xn−1〉) and signature constraints linking
its n variables Xj to n + 1 − w signature variables Si, each Si being function-
ally determined by a linear relation on w consecutive Xj variables. For ease of
notation, we here assume w = 2: each Si is linked to Xi and Xi+1, as for the
time-series constraints in Sect. 2. (Other frequent scenarios are w = 1, where
each Si is linked to Xi only, and the absence of signature constraints, in which
case one would assume Si = Xi are the signature constraints, also with w = 1).

Assume a ground instance of γ(N, 〈X0, . . . , Xn−1〉) holds iff an automaton A
with m ≥ 1 accumulators aj that are updated by linear expressions φ, possibly
using the ‘max’ and ‘min’ operators, returns the value of its variable N , called the
result variable, after consuming the values of its signature variables S0, . . . , Sn−2.

Following [1], we decompose γ for a MIP solver by formulating logical con-
straints that model the triggering of transitions in A (Sect. 4.1) and linearising
those constraints (Sect. 4.2). For m = 0, there is the flow-based MIP decomposi-
tion of [8]. For m = 1 accumulator that is only updated through increments by
positive integers, there is the column-generation approach of [9].

4.1 Logical Constraints

Beside the integer variables X0, . . . , Xn−1 and N of γ, to model the behaviour of
A = 〈Q,Σ, δ, q0, I, A, α〉 on the signature variables S0, . . . , Sn−2 over Σ, the key
idea is to represent the states visited by A using state variables Q0, . . . , Qn−1

over Q: each Qi denotes the state reached after consuming Si−1, with Q0 = q0.
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Also, we need transition variables T0, . . . , Tn−2 over the set T = Q × Σ of
constants denoting all the transitions of the total function δ: each Ti denotes the
(i + 1)st triggered transition of A, that is while consuming Si.

Last, we need accumulator variables Ai,j for i ∈ [0, n−1] and j ∈ [1,m]: each
integer Ai,j denotes the value of accumulator aj after the ith transition of A,
that is after consuming Si−1; each A0,j is given in the tuple I of initial values.

The signature constraints functionally determine each signature variable Si

from a linear relation on Xi and Xi+1. For example, the signature constraints
for time-series constraints are given at the beginning of Sect. 2.

The transition constraints encode the transitions of δ as follows:

Q0 = q0

Qi = q ∧ Si = σ ⇒ Qi+1 = δ(q, σ) ∧ Ti = 〈q, σ〉, ∀i ∈ [0, n − 2], ∀q ∈ Q, ∀σ ∈ Σ

For example, a representative transition constraint for the automaton of Fig. 1
is: Qi = s ∧ Si = ‘< ’ ⇒ Qi+1 = s ∧ Ti = 〈s,<〉, ∀i ∈ [0, n − 2].

The accumulator constraints are of three kinds: the values of the accumulator
variables A0,j before any transitions are found in the m-tuple I of initial values;
there is an implication constraint for each transition of δ with its accumulator
updates; and the values of the accumulator variables An−1,j after all transitions
are linked to the result variable N according to the acceptance function α. If
A � Q, then we have to pose the additional constraint Qn−1 ∈ A.

For example, the accumulator constraints for the automaton in Fig. 1 are as
follows, using the accumulator variables Ci and Li for denoting the successive
values of the accumulators c and � respectively: the constraints L0 = 0 and
C0 = 0 correspond to the pair I = 〈0, 0〉 of initial values; the constraint N =
Ln−1 stems from the acceptance function; further:

Ti = t ⇒ Ci+1 = Ci, ∀t ∈ {〈s,<〉, 〈s,=〉} , ∀i ∈ [0, n − 2]
Ti = 〈s,>〉⇒ Ci+1 = 2, ∀i ∈ [0, n − 2]
Ti = t ⇒ Ci+1 = 0, ∀t ∈ {〈u,<〉, 〈u, =〉} , ∀i ∈ [0, n − 2]
Ti = 〈u,>〉⇒ Ci+1 = Ci + 1, ∀i ∈ [0, n − 2]
Ti = t ⇒ Li+1 = Li, ∀t ∈ {〈s,<〉, 〈s,=〉, 〈u,<〉, 〈u, =〉} , ∀i ∈ [0, n − 2]
Ti = 〈s,>〉⇒ Li+1 = max(Li, 2), ∀i ∈ [0, n − 2]
Ti = 〈u,>〉⇒ Li+1 = max(Li, Ci + 1), ∀i ∈ [0, n − 2]

For n variables Xi and m accumulators, there are n − 1 signature variables,
n state variables, n−1 transition variables, and mn accumulator variables, hence
Θ(n) variables in total, since m is a constant. Since A has a constant size, each
variable occurs in a constant number of constraints, so there are Θ(n) constraints.

4.2 Linearising the Logical Constraints

To obtain a linear model, we linearise each group of logical constraints.
For each variable Si over Σ, we introduce 0-1 variables Sσ

i , with 1 denoting
truth and 0 denoting falsity, hence the semantics Sσ

i = 1 ⇔ Si = σ for all
i ∈ [0, n − 2] and σ ∈ Σ. This requires that exactly one of the Sσ

i takes value 1:
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∑

σ∈Σ

Sσ
i = 1, ∀i ∈ [0, n − 2] (1)

We replace each atom Si = σ by the Boolean Sσ
i in each logical constraint.

We perform the same operation for the Qi and Ti variables with respect to
their domains, getting variables Qq

i and T t
i for all q ∈ Q and t ∈ T . If A � Q,

then we additionally require Qq
n−1 = 0 for all q ∈ Q\A.

To linearise the transition constraints, which are now implications where
both sides are conjunctions of Boolean variables, we use the technique of [17,
pages 172–177].

The accumulator constraints have the general logical form

Ti = t ⇒ Ai+1,j = φ, with i ∈ [0, n − 2], j ∈ [1,m], and t ∈ T

where φ is here a linear expression, possibly using the ‘max’ and ‘min’ operators,
that mentions variables Ai,j denoting accumulator values before the considered
ith transition. We linearise such an implication as follows:

Ai+1,j − φ ≤ Mj · (1 − T t
i ), with i ∈ [0, n − 2], j ∈ [1,m], and t ∈ T

Ai+1,j − φ ≥ Mj · (T t
i − 1), with i ∈ [0, n − 2], j ∈ [1,m], and t ∈ T

where constant Mj , chosen with respect to the function φ, is such that the
constraints above always hold. Computation of Mj may also require calculation
of the values serving as plus and minus infinities. For example, for a time-series
constraint specified by a triple 〈p, f, g〉, we have that each Mj depends on the
extrema of feature f . If φ uses the ‘max’ and ‘min’ operators, then we first
linearise it using the technique of [10, pages 4–5], introducing a constant number
of new variables.

We linearise the signature constraints by using the following technique,
explained on the example of time-series constraints, where the minimum differ-
ence between two consecutive integer variables Xi is 1. We rewrite the signature
constraint Xi < Xi+1 ⇔ Si = ‘<’ as two linear inequalities enforcing S<

i = 1
if Xi < Xi+1, and S<

i = 0 otherwise:

Xi+1 − Xi

M ′
i

≤ S<
i ≤ Xi+1 − Xi

M ′
i

+
2M ′

i − 1
2M ′

i

, ∀i ∈ [0, n − 2]

where constant M ′
i is max

v∈dom(Xi), w∈dom(Xi+1)
|w − v| + 1, for all i ∈ [0, n − 2],

assuming dom(Y ) denotes the domain of variable Y . The linearisation of Xi >
Xi+1 ⇔ Si = ‘>’ is symmetric. The linearisation of Xi = Xi+1 ⇔ Si = ‘=’ is
S<

i = 0 ∧ S>
i = 0, since the instance S<

i + S=
i + S>

i = 1 of (1) implies S=
i = 1.

For n variables Xi and m accumulators, there are (n − 1) · |Σ| signature
variables, n · |Q| state variables, (n − 1) · |Q| · |Σ| transition variables, and mn
accumulator variables. Linearising any of the (n − 1) · |Q| · |Σ| accumulator
constraints requires a constant number of new variables, if any. So we still have
Θ(n) variables in total, since m, |Q|, and |Σ| are constants; for the time-series
constraints, we have |Q| ≤ 4 for 240 of the 266 automata and |Q| ≤ 13 otherwise,
m ≤ 3 upon the improvements in Sect. 3, and |Σ| = 3. Since each variable occurs
in a constant number of constraints, there still are Θ(n) constraints.
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5 Improved Generation of Implied Constraints

Given an automaton A with m ≥ 1 accumulators aj , our tool ImpGen [11]
generates invariants of the form α1a1+· · ·+αmam+γ ≥ 0: these inequalities hold
at every state of A for any symbols consumed so far. Let variable Ai,j denote the
value of accumulator aj after A has consumed the first i symbols of a sequence
of n symbols: these variables appear in the CP decomposition [4], for a sequence
of n variables Si, of the constraint specified by A. This decomposition in general
does not achieve domain consistency when m ≥ 1 [2]: achieving it is NP-hard for
such a constraint in general [5]. Each invariant translates into n + 1 constraints
of the form α1Ai,1 + · · · + αmAi,m + γ ≥ 0, for all 0 ≤ i ≤ n. We showed in [11]
that these constraints are implied by the mentioned CP decomposition, and that
the implied constraints translating a suitable selection of invariants improve the
propagation strength and speed of that decomposition. The generation of implied
constraints is specific to an automaton, but neither to a constrained sequence of
variables Si nor to its length n, and can thus be done offline.

ImpGen handles automata where each accumulator update is a linear expres-
sion on accumulators. This includes increments and decrements by constant
amounts (as in c := c + 1) or other accumulators (as in c := c + �), resets (as
in c := 0), etc. This excludes updates via the ‘max’ and ‘min’ operators, for
instance: ImpGen handles only 64 of the 266 time-series constraints in Sect. 2.

Towards handling all the time-series constraints, we need to extend ImpGen
to handle also conditional accumulator updates of the form c := if ρ then φ else ψ,
where ρ is a linear (in)equality and φ, ψ are linear expressions on accumulators:
following an idea in [16], we extend the encoding of automaton transitions by
allowing preconditions to be expressed. ImpGen now automatically first rewrites
accumulator updates containing the binary ‘min’, ‘max’, or ‘abs’ operators into
conditional updates. For example, the accumulator update on the arc from s to t
in Fig. 1 is rewritten as 〈c, �〉 := 〈2, if � > 2 then � else 2〉.

Finally, we extend ImpGen to rank the implied constraints by decreasing
propagation strength when added to the CP decomposition: this is done based on
a series of random instances. This enables automated selection via a top-k rule for
a user-chosen parameter k, as opposed to the previous manual selection among
a set of implied constraints. For example, the top three implied constraints
generated from the automaton in Fig. 1 are Li ≥ Li−1, Li ≥ Li−2, and Li +
Li−1 ≥ 2 · Li−2, where Li denotes the value of accumulator � after consuming
the first i symbols. The new tool is available online.1

Intuitively, the implied constraints generated by ImpGen can improve infer-
ence also for the MIP decomposition of Sect. 4 because they are generated
directly from an automaton and are not necessarily linear combinations of the
linear inequalities in that decomposition [13]. Our experiments in the next section
confirm that implied constraints that improve the propagation of the CP decom-
position can also improve the inference of the MIP decomposition.

1 http://www.it.uu.se/research/group/astra/software/impGen.zip.

http://www.it.uu.se/research/group/astra/software/impGen.zip
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Fig. 4. Time in seconds (left) and backtracks (right) to maximise the result variable for
random instances under SICStus Prolog 4.3.2 on a 2011 MacBook Pro 2.2GHz quad-
core Intel Core i7-950 machine with 6MB cache and 16 GB memory. The x-axis is for
the new automata and the y-axis is for the old automata: points below the diagonal
represent good results for the new automata.

6 Benchmark on CP and MIP Solvers

To evaluate the CP and MIP decompositions of the time-series constraints, we
compared their old automata [3] against the new automata of Sect. 3, and the
new automata with and without implied constraints generated as in Sect. 5.

To compare the old automata against the new automata for CP, we gener-
ated instances for all the 266 time-series constraints over time series of length 15
over the domain {1, 2, 3}. Note that a domain of size 3 is large enough to allow
all patterns to occur and to focus the propagation effort on the transition con-
straints and accumulator constraints but not on the signature constraints. We
maximised the result variable, and used a timeout of 100 s. As can be seen in
Fig. 4, the decompositions of the new automata are almost always faster (actu-
ally 1.6 times faster on average) and always have fewer backtracks (actually 25 %
fewer backtracks on average) than those of the old automata.

To compare the new automata with and without implied constraints both for
CP and MIP, we generated 40 instances for each constraint used in Sect. 7 below
over time series of length 100 and random sub-intervals of [0, 1000] as domains.
We maximised the result variable, and used a timeout of 300 s.

Using SICStus Prolog [7], we chose a static search strategy, assigning the
variables Xi by increasing index and trying values from smallest to largest.
This means that the first solution found is the same with and without implied
constraints, and that the times and backtrack counts are directly comparable.
The decompositions of the new automata are always faster in the presence of
the top two implied constraints, namely 3.33 times faster on average, and always
have fewer backtracks, by up to 5 orders of magnitude. In particular, all instances
of half the constraints are now solved in less than 1 s instead of timing out.

Using the Gurobi 6.5 [12] MIP solver, the decompositions of the new
automata are almost always faster in the presence of the top two implied
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constraints, namely also 3.33 times faster on average, and can solve to opti-
mality 14% more instances. For the considered constraints, the decompositions
of the new automata are always faster than those of the old automata, namely
1.63 times faster on average.

7 Evaluation on a Staff Scheduling Application

For a more realistic evaluation, we introduce a prototypical staff scheduling
application that uses a number of time-series constraints. We consider the case
of a service company, where demand varies over time, and has to be met at
each time point. In order to provide the service level required, we have to define
a manpower resource profile over time. Resource cost may vary over time, i.e.,
employees may be paid different rates at different times. If we could hire and
fire personnel arbitrarily, we could follow the demand curve exactly, but this is
not allowed, as business processes, employment rules, and union contracts limit
how quickly we can change the number of persons employed. We are therefore
required to sometimes employ more people than strictly necessary. Note that
we are not dealing with a shift rostering problem, where the demand must be
covered by people working different shift patterns. In the current problem we
are only interested in the total manpower curve, over a long-term horizon.

The overall problem is to cover the given resource demand over time, while
minimising overall resource cost, and at the same time satisfying the given time-
series constraints.

7.1 Notation, Constants and Variables

In our benchmark, we use a time resolution of one week over a one year horizon,
i.e. we consider n = 52 time points. The integer variables Xi describe the sched-
uled resource level at time i. These variables form a single time-series X1, . . . , Xn,
all constraints are expressed over this time-series or over one of its sub-sequences.
The symbols di define the given, fixed demand at each time point i. The sym-
bols ci define the cost of a resource unit at time point i. For each constraint we
also introduce an integer variable which represents the aggregated feature value
for the constraint. The lower or upper domain bound of these variables will be
constrained.

7.2 Objective Function

The objective is to minimise the total cost of the schedule, i.e.

obj∗ = min
n∑

i=1

Xici

The overhead obj∗ −
∑n

i=1 dici is the increase in cost due to the working rules.
We can use the overhead also to evaluate the potential cost/savings due to
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adding/removing a specific working rule. Another lower bound is the sum of
the lower domain bounds after initial propagation: we use this to compute the
finite-domain optimality gap in our evaluation.

7.3 Constraints

There are two types of constraints, one concerning the demand profile, and the
other a set of time-series constraints. At each timepoint, the resources provided
must exceed the required demand Xi ≥ di.

The constraints on the time series are given in natural language form below,
we also note the constraints used, following the naming scheme in [3].

1. The manpower profile can have at most two peaks. This is expressed with a
NbPeak constraint with a parameter variable with an upper bound of two.

2. The manpower profile can have at most two valleys. This is handled by the
NbValley constraint.

3. The maximal manpower level at any peak of employment is 250. The num-
bers employed at the start or end of the planning period can be higher. The
MaxMaxPeak constraint handles this condition.

4. We can hire at most 5 persons in one week. This limit is caused by the induc-
tion training required. The induction covers safety training, where spaces in
each course are limited. We use the MaxRangeIncreasing constraint to
model this condition.

5. We can fire at most 7 persons in one week (expressed with a MaxRangeDe-
creasing constraint).

6. We can only have at most four consecutive increases of personnel in the
planning period. This is expressed by the MaxWidthStrictlyIncreas-
ingSequence constraint, considering that four consecutive increases lead
to a pattern of width five.

7. We can only have at most six consecutive decreases of personnel numbers
in the planning period (using MaxWidthStrictlyDecreasingSequence
from Example 1).

8. If we reach a peak in the employment, the profile has to stay constant for at
least 10 weeks. Otherwise, we will be violating a “hire and fire” union rule.
This is handled by a MinWidthPlateau constraint.

9. If we fire a person, we can not hire another person for four weeks. Instead,
we should keep on employing the person (MinWidthPlain).

10. We are not allowed to fire persons in the two weeks before Christmas
(expressed with a NbDecreasing constraint on a sub-sequence).

11. In every month, we can have at most 20 new hires. This is due to limitations
of the human resources department. For this we use one SumRangeIn-
creasing constraint for each month.

12. The difference between the highest and lowest peak should not be more than
30. We already have a MaxMaxPeak constraint to constrain the level of
the highest peak. A MinMaxPeak constrains the height of the lowest peak,
an inequality between the parameters limits the difference to at most 30.
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Manually Generated Redundant Constraints. In order to find solutions
more easily, we initially manually defined some redundant constraints controlling
the domain envelope. Constraint (4) can be approximated by inequalities Xi+1 ≤
Xi + c with a constant c equal to five (this is also generated by ImpGen), while
constraints (4) and (6) imply inequalities of the form Xi+p+1 ≤ Xi + pc, as
any sequence of p + 1 intervals can contain at most p = 4 increases. These
constraints are currently out of the scope of ImpGen because they are linear
only at the instance level.

7.4 Search Routine and Experimental Setup

In order to evaluate the impact of different implementations of the constraints,
we choose a static search strategy, assigning the Xi variables by increasing index,
and enumerating values from smallest to largest. This means that the first solu-
tion found is the same for all CP models used, and the times and backtrack
counts are directly comparable.

We create random sample problem instances that follow a common structure.
There are demand peaks in Spring and Autumn, and reduced demand during
Summer and Winter. The minimal difference between peaks and valleys is con-
trolled by a parameter P , which we vary from 10 to 40 in steps of 5. For each
parameter value, we generate 100 instances.

We compare different implementations of the time-series constraints, together
with manually or automatically generated implied constraints, using the solvers
described in Sect. 6, on the hardware introduced in Fig. 4. On their own, the
time-series constraints perform quite poorly. Both the old and the new automata
definitions only solve instances for the easiest instance set (P=10), finding solu-
tions for 12, respectively 16, of the 100 problems. Adding either manually defined
constraints or the top two implied constraints as described in Sect. 5 to the new
automata allow us to find solutions for all problem instances for all parameter
values. Using the old automata with the manually defined constraints solves 90,
70, 45, 36, 31, 35, and 32 out of 100 instances for parameter values 10 to 40.

For the combinations of automata and implied constraints that solve all
instances we compare backtracks and solution times for the CP model in Table 1,
which also shows the average and maximal optimality gap for both the CP and
MIP models. Note that the finite-domain solver typically only finds a first solu-
tion, and cannot prove optimality within the timeout period. We report results
for finding that first solution. At the moment, the MIP solver, even when using
the implied constraints and with a timeout of 300 s, only finds optimal solutions
for some of the problem instances (column Opt), and performs worse than the
CP model for some instances.

We can see that both automatically and manually generated implied con-
straints are important, and that their combination significantly reduces the
search space explored. On average, the best CP solutions found are within 4 % of
the lower bound, but for some instances the gap is as large as 17 %. The average
MIP optimality gap is smaller, but the worst cases are even higher, and do not
occur for the same instances as for the CP model.
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Table 1. Backtracks, Execution Times, Solution Quality

new+implied new+manual new+impl.+man. optimality gap

back time back time back time cp mip

p avg max avg max avg max avg max avg max avg max avg max avg max opt

10 20 55 0.08 0.10 478 2168 0.37 1.41 12 35 0.09 0.12 2.86 8.45 1.75 7.97 14

15 80 730 0.11 0.34 548 2144 0.47 1.59 18 42 0.09 0.12 3.27 11.25 1.82 7.22 13

20 200 990 0.17 0.63 496 3921 0.49 4.07 18 43 0.09 0.12 3.42 9.67 2.28 18.77 27

25 1034 17719 0.60 9.30 766 6119 0.73 5.30 35 448 0.10 0.33 3.20 10.54 2.15 17.25 24

30 1001 17726 0.68 13.01 789 6452 0.80 5.85 34 452 0.10 0.35 3.20 8.02 2.04 6.34 26

35 1247 17726 0.86 15.17 824 6621 0.85 6.96 36 460 0.10 0.40 3.38 8.25 2.03 6.21 28

40 1992 25986 1.23 15.44 962 7369 1.02 5.80 37 468 0.10 0.39 3.51 17.32 1.97 10.47 18

8 Conclusion

Within the context of automaton-specified constraints in general, and time-series
constraints in particular, the theoretical contributions of this paper have been
shown to improve significantly both CP and MIP models. We hope our work
motivates the quest for other general results that have a positive impact on
different solving technologies, such as CP, MIP, local search, and SAT.
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Abstract. Minimal Unsatisfiable Sets (MUSes) are useful in a number
of applications. However, in general there are many different MUSes,
and each application might have different preferences over these MUSes.
Typical Muser systems produce a single MUS without much control over
which MUS is generated. In this paper we describe an algorithm that can
efficiently compute a collection of MUSes, thus presenting an application
with a range of choices. Our algorithm improves over previous methods
for finding multiple MUSes by computing its MUSes incrementally. This
allows it to generate multiple MUSes more efficiently; making it more
feasible to supply applications with a collection of MUSes rather than
just one.

1 Introduction

When given an unsatisfiable CNF F , SAT solvers can return a core, i.e., a
subset of F that remains unsatisfiable. Many applications, e.g., program type
debugging, circuit diagnosis, and production configuration [6], need cores in their
processing. In many cases these applications can be made much more effective
if supplied with minimal unsatisfiable sets (MUSes), which are cores that are
minimal under set inclusion. That is, no proper subset of a MUS is unsatisfiable.

This makes the problem of efficiently extracting a MUS an important and
well studied problem, see [5,6,9,13,18,20,21] for a more extensive list. In fact,
the problem of finding a minimal set of constraints sufficient to make a problem
unsolvable is important in other areas as well. For example in operations research
it is often useful to find irreducible inconsistent subsystems (IISes) of linear
programs and integer linear programs [8,24], and in CP a minimal unsatisfiable
set of constraints [12].

In various applications the preference for MUSes over arbitrary cores goes
further, and some MUSes might be preferred to others. Most algorithms for
computing MUSes, however, return an arbitrary MUS . There has been some
work on the problem of computing specific types of MUSes. In [19] the prob-
lem of computing lexicographic preferred MUSes is addressed. Furthermore, the
problem of computing the smallest MUS has been addressed in [10,11,15]. How-
ever, algorithms for extracting specific MUSes, especially those for extracting
the smallest MUS , can be considerably less efficient than state-of-the-art MUS
extraction algorithms returning an arbitrary MUS .
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 35–44, 2016.
DOI: 10.1007/978-3-319-33954-2 3
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In this paper we address this issue by trying to quickly return a collection of
MUSes, rather than trying to compute a specific type of MUS . The application
can then choose its best MUS from that collection. So, e.g., although our app-
roach cannot guarantee returning the smallest MUS , the application can choose
the smallest MUS from among the collection returned. This approach is advan-
tageous when algorithms for computing the most preferred MUS are too costly
(e.g., computing the smallest MUS ), or when there is no known algorithm for
computing the most preferred MUS (e.g., the application’s preference criteria is
not lexicographic).

We accomplish this task through an extension of a recent MUS algorithm
[3]. The advantage of our algorithm is that it can exploit information computed
when finding previous MUSes to speed up finding future MUSes. Hence, it can
find multiple MUSes more efficiently. This algorithm has the drawback, however,
that it cannot keep on finding more MUSes when given more time: it computes
a set of MUSes of indeterminate size and then stops. Adopting the power set
exploration idea of [14] we address this drawback, presenting a method that can
eventually compute all MUSes while still enumerating them at a reasonable rate.
We show that our algorithms improve on the state of the art.

2 Background

Let F be an unsatisfiable set of clauses.

Definition 1 (MUS). A Minimal Unsatisfiable Set (MUS ) of F is a unsat-
isfiable subset M ⊆ F that is minimal w.r.t. set inclusion. That is, M is unsat
but no proper subset is.

Definition 2 (MSS). A Maximal Satisfiable Subset (MSS ) of F is a sat-
isfiable subset S ⊆ F that is maximal w.r.t set inclusion.

Definition 3 (MCS). A correction subset of F is a subset of F whose comple-
ment in F is sat . A Minimal Correction Subset (MCS ) of F is a correction
subset that is minimal w.r.t. set inclusion.

Note that if C is an MCS of F then its complement F \ C is an MSS of F .

Definition 4. A clause c ∈ F is said to be critical for F (also known as a
transition clause [7]) when F is unsat and F − {c} is sat .

Intuitively, a MUS is an unsatisfiable set that cannot be reduced without
causing it to become satisfiable; a MSS is a satisfiable set that cannot be added
to without causing it to become unsatisfiable; and an MCS is a minimal set of
removals from F that causes F to become satisfiable.

A critical clause for F is one whose removal from F causes F to become
satisfiable. If c is critical for F then (a) c must be contained in every MUS of
F and (b) {c} is an MCS of F . Furthermore, M is a MUS if and only if every
c ∈ M is critical for M . Note that a clause c that is critical for a set S is not
necessarily critical for a superset S′ ⊃ S. In particular, S′ might contain other
MUSes that do not contain c.
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Duality. A hitting set H of a collection of sets C is a set that has a non empty
intersection with each set in C: ∀C ∈ C.H ∩ C �= ∅. A hitting set H of C is
minimal (or irreducible) if no subset of H is a hitting set of C.

Let AllMuses(F) (AllMcses(F)) be the set containing all MUSes (MCSes)
F . There is a well known hitting set duality between AllMuses and AllMcses [22].
Specifically, M ∈ AllMuses(F) iff M is a minimal hitting set of AllMcses(F),
and dually, C ∈ AllMcses(F) iff C is a minimal hitting set of AllMuses(F). The
duality also holds for non-minimal sets, e.g., any correction set hits all unsatis-
fiable subsets. It is useful to point out that if F ′ ⊆ F , then AllMuses(F ′) ⊆
AllMuses(F). Hence, if f is critical for F it is critical for all unsatisfiable subsets
of F . An MCS C ′ of F ′ ⊂ F , on the other hand, is not necessarily an MCS of F ,
however C ′ can always be extended to an MCS C of F [3].

3 Enumerating MUSes

To the best of our knowledge the current state-of-the-art algorithm for the prob-
lem of quickly computing a collection of MUSes is the Marco system originally
developed in [14] and later improved in [16]. Marco+ (the new optimized ver-
sion of Marco [16]) was compared with previous approaches [4,17] and shown
to be superior at this task. Therefore we confine our attention in this paper to
comparing with the Marco+ approach.

Algorithm 1 shows the algorithm used by Marco+. Marco+ uses the tech-
nique of representing subsets of F , the input set of clauses, with a CNF, ClsSets.
ClsSets contains a variable si for each clause ci ∈ F . Every satisfying solution of
ClsSets specifies a subset of F : the set of clauses ci corresponding to true si in
the satisfying solution. Initially, ClsSets contains no clauses, and thus initially
its set of satisfying solutions corresponds to F ’s powerset.

Marco+ uses ClsSets to keep track of which subsets of F have already been
tested so that each MUS it enumerates is distinct. When ClsSets becomes unsat
all subsets of F have been tested and allMUSes have been enumerated. Otherwise,
the truth assignment π (line 4) provides a subset S of unknown status.

Marco+ forces the sat solver to assign variables to true in each decision.
Hence, if S is sat it is guaranteed to be an MSS (see [2] or [23] for a simple proof).
S and all of its subsets are thus now known to be sat so they can be blocked in
ClsSets. This means that all future solutions of ClsSets must have a non-empty
intersection with F \ S, i.e., they must hit the complement of S, a (minimal)
correction set. The update of ClsSets is accomplished with the subroutine call
hitCorrectionSet(F \S) (line 6) which returns a clause asserting that some si
corresponding to a clause in F \ S must be true.

Otherwise S is unsat and it contains at least one MUS. Marco+ then invokes
a MUS finding algorithm to find one of S’s MUSes. In addition, Marco+ informs
the MUS algorithm of all singleton MCSes it has found. The computed MUS
M has to include the union of these singleton MCSes as it must hit every MCS .

M and all of its supersets are known to be unsat and are blocked in ClsSets by
a clause computed by blockSuperSets(M) asserting that some si corresponding
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Algorithm 1. Marco+ MUS enumeration algorithm

Input: F an unsatisfiable set of clauses
Output: All MUSes of F , output as they are computed

1 ClsSets ← ∅ � Initially, ClsSets admits all subsets of F as solutions.
2 while true do

// If C is sat , SatSolve(C, π) returns true and puts truth assignment in π
3 if SatSolve(ClsSets, π) then
4 S ← {ci ∈ F | π[si] = true} � All decisions set to true so S is maximal
5 if SatSolve(S, π) then
6 ClsSets ← ClsSets ∪ hitCorrectionSet(F \ S) � F \ S is a MCS
7 else
8 M ← findMUS(S, {all singleton MCSes})
9 output(MUS)

10 ClsSets ← ClsSets ∪ blockSuperSets(M)
11 else return

to ci ∈ M must be false [14]. After all subsets of F have been identified as being
sat or unsat (detected by ClsSets becoming unsat), the algorithm returns.

One advantage of Marco+ is that it can utilize any MUS algorithm. Thus
once it has identified a subset of F to be unsat it can enumerate a new MUS as
efficiently as finding a single MUS . Another advantage is that it will continue to
enumerate MUSes until it has enumerated them all. On the negative side, each
new MUS is computed with an entirely separate computation. This MUS compu-
tation only knows about the prior singleton MCSes but does not otherwise share
much information with prior MUS computations (beyond some learnt clauses).

4 A New Algorithm for Enumerating MUSes

Algorithm 2 shows our new algorithm for generating multiple MUSes from a
formula. The grayed out lines will be used when multiple initial calls are made
to the algorithm, they will be discussed in the next section. For now it can be
noted that these lines have no effect if ClsSets is initially an empty set of clauses.

The algorithm is a modification of the recently proposed state-of-the-art MUS
algorithm MCS-MUS [3]. It extends MCS-MUS by performing a backtracking
search over a tree in which the branch points correspond to the different ways
the MUSes to be output can hit a just computed MCS .

The algorithm maintains a current formula F ′ ⊆ F , such that F ′ is unsat ,
partitioned into a set of clauses known to be critical for F ′, crits, and a set
of clauses of unknown status, unkn. It starts by identifying an MCS , cs, of
crits ∪ unkn, such that cs ⊆ unkn, using a slight modification of existing MCS
algorithms [3]. If no such MCS exists, then crits is unsatisfiable and since all of
its clauses are critical, it is a MUS . This MUS is reported and backtrack occurs.
If cs does exist, it creates a choice point. By duality we know that every MUS
must hit cs, and by minimality of cs we know that for every clause c ∈ cs there
is a MUS whose intersection with cs is only c. Hence, we select a clause c ∈ cs
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Algorithm 2. MCS-MUS-BT (unkn, crits,ClsSets): Output a collection of

MUSes of unkn ∪ crits using MCS duality. To find some MUSes of F the initial

call MCS-MUS-BT (F , {},ClsSets = ∅) is used.

Input: unkn a set of clauses of unknown status such that unkn ∪ crits is unsat
Input: crits a set of clauses critical for unkn ∪ crits

Input: ClsSets a CNF representing subsets of the input formula of unknown status.

Output: Some MUSes of unkn ∪ crits, output as computed

Output: ClsSets is modified.

1 crits ← crits ∪ {ci | si ∈ UP (ClsSets ∪ {(¬sj)|cj /∈ crits ∪ unkn})}
2 unkn ← unkn \ crits

3 (cs, π) ← findMCS(crits, unkn) � Find cs, an MCS contained in unkn.

4 if cs = null then
5 output(crits) � crits is a MUS of crits ∪ unkn

6 ClsSets ← ClsSets ∪ blockSuperSets(crits)

7 return

8 else

9 ClsSets ← ClsSets ∪ hitCorrectionSet({c|π �|= c}) � Correction set of F
10 unkn ← unkn \ cs

11 for c ∈ cs do

12 crits′ ← crits ∪ {c}
13 unkn′ ← refineClauseSet(crits′, unkn)
14 C ← recursiveModelRotation(c, crits, unkn, π)

15 MCS-MUS-BT (unkn′ \ C, crits′ ∪ C)

to mark as critical (line 12) removing the rest from unkn (line 10). This ensures
that all MUSes enumerated in the recursive call contain c and hence hit cs.

Before the recursive call, we can use two standard techniques that are critical
for performance, clause set refinement [21] and recursive model rotation [7].

Theorem 1. All sets output by MCS-MUS-BT are MUSes of its input F =
unkn ∪ crits. Furthermore, if F unsatisfiable a least one MUS will be output.
Finally, if only one MUS is output, then F contains only one MUS.

We omit the straightforward proof to save space. Although the theorem shows
that MCS-MUS-BT will generate at least one MUS (as efficiently as the state-
of-the-art MCS-MUS algorithm), the number of MUSes it will generate is inde-
terminate, as this depends on the MCSes it happens to generate. Furthermore,
it cannot, in general, generate all MUSes. Intuitively, by removing cs from unkn
at line 10, we block it from generating any MUS M with |M ∩ cs| > 1.

The main advantage of this algorithm is that it shares computational effort
among many MUSes. Namely, after the first MUS is generated, computation
for the second MUS starts with at least one (potentially many) known MCS ,
and may also have several clauses in crits and a smaller set of clauses in unkn.
Hence, it can more efficiently generate several MUSes.
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4.1 Enumerating All MUSes

While MCS-MUS-BT may be able to generate a sufficiently large collection of
MUSes, the unpredictability of the size of this collection might be unsuitable in
some cases. In such cases we may of course fall back to Marco+, giving up the
advantages of MCS-MUS-BT.

Another option is to embed MCS-MUS-BT in Marco+. It is straightfor-
ward to modify Algorithm 1 so that it uses MCS-MUS-BT instead of findMUS
and blocks all MUSes discovered during one call. However, without modifying
Marco+ this allows only limited information to flow between Marco+ and
MCS-MUS-BT. In particular, sharing information beyond singleton correction
sets is not supported.

A third option then is deeper integration of MCS-MUS-BT into a Marco-
like algorithm. We show this in Algorithm 3, which is based on the MCS-
MUS-All algorithm of [3]. The outline of MCS-MUS-All-BT is broadly sim-
ilar to that of Marco+. Like Marco+ it uses a CNF ClsSets to represent
subsets of F with unknown status and uses the same hitCorrectionSet and
blockSuperSets procedures to block MSSes and MUSes, respectively. When
ClsSets becomes unsatisfiable all MUSes have been enumerated (line 3). Each
solution π of ClsSets yields a set S of unknown status, which is then tested for
satisfiability.

If it is satisfiable, S is guaranteed to be an MSS since we require the
solver to assign variables to true in each decision as in Marco+. We can then
block S and all of its subsets by forcing ClsSets to hit its complement with
hitCorrectionSet.

If S is unsatisfiable, then it is given to MCS-MUS-BT to extract some of
its MUSes. We generalize Marco+, however, by providing all previously dis-
covered correction sets to MCS-MUS-BT, not just the singleton MCSes. These
correction sets can be exploited to discover new critical clauses. In particular,
all previously discovered correction sets result in clauses being added to ClsSets
by hitCorrectionSet. We can use unit propagation (line 1 of Algorithm 2) to
determine if the clauses currently excluded from the MUSes being enumerated
(F \ (crits ∪ unkn)) make some prior correction set cs a singleton (of course
all correction sets that are already singleton will also be found, so this method
obtains at least as much information as Marco+). If so then all MUSes of the
current subset crits ∪ unkn must include that single remaining clause c ∈ cs
since all MUSes must hit cs; i.e., c is critical for crits ∪ unkn.

Thus our algorithm has two advantages over using MCS-MUS-BT in the
Marco+ framework. First, individual calls to MCS-MUS-BT may produce
MUSes more quickly because our generalization of Marco+’s technique of
exploiting singleton MCSes (at line 1) can detect more critical clauses, either ini-
tially or as unkn shrinks. Second, the multiple correction sets that can be discov-
ered withinMCS-MUS-BT are all added toClsSets. Hence, their complementary
satisfiable sets will not appear as possible solutions to ClsSets in the main loop of
Algorithm 3. This can reduce the time spent processing satisfiable sets.
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Algorithm 3. MCS-MUS-All-BT(F): Enumerate all MUSes of F .

Input: F an unsatisfiable set of clauses
Output: All MUSes of F , output as there are computed

1 ClsSets ← ∅ � Initially, ClsSets admits all subsets of F as solutions.
2 while true do
3 if not SatSolve(ClsSets,π) then return; � All MUSes enumerated
4 S ← {ci | ci ∈ F ∧ π |= si} � All decisions set to true so S is maximal
5 if SatSolve(S,π) then
6 ClsSets ← ClsSets ∪ hitCorrectionSet(F \ S) � S is an MSS
7 else MCS-MUS-BT (F , crits, unkn, ClsSets)

5 Empirical Results

In this section we evaluate our algorithms which we implemented in C++ on
top of MiniSAT. We used the benchmark set of [1] containing 300 problems.
We used a cluster of 48-core 2.3 GHz Opteron 6176 nodes with 378 GB RAM
available.

First we tested MCS-MUS-BT (Algorithm 2) against the Marco+ sys-
tem [16]. MCS-MUS-BT can only generate some MUSes, while Marco+ can
potentially generate all. So in the scatter plot (a) of Fig. 1 we plotted for each
instance the time each approach took to produce the first k MUSes, where k
is the minimum of the number of MUSes produced by the two approaches on
that instance when run with a 3600 s timeout. In the plot, points above the 45◦

line are where MCS-MUS-BT is better than Marco+. The data shows that
MCS-MUS-BT outperforms Marco+ on most instances.

We also tested how many MUSes are typically produced by MCS-MUS-BT.
When run on the 300 instances it yielded no MUSes on 20 instances (in 3600 s),
1 on 111 instances, 2–10 on 29 instances, and more than 10 on 140 instances. On
6 instances it yielded over 10,000 MUSes. So we see that MCS-MUS-BT often
yielded a reasonable number of MUSes, but in some cases perhaps not enough.

To go beyond MCS-MUS-BT, potentially generating all MUSes, we used
two variations of our complete algorithms. The first we call Marco-Many. This
is MCS-MUS-BT integrated into an implementation of the Marco+ algorithm,
with MCS-MUS-BT called when a MUS is to be computed and returning mul-
tiple MUSes. The second variation is MCS-MUS-All-BT, from the previous
section. We also compare these against Marco+ 1 and our previous MUS enu-
meration algorithm MCS-MUS-All [3].

Figure 1(b) compares MCS-MUS-All-BT with Marco+. Here we plotted
for each instance the number of MUSes produced by each approach within a
3600 s timeout. Points above the line represent instances where MCS-MUS-
All-BT generated more MUSes than Marco+. The picture here is not com-
pletely clear. However, overall MCS-MUS-All-BT showed better performance:
it generated more MUSes in 170 cases, an equal number in 48 cases, and fewer in
82 cases. Furthermore, notice that as we move up the x and y axis the instances

1 Version 1.1, downloaded from https://sun.iwu.edu/∼mliffito/marco/.

https://sun.iwu.edu/~mliffito/marco/
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Fig. 1. (a) Time for Marco+ to generate as many MUSes as MCS-MUS-BT (b): num-
ber of MUSes MCS-MUS-All-BT against Marco+ (logscale). (c) Average time/MUS
MCS-MUS-All-BT against Marco+. (d) Cactus plot of Average time/MUS of all
solvers.

become easier, i.e., many more MUSes can be generated per second in these
instances. The instances in which Marco+ outperformed MCS-MUS-All-BT
tend to be towards the upper right of the plot.

Besides the number of instances we are also interested in the rate at which
MUSes are generated. For each instance we calculated the average time needed
to generate a MUS by MCS-MUS-All-BT and Marco+. Figure 1(c) shows a
scatter plot of these points. The cactus plot of Fig. 1(d) elaborates on this data
showing the other algorithms as well.

In scatter plot (c) the axes have been inverted so that once again points
above the line represent instances in which MCS-MUS-All-BT is better than
Marco+. We zoomed this plot into the range [0,500] s per MUS as most of the
data was clustered into this region. These instances show a convincing win for
MCS-MUS-All-BT. The plot excludes 100 instances. Of these, 43 instances
could not be plotted as one or both algorithms produced zero MUSes: on 18
both produced zero MUSes; on 22 MCS-MUS-All-BT generated a MUS but
Marco+ did not; on 3 the inverse happened. The other 57 instances were
excluded because of the plot range. Among them 3 were below the line, 23 above
the line and 31 on the line. Of these excluded instances the most extreme win
for Marco+ was an instance where Marco+ generated 3 MUSes and MCS-
MUS-All-BT only 1; and the most extreme win for MCS-MUS-All-BT was
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an instance where Marco+ generated only 1 MUS and MCS-MUS-All-BT
generated 800.

We see that with few exceptions, the average time to generate a MUS with
MCS-MUS-All-BT is smaller. This is confirmed by the cactus plot (d), where
we see that the average time to generate a MUS by MCS-MUS-All-BT remains
well below that of other algorithms. The corresponding lines only meet for the
hardest instances, where all methods generate one or no MUSes. The cactus
plot also confirms that simply integrating MCS-MUS-BT into a Marco-like
algorithm (i.e., Marco-Many) is not sufficient. Additionally, we see that the
MCS-MUS-All-BT provides a good improvement over the previous MCS-
MUS-All.
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Abstract. In recent years, decision diagrams (DDs) have proven useful
for solving a variety of optimization problems, often closing long-standing
instances from classical benchmarks. This success is primarily driven by
a DDs ability to capture structure. This paper exploits this characteristic
and proposes a novel solution method which decomposes a problem into
highly-structured portions, where the solution set of each portion can
be compactly represented using a DD. This technique is applied to a
special case of the independent set problem and to unconstrained binary
quadratic programming. Preliminary computational results suggest that
the proposed decomposition approach can improve upon both standard
integer programming models and a single DD approach.

1 Introduction

A decision diagram (DD) is a graphical data structure originally introduced to
compactly represent Boolean functions [1], with several applications in circuit
design and formal verification [14,18]. In recent years, DDs have also been applied
to encode the solution set of discrete optimization problems, serving for a variety
purposes such as cut generation in mixed-integer linear programming [5], to
enhance propagation in constraint programming [3], and in novel general branch-
and-bound procedures for combinatorial optimization problems [8].

In the context of optimization, the successful applications of DDs are ample.
Examples include solving long-standing open benchmark instances of the max-
imum cut problem [8] and of variants of the traveling salesman problem [15].
Moreover, DDs have also been incorporated into state-of-the-art integer pro-
gramming and constraint programming technology to substantially improve opti-
mality gaps [9–11] and solution times [16] on a number of applications.

One of the key reasons for the successful application of DDs lies in the fact
that they are particularly well-suited to capture complete inference for certain
problem structures. For example, the size of a DD encoding the feasible solutions
of a set covering problem can be bounded by a function of the bandwidth of the
constraint matrix [11,17]. As a result, DD-based methods perform well when the
bandwidth of the matrix is small, but tend to lose effectiveness for larger band-
widths. Analogously, DDs provide strong optimization bounds for the maximum
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 45–54, 2016.
DOI: 10.1007/978-3-319-33954-2 4
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clique problem when the underlying graph is dense [9], and can improve solution
times in scheduling problem by orders of magnitude depending on the structure
of the precedence graph [15].

In this paper we exploit this inherent characteristic of DDs and propose the
notion of decision diagram decomposition. The idea is to decompose an opti-
mization problem into distinct subproblems, each capturing some complicating
problem structure for which the associated DD is provably small in size. Once
equipped with a valid decomposition, the original discrete problem then reduces
to finding a path in each DD that mutually agree on the assignment of the
decision variables, which can be solved in many ways.

In particular, we propose a methodology in which each DD is assigned a
network flow relaxation, thereby transforming the representation from a discrete
structure into a mixed-integer linear programming (MILP) model. The network
flow relaxations are combined through linking constraints, stated either generally
or as problem specific constraints, so as to harness the power of MILP solvers.

The contributions of this work are hence threefold. First, we provide a decom-
position approach which captures problem structure in a novel systematic way.
Distinct from existing methods, the decomposition of the instance can be based
not only on the constraints, but also on the objective function, or on both. Sec-
ond, the resulting MILP from our methodology effectively yields new extended
formulations [4] in a generic way, i.e. MILP models in a higher dimension that
can be stronger than other existing models. Finally, our methodology can also be
used to improve the robustness of current DD-based methods in constraint pro-
gramming and operations research, since one can use different DDs to represent
different substructures as opposed to a single DD for all the problem.

The paper is organized as follows. Section 2 introduces BDDs, and Sect. 3
explicitly expresses the decomposition framework. Next, Sect. 4 provides the
MILP formulation for linking the distinct BDDs, and preliminary study cases are
presented in Sect. 5 on the maximum independent set problem and the binary
quadratic programming problem. A conclusion is provided in Sect. 6.

2 Decision Diagrams for Binary Optimization

For the purposes of this paper, we focus on solving binary optimization problems
(BOPs), which are of the form max{f(x) : x ∈ S, x ∈ B

n}, where n is the
number of variables, f is any function mapping binary vectors into the set of
real numbers, and S is an arbitrarily defined constraint set.

A BDD B = (U,A) is a directed acyclic graph with nodes U and arcs A. The
nodes are partitioned into nB layers L1, . . . , LnB

, and each node u ∈ U is in layer
�(u) ∈ {1, 2, . . . , nB}; thus, Li = {u | �(u) = i}. In particular, L1 = {r} and
LnB

= {t}, where r and t are referred to as the root node and terminal node,
respectively. Each arc a ∈ A has an arc-weight w(a) ∈ R and an arc-domain
d(u) ∈ {0, 1}, where a is a 0-arc when d(a) = 0 and an 1-arc otherwise. An arc
a = (h(a), t(a)) has head h(a) and tail t(a), with � (t(a)) − � (h(a)) = 1. Each
node u ∈ U\{t} is the head of at most one 0-arc and at most one 1-arc.
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We use BDDs is to represent solutions (or partial solutions) to BOPs as r− t
paths, where the length of the path corresponds to objective function values
through the total weight of the r−t path. Let P(B) be the set of arc-specified r−t
paths in B. Each layer, with the exception of the terminal layer, is associated with
a variable through the injection σB : {1, . . . , nB − 1} → {1, . . . , n}. For a path
p = (a1, . . . , anB−1) ∈ P(B), the arc-domains along p yield a partial solution
x(p) = (xσB(1), xσB(2), . . . , xσB(nB−1)) = (d(a1), d(a2), d(anB−1)). Let X (p) ={
x ∈ B

n : xσB(i) = xi(p), i = 1, . . . , nB − 1
}

be the set of possible completions
of partial solutions, and define the solutions of B as Sol(B) =

⋃
p∈P(B) X (p).

Let the weight w(p) of path p be
∑n′

B−1
i=1 q(ai). An exact BDD B for a BOP

is one in which (1) Sol(B) coincides with the set of feasible solutions to the BOP
and (2) for each path p and each solution x ∈ X (p), f(x) = w(p). Such a BDD
encodes all feasible solutions along with their objective function values, so that
a longest path, which can be computed in linear time in |U |, corresponds to an
optimal solution and its length corresponds to the optimal solution value.

To illustrate, consider the BOP P ′ defined by max f(x) =
∑5

i=1 xi subject to
x1 + x2 ≤ 1, x1 + x3 ≤ 1, x2 + x3 ≤ 1, x2 + x4 ≤ 1, x3 + x4 ≤ 1, and x4 + x5 ≤ 1.
The optimal solution value is 2. Figure 1(a) depicts an exact BDD for this BOP.
The variables corresponding to each layer appear on the left of the BDD and
dashed/solid arcs correspond to setting variables on that layer to 0/1.

3 Decomposition Based on Binary Decision Diagrams

A decomposition based on binary decision diagrams (DBDD) for a BOP is a col-
lection of BDDs B1, . . . , Bm with the following two properties: (1)

⋂m
k=1 Sol(Bk)

coincides with the feasible set of the BOP, and (2) for any feasible solution
x, the set of paths pk in BDD Bk for which x ∈ X (pk), k = 1, . . . , m, satisfy
f(x) = w(p1) + · · · + w(pk). These two conditions enforce that every feasible
solution to the BOP corresponds to some path in each of the BDDs, that every
vector in B

n which is infeasible does not correspond to any path in at least
one of the BDDs, and that the sum of the weights of these paths coincide with
the objective function value of that solution. In particular, the latter condition
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Fig. 1. (a) Exact BDD and (b) Exact DBDD for example BOP.
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can be enforced by setting the weights of the 1-arc in layer k of each BDD as
f(xk)/m(xk), where m(xk) is the number of BBDs which include variable xk.
Finally, note that a single BDD is a DBDD.

Figure 1(b) depicts a DBDD for P ′: Any solution is a collection of 3 paths,
one in each BDD, for which the variable assignments coincide. The optimal
solution (1, 0, 0, 1, 0) corresponds to the solid-dashed-dashed/dashed-dashed-
solid/dashed-solid path through the BDD with roots r1, r2, r3, respectively.

4 Solving a DBDD

Given a BDD for a BOP, finding the optimal solution reduces to a longest path
computation which, since a BDD is a directed-acyclic graph, can be identified in
O (|U |). The same is not true for a DBDD — even determining whether or not⋂m

k=1 Sol(Bk) is empty is NP-hard. To establish this, consider the set packing
problem, which asks for a binary vector x that maximizes a linear function and
that satisfies Ax ≤ 1, where A is a 0/1 matrix. The exact BDD for each constraint
has width of 2 [10], the collection of exact BDD for each individual constraint is
a DBDD, and finding a common solution would solve the set packing problem.

In order to solve the underlying DBDD optimization problem, we formulate
an MILP model based on interpreting the longest path of each BDD as a network
flow. Let B = (U,A) be a BDD and consider the MILP model netflow(B):

netflow(B) = max
x∈{0,1}n

y∈[0,1]|A|

⎧
⎨

⎩
∑

a∈A

w(a)ya :
∑

a∈A:h(a)=r

ya = 1,
∑

a∈A:t(a)=t

ya = 1,

∑

a∈A:t(a)=u

ya −
∑

a:h(a)=u

ya = 0 ∀u ∈ U, xσB(i) =
∑

a∈A:�(a)=i,d(a)=1

y(a) ∀i

⎫
⎬

⎭

Each arc a ∈ A has a variable ya and the constraints are the typical network flow
constraints which enforce that each feasible solution must correspond to a r− t
path, with an additional set of constraints that relate the flow variables with the
BOP variables. These constraints enforce that the BOP variable xσB(i) = 1 if and
only if the arc of the path on layer i is a 1-arc. Note that a similar formulation
can be created for other forms of BDDs, including zero-compressed BDDs [9],
which will be used in the computational results that follow.

It is well known that netflow(B) is an integral polytope so that relaxing
the integrality constraints results in a linear programming (LP) for which the
corner points are integral. Moreover, if the BDD is exact, the projection onto
the x-variables is a convex-hull relaxation of the feasible set of the BOP [5].

Hence, a DBDD {Bk}m
k=1 can be formulated as an MILP model that combine

the polytopes netflow(Bk), which are naturally linked through the variables x.
In particular, the feasible solutions to netflow(Bk) is Sol(Bk), and therefore
the conjunction of the polytopes (represented by the combined model) yields an
extended formulation for the BOP. One of the key advantages is that each Bk
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may capture some combinatorial structure that is non-trivial to encode as linear
constraints, thus yielding better MILP models. In order to make the approach
scalable, each BDD in the DBDD should be as small as possible.

5 Study Cases

We examine two problem classes as preliminary study cases which exemplify
how problems can be decomposed into structured subproblems with limited-size
BDDs. All experiments ran on an Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz
processor, 32 GB RAM, using IBM ILOG CPLEX 12.6 (one thread).

Independent Sets on Social Networks. The application that motivated
the design of DBDDs was finding independent sets in social network graphs.
Let G = (V,E) be an undirected graph with vertices V = {1, . . . , n} and
edge set E ⊆ V × V . An independent set I is a subset of V such that
no two vertices in I are adjancent to each other, i.e. i, j ∈ I if (i, j) �∈
E. The maximum independent set problem asks for an independent set I
with the largest cardinality. This problem is typically written as the BOP
max

{∑
i∈V xi : xi + xj ≤ 1 ∀(i, j) ∈ E, x ∈ B

n
}
.

Fig. 2. Relaxed caveman graph. Picture from Judd et al. [20].

In graphs representing social networks, independent sets play a key role in
identifying interpersonal relations [6], in game theoretical models for the provi-
sion of goods [13], and as a measure of fairness [20] and diversity [19]. Here we
focus on a particular type of social network graph denoted by relaxed caveman
graphs. A caveman graph represents large groups of mutually adjacent connec-
tions with sporadic links to other groups, as depicted in Fig. 2. Independent sets
in such graphs are used, e.g., in procedures for detection of communities [2]. The
decomposition in this case consists of building the exact BDD for each denser
component (the “caves”), and then using single edge inequalities to enforce that
the endpoints of the redirected edges cannot both be in an independent set.
The BDD for a single clique has width 2 [9,17] and, upon removal of one edge,
the width of each layer grows by at most a factor of 2. Therefore, if k edges
are removed, the size of the exact BDD is at most 2k, although in general will
be much smaller. Since there are typically few interconnections in this class of
graphs, the BDDs will be of practical size.

For our experiments, we constructed random graphs specified by a triple
(c, s, p): First, c cliques of size s are generated, and then the endpoints of
the edges in a clique are randomly assigned to a vertex in another clique
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with probability p. We considered c = 10, s ∈ {15, 20, . . . , 40}, and p ∈
{0.10, 0.15, . . . , 0.50}. Three instances per triple (c, s, p) were generated, yield-
ing in total 175 instances. We compared three approaches: a clique-based MILP
formulation for the problem [9], the MILP generated from the DBDD, and Cli-
quer [21], a specialized method for the problem. The clique-based MILP method
exploited the clique structure imposed by the caves. A time limit of 30 min was
set in all cases.

Figure 3(a) depicts the number of solved instances over time, and shows that
the DBDD MILP is more robust then all other methods combined. Figure 3(b)
compares times between the DBDD and Cliquer, where the size of a point indi-
cates the number of vertices in each cave (s) and the color gradation indicates
the density. In particular, DBDD performs better for any instance that can be
solved in more than 10 s by both methods, and it is particularly more effective
for larger problems with a higher density between caves.

(a) Performance profile (b) Cliquer vs. DBDD

Fig. 3. Results on relaxed caveman graphs.

Unconstrained Binary Quadratic Programming (UBQP). We present a
case where the objective function is decomposed as opposed to the constraint set.
A instance of UBQP is specified by an objective function matrix Q ∈ Sn, where
Sn is the set of symmetric n × n matrices (i.e., ∀i, j ∈ {1, . . . , n}, qi,j = qj,i).
The UBQP is defined as max{xT Qx : x ∈ B

n}. For notation purposes, let x|k
be the partial solution of x ∈ B

n on only the first k indices: x|k = (x1, . . . , xk).
An exact BDD B for BOP can be compiled with a top-down approach based

on a dynamic programming (DP) formulation for the problem, as presented in
Bergman et al. [7,8]. DP models in our context are defined by a state s(.) and
a value function v(.), which will be encoded as nodes of the BDD and as length
of arcs, respectively. For the UBQP with Q = {qi,j}, the state is defined as
s(x′|k+1)j = 0 if j ≤ k+1, and s(x′|k)j +2 ·qk+1,j ·x′

k+1, if j > k+1. The value
function is written as v(x′|k + 1) = v(x′|k) + x′

k+1 · s(x′|k)k+1. Intuitively, the
value in the jth coordinate of the state represents the marginal effect of setting
xj = 1 given the values assigned to x1, . . . , xk. We omit the proof for brevity,
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but note that they are similar to the DP model of the maximum cut problem
[8]. Figure 4 depicts an exact BDD for an objective function matrix Q′.

Q′ =
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(0,0,1,1,-1)

(0,0,0,3,-3)

(0,0,0,0,-1)

t

(0,0,0,0,0)

x1

x2

x3

x4

x5

xi = 1

xi = 0
1 0

-2
0 -1

0

-1

0 -3

0 1

0 -1

0

1

0
-1

0
3

0

1

0

-1

0
-3 0

1

0

Fig. 4. Objective function matrix for an UBQP instance with an exact BDD. States are
indicated on nodes in which the path corresponding to solution (1, 0, 1, 1, 0) traverses.

Given a graph G = (V,E), a path decomposition of G is a sequence of subsets
Vi ⊆ V for which (1) ∀e ∈ E,∃Vi s.t. e ⊆ Vi and (2) ∀i ≤ j ≤ k, Vi ∩ Vk ⊆ Vj .
The width of a path decomposition is one less that the maximum cardinality set,
maxi |Xi| − 1. The path-width, pw(G), of a graph G is the minimum width over
all path decomposition. For a symmetric n × n matrix Q, let G(Q) = (V,E′) be
the graph with E′ = {(i, j) ∈ E : qi,j �= 0}. We state the following result, which
follows a similar proof as in previous works bounding the size of DDs [17].

Theorem 1. Let Q be an n × n symmetric matrix. There exists an exact BDD
for the UBQP defined on Q for which w(B) ≤ 2pw(G(Q))−1.

Consider Q′ in Fig. 4. A path decomposition for G(Q′) consists of vertex sets
{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, proving that there exists a BDD with width bounded
by 23−1 = 4. The BDD in Fig. 4 is such a witness.

Theorem 1 provides a bound on the size of the width of BDDs based on the
pathwidth of G(Q). This indicates that for matrices whose corresponding graphs
have a limited pathwidth, a DD-based approach will work well. However, if Q
does not possess such a characteristic, the DD can grow exponentially large. We
exploit this idea to decompose the matrix Q as follows: fix p, 1 ≤ p ≤ n as the
desired pathwidth for each element of the decomposition, and let m = 
n/p� be
the number of elements created. Define Qk by, for i ≤ j, qk

i,j = qi,j if k(p − 1) ≤
i < kp and j ≥ i, and qk

i,j = 0 otherwise, with the elements in indices with
i > j defined so that qk is symmetric (i.e., qk

i,j = qk
j,i). Each Qk satisfies that

pw(G(Qk)) ≤ p, thereby limiting the size of the exact BDD for each Qk.
In order to test the effectiveness of the approach, random symmetric matrices

were generated, with n = 40 and fixed Q to have bandwidth L ∈ {10, 20, 30, 40},
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with 10 instances per configuration. Each qij took a value uniformly at random
from {−5,−4, . . . , 4, 5} if i �= j, and the diagonal entries were set as qi,i =
−1 ·

∑
j �=i qi,j if |i − j| ≤ L, and 0 otherwise.

Our goal is to show how DBDDs can improve upon integer programming
methodology. Figure 5(a) presents a performance profile, depicting the effect of
varying p, the pathwidth of each BDD in the decomposition. Each line corre-
sponds to a p and the resulting number of BDDs. Figure 5(b) presents a plot
depicting the average time to solve instances with L ∈ {10, 12, 14, 16}. We pro-
vide a comparison of the IP linearization implemented in CPLEX [12], namely
min{

∑
i,j qi,jyi,j : xi + xj − 1 ≤ yi,j ;xi, xj ≥ yi,j ;xi, yi,j ∈ {0, 1}, all i, j}, with a

single exact BDD and the DBDD with p = 4. A time limit was set to 600 s.

(a) Performance profile (vary p) (b) (Average) Time to solve

Fig. 5. UBQP Results.

Figure 5 shows how a single exact BDD approach is impractical because of
the exponential growth in its size as L grows. Both IP and the DBDD approaches
scale much better as L grows, with the latter finding the optimal solutions
slightly faster. As the difficulty in the instances grows, the DBDD solution time
grows at essentially the same pace as IP, which also elucidates the promise of
investigated DBDDs in instances which lack structure. We remark that CPLEX
is capable of solving quadratic models directly, which has a better performance
than the methods presented here. Nonetheless, it transforms Q into a positive
semi-definite matrix, yielding a different model that we do not have access to.

6 Conclusion

This paper presents a novel decomposition-based optimization approach to
binary optimization problems. The proposed technique combines the strength
of binary decision diagrams, which are particularly successful at representing
portions of problems with structure, with the strength of integer programming
technology. Computational experiments indicate promise in the approach for
solving independent set and binary quadratic programming problems.
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Abstract. We present novel branch-and-check and logic-based Ben-
ders decomposition techniques for the Travelling Purchaser Problem,
an important optimization problem with applications in vehicle routing,
logistics, and warehouse management. Our master problem determines
a set of markets and directed travel arcs that satisfy product purchase
constraints with relaxed travel costs. Our subproblem identifies subtours
within this master assignment and produces a set of generalized subtour
elimination cuts. We show that the proposed technique demonstrates
strong performance on the asymmetric problem variants, finding opti-
mal solutions to previously unsolved instances, while performing com-
petitively on a number of symmetric problem classes. Furthermore, our
model is implemented unchanged for the four problem variants whereas
other state-of-the-art approaches are variant-specific.

1 Introduction

Given a set of markets, each with a set of available products, the Travelling
Purchaser Problem (TPP) aims to determine a simple cycle among a subset of
markets that minimizes the sum of travel cost and purchase cost for the set of
products required by the traveller. The problem is NP-Hard [23] and generalizes
both the Travelling Salesman Problem (TSP) [10] and the Uncapacitated Facility
Location Problem (UFLP) [9].

Our primary contribution is the development of an exact decomposition
model to solve the TPP. The decomposition uses mixed-integer programming
for the master problem and a straightforward subtour identification algorithm
to generate cuts. The method is simple to implement in commercially avail-
able solvers, and does not require sophisticated separation procedures, nor an
in-depth polytope analysis [19,24]. To our knowledge, there is no other single
approach that has been used without modification to efficiently solve the unca-
pacitated, capacitated, asymmetric, and symmetric problem variants. Our app-
roach achieves strong performance on both the capacitated and uncapacitated
asymmetric instances while remaining competitive on symmetric problems.

As far as we are aware, this work is the first application of branch-and-check
and logic-based Benders decomposition (LBBD) for the TPP, though an LBBD-
inspired heuristic approach has been investigated [6] and served as an initial
inspiration for this work.
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 55–64, 2016.
DOI: 10.1007/978-3-319-33954-2 5
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2 Background

In this section we define the TPP and review existing relevant work, focusing on
exact algorithms rather than heuristic approaches (e.g., [5,12,13]).

2.1 Problem Definition

Following Laporte et al. [19], consider a set of markets M := {v0, v1, ..., vn},
where v0 is a depot, and a set of available products K := {p1, ..., pm}. The
demand for product pk, the quantity of product that must be purchased, is dk

and the price of pk at vi is bki. Each product, pk, can be purchased at a subset
of the markets, Mk, and the quantity of pk available at vi is qki. We define
M∗ := {v0} ∪ {vi ∈ M : ∃ pk ∈ K such that

∑
vj∈Mk\{vi} qkj < dk} as the set

of required markets. The travel cost between markets vi and vj is cij . We must
find a simple cycle among a subset of markets such that all product demand is
satisfied and the sum of the travel and product purchase costs are minimized.

We present a mixed-integer programming (MIP) model in Fig. 1. The model
is based on Laporte et al. [19] but uses the lifted Miller-Tucker-Zemlin (MTZ)
subtour elimination formulation [8,21]. The decision variables are:

zi := 1 if market vi is visited and 0 otherwise
xij := 1 if market vi is visited directly before vj and 0 otherwise
yki := the purchased quantity of pk at market vi

ui := a positive variable used for MTZ subtour elimination [21]

Equation (1) minimizes the sum of travel and product purchase costs. Con-
straints (2) and (3) represent the degree constraints for each market. Con-
straint (4) ensures that the demand for each product is satisfied while Constraint
(5) ensures that quantity of a product purchased at a market is contingent on
both the decision to visit that market and the product quantity available. Con-
straint (6) represents the lifted MTZ [8,21] formulation for subtour elimination.
Constraint (8) ensures that zi is set to a value of 1 if market vi is a required market.

2.2 Problem Variants

The majority of TPP variants addressed in the literature fall along two dimen-
sions: capacitated vs. uncapacitated, and symmetric vs. asymmetric. A prob-
lem is uncapacitated if each market sells enough of its products to satisfy the
traveller’s demand for those products (i.e., qki ≥ dk,∀vi ∈ Mk, pk ∈ K) and,
therefore, a given product is always satisfied by a single market. In capacitated
problems, the quantity of a product at a market may or may not completely
satisfy the demand (i.e., 0 < qki ≤ dk,∀vi ∈ Mk) and so the traveller may have
to visit several markets to satisfy the demand for a single product. A problem
is symmetric if cij = cji holds, and asymmetric if it does not. These dimensions
combine to form four problem variations: uncapacitated-symmetric (U-STPP),
uncapacitated-asymmetric (U-ATPP), capacitated-symmetric (C-STPP), and
capacitated-asymmetric (C-ATPP).
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Fig. 1. A MIP Model for the Travelling Purchaser Problem based on Laporte et al. [19]
with lifted MTZ subtour elimination constraints [8,21].

The MIP model in Fig. 1 is valid for all four problem variants as the dif-
ferences are embodied in the instance data: the symmetricity difference is due
to the travel cost matrix data and the uncapacitated variants simply assign
dk = 1,∀pk ∈ K and qki = 1,∀pk ∈ K; vi ∈ Mk.

2.3 Related Work

The first exact approach to the TPP was a lexicographic search algorithm capa-
ble of solving the U-STPP and U-ATPP instances with |M | = 12 and |K| = 10
(12×10) [23]. Singh et al. [25] proposed a branch-and-bound method for the
U-STPP and U-ATPP that utilized the relaxation of UFLP constraints to gen-
erate lower bounds. The approach solved asymmetric instances of size 25×50
and symmetric instances of size 25×30. Laporte et al. [19] proposed the first
capacitated formulation of the symmetric TPP and developed a branch-and-
cut approach for the U-STPP and C-STPP. This method solved instances of
size 200×200 and remains a state of the art for symmetric variants. Riera et
al. [24] developed a state-of-the-art branch-and-cut approach for the U-ATPP
and C-ATPP, solving instances of 200×200. More recently, Cambazard et al. [7]
developed a constraint programming approach for the U-STPP, solving instances
of size 250×200, often out-performing Laporte et al.

3 LBBD and Branch-and-Check for the TPP

We investigate both logic-based Benders decomposition (LBBD) and branch-and-
check (B&C), with the notion that the TPP can benefit from the delayed enforce-
ment of certain constraints. The decomposition structure is the same for both
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approaches, the difference concerning whether the sub-problem is solved at opti-
mal or feasible solutions to the master problem. LBBD [15] uses logic-based sub-
problems to produce valid Benders cuts [11] for the master problem. In LBBD, the
master problem is solved to optimality and the solution to this relaxed problem
is utilized to solve the subproblem(s) and generate cuts. The master problem is
then re-solved, and this iterative process continues until the solution to the mas-
ter problem, with all generated cuts, is valid with respect to the subproblems, and
thus is a globally optimal solution. B&C [26] is a variation of LBBD where the
subproblem(s) are solved whenever a feasible solution is found during the branch-
and-bound search of the master problem. Problems with more difficult master
problems, as compared to the subproblems, are more suited for branch-and-check,
whereas difficult subproblems comparatively favor LBBD [4].

Assignment Master Problem. In the decomposition proposed, the master prob-
lem is a relaxation of the full MIP model (Fig. 1) through omission of the sub-
tour elimination constraints and associated variables: that is, the removal of
Constraints (6) and (7). A solution to the master problem consists of an integer
set of assigned markets, zi, and directed travel arcs, xij , that satisfy product
purchase requirements while allowing subtours. It is natural, therefore, for the
subproblem to identify subtours and eliminate them through cut generation.

Subtour Identification Subproblem. Our approach consists of identifying these
subtours, evaluating their candidacy as globally feasible solutions, and producing
generalized subtour elimination [16] cuts when appropriate.

Due to Constraints (2) and (3), the master solution consists of a set of one
or more disjoint tours of the selected markets. Since our master assignments
are integer, a trivial depth first search is sufficient to identify the unique set of
subtours, Sh, in the hth master problem solution where each sh

� ∈ Sh consists of
a set of markets in a subtour.

For each subtour we first assess whether it is, by itself, a feasible solution to
the global problem; that is, does sh

� satisfy all product purchase requirements
and include the depot, v0 ∈ sh

� . While such subtours will not exist for LBBD,
due to the optimality of the master problem solution, for B&C at most one such
subtour may exist per iteration.1 If such a subtour, ŝh, exists, we remove it from
Sh and use it as a new global incumbent solution. At the same time, for each
subtour sh

� ∈ S̄h := Sh \ {ŝh}, we introduce a generalized subtour elimination
cut defined as follows:

∑

vi∈sh
�

∑

vj∈sh
� ,vj �=vi

xij ≤
∑

vi∈sh
�

zi + ψsh
�

− 1 ∀sh
� ∈ S̄h, (12)

ψsh
�

+ zi ≤ 1 ∀vi ∈ sh
� ; sh

� ∈ S̄h, (13)

ψsh
�

∈ {0, 1} ∀sh
� ∈ S̄h. (14)

1 The limit of one per iteration is due to the depot inclusion condition.
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The left hand side of Cut (12) is the number of chosen arcs in the (complete)
sub-graph induced by the markets in subtour sh

� . The right hand side defines
an upper bound for this value, prohibiting the creation of a subtour of any
permutation of the markets as well as removing some, but not all, subtours
among subsets of the markets. The subset prohibitions are achieved through the
use of the

∑
vi∈sh

�
zi term instead of simply the cardinality of the markets, |sh

� |.
The cut adds of a new auxiliary variable, ψsh

�
, for each sh

� ∈ S̄h which, due
to (12), is constrained to the value 1 if none of the markets in the subtour
are chosen in a subsequent iteration (i.e., if

∑
vi∈sh

�
zi = 0) and, due to (13),

is constrained to 0 otherwise. Functionally, ψsh
�

ensures the global validity of
the cut. Without its inclusion, if none of the markets vi ∈ sh

� were chosen in a
subsequent iteration, Cut (12) would reduce to 0 ≤ 0−1, removing a potentially
globally optimal solution.

The validity of the cut is easily seen. Each cut eliminates at least one subtour
from the master solution space and as the removed subtour does not itself con-
stitute a globally feasible solution, no such solutions are removed. Convergence
to optimality is then based on the finite (though large) number of subtours.

This cut has a similar purpose to the one proposed for the Orienteering
Problem [14,16], though is different through the use of variable generation. Initial
experimentation suggests that our cut performs more effectively, in general, than
the one proposed in Laporte et al. [16], though this is an area we intend to explore
more thoroughly. We note that an equivalent generalized connectivity cut [16]
can be used as well, using the cut-set of directed arcs.

In traditional cut-based approaches for cycle problems, subtour constraints
and integrality requirements are relaxed and violated inequalities are separated
based on fractional solutions of the resulting linear program (LP). When the LP
is solved, a max-flow (or min-cut) problem is solved to identify and separate vio-
lated tour constraints [22]. Additional cutting planes are available, most notably
the class of comb inequalities [2]. This standard approach relies heavily on the
performance of the LP solver, requiring active management of model size due
to the large number of valid inequalities introduced via the various separation
procedures. Conversely, subtour elimination based on integer assignments has
been applied to the TSP [18,20], but not to our knowledge the TPP.

4 Computational Results

In this section we present benchmark results of the proposed LBBD and B&C
formulations on the four main variants of the TPP.

4.1 Benchmark Problems

The instance set we use is well-established in the literature [19,24] and consists
of 745 instances across six problems classes. The capacitated instances introduce
a parameter λ that dictates how traveller demand, dk, relates to the available
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quantity of a product, qki: dk := �λ maxvi∈Mk
(qki) + (1 − λ)

∑
vi∈Mk

qki	 [19].
Each instance set consists of five instances for each combination of |M |, |K| and
λ considered.

Class 1. U-STPP [19] where |M | = 33, |K| ∈ {50, 100, 150, 200, 250}, for a
total of N = 25 problem instances.
Class 2 and 3. U-STPP [19] where |M | ∈ {50, 100, 150, 200}, |K| ∈
{50, 100, 150, 200}, for a total of N = 80 problem instances in each.
Class 4. C-STPP [19] where |M | ∈ {50, 100, 150, 200}, |K| ∈ {50, 100, 150, 200},
and λ ∈ {0.5, 0.7, 0.9, 0.99}, for a total of N = 280 problem instances.
Class 1A. U-ATPP [24] where |M | ∈ {50, 100, 150, 200}, |K| ∈
{50, 100, 150, 200}, with a total of N = 80 problem instances.
Class 2A. C-ATPP [24] where |M | ∈ {50, 100}, |K| ∈ {50, 100, 150, 200}, and
λ ∈ {0.5, 0.8, 0.9, 0.95, 0.99} with a total of N = 200 instances.

4.2 Experimental Details

We implement our methods with the CPLEX 12.6.2 mixed-integer programming
solver in C++. For B&C, we utilize lazy constraints to trigger subproblem solving
and cut generation whenever a feasible master solution is found. As CPLEX
does not directly support variable generation within branch-and-bound, we pre-
allocate a number of ψsh

�
variables which the cuts then make use of. This situation

is not ideal, as it leads to a master problem with variables that may never be
utilized. Better B&C performance is likely with true variable generation.2 For the
LBBD approach, since each master iteration is solved anew, we do not require
in-search variable generation and do not suffer the same B&C limitations.

We compare to published results from the aforementioned state-of-the-art
methods. As the four problem variants have never been approached in one study,
we adapt our run-times to be appropriate for different experimental designs in
the literature. We use a run-time limit of 3,600 s for symmetric experiments,
whereas previous papers use longer run-times (7,200 and 18,000 s). For asym-
metric instances, we use a run-time limit of 7,200 s to match the limits in the
existing papers.

Our experiments use a Xeon 3.5 GHz processor machine with 16 GB of RAM
running OS X Yosemite. Laporte et al. and Riera et al. utilize much older Pen-
tium 500 MHz and AMD 1.33 GHz machines, respectively, running Linux with
CPLEX 6.0. The Cambazard paper uses a Xeon 2.66 GHz processor machine
with 16 GB of RAM running Linux 2.6.25 x64 and customized CP software. Due
to the mix of software and hardware, the results should be interpreted with care.

4.3 Results

Table 1 presents the results for the asymmetric variants (Classes 1A and 2A)
where the branch-and-cut approaches of Riera et al. [24] represent the state of
2 Experiments using dynamic variable creation in SCIP [1] show a relative improve-

ment in B&C compared to LBBD though both CPLEX implementations are faster.
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the art. Two methods are presented in Riera et al.: RieraB&CUT that uses a
customized branch-and-cut algorithm with sophisticated separation procedures,
and RieraTRANS, that transforms the ATPP into its symmetric counterpart, and
then uses the branch-and-cut of Laporte et al. [19].

The results for asymmetric instances with our approach show speed-up fac-
tors of 3 to 70 compared to the previous state of the art, including solving a
number of previously unsolved instances. We suspect the reason for this supe-
rior performance is rooted within our master problem relaxation, namely the
market assignment relaxation for the TPP. As demonstrated by Balas et al. [3],
the assignment problem (AP) relaxation for the TSP is very strong when the
cost matrix, cij , is generated randomly based on a uniform distribution, and thus
asymmetric, resulting in near-optimal solutions. Since the instances for Class 1A
and 2A are generated randomly based on a uniform distribution, it would appear
this property holds for the TPP as well. Again, hardware and software differ-
ences make this comparison less clear cut, though we believe they do provide
supporting evidence for our techniques as strong contenders for the new state of
the art on asymmetric TPP problems.

Table 2 presents the results on the symmetric instances (Classes 1–4), com-
pared to the state-of-the-art approaches. LaporteB&CUT [19] utilizes branch-and-
cut with valid inequalities to strengthen the linear relaxation with sophisticated
separation techniques. The Cambazard [7] approach, CambazardCP−PM, uses
a constraint programming (CP) model with a p-median constraint, originally
intended for solving TPP problems with a bounded number of visits.

Our proposed decomposition techniques are competitive with the existing
state of the art on Classes 1 and 2 while falling short on instances of Class 3
and 4 for larger values of |M |. For the symmetric case, our master assignment
relaxation is much weaker [3] for the underlying cycle problem, which tends to
contain many more subtours of size 2 [17] than the asymmetric counterparts,
resulting in excessive computation time for their elimination.

Table 1. Asymmetric results vs. the state of the art. C is the problem class and N the
number of instances for each value of |M |. #F indicates number of instances that were
not proved optimal in 7,200 second limit. Run-times are arithmetic mean CPU values.

Asymmetric problems (U-ATPP, C-ATPP)

Problem B&C LBBD RieraB&CUT RieraTRANS

C N |M | Avg (s) #F Avg (s) #F Avg (s) #F Avg (s) #F

1A 20 50 1.5 0 2.3 0 14.0 0 33.8 0

20 100 24.8 0 67.7 0 1,083.0 0 1,076.9 2

20 150 166.6 0 485.2 1 1,697.6 4 2,779.1 4

20 200 731.9 1 1,147.1 2 3,331.9 11 3,634.2 11

2A 100 50 1.7 0 2.8 0 100.5 0 152.4 0

100 100 34.9 0 86.7 0 2,557.9 24 2,397.0 36
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Table 2. Symmetric results vs. the state of the art. Notation is identical to Table 1
except with a 3,600 second run-time limit. ‘−’ indicates the method was not attempted.

Symmetric problems (U-STPP, C-STPP)

Problem B&C LBBD LaporteB&CUT CambazardCP−PM

C N |M | Avg (s) #F Avg (s) #F Avg (s) #F Avg (s) #F

1 25 33 6.0 0 85.5 0 28.0 0 − −
2 20 50 0.9 0 1.1 0 1.9 0 − −

20 100 9.6 0 6.9 0 12.2 0 − −
20 150 62.4 0 81.5 0 140.4 0 − −
20 200 221.1 0 280.0 0 298.5 1 − −

3 20 50 11.8 0 270.5 0 23.9 0 7.1 0

20 100 1,872.5 8 2,908.7 15 299.8 0 528.6 2

20 150 3,244.6 17 3,513.8 19 1,725.1 1 821.94 2

20 200 3,210.1 16 3,158.5 17 2,621.0 11 1,383.7 7

4 80 50 9.2 0 113.5 0 23.1 0 − −
80 100 677.7 8 1,174.2 19 402.3 2 − −
80 150 1,603.1 24 1,594.4 31 1,281.2 16 − −
40 200 3,020.6 29 2,084.9 20 2,414.6 19 − −

5 Conclusions

We presented strategies for solving the Travelling Purchaser Problem with
branch-and-check and logic-based Benders decomposition. We utilize a MIP
model for the master problem, determining a set of markets that satisfy product
purchase costs while relaxing the tour requirement. Our subproblem produces
generalized subtour elimination cuts with variable generation.

Numerical results indicate strong performance on the asymmetric problem
variants (both capacitated and uncapacitated) with order of magnitude speed-
ups observed, albeit with differing hardware and software. On the symmetric
instances, the performance was weaker, achieving about the same performance
as the existing state of the art (on older hardware) on some problem classes but
not achieving the same performance on others.

Notably, our model is applicable without modification across all four of the
primary variants of the TPP while the current state-of-the-art techniques are
variant-specific, exploiting sophisticated valid inequalities, separation schemes,
and polytope analyses.

We plan to investigate algorithm extensions including primal solution heuris-
tics, alternate cuts (e.g., [27]), as well as to perform a deeper analysis into the
impact of symmetricity in order to improve performance on symmetric instances.
We believe that the methods presented in this paper can be applied to more com-
plex TPP-variants, as well as other routing problems.
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Abstract. One of the critical issues that affect the efficiency of branch
and bound algorithms in Constraint Programming is how strong a bound
on the objective function can be inferred at each search node. The
stronger the bound that can be inferred, the earlier failed subtrees can
be detected, leading to an exponentially smaller search tree. Normal CP
solvers are only capable of inferring a bound on the objective function via
propagating the problem constraints. Unfortunately, for many problem
classes, this does not yield a very strong bound. Recently, Lagrangian
decomposition methods have been adapted and applied to Constraint
Programming in order to yield stronger bounds on the objective func-
tion. While these methods yield some success, they are somewhat limited
in the types of problems they can be effectively applied to. In particular,
the set of constraints has to be divided into subsets such that each sub-
set can be solved efficiently via a specialized propagator, e.g., consists
of a knapsack problem, or a cost-MDD problem. For many more practi-
cal problem classes, such a division of constraints is simply not possible
and thus those methods cannot be applied. In this paper, we propose a
Lagrangian decomposition method where the sub-problems are solved via
search rather than through a specialized propagator. This has the benefit
that the method can be applied to a much wider range of problems. We
present experiments to show the effectiveness of our method.

1 Introduction

Constraint Programming (CP) approaches are state-of-the-art for solving many
combinatorial optimization problems using a branch and bound approach. But
a critical issue that effects the efficiency of branch and bound algorithms in
CP is how strong a bound on the objective function can be inferred at each
search node. The stronger the bound that can be inferred, the earlier failed
subtrees can be detected, leading to an exponentially smaller search tree. Normal
CP solvers are only capable of inferring a bound on the objective function via
propagating the problem constraints. Unfortunately, for many problem classes,
this does not yield a very strong bound. Indeed for this reason Mixed Integer
Programming (MIP) approaches are preferable to CP for solving many forms of
combinatorial optimization problem – they have strong bounds derived from the
linear programming relaxation of the problem.
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 65–80, 2016.
DOI: 10.1007/978-3-319-33954-2 6
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Recently, Lagrangian decomposition methods have been adapted and applied
to Constraint Programming in order to yield stronger bounds on the objective
function [1,2]. Lagrangian decomposition allows us to break an optimization
problem down into parts that act independently, analogous to the way that CP
solvers treat different constraints. For Lagrangian decomposition each of these
parts is a constrained optimization problem, and together they generate bounds
on the objective, which can be much stronger than simply propagating the objec-
tive constraint. The use of Lagrangian decomposition in CP is an exciting devel-
opment, exactly because it gives us scope for the same powerful heterogeneous
approach to constraint satisfaction used in CP, through separate communicating
propagators, to be used for constraint optimization, through separate communi-
cating optimizers.

While the introduction of Lagrangian decomposition to CP is an important
development, current methods are quite limited in the types of problems they
can be applied to. In particular, the set of constraints have to be divided into
subsets such that each subset can be solved efficiently via a specialized prop-
agator/optimizer. Examples considered so far restrict the sub-problems to be
either knapsack problems [2], or problems specified by a cost-MDD constraint [1]
(although this can theoretically express any COP).

For many problem classes, such a division of constraints is simply not possible
and thus those methods cannot be applied. In this paper, we propose a Lagrangian
relaxation method where the sub-problems are solved via search rather than
through a specialized propagator. This has the benefit that the method can be
applied to a much wider range of problems. We present experiments to show the
effectiveness of our method.

The contributions of this paper are:

– A generic approach to Lagrangian decomposition, applicable to any problem
with a linear objective.

– A meta-search based approach to solving Lagrangian decomposed sub-
problems, in order to improve bounds on the objective.

– Experiments showing that the search based approach to Lagrangian decom-
position can be highly effective.

2 Background and Definitions

2.1 Constraint Programming with Lazy Clause Generation

Let V be a set of (integer) variables (we will treat Boolean variables as 0–1
integers).

A valuation, θ, is a mapping of variables to values, denoted {x1 �→ d1, . . . ,
xn �→ dn}. Define vars(θ) = {x1, . . . , xn}. We can apply a valuation to a variable
θ(xi) to return the value di, and extend application of valuations θ to arbitrary
expressions involving vars(θ) in the obvious way.

A primitive constraint, c, is a set of valuations over a set of variables vars(c).
A valuation θ is a solution of c if {x �→ θ(x) | x ∈ vars(c)} ∈ c. A constraint C is
a conjunction of primitive constraints, which we often treat as a set. A valuation
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θ is a solution of constraint C if it is a solution for each c ∈ C. We write C1 |= C2

if every solution of C1 is a solution of c2. We extend this notation to valuations,
writing θ |= C if

∧n
i=1 xi = di |= C where θ = {x1 �→ d1, . . . , xn �→ dn}.

A literal is a unary constraint (we can restrict to the forms x = d, x �=
d, x ≥ d, x ≤ d), or false. A domain D is a conjunction of literals over
vars(D). D is a false domain if it has no solutions. We use notation D(x) =
{θ(x) | θ is a solution of D}. We use range notation [ l .. u ] = {d | l ≤ d ≤ u}.
We can map a valuation θ to a domain D0 = ∧x∈vars(D)x = θ(x).

A propagator p(c) for constraint c is an inference algorithm, it maps a domain
D to a conjunction of literals p(c)(D), where D ∧ c |= p(c)(D). We assume each
propagator is checking, that is if ∀x ∈ vars(c).|D(x)| = 1 then p(c)(D) = ∅ if θD

is a solution of c and {false} otherwise. A propagation solver prop(P,D) applied
to a set of propagators P and a domain D repeatedly applies the propagators
p ∈ P until p(D′) = ∅ for p ∈ P , and returns D′.

A constraint satisfaction problem (CSP) is a constraint C, often broken into
a domain constraint and the remainder C ⇔ D ∧ C ′. A constraint optimization
problem (COP) is of the form z = min{e | C}, where e is an expression to be
minimized and C is a constraint.

In lazy clause generation (LCG) solvers [3] propagators are also required to
return explanations for each new consequence l ∈ p(c)(D), that is an explanation
clause e ≡ l1 ∧ · · · ln → l where ∀1 ≤ i ≤ n,D |= li and c |= e. LCG solvers,
like SAT solvers, create an implication graph, where every new consequence is
attached to a reason. On failure this is used to create a nogood by repeatedly
replacing literals in the explanation of failure until only one literal that became
true after the last decision remains. This nogood is guaranteed to generate new
propagation information. See [3] for more details.

2.2 Lagrangian Decomposition

Lagrangian decomposition is a well understood application of Lagrangian relax-
ation in order to decompose an optimization problem into parts. Consider an
optimization problem of the form z = min{cx | C1(x) ∧ C2(x)} where z is the
objective value, c are the coefficients and x the decisions of the linear objective,
and C1(x) and C2(x) are arbitrary constraints, then we can provide a lower
bound on the objective using

z = min{cx | C1(x) ∧ C2(x)} = min{cx | C1(x) ∧ C2(y) ∧ x = y}
= min{cx + λ(x − y) | C1(x) ∧ C2(y) ∧ x = y}
≥ min{cx + λ(x − y) | C1(x) ∧ C2(y)}
= min{(c + λ)x | C1(x)} + min{−λy | C2(y)}

The problem is decomposed by duplicating the variables and adding a Lagrange
multiplier penalty λ to try to force the duplicate variables to be the same.

The above reasoning shows how to break a problem into two parts, the app-
roach straightforwardly generalizes into n + 1 parts by creating n copies of the
variables and n sets of equations relating the copied variables with the original
variables.
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The correctness of the lower bound holds regardless of the values of λ, but
we can get stronger bounds by solving the Lagrangian dual to obtain the best
values for λ. In the CP space, since the constraints Ci(x) are arbitrary the usual
approach to do this is the subgradient method [4].

In CP many integer variables represent different choices, and the order of the
integers is irrelevant, hence applying a Lagrangian penalty like xi − yi makes no
sense since if it is non-zero it simply represents that two different choices are
made of (original) variable xi. Hence Lagrangian decomposition approaches for
CP usually break such integer variables into separate 0–1 variables representing
which choice is taken. Given Dinit(xi) = [l..u] we replace xi by 0–1 variables
xj

i , l ≤ j ≤ u where xj
i = 1 ↔ xi = j. We then replace xi = yi by the conjunction∧

l≤j≤u xj
i = yj

i . The key advantage for Lagrangian decomposition is that we
have separate Lagrange multipliers λ for each such equation.

The CP based Lagrangian decomposition approaches, solve the original prob-
lem z = min{cx | C1(x)∧C2(x)} by effectively solving the problem min{z | C1(x)∧
C2(x) ∧ z = cx ∧ z ≥ z1 + z2 ∧ z1 = min{(c + λ)x | C1(x)}} ∧ z2 =
min{−λy | C2(y)}}. Each of the constraints in the master problem are represented
by propagators. This requires a propagation algorithm for the each of optimization
sub-problem constraints. This is a distinct restriction on the approaches. Some
practical approaches to building these propagation algorithms are:

– Restrict to a well understood problem: e.g. z = min{−λy | dy ≤ d0} is an
instance of the knapsack problem, for which many algorithms are known, and
indeed quick approximation algorithms are available.

– Encode the problem using an existing global: e.g. z = min{−λy | C2(y)} can
be represented as a cost-MDD constraint, where the MDD encodes C2(y).
As long as the MDD constraint is not too large then we can use the global
cost-MDD propagation algorithms [5,6].

In the end the difficulty of creating efficient propagators for the optimization sub-
problem can severely limit the applicability of Lagrangian decomposition to CP.

3 Objective Splitting Lagrangian Decomposition

The existing approaches to Lagrangian decomposition decompose the problem
in a constraint centric way, splitting up the constraints into disjoint subsets and
assigning the corresponding part of the objective to each subset. We advocate a
decomposition based on breaking up the objective function directly and assigning
the corresponding parts of the constraints to each part of the objective. Unlike
normal Lagrangian decomposition where each constraint can only belong to one
sub-problem, we project the original constraints onto each sub-problem, meaning
that each original constraint could have a projection in more than one sub-
problem.

3.1 Problem Decomposition

We consider a similar Lagrange decomposition based on splitting on the objec-
tive for z = min{cx + du | C(x, u, v)}. We consider three classes of variables: x
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and u appear in the objective and v are auxiliary variables; and split the con-
straints C(x, u, v) into three categories: C1(x, v) are constraints only involving
x and auxiliaries, C2(u, v) are constraints only involving u and auxiliaries and
C0(x, u, v) are the remaining constraints. In practice if we have auxiliaries v only
related to x we can add them to x, treating them as having coefficient 0 in the
objective, similarly for auxiliaries only related to u. This reduces the number of
Lagrange multipliers required.

The objective splitting decomposition is based on the following reasoning:

z = min{cx + du | C(x, u, v)}
= min{cx + du | C0(x, u, v) ∧ C1(x, v) ∧ C2(u, v)}
= min{cx + du | C1(x, v) ∧ C02(x, u, v) ∧ C2(u, v) ∧ C01(x, u, v)}
= min{cx + du | C1(x, v) ∧ C02(x, u, v) ∧ C2(u, v′) ∧ C01(x, u, v′) ∧ v = v′}
= min{cx + du + λ(v − v′) | C1(x, v) ∧ C02(x, u, v) ∧ C2(u, v′) ∧ C01(x, u, v′) ∧ v = v′}
≥ min{cx + du + λ(v − v′) | C1(x, v) ∧ (∃u.C02(x, u, v)) ∧ C2(u, v′) ∧ (∃x.C01(x, u, v′))}
= min{cx + λv | C1(x, v) ∧ ∃u.C02(x, u, v)} +min{du − λv′ | C2(u, v′) ∧ ∃x.C01(x, u, v′)}
= min{cx + λv | C1(x, v) ∧ ∃u.C02(x, u, v)} +min{du − λv | C2(u, v) ∧ ∃x.C01(x, u, v)}
= min{cx + λv | ∃u.C1(x, v) ∧ C02(x, u, v)} +min{du − λv | ∃x.C2(u, v) ∧ C01(x, u, v))}
= min{cx + λv | ∃u.C(x, u, v)} +min{du − λv | ∃x.C(x, u, v)}
≥ min{cx + λv | ∃̄u.C(x, u, v)} +min{du − λv | ∃̄x.C(x, u, v)}

where C02(x, u, v) ⇔ C0(x, u, v) ∧ C2(u, v), C01(x, u, v) ⇔ C0(x, u, v) ∧ C1(x, v),
and the quasi projection, defined later, ∃̄y.C is a formula such that ∃y.C ⇒ ∃̄y.C.
The two weakening steps hold since weakening the constraints can only reduce
the minimum value.

The resulting CP optimization problem is min{z | C(x, u, v)∧z = cx+du∧z ≥
z1 + z2 ∧ z1 = min{cx+λv | ∃̄u.C(x, u, v)}∧ z2 = min{du−λv | ∃̄x.C(x, u, v)}}.
Notice that all sub-problems use the same variables, and all constraints are
present (in a quasi projected form) in every sub-problem.

We can generalize this to separating into m components

z = min{c1x1 + · · · cmxm | C(x, v)}
≥ min{c1x1 + (λ2 + · · · λm)v | ∃̄x2...xm.C(x, v)}
+ min{c2x2 − λ2v | ∃̄x1x3...xm.C(x, v)} + · · ·
+ min{cmxm − λmv | ∃̄x1...xm−1.C(x, v)}

Now the resulting problem appears far more complex than the original prob-
lem, since we have m sub-problems that appear to be (almost) copies of the
original. The advantage that arises is that we have weakened the constraints in
the sub-problem and still get correct bounds. Of course if we weaken them too
much the bounds will be useless.

The objective based decomposition makes use of existential quantification to
allow us to separate constraints that involve objective variables from different
classes. Since projection is impractical to compute we weaken the projection.
While the logic holds for an arbitrary weakening we will use a certain form we
call quasi projection.
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Given a constraint C with vars(C) = V a quasi projection of C onto variables
V , written ∃̄{V − V }.C or ∃̄−V .C, is the set of solutions θ over variables V such
that prop({p(c) | c ∈ C},Dθ) does not return a false domain. We call V the local
variables of the qausi projection.

Proposition 1. ∃W.C ⇒ ∃̄W.C.

Proof. By definition each solution σ of ∃W.C is such that there exists θ solution
of C where σ = {x �→ θ(x) | x ∈ V − W}. The call prop({p(c) | c ∈ C},Dσ) can-
not return a false domain since this would eliminate the solution θ erroneously.
Consider the propagator that did this, i.e. θ ∈ D′ and D′′ = p(D′) where θ �∈ D′′.
Now θ |= D ∧ c but θ �|= p(D) which contradicts the definition of a propagator.
Hence σ ∈ ∃̄W.C. ��

Example 1. Consider the constraint C ≡ x < y ∧ y < z ∧ y mod 3 = 0 ∧ x ∈
0..4 ∧ y ∈ 0..4 ∧ z ∈ 0..4. Assuming bounds propagators for the inequalities and
a mod propagator that only wakes when y is fixed, the quasi projection onto
{x, z} is {{x �→ 0, z �→ 3}, {x �→ 0, z �→ 4}, {x �→ 1, z �→ 4}, {x �→ 2, z �→ 4}}.
Note how {x �→ 0, z �→ 2} causes failure since propagation fixes y to 1 where the
mod constraint then fails. The actual projection eliminates the first solution. If
the propagator for y mod 3 = 0 was stronger, changing the domain of y to {3}
then the quasi projection would return the projection. ��

Example 2. Consider a nurse rostering problem. We have n nurses working for m
days and on each day we must choose a shift type in S for each nurse (including
a day off). The model has complex restrictions on the sequence of shifts that
each nurse can undertake, typically encoded by a regular constraint using some
finite automata FA, and vectors of upper u and lower l limits on the number
of nurses assigned to each shift type on a day, typically encoded by a global
cardinality constraint. Finally each nurse i has a preferred shift pij for each day
j, and the aim is to maximize the number of preferences that are met by the
schedule. Let xij represent the shift type chosen for nurse i on day j, then the
model is

z = minimise −
∑m

j=1

∑n
i=1(xij = pij)

subject to gcc low up([xij |i ∈ 1..n], S, l, u), j ∈ 1..m
regular([xij |j ∈ 1..m], FA), i ∈ 1..n

We decompose the objective into days, arriving at the following m sub-
problems P (j), of the form yj = min{−

∑n
i=1(xij = pij) | ∃̄−Vj

.C} where
Vj = {xij | i ∈ 1..m} and C is all the constraints. Note that the constraint
gcc low up([xij |i ∈ 1..n], S, l, u) will certainly be satisfied by any solution of the
quasi-projection since none of its variables are projected away. In this problem
since there are no auxiliary variables we need no Lagrange multipliers. ��

Example 3. Consider the problem of max density still life, building a 2m × 2m
square which is stable under the Conway’s Game of Life rules, and has the
maximum number of live cells. The best model [7] for this minimizes wastage
(wasted opportunities for placing live cells) which can be computed from each
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3 × 3 subsquare. Let xij , 1 ≤ i, j ≤ 2m be the 01 decisions for each cell: 1 is
live, 0 is dead. Let wij , 2 ≤ i, j ≤ 2m − 1 be the wastage for the 3 × 3 subsquare
centered at (i, j). A (simplified for ease of exposition) model for the problem is

z = minimise
∑2m−1

i=2

∑2m−1
j=2 wij

subject to table([
xi−1,j−1, xi−1,j , xi,j+1,
xi,j−1, xi,j , xi,j+1,

xi+1,j−1, xi+1,j , xi+1,j+1,
wij ], T ), i, j ∈ 2..2m − 1

where T is a table relating 3×3 patterns to their wastage. We will use wastageij

as shorthand for the table constraint. We consider a decomposition of the
objective into 4 quadrants z = minimise

∑m
i=2

∑m
j=2 wij +

∑m
i=2

∑2m−1
j=m+1 wij +

∑2m−1
i=m+1

∑m
j=2 wij +

∑2m−1
i=m+1

∑2m−1
j=m+1 wij The auxiliary x variables for columns

and rows m and m + 1 are shared by sub-problems and need Lagrange multipli-
ers, the remaining x variables only appear in one sub-problem and do not. The
top left quadrant sub-problem has objective

z = minimise

∑m
i=2

∑m
j=2 wij

+
∑m

i=2 λi,mxi,m +
∑m

j=2 λm,jxm,j

−∑m
i=2 λi,m+1xi,m+1 −∑m

j=2 λm+1,jxm+1,j − λm+1,m+1xm+1,m+1

The quasi projection (quasi)eliminates all variables not in top left quadrant
except those included in the last line of the objective. All of the wastage con-
straints for the top left quadrant will be guaranteed to be solved since none of
their variables are projected out, hence the bound will understand the effect of
their interaction on the objective. ��

How to split the objective expression into parts remains a question for all
Lagrangian decomposition methods. In many problem classes, the partitioning
is somewhat natural. It is often the case that problems have a certain amount
of locality, where there are certain groups of variables which are strongly related
to each other, but weakly related to other variables. We propose to partition the
objective function into groups of closely related terms.

Example 4. Example 2 shows how we can meaningful split the nurse scheduling
objective into individual days. This make sense for improving the lower bound
since the nursed preferred shifts will contradict the gcc constraint, and we will
get a much better idea of how many it is possible to simultaneously satisfy.
Another possibility is to split it into groups of consecutive days, since these
are more tightly related by the regular constraint, so the sub-problems then
learn about the interaction of regular and gcc. Alternatively, we could imagine
splitting it into individual nurses, thus capturing the effect of the regular on
the objective. ��

Our objective based decomposition differs from the constraint based decom-
position of earlier methods [1,2], and has both advantages and disadvantages.
Some points of interest are as follows:
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– When a variable in the objective function appears in two or more sub-
problems, it is not clear which sub-problem this objective term should be
assigned to in order to maximize the effectiveness of the Lagrangian decom-
position. In the constraint based decomposition, the constraint split does not
completely tell us how to split the objective terms, and indeed we often have
to make a second set of decisions as to how to split the objective terms. This
decision is handled in a somewhat ad-hoc manner in [1,2]. Sometimes one
sub-problem gets the term, sometimes it is split into two or more parts. It
is hard to understand what sort of assignment/split gives the best bound in
general. In the objective based decomposition method however, this question
does not arise, as the objective split has already fully decided which objec-
tive term belongs to each sub-problem, lowering the total amount of decisions
that need to be made. Further, we have a good general policy for splitting the
objective function, which is to split the objective terms into groups of strongly
related terms.

– The constraint based decompositions allow objective terms to be split between
sub-problems whereas our proposed objective based decomposition does not.
This may be an advantage of the constraint based decomposition as there may
be problem classes where splitting objective terms gives a better bound than
we can if we are not allowed to split them. On the other hand, our objec-
tive based decomposition approach allows constraints to be split (projected)
onto multiple sub-problems, whereas in the constraint based decomposition
method, each constraint can only appear in one sub-problem. This may be an
advantage of the objective based decomposition as many COPs have global
constraints that may include all, or many of the variables defining the prob-
lem. If we place such a global constraint in only one sub-problem, then all
the other sub-problems are substantially weakened. By projecting the global
constraint into all of the sub-problems, all of them can get the pruning benefit
of the relevant part of that global constraint.

– The constraint based decomposition approach can handle non-linear objec-
tive functions by for example assigning the entire objective function to one
subproblem. This is not possible in general for the objective based decom-
position. However, the objective based decomposition could also potentially
handle certain forms of non-linear objective functions in a different way. For
example, a min(x1, . . . , xn) objective function could be split so that each of
the xi is the objective function for one subproblem.

3.2 Solving the Sub-problems

The main difference between our approach and the recent approaches is that
we do not require the sub-problems to be of a special form which can be solved
via a specialized propagator. Instead, we are going to solve them via standard
CP search. This means that our approach can be applied to virtually any CP
problem with a linear objective function, rather than only to those which so
happen to decompose into sub-problems of specialized forms.
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bandb(D, V, P, z, S)
u := maxD(z)
θ := ⊥
repeat

best := θ
θ := search(D, V, P, z, {p(z ≤ u)}, S)
u := θ(z) − 1

until θ = ⊥
return best

search(D, V, P, z, Q, S)
D := propagate(D, V, P, Q, S)
if (∃x ∈ V.D(x) = ∅) return ⊥
if (∀x ∈ V.|D(x)| = 1)

let θ = {x 
→ dx | x ∈ V, D(x) = {dx}}
return θ

else
{c1, . . . , cm} := branch(D, V )
for i ∈ 1..m

θ := search(D, V, P ∪ Q, z, {p(ci)}, S)
if (θ = ⊥) return θ

return ⊥

propagate(D, V, P, Q, S)
P := P ∪ Q
repeat

while (∀x ∈ V.D(x) = ∅ ∧ ∃p′ ∈ Q)
Q := Q − {p′}
D′ := D ∧ p′(D)
Q := Q ∪ new(P, D, D′)
D := D′

if (∃s ∈ S.Θ(s) |= D)
D′ := subbound(s, D, P )
Q := Q ∪ new(P, D, D′)
D := D′

until Q = ∅
return D

subbound(s, D, P )
let s ≡ z = min([o|∃̄−Vs .C ∧ Ss])
θ := bandb(D, Vs, P, o, Ss)
D := D ∧ z ≥ θ(o)
Θ(s) := θ
return D

Fig. 1. Pseudo-code for evaluating LD COPs.

Our approach is as follows. We decide on a splitting of the objective and
create the Lagrangian optimization sub-problems. Note that since these problems
also have a linear objective we can apply the splitting recursively constructing
a nested Lagrangian decomposition.

First, we add a new variable zj representing the objective value of each of
those Lagrangian decomposed optimization sub-problems. We add a constraint
z ≥

∑m
i=1 zj to relate the original objective to these variables. Finally we add the

optimization sub-problems defining the zj . Note that we do not create multiple
copies of variables when they belong to multiple sub-problems. Instead, we only
require the original copy. In addition, even if a constraint appears in multiple
sub-problems, we only need to post one copy of that constraint in the CP solver.
This is important because it increases the reusability of nogoods.

The solving of the Lagrangian decomposed COP z = min{c.x | C} is as
follows. We begin by calling bandb(Dinit,V, {p(c) | c ∈ P ∪{z ≥

∑m
j=1 zj}}, z, S)

(shown in Fig. 1) where sj ∈ S is a Lagrangian decomposed optimization problem
of the form sj ≡ zj = min{oj | ∃̄−Vj

.C}.
Notice that each optimization sub-problem is of the same form as the original

problem, with a different linear objective and some variables quasi projected.
Hence we can apply Lagrangian decomposition on the sub-problems, nesting
new Lagrangian decomposed problems within them. The algorithms in Fig. 1
handle arbitrary depth of nesting of optimization sub-problems.

Branch and bound search calls search to search for a solution, repeatedly, and
then adds constraints to search for better solutions, returning the best solution
when it is proved optimal. The search routine is almost standard except: it passes
around the sub-problem constraints S, it terminates when all the local variables
V are fixed (as opposed to all variables in the problem V), and the branching
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subbound(s, D, P )
let s ≡ z = min([o|∃̄−Vs .C ∧ Ss])
l := minD(o)
while (θ ≡ search(D, Vs, P, o, {p(o ≤ l)}, Ss) = ⊥)

l := l + 1
D := D ∧ z ≥ l
Θ(s) := θ
return D

Fig. 2. Subsearch using destructive lower bounding search.

decisions returned by branch are restricted to only involve local variables V . This
implements quasi projection.

The propagation routine propagate is standard, except that it wakes up a
sub-problem s, when its incumbent optimal solution Θ(s) is no longer a support
for the lower bound since it is incompatible with the current domain, using
subbound to calculate a new lower bound. Initially the incumbent solution Θ(s)
for each sub-problem s is set to ⊥. We assume Θ(s) is a backtracking global
variable.

The subbound procedure finds the optimal solution θ to the optimization sub-
problem s ≡ z = min{o | ∃̄−V , C ∧ Ss} where Ss are optimization sub-problems
local to S. It uses branch and bound search to minimize o. Crucially the variables
of interest are limited to the objective variables for this sub-problem V . Note
that the variable reduction is critical for solving the sub-problem more efficiently,
since we only look for “solutions” where each local variable is fixed (and the
propagators do not detect failure). It sets the lower bound of the sub-problem
variable z to that value, as well as storing θ as the incumbent solution.

Alternatively we can use destructive lower bounding search to raise the lower
bound of the sub-problem. Unlike normal branch and bound where we iteratively
find better and better solutions, in destructive bounding, we start with the tight-
est bound on the objective function and repeatedly loosen that bound until we
find a solution. Destructive bounding is more suitable than normal branch and
bound for re-solving a sub-problem when the previous incumbent solution has
become invalid. It will immediately try to find a replacement solution which is at
least as good as the previous one, and if that fails, it will be able to strengthen
the bound proved and then try to find a solution which is one unit worse, etc.
This is generally better than re-solving the sub-problem from scratch via normal
branch and bound. Destructive bounding is described in Fig. 2. Note that we can
break the while loop at any time and still get a correct lower bound, although
the there will be no incumbent solution in this case. This may be useful in cases
where we want to put a time limit on solving the sub-problems. In practice
we use normal branch and bound for the first solve of a sub-problem, and use
destructive bounding for all re-solves.

3.3 Nogood Learning

Our search-based method integrates seamlessly with nogood learning [3]. In
nogood learning, each propagation has to have an explanation clause which
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explains why that propagation is valid given the current domain. If we want to
use nogood learning, then when we derive a bound on zj via the sub-search on
zj = min{oj | ∃̄−Vj

.C}, we have to be able to generate a clause which explains the
bound on zj given the current domain. Fortunately, this occurs naturally with-
out any need to modify the nogood learning solver. When we enter a sub-search,
any domain changes made by the master search will act as “assumptions” in the
sub-search. Any literals representing those initial domain conditions which are
relevant to failures in the sub-search will be kept in the nogoods derived during
that sub-search. At the end of the proof of optimality phase of the sub-search, we
will end up deriving a nogood of form: l1∧. . .∧ln∧oj < θ(oj) → false where li are
conditions on the variables V which are sufficient to force that bound on oj . We
can translate this to an explanation for the lower bound l1∧. . .∧ln → zj ≥ θ(oj).

Another benefit of nogood learning is that many of the things learned during
one sub-search are encapsulated in nogoods and can be reused in subsequent
sub-searches of the same sub-problem. Thus we do not have to re-solve those
sub-problems from scratch each time, but rather, much of the failed subspace is
still encapsulated in the nogoods and can be immediately pruned.

Example 5. Consider an instance of the nurse rostering problem of Example 2
with 8 nurses, requiring at least 3 on day shift (d) and at least 2 on night shift
(n), where shift regulations require: no day shift immediately after a night shift,
no more than 3 days shifts in a row, no more than 2 night shifts in a row, and
no more than one dayoff (o) in a row. Consider a sub-problem instance, for a
day j where all nurses request a day shift. Running the sub-problem at the root
will discover that zj ≥ −6 since at most 6 nurses can get a day shift. When the
branch and bound code searches with oj ≤ −7 the search fails with explanation
oj ≤ −7 → false, since this makes use only of globally true information. The
resulting explanation of the bound is simply zj ≥ −6.

Now consider waking the sub-problem when on the previous day j − 1 we
have assigned the first four nurses to night shift, and the last 4 to day shift. Then
only the last 4 nurses can be assigned to a day shift on day j. Branch and bound
fails when we add oj ≤ −5 with explanation x1j−1 = n ∧ x2j−1 = n ∧ x3j−1 =
n ∧ x4j−1 = n ∧ oj ≤ −5 → false. Generating the explanation for zj ≥ −4 as
x1j−1 = n ∧ x2j−1 = n ∧ x3j−1 = n ∧ x4j−1 = n → zj ≥ −4. ��

3.4 Lagrangian Multipliers

In order to take maximum advantage of Lagrangian multipliers for CP, we dif-
ferentiate between two different types of integer variables; bounds type integer
variables, and value type integer variables. Bounds-type variables are those which
are mainly involved in bounds type constraints like linear inequalities. Whereas
value-type variables are those which are mainly involved in value type constraints
like alldifferent, table or regular constraints. For the latter class of variable
we break them into separate 0–1 variables representing each possible value.

We could update Lagrangian multipliers at each call to search using the
subgradient method. However, on the problem classes we tried, it appears that
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updating the Lagrangian multipliers at each node is usually not worth it. Instead
we simply calculate the Lagrange multipliers at the root node and use the same
multipliers throughout the computation, like [1]. This has an advantage for
nogood learning, because the Lagrange multipliers are globally fixed we do not
need to include any assumptions about them in explanations for propagation.
Using the subgradient method [4] at the root, we update the Lagrangian mul-
tipliers for a fixed number of iterations or until the bound derived no longer
improves.

3.5 Lazier Bounding

Re-solving the optimization sub-problems does not always yield a better bound
on zj . If the bound does not improve, then all the effort done in the sub-search
is wasted. Thus we want to try to only resolve the sub-problems when we have
a good chance of improving its bound. The pseudo-code naively re-solves a sub-
problem each time its incumbent solution becomes inconsistent with the cur-
rent domain of the master search, as there is a chance that the bound may be
improved. However, this may be too costly.

We propose the following dynamic policy for determining whether to per-
form the sub-search. For each sub-problem sj , we have an activation chance
pj which determines whether to re-solve the sub-problem when the incumbent
solution becomes inconsistent with the master search. pj starts at 1. Each time
re-solving sj yields a better bound, we increase pj by α, capped at 1. Each time
re-solving sj does not yield a better bound, we decrease pj by β, capped at 0.1.
Some reasonable values for α and β are 0.1 and 0.05, and varying these values
somewhat did not appear to make much difference. The main idea is that if
re-solving the sub-problem often does not yield anything, then pj will eventu-
ally decrease and we will rarely re-solve that sub-problem again, lowering the
overhead of the method.

We propose another policy for reducing the overhead of the method. When
the master search is searching on the variables of a particular sub-problem, the
incumbent solution of that sub-problem will become invalid at almost every
decision. If we follow the normal policy of re-solving a sub-problem whenever
its incumbent solution becomes invalid, then we will end up re-solving a sub-
problem at almost every node in the master search tree. This is clearly very
expensive. It is also often redundant work, because since the master search is
searching on the variables of that sub-problem, the bound of that sub-problem
will quickly be fixed by the master search anyway and worth trying to strengthen
that bound through sub-search. Thus we modify our policy so that if the master
search has just made a decision on variable v, then any sub-problem involving v
will not be woken up for sub-search at that search node.

4 Experiments

In this section, we describe a few problems as well as how we partitioned their
objective function.
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Nurse Scheduling Problem. This problem is described in Example 2. In the
instance we use there are 4 possible shifts including a “day off” shift, and
requirements on the number of nurses for each shift and minimum and max-
imum requirements on the number of holidays per time span. We partition the
objective function into partial sums each representing one day, as described in
Example 2.

Maximum Density Still Life Problem. This problem is described in Example 3,
although there we only give a simplified model of the optimization problem,
ignoring edge effects, and require the size n is even (2m). We partition the
objective function by chopping the n×n region into 9 equal sized square chunks
(rather than the 4 of Example 3).

Concert Hall Scheduling Problem. In this problem, we have k concert halls and
a bunch of orders. Each order hires a hall from a certain start time to a certain
end time and gives a certain profit. The problem is to pick the subset of orders to
satisfy such that we maximize the profit. Clearly, orders which are close together
in terms of their time are more closely related then orders which are far apart in
terms of their time. Thus we can quite naturally partition the objective function
according to time. We partition the objective function by dividing the time span
into 4 equal sized chunks and putting an order in a chunk based on their starting
time.

Talent Scheduling Problem. In this problem, we have some actors and some
scenes. Each scene requires a subset of the actors. Each actor has a cost. The
scenes are shot in a certain order. Each actor has to be on-scene from the first
scene that they are in until the last scene that they are in is finished. For each day
they are on-scene, they have to be paid their corresponding cost. The problem is
to find the order of the scenes which minimizes the total cost of the actors. Again,
terms which represent costs close in time are more closely related together than
those far in time. Thus we partition the objective function into 4 equal sized
chunks according to time.

Resource Constrained Project Scheduling Problem with Tardiness. In this prob-
lem, we have some tasks, each of which requires a certain amount of resources
on each of the machines. Each machine has a maximum resource capacity. There
are some precedences between the tasks. Each task has a due date. For each unit
of time past the due date the task is finished by, there is a penalty. The problem
is to find the schedule with the least penalty. Tasks which are closer together
in terms of their time are more closely related. Thus we partition the objective
function into 4 equal sized chunks based on time.

Sweatshop Scheduling Problem. In this problem, we have rows of benches, each
with some machines. Each machine is assigned a type of garment to make. Each
type of garment will cost a different amount of power. Each bench and each
bench column has limitations on the total amount of power used. Each person
in a row has to work on a different garment. There are also global constraints
on the minimum and maximum amount of each garment made. The problem is
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to find the assignment of garments which maximizes the profit. Clearly, terms
belonging to the same bench/row/column are more closely related to each other
than to terms belong to different bench/row/columns. We partition the objective
function based on rows.

Traveling Salesman Problem. In this problem, we have a number of cities. We
have a salesman which must tour all the cities and visit each one exactly once.
The problem is to minimise the total amount of distance traveled. Cities which
are geographically closer together are more closely related to each other. Thus
we divide the objective function by partitioning the cities geographically into 9
square chunks.

The experiments were performed on Xeon Pro 2.4 GHz processors using the
state of the art LCG solver Chuffed. We use 20 instances of each problem class,
except for Still Life where we use just one.1 We compare running the above prob-
lems with the new sub-problem search-based Lagrangian decomposition (LD via
search), with the decomposition but no Lagrangian multipliers (D via search),
and without any decomposition (Normal). We also try to compare against the
cost-MDD based Lagrangian decomposition method [1] (Bergman et al.). Unfor-
tunately, it is not very clear how that method can be applied to these particular
problem classes, as most of them do not decompose into a set of MDD’s. Thus
we only compare against that method on the Nurse Scheduling problem, as the
constraints in that problem can easily be modeled as MDD’s. In all the new
methods, we use the lazier bounding as described in Sect. 3.5. We use construc-
tive brand and bound for the first solve of each subproblem and destructive
bounding for all subsequent re-solves. We update the Lagrangian multipliers at
the root for 100 iterations using the subgradient method or until the bound no
longer improves. We use a time out of 10 min. The results are shown in Table 1
and Fig. 3.

Table 1. Comparison between using and not using the search-based Lagrangian decom-
position method.

Problem Normal LD via search D via search Bergman et al.

Fails Time Fails Time Fails Time Fails Time

Nurse scheduling 618537 56.32 54325 7.23 54325 7.23 48630 13.02

Still life 478182 57.12 23415 3.45 24218 3.37 — —

Concert hall 389799 35.14 45231 5.27 158962 12.56 — —

Talent scheduling 1535814 215.1 2589576 417.82 2620582 428.07 — —

RCPSP with tardiness 234758 68.54 1834758 487.29 1834758 487.29 — —

Sweatshop scheduling 682934 24.87 124562 5.27 124562 5.27 — —

Traveling salesman 256375 94.56 185239 70.82 185239 70.82 — —

Table 1 shows the total number of fails and time spent on the benchmarks.
These numbers include the fails and time spent in the master search and the sub-
1 Available from people.unimelb.edu.au/pstuckey/lgadec.
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Fig. 3. Overhead of sub-searches per time partition

problem searches. In all of these benchmarks, the Lagrangian decomposition can
give a better bound than that found through normal propagation. However,
it is not always worth the overhead. We get significantly stronger bounds for
the Nurse Scheduling, Still Life, Concert Hall and Sweatshop Scheduling prob-
lems, but relatively weak improvements to the bound for Talent Scheduling,
RCPSP with tardiness and the Traveling Salesman Problem. It can be seen that
when the bound we derive is significantly better, the overhead of the Lagrangian
decomposition method is often worth it. Whereas when the improvement in
bound is small, the reduction in the search space of the master search may well
be swamped out by the overhead of the sub-searches. For example, in RCPSP
with tardiness, the sub-searches occur frequently but the improvement in bound
is too insignificant to be worth it. The Lagrangian multipliers are only use-
ful for the Concert Hall problem. For the rest they either have no use because
there are no shared variables between sub-problems, or their effect is statistically
insignificant. We suspect that this is because Lagrangian multipliers do not work
well when sub-problems are connected via value type integer variables, whereas
they work far better when sub-problems are connected via bounds type integer
variables. The approach of [1] requires less search, since instead of solving the
sub-problems via search, the sub-problems are solved by the global propagator
instead, which does not contribute to the node count. However, this costs more
than the gain in run time compared to our approach.

Figure 3 shows the time overhead of the sub-searches as a percentage of the
overall search when the search time is split evenly into 10 parts. It can be seen
that for some problem classes, much more time is spent on solving the sub-
problems near the start of the search than in the rest of the search. There are
several reasons. The first is that the first solve via branch and bound is often
expensive, whereas subsequent re-solves using destructive bounding are often
very quick. The second is that the learned nogoods which describe which bound-
ary conditions force certain bounds for the sub-problem may often immediately
propagate to avoid some redundant re-solving of sub-problems, making re-solving
sub-problems quicker later in the search.
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5 Related Work and Conclusion

We have already discussed the most closely related work on Lagrangian Decom-
position for CP [1,2]. The approach we present is closely related to Nested
Constraint Programs (NCPs) [8], the optimization sub-problems can be seen
as nested CPs where the domain of the variables are defining the sub-problem,
for a new copy of the variables in the sub-problem. Because we use the same
variables and constraints we can avoid much of the complexity of NCP. Sim-
ilarly Russian doll search [9] can be seen as a special case of our approach to
Lagrangian Decomposition, where there is exactly one optimization sub-problem
per level, and no recomputation of the optimization sub-problems.

Lagrangian Decomposition is an exciting development for CP, allowing the
same heterogeneous approach to satisfaction to be extended to optimization. In
this paper we show how to create a very general scheme for Lagrangian Decompo-
sition using sub-problem search, which, together with learning provides a power-
ful method for tackling optimization problems that can be meaningfully decom-
posed. We have shown that the new method can provide significant speedups on
some realistic problem classes.
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Abstract. Demand Response mechanisms and load control in the elec-
tricity market represent an important area of research at interna-
tional level, and the market liberalization is opening new perspectives.
This calls for the development of methodologies and tools that energy
providers can use to define specific business models. In this work we
develop an optimization model to provide recommendations on time-of-
use based prices to providers, taking into account some key factors of
the customer and market behavior. We have tested our model on data
from the Italian energy market, merging statistical census and popula-
tion information. The main advantage of the model is that it provides
a tool for sensitivity analysis, namely for understanding the impact of
economical and behavioral parameters on the consumption profiles.

Keywords: Non-linear optimization · Demand response · Tariff
optimization · Business model definition · Customer behavior modeling

1 Introduction

Global energy consumption is expected to grow by 37 % within 2040, with a
consequent increase of polluting emissions1 (International Energy Agency) thus
negatively impacting the environment and the quality of life. Therefore we need
to adopt energy efficiency measures that on one hand lead to lower electric-
ity consumption, and on the other hand to better electricity consumption via
demand shifting.

Demand shifting can provide a number of advantages to the energy system:

– Load management can improve system security by allowing a demand reduc-
tion in emergency situations.

– In periods of peak loads even a limited reduction in demand can lead to
significant reductions in electricity prices on the market.

– If users receive information about prices, energy consumption is more closely
related to the energy cost, thus increasing market efficiency : the demand is
moved from periods of high load (typically associated with high prices) to
periods of low load.

1 See http://www.iea.org/textbase/npsum/weo2014sum.pdf.
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– Load management can limit the need for expensive and polluting power gen-
erators, leading to better environmental conditions.

Potential benefits and implementation schemes for demand response mecha-
nisms are well documented in international literature: one implementation app-
roach in particular consists in defining economically and environmentally sus-
tainable energy pricing schemes.

The objective of this paper is the development of methodologies and tools
for energy providers to manage the sector via the definition of new business
models. We developed a mathematical optimization model to provide support
for political and economic decisions. This model allows to compare alternative
scenarios in terms of user behavior and consequent demand shift.

The model can be employed in a decision support system for utilities, helping
them to shape pricing schemes, taking into account on one hand the economic
sustainability, and on the other hand the customer flexibility and response to
these prices. The model could also be used by policy makers to shape incentive
mechanisms, and to evaluate energy policies, and define policy goals.

We have employed our approach to obtain a simplified, approximate model
of the Italian energy market. By solving the problem under different scenarios,
it is possible to identify trends and assess how the characteristics of the market
and the customers affect the consumption profiles.

The rest of the paper is organized as follows. Section 3 describes the proposed
optimization model, which takes into account the behavior of multiple customers
and of one energy provider. Section 4 presents how we applied our model to
the Italian energy market, and provides results for two interesting scenarios.
Concluding remarks are in Sect. 5.

2 Related Work

Demand Response can be defined as the occurrence of deviations from the
usual consumption pattern in response to stimuli, such as dynamic prices,
incentives for load reductions, tax exemptions, or subsidies. An overview of
demand response schemes can be found in [3,4,12]. Probably the most wide-
spread demand response mechanism in practice is given by Time of Use (ToU)
based tariffs, where the price of electricity is dynamic and follows a weekly pat-
tern.

Optimization approaches to define dynamic prices have been proposed in
[1,2,8]. All such works focus in the definition of day-ahead prices for a period
of 24 h and for a single customer (or a single group of homogeneous customers).
Works [1,2] take into account also other incentive schemes, and rely on an elastic
model proposed in [10] to model the demand-response behavior. In this paper,
we have adapted such model to ToU based prices over an year-long period.

Only a few papers in related contexts have considered multiple customers or
intermediate actors: for example, [15] developed an investment model of renew-
able energy (solar parks) through crowdfunding. The authors of [15] devise
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a game theory approach that takes into account interactions between crowd-
funders, the owner of the solar park, and a power company that buys renewable
energy generated from the solar farm itself.

Consumption and cost awareness has an important role for the effectiveness
of demand response schemes. The paper [14] describes a system architecture for
monitoring the electricity consumption and displaying consumption profiles to
increase awareness. Works [7,11] study how customers respond to price changes,
and which price indicators are more relevant on this respect.

The authors of [7] try also to account for mis-perception of energy consump-
tion, which are further analyzed in [5]. The latter work in particular attempts
to design a model for the relashionship between real and perceived consumption
via regression techniques (i.e. function fitting). The conclusion is that customers
tend to slightly overestimate low-energy activities and significantly underesti-
mate activities with high energy consumption.

In this complex and heterogeneous context, our work aims to create a compre-
hensive non linear optimization model that can be easily customized to different
electricity market conditions. We collect in a single model the main parameters
relevant to the design of sustainable energy tariffs for demand response.

3 Model Description

The main contribution of this paper is a Non-linear Optimization Model that
can be used to simulate the behavior of some key actors in the electricity market
and obtain recommendations. For example, our model can be employed to obtain
suggestions on Time of Use (ToU) prices for new tariffs, to identify possible
points of equilibrium, or to investigate the effect of changes in the customer
behavior on the power consumption profiles.

The main actors considered in our model are a single energy provider and
multiple groups of homogeneous customers. Our model consist of several com-
ponents that take into account: (1) the existence of multiple tariffs with ToU
based prices; (2) the demand-response behavior of customers; (3) some cognitive
aspects of the customer behavior, in particular their ability to correctly estimate
their consumption, and their risk aversion when switching to a new tariff; (4) the
relation between the global consumption profile and the wholesale price of elec-
tricity. We consider an year-long time horizon. To the best of our knowledge, this
is the first approach that tries to take into account multiple tariffs, and cognitive
aspects of the customer behavior.

Each model component is presented here separately. The most natural appli-
cation of our model is obtaining ToU price recommendation for new tariffs, and
therefore all components will be presented from this perspective. In the conclud-
ing remarks (i.e. Sect. 5) we discuss how our approach can be modified to achieve
different goals.
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3.1 Set of Tariffs

We consider a set T of ToU based tariffs τi, defined over a common price band
scheme. The scheme specifies a set P of pre-defined price bands πj : the exact
configuration (e.g. start, end) of each price band is left unspecified, but we
assume that for each band πj the total number of hours |πj | over a period of one
year is available.

Each ToU based tariff is defined by a price value pi,j for each band. We
assume that a subset Tf of the tariffs is fixed, i.e. it cannot be altered by the
energy provider. For each ti ∈ Tf , the prices are constant values. The remaining
tariffs are variable, and their prices are the main decision variables in our model.
We assume that the prices take values over a bounded range, i.e. pi,j ∈ [p

i,j
, pi,j ].

As long as the bounds are large enough, this assumption is sufficiently general
to handle practical scenarios. Finally, we assume that a subset To of tariffs is
owned by the energy provider, i.e. the provider earns profit (and pays the cost)
for the electricity consumed under such tariffs. All variable tariffs are owned.

This setup is sufficient to handle a number of interesting cases. Variable tariffs
are those for which we wish to obtain price recommendations. Tariffs that are
both fixed and owned represent pre-existing contracts that cannot be altered.
Tariffs that are fixed and not owned are those offered by competitor providers.
To the best of our knowledge, our approach is the first to provide support for
multiple tariffs and for modeling the existence of competitors.

3.2 Tariff Choice and Customer Risk Aversion

We take into account the behavior of a set C of homogeneous groups of cus-
tomers, often referred to as “customer classes” in the remainder of the paper.
Each customer class κk ∈ C is associated to an original tariff τ(κk), which must
be fixed (i.e. τ(κk) ∈ Tf ). Moreover, we assume that the approximate number
of customers in each class (let this be |κk|) is known.

Customers may switch to a new tariff, based on its economical benefits.
In particular, we assume that each customer in a group can switch tariff with
a probability that depends on the obtained savings. Formally, let ck,i be the
electricity cost for customer class κk under tariff τi. The ck,i term is a constant
if τi is fixed, and a decision variable if τi is variable: the computation of such
cost values will be discussed in the forthcoming Sect. 3.4. The savings for class
κk under tariff τi are given by:

sk,i = max(0, ck,τ(κk) − ck,i) (1)

Equation (1) does not take into account the fact that staying with the current
tariff is in practice more convenient and less risky than switching. Technically,
we say that the customers are likely to exhibit a certain degree of risk aversion.
We take this into account by adjusting Eq. (1) as follows:

sk,i =
{

ρk ck,τ(κk) if τi = τ(κk)
max(0, ck,τ(κk) − ck,i) otherwise (2)
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where 0 < ρk < 1 is a risk aversion coefficient. In practice, staying with the cur-
rent tariffs is considered equivalent to saving a factor ρk of the current cost : this
provides an intuitive approach to define the value of ρk based on questionnaires
or existing data.

As we mentioned, we model the tariff switching as a stochastic process. In
particular, we assume that all tariff choices for a given customer class are inde-
pendent and identically distributed. Formally, we introduce a set of stochastic
binary variables Yk,i that are equal to 1 if a customer in class κk adopts tariff
τi. The variable has a discrete probability distribution, given by:

P (Yk,i = 1) =
sk,i∑

τi∈T sk,i
P (Yk,i = 0) = 1 − P (Yk,i = 1) (3)

i.e. the probability is proportional to the savings from Eq. (2). The number of
customers of class κk that adopt tariff τi can be obtained by summing Yk,i for
|κk| times. The expected value of this expression is given by:

E

⎡

⎣
|κk|−1∑

h=0

Yk,i

⎤

⎦ = |κk|E[Tk,i] = |κk| sk,i∑
τi∈T sk,i

(4)

Therefore, on average the customers in each class spread over the available tariffs
proportionally to the value of sk,i. We use this information to define the tariff
selection (and risk aversion) component of our model, which is given by:

yk,i =
sk,i∑

τi∈T sk,i
∀κk ∈ C, τi ∈ T (5)

Equation (2) ∀κk ∈ C, τi ∈ T (6)
yk,i ∈ [0, 1] ∀κk ∈ C, τi ∈ T (7)

ck,i ∈ R
+ ∀κk ∈ C, τi ∈ T (8)

The yk,i variables represent the fraction of customers of class κk that adopt tariff
τi. Due to the presence of “max” operators in Eq. (2), this model component is
non-smooth. The “max” operators can be linearized in a standard fashion by
using additional binary variables and big-Ms. In our experimentation, however,
we employ the modeling system GAMS and let the software take care of the
linearization.

3.3 Demand Response Behavior

We assume that customers can shift their consumption depending on the energy
prices, i.e. they are capable of a demand response behavior.

Many demand response programs (including ToU based prices) have been
considered in the literature and a few mathematical models have been provided.
We have developed a variant of one of the most widely employed approaches [10],
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which is based on a cross-elasticity matrix. Essentially, the approach uses a linear
transformation to map variation of prices to variations of demand:

d̃ = ε p̃ (9)

where d̃ is a vector of demand variations over multiple time periods, p̃ is a
vector of (normalized) price variations, and ε is called cross-elasticity matrix.
The original approach from [10] and employed in [1,2,6] is designed for time
periods of homogeneous duration and day-ahead prices.

We adapted the model to ToU based tariffs with price bands of non-uniform
duration, over an year-long time period. The main idea is simply to introduce
variables to represent the variation in the yearly electricity demand of an indi-
vidual customer, for each price band πj . Since we consider multiple customer
classes and tariffs in our model, we need separate variables d̃

(k,i)
j for each class

κk and tariff τi. The demand variation is connected to the tariff prices by:

d̃
(k,i)
j =

∑

πh∈P

d̂
(k)
h εj,h p̃

(k,i)
h (10)

where the p̃
(k,i)
h variables represent normalized price variations. The term d̂

(k)
h is a

problem parameter, representing the original demand for an individual customer
of class κk, in price band πh.

The terms on the diagonal of ε are always non-positive and are called self-
elasticity coefficients. The other terms are always non-negative. For normalizing
the price variations, we use the average price under the original tariff, i.e.:

p̃
(k,i)
j =

pi,j − pτ(κk),j∑
πh∈P pτ(κk),h

(11)

Our choice is based on insights from works [7,11], which show how customers
tend to reason in terms of average prices.

Having weighted the contributions by d̂
(k)
j and normalized the prices provides

us with a way to intuitively interpret the εj,h coefficients. In particular, if the
price in band πh roughly doubles (i.e. the normalized variation is 1), then:

– The demand in band πh (the same band) decreases by a factor |εh,h| of the
original demand (we recall that self-elasticity coefficients are non-positive).

– A factor εj,h of the original demand of band πh shifts to band πj

Intuitively, the self-elasticity coefficients describe how the demand within each
band depends on the prices. The other terms in the matrix represent how the
demand shifts from price bands (columns to rows) and to price bands (rows to
columns). The sum of the coefficients on each column corresponds to the net
increase/decrease of consumption when the normalized prices increase/decrease:
we refer to such quantity as loss factor. If the loss factor is zero, changing the
prices may alter the distribution of the demand between the price bands, but
not its total value. Figure 1 reports an example of cross-elasticity matrix, with
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Fig. 1. (left) Interpretation of the cross-elasticity matrix. (right) perception model

a visual depiction of the demand flows. Overall, the demand-response component
of our model is given by:

Equation (10) ∀κk ∈ C, τi ∈ T, πj ∈ P (12)
Equation (11) ∀κk ∈ C, τi ∈ T, πj ∈ P (13)

d̃
(k,i)
j , p̃

(k,i)
j ∈ R ∀κk ∈ C, τi ∈ T, πj ∈ P. (14)

3.4 Energy Demand and Perception Accuracy

There is a growing awareness that a correct perception of the electricity consump-
tion may be a key factor to enable energy savings and make demand response
schemes more effective: this is shown by the increasing diffusion of smart-meters
and energy monitoring systems in general. However, only a limited number of
works have tried to characterize the dynamics of consumer perception: a few
papers (e.g. [7,11]) have focused on perceived prices, and even fewer (e.g. [5]) on
the accuracy of the consumption estimates.

In particular, the authors of [5] propose to relate perceived and real consump-
tion via a polynomial model in logarithmic scale. The model is calibrated over
the estimates provided by a group of users for the consumption of some electric
appliances. The authors conclude that people tend to slighly over-estimate low
consumption value and considerably under-estimate large values.

In this paper, we take into account the perception accuracy in the demand
response behavior. The main idea is to view the d̃

(k,i)
j variables from Sect. 3.3

as perceived variations. We then introduce a second set of variables r̃
(k,i)
j to

represent the corresponding real variations. The two sets of variables are related
by a custom model based on results from [5]. In particular, our model is based
on a sigmoid function in the form:
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y = sig(x, α, βκ) = α

(
2

1 + e
−2 1

α βk
x

− 1

)
(15)

The α parameter determines the scale of the sigmoid, the βk parameter controls
the growth of the sigmoid, which is specific to each customer class κk. Assuming
that y is a perceived variation, that x is a real variation, and that βk > 0, then
the sigmoid exhibits the qualitative behavior reported in [5]: for values close to
0, y is a overestimation of x; for values close to α, y is an understimation of x.
The break-even point depends on the value of βk. If βk < 1 there is a bias toward
overestimation (i.e. for a wide range of values, the perceived variation is larger
than the real one), if βk > 1 there is a bias toward underestimation (i.e. for a wide
range of values, the perceived variation is smaller than the real one). Figure 1
(right) shows this behavior in the sigmoid function for α = 400, βk = 0.75.

We use our sigmoid function to relate the average perceived and real power
variations. Those are obtained by dividing the variation variables d̃

(k,i)
j and r̃

(k,i)
j

(which represent energy values) by the total number of hours in the price bands.
Therefore, we obtain:

1
|πj |

d̃
(k,i)
j = sig

(
1

|πk| r̃
(k,i)
j , α, βk

)
(16)

We can then use the real variation variable to compute the total electricity
demand for each individual customer of class κk, in each price band, and for
each tariff. Formally, we have:

d
(k,i)
j = d̂

(k,i)
j + r̃

(k,i)
j (17)

where the d
(k,i)
j represents the total demand. For the original tariff, i.e. τi =

τ(κk), the total demand will be the same as the original demand, i.e. d
(k,i)
j =

d̂
(k,i)
j . The demand variables d

(k,i)
j can be used to compute the cost of energy

for each individual customer under each tariff, i.e. the value of the ck,i variables
from Sect. 3.2. This is given by:

ck,i =
∑

πj∈P

pi,j d
(k,i)
j (18)

Overall, the perception and demand component of our model is given by:

Equation (16) ∀κk ∈ C, τi ∈ T, πj ∈ P (19)
Equation (17) ∀κk ∈ C, τi ∈ T, πj ∈ P (20)
Equation (18) ∀κk ∈ C, τi ∈ T, πj ∈ P (21)

r̃
(k,i)
j ∈ R ∀κk ∈ C, τi ∈ T, πj ∈ P (22)

d
(k,i)
j ∈ R

+ ∀κk ∈ C, τi ∈ T, πj ∈ P. (23)
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3.5 Wholesale Energy Price

The price of the electricity on the wholesale market (i.e. the electricity cost for
the provider) depends on the national energy demand, with larger demand values
leading to larger prices. This allows a provider to increase profit by exploiting the
demand response behavior and reduce the wholesale energy price. In ToU based
tariffs, demand shifts are obtained by lowering prices: hence, the dependency
of the wholesale electricity on the demand provides opportunities for win-win
situations, where both the provider and the customers obtain some gain.

Many works (e.g. [4]) assume the wholesale price-demand curve to be super
linear, based on the idea that more expensive power generators are activated
when the demand is large. We have tested this conjecture for the Italian energy
market, which is organized by a (government controlled) corporation (GME) that
issues a reference electricity price and keeps track of the national consumption
on a hourly basis. By checking this data we have observed a weak and linear,
rather than super-linear, correlation (see Fig. 2).

We have therefore decided to use a linear relation to estimate the wholesale
energy price in our model. Formally, we have:

wj = μ1

(
∑

κk∈C

demand(κk, πj) + bj

)
+ μ0 (24)

where demand(κk, πj) is the total demand of the customers of class κk in price
band πj . This is given by:

demand(κk, πj) =
∑

τi∈T

|κk| yk,i d
(k,i)
j (25)

The product |κk| yk,i is the number of customers of class κk that adopt tariff
τi. The bj term in Eq. (24) represents a baseline consumption, which cannot be
altered by adjusting the variable tariffs. This is useful, for example, to model
the consumption of industrial customers, when the goal is to design tariffs for
residential customers. The μ1 and μ0 terms are the coefficients of the linear
relation. Overall, the wholesale price component of our model consists of:

Equation (24) ∀πj ∈ P (26)
Equation (25) ∀κk ∈ C, πj ∈ P (27)

wj ∈ R
+ ∀πj ∈ P. (28)

3.6 Provider Profit and Problem Objective

The most natural problem objective for designing a new tariff is to maximize the
provider profit. This is also the natural problem objective if we want to employ
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Fig. 2. Wholesale electricity price over demand, Italian market (2013)

our model just to estimate/simulate the behavior of a provider in a given market
configuration. In detail, the objective function of our models is:

max z =
∑

κk∈C

∑

πj∈P

profit(κk, πj) (29)

i.e. the sum of the profit for each customer class and price band, with:

profit(κk, πj) =
∑

τi∈To

|κk| yk,i (pi,j − wj − oj) d
(k,i)
j (30)

where pi,j is the tariff price for tariff τi and wj is the wholesale energy price.
The oj term represents an overhead value, which captures indirect costs due to
(e.g.) energy distribution services or taxes: this is often a very significantly part
of the energy costs. The summation in Eq. (30) is performed only on the tariffs
owned by the provider.

4 A Case Study on the Italian Residential Market

As a case study, we have used our approach to define a simplified model of the
Italian residential energy market. ToU based tariffs in Italy are defined over
three standard price bands, roughly corresponding to office hours, evenings-
and-saturdays, nights-and-sundays. The total amount of hours for the three
bands is |π0| = 2, 860, |π1| = 2, 132, and |π2| = 3, 768. The coefficients for
the wholesale demand-price relation have been obtained based on data from the
national energy market management corporation2 (GME): in particular, we have
μ1 =∼1.39 Ke/GW and μ0 = 0.013 Ke.
2 See http://www.mercatoelettrico.org/En/Default.aspx.

http://www.mercatoelettrico.org/En/Default.aspx
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We focus on residential energy consumption, which makes ∼ 22% of the
national energy demand. We consider 5 customer classes corresponding to fami-
lies with varying number of members, namely 1 (single persons), 2 (couples), 3,
4, and 5 or more. The number of customers per class and their total consumption
comes from public data from the Italian national institute for statistics3 (Istat).

The consumption distribution over the price bands has been estimated based
on public data, with larger families having flatter profiles. The risk aversion
coefficient ρ has been estimated and it is equal to 0.95 for all customers. For
the perception model we have α = 400 and βk = 0.75 for all classes: intuitively,
this means that an average consumption of 400W on a price band is considered
large, and that customers tend to over-estimate demand variations (i.e. the real
variation is typically smaller than expected).

The coefficients of the cross-elasticity matrix have been defined based on
intuitive considerations: in particular, families with fewer members are assumed
to be more flexible and more prone to change their net consumption in case of
price changes, i.e. to have more significant loss factor. Conversely, larger families
are assumed to be less flexible in terms of electricity demand. Clearly, having
real data we could derive precise cross-elasticity coefficients for the matrix. All
the customer parameters used in our case study are summarized in Table 1.

The baseline consumption has been obtained by subtracting the residential
consumption from the national consumption reported in the GME data. In par-
ticular, we have (approximately) b0 = 75, 300 GWh, b1 = 57, 800 GWh, and
b2 = 56, 700 GWh. The non-residential consumption has a peak in π0, while
residential consumption is more relevant in π1 and π2. The overhead electricity
costs are assumed to be 250 Ke/GWh for all price bands.

We consider two simplified market scenarios: in the first scenario, we assume
that all customers start with a fixed tariff offered by a competitor utility, with
a price of 360 Ke/GWh (i.e. 0.360 e/KWh) for each band. There is a single
variable tariff with p

i,j
= 72 and pi,j = 720 Ke/GWh (i.e. from 1/10 to twice

the price of the fixed tariff). In the second scenario the situation is identical,
except that the initial tariff is now owned by the provider.

In both cases, our approach tries to define a new tariff that is beneficial for
both the provider (because the profit is the problem objective) and the customers
(so that they switch tariff). In the second scenario, such a new tariff exists if a
win-win situation is possible, i.e. if a market equilibrium exists even in absence
of competition. For solving our model, we used SCIP via the GAMS modeling
system on the Neos server for optimization4, with a time limit of 300 s.

Most of the discussion is devoted to scenario 1, since for scenario 2 we cur-
rently have only a negative, but relevant, result. We discuss here the results on
scenario 2 and we report in the next section results on scenario 1. It seems that no
equilibrium is possible under reasonable assignments of all the parameters in our
model. This result is consistent with other analyses of the Italian market indepen-
dently performed by ENEL [13], the main Italian electricity company. The main

3 Available at http://dati-censimentopopolazione.istat.it.
4 Available at http://www.neos-server.org/neos/.

http://dati-censimentopopolazione.istat.it
http://www.neos-server.org/neos/
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Table 1. Values of all customer related parameters

# |κk| (millions) d̂
(k)
0 (GWh) d̂

(k)
1 (GWh) d̂

(k)
2 (GWh) Self-elas. Loss factor

1 ∼7.6 ∼1,600 ∼2,800 ∼3,600 −35 % −21 %

2 ∼6.6 ∼3,800 ∼4,600 ∼6,900 −30 % −16 %

3 ∼4.6 ∼3,500 ∼2,900 ∼5,300 −25 % −11 %

4 ∼3.9 ∼4,200 ∼4,700 ∼3,800 −20 % −6 %

>5 ∼1.5 ∼1,800 ∼1,800 ∼1,600 −15 % −1 %

reason for this lack of equilibrium points seems to be the linear correlation between
wholesale energy prices and demand, which offers limited opportunities to exploit
demand shifting. In this situation, competition (which is captured by scenario 1)
is the most reliable approach to yield benefits for the customers.

4.1 Results of the Experimentation (for Scenario 1)

Solving the first scenario with our model leads to an optimal tariff with prices
(approximately) equal to 155/437/406 Ke/GWh. Perhaps counter-intuitively,
this has the effect of shifting some demand in π0 (office hours), which is the
less loaded band for residential consumption. The corresponding demand values,
pre- and post- the introduction of the new tariff, are reported in Fig. 3 (left).

The amount of the shift is less significant than one may expect, for two
reasons: first, the users tend to overestimate the demand variations due to the
perception bias. Second, not all the users adopt the new tariff. The fraction of
users in each class that make the switch is reported in Fig. 3 (right): the figure
shows that the new tariff is more beneficial for larger families, while single per-
sons (i.e. customer 1) tend to stick with the competitor tariff. The corresponding
savings (w.r.t. the initial cost) go from a negligible 0.2% for customer 1 to an
11% for customer 5. The estimated provider profit is (around) 1.19 Me.

Since several of the parameters of our model have been estimated based on
intuition, it is reasonable (and very interesting) to wonder what the effect of
changing such parameters would be. As a first attempt in this direction, we
have tried to increase the elasticity of all customers by multiplying all terms of
the ε matrix by a factor of 1.5. This modification increases the rate of demand
shifts, and it causes a proportional growth of the loss factor (i.e. the sum of
the coefficients on each column): as a result, more significant changes of the net
energy consumption are likely to occur.

The prices for the optimal tariff in this modified scenario are 447/194/390
Ke/GWh. These prices favor an increase in the consumption for band π1, which
is evident in Fig. 4 (left). The fraction of customers in each class that make the
switch is reported in Fig. 4 (left) and the corresponding savings (w.r.t. the initial
cost) are 3%/5%/2%/8%/7%. It is interesting to observe that the new prices
strike a very different trade-off compared to the initial setup: in particular, the
savings are more evenly spread among customer classes, and attracting customers
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Fig. 3. (left) Demand values for scenario 1 before and after the introduction of the
new tariff. (right) Fraction of customers switching to the new tariff, for each class.

Fig. 4. (left) Demand values for scenario 1, with increased elasticity. (right) Fraction
of customers adopting the new tariff, for each class.

of class 1 (single persons) has now become economically appealing. The provider
profit is now larger, with a value of (around) 1.3 Me. Such general improvements
are possible since the increased elasticity enables a reduction of the wholesale
electricity price via demand shifting. In particular, the wholesale price in each
a band is 36.8/36.9/21.1 Ke/GWh, down from 44.4/49.0/28.9 Ke/GWh in the
original setup.

The value of the overhead oj is a major component of the electricity cost
for the provider and may have a strong impact on the profit margin. We have
investigated the effect of changing the value of the fixed overhead costs from
250 Ke/GWh down to 100 and up to 350. The results of this evaluation are
reported in Table 2, which shows the overhead value (in Ke/GWh), the prices
of the optimized new tariff (in Ke/GWh), the percentage of switching customers
for each class, and the provider profit. We also report the status of the problem
at the time limit.
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Table 2. Effect of changing the fixed overhead costs

Prices % switch

oj p0 p1 p2 κ0 κ1 κ2 κ3 κ4 profit (Me) status

100 371 273 238 76.2 76.7 76.8 75.9 76.5 10.64 opt

220 328 300 360 58.6 58.4 57.3 63.8 64.2 2.32 opt

250 155 437 436 8.9 39.3 56.8 59.9 63.4 1.19 opt

280 343 328 362 41.8 41.6 40.3 47.6 48.1 0.611 feas

350 – – – 0.0 0.0 0.0 0.0 0.0 0.0 opt

When the overhead is low, the profit margin is very high and it is possible to
lower the prices to that point that the new tariff is competitive for all customer
classes. As the overhead grows, attracting customers of class 1 becomes increas-
ingly difficult (see the fraction of switching customers), and the optimal prices
become those most convenient for the less flexible customers: the price for band
π0 in particular changes significanly from the case with oj = 100 to oj = 250.
For overhead values slightly above 250 the problem seems also to enter a phase
transition, with a complexity peak: our solution for oj = 280 is sub-optimal and
noticeably out of trend. For very large overhead, there is no economical advan-
tage in attracting customers to the new tariff, and the optimal choice consists
in leaving the original situation unchanged.

Table 3. Effect of changing the perception accuracy parameters

Prices % switch

oj βk p0 p1 p2 κ0 κ1 κ2 κ3 κ4 profit (Me) status

250 0.75 155 437 436 8.9 39.3 56.8 59.9 63.4 1.19 opt

250 1.0 – – – 0.0 0.0 0.0 0.0 0.0 0.0 opt

250 1.25 – – – 0.0 0.0 0.0 0.0 0.0 0.0 opt

220 0.75 328 300 360 58.6 58.4 57.3 63.8 64.2 2.32 opt

220 1.0 – – – 0.0 0.0 0.0 0.0 0.0 0.0 opt

220 1.25 – – – 0.0 0.0 0.0 0.0 0.0 0.0 opt

100 0.75 371 273 238 76.2 76.7 76.8 75.9 76.5 10.64 opt

100 1.0 320 260 343 70.9 70.8 69.9 74.4 74.8 6.64 feas

100 1.25 72 211 705 77.4 74.9 62.4 74.9 72.4 6.87 opt

Finally, we have investigated the effect of changing the perception accuracy
parameters. In particular, besides the initial setup with βk = 0.75, we have
performed experiments with βk = 1.0 (i.e. a quite accurate perception, at the
relevant range), and βk = 1.25 (i.e. bias toward underestimated variations).
The results are reported in Table 3. In both cases, our approach was no longer
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able to find an economically favorable tariff for the provider, i.e. the optimal
decision was to leave all customers to the competitor. Apparently, customers
that are less prone to over-estimation are more difficult to manage for an energy
provider, either because they are better capable of exploiting dynamic prices
(due to accurate perception) or they are likely to cause wholesale price increases
(due to underestimated variations). We have performed a limited test of this
conjecture by repeating our experiments with lower overhead costs, i.e. 220 and
100 Ke/GWh. The results for oj = 220 are similar to those for oj = 250. For
oj = 100, tariffs that are beneficial for both the provider and the customers can
be found even for βk = 1.0 and βk = 1.25, although their profit is considerably
lower than the βk = 0.75 case.

5 Concluding Remarks

In this work we have devised a non-linear optimization model for optimizing ToU
based tariffs for electricity. The model is rather comprehensive and takes into
account: (1) the presence of multiple tariffs and (most importantly) competitors,
(2) the demand response behavior of the customers, (3) the effect of demand
shifts on the wholesale energy price, and finally (4) cognitive aspects of the
customers, in particular their risk aversion and the accuracy of their consumption
estimates. The problem objective is to maximize the provider profit.

Our model can be employed directly by an energy utility to obtain tariff rec-
ommendations, or it can be used to assess the behavior of a provider and multiple
customers in real or hypothetical market scenarios. This second, indirect, way of
using our model may allow a policy maker to evaluate the effectiveness of energy
policies via what-if analysis, or to prioritize policy goals (e.g. identify the most
important parameters that should be changed).

In principle, it should be relatively easy to modify our model for at least two
more relevant use cases. First, the model could be used to support the definition
of tailored tariffs for public buildings, or large industrial customers: in this case,
each κk would represent an individual customer rather than a class, the effect of
demand shifts on the wholesale price should be disregarded, and finally the tariff
choice should be deterministic rather than stochastic. This deterministic choice
behavior could be modeled by formulating the KKT optimality conditions for a
tariff selection subproblem.

A second alternative use case consists in employing the model to obtain rec-
ommendations about changes in the customer behavior parameters (e.g. elastic-
ity, perception accuracy): this could be achieved by assuming that all tariffs are
fixed, by turning the parameters for which we want recommendations into deci-
sion variables, and finally by adjusting the objective function. This alternative
use case may be particularly appealing for policy makers.

We are aware that some components in our model could be improved. In
particular, our perception model could be made more flexible and should be val-
idated on real data. The elastic model that we employ for demand shifting could
be augmented to take into account limits to the maximal acceptable variation,
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or to take into account the comfort loss/gain due changes in the net energy con-
sumption. Obtaining a better characterization of the elasticity of the residential
consumption may require to develop a feedback system to keep the customers
informed about their energy usage, as proposed in [9]. We are also considering
the possibility to split the yearly consumption into multiple months, which would
allow one to model different types of tariffs and to (partially) take into account
weather conditions. We are confident that we could provide support for a wider
range of tariff schemes (e.g. discounted rates). We are actively working on some
of these topics and some new results may be released in the coming months.

Acknowledgments. This work is partially supported by the EU FP7 project
DAREED (g.a. 609082). We thank the anonymous reviewers for their comments.
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Abstract. Minimum Spanning Trees (MSTs) are ubiquitous in opti-
mization problems in networks. Even though fast algorithms exist to
solve the MST problem, real world applications are usually subject to
constraints that do not let us apply such methods directly. In these cases
we confront a version of the MST called the “Weighted Spanning Tree”
(WST) in which we look for a spanning tree in a graph that satisfies other
side constraints and is of minimum cost. In this paper we implement this
constraint using a lower bound and learning to accelerate the search and
thus reduce the solving time. We show that having this propagator is
tremendously beneficial for solvers and we show the benefits of learning.

1 Introduction

Given a connected weighted graph G = (N,E), the Minimum Spanning Tree
(MST) T of G is a connected acyclic sub-graph of G that contains all the nodes
in N and is of minimum weight. Finding the MST of a graph can be done using
Kruskal’s algorithm (among others) which is O(|N |log(|E|)). Nevertheless, many
interesting variants of the MST are NP-hard. In these variants, there are side
constraints that make these algorithms unusable.

Some examples where side constraints make the MST problem NP-hard are
the capacitated MST [5,17], the degree-constrained MST [14], the min-degree
MST [2], the constrained MST [19], or the diameter-constrained MST [1]. These
and other variants can be found in the real world. For instance, cable layout for
offshore wind farms [13] combines the capacitated MST, the degree-constrained
MST and an extra constraint disallowing cable crossing.

In Constraint Programming (CP), the Weighted Spanning Tree (WST) con-
straint is defined as follows: given a graph G = (N,E) and a weight function ws
that maps every edge e ∈ E to an integer called the weight of e, find a tree T
that is a subgraph of G, spans all nodes in N and is of cost at most w (w being
an integer variable). The decisions made by this constraint are Boolean variables
ce representing for each edge e ∈ E whether it is chosen to be part of T or not.
Let B = {ce|e ∈ E}, we write the constraint wst(N,E,ws,B,w). Because this is

c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 98–107, 2016.
DOI: 10.1007/978-3-319-33954-2 8
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a constraint, it can be used in combination with other constraints and therefore
applied to the above stated optimization problems.

The first appearance of this constraint was in [9] (called “Not-too heavy”
spanning tree). Their work was followed up in [21] with a simpler algorithm for
propagation maintaining the same strength for the propagator. They re-named
the constraint “WST”, which is the term that we will use. Here the propagation
was proved to be arc-consistent. Later, in [22], the ccTree data-structure was
improved to decrease the complexity of their algorithms. Similar work was done
in [8], although this constraint forced to solution to be a minimum spanning
tree. The contribution of these papers are the filtering algorithms they provide,
but no implementation or experiments are reported. Nonetheless, in Constraint
Programming, constant factors in the complexity are crucial and the asymptotic
complexity of their algorithms gives only partial information on performance.
Also, no previous work explored the use of explanations in this useful constraint.

In this paper we present our implementation of the WST constraint in the
CP solver Chuffed [7]. We use learning [16] to accelerate the search. We show
that the explanations on this global constraint are tremendously beneficial in
practice. We compare our implementation to the one available in the Choco3
CP solver [18] and show the benefits of learning.

We illustrate the use of this constraint on the Diameter-Constrained MST
(DCMST) problem, because it has been recently addressed in Constraint Pro-
gramming by [15] and has a large number of applications in wireless network
routing [3], telecommunications [26], distributed mutual exclusion in computer
networks [20] and data compression [4]. For this problem there has been work on
both approximation and exact algorithms. In approximations, [11] presented an
approach using Variable Neighbourhood Search, followed by another heuristic
approach [12]. For exact solutions [23] presented a Mixed Integer Programming
formulation of the problem that was later improved in [10]. The latest exact algo-
rithm was presented by [15] using CP and it outperforms all other approaches
known to the authors. Our approach to the DCMST is also CP, so it is only
comparable to the last one. Nevertheless, the solver they used is not the same as
ours, and thus comparisons (especially in time) should be considered with care.

Section 2 briefly introduces Lazy Clause Generation. Section 3 describes our
algorithms and implementation of the WST constraint, including the compu-
tation of explanations. Section 4 summarizes our experimental results on the
DCMST.

2 Lazy Clause Generation

Lazy Clause Generation (LCG, [16]) is a technique by which CP solvers can
learn from what they have explored in the search space. Constraints can be
transformed into a number of clauses over Booleans, and this is typically how
SAT solvers work. The idea of LCG is to make propagators generate these clauses
on the fly when they propagate. These clauses capture the reason for propagation
and thus we say they “explain” propagation. These explanations are then given
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to the solver that uses them as a way of remembering what propagators inferred.
This way, we run a relatively expensive algorithm once, do an inference and
remember it for the rest of the solving process. On the other hand, propagators
might need to do some extra computation to compute the explanations.

3 WST Propagator with Explanations

In our problem, the decision variables are the edges: which edges form the tree
and which edges do not. We say that an edge is mandatory if it has been set
to be part of the tree. We call forbidden the edges that have been set to not be
part of the tree. Other edges are undecided. Let M be the set of mandatory and
F the set of forbidden edges.

Here we present our WST propagator with explanations. We first introduce
a novel lower bound with explanations followed by a propagation rule (which
was already introduced in [21]).

We define a substitute edge of an edge e in a spanning tree T = (N,TE) as
any edge es such that (N,TE\{e} ∪ {es}) is a spanning tree. Also, following the
definition of [21], given a tree T and a non-tree edge e = (i , j ), let e′ be the edge
of maximum cost in the path from i to j in T . Then e′ is called the support of e.

3.1 Lower Bound with Explanations

Assume we are looking for a solution of cost w lower than K. When we branch
(i.e. we make a decision) we can compute a lower bound of the problem that will
tell us if a better solution can exist in this branch. If that’s not the case, we can
stop the search. This is known as branch-and-bound.

The most accurate lower bound for w in the WST propagator is naturally
the MST of the graph given the decisions so far. That is, the tree T ∗ = (N,E∗)
of minimum weight WT∗ such that M ⊆ E∗ and E∗ ∩ F = ∅.

It is easy to see that applying Kruskal’s algorithm where the edges in M have
been pre-added and the edges in F are not used yields T ∗.

Now, if WT∗ ≥ K then no solution of cost lower than K exists in the cur-
rent search space, and we can cut the search. A trivially correct explanation is∧

e∈F ¬ce∧
∧

e∈M ce ⇒ WT∗ ≥ K, but it is possible to build a better explanation.
Let Fc be the set of forbidden edges eF such that T ∗ ∪ {eF } forms a cycle

where eF is not the most expensive edge. Let MS be the set of edges e ∈ M hav-
ing some substitute e′ such that ws(e ′) < ws(e). Let SS be a mapping MS 
→ E
from each edge in MS to the substitute of minimum weight for that edge. We then
select a subset MH ⊆ MS such that the inequality

∑
e∈MH

(ws[SS [e]] − ws[e])+
WT∗ ≥ K holds. Note that multiple such sets MH may exist.

A better explanation is given by Theorem1.

Theorem 1. A correct explanation for the failure of wst(N,E,ws,B,w) is:
∧

e∈Fc

¬ce ∧
∧

e∈M\MH

ce ⇒ WT∗ ≥ K
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Proof. Forbidden Edges: Clearly, Fc ⊆ F . Let e = (u, v) ∈ F\Fc. By definition
of Fc, e is the most expensive edge in the cycle formed by T ∗ ∪{e}. Because the
queue in Kruskal’s algorithm is sorted in increasing order, the path P between
u and v in T ∗ was already built before considering e. Therefore, whether e is
forbidden or not does not affect the cost of P and consequently does not affect
WT∗ and the explanation

∧
e∈Fc

¬ce ∧
∧

e∈M ce ⇒ WT∗ ≥ K holds.

Mandatory Edges: By construction, MH is a set of edges that, when removed
and substituted by the best possible edge available, the cost of the tree is still
higher than K. Therefore, the edges in MH do not need to be in the explanation
for it to hold. �

Note that because several sets MH may exist, different explanations can be com-
puted. Evaluating which explanation is better than another is highly dependent
on the instance of the problem. We ran different tests and could not determine a
way of choosing MH that dominated others in all cases. In our final implemen-
tation we start by putting the cheapest edges in MH .

The algorithm to detect failure and compute the explanation is Algorithm1.
To construct explanations, we use the Rerooted-Union-Find data structure
described in [25]. This is a modification of a classic Union-Find that allows
the user to retrieve paths between nodes. Lines 7 to 9 pre-add all the mandatory
edges. Lines 10 to 20 follow the classic Kruskal’s algorithm with some modifica-
tions. Lines 12 and 17 add to the explanation any forbidden edge that should have
been used. Lines 14 and 15 compute the cheapest substitute for each mandatory
edges (if any). Once the tree T ∗ is computed, we build MH in lines 22 and 23,
leaving all the other mandatory edges (that have substitutes) in the explanation
in line 25. The final explanation for WT∗ ≥ K is the set X. The complexity of
the algorithm is O(|E|(|N | + log(|E|))).

The same explanations can be used for failure if cost > K:
∧

e∈Fc

¬ce ∧
∧

e∈M\MH

ce ∧ �w < K� ⇒ false

In the example of Fig. 1, we are looking for a solution of cost less than K =
27. WT∗ is 31, so we must fail. When we consider edge e1, the fact that it is
mandatory causes no trouble, as there is no other substitute to this edge that
would connect h. When we consider e4, we must skip it because it is forbidden,
which means that we will use a more expensive edge to reach c (here e8). When
considering e6, e and g are already connected by a path containing the mandatory
edges e7, e9 and e10 and the undecided edge e3. Therefore e6 is the substitute
of all of them. We later compute that: WT∗ − ws[e7] + ws[e6] = 30 > K, then
30 − ws[e9] + ws[e6] = 28 > K and lastly 28 − ws[e10] + ws[e6] = 21 < K.
Therefore, the explanation will be ¬ce4 ∧ ce10 ∧ �w < K� ⇒ false.

3.2 Propagation Rule with Explanations

We use the propagation rule exposed in Proposition 3 of [21], that is: given the
best possible tree T ∗ and an upper bound for the solution K such that WT∗ < K,
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Algorithm 1. Computing the lower bound with explanation.
1: procedure mandatory kruskal(G = (N, E), M, F, K)
2: Q ← sort(E)
3: uf ← RerootedUF ()
4: c ← 0, cost ← 0
5: X ← ∅, sub ← array(|E |,nil)
6: for all e = (u, v) ∈ M do � Pre-add mandatory edges
7: uf .unite(u, v)
8: c ← c + 1; cost ← cost + ws[e]

9: for all e = (u, v) ∈ Q do � (in order)
10: if ¬uf .connected(u, v) ∧ e ∈ F then
11: X ← X ∪ {¬ce} � Should add e, but it is forbidden
12: else if uf .connected(u, v) then
13: for all ep ∈ uf .path(u, v) do
14: sub[ep] = min w(sub[ep], e)
15: if ws[ep] > ws[e] ∧ e ∈ F then
16: X ← X ∪ {¬ce} � e would be cheaper

17: else if c < |N | − 1 ∧ ¬uf .connected(u, v) then
18: uf .unite(u, v)
19: c ← c + 1; cost ← cost + ws[e]

20: for all e ∈ M ∧ sub[e] �= nil do
21: if cost − ws[e] + ws[sub[e]] ≥ K then
22: cost ← cost − ws[e] + ws[sub[e]] � e ∈ MH

23: else if ws[sub[e]] �= ws[e] then
24: X ← X ∪ {ce} � e �∈ MH

25: return [X ⇒ �w ≥ cost�]
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Fig. 1. Example of a graph during solving. The weights are indicated on the right.
Symbol ‘�’ indicates an edge that was used in the solution, whereas ‘�’ indicates
edges that should have been used (accompanied by the explanation).

for any non-tree edge e∗ of support e′, e∗ can be part of the solution if and only
if WT∗ −ws[e ′] +ws[e∗] < K. That is, e∗ is a valid substitute of e′. If this is not
the case, we must remove e∗ from the possible edges since using it would increase
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the weight of T ∗ above the upper bound K. It is easy to see that the previous
explanation applies as well in this case. Let M ′

H = ((M\MH)\{e′}) ∪ {e∗}.
∧

e∈Fc

¬ce ∧
∧

e∈M ′
H

ce ∧ �w < K� ⇒ false

⇔
∧

e∈Fc

¬ce ∧
∧

e∈M ′
H\e∗

ce ∧ �w < K� ⇒ ¬e∗

We execute this rule after the previously described algorithm in the case
where no failure is detected.

4 The Diameter Constrained Minimum Spanning Tree

The DCMST is formally defined as follows: given a graph G = (NG, EG) find a
sub-graph T = (NT , ET ) of G such that T is a tree, NT = NG and the longest
distance between any two nodes in T is at most D (called the diameter of T ).
The distance between two nodes u and v is the number of nodes in the path
from u to v.

4.1 Modeling DCMST

This problem is separated in two cases whether D is even or odd. If D is even,
then there exists a node r that is the root of T and the height of all the other
nodes has to be at most D/2�. If D is odd, there exists an edge e = (a, b) that
acts as the root of the tree (e is therefore in the tree), meaning that the height of
a and b is zero and all the other nodes must have at most height D/2�. Notice
that r, a and b are not given in the input: these are variables.

We used the same model as [15] with the only addition of our propagator.
The matrix adj gives for each node the set of neighbour nodes. For the DCMST-
specific constraints, we use an array of heights of nodes h, and an array of
parenthood of nodes p. Two variables a and b are the end-nodes of the edge that
acts as root in the odd case, or are both the root in the even case (in that case,
a = b). The model is minimize(w) such that:

wst(N,E,ws,B,w) (1)
D mod 2 = 0 ⇔ a = b (2)

(h[a] = 0 ∧ p[a] = b) ∧ (h[b] = 0 ∧ p[b] = a) (3)
∀n ∈ N\{a, b}, h[n] = h[p[n]] + 1 (4)

∀n ∈ N\{a, b}, p[n] ∈ adj [n] (5)
∀e = (u, v) ∈ E, ce ⇔ p[u] = v ∨ p[v ] = u (6)

Constraint 2 states that in the even case a and b are the same node (the root
r). Constraint 3 forces a and b to be at height 0 and be each others parents.
Constraint 4 makes every node (other than the root(s)) be one level below its
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parent. Constraint 5 forces each node to chose a parent that is adjacent to it.
Constraint 6 links the edge variables of the graph with the parenthood relations.

Although our main intention is to compare the improvement that the WST
propagator and explanations bring to the solver, we also compare our work to
[15] (we name their results “NRS”) as their results are the state of the art in
DCMST as far as we can tell. They used a Pentium 4, 2.8 GHz and 2 GB of
RAM.

For better comparison, we implemented the exact same search strategy they
describe in their paper ([15] Sect. 3, Fig. 2). First, for each node n we compute
the sum sn of the shortest paths from n to any other node. Then, we associate
to each pair of nodes (a, b) the minimum of sa and sb, noted s(a,b) = min(sa, sb).
The search is as follows. Start by taking each pair of nodes (a, b) in increasing
order of s(a,b). Then for each possible value of the height (from 1 to D/2�),
remove that value from the domain of all the nodes (when possible) taking the
nodes in decreasing order of the shortest path to either a or b. Here “shortest
path” is in weight of the edges.

They use a dominance rule in the search, which we converted into a
dominance-breaking constraint [6] in our model, for ease of implementation:
∀{e1 = (u, v), e2 = (u, y)} ∈ E2, ws[e1] < ws[e2] ∧ h[v] ≤ h[y] ⇒ p[u] �= y. This
states that if it is cheaper to connect u to v than to y and the height of v is lower
than the height of y, we can connect u to v with a lower cost. This is because if
using e2 does not violate the diameter constraint, neither does e1.

4.2 Experimental Results

We run our experiments on a Linux 3.16 Intel R© Core
TM

i7-4770 CPU @ 3.40 GHz,
15.6 GB of RAM. We used 5 min as the time limit. The results from NRS are
extracted from their paper where they used the solver IBM OPL. Benchmarks
can be found in [24]. We give different versions in Chuffed: NoProp uses
learning but does not use our propagator, NoExpl uses our propagator with-
out learning, Expl uses the propagator with explanations from Sect. 4, and
NaiveExpl uses our propagator with naive explanations (i.e. all fixed elements
in the graph are in the explanation). All use the same strategy.

As we can see in Table 1, the use of the propagator is absolutely benefi-
cial. The total time is improved by 48.02 % when using the propagator without
explanations against no propagator. Furthermore, our version with explanation
(Expl) is 90.5 % faster than the version without explanations (NoExpl) and
95.1 % faster than the version with no propagator at all. Also, our total time is
36.6 % shorter than NRS. Most of the tests with NoProp and Choco3 got to
the optimal solution, but timed-out when proving optimality. This also illustrates
the need for this propagator.

In CP, the number of nodes represents the size of the search space explored
before proving optimality. Here we see an obvious dominance of Expl as it
almost always has less nodes than other versions. It also has an improvement
on the total number of nodes for all benchmarks of 99.4 % over NoProp and
99.0 % over NoExpl. Additionally, it has an improvement of 96 % over NRS.
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Table 1. Comparison in time (seconds) and nodes for the DCMST models.

Instance NoProp NoExpl NaiveExpl Expl Choco3 NRS (IBM OPL)
|N | |E| D Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time

15 105 4 6825 0.45 784 0.23 448 0.2 447 0.19 6256 1.92 1044 0.08
15 105 5 35322 2.28 1921 0.39 1003 0.39 1001 0.38 301269 44.36 2850 0.22
15 105 6 133259 10.31 5997 0.63 2235 0.48 2101 0.45 160445 37.06 6960 0.28
15 105 7 258317 22.91 5873 0.54 2312 0.41 2221 0.41 2182510 300 8240 0.38
15 105 9 493166 39.80 6049 0.47 1968 0.21 1731 0.19 2623006 300 11743 0.47
15 105 10 550536 40.93 24259 1.95 2872 0.39 2831 0.29 898948 156.63 11830 0.41

20 190 4 192965 20.39 2651 1.86 1261 1.70 1266 1.69 200651 82.51 3143 0.20
20 190 5 1869837 186.76 9387 4.85 4452 4.56 4432 4.48 2064050 300 18283 1.06
20 190 6 2585912 300 49673 14.97 9018 4.55 8462 4.08 862115 300 35383 2.03
20 190 7 2661381 300 16690 4.67 4252 2.04 4288 1.97 1857850 300 19142 0.97
20 190 9 2433234 300 157236 34.43 6336 1.71 5972 1.60 1738525 300 119906 5.01
20 190 10 2628419 300 315618 52.61 9050 3.96 8645 3.56 1067170 300 151969 6.08

25 300 4 1898689 300 20202 58.53 6166 17.10 6217 17.1 592738 300 28842 1.48
25 300 5 2415919 300 86662 93.57 32787 80.62 26547 68.88 1553235 300 37608 2.83
25 300 6 2262702 300 402861 300 16150 17.66 15147 15.99 847691 300 534222 39.14
25 300 7 2045173 300 449104 210.13 76272 87.72 61098 63.68 1448142 300 812957 56.06
25 300 9 1929801 300 462886 300 21195 18.66 19724 17.43 1270399 300 2655810 114.14
25 300 10 1961836 300 620555 261.71 21453 11.86 21565 11.50 586552 300 1126130 55.47

20 50 4 14548 0.48 1219 0.05 558 0.05 558 0.05 4489 0.61 389 0.05
20 50 5 55748 2.58 307392 10.87 2258 0.26 2227 0.24 426762 40.91 3611 0.17
20 50 6 52217 2.34 68384 0.75 1574 0.10 1475 0.08 41892 5.28 2678 0.13
20 50 7 66676 3.45 25043 0.68 1381 0.12 1238 0.09 1389117 133 1975 0.14
20 50 9 274583 16.59 14016 0.33 1117 0.06 1261 0.06 3820792 300 13040 0.45
20 50 10 310688 18.93 410 0.01 564 0.03 564 0.02 329333 42.87 17937 0.64

40 100 4 3426079 300 45199 6.27 13766 4.41 13901 4.30 1180714 300 130480 5.44
40 100 5 3261615 300 9596291 300 36496 14.22 26970 9.69 3196955 300 161961 7.31
40 100 6 4836734 300 8161773 300 10708 2.59 5037 0.84 1851687 300 91022 4.72
40 100 7 4709441 300 5979528 300 38153 11.03 18504 4.49 2989047 300 778669 34.38
40 100 9 3646022 300 4468371 300 88837 25.12 36572 7.08 2873734 300 769161 40.16

Total 47017644 4868.2 31306034 2530.50 414642 312.21 302002 240.81 38365804 6245.15 7556985 379.84

The comparison between Expl and NaiveExpl shows that computing
our explanations is worthwhile. The NaiveExpl uses the same algorithms as
described throughout this paper, only the explanations contain all the fixed cn
and ce. This makes the explanations more strict and thus less reusable. As we
would expect, this makes the explanations much longer: the average length in
the explanations for NaiveExpl is 128.88 literals, whereas the length of our
explanations is 73.18 literals in average. We see the consequences of this in the
Table 1: naive explanations most often slow down the solving step. The version
Expl is 22.9 % faster and has 27.2 % less nodes.

We observe that our propagator dominates specially when the diameter is
big. This is because in that case, the lower bound is more accurate as it violates
fewer diameter constraints. When the diameter is small, Algorithm 1 is not aware
of it and just computes an MST thus rapidly violating the diameter constraints.

5 Conclusion

In this paper we have given an efficient algorithm to compute explanations for
the lower bound for the WST constraint, and we have implemented an already
existing propagation rule in our solver. Our major contribution is the compu-
tation of explanations that, as we can see in the experiments, are absolutely
beneficial to solve large instances of optimization problems on spanning tree.
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Abstract. Response to electricity price fluctuations becomes increas-
ingly important for industries with high energy demands. Consumer tis-
sue manufacturing (toilet paper, kitchen rolls, facial tissues) is such an
industry. Its production process is flexible enough to leverage partial
planning reorganization allowing to reduce electricity consumption. The
idea is to shift the production of the tissues (rolls) requiring more energy
when electricity prices (forecasts) are lower. As production plans are sub-
ject to many constraints, not every reorganization is possible. An impor-
tant constraint is the order book that translates into hard production
deadlines. A Constraint Programming (CP) model to enforce the due
dates can be encoded with p Global Cardinality Constraints (GCC); one
for each of the p prefixes of the production variable array. This decom-
position into separate GCC’s hinders propagation and should rather be
modeled using the global nested gcc constraint introduced by Zanarini
and Pesant. Unfortunately it is well known that the GAC propagation
does not always pay off in practice for cardinality constraints when com-
pared to lighter Forward-Checking (FWC) algorithms. We introduce a
preprocessing step to tighten the cardinality bounds of the GCC’s poten-
tially strengthening the pruning of the individual FWC filterings. We fur-
ther improve the FWC propagation procedure with a global algorithm
reducing the amortized computation cost to O(log(p)) instead of O(p).
We describe an energy cost-aware CP model for tissue manufacturing
production planning including the nested gcc. Our experiments on real
historical data illustrates the scalability of the approach using a Large
Neighborhood Search (LNS).

1 Introduction

The share of renewable energy production, such as wind or solar power is grow-
ing fast in several countries of the EU [19]. While the production of nuclear and
fossil energy tends to be stable, renewable energy production is highly dependent
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 108–124, 2016.
DOI: 10.1007/978-3-319-33954-2 9
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of both climatic conditions and time of the day considered. Renewable resources
add a huge variability on the offer and demand, and thus on the price of elec-
tricity. As an example, Fig. 1 shows the historical electricity prices in Europe on
March 3rd, 2014. In this example, the electricity prices fluctuate with a multi-
plicative factor higher than 3.5. Performing activities requiring more energy when
electricity price is low represents both an economical and ecological advantage
(the energy produced is not “wasted”).

In [14], Simonis and Hadzic propose a cumulative constraint that links the
energy consumption of activities with evolving electricity prices. We believe this
kind of energy-aware optimization will become increasingly present in the indus-
tries with order-driven production planning that can be easily split into differ-
ent steps. It generally offers enough flexibility to reduce the energy costs by
scheduling tasks requiring more energy when the electricity price is lower. This
paper addresses the problem of energy-efficient scheduling in consumer tissue
production planning. Consumer tissue production planning offers several levers
of flexibility, allowing to drastically reduce the energy costs for a given set of
orders. Indeed, the paper machine receiving paper pulp as input and producing
paper rolls consumes an amount of energy that depends on the tissue properties
(quality, density of fibers, thickness, etc.). Therefore, our CP model attempts
to schedule the production of paper rolls requiring more energy when electricity
price forecasts are lower. The order book limits the flexibility and is modeled
using a nested gcc [20]. A flow based GAC filtering for this constraint is pro-
posed in [20]. This paper introduces a light filtering algorithm particularly well
suited to tackle large instances in a Large Neighborhood Search (LNS) requiring
fast restarts. A preprocessing step to tighten the initial cardinality bounds allows
to obtain additional pruning compared to a naive decomposition with Forward
Checking (FWC) GCCs. Furthermore, we propose a general refined FWC prop-
agation procedure allowing to reduce its amortized time complexity from O(p)
with the decomposition into multiple GCCs to O(log(p)).

Fig. 1. Historical evolution of electricity prices on the EU market on March 3rd, 2014.
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In Sect. 2, we describe the consumer tissue manufacturing problem. Then,
in Sect. 3, we propose a CP model to solve this industrial problem. Section 4
describes the preprocessing step to obtain tighter cardinality bounds as well
as our own FWC propagation algorithm for the nested gcc. Finally, Sect. 5
explains the results obtained on real historical data with our model.

2 Paper Production Planning

An important industrial site in Belgium manufactures hygienic paper (toilet
paper and facial tissues are examples of refined paper they produce). Paper rolls
are produced before being converted into different products (e.g. toilet papers
or kitchen rolls). The production is a two step process: paper roll production,
then conversion of paper rolls into final products. In Fig. 2, we give a schematic
overview of the different steps in the production of paper on the industrial site
considered. The energy consumption can vary up to 15 % depending on the
type of roll produced. Therefore the company is looking for the less expensive
production planning given the electricity price forecasts.

Fig. 2. Production steps in paper industry.

The potential savings depends on the flexibility of the production site. For
example, a factory continuously producing a same product does not have much
potential to reduce its energy bill. On the contrary, a manufacturer producing
many different products on a production line, each requiring a significantly dif-
ferent amount of energy has probably more flexibility to reduce its energy bill.
The paper roll production can be split in two main successive steps: paper pulp
production and transformation of paper pulp into paper rolls. The potential
energy gain on the first step is negligible compared to the second step. Indeed,
as reported during our visits made on site, the pulp production part does not
contain much flexibility and is significantly less energy-intensive than the paper
machines producing paper rolls. Therefore this work focuses on the roll produc-
tion part on the paper machine of the production line.

2.1 Paper Machine Scheduling

The paper machine transforms paper pulp into paper rolls. This consists in a
continuous process in which the paper pulp is spread out on a treadmill passing
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through several presses and in front of a succession of heating devices or ventila-
tion systems in order to dry the pulp and obtain a sheet of paper that will then
be rolled up to form paper rolls.

As this process is continuous, the biggest factor that can impact the con-
sumption of electricity is the kind of paper that has to go through the process.
Indeed, depending on the type of paper pulp on the treadmill, the treadmill
speed, the temperature of the heater, the speed of ventilation systems and other
parameters will vary. The flexibility comes from the possible permutations of
paper types according to electricity prices.

A new calibration (of the treadmill and the other components) is necessary
for any change of paper type on the machine. This calibration is time consuming
and the quality of the paper cannot be ensured during a transition between two
different paper types. A minimal duration between any change of paper type
is imposed in order to reduce their frequency. The duration for calibration and
the loss of paper quality incurred depends on the transition of paper types.
Some transitions are more desirable than others. A transition cost can thus be
associated for every transition type (i.e. every pair of paper types that will be
produced successively).

3 A Planning Model for Paper Roll Production

In this section, we describe a production planning model to represent the trans-
formation of paper pulp into paper rolls. The constraints of this problem are:

– For every demand of paper rolls of a given type at a specified due date, a larger
or equivalent amount of paper rolls of the same type has to be produced before
the respective due date.

– When a paper type is produced, it has to be produced for a minimum duration
before another paper type can be produced.

The objective quantities should be optimized:

– The total energy cost of the production planning has to be minimized.
– The cost (and thus also the number) of transitions between different successive

paper types has to be minimized.

A formal definition of the problem is given next. Item indices i, j are
ranging on the set {1, . . . , I}. Time index t is ranging over {1, . . . , T} where
T is the horizon of the planning at an hour basis (since electricity price is
changing every hour). The deadline indices are a subset of the time indices:
{l1, . . . , lL} ⊆ {1, . . . , T}.

minimize w1

∑

i,t

(pt · ci · xt,i) + w2

∑

i,j,t

(si,j · yi,j,t) (1)

subject to yi,j,t + 1 ≥ xt,i + xt+1,j ∀i, j, t (2)
∑

i

xt,i = 1 ∀t (3)
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loweri
l ≤

l∑

t=1

xt,i ≤ upperi
l ∀i, l (4)

contiguous sequence length ≥ k (5)
xt,i ∈ {0, 1} ∀i, t (6)
yi,j,t ∈ {0, 1} ∀i, j, t (7)

The variable xt,i is a binary variable equal to 1 if paper type i is produced
at period t. The variable yi,j,t is true only if there is a transition from paper
type i to paper type j occurring at time t. Equation (1) is the objective function
composed of two terms weighted by w1 and w2. The first term is the energy cost
with pt the price of electricity at time t and ci is the energy consumption per
period for paper type i. The second term is a penalty to pay for the transitions
with si,j the cost associated to the transition between paper type i and paper
type j. Equation (2) ensures that yi,j,t = 1 only if a product of type i is scheduled
at time t and a product of type j at time t + 1. Equation (3) ensures that only
a single product is scheduled at any time. The constraints at Eq. (4) enforce
that the number of products of type i scheduled during the first l ∈ {l1, . . . , lL}
periods is within the interval [loweri

l,upperi
l]. The constraint (5) is more difficult

to express concisely in a mathematical form. It asks that contiguous sequences
of successive variables of a same type should be of length at least k.

CP Model. The problem described above is modeled into Constraint Program-
ming (CP). For every hour t of the planning, a variable xt with domain {1, . . . , I}
is introduced: the paper type to be produced at the hour t. We can compute
the electricity consumption cxt

at time t with element constraints1. The elec-
tricity price to pay is then

∑
t cxt

· pt. The transition cost sxt,xt+1 at every
time-point t is also computed with element constraints. The overall transition
costs is

∑
t sxt,xt+1 . The order book constraint of Eq. (4) can be enforced with a

Global Cardinality Constraint (GCC) [11] at every deadline l ∈ L. However, the
pruning of this formulation can be improved by using nested gcc [20]. An effi-
cient FWC algorithm for this constraint is introduced in Sect. 4. The constraint
(5) asks that contiguous sequences of a same paper type should be at least of
length k. This can easily be expressed in CP with a stretch [4] or a regular
[9] constraint. In Fig. 3a, we see a schedule where the constraint is satisfied for
k = 4 (i.e. there is no succession of rectangles of the same color with length infe-
rior to 4). On the other hand, Fig. 3b shows an unfeasible schedule for the same
set of paper types produced since there are two successions of 2 periods where
the paper type is blue. The two objectives, minimization of electricity costs and
minimization of transition costs between paper types, are aggregated in a sum
that is minimized.

1 The element constraint [18] allows to access the value of an array where the index
is a variable.
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Fig. 3. Example of feasible and unfeasible schedule for stretch constraint. (Color
figure online)

4 A Nested GCC Forward Consistent Propagator

The Global Cardinality Constraint (GCC) [11] on a vector of variables restricts
the number of occurrences for each values to be within a specified interval. On our
problem, the book order constrains the production on the first l ∈ {l1, . . . , lL}
variables to contain at least loweri

l times the value i. As an example, let us con-
sider a schedule with 20 periods. A first deadline could impose that we produce
at least 4 paper rolls of type 1 for period 11 and at least 6 paper rolls of type 1
for period 18. A feasible schedule for this example is shown in Fig. 4.

Fig. 4. Feasible schedules with nested GCC (2 deadlines on the paper type 1: at least
4 units at the end of period 11 and at least 6 units at the end of period 18).

Similarly, stock constraints impose a maximum number of times upperi
l a

value i can appear in the first l variables. As deadlines and stock constraints
are nested on overlapping variable sets, we are in the special case of a GCC: the
nested gcc [20]. More formally

nested gcc([x1, . . . , xn], [lower1l1 , . . . , lowerI
lL ], . . . , [upper1l1 , . . . ,upperI

lL ])

enforces the following constraints

loweri
lk

≤
lk∑

t=1

(xt = i) ≤ upperi
lk

∀i ∈ {1, . . . , I}, k ∈ {1, . . . , L}.
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Fig. 5. Example of pruning missed by a classic GCC decomposition. The white cells
represent unbounded variables while other colors represent value assignations. (Color
figure online)

The nested GCC constraint can be expressed with a decomposition of several
standard GCCs: one for every deadline lk. However, this GCCs decomposition
hinders propagation as shown in [20]. An example in which the decomposition
misses pruning opportunity is displayed in Fig. 5. In this example, there are
already 4 variables set to value red in the range [1, 16] constrained to contain
at most 7 variables assigned to red. This imposes that the range before the first
variable set to value red (range from 1 to 12) should contain at most 3 variables
set to value red. This kind of unfeasible assignment would be detected by the
flow-based GAC propagator of the nested gcc from [20].

In practice, the strongest filtering algorithms are not always the winners on
every problem. As explained in [15]: Maintaining a higher level of consistency
takes more time; on the other hand, if more values can be removed from the
domains of the variables, the search effort will be reduced and this will save
time. Whether or not the time saved outweighs the time spent depends on the
problem. In practice, many solvers (such as the very efficient OR-Tools [7]) use a
default forward checking filtering (FWC) for the GCC. Our application problem
contains large instances that will be solved with a Large Neighborhood Search
(LNS). In an LNS setting, the strength of the filtering is also less important since
the time spent at each node becomes the most critical to allow fast restarts and
a good diversification. Our experience suggests that it is rarely the case that
heavier propagation pays off when using LNS. Therefore we are interested to
design an efficient forward checking propagation procedure for the nested gcc.

In the following we design a FWC propagator achieving both a potentially
stronger and faster pruning when compared to a naive decomposition of L FWC-
GCCs. The improvement in pruning is obtained by a preprocessing step that
strengthens the bounds of the cardinalities loweri

lk
and upperi

lk
. The improve-

ment in terms of running time is obtained by maintaining incremental counters
avoiding the need to propagate every sub-GCC on each domain update. We
present first the pre-computation step, then the FWC filtering procedure.

4.1 Bounds Pre-Computation

This step aims at tightening the bounds loweri
lk

and upperi
lk

specified by the
user and minimizing the number of these to a minimal set. Two reasonings can
be done:
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1. between different ranges for the same value (e.g. the occurrences of red in
range [1, 4] and range [1, 5]).

2. between the bounds for the different values specified at a same date t (e.g.
the occurrences of red versus blue in range [1, 6]).

Per-value Deductions. The following forward and backward deductions can be
made:

– Lower bounds: if there are at least two red in range [1, 4], then there are at
least two red in range [1, 5] (forward), and at least one red in range [1, 3]
(backward).

– Upper bounds: if there are at most two red in range [1, 4], then there are at
most three red in range [1, 5] (forward), and at most two red in range [1, 3]
(backward).

We can make those deductions based on the quantities loweri
t and upperi

t con-
taining respectively the best-known lower and upper bounds on the occurrences
of i for range [1, t]. This is done by traversing these values for each range once
forward and once backward. The forward update of these values is defined as
follows, t increasing from 1 to n − 1:

loweri
t = max

{
loweri

t

loweri
t−1

upperi
t = min

{
upperi

t

upperi
t−1 + 1

Similarly, the backward update is defined as follows, i decreasing from n to 2:

loweri
t = max

{
loweri

t

loweri
t+1 − 1

upperi
t = min

{
upperi

t

upperi
t+1

Inter-value Deductions. Intuitively, there are two types:

– For a given time t and for some paper type i, if the value loweri
t is large, then

the production of other types of paper before t is limited.
– For a given time t and for some paper type i, if the value upperi

t is small,
then the production of other types of paper before t must be compensated.

For example, for a period of length 5, if the sum of the deadlines for the other
types is 3 (

∑
j �=i lowerj

5 = 3), then at most 2 units of red (type 1) can be
produced, and similarly if the sum of the storage space (

∑
j �=i upperj

5 = 3) for
the other types is 3, then at least 2 units of red must be produced.

For every possible value i, and every possible index t, we define two quantities:
loweri

t and upperi
t. These values are initially set to respectively, deadlines and

stock constraints applying on range [1, t] for value i (or respectively 0 and n = t
if not defined). We aim at setting these values with the best-known respectively
lower and upper bounds on the number of occurrences of i on range [1, t]. For
every value i and every index t defining range [1, t], entries in arrays are defined
as follows:

loweri
t = max

⎧
⎨

⎩

loweri
t

t −
∑

j �=i

upperj
t

upperi
t = min

⎧
⎨

⎩

upperi
t

t −
∑

j �=i

lowerj
t
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Fig. 6. Example of deduction of best-known lower and upper bounds for a value.

Example 1. An example of per-value pre-computation of lower bounds for a
given value is shown in Fig. 6a. Initial lower bounds in the gray zone are updated
since dominated by the other specified bounds. The arrays displayed in this
example represent the quantities loweri

t at the different steps of the bound tight-
ening. Original represents the original bounds specified by the user, Filled rep-
resents the bounds after application of the forward (left to right in the array)
and backward (right to left in the array) updates described earlier.

After the tightening step of the bounds loweri
t and upperi

t, the number of
these can be minimized to only keep the useful bounds in a decomposition of
the nested gcc. On the example of Fig. 6a, the minimal set of useful bounds
is indicated with a ⊗. Those are given in the Filtered array. A similar example
to deduce the upper bounds for a given value is shown in Fig. 6b. The pre-
computation is done only once, at the initialization of the constraint. As such,
the equalities defining loweri

t and upperi
t are assignment statements (not con-

straints). It can be shown that the final minimal set of bounds obtained after
(1) the per-value deductions, (2) inter-value deduction and (3) minimization of
the set of bounds, is the unique smallest set of bounds that contains all the useful
information initially specified in the quantities loweri

t and upperi
t. Furthermore,

the set of the times on which those final bounds apply is always a subset of the
times at which a lower or upper bound was originally given.

4.2 Updating Locally

With the improved bounds we have pre-computed in the previous step, we could
very well use a standard FWC-GCC constraint for every range that is involved
in the bounds, and obtain an improved pruning. However, if there are p such
ranges, it would result in O(p) amortized time complexity per domain update.
We present here a propagator that performs updates in O(log(p)) amortized
time and offers the same pruning. As a reference point, the pruning given by
forward-checking GCCs is such that
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Fig. 7. Example of segment decomposition.

– when the number of variables whose domain still contains a given value
decreases to the lower bound associated to it, these variables are assigned
to the value.

– when the number of variables bound to a given value increases to the upper
bound associated to it, this value is removed from all other variables.

The main challenge of this algorithm is to avoid checking those variable counts
on every lower bound or upper bound when an update is received. In order to
do that, for every value that we track and for both lower and upper bounds, we
divide the variables into the segments that are formed by the bounds, and only
count variables inside those segments. For example, if we have a maximum of
2 red in range [1, 3] and a maximum of 5 red in range [1, 8], we will separate
the variables into the segments [1, 3] (the first 3 variables) and [4, 8] (the next
5 variables). We justify in the next paragraphs why local checks inside those
segments are enough to detect and trigger the required pruning. This example
is shown in Fig. 7.

Let us examine the differences between the bounds in our example: 5−2 = 3.
We will call this difference the critical point of the segment [3, 7]. If the number
of variables bound to red in that segment reaches 3, then there will be at least 3
occurrences of red in that segment. As a consequence, if the pruning condition
in range [1, 3] is met, so that we have 2 variables bound to red in [1, 3], then
in total there will be at least 5 variables bound to red in the range [1, 8], so we
have to prune there as well. In other words, pruning in [1, 3] can only happen if
pruning in [1, 8] also happens; and since in both cases pruning means removing
the value red from all unbound variables, it becomes useless to track the upper
bound on [1, 3].

Conversely, if there are less than 3 variables bound to red in the segment [4, 8],
then pruning for the upper bound of range [1, 8] will happen strictly after pruning
happens in [1, 3] (if ever). Indeed, pruning in [1, 3] happens when 2 variables in
that segment are bound to red, and at that point less than 5 variables would be
bound to red in [1, 8].

For the leftmost segment, since there is no bound on the left, we simply
define the critical point as the bound on the right, in this case 2 for segment
[1, 3]. In this segment, reaching the critical point by having 2 variables bound
to red means reaching a pruning cases, so we have to remove the red value from
the last variable. If the number of variables bound to red is strictly under the
critical point, however, no pruning can be performed.
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From these remarks we can notice that no pruning will happen in a segment
until it reaches its critical point. All that is left is to precisely determine what
to do when it is reached. Note that we have taken upper bounds as an example,
but the critical point also makes sense for lower bounds: instead of counting the
number of variables bound to the value, count the number of variables that have
the value in their domain.

We can also observe a useful property of critical points: if we combine two
consecutive segments, the distance to the critical point in the merged segment
will be the sum of the distances to the critical points in the small segments.
Indeed, when summing the critical points, the middle bound will cancel itself
out; and the number of variables that are bound to a value or that have a value
in their domain is clearly the sum of those numbers in the segments that are
being merged.

4.3 Pruning Cases and Segment Merging

Let us now develop an updating strategy based on critical points. We split the
variables into contiguous disjoint segments as described above. In the leftmost
segment, pruning can happen only when its corresponding critical point has
been reached. For other segments, if their respective critical point have not been
reached, then no pruning can occur before some pruning happens on the left
bound. When the critical point of a segment is reached, we can consider two
different actions to perform, depending on whether the considered segment is
the leftmost one or not.

First, if the segment is the leftmost segment, we have to trigger pruning
in it. As none of the segment on its right has reached its critical point, no
pruning should occur on those. Once the pruning has been applied to the leftmost
segment, it is removed and its neighboring right segment, if it exists, is marked
as the leftmost segment. To achieve fast pruning, we propose to maintain a list of
unbound variables still containing a particular value in an array based reversible
double linked list. This allows value removal in constant time (as there is one
list per possible value). We refer to this list as the unbound list. When a critical
point is reached, the pruning on a segment will only be applied on variables in
the unbound list.

Second, if the segment is not the leftmost segment, then reaching the critical
point makes the bound on the left of the segment completely redundant in terms
of pruning with the bound on the right of the segment. Therefore, the bound on
the left can be forgotten, and this segment can be merged with its left neighboring
segment. Since distance to the critical point is additive, the larger segment will
not have reached its critical point either. To keep the propagator efficient in
terms of time complexity, we have to determine efficiently to which segment a
variable belongs. We also have to determine an efficient way to merge segments.
This problem can be solved easily using a union-find data structure [16].

Here is a description of the steps to perform when a variable x has been
bound to a value v and it is inside an upper bound segment:
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1. Remove the variable from the unbound list of v.
2. Find the segment containing the variable (find operation in our union-find

data-structure).
3. Increase the counter of assigned variables bound to v in the segment.
4. If the critical point of the segment has been reached and the segment is the

leftmost segment, remove v from all the variables in the segment. Then, if
there exists a right neighbor segment, define it as the leftmost segment.

5. If the critical point of the segment has been reached and the segment is not the
leftmost segment, merge the segment with its left neighbor segment (union
operation in our union-find data-structure).

Similarly, the following steps are performed when a value v has been removed
from a variable x and it is inside a lower bound segment:

1. Remove the variable from the unbound list of v.
2. Find the segment containing the variable (find operation in our union-find

data-structure).
3. Decrease the counter of variables which domain contains v in the segment.
4. If the counter has reached the critical point of the segment and it is the

leftmost segment, assign v to all the unbound variables in the segment. Then,
if there exists a right neighbor segment, define it as the leftmost segment.

5. If the counter has reached the critical point of the segment and it is not the
leftmost segment, merge the segment with its left neighbor segment (union
operation in our union-find data-structure).

4.4 Complexity

The complexity analysis assumes one has access to the Δ change of the variables
as for instance proposed in [1] for the OscaR solver also available in OR-Tools
[7], or the advisors of Gecode [6].

Let us define u as the number of updates, that is, the sum of the number
of value removals over the whole search. Note that when the constraint itself
removes a value from a variable, it counts in u as well. We will also use n, the
number of variables, and p, which as earlier is the number of distinct ranges
involved in the bounds. Looking at the steps performed when a value has been
removed/assigned, we can deduce the time complexity for a particular update.
Note that even though step 4 can take O(n) for one particular update to be
processed, the variables pruned also count as updates, so it remains amortized
constant time per update.

When we combine all of this, we discover that the total complexity is the num-
ber of updates multiplied by the cost of a union-find operation. One would think
that would give O(u·α(p)) since there will be at most p segments in each union-find
structure. However, as this is implemented in a CP framework, we are working with
a reversible union-find structure. As such, a particular update could be repeated
arbitrarily many times in different places in the search tree. This means we can-
not use the amortized O(α(p)) complexity of union-find operations, but rather the
O(log(p)) worst case. As a result, we obtain a time complexity in O(u log(p)) for
the whole search, or an amortized complexity of O(log(p)) per update.
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5 Results

We experiment the CP model on historical data from a tissue manufacturing
site in Belgium. This historical data contains the amount and type of paper rolls
produced from paper pulp over a couple of years. The historical electricity prices
on the EU market over the same period are also available. Combining those two
sources of data, we were able to produce instances as follows:

1. Randomly select two dates separated from a specified amount of days. This
defines the time window tw representing the instance.

2. Collect over tw the historical type of paper roll produced every hour.
3. Collect over tw the historical European electricity prices every hour.
4. Collect over tw, for every paper type i the contiguous periods at which i is

produced. Let [t1, t2] be such an interval where product type i is produced
continuously. A deadline is imposed to produce additionally at least t2−t1+1
items for date t2 + δ.

The shifting of deadlines by δ gives some flexibility to the model for optimization.
As we don’t have the historical stock constraints, we only impose over the whole
time window tw to produce the exact same type and numbers of rolls. We have
generated 4 sets of 10 instances for planning of respectively 4, 6, 8 and 11 days
(96, 144, 192 and 264 time periods).

In order to evaluate the efficiency of the new FWC procedure for nested gcc,
we compare several models including different propagation procedures. All these
models are based on the one described in Sect. 3 and only differ by the propa-
gation procedure for the nested gcc constraints. We propose to compare three
forward checking propagation procedures:

GCC-FWC. A decomposition of classic FWC-GCCs; one FWC-GCC for every
range [1, t] on which deadlines and stock constraints occur.

PreGCC-FWC. After a pre-computation of optimal bounds (as described in
Sect. 4), a decomposition of classic FWC-GCCs; one FWC-GCC for every
range [1, t] on which optimal bounds occur.

NestedGCC-FWC. After a pre-computation of optimal bounds, the new FWC
propagator described in Sect. 4.

These models and propagation procedures have all been implemented in the
open-source solver OscaR [8]. The propagation procedures are compared with
performance profiles as described in [17] to compare filtering algorithms using
GCC-FWC as baseline. Our measures are obtained by replaying a search tree
generated with the baseline approach. Performance profiles [2] are cumulative
distribution functions of a performance metric τ . In this paper, τ is the ratio
between the solution time (or number of backtracks) of a target approach (i.e.
PreGCC-FWC or NestedGCC-FWC) and the one the baseline (i.e. GCC-FWC).
For the resolution time metric, the function is defined as:

Fφi
(τ) =

1
|M|

∣∣∣∣

{
M ∈ M :

t(replay(st),Mi ∪ φi)
t(replay(st),M)

≤ τ

}∣∣∣∣
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where M is the set of considered instances while t(replay(st),M ∪ φi) and
t(replay(st),M) are the time (backtracks) required to replay the generated
search tree respectively with our different models and the baseline. The function
for the number of backtracks is similar. For this paper, the original search trees
have been generated with the baseline model using a binary first-fail heuristic.

Figure 8a and b respectively provide the profiles for number of backtracks and
resolution times for all 40 instances. In Fig. 8a, we can see that both approaches
using the pre-computation step have a much smaller number of backtracks. Note
that, as expected, once the new bounds have been computed, both PreGCC-
FWC and NestedGCC-FWC offer the same pruning. We can also see that for
about 35 % of the instances, these propagators were able to almost completely
cut the search tree explored by GCC-FWC. Finally, we can observe that there
are only a bit less than 15 % of the instances for which the propagators using
pre-computed bounds are not able to achieve more pruning than GCC-FWC.

In Fig. 8b, we can see the profiles of resolution times for the different prop-
agators. We can see that both PreGCC-FWC and NestedGCC-FWC are faster
than GCC-FWC for about 90 % of the instances. The reason is the stronger
filtering that is induced by the bounds-strengthening procedure. The 10 % of
instances for which both these variants are slower than GCC-FWC are those on
which they offer no additional pruning; and even in this case, they are at worst
less than 1.5 time slower than GCC-FWC. We can see however that resolution
times are similar for PreGCC-FWC and NestedGCC-FWC. After profiling the
application, we have seen that the GCC constraints only take a small fraction
of the resolution time on this problem (less than 2 %). Also the density of the
number deadlines is not very large. This problem is thus not a good candidate to
observe speedups with the more advanced FWC algorithm. We have tested arti-
ficial problems (not reported for space reason) with a larger number of deadlines.
We observed a speedup between 2 to 3 times for the PreGCC-FWC.

Fig. 8. Performance profiles of nested gcc variants
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5.1 Energy Consumption Minimization with LNS

This section aims at showing the potential improvement brought by our model
over historical production plans. An LNS is used with our CP model from Sect. 3
over the historical data and we compare the reductions in terms of cost. The
search strategy used is Conflict Ordering Search [3]. The LNS setting is the
following: at each iteration, we select 80 % of possible values (e.g. paper types).
Variables associated to these 80 % values are then relaxed. This is done to relax
the production plan except some blocks of production over some specific paper
types. The search is stopped if one of these two conditions is met:

1. 180 s have elapsed since the beginning of the restart.
2. 200 relaxations have been performed (with a maximum of 1000 backtracks).

Table 1 shows the ratio of objectives (initial/optimized value) obtained. We can
see that the cost of transitions is on average significantly reduced. However, the
variance over this objective ratio is high: the reduction of transition cost is really
important on some instances but it decreases less on other instances. The ratio
of the energy cost however has a small variance. On most of the instances, LNS
is able to reduce energy costs by around 22.5 %. These results are promising but
somewhat optimistic since it relies on a perfect knowledge of electricity future
prices. Since forecasts can by definition be wrong, the gain could be reduced in
practice.

Table 1. Ratio of historical and optimized objective values (historical/optimized).

Global Energy Transition

Average 6.40 1.29 56.14

Variance 69.46 0.10 84, 211.22

6 Future work

It would be interesting to test the benefits of the bound tightening for a decom-
position of nested gcc with Bound Consistent GCC [10]. As future work we plan
to use variable objective large neighborhood search [12] to obtain a better prun-
ing from our two terms composing the objective or to compute a Pareto front
using a multi-objective large neighborhood search [13]. The CP model could also
be extended with stocking costs computations [5] since it is not desirable to pro-
duce too early before the deadlines. We also plan to couple the paper machine
scheduling problem studied in this paper with the batch scheduling problem
happening just before in the production process. This would allow an integrated
optimization of the whole production. Finally we would like to test the electricity
price forecasts of the Enertop module of N-SIDE2 to obtain a better estimate of
the real energy gain. It was not possible to do it in this work. It would require
to feed the forecast module with external features (weather forecast, etc.) that
we don’t have for the historical data.
2 http://energy.n-side.com/enertop-energy-flexibility-optimization/.

http://energy.n-side.com/enertop-energy-flexibility-optimization/
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7 Conclusion

In this paper we described the problem of reducing energy costs in paper tissue
production. To tackle this problem, we propose to reorganize a large part of the
manufacturing process: the production of paper rolls from paper pulp. According
to forecasts of electricity prices, paper rolls whose production require a larger
amount of energy will be produced when prices are low. On the opposite, paper
rolls whose production require a smaller amount of energy will be produced when
prices are high. The problem is subject to many constraints; an important one is
the order book that translates into hard production deadlines. To represent the
problem, we propose a CP model including all the constraints. This model will
be linked with other CP models corresponding to other steps of the production
workflow. The deadline and stock constraints of the problem are expressed with
nested gccs. As the model will be solved with an LNS framework, it has to be
scalable. We propose a new FWC propagation procedure for the nested gcc.
This new propagation procedure comports two main step. First, an optimal
and minimal set of bounds is computed. This new set of bounds allow us to
achieve additional pruning that wouldn’t be achieved with initial bounds. Then,
we propose a global FWC propagation procedure based on these bounds which
has an amortized time complexity in O(log(p)) (where p is the number of ranges
considered). The performances of our new propagation procedure was evaluated
on instances generated from historical data. The preprocessing step tightening
the cardinality bounds brought significant pruning for many instances.
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Abstract. Various missions carried out by Unmanned Aerial Vehicles
(UAVs) are concerned with permanent monitoring of a predefined set
of ground targets under relative deadline constraints, which means that
there is an upper bound on the time between two consecutive scans of
that target. The targets have to be revisited ‘indefinitely’ while satisfying
these constraints. Our goal is to minimize the number of UAVs required
for satisfying the timing constraints. The solution to this problem is given
in the form of cyclic (synchronized) routes that jointly satisfy the tim-
ing constraints. We develop lower- and upper-bounds on the number of
required UAVs, show a reduction of the problem to a Boolean combina-
tion of ‘difference constraints’ (constraints of the form x − y ≥ c where
x, y ∈ R and c is a constant), and present numerical results based on our
experiments with several hundred randomly generated problems.

1 Introduction

Many defense- and civilian-related tasks targeted by Unmanned Aerial Vehicles
(UAVs) are concerned with permanent monitoring of a predefined set of ground
targets under relative deadline constraints, which means that there is an upper
bound on the time between two consecutive scans of that target. The flight
time between the targets and the time it takes to scan each target is given as
part of the problem input. The targets have to be revisited ‘indefinitely’, then,
while satisfying all these constraints. It is possible that more than one UAV is
necessary in order to satisfy all the constraints, and our goal is to minimize this
number. We term this problem Cyclic Routing of UAVs, or CR-UAV for short.
The solution to this problem is given in the form of cyclic (synchronized) routes
that together satisfy the timing constraints. This problem first appeared in our
own technical report [19], and was recently shown to be Pspace-complete by
Ho and Ouaknine [16], which implies that there is no polynomial bound on the
solution route (such a bound would imply membership in NP). Ho shows in his
thesis [15] a remarkable example, based on results in number theory, that only
has an exponentially-long solution.

Relative deadlines may be related to the nature of the target and the speed in
which the client needs to react to a particular scenario. One may imagine a long
border patrolled by UAVs, where certain sensitive locations are associated with
a relative deadline that is defined by the speed in which ground forces can react
to an event detected by the UAV operator; or a situation in which a military
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 125–141, 2016.
DOI: 10.1007/978-3-319-33954-2 10
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monitors enemy gatherings, attempting to detect various changes when they
occur. Civilian applications may include monitoring of facilities and monitoring
of forests for fire. In each such application the relative deadline is calculated
according to the relative value of shortening the time to react versus the cost of
additional UAVs.1

The tasks discussed above are (seemingly endless) routines that can be solved
with a cyclic plan. Only rarely it is necessary to deviate from such a plan. Loading
preplanned flight routes are supported by modern UAV systems, but no one as
far as we know used this capability for uploading optimal cyclic routes of fleets of
UAVs, rather it is used for uploading ad-hoc flight plans. Automation of UAVs in
various levels is an urgent need since the market, both the defense and civilian-
related, is growing rapidly given the major progress in their capabilities and
proven success in the last decade. As indicated in [2]: “The field of air-vehicle
autonomy is a recently emerging field, whose economics is largely driven by the
military to develop battle-ready technology. Compared to the manufacturing of
UAV flight hardware, the market for autonomy technology is fairly immature
and undeveloped. Because of this, autonomy has been and may continue to be
the bottleneck for future UAV developments, and the overall value and rate of
expansion of the future UAV market could be largely driven by advances to be
made in the field of autonomy”. Later in the same article it is pointed out
that one of the categories of automation is “determining an optimal path for
vehicle to go while meeting certain objectives and mission constraints, such as
obstacles or fuel requirements”. Somewhat related, concerning a review of the
Pentagon for the 2011 budget it was noted in CNN that: “The review also stresses
learning better and more efficient ways to use the drones by improving operating
effectiveness and using new technologies” [8].

In the next section we formally define the CR-UAV problem. In Sects. 3 and 4
we prove respectively lower- and upper-bounds on the number of required UAVs.
In Sect. 5 we propose a constraints model. We identify the set of constraints as
belonging to the first-order theory of difference constraints [9,17], namely a
Boolean combination of Boolean variables and constraints of the form x − y ≤ c
where x, y ∈ R and c is a constant, and explain how they can be solved naturally
with SMT (Satisfiability Modulo Theory) solvers [17], which we will describe in
Sect. 6. Our empirical evaluation of this route is given in Sect. 6. We delay our
discussion of related work to Sect. 7, because in order to be able to emphasize
the differences between this and other problems that appear in the literature we
first need to define it formally and discuss its complexity.

2 A Formal Definition of the CR-UAV Problem

Let V be the set of target areas.

1 The problem was given to us by an industrial partner that develops software for the
UAV industry. It has not yet materialized into a product.



Cyclic Routing of Unmanned Aerial Vehicles 127

2.1 Assumptions

We make several assumptions:

1. When the solution includes more than one UAV, each UAV flies in a different
altitude. This allows us to ignore the issue of intersecting routes that may
otherwise lead to collisions.

2. Scanning an area v ∈ V can be done from any point in v.
3. For each pair of targets v, v′ ∈ V , the flight time between v and v′ is constant.

Whereas in reality this is not precisely true because of wind etc., we expect the
input figures to include a certain slack to accommodate for such fluctuations.
Hence, we can assume that the flight time between areas is given to us as a
matrix of constants.2

4. For each v ∈ V , the scanning time is large enough to allow any route within
v, including turns. This simplifies the problem in two ways:
– Since this assumption permits us to enter and leave the target area from

any location, we can require the flight time figures to refer to the shortest
routes between the source and target areas;

– We can represent each target area v as a point. Hence v is a vertex.
5. The input data (e.g., the relative deadlines and the flight times) contains only

integers or, equivalently, rationals. Clearly irrational flight times or relative
deadlines are irrelevant in practice.

Since each target can be represented as a point, it is clear that we can view
the CR-UAV problem as a graph problem. More specifically, it is a weighted,
directed graph, with annotations at the vertices. The vertices are the targets
of V , the weights on the arcs are the flight times and the annotations on the
vertices are the relative deadlines. This view ignores the scanning time, but as
we will show in Sect. 2.2, these can be integrated in the flight times.

2.2 Problem Inputs

In the rest of the article we refer to the elements of V not only as targets, but
also as unique indices. Formally this duality can be avoided by defining a 1-to-1
function from a target area to an index, but we avoid it in order to keep the
notation simple. We can now define the input to the CR-UAV problem:

1. Scanning time: An array ST of size |V |, such that for every v ∈ V , ST [v]
is the scanning time of v.

2. Flight time: A |V | × |V | matrix FT , such that for every pair v, v′ ∈ V ,
FT [v, v′] is the Flying Time between v and v′ (recall that by our assumption
in Sect. 2.1, the flight time refers to the closest points in v, v′).

3. Relative deadline: An array RD of size |V |, such that for every v ∈ V ,
RD[v] is the maximum time allowed between consecutive scans of v.

2 This matrix is typically symmetric, but we do not pose this as an assumption since
our suggested solutions do not rely on this fact.
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We assume that for each target v, FT [v, v] = 1. In the realm of our assumption
that the input data is integral (see assumption #5), this does not impose any
constraint on the solutions, but simplifies the modeling. The proof of this fact
is given in Chap. 4 of [13].

Preprocessing of the Input. As a preprocessing step, we add the scanning-
time to the flight time as follows. For each entry FT [v, v′] such that v �= v′, we
assign FT [v, v′]+0.5ST [v]+0.5ST [v′]. Moving the ‘cost’ from the vertices to the
edges simplifies the modeling later on and allows us to discard ST altogether.
The following example demonstrates this transformation.

d

4

2

5 2

6

4

20 12

40 20

a b

c

Fig. 1. As before numbers adjacent to vertices represent relative deadlines, and num-
bers on edges represent flight-times.

Example 1. Consider the following input, which is also depicted graphically in
Fig. 1.

FT =

⎛

⎜⎜⎝

1 4 2 5
4 1 2 6
2 2 1 4
5 6 4 1

⎞

⎟⎟⎠ ST = [2, 4, 6, 8] RD = [20, 12, 40, 20]

After the transformation, the FT matrix is: FT =

⎛

⎜⎜⎝

1 7 6 10
7 1 7 12
6 7 1 11
10 12 11 1

⎞

⎟⎟⎠ .

For example, we added 3 to FT [1, 2] because this is half of (2 + 4), the
accumulated scanning time of vertices a and b. ��

The time it takes to complete a cyclic route is equivalent before and after the
transformation. For example, in Example 1 the cyclic route a,b,c takes (beginning
from a) 4 + 4 + 2 + 6 + 2 + 2 = 20 time units (note that this includes scanning
time of all three target areas). Using the new matrix, the overall time is the
same: 7 + 7 + 6 = 20.

2.3 Objective

The objective is to find the minimal number n of UAVs and respective cyclic
routes for each UAV, that satisfy the constraints.
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2.4 Examples

Some example problems appear in Fig. 2. The numbers near the vertices are the
relative deadlines, and the numbers near the edges are flight times. Since here
the flight time in both directions is identical, the graphs are undirected. Assume
that these problems have already been preprocessed as explained above, and
hence the scanning time is ignored. Additional information about the solutions
appear in the caption of the figure. Note that:

– in (i), there is no solution with one UAV following a simple cycle.
– in (ii), there is no solution with two UAVs starting each at a vertex.
– in (iii), there is no solution with two UAVs having non-intersecting routes.

a

b

c
5

55

20 20

10

1

a

b

c
2

22

3 3

3

1

10

a b c
5

10 5
5

10

(i () ii () iii)

Fig. 2. Three examples of the CR-UAV problem (top), and possible solutions for them
(bottom). The numbers above the vertices are the relative deadlines, and the numbers
near the edges are flight times. Black circles denote UAV locations. In (i) the single
UAV’s route repeats a-b-c-b-... . In (ii) both UAVs take the same route, flying in the
same direction (e.g., clockwise), where one of them starts in the middle of the distance
between a and c. In (iii) the two UAVs have different routes (denoted by dotted and
dashed lines, respectively) which intersect at b.

3 A Lower-Bound on the Number of UAVs

Let U denote the set of UAVs required for a solution. We now show a lower
bound on |U |, the size of U .

We define the following notation. For a target v ∈ V , let

FTmin(v) = minv̂∈V
v̂ �=v

{FT [v, v̂]}. (1)

In words, FTmin(v) denotes the minimal weight on any outgoing edge of v.
We use this notation to define:

Definition 1 (Isolated Vertex). A vertex v ∈ V is isolated if RD[v] ≤
FTmin(v).
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Intuitively, an isolated vertex is one that leaving it takes more time than its
relative dead-line. Let I ⊆ V denote the subset of isolated vertices.

We claim that:

Proposition 1. A lower bound on |U | is given by

|I| +

⎡

⎢⎢⎢

∑

v∈(V \I)

FTmin(v)
RD[v]

⎤

⎥⎥⎥
≤ |U |. (2)

Proof. Let T > 0 be the time interval corresponding to a solution, i.e., the time
it takes to complete one cycle.3 Let Tsl(v) ≤ T be the total time spent at vertex
v on self-loops. The figure below depicts such a time interval, where the boxes
symbolize the time in which some UAV (not necessarily the same one) looped
at v. The accumulated length of the boxes is Tsl(v).

v

T

The number of UAV entries to v during T must be at least
⌈

T − Tsl(v)
RD[v]

⌉
, (3)

and hence the total flight time dedicated to v must be at least
⌈

T − Tsl(v)
RD[v]

⌉
· FTmin(v) + Tsl(v). (4)

The overall flight time is given by aggregating (4) over V :

∑

v∈V

(⌈
T − Tsl(v)

RD[v]

⌉
· FTmin(v) + Tsl(v)

)
. (5)

This term must be lower than or equal to the total flight time of all UAVs
during T , which is given by T · |U |:

∑

v∈V

(⌈
T − Tsl(v)

RD[v]

⌉
· FTmin(v) + Tsl(v)

)
≤ T · |U |. (6)

We now separate the elements in the sum on the left according to whether
v ∈ I: ∑

v∈I

(⌈
T−Tsl(v)
RD[v]

⌉
· FTmin(v) + Tsl(v)

)
+

∑
v∈(V \I)

(⌈
T−Tsl(v)
RD[v]

⌉
· FTmin(v) + Tsl(v)

)
≤ T · |U |.

(7)

3 Note that T is a cycle of the whole system, not just of one of the UAVs. In other
words, the time it takes the system to return to the same state, where a state
includes the location of the UAVs, the remaining time at the vertices until the
relative deadlines expire, and finally the current target of each of the UAVs.
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Let us focus on the first summation: since this expression is monotone in
Tsl(v) and 0 ≤ Tsl(v) ≤ T whereas the other variables are fixed, it is not hard
to see that its value is in the range

[
∑

v∈I

T,
∑

v∈I

⌈
T

RD[v]

⌉
· FTmin(v)

]
. (8)

Hence the first sum in (7) can be lowered to T · |I|, which gives us

T · |I| +
∑

v∈(V \I)

(⌈
T − Tsl(v)

RD[v]

⌉
· FTmin(v) + Tsl(v)

)
≤ T · |U |. (9)

Furthermore, the second summation is larger than

∑

v∈(V \I)

T − Tsl(v)
RD[v]

· FTmin(v) + Tsl(v), (10)

(note that we removed the ceiling operator), which can be rewritten into

∑

v∈(V \I)

(
T · FTmin(v)

RD[v]
+ Tsl(v) ·

(
1 − FTmin(v)

RD[v]

))
. (11)

Note that by Definition 1, for every v ∈ (V \ I) it holds that FTmin(v)
RD[v] ≤ 1,

which implies that the right operand is positive and consequently (11) is larger
than ∑

v∈(V \I)

T · FTmin(v)
RD[v]

. (12)

Hence, based on (9) we have that

T · |I| +
∑

v∈(V \I)

T · FTmin(v)
RD[v]

≤ T · |U |. (13)

Dividing by T and rounding up gives us the lower bound on |U | as promised
in the proposition:

|I| +

⎡

⎢⎢⎢

∑

v∈(V \I)

FTmin(v)
RD[v]

⎤

⎥⎥⎥
≤ |U |. (14)

��

The Bound is Tight. Each of the three examples in Fig. 2 requires as many
UAVs as specified by (14). As an example, in the right-most problem the center
vertex is the only isolated vertex, and correspondingly the lower bound is given
by 1 +

⌈
( 5
10 + 5

10 )
⌉

= 2.
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Covering Isolated Vertices. Definition 1 may tempt the reader to think that
in an optimal solution a UAV should be dedicated to each isolated vertex. But
the following example proves that this is not the case. The distances on the
arcs approximately correspond to a metric. The center vertex (d), which has a
relative deadline of 4, is isolated. Dedicating a UAV to it would also force us to
dedicate a UAV for each of the other three vertices, hence requiring four UAVs
all together. The suggested solution on the right, on the other hand, is based on
three UAVS. Each of them cycles between a vertex on the perimeter and d, and
they arrive to d at equal gaps of 10

3 time-units.

4

8.66
10a

b

c

8.
66

8.66

10

10

5 5

5

d

4 An Upper Bound on the Number of UAVs

A trivial upper bound on the number of UAVs is |V |. A less trivial upper-bound
is given to us by considering the specific solution in which all UAVs follow the
same route, evenly spaced. The shortest path going through all points is given
to us by the traveling salesman problem (TSP). Let TSP , then, be a solution
to this problem. Then an upper bound on the number of UAVs is

|U | ≤ � TSP

RDmin
	, (15)

hence together we have a bound

|U | ≤ min(|V |, � TSP

RDmin
	). (16)

whereas an upper bound which in itself takes exponential time to solve seems
not very useful, we note that (a) the application domain (CR-UAVs) has a
relatively small number of targets to begin with, and (b) the famous result by
Christofides [7] gives us an approximation of up to 1.5 from optimal in P-time,
as long as the problem is defined over a metric, which is indeed true in our case.

Example 2. For the three examples in Fig. 2, the upper bounds are, left-to-right,
2,2 and 3. Note that for the middle graph (ii) the upper bound is also the lower
bound.

5 A Constraints Model

Our modeling of the CR-UAV problem can be depicted with an array of size SN ,
where each entry is called a slot. Each such slot represents a visit to a vertex.
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The value of SN represents the length of the route to be repeated indefinitely.
Since we do not know this length in advance, solution strategies based on this
model must search for a route starting with SN = |V | and then increase it
if a solution is not found. Since we do not have an upper-bound for SN , this
method is incomplete, i.e., it is not guaranteed to terminate. Practically, in our
experiments, we decide on some bound a-priori but if there is no solution up to
that bound then we cannot know if it is because there is no solution or because
the bound is not high enough.

We now show how the slots model can be used to solve the related satisfiabil-
ity problem for a single UAV, i.e., a solution implies that a single UAV satisfies
the input problem. In Sect. 5.2 we will extend it to multiple UAVs.

5.1 A Model for a Single UAV

The decision variables are:

– Oi,j : Boolean – for i ∈ [1..SN ], j ∈ [1..V ], Oi,j = 1 if and only if in slot i the
UAV entered vertex j.

– Si: Real – for i ∈ [1..n] denotes the entry time to slot i.

The constraints are:

– Exactly one vertex is associated with each slot:

∀i ∈ [1..SN ], v ∈ V. Oi,v =⇒
∧

v̂∈V
v̂ �=v

¬Oi,v̂. (17)

∀i ∈ [1..SN ].
∨

v∈V

Oi,v. (18)

– Defining the accumulated time:

∀i ∈ [1..SN ], v1 ∈ V, v2 ∈ V. Oi,v1∧Oi+1,v2 =⇒ Si+1 = Si+FT [v1, v2]. (19)

– Defining S1:

∀v1 ∈ V, v2 ∈ V. OSN,v1 ∧ O1,v2 =⇒ S1 = FT [v1, v2]. (20)

– Time between visits to the same vertex (see illustration in Fig. 3):

∀v ∈ V, i ∈ [1..SN ].( ∨i−1
l=1 Ol,v ∧ (Si − Sl ≤ RD[v])

)
∨ visited v in an earlier slot( ∨SN

l=i+1 Ol,v ∧ (Si + SSN − Sl ≤ RD[v])
)
∨ visited v in a later slot(

Oi,v ∧
∧SN

l=1,l �=i ¬Ol,v ∧ SSN ≤ RD[v]
)

visited v only in slot i.

(21)
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v

i l

a + b ≤ RD[v]
SlSi SSN0

a b

slot index:

entry time:

slot index:

entry time:

v

il

≤ RD[v]

Sl Si

Fig. 3. Demonstrating the two cases handled by the two middle lines of (21). For each
vertex v ∈ V and each slot i ∈ [1..SN ], one of three cases has to hold: either there is a
slot l, l < i, in which v is visited and the time from Sl to Si is less or equal to RD[v]
(top diagram), there is a slot l, l > i, in which v is visited and the time from Sl to
SSN added to the time from 0 to Si is less or equal to RD[v] (bottom diagram), or v
is visited only once in the cycle and SSN ≤ RD[v] (not shown).

5.2 Multiple UAVs

A generalization of the solution given in Sect. 5.1 to multiple UAVs solves indi-
rectly the primary objective as stated in Sect. 2.3, because one only needs to
gradually increase the number of UAVs until a solution is found. Recall that
there is always a solution with |V | UAVs, which means that this process is guar-
anteed to terminate. However, since the solution for a given number of UAVs is
incomplete, as explained in Sect. 5.1, then it is possible that our solution is not
optimal since the search with a lower number of UAVs was stopped prematurely.

In order to generalize the model to multiple UAVs, we require that at each
slot at least one UAV is reaching a new vertex, whereas other UAVs can be
between vertices. For that we define a new variable Au,i that holds the time to
destination i of UAV u. In contrast to the single UAV model, here a UAV u can
have a route which contains only one vertex where ∀i ∈ [1..SN ] : Au,i = 0.

Additional variables for the multiple UAVs model:

– ∀u ∈ U, i ∈ [1..SN ], v ∈ V. Ou,i,v Boolean: Ou,i,v = 1 ⇐⇒ in slot i UAV u
enters vertex v.

– ∀u ∈ U, i ∈ [1..SN ]. Au,i: Time left for UAV u to reach its new destination,
when at slot i.

The constraints are:

– At least one UAV should enter a vertex in each slot:

∀i ∈ [1..SN ].
∨

u∈U
v∈V

Ou,i,v. (22)
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– Each UAV can visit only one vertex at each slot:

∀u ∈ U, i ∈ [1..SN ], v ∈ V. Ou,i,v =⇒
∧

v̂∈{V \{v}}
¬Ou,i,v̂. (23)

– If a UAV u visits vertex v at time slot i then there is no other UAV û that
reaches its vertex v̂ before u visits v.

∀u ∈ U, i ∈ [2..SN ], v ∈ V, û ∈ U, û �= u.
Ou,i,v =⇒ Au,i−1 ≤ Aû,i−1.

(24)

– Same as above, for the first slot:

∀u ∈ U, v ∈ V, û ∈ U, û �= u. Ou,1,v =⇒ Au,SN ≤ Aû,SN . (25)

– S1 is non-negative (the values of other Si variables will be larger owing to the
constraints that follow):

S1 ≥ 0. (26)

– Si progression:
∀u ∈ U, i ∈ [2..SN ], v ∈ V.
Ou,i,v =⇒ Si = Si−1 + Au,i−1.

(27)

– Same, for the first slot:

∀u ∈ U, v ∈ V.
Ou,1,v =⇒ S1 = Au,SN .

(28)

– If a UAV visits v1 at slot i and v2 at slot j and does not visit any other vertex
in between, then the time to arrive at the destination should be set to the
flying time between v1 and v2:

∀u ∈ U, i ∈ [1..SN ], v ∈ V, î ∈ [i + 1..SN ], v̂ ∈ V.
(Ou,i,v ∧ Ou,̂i,v̂ ∧ (¬

∨
v2∈V

mid∈[i+1..̂i−1]

Ou,mid,v2)) =⇒ Au,i = FTv,v̂. (29)

– If a UAV visits v at slot i and v2 at slot j and does not visit any other vertex
after slot time j and before slot time i, then the arrival time should be set to
the flying time between v2 and v:

∀u ∈ U, i ∈ [1..SN ], v ∈ V, î ∈ [i + 1..SN ], v̂ ∈ V.
(Ou,i,v ∧ Ou,̂i,v̂ ∧ (¬

∨
v′∈V

mid∈[1..i−1]∪[̂i+1..SN ]

Ou,mid,v′)) =⇒ Au,̂i = FTv̂,v.

(30)
– If a UAV visits v at slot i, then for each UAV û, Aû,i is equal to the difference

between Aû,i−1 and Au,i−1:

∀u, û ∈ U, û �= u, i ∈ [2..SN ], v ∈ V.
Ou,i,v =⇒ Aû,i = Aû,i−1 − Au,i−1.

(31)
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– Same, for the first slot:

∀v ∈ V, u, û ∈ U, û �= u.
Ou,1,v =⇒ Aû,1 = Aû,SN − Au,SN .

(32)

– Time between visits to the same vertex:

∀v ∈ V, i ∈ [1..SN ].

(
∨i−1

l=1

(∨
u∈U Ou,l,v ∧ Si − Sl ≤ RD[v]

)
)∨ visited v in an earlier slot

(
∨SN

l=i+1

(∨
u∈U Ou,l,v ∧ Si + SSN − Sl ≤ RD[v]

)
)∨ visited v in a later slot

(
∨

u∈U Ou,i,v ∧
∧

û∈U

∧SN
l=1,l �=i ¬Oû,l,v ∧ SSN ≤ RD[v]) visited v only in slot i.

(33)

6 Experimental Results

To solve the mathematical model described in Sect. 5, we must bound the number
of slots a-priori. For the experiments we chose the bound

⌈
RDmax · |U |

FTmin

⌉
, (34)

that is, the longest relative deadline divided by the shortest flight time, multi-
plied by the number of UAVs, and rounded up. Recall that there is no guarantee
that this bound is sufficient, as explained in Sect. 5, which makes this method
incomplete.

Since the formulation of the problem includes a Boolean structure beyond
simple conjunctions, it is very natural to solve it with a Satisfiability Modulo
Theories (SMT) solver. Satisfiability Modulo Theories (SMT) [17] is an extension
of the classical propositional satisfiability problem to other decidable first-order
theories, i.e., in addition to propositional variables the formula can contain pred-
icates of some decidable theory T . For example, if T is linear arithmetic, then
a formula such as 2x + 3y > 5 ∨ ¬(3y − 5z ≥ 6) ∧ (x − y < z) is a T formula.
A standard framework to solve such formulas is called DPLL(T ). It combines a
propositional SAT solver (hence the name DPLL4), and a solver for a conjunc-
tion of T predicates, e.g., in the case of T being linear arithmetic that solver
can be based on Simplex. This combination is far better than ‘case splitting’
(transforming the formula to disjunction normal form), because it enjoys SAT’s
capabilities to prune large parts of the search space by applying learning (adding
constraints during the solution process, that block search paths that are known
to not contain a solution) and other techniques that are known to be very effec-
tive in dealing with propositional formulas. There are several dozen SMT solvers
and an annual competition between them called SMT-COMP. We experimented
with two such solvers, Yices [14] and Z3 [12]. We only report on the results of
Z3, however, because it completely dominates the results of Yices in terms of
run-time.

4 DPLL stands for the name of the authors in [10,11].
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Over- and Under- Approximations. It is obvious that given a CR-UAV
problem one can multiply all the relative deadlines and all the flight time by
any constant fraction γ, and as long as the resulting figures are integers the new
problem is isomorphic to the original one. We wanted to test, however, what
happens if multiplying by γ results in fractions, and then we round the result
in a way that guarantees either an over or under approximation (but not both).
Keeping the approximation single-sided enables us to know when the answer can
be trusted: with an overapproximating engine we only trust UNSAT answers,
and with an underapproximating model we only trust SAT answers. To produce
an overapproximating model we round up the relative deadlines, and round down
the flight time. To produce an underapproximating model we do the opposite.
The question is what is the price we pay in terms of correctness, and what is the
benefit in run time. The results below include answers to these two questions.

The Input Problems. We generated random input problems, with varying
topologies, flight times, relative deadlines and number of UAVs. More specifically
the benchmarks were constructed according to the following parameters:

– Number of vertices |V |: 4..7.
– Number of UAVs |U |: 1..3.
– Flight-time FT : calculated as if we are on a metric5, according to the following

six topologies:
1. Line – All vertices are ordered on a line with equal distance between

them.
2. One Group – One group of vertices, none of which is isolated.
3. Two Groups – All vertices are ordered in two groups where the groups

are far but the vertices within a group are near.
4. Three Groups – All vertices are ordered in three groups where the groups

are far but the vertices within a group are near.
5. Isolated location – All vertices are grouped together except for one which

is isolated (see Definition 1).
6. Cycle – All vertices are ordered in a cycle.

– Relative deadline RD: we tested the following variants:
1. ∀v ∈ V : RD[v] =

∑
v∈V FTmax(v).

2. ∀v ∈ V : RD[v] =
∑

v∈V FTmin(v).
3. ∀v ∈ V : RD[v] =

∑
v∈V (FTmax(v) + FTmin(v))/2.

4. ∀v ∈ V : RD[v] = FTmax(v).
5. ∀v ∈ V : RD[v] = FTmin(v).

where FTmax(v) = maxv̂∈V
v̂ �=v

{FT [v, v̂]}. In none of the test cases we used the

lower bound of Sect. 3 for early detection of the result.

5 This implies that there can be non-integral and even irrational figures. We rounded in
such cases the figures according to the overapproximation strategy explained above,
with γ = 1.
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This gave us 360 test-cases. From those we removed several trivial combinations
(like 4 vertices with 3 groups), which left us with 300 benchmarks. We also
generated over- and under-approximated versions of these problems as explained
above, with γ = 0.1, to give us a total of 900 runs. All benchmarks are available
from [1] for others to try.

Results. Our results show the following statistics:

– Over-approximation, with γ = 0.1: 0.3 % of SAT results are incorrect.
– Under-approximation, with γ = 0.1: 6.5 % of UNSAT results are incorrect.

(note that these statistics represent a property of the problem at hand with
respect to a given γ, and not of the solving algorithm). Table 1 summarizes our
results. The effect of approximation on run time is relatively small.

Table 1. Comparing the number of solved instances within a time limit of 10 min and
the average run-time (instances that were not solved within 10 min were considered as
solved in 10 min).

Method γ Z3 avg. run-time

Precise 578 26.8

Under 0.1 579 21.4

Over 0.1 580 24.9

7 Related Work

CR-UAV first appeared in our technical report [19] and thesis [13]. A problem
closely related to CR-UAV for a single UAV is that of planning a cyclic agent
patrol [4,5]. It tackles the problem of finding a route for a robot patrolling an
enclosed area. The relative deadlines are related to the time it takes an adversary
to break in, in specific vulnerable locations along the cyclic path. The goal defined
there is to find whether there exists a cyclic route for the patrolling agent such
that no break can go undetected. The solution given in the above reference is
wrong, however, since it relies on a wrong theorem claiming that there exists a
polynomial bound on the length of the (cyclic) path (which would imply NP-
completeness)6. CR-UAV has slightly different constraints and a different goal.
Whereas CR-UAV receives as input a full FT (flight-time) matrix, in the agent
patrol problem some of these paths can be blocked (modeling a scenario in
which the patrolling agent is restricted to a rail). Interestingly in [18] Fargeas
et al. consider a very similar problem (in the context of UAVs!) but prove NP-
completeness only for a bounded horizon.

6 A counterexample to their theorem is given in the appendix of http://arxiv.org/abs/
1411.2874.

http://arxiv.org/abs/1411.2874
http://arxiv.org/abs/1411.2874
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Since CR-UAV is Pspace-complete [16], any problem in NP is of course
irrelevant as a target for reduction. We leave for future research to check if
approximations of such problems can be lifted to the CR-UAV problem. Let us
nevertheless mention two seemingly related problems that are NP-complete, in
order to emphasize the differences:

– Deadline Traveling salesman Problem (DTSP) and TSP with time-window
(TSP-TW) [3] — Given a metric space on n nodes, with a start node r,
deadline D(v) for each vertex v, and a number k ≤ n, find a path starting at
r that visits k or more nodes by their deadlines. DTSP can be extended into
the TSP-TW problem in which each node v also has a release time R(v) and
the goal is to visit k nodes within their time-windows [R(v),D(v)]. In both
cases the fact that there is no requirement for repeated visits implies that the
resulting tour is polynomially bounded, which puts them in NP.

– Vehicle Routing Problem with Time Windows (VRP-TW) [6] — there are n
customers at n different points, to be served within a specified time window
by several vehicles limited in capacity from one depot. The goal is to minimize
the number of vehicles needed, such that each customer is reached within its
time window while obeying the capacity constraints. As in the case of DTSP,
it does not require repeated visits, and hence the length of the resulting tour
is polynomially bounded, which puts this problem in NP.

– Periodic Scheduling — The periodic (cyclic) scheduling problem can be
defined in various ways. In [20,21] events and activities are identically repeated
at a constant rate. The periodic activities within a given common period can
be considered as a “time window”, reflecting the relative position of pairs of
activities within the period. Each client i requests to be served for bi consec-
utive time slots with no more than ti time slots between them. The aim is
to construct a schedule that minimizes the gap between the required periods
and the actual scheduled ones. Suppose that we consider the decision prob-
lem of whether such a schedule is possible with a gap of 0. Still, there are
several notable differences from the CR-UAV problem: first, in CR-UAV we
are not restricted to one ‘server’ (UAV), whereas here there is only one and
the goal is to schedule its service. Even if we consider the CR-UAV problem
for a single UAV, there are still important differences: first, the flight-time in
the CR-UAV problem adds a constraint on the visits (service time), which
does not exist in periodic scheduling (this difference cannot be overcome by
simply adding the flight time to the service time, because, recall, the flight
time depends on the ordering of the targets in the route); second, and more
importantly, the bound bi implies, as in the previously mentioned problems,
a polynomial bound on the result, which puts the problem in NP.

A more extensive literature review, including some problems related to UAVs,
can be found, e.g., in [13,18].
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8 Conclusions

We presented a problem of finding the minimal number of UAVs that are required
in order to satisfy relative-deadline constraints. We showed a lower- and an
upper-bound, a modeling of the problem for both a single and multiple UAVs,
and presented our empirical evaluation.
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Abstract. Parallel Constraint Programming (CP) solvers typically split
the search space in disjoint subspaces, and run solvers independently on
these. This may induce significant overhead when solving optimization
problems. Parallel Boolean Satisfiability (SAT) solvers typically run a
portfolio of solvers, all solving the same problem but sharing some lim-
ited learnt clause information. In this paper we consider parallelizing a
lazy clause generation (LCG) constraint programming solver, which is
a constraint programming solver with learning. Since it is both a kind
of CP solver and a kind of SAT solver it is not clear which approach to
parallelization is likely to be most effective. We give examples of very
different kinds of optimization problems we wish to parallelize and show
that a hybrid approach to parallelization can provide a robust and high
performing parallel LCG solver.

1 Introduction

Techniques for verification and optimization such as SAT, CP, SMT and MIP
have greatly improved in the last decades, and are nowadays used in a wide
range of applications. Besides algorithmic improvements, more and more pow-
erful hardware has become available, giving an additional boost on sequential
performance. But the time of this free lunch seems to be over, as clock rates and
instructions per cycle are hardly improving anymore. In order to gain speedups
from today’s hardware, algorithms should be able to run in parallel. In this
paper, we consider the parallelization of the LCG solver Chuffed [5] for CP-
based optimization problems. Chuffed combines CP techniques such as search
and strong propagation with techniques developed for SAT solving such as clause
learning, restarts and activity based search.

T. Ehlers—Supported by a fellowship within the FITweltweit program of the German
Academic Exchange Service (DAAD).
P.J. Stuckey—NICTA is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 142–158, 2016.
DOI: 10.1007/978-3-319-33954-2 11



Parallelizing Constraint Programming with Learning 143

Whereas parallelization of CP solvers is usually based on some kind of search
space splitting, parallelization of SAT solvers is usually based on some form of
portfolio approach. Hence an interesting question arises for LCG solvers: should
they use search space splitting or portfolio methods for parallelizing search? In
this paper we investigate this question.

The contributions of this paper are

1. An analysis of the runtime-behavior of sequential solvers on optimization
problems, showing extremely different characteristics of different problems.

2. An optimistic branching technique which allows for finding good solutions
much earlier, which prevents superfluous work in search space splitting.

3. A comparison of search space splitting and work stealing, the common app-
roach used in parallel CP, with a portfolio CP solver using techniques com-
monly used in parallel SAT.

4. A scalable, parallel LCG solver which allows for significant speedups on a
wide range of benchmarks. Compared to the sequential solver, superlinear
speedup is achieved in finding good solutions.

The structure of the paper is as follows. After discussing related work in
Sect. 2 and presenting the architecture of our parallel solver (Sect. 3), we then
examine the use of sequential optimization on two very different optimization
problems in Sect. 4 and show the impact of basic approaches to parallelizing
their solving. In Sects. 5 and 6, we present results on a suite of benchmarks
for parallelizing using search space splitting implemented by work stealing, and
an approach based on SAT-like portfolio solving. We then consider the effect
of splitting the problem by objective value in Sect. 7. After combining these
approaches to a stable and scalable solver in Sect. 8, we conclude in Sect. 9.

2 Related Work

The most common approach for solving CSP problems is to combine search
with propagation [27]. The search is implemented as backtracking, and at each
node of the search tree propagators are invoked to reduce variable domains with
respect to the decisions made during branching. In case an inconsistent state
is detected, i.e. some variable can take no possible value, the solver backtracks,
and tries another variable assignment. Implementing fast and scalable parallel
algorithms is noted as one of the large challenges in optimization [9].

2.1 Parallel CP

Parallel algorithms for CP typically split the search space, and run solver threads
on disjoint subspaces [11]. This approach has been studied for several decades,
and it is known that superlinear speedups are possible in some cases [14,22].
Most solvers use work stealing mechanisms to keep all solver threads busy [26],
and significant speedups are reported for up to 512 threads [15]. Recent research
tried to reduce the communication overhead in order to improve speedups for
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massively-parallel search. In [17], the authors suggest to split the search space
by computing the discrepancy from a given search strategy. Thus, solver threads
only need to know about their index to compute their chunk of the search space.
Unfortunately, they report results for only a small number of experiments, and
cannot prove optimality for them. Another approach is to split the search space
before starting the search, and storing chunks of work in a master process [23,24].

If a good search strategy for a specific problem is known, this may be used
to focus the parallel search on promising parts of the search space [6], and gain
significant speedups.

It is known that some solvers are faster than others, depending on the prob-
lem instance. This fact was used in [2] to build a sequential portfolio, and later to
create a parallel portfolio solver [1]. Significant speedups could be gained using
a small number of threads, but it is not clear how scalable this approach is.

2.2 Parallel SAT

The satisfiability problem of propositional logic (SAT) can be seen as a special
case of CP with binary variables, and constraints given in form of disjunctions,
called clauses. It is typically solved using conflict driven clause learning (CDCL),
an extension of the well-known DPLL algorithms, together with agile restart-
ing strategies and activity based search [18]. These techniques allow for reusing
information about parts of the search space which were proven infeasible, and
restarting the search to emphasize important variables as well as recovering from
bad decisions made close to the root of the search tree. Parallel algorithms for
SAT either split the search space, or run different solver configurations in paral-
lel [3]. The latter approach, typically referred to as portfolio approach, has proven
very successful especially on structured instances. Recent research focusses on
the exchange of learnt clauses between solver threads [7,12]. Unfortunately, the
scalability of these solvers seems to be limited due to the sequential structure of
resolution proofs [13].

2.3 Lazy Clause Generation

Lazy Clause Generation (LCG) [8] combines techniques from CP and SAT to
solve Constraint Satisfaction Problems. If an inconsistency is detected during
search, the reasons for this inconsistency are compiled into a clause, and added
to the set of constraints. Thus, it is possible to reuse this knowledge in other parts
of the search tree, which is extremely helpful if these clauses are good explana-
tions for the failed search [28]. The LCG-based solver Chuffed1 [5] addition-
ally supports the Variable State Independent Decaying Sum (VSIDS) branching
heuristic that is commonly used in SAT solvers. This heuristic branches on vari-
ables first that have recently been involved in conflicts. Chuffed can switch
between activity based search and programmed search during runtime.

1 https://github.com/geoffchu/chuffed.

https://github.com/geoffchu/chuffed
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3 Preliminaries

A Constraint Satisfaction Problem (CSP) problem φ is given by a triple
(V,D,C), where V = (v1, . . . , vn) = vars(φ) is a set of n variables on finite
domains D = (D1, . . . , Dn), and C is a set of predicates c : D �→ {⊥,�}. We will
assume integer variables, i.e. v ∈ [lb(v), ub(v)] ∩ Z for all variables v. The set of
feasible solutions is given by S = {x ∈ D | ∀c ∈ C.c(x)}. A Constraint Optimiza-
tion Problem (COP) is a tuple (V,D,C, z) consisting of a CSP (V,D,C) and
a variable z that takes the objective value. Throughout this paper we will only
consider minimization problems, as maximization can be expressed by negating
the expression that z is equated to. When adding further constraints, we will
write φ|c = (V,D,C ∪ {c}).

3.1 Parallel Solver Architecture

We have developed a parallel version of Chuffed [5] which is used in all experi-
ments. Chuffed is a state-of-the-art lazy clause generation solver [20]. It comes
with a Master-Slave-infrastructure [6], where communication is performed as
message passing via MPI. When gaining parallelism by search space splitting,
the master process sends conjunctions of literals, called jobs, to the slaves. We
extended this scheme as follows to gain a more flexible solver.

– Portfolio-Solving, as in parallel SAT solving, can be achieved by sending
empty jobs to each slave process, which allows them to search the whole
search space. Diversification is gained by initializing the VSIDS-activities with
random values.

– Probing on variable values: The master process can send jobs of the form
[x ◦ c] to the slave processes, where x ∈ vars(φ), c ∈ Z, and ◦ ∈ {=, �=,≤, <,
>,≥}. This can, e.g., be used for guessing bounds on the objective value.

– Learnt clauses are sent to, and forwarded by the master process, if their
length is sufficiently small. The threshold on the length can be adjusted
dynamically to both maintain a sufficient communication between solvers,
and prevent network congestion.

– Adaptive size of clause database: While Chuffed has a fixed bound on the
size of its clause database, we allow for a dynamic amount of received clauses.
Whenever the learnt clause database is cleaned, we delete all received clauses
with low activity.

– Hybrid approaches: It is possible to mix the modi operandi.

4 Optimization

As CP typically deals with decision problems, CP-based optimization is built
around decision procedures. Algorithm 1 shows how, given a decision procedure
Decide, an optimization algorithm can use this procedure to find an optimum
solution. Running this algorithm will result in a sequence of solver calls, of which
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Algorithm 1. Optimize CP
function Optimize(φ, z, lb, ub)

res ← (⊥, ∞)
while (ub ≥ lb)

(sat, x) ← Decide(φ|z≤ub)
if (sat) res ← (�, z), ub ← z − 1
else break

return res

the last one returns UNSAT, proving that either no solution exists, or that the
last solution found is optimal. In the remainder of this paper, we refer to the last
call as the “proving optimality” part, and all other calls as the “search” part of
the overall run.

In this section, we examine the behavior of these algorithms on two examples,
both for the sequential and parallel case. The examples, cargo2 and queens3

were chosen from the MiniZinc Challenges 2013 and 2014, respectively. In all
these experiments, the free search of Chuffed was used: On every restart,
Chuffed flips between programmed search and VSIDS (restart flip from [25]).

4.1 Parallel Optimization

We begin with the näıve approach, and simply reuse a parallel solver for opti-
mization problems. Whenever one of the parallel solvers finds a solution, this is
reported to the master. Furthermore, if the objective value of this solution is c, a
unit clause containing the literal [z < c] is sent to all solvers for stronger pruning.
We parallelized solving using a portfolio approach, and using search space split-
ting with work stealing [6]. For the portfolio approach, the search is diversified
by initializing variable activities with random values, based on different seeds
for each solver thread, as is common in SAT portfolios.

Figure 1 shows the development of the objective value during the solver run
on the cargo benchmark for p ∈ {2, 8, 64} processes. Note that we re-use the
master-slave architecture for this experiment, thus, one of these processes denotes
the master. The speed-up we observe is very limited: 2.2 for 7 worker processes,
and 4.2 for 63 workers. The reason for this is simple: All of the parallel processes
find many solutions independently of each other, but they hardly benefit from
new bounds found by other solvers. Similar results can be observed when gaining
parallelism by splitting the search space, c.f. Fig. 2. Here, a lot of solutions are
found in disjoint parts of the search space. Exchanging bounds on the objective
among the worker threads leads to small improvements of the running time, but
the overall speedup is disappointing (Fig. 3).

Our second running example, queens, shows a different behavior. Here, the
running time is dominated by proving optimality, which is proving unsatisfiability.
2 http://www.minizinc.org/challenge2013/probs/cargo/challenge04 1s 626.dzn.
3 http://www.minizinc.org/challenge2014/probs/mqueens/n12.dzn.

http://www.minizinc.org/challenge2013/probs/cargo/challenge04_1s_626.dzn
http://www.minizinc.org/challenge2014/probs/mqueens/n12.dzn
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Fig. 1. cargo: results for portfolio
parallel solving
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Fig. 2. cargo: results for search space
splitting parallel solving
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Fig. 3. queens: run times.
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Fig. 4. queens: scaling behavior of
Gecode

The portfolio solver shows some, but very limited speedup. Apparently, there
is no small optimality proof here, and exchanging clauses among the solvers
is of limited success due to the sequential structure of resolution proofs [13].
Search space splitting is much more promising here, with a speedup of 6.9 when
using 7 workers threads instead of 1. Unfortunately, using more cores yields
only limited additional speedup. Almost linear speedups can also be observed
when running the parallel version of the CP solver Gecode on this benchmark,
c.f. Fig. 4. Gecode also uses search space splitting to gain parallelism, and work
stealing for load balancing.

We summarize these experiments with two main observations. First, search
space splitting is superior to portfolio solving in terms of proving optimality.
When run on many cores, it is crucial to split the work space in equally hard
chunks to benefit from more parallel threads. Second, both approaches scale
poorly when many suboptimal solutions can be found.

4.2 Sequential Optimization

To gain a better understanding of the results we found in the parallel setting, we
discuss results obtained by running the sequential solver. For the two benchmarks
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Fig. 6. queens: slow proof of optimality.

cargo and queens, we run the sequential version of Chuffed, and periodically
record the best objective value found so far. The results for cargo can be seen
in Fig. 5: starting with a value of 3, 757, the objective value is improved steadily,
and drops to the optimum of 714 after 1, 453 s. In this case, the solver spends the
vast majority of the running time improving the solution, and finds 2, 654 dif-
ferent solutions before proving optimality. Interestingly, the improvement speed
is roughly constant during the whole run, and the final call to the decision pro-
cedure, which proves optimality, is not harder than previous calls. For queens,
we observe a totally different behavior, c.f. Fig. 6. An optimum solution is found
within 4 s, whereas the proof of optimality takes another 151 s.

This behavior is reflected by the difficulty of the respective decision prob-
lems. For both benchmarks, we added different bounds on the objective, and
aborted the solver after finding the first solution. For cargo (Fig. 7), we ran this
experiments for objective values in the interval [700, 1000], i.e. for values close
to the optimum objective value. The maximum running time observed was 30 s,
and average running times of 3 s. A very interesting result of this experiment
is that the running time close to the optimum solution is not higher than run-
ning times for higher bounds. So if we knew a good bound on the objective in
advance, we might run the solver with a tightened bound, and find an optimal
solution much faster. The queens benchmark shows a totally different behavior,
c.f. Fig. 8. Here, the proof of optimality is hard, whereas both finding solutions
and proving bounds tighter than the optimal value is extremely fast.

5 Search Space Splitting

As shown in Sect. 4, parallelisation by splitting the search space in disjoint parts
allows for very good speedups, especially for proving optimality. Unfortunately,
this approach comes with some drawbacks. After finding a solution, a sequential
algorithm will continue its search, using a tighter bound on the objective value
for further pruning. In parallel, worker threads may therefore search parts of the
search space that would not be searched by a sequential algorithm, which may
dramatically decrease the efficiency, as mentioned in [6].
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In order to keep waiting times of worker threads low, it is common to store
some jobs, i.e. chunks of the search space, at the master process. Whenever a
worker finishes working on its part of the search space, a new chunk of work can
be provided without waiting for another worker to provide work. In the worst
case, this can lead to situations in which none of the workers searches the part of
the search space containing the optimum solution. The decision how to split the
search space is very important for gaining some benefit from this approach: Let
φ = (V,D,C) denote an unsatisfiable CSP, and C ′ ⊂ C a minimum unsatisfiable
core, i.e. a set of constraints such that (V,D,C ′) is already unsatisfiable. Splitting
on a variable that does not occur in C ′ will then be less likely to speed up the
parallel solver. To overcome this problem, VSIDS activities can be used to choose
variables for splitting the search space. As VSIDS focusses on variables that were
involved in conflicts, this prevents branching on uninteresting variables. In our
implementation, the master sends the empty job to one worker, which starts to
work on this job. Whenever work has to be stolen, the master sends a request
to one of the slaves, which creates new jobs according to its topmost branching
decisions.

Example 1. Assume a worker is working on a job given as x1 ∧ x2, and its
topmost branching decisions are x3 and x4. If asked to provide two new jobs, it
fixes its new job to x1 ∧x2 ∧ x3 ∧ x4, and reports this to the master. In turn, the
master creates new jobs x1 ∧ x2 ∧ x3 ∧ x̄4 and x1 ∧ x2 ∧ x̄3.

LCG solvers can reuse information about failed search to further prune the
search space. Thus, the time required by a LCG solver to refute a part of
the search space depends on previous search. If parallelism is gained by split-
ting the search space and running LCG solvers on disjoint parts of it, this may
decrease the achievable speedup: whenever a worker receives a new chunk of the
work space, it needs to learn clauses which are relevant to this new subspace,
which might be the same as clauses for other chunks of the work space. Figure 9
shows the total number of conflicts occurring while solving queens. Here, the
number of conflicts increases with additional processes. To reduce this burden,
we exchange learnt clauses between solvers.
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Unless something different is stated for single experiments, this solver
exchanges bounds on the objective, and short clauses. Short learnt clauses are
exchanged between the solver processes. The bound on their size is adjusted
dynamically such that approximately 10% of the clauses in the database are
received from other solvers, which gave good results in our tests. As in [12], we
check the number of imported clauses regularly, and adjust the threshold on
clause size to exchange if too many or too few clauses were received.

To evaluate parallelization approaches we created a set of 110 different bench-
marks, suite, taken from MiniZinc challenges for 2013 and 2014.4 We used a
time limit of 5 min. We denote by SSS our search space splitting parallel solver.
Figure 10 shows the scaling behavior for 2 to 64 processes. Significant speedups
can be observed for up to 32 parallel processes. In Fig. 11, we compare the results
for a parallel solver on 64 cores with the ones obtained using the sequential solver.
The parallel solver clearly outperforms the sequential version. Furthermore, 12
more instances can be solved to optimality within 5 min.

In Fig. 12, we compare the running times with and without exchanging
bounds on the objective between the solver processes. In some cases, e.g. if
a good solutions can be found by all of the parallel solvers, there is only a small
difference, whereas there is a huge difference for other instances, and 3 more
benchmarks can be solved to optimality. In other words, it is crucial for the
performance of a parallel LCG solver to find and communicate good bounds on
the objective value as fast as possible.

Note that the benchmarks which timed out do not mean an equal result: As
we are dealing with optimization problems, they often time out with different
incumbent solutions. This issue will be further considered in Sect. 7.

4 The exact set of instances is available at people.unimelb.edu.au/pstuckey/pchuffed.

http://people.unimelb.edu.au/pstuckey/pchuffed
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6 Portfolio

Portfolio solving is a common approach for parallel SAT solving. In this section,
we investigate the behavior of a portfolio CP-solver with learning. As common
in parallel SAT, the solvers are diversified by initializing their variable activities
randomly. Additionally, we allow for some communication between the solver
processes. As we are using a master-slave-architecture, a portfolio approach is
simulated by sending the empty job (i.e. the empty conjunction) to each solver.
For clause exchange, the same policy as in the SSS setting is used. We denote this
solver as port. Figure 13 compares the running times of the sequential solver,
and the portfolio solver on 64 cores, with a time limit of 5 min. Only little
speedup can be observed for easy instances, whereas parallelism pays off for
harder instances, and results in 10 more solved instances. The scaling behavior
is shown in Fig. 14. Both significant speedups and an increased number of solved
instances can be observed when using more CPU cores. On the other hand, 36
of the benchmarks time out, so either no optimum result was found, or the proof
of optimality could not be completed.

In parallel SAT solving, it is a well-known fact that clause exchange is very
helpful, especially for unsatisfiable instances. For parallel LCG, communication is
also beneficial, but it appears harder to determine which, and how many clauses
should be exchanged. Figure 15 compares the results of a portfolio solver on 64
cores with our adaptive clause exchange policy to a portfolio solver which only
exchanges the incumbent objective value. Communicating learnt clauses yields
a significant speedup and 6 more solved instances. Although this is a significant
improvement, the power of clause exchange for parallel LCG appears limited.
Further experiments showed that the exchange of clauses of size at most 2 speeds
up the computation, whereas larger clauses do not always help, and may even
significantly impede solving. As it appears difficult to determine the right choice
of clauses to exchange, we used the conservative, adaptive approach. Recent
work in SAT has emphasized the fact that many learnt clauses are not helpful
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for satisfiable formulas [19]. As the optimization process consists of solving a
sequence of satisfiable problems, followed by one unsatisfiable one—the proof of
optimality—this may be the reason for these results. Nevertheless, the portfolio
solver is surprisingly strong. Using 64 cores, it can solve one instance that cannot
be solved optimally by the search space splitting solver, c.f. Fig. 16.

7 Objective Probing

Both search space splitting and portfolio approaches yield good results. Never-
theless, they do not make use of the following observations from Sect. 4: in many
cases finding a good solution is not harder than finding any solution. Finding
good solutions early prunes the search, using the tighter objective bounds, and
conversely, finding them late result in superfluous search, and may reduce the
benefits of parallelism, c.f. Fig. 12. Hence, it appears promising to try to push a
parallel solver towards finding good solutions quickly.
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To do so, we guess bounds on the objective, and use some solver processes
to probe whether there exists a solution satisfying the guessed bound, or not.
A similar approach was already used for parallel Boolean optimization in [16],
where the authors compute upper and lower bounds concurrently. When using
n processes for objective probing, we use bounds

bound(i) = lb +
⌊

i(ub − lb)
n

⌋
, (1)

where lb and ub denote lower and upper bounds on the objective value, and the
ith process solves Optimize(φ, z, lb, bound(i)).

Figure 17 shows the impact of this approach when solving the cargo bench-
mark. Compared to the näıve portfolio approach, c.f. Fig. 1, an impressive
speedup of 483 is achieved, as the solver finds an optimum solution and proves
its optimality within 3 s. Furthermore, probing objective values yields lower
bounds on the objective. Thus, this approach allows for estimating the qual-
ity of solutions.

In the remainder of this section, we will discuss how to implement the objec-
tive probing, and show results. As we deal with optimization problems, we also
consider the quality of solutions found. Therefore, we ran the sequential version
of Chuffed on each benchmark with a time limit of 3 h, and recorded the best
solution found. Then, we tested how long it takes the parallel solver to find a
better solution, or prove that no better solution exists.

7.1 Objective Probing in Search Space Splitting

For the search space splitting solver, we split the workers in three groups of equal
size. Workers from the first group run on split parts of the search space as before.
Workers from the second subset start by guessing an objective value according
to Eq. 1. If this guess is refuted, i.e. a proof is found that no solution exists with
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Table 1. suite: speedups when searching for good solutions.

#CPUs SSS SSSP

All Hard All Hard

Avg Median Avg Median Avg Median Avg Median

4 2.8 2 10.6 4.5 3.7 3.2 15.5 7.4

8 5 3.8 25.5 9.7 6.2 4 41.8 20.2

16 6.7 5.9 41.2 19.5 9.6 7.6 78.9 34.6

32 9.6 8 72.5 58.9 12.7 13.3 121.3 58.5

64 12.7 15 136.8 104 15.6 13.8 193.8 107

an objective value satisfying the bound, or it is implied, i.e. a better solution is
found, they join the workers from the first group. The remaining threads behave
like the ones from the second group, but re-guess bounds on the objective, until
half of the given time limit is reached. This can be seen as a hyper-binary search
on the objective, as the interval between lower and upper bound is split in several
parts. We denote this solver as SSSP.

Figure 18 shows the impact of this technique on the search for good solutions.
For very easy instances, which can be solved in less than one second, the parallel
solver is slower than the sequential version. For harder instances, significant
speedups can be observed. Table 1 shows the geometric average, and median
speedups obtained on all benchmarks, and on hard ones. Here, a benchmark is
considered hard if the sequential Chuffed does not terminate within 300 s. The
average speedup on all instances is sublinear, as many of them are too easy and do
not allow for sufficient speedups by the parallel solver. Conversely, the speedup
on hard instances is significant, and superlinear for every configuration. The
configuration which uses objective probing, SSSP, reaches an average speedup of
193.8 on 64 cores. On 8 and 16 cores, it is even faster than SSS on 16 and 32
cores, respectively. On benchmarks of medium difficulty, the results are mixed.
Figure 21 compares the results of the SSS and SSSP configuration, when using 64
cores. The SSSP configuration is significantly faster on some benchmarks, and
slightly slower on some others. This is especially the case if probing fails in many
cases, and thus only yields improved lower bounds on the objective instead of
tighter pruning. Summarizing, combining a Search Space Splitting solver with
objective probing gives an additional boost on the performance, especially for
hard problems with a large value range for the objective value. Splitting the
solvers in three groups of equal size works well on our benchmark suite, and it
appears hard to find better choices that work well for all benchmarks, or adapt
the group size dynamically.

7.2 Portfolio Solving and Objective Probing

In portfolio solving, guessing bounds on the objective value may be seen as an
additional source of diversification for the solvers. As in the SSSP configuration,
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Table 2. suite: speedups when searching for good solutions.

#CPUs port portP

All Hard All Hard

Avg Median Avg Median Avg Median Avg Median

4 3.2 2 13.4 4.3 4.3 2.4 18.2 7.4

8 4.7 3.7 23.5 9 6.1 4.2 33.9 8.43

16 6.1 4.5 39.4 14.6 9.2 7 68.4 26.9

32 7.7 7.4 62.1 38 11.4 8.9 107.5 77.4

64 9.1 10.1 84.6 42 13.6 14.6 152 133.6

we split the solver processes in three groups. After objective probing is finished,
the respective solvers continue running as in the normal portfolio configuration
(Fig. 19).

On benchmarks of medium difficulty, this approach outperforms the common
portfolio configurations, as can be seen in Fig. 20.

The reason for this behavior seems to be the following: The portfolio app-
roach is fast in finding good solutions, but for proving optimality it does not
scale as well as the search space splitting solver. Thus, the solving process is
accelerated if better solutions are found early, but it is not slowed down too
much if some workers spend computation time on proving lower bounds instead
of participating in the proof of optimality.

Table 2 shows the speedups obtained when searching for good solutions.
Again, superlinear average speedups can be observed for all configurations when
considering only the hard benchmarks, reaching a maximum of 152 for the port-
folio solver with objective probing, denoted Portfolio+, and 64 cores. Here, the
impact of objective probing is even larger than for the SSS solver. Interestingly,
the difference is small on 8 cores, and grows larger when using more parallel work-
ers, which may be a hint that the normal portfolio solver does not achieve suffi-
cient diversification when using many cores. Furthermore, the median speedup
on hard benchmarks is even higher than one obtained by the SSS solver.
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#CPUs all hard

avg median avg median

4 4.3 3.3 18.4 6.3
8 6.3 4.7 38.2 19.9
16 9.6 6.4 79.9 43
32 11.7 8.8 116 62.4
64 15.7 16 196 140

Fig. 24. suite: speedups for hybrid

when searching good solutions

8 A Hybrid Solver

When comparing the results of the portfolio solver with those of the SSS solver, it
becomes obvious that these approaches work differently well on different prob-
lems. As can be seen in the Figs. 21 and 22, SSS tends to perform better on
average, both on 8 and 64 cores. Nevertheless, the SSS solver times out on some
instances that can be solved by the portfolio solver, and vice versa. It appears
therefore promising to combine both approaches to a (meta-)portfolio, which
combines SSS, initial guesses on the objective value and a SAT-like portfolio
solver. We therefore change the behavior of the SSSP-solver as follows. Workers
from the second group, which finish working on the respective guessed objec-
tive values, continue working as portfolio solvers rather than joining the SSS
solvers. Thus, they are capable of searching the whole search space instead of
being fixed on one subspace, which maintains the strength of the highly agile
VSIDS-based branching. We denote this as hybrid. Interestingly, this is espe-
cially advantageous when using just a few cores. Here, the number of solved
instances is increased remarkably. The search for good solutions is improved sig-
nificantly: Using 64 cores, the median of speedups increases from 13.8 to 16 on
all instances, and from 107 to 140 on the hard ones (Fig. 23).
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9 Conclusion

We presented results of different approaches to parallelize the LCG solver
Chuffed. A portfolio approach performs astonishingly well, especially when
trying to find good solutions rather than proving optimality. Here, an approach
based on search space splitting is more successful, although is does not scale as
smoothly as classical CP solvers. To avoid redundant work and hence gain better
speedups, it is important to communicate some information between the parallel
solvers. The most important information is the best incumbent objective value,
whereas the impact of exchanging longer clauses is limited (Fig. 24).

A hybrid solver which combines probing the objective value, portfolio solv-
ing and search space splitting yields significant speedups on a wide range of
benchmarks. When trying to find better results than the sequential version of
Chuffed, the speedup obtained is significantly superlinear.

On the contrary, the speedups on unsatisfiable instances, e.g. when proving
optimality, are sublinear, which matches results from parallel SAT solving.

Acknowledgements. The authors would like to thank Graeme Gange for the fruitful
discussions, and Prof. Dirk Nowotka for providing the computational resources for the
experiments conducted in this paper.
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Abstract. Recent work in model combinators, as well as projects like
G12 and SIMPL, achieved significant progress in automating the gen-
eration of complex and hybrid solvers from high-level model specifica-
tions. This paper extends model combinators into the scheduling domain.
This is of particular interest as, today, both Constraint Programming
(CP) and Mixed-Integer Programming (MIP) perform well on schedul-
ing problems providing different capabilities and trade-offs. The ability to
construct hybrid scheduling solvers to leverage the strengths of both tech-
nologies as well as multiple problem encodings through high-level model
combinators provides new opportunities. Complex parallel hybrids can
be synthesized with minimal effort on the part of the user and provide
substantial performance benefits over standalone solvers.

1 Introduction

Modern desktop and laptop systems are overwhelmingly parallel machines with
2–8 cores. At the same time, no combinatorial optimization approach dominates
the field and it is often necessary to conduct extensive experiments to determine
which techniques work best. Parallel tree search [15,17,21,26,28,31] has been
under investigation for two decades and is possibly the sole effort to exploit
small and large scale parallelism. Despite the advent of parallel hardware and the
absence of dominating combinatorial techniques, surprisingly little has been done
to produce robust parallel algorithmic combinatorial optimization techniques.

Objective-CP [33], provides an architecture capable of filling this void.
In [8], runnables and model combinators were introduced to greatly facilitate
the creation of semantically meaningful composite solvers. Runnables represent
optimization programs that combine a solver, a model and a search procedure.

Our purpose is to illustrate the benefits associated with this architecture for
scheduling which has long been considered a strength of Constraint Programming
(CP) solvers. Recent work on Failure-Directed Search [35] demonstrates that CP
continues to provide state-of-the-art results. Work done in the last few years,
e.g., [14] also shows that modern Mixed-Integer Programming (MIP) solvers
using standard encodings are now competitive with, and sometimes superior
to, commonly used CP scheduling solvers. Such results suggest that composite
techniques leveraging both technologies are in order. To enable this effort, this
paper extends model combinators [8] in the following ways:
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 159–169, 2016.
DOI: 10.1007/978-3-319-33954-2 12
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– Runnables are extended to handle modeling abstractions in the scheduling
domain (concepts like tasks and resources).

– The ability to choose among several encodings for the same solver is supported
(two MIP encodings are supported).

– Bound/solution communication is extended to handle specific limitations
imposed by the Gurobi APIs.

2 Related Work

The approach in this paper is related to portfolio solvers such as CPHydra [19],
Sunny-CP [2] and SATzilla [36]. CPHydra and Sunny-CP both use a k-nearest
neighbor algorithm for scheduling a portfolio of algorithms while SATzilla uses
runtime prediction models to dynamically choose an optimal algorithm. Pro-
teus [11] introduced a system which makes use of a complex dynamic rule set
to produce (potentially) multiple CP and SAT encodings and applies multiple
solvers to each encoding with very good results. Hence, Proteus’s use of multi-
ple problem representations and different solving technologies makes it the most
closely related system.

The approach in this paper has a number of very novel aspects. First, unlike
all previous approaches, our solvers are not competing with one and other, but
instead, cooperating directly by exchanging bounds and solutions in real time.
This paper acknowledges that for many problems there may not be a single
best algorithm and, therefore, provides a framework for solvers to cooperate in
parallel, translating and sharing solutions between different encodings.

Furthermore, the portfolio approach often relies on complex machine learning
techniques for choosing solvers and, in the case of Proteus, encodings. While port-
folios can be effective, this paper argues in favor of high-level tools to transform,
manipulate and compose solvers directly. This approach delivers a clearer pic-
ture of what solvers are running, why they are running, how they are performing
and, ultimately, how they might benefit from different composition strategies.

Tools that facilitate the authoring of solver independent models were intro-
duced over the last decade. The Comet Modeling Language (Cml) strived to
provide a full programming language in which models could be specified, manip-
ulated and composed in sophisticated ways without the need for annotations.
G12 models written with mini-Zinc feature solver independent capabilities,
model rewriting and even column generation and branch-and-price hybrids [24]
via Cadmium [4]. SIMPL [37] is a high level modeling language based on the
search-infer-relax philosophy. Essence [9] is designed for model specification and
has recently been combined with Conjure [1] to automatically derive constraint
models. Finally, work has already been done in providing a rich language of
combinators within the context of search [27] and is revisited in [33].
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Fig. 1. High-level technology-independent model in Objective-CP.

3 Composition of Scheduling Solvers

3.1 Jobshop

An n × m jobshop problem is a set of n jobs {J1, J2, . . . , Jn} that must be
processed on m machines {M1,M2, . . . , Mm}. Each job Ji must be processed
on every machine Mk requiring exclusive use of that machine for a processing
duration pi,k. The processing of job Ji on machine Mk is called the taski,k. The
sequence (σi

1 . . . σi
m) represents a permutation of the machines indicating the

processing order of tasks for job Ji. For example, if (σi
1, σ

i
2, σ

i
3) = (2, 3, 1), this

implies the tasks for job Ji are processed in the order (taski,2, taski,3, taski,1).
Note we use the same notation and MIP models as [14].

3.2 An Objective-CP Jobshop Model

With Objective-CP, models are containers capturing constraints that must be
satisfied as well as a relevant objective function. Figure 1 illustrates the creation
of a high-level declarative model. Line 1 creates a model m while lines 3–4 create
ranges for the jobs J and machines M . Lines 5–6 create matrices holding the
processing time of the tasks as well the resources that any task requires. Line 8
creates a matrix task holding all the tasks. Line 9 creates a variable representing
the makespan of the instance and line 10 creates an array of disjunctive resources
(as many as M). Lines 12–22 start by stating the objective function and creating
the constraints. The loops state the job precedence constraints, the fact that the
makespan follows the end of each job, enforces the duration of each task on its
disjunctive resource and finally adds the disjunctive resources to the model.

Following [8], we emphasize that this model is purely descriptive, technology
agnostic and captures a triplet 〈X,C,O〉 in which X is the set of variables, C



162 D. Fontaine et al.

Fig. 2. Global constraint formulation

Fig. 3. Disjunctive formulation of Jobshop using big-M notation (M).

is the set of constraints and O is an optional objective function. To exploit this
model, it is necessary to concretize the model into a specific program.

Each technology imposes restrictions on what vocabulary can be used to
describe models. For instance, a MIP requires linear inequalities over discrete
and continuous variables only. Objective-CP uses model transformations such
as τ to rewrite models into refined forms that are equivalent but conform to the
requirements of the technology. Namely, M1 = τ(M0) captures the rewriting of
M0 into an equivalent M1. Once rewritten, models are mapped into a solver.
Objective-CP achieves this through a concretization function γ that delivers
an executable program for a technology T , i.e., P = γT (τ(m)). The reader is
referred to [8] for the full details and the formalization. The same high-level
model can be concretized several times into multiple solver instances. In par-
ticular, Objective-CP supports the simultaneous concretization of one model
into both a CP solver and a MIP solver, yielding two independent programs.

Scheduling Reformulations. The Objective-CP model reformulations must be
adapted to scheduling. The input is the model presented in Fig. 1. Three refor-
mulation operators are provided:

– τCP : Transforms the high-level model into a suitable CP encoding (Fig. 2).
– τMIP−Disjunctive: Uses a big-M encoding for the disjunctives (Fig. 3).
– τMIP−TI : Uses the time-indexed formulation.

The implementation of the reformulation operators uses rewriting rules for
the global constraints similar to those found in [5]. It creates auxiliary variables
and visits the global constraints to replace them with linear encoded equivalents.
For instance, the big-M linear rewriting for disjunctive is:

1 linearize(disjunctive) ⇒
2 with: intvar zi,j ∈ {0, 1} ∀ ti, tj ∈ tasks(disjunctive), ti �= tj
3 in: forall ti, tj ∈ tasks(disjunctive) ∧ ti �= tj:
4 post: start(ti) + duration(ti) ≤ start(tj) + zi,j ∗ M
5 post: start(tj) + duration(tj) ≤ start(ti) + (1 − zi,j) ∗ M
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Fig. 4. Basic Disjunctive scheduling search procedure.

Similar rules exist for other global constraints such as precedes and finish by
as well as different rules for the time-indexed formulation.

Custom Search. Models produced by the reformulation operators above are still
purely descriptive and must be concretized into a solver and coupled with a
search procedure (when necessary) to obtain runnables. The empirical results
use two custom search procedures. Figure 4 depicts a custom procedure as well
as how to create a Constraint Programming runnable for model m (from Fig. 1)
with that specific procedure. The code uses the slack that exist on the disjunctive
resources to select a machine and sequences the tasks of that machine first. The
sequencing in lines 9–11 uses a lexicographic heuristic based on earliest start
time and earliest completion time to rank the tasks.

The second search is Large Neighborhood Search [22]. A jobshop version is
taken from [20]. Namely, it is an iterative process in which each iteration limits
the number of failures to 3∗ |J | ∗ |M |. When the limit is reached, LNS randomly
selects two machines as well as a time window and fixes the precedence that
exist between tasks outside the time window in the incumbent and re-optimizes.

3.3 Runnables

Runnables are combinatorial optimization programs augmented with new capa-
bilities to communicate with each other. A runnable R can consume and produce
products that represent artifacts such as upper bounds, lower bounds, or even
entire solutions. These communication capabilities are asynchronous in nature
and permit runnables to communicate across thread boundaries. Two runnables
R0 and R1 running in two distinct threads T0 and T1 can cooperate transparently.

Given a runnable R0 derived from a high-level model M = 〈X,C,O〉, a
solution σ from R0 is a mapping from X to Z associating to each variable in
X a value that satisfies all the constraints in C. Observe how solutions are
encoded in term of the original high-level model. It enables the transcoding of a
solution to another runnable R1 also derived from model M . Given a solution σ
and a target runnable t, the fragment appearing below creates a new concrete
solution σ′ adapted to t’s encoding. The loop on line 3 iterates over all the
variables in σ and decodes with the call on line 4 the assignment to variable x
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Fig. 5. Running a CP and MIP encoding of jobshop in parallel.

in term of its representation in t. If t relies on an encoding of x with domain
D(x) = {0 · · · n} into n + 1 binary variables x0 · · · xn, the decoder produces a
collection of assignments to cover all the binary variables yi of t (only one of
which is assigned 1). Line 6 installs the solution σ′ in t and returns it.

1 transcode(Runnable t,Solution σ) → σ′

2 σ′ := ∅
3 forall x in vars(σ):
4 {〈yi �→ vi〉} := decode(x,σ(x),t)
5 σ′ := σ′ ∪ {〈yi �→ vi〉}
6 t.inject(σ′)
7 return σ′

Gurobi cannot tighten its upper bound to a new incumbent bound f∗ and
instead must install and validate the entire solution. A Gurobi runnable must
thus consume solutions from a callback invoked at each node of its search tree.

3.4 Combinators

Figure 5 illustrates the lines of code required to create a composite parallel solver.
Line 2 creates the linear reformulation. Lines 3 and 4 create the CP and MIP
runnable from the original formulation m and the selected linear reformulation
linearModel1. Finally line 5 creates the parallel composite and lines 6 executes
the resulting hybrid. Note how all the integration and communication aspects
are fully automated. Indeed, the parallel combinator automatically takes care of
the necessary plumbing to concurrently share the various products and transcode
solutions as needed. Interested readers are referred to [8] for further details.

4 Case Studies

Basic Results. Experimental results are provided for various standard instances of
the jobshop problem. Some instances remain very difficult to solve to optimality,
even for modest sizes. Results are presented on various solvers described below:

MIP Gurobi 6.04 MIP with 2 threads and a disjunctive encoding.
CP Objective-CP solver with 2 threads and a common global slack heuristic.
CP ‖ MIP A parallel composite with CP and MIP solvers.
LNSCP ‖ MIP A parallel composite with a CP-based LNS and a MIP solver.
LNSCP ‖ CP A parallel composite with a CP-based LNS and a plain CP solver.

1 Line 3 refers to the search procedure defined earlier with a closure and named search.
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Table 1. Experimental Results for CP and MIP solvers as well as three hybrids.

Instances CP MIP CP ‖ MIP LNSCP ‖ MIP LNSCP ‖ CP

time ub time ub time ub time ub time ub

Orb01(10 × 10) 145.38 1059* 600.0 1072 176.12 1059* 600.0 1071 41.96 1059*

Orb02(10 × 10) 6.80 888* 19.06 888* 8.36 888* 18.97 888* 6.33 888*

Orb03(10 × 10) 600.0 1015 600.0 1021 600.0 1015 600.0 1005 600.0 1015

Orb04(10 × 10) 8.17 1005* 63.07 1005* 16.33 1005* 53.33 1005* 7.67 1005*

Orb05(10 × 10) 132.46 887* 74.20 887* 110.82 887* 70.92 887* 70.35 887*

Orb06(10 × 10) 57.37 1010* 528.22 1010* 135.53 1010* 600.0 1010 52.05 1010*

Orb07(10 × 10) 53.22 397* 43.64 397* 39.15 397* 18.65 397* 11.23 397*

Orb08(10 × 10) 467.19 899* 99.86 899* 6.82 899* 84.41 899* 4.57 899*

Orb09(10 × 10) 5.31 934* 75.36 934* 9.41 934* 85.55 934* 5.31 934*

Orb10(10 × 10) 66.24 944* 51.20 944* 33.87 944* 28.34 944* 5.31 944*

la31(30 × 10) 600.0 2801 600.0 2003 600.0 2109 30.82 1784* 17.23 1784*

la36(15 × 15) 600.0 2059 600.0 1292 600.0 1297 600.0 1281 136.96 1268*

la37(15 × 15) 600.0 1855 600.0 1454 600.0 1478 13.62 1397* 13.97 1397*

la38(15 × 15) 600.0 1633 600.0 1230 600.0 1243 600.0 1196 600.0 1255

la21(15 × 10) 600.0 1129 600.0 1079 600.0 1097 600.0 1058 600.0 1046

The time-indexed formulation is omitted as it is not competitive (This is con-
sistent with the Findings in [14]). All experiments are run on Mac OS X 10.10.5
with 4 GB or memory and an Intel Core 2 Duo 2.13 GHz. Objective-CP’s edge
finder is based on [34]. Table 1 shows the best upper bound achieved and the
running time in seconds for each solver within 10 min. The MIP solver uses, by
default, 2 threads. For fairness, the CP solver uses a parallel tree search with 2
threads too. Composite solvers use 1 thread for the first runnable and 2 threads
for the second. For instance, CP ‖ MIP uses 1 thread for CP and 2 for the
MIP. A single star (*) indicates the optimal bound was found and proved.

Table 1 confirms that MIP and CP are competitive as reported in [14] with
MIP outperforming CP quality-wise (la31, la36, la37, la38, la21)
and timewise (Orb05, Orb08) on 7 of the 15 benchmarks. More interestingly,
the composite CP ‖ MIP proved to be more robust than either CP or MIP

Table 2. Solvers with 1–4 threads.

Inst. CP MIP CPS

threads 1 2 4 1 2 4 3

orb05 70.2 75.3 29.6 32.9 43.4 17.8 60.4

orb07 38.6 48.6 9.7 40.6 26.5 34.6 39.1

orb08 1.7 600 600 123.3 55.6 68.7 1.3

orb10 28.1 32.1 29.5 65.80 30.5 15.5 24.8

la10 0.2 0.2 0.2 600 600 600 0.3

la11 1.5 2.4 2.2 600 600 600 1.2

Table 3. Number of bounds sent.

LNSCP ‖ MIP CP ‖ MIP LNSCP ‖ CP

→MIP →LNS →MIP →CP →CP →LNS

orb01 159 39 37 42 98 41

orb02 93 30 43 11 6 38

orb03 144 36 57 21 5 57

orb04 87 34 131 24 56 80

orb05 70 25 68 34 51 47

orb06 161 44 55 18 22 43

orb07 55 19 62 29 49 28

orb08 202 59 197 35 88 118

orb09 70 19 78 19 47 40

orb10 118 36 88 36 69 50
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alone often getting running times competitive with or better than (in 1 instance:
orb07) the best standalone solver. The composite improves the quality of the
solution over the standalone CP on all the la instances. The LNSCP ‖ MIP
composite does even better managing to close la31, la37 and delivering the
best incumbent on la38. Finally, the LNSCP ‖ CP composite is the best hybrid
of this pack. It yields high quality bounds from the LNS search and restores
completeness through its reliance on a complete parallel CP search. The run-
ning times are often the best and this composite now closes la36 and further
improves la40.

Hybrid Communication. Table 3 reports the number of bounds and solutions
exchanged between parallel solvers within the three hybrids on orb instances.
It shows substantial inter-solver communication in all three hybrids. The MIP
solver receives more bounds than it generates from both CP and LNSCP . The
CP -LNSCP hybrid shows a mix with roughly equal bound generation on some
instances and one dominant solver (not always the same) on others.

Robust Runnables. What is, perhaps, unexpected in Table 1 is the behavior on
benchmark like Orb08 where CP takes 467 s to prove optimality, MIP requires
99 s for the same result while the CP ‖ MIP composite completes in a mere 7 s.
The explanation lies in the parallel search. Conventional wisdom dictates that
the number of threads ought to be equal to the number of cores. When CP (or
MIP) is executing alone, it carries out a parallel tree search with 2 threads. When
executing in the composite, the CP solver uses a sequential search while the MIP
uses a parallel search (with 2 threads). The observed behavior is a simple lack
of robustness of the parallel tree search. When the optimum is found, CP can
prove optimality near instantly. Finding the optimum however, proves difficult.
If a node on the path from the root to that optimum is shared with other threads,
the discovery of the optimum may be postponed until that node is stolen, and
a substantial delay may be incurred.

This phenomenon happens within MIP solvers too and is illustrated in Table 2
where the data was collected on a quad-core MacPro with a Xeon at 3.2 Ghz
running OSX 10.11. For instance, the solving time for MIP on Orb10 improves
as threads are added while it barely moves for the CP solver while Orb05 and
Orb07 experience the opposite effect (adding threads hurt Gurobi). To explore
this fairness question Table 2 reports on a few instances involving the CP and
MIP solvers with 1, 2 and 4 threads as well as a new composite, dubbed CPS,
which composes a sequential CP solver with a parallel tree search CP solver. The
number of threads can have unsettling effects, sometimes improving or worsening
the solving time. The ability to use the composite CP ‖ CP (2) alleviates the
problem. Indeed, sequential and parallel CP share their bounds.

5 Conclusion

This paper extended model combinators to scheduling and provided empiri-
cal evidence that model combinators are useful in this domain. The approach
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emphasizes end-user flexibility and fosters the development of composites with
custom search strategies and non-trivial parallelization. The net result is a mal-
leable platform in which one can express sophisticated algorithms going beyond
portfolios. In addition, the composite solvers are more than the sum of their
constituents and yield a synergistic integration with little to no user-visible com-
plexity. Recent work suggest that MIP can compete with CP on certain classes
of scheduling instances. The parallel solvers derived here demonstrate that one
can routinely outperform standalone solvers at little to no costs to end-users.
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(eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 180–194. Springer, Heidelberg (2012)

8. Fontaine, D., Michel, L., Van Hentenryck, P.: Model combinators for hybrid opti-
mization. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 299–314. Springer,
Heidelberg (2013)

9. Frisch, A., Harvey, W., Jefferson, C., Mart́ınez-Hernández, B., Miguel, I.: Essence:
a constraint language for specifying combinatorial problems. Constraints 13, 268–
306 (2008)

10. Hooker, J.N.: Logic-based benders decomposition. Math. Program. 96, 33–60
(2003)

11. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical port-
folio of solvers and transformations. In: Simonis, H. (ed.) CPAIOR 2014. LNCS,
vol. 8451, pp. 301–317. Springer, Heidelberg (2014)

12. Seldin, J.P., Hindley, J.R.: Lambda-Calculus and Combinators An Introduction,
vol. 2. Cambridge University Press, Cambridge (2008)

13. Kadioglu, S., O’Mahony, E., Refalo, P., Sellmann, M.: Incorporating variance in
impact-based search. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 470–477.
Springer, Heidelberg (2011)

14. Ku, W.-Y., Beck, J.C.: Revisiting off-the-shelf mixed integer programming and
constraint programming models for job shop scheduling. Technical report, Univer-
sity of Toronto (2014). https://www.mie.utoronto.ca/research/technical-reports/
reports/JSP.pdf

https://www.mie.utoronto.ca/research/technical-reports/reports/JSP.pdf
https://www.mie.utoronto.ca/research/technical-reports/reports/JSP.pdf


168 D. Fontaine et al.

15. Michel, L., See, A., Van Hentenryck, P.: Transparent parallelization of constraint
programming. INFORMS J. Comput. 21(3), 363–382 (2009)

16. Michel, L., Van Hentenryck, P.: A decomposition-based implementation of search
strategies. ACM Trans. Comput. Logic 5(2), 351–383 (2004)

17. Moisan, T., Gaudreault, J., Quimper, C.-G.: Parallel discrepancy-based search. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 30–46. Springer, Heidelberg (2013)

18. Nasiri, M.M., Kianfar, F.: A guided tabu search/path relinking algorithm for the
job shop problem. Int. J. Adv. Manuf. Technol. 58(9–12), 1105–1113 (2012)

19. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: 19th Irish
Conference on AI (2008)

20. Pacino, D., Van Hentenryck, P.: Large neighborhood search and adaptive ran-
domized decompositions for flexible jobshop scheduling. In: IJCAI, pp. 1997–2002
(2011)

21. Perron, L.: Search procedures and parallelism in constraint programming.
In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 346–360. Springer, Heidelberg
(1999)

22. Pisinger, D., Ropke, S.: Large Neighborhood Search. In: Gendreau, M., Potvin, J.-
Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research
& Management Science, vol. 146, pp. 399–419. Springer, New York (2010)

23. Puchinger, J., Stuckey, P.J., Wallace, M., Brand, S.: From high-level model to
branch-and-price solution in G12. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol.
5015, pp. 218–232. Springer, Heidelberg (2008)

24. Puchinger, J., Stuckey, P.J., Wallace, M.G., Brand, S.: Dantzig-wolfe decomposi-
tion and branch-and-price solving in G12. Constraints 16(1), 77–99 (2011)

25. Refalo, P.: Linear formulation of constraint programming models and hybrid
solvers. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 369–383. Springer,
Heidelberg (2000)
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Abstract. We describe a constraint programming approach to establish
the coal carrying capacity of a large (2,670 km) rail network in north-
eastern Australia. Computing the capacity of such a network is necessary
to inform infrastructure planning and investment decisions but creating a
useful model of rail operations is challenging. Analytic approaches exist
but they are not very accurate. Simulation methods are common but
also complex and brittle. We present an alternative where rail capac-
ity is computed using a constraint-based optimisation model. Developed
entirely in MiniZinc, our model not only captures all dynamics of interest
but is also easily extended to explore a wide range of possible operational
and infrastructural changes. We give results from a number of such case
studies and compare against an industry-standard analytic approach.

1 Introduction

Mining is one of the most important industries in Australia, and other parts of
the world, and making mining supply chains efficient requires careful investment
in the infrastructure that makes up the supply chain. The Bowen Basin in Central
Queensland is home to 59 individual open-cut and underground mines. The large
majority of all material is export coal with over 207 million tonnes having been
produced in 2014. Once extracted, coal is railed from one of 37 different loadout
points to one of 3 nearby coal ports. The set of all rail infrastructure serving the
Bowen Basin is known as the Central Queensland Coal Network (CQCN).

Capacity planning in the context of the CQCN is an important and challeng-
ing topic. Investment decisions for infrastructure are typically highly expensive
and have an effect over many years. In order to make the right decisions we
need to model a range of competing alternatives and estimate in each case the
maximum capacity (or throughput) of the rail network, typically measured in
millions of tonnes of coal per annum (Mtpa). Key parameters that must be care-
fully considered include: the type of rolling stock, availability and performance of
mines and ports, the number of lines in the network, the number and location of
junctions and passing loops and operational constraints such as refuelling, crew
changeover and temporal separation between trains. Figure 1 gives a small arti-
ficial example of an export coal supply chain. There are two typical approaches
used to establish the capacity of rail in such a context:
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 170–186, 2016.
DOI: 10.1007/978-3-319-33954-2 13
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Fig. 1. The export coal supply chain. Raw material is extracted from large open-cut and
underground mines. Once crushed and sorted, the coal is loaded onto trains and carried
to unload points at a waterfront terminal. There the material is blended into various
products and loaded onto ships for export. The rail component of such a supply chain
comprises the load and unload equipment, rolling stock (locomotives and wagons), the
physical rail network (lines and signals) and a set of operational parameters, in the
form of rules, that govern how the infrastructure can be used in practice.

Analytic Models. This approach estimates the theoretical capacity of a rail
system by creating simple mathematical models of operations that aim to
saturate available infrastructure. A common approach is to consider capacity
of a single line under e.g. fixed values for headway and travel time [3]; periodic
traffic patterns [2] or; a set of fixed variables that represent mixed traffic and
dwell times [12]. The primary advantage of these approaches is simplicity.
The chief disadvantage is accuracy.

Simulation Models. Simulation methods can be used to model the physical
infrastructure and the many operational requirements and constraints that
arise in practice. An overview of such methods is given in [9]. In particu-
lar, tools such as OpenTrack [18] are intended to be very accurate but their
primary strength is checking proposed schedules for feasibility; not decid-
ing them in the first place. In cases where simulation models are extended to
include a scheduling component, e.g. MultiRail [17], the typical approach is to
add greedy algorithms to the simulation. The primary advantage of this app-
roach is that many infrastructural and operational variables can be modeled
together. The chief disadvantage is the time required to build the simulation
and the quality of the decisions made within it.

In this paper we advocate a third approach, much less frequently used: building a
CP-based optimisation model of the infrastructure system. While early examples
of such works do exist (e.g. [13,16]), they are typically limited to small single-
track networks with few junctions and trains. Alternatively one could consider
a mixed integer programming (MIP) based optimisation model, and there are
a number of such approaches e.g. [1,10]. These approaches are usually quite
coarse grained, constraining capacities and using flow-based models, rather than
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actually building a scheduling model since time discretization is not feasible. This
accords with experience in other minimum make span scheduling problems where
CP is usually superior to MIP. We observe that recent years have seen massive
increases in computing power as well as significant algorithmic gains in solving
complex optimisation problems. Moreover, modelling and model transformation
technology has also improved and the time required to create an optimisation
model with modern constraint programming languages is much reduced [15]. To
wit, we suggest that the time is ripe for switching to CP-based optimisation
modelling for infrastructure planning.

To support this position, and at the request of a financial-industry part-
ner with an interest in Queensland coal, we have created a scheduling-based
constraint programming model of the CQCN. The model is written entirely in
MiniZinc and offers many advantages: (i) the model describes all key infrastruc-
tural parameters of interest; (ii) the model considers decisions that actually
reflect the best usage of the infrastructure; (iii) the model requires substantially
less effort to produce than an equivalent simulation; (iv) the model makes it
very easy to consider many “what if” situations. Indeed in many cases setting
up such scenarios can be achieved by only changing input data.

We give a full description of the system and evaluate its performance in a
range of freight-task scenarios. We also compare our model against a standard
analytic approach to establishing rail capacity. Finally we apply the model to
a number of “what if” infrastructural scenarios in order to demonstrate the
flexibility of this approach and the benefits it can offer to industry planners.

2 The Central Queensland Coal Network

The Central Queensland Coal Network (CQCN) spans 2,670 km of rail track and
is the primary means of transporting export coal volumes; from 37 regional load-
out points in Queensland’s Bowen Basin to the nearby ports of Gladstone, Hay
Point and Abbott’s Point. Owned and operated by Aurizon Pty Ltd, the CQCN
can be naturally divided into four separate but centrally managed and connected
rail systems. These are known as Blackwater, Goonyella, Moura and Newlands.
Each system imposes different constraints on train operations and each is con-
figured to feed coal volumes to a specific port. Table 1 gives an overview of the
four rail systems in terms of some key parameters. This data is sourced from a
range of publicly available system descriptions [3–8].

When attempting to establish the coal-carrying capacity of a network such
as the CQCN industry planners first create an idealised model of rail operations.
This model is used in two ways: (i) to compute a maximum throughput figure
for the as-is network and; (ii) to explore a range of what-if scenarios where
infrastructure is added or modified or in which different operational practices
are employed. The main difficulty facing industry planners is the large number
of variables that need to be modeled and accounted for. For example there are 49
separate load and unload points in the CQCN and more than 130 junctions where
trains can be scheduled to operate. In addition there are various operational
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Table 1. Key infrastructural parameters for the CQCN. Applicable units are Kt (kilo-
tonnes) and Kt/h (kilo-tonnes per hour). NB: When reporting number of junctions, we
count only intermediate locations (not endpoints) that appear on a mine-to-port path.

Blackwater Goonyella Moura Newlands

Track length 1108 km 978 km 261 km 320 km

Track type Single + Duplic’d Single + Duplic’d Single Single

# Junctions 60 41 17 18

Travel speed 80 km/h 80 km/h 80 km/h 80 km/h

Headway time 20 min 15 min 90 min 36 min

Shunt speed 10 km/h 10 km/h 10 km/h 10 km/h

Train payload (Max) 10.6 Kt 13.14 Kt 10.6 Kt 8.7 Kt

Wagon type Hopper Hopper Hopper Hopper

Wagon capacity 106 t 106 t 106 t 106 t

Wagon length 16.7 m 16.7 m 16.7 m 16.7 m

Load points 10 20 4 3

Load rate (Avg.
max)a

4 Kt/hr 4 Kt/hr 4 Kt/hr 4 Kt/hr

Unload points 4 (Shared) 5 4 (Shared) 2

Unload rate (Avg.
max)

5 Kt/h 5.5 Kt/hr 5 Kt/hr 5 Kt/hr

aWe use as reference infrastructure equipment supplied by Techniplan to loadout
points in the Goonyella system (at Carborough Downs and Isaac Plains)

requirements and constraints that can affect the efficacy of even idealised train
services. These include: signalling, shunting, single track, crewing, refuelling,
maintenance, and unexpected downtime.

3 Rail Capacity with Analytic Models

A common approach for analytically computing rail capacity is to combine a set
of fixed operational parameters (train length, train payload, headway and service
time1) together with simple models of relevant infrastructure. We create three
such models to respectively characterise the maximum theoretical capacity of a
single-track railway line, a mine loadout point and a port unload point:

1 In industry terminology, headway refers to the minimum temporal separation
between two trains traveling in the same direction on the same rail line. Mean-
while, service time is the time necessary to fully load or unload a train, including
shunting.
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ALine =
Total T ime

Headway T ime
× Train Payload (1)

AMine =
Total T ime

Load T ime + Shunt T ime
× Train Payload (2)

APort =
Total T ime

Unload T ime + Shunt T ime
× Train Payload (3)

Parameters such as load, unload and shunt time are dependent on the exact
characteristics of the train at hand and on the throughput capacity of load and
unload points. Each of these can be varied to develop different scenarios. Where
multiple parallel resources exist (e.g. duplicated rail lines or multiple loaders/un-
loaders) the models can likewise be extended appropriately. Every such analysis
is obviously limited. For example the model ALine assumes all trains are identi-
cal and always travel in the same direction. Meanwhile APort and AMine ignore
the rail line altogether. Despite these drawbacks such methods are nevertheless
attractive for their simplicity. Moreover, by computing analytic capacity from
several different perspectives useful insights can often be attained. For example
a very similar analytic approach to the one described here is currently used by
Aurizon to “support pre-concept and concept studies” (in the CQCN) [3].

4 Rail Capacity with Optimisation Modelling

In order to establish rail capacity we will build a schedule of train trips to
and from each mine. Since we are only creating a strategic model we will omit
consideration of many operational matters (e.g. fleet-size and mix, crew pairing
and rostering, variable travel times and any type of delay). We also do not
model some existing dwell times; e.g. to facilitate refuelling and crew changeover,
though these can be easily added. As such our results can be interpreted as
assuming all trains are electric and autonomous.

Our model depends on two key parameters. The first of these, loads per mine,
reflects the fact that we schedule the same number of round-trips from every mine
site. It implicitly assumes that coal production is not a limiting factor any mine
site.2 The second parameter, trains per mine, reflects the fact that we assign
a fixed number of dedicated trains to carry loads from each mine. This is not
realistic (in practice the amount of rolling stock is usually limited) but appears
quite reasonable for the purposes of infrastructural capacity estimation.

Next, rather than describe the entire rail network (which can be quite large), we
simply model track segments between key junctions. These junctions are (i) load
and unload points; (ii) rail yards where trains can be staged before/after servicing;
(iii) junctions at the intersection of two or more branch lines; (iv) certain (hand
chosen) passing loops which allow trains to share a single-track line. We also exploit
the fact that in the CQCN (as in many rail networks) there is usually a single fixed
path between each mine and the port. Every such path is computed a priori and
made available as an input parameter to the model.
2 With more data the model could be made more accurate in this regard.
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Notice that the underlying problem we solve is just train scheduling. Our
model supports a variety of constraints relevant to this context including min-
imum headway time, single-track constraints and optional waiting at selected
junctions (including time allowances for stopping and starting).

4.1 MiniZinc

We now present a slightly simplified (for ease of exposition) version of our capac-
ity planning model, written in MiniZinc [15]. The most important data are:

– a set of mines, MINE, where cargo originates.
– a set of junctions, JUNC, that split the rail network.
– the number of loads or round trips, LPM, to schedule from each mine.
– the number of trains available for each mine, TPM.
– a path, path, from each mine to the port, represented as list of at most maxleg

junctions, using a dummy junction when we need less than maxleg.
– a set of locations, LOC ⊃ MINE of things of interest.
– a mapping from junctions to locations, junc loc.
– an expected travel time from location l1 to location l2, travel time[l1, l2].

We represent the trips between mines and ports using the array TRIP. Full trips,
designated FTRIP, are assigned even indexes while empty trips, ETRIP, have odd.
We now introduce the key decision variables and discuss associated constraints.

Decision Variables: The key decisions are at the level of each mine and trip:

– mine time, decides when a train leaves (full) or arrives (empty) at each mine.
– junction time, decides when a train (full or empty) should arrive at each

junction and at the port. Note that most trips will not arrive at all junctions.
– junction wait, decides how long a train (full or empty) waits at a junction.

We measure time in minutes, though wait times are discretised to be divisi-
ble by 5. Time granularity could easily be changed in the model if required.
We additionally employ an array of convenience variables, port time, each of
which is associated with a corresponding variable from the junction time array.
These redundant variables simply collect the times each train arrives at the port
(full) and leaves the port (empty). Their definition makes use of a parameter,
stop allowance, which is the number of minutes required to bring the train to
a full stop, minus the usual time it would take to travel the distance of the stop.
There exists a corresponding term, start allowance, that is defined similarly
and encountered later in the model. The decision variable declarations are:
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set of int: LEG = 1.. maxleg;

set of int: XJUNC = JUNC union { dummy };

array[MINE ,LEG] of XJUNC: path; % path of junctions from mine to port

set of int: TRIP = 0..2*LPM -1;

set of int: FTRIP = { 2*i | i in 0..2*LPM -1}; % full trips

set of int: ETRIP = TRIP diff FTRIP; % empty trips

array[MINE ,TRIP] of var TIME: mine_time; % time leaving/arriving mine

array[JUNC ,MINE ,TRIP] of var TIME: junction_time; % time arriving at junction

array[JUNC ,MINE ,TRIP] of var WAIT: junction_wait; % wait time at junction

array[MINE ,TRIP] of var TIME: port_time = % time arriving/leaving port

array2d(MINE ,TRIP , [ junction_time[port ,m,t] +

stop_allowance *(t in FTRIP) | m in MINE , t in TRIP ]);

Mine Loading Constraints: We require each full trip to be loaded and to
depart in order. The first train can leave after loading and the remaining trains
follow. After TPM departures trains can return but only in the same order.

forall(m in MINE , t in FTRIP)
(if t = 0 then % first train

mine_time[m,t] >= load_time[m] + start_allowance
elseif t div 2 < TPM then % next few trains up to TPM

mine_time[m,t] >= mine_time[m,t-2] + load_time[m] + start_allowance
+ headway_time

else
mine_time[m,t] >= max(mine_time[m,t-2], mine_time[m,t-2*TPM +1])

+ load_time[m] + start_allowance + headway_time
endif);

Port Unloading Constraints: We require each empty trip to depart the
port immediately after its full trip has unloaded, capturing the requirement that
trains do not remain in the port after unloading. Note that our unload time
includes a shunting component which is a function of the length of the train
(this could also be modeled separately on a per-train basis).

forall(m in MINE , t in ETRIP)
(port_time[m,t] = port_time[m,t-1] + unload_time + start_allowance);

Port Capacity Constraints: We ensure that no more trains are unloading at
the port than there are dump stations, unload capacity.

cumulative ([ port_time[m,t] | m in MINE , t in FTRIP],
[unload_time | m in MINE , t in FTRIP],
[ 1 | m in MINE , t in FTRIP], unload_capacity);

Unused Junctions: We record a time for each trip at each junction, since
there are not that many junctions, but of course almost no trips will visit all
junctions. The unused junctions are set to have time and wait of 0.

array[MINE] of set of JUNC: junctions_for_mine =
[ {path[m,l]|l in LEG where path[m,l] != dummy} | m in MINE];

array[JUNC] of set of MINE: mines_for_junction =
[ {m | m in MINE where j in junctions_for_mine[m] }| j in JUNC ];

forall(m in MINE , t in TRIP , j in JUNC diff junctions_for_mine[m])
(junction_time[j,m,t] = 0 /\ junction_wait[j,m,t] = 0);
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Travel Time: Leg-to and Leg-from Mine: We model (separately) the travel
time for full trips, from the mine to the first junction on its path to the port. In
a similar way we also model travel time for empty trips, from the last junction in
the path to the mine. Note how full trips constrain the times between junctions
in the opposite order to empty trips.

forall(m in MINE , t in FTRIP)
( let { JUNC: j = path[m,1]; LOC: l = junc_loc[j]; } in

junction_time[j,m,t] >= mine_time[m,t] + travel_time[m,l] );
forall(m in MINE , t in ETRIP)

( let { JUNC: j = path[m,1]; LOC: l = junc_loc[j]; } in
mine_time[m,t] >= junction_time[j,m,t] + junction_wait[j,m,t]

+ stop_allowance + travel_time[l,m] );

Travel Time: Inter-junction Legs: Travel time between adjacent junctions
gives rise to a similar constraint.

forall(m in MINE , t in FTRIP)
( forall(s in 1..maxleg -1 where path[m,s+1] != dummy)

( junction_time[path[m,s+1],m,t] >= junction_time[path[m,s],m,t]
+ junction_wait[path[m,s],m,t]
+ travel_time[junc_loc[path[m,s]], junc_loc[path[m,s+1]]] ) );

forall(m in MINE , t in ETRIP)
( forall(s in 1..maxleg -1 where path[m,s+1] != dummy)

( junction_time[path[m,s],m,t] >= junction_time[path[m,s+1],m,t]
+ junction_wait[path[m,s+1],m,t]
+ travel_time[junc_loc[path[m,s+1]], junc_loc[path[m,s]]] ) );

Minimal Wait Times: A train needs to come to a complete stop to wait at
a junction hence there is a minimal amount of time it is delayed by any wait.

forall(j in JUNC , m in MINE , t in FTRIP)
( junction_wait[j,m,t] = 0 \/

junction_wait[j,m,t] >= stop_allowance + start_allowance );

Siding Capacity at Junctions: We constrain trains waiting at a junction j
to be no more than the number of sidings at the junction, sidings[j].

forall(j in JUNC)
( cumulative ([ junction_time[j,m,t] | m in MINE , t in TRIP],

[junction_wait[j,m,t] | m in MINE , t in TRIP],
[ 1 | m in MINE , t in TRIP], sidings[j]) );

Headway Constraints at Junctions: Rather than using a disjunctive con-
straint to model that no two trains pass a junction in the same direction within
headway time, since all the “durations” of these tasks are the same we simply
use alldifferent. This is slightly stronger constraint than the disjunctive
constraint but accurate enough for capacity planning.

forall(j in JUNC)
(alldifferent ([ junction_time[j,m,t] div headway_time

| m in mines_for_junction[j], t in FTRIP]) /\
alldifferent ([ junction_time[j,m,t] div headway_time

| m in mines_for_junction[j], t in ETRIP]));
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4.2 Single Track Constraints

When there is only a single track between two locations we must ensure no
two trains try to use the track while traveling in opposite directions. Though
there are complex ways of modelling this using variable set up times we adopt
a simpler approach where each train reserves the track for the entire time it
is using it. By varying the granularity of the model (adding new junctions) we
can limit the inaccuracy that derives from this overly restrictive constraint. This
approach requires us to introduce the notion of track segments into the model.

A track segment s in SEG has: a start junction, start junc, which may
be dummy if the segment is a leaf; an end junction, end junc; an (optional) set
of mines that sit on that segment (usually in unmodelled mine-specific balloon
loops), mines on segment; and a set of mines that use the segment on their path
to and from the port, mines using segment.

Example 1. Consider the abstract rail network shown in Fig. 2 which includes
junctions j1 and j2, mines m1, . . . , m5 and unmodelled intersections u1, u2 and
u3. The rail network consists of 2 segments: a leaf segment ending at j2 which
includes the mines m3, m4 and m5, and a non-leaf segment from j2 to j1 which
includes the mines m1 and m2. There are no (additional) mines that use the
first segment on their path to the port, while the mines m3, m4 and m5 all use
the second segment on their path to the port. ��

m4 m2

m5 u3 j2 : u2 u1 j1 :

m3 m1

Fig. 2. Part of an (abstract) rail network.

Leaf Segments: Leaf segments connect mines to the rest of the network. We
make sure that no train going to or from a mine in that segment overlap in time
by using the travel time to/from the mine to the end junction of the segment.

array[SEG] of set of MINE: mines_on_segment;
forall(s in SEG where
start_junc[s] = dummy)

({ let { JUNC: j = end_junc[s]; LOC: l = junc_loc[j]; } in
disjunctive ([ if t in FTRIP then % start time

mine_time[m,t]
else junction_time[j,m,t] + junction_wait[j,m,t] endif

| m in mines_on_segment [j], t in TRIP ],
[ if t in FTRIP then % duration

travel_time[m,l]
else travel_time[l,s] endif

| m in mines_on_segment [s], t in TRIP ] ) );
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Non-leaf Segments: Non-leaf segments are used to handle trains traveling
between the start and end junctions of the segment. They also handle trains
that travel from either of these junctions to a mine that sits on the segment.
Notice that this constraint always uses the start-to-end travel time. There is an
implicit assumption here that this duration is always less than the travel time
to (or from) a mine that sits on the segment. For our data sets this is always the
case, but the model would need adjustment if it were not the case.

array[SEG] of set of MINE: mines_using_segment;
forall(s in SEG where start_junc[s] != dummy)

( let { JUNC: sj = start_junc[s]; LOC: sl = junc_loc[sj];
JUNC: ej = end_junc[s]; LOC: el = junc_loc[ej];
set of MINE: M = mines_on_segment[s] union

mines_using_segment[s]; } in
disjunctive ([ if t in FTRIP then % start time

junction_time[sj,m,t] + junction_wait[sj,m,t]
else junction_time[ej,m,t] + junction_wait[ej,m,t] endif

| m in M, t in TRIP ],
[ if t in FTRIP then % duration

travel_time[sl,el]
else travel_time[el,sl] endif

| m in M, t in TRIP ] ) );

4.3 Search Strategy

We use the Gecode [14] solver to tackle our models. The default autonomous
search does not perform well so we employ the following simple hybrid which
does: we use a dom/wdeg variable selection heuristic [11] but order the variables
carefully so that tie-breaking in dom/wdeg chooses the variables in a sensible
order. We have found the following simple ordering to be particularly effective:
(i) decision variables that determine arrival and departure times from mine load-
points appear first; (ii) decision variables that determine arrival and departure
times from port unload points appear next; (iii) all other decision variables fol-
low, in any order. Given decision variables that are ordered in a “good” way, we
have found that Gecode can often identify near-optimal solutions very quickly.

5 Experiments

We use our optimisation model to explore a range of infrastructural scenarios,
many of which are difficult to evaluate analytically. These scenarios are:

– Capacity of the current infrastructure.
– Capacity under the assumption of increased payloads per train.
– Capacity assuming the addition of new below-rail infrastructure3; e.g. addi-

tional signalling and duplicated rail lines.

3 In industry terminology, below-rail refers to infrastructure controlled by the network
owner, such as the physical track and signals. By comparison above-rail refers to
infrastructure such as trains, wagons and other so-called rolling stock.
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Table 2. Analytic evaluation of the theoretical capacity of each rail system in the
CQCN. Each of the three models take as input operational parameters from Table 1.

Network Theoretical capacity model Additional parameters

AMine APort ALine Infrastructure availability Line type

Blackwater 329.3 162.2 278.6 100 % Single track

Moura 131.7 61.9 100 % Single track

Goonyella 658.7 221.4 460.4 100 % Single track

Newlands 98.7 81.0 127.02 100 % Single track

Where possible we will compare our computational approach against the
industry-standard analytic techniques discussed in Sect. 3. Recall that these
simplified models are used to compute the maximum theoretical capacity of
infrastructure. We will compare against these optimistic upper-bounds in order
to evaluate the quality of solutions computed with our CP model. Capacity
figures are always given in Mtpa: Millions of tonnes (of coal) per annum.

5.1 Infrastructural Capacity with Analytic Modelling

Recall that the analytic model from Sect. 3 focuses on different aspects of the
network to the exclusion of all other factors. To mitigate this myopic bias we
will compute analytic capacity from three points of view: ports, mines and the
physical rail lines. Table 2 presents our results. We assume loading, unloading
and travel all proceed without delay and that infrastructure is always available
and always operates at maximum throughput. When modeling trains we use a
range of established operational parameters including real-world headway times
and industry maximums for train length and payload size in each rail system.
The full set of all such parameters are given in Table 1 while results from this
analysis are given in Table 2. We make several observations:

– The data suggests that water-front unload points (and not the rail network)
is the most likely bottleneck in each rail system.

– The port bottleneck observation holds despite our (pessimistic) assumption
of single-line track for every ALine model. Note that while this assumption
is true for Moura and Newlands there exist large portions of Blackwater and
Goonyella that are duplicated. We continue to use the single-line assumption
in these cases as the majority of mines are on spurs4 that connect to the
network via single-track branch lines.

5.2 Infrastructural Capacity with Optimisation

Next, we evaluate capacity in the CQCN using our scheduling-based optimisation
model and the Gecode solver. As in the analytic case we employ the full range
4 In industry terminology, a spur is a short branch usually leading to a private siding.
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Table 3. CP-based rail capacity. We assume current CQCN operational parameters,
as described in Table 1. Columns LPM and TPM respectively indicate the number of
loads per mine (i.e. the size of the freight task) and the number of (dedicated) trains
per mine. Figures denoted with * are provably optimal.

Network Parameters Network performance

LPM TPM Trains Avg. Cycle time Total wait Port util Capacity

B/Moura 15 2 13,464 17.4 h 0 87.8 % 142.7

Goonyella 15 2 15,130 19.8 h 0 89.2 % 198.9

Newlands 35 4 8,860 10.0 h 0 95.5 % 77.9*

of real-world parameters from Table 1 and assume that infrastructure is always
available and operates at maximum throughput. The first solution is typically
found in seconds and we allow the solver to run for up to a minute thereafter.

We evaluate the capacity of each rail system by measuring its steady-state
performance and extrapolating out to a full year. To avoid warm-up and cool-
down effects we ignore loading and unloading operations at the beginning and
toward the end of the schedule. In particular we consider only port arrivals
between the first and third quartiles of our planning horizon. Results are given
in Table 3. We make several observations:

– In the case of the Newlands system we find that our optimisation approach
is able to compute an exact figure for the maximum infrastructural capacity
of rail. The figure (77.9 Mtpa) is within 5 % of the optimistic upper-bound
established by the analytic model APort.

– In the case of Blackwater/Moura and Goonyella we compute approximate
capacities which are within 10.8 % and 10.2 % of the upper-bound APort.

– In all three cases port utilisation is very close to or above 90 %. These figures
suggest that the rail network is not the primary limiting factor for increased
coal export volumes in the future. Rather, each system appears constrained
by the infrastructural capacity of their respective ports.

For the experiments at hand the parameters LPM and TPM were hand-
tuned on a per-model basis. If LPM is too small, the freight task can be finished
quickly and before the system can reach a steady state. Alternatively, if LPM is
too large the problem may grow to a size where our optimisation solver cannot
compute a good solution in reasonable time. Similar observations are true for the
parameter TPM. Given too few trains the port infrastructure can remain idle
for long periods and its performance will not be indicative of potential capacity.
On the other hand a TPM value that is too large can explode the search space,
again making any solution difficult to find in a reasonable amount of time.

With LPM=15 and TPM=2 the size of the planning horizon is 7.3 days for
Goonyella and 5.9 days fro Blackwater/Moura. We found these values sufficient
to take reliable readings of network performance. In the case of the Newlands
System the planning horizon with these parameters is too small to be useful
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Fig. 3. Tuning LPM and TPM parameters for the Newlands System model. We isolate
each parameter and vary its value. We measure the impact of each change by computing
the percentage utilisation of port unloaders in each resultant scenario.

(<3 days). Figure 3 gives results from a range experiments in which we empiri-
cally identified appropriate values for Newlands. Notice that: (i) setting TPM >
4 does not make any difference to port utilisation but smaller values have a large
impact; (ii) setting LPM < 30 is insufficient to reach the system’s steady-state.

5.3 Case Study: Increased Payloads

One of the case studies asked for by our industry partner is to determine rail
capacity under the assumption that all trains have fixed payloads. The proposed
volumes are 10 Kt, 12 Kt and 14 Kt. Increased payload scenarios involve modeling
trains which are longer or which comprise wagons that are more densely packed.
Lacking data regarding alternative wagon configurations we opt to model longer
trains. Note that both options may require additional below-rail infrastructure;
either in the form of longer balloon loops (to support longer trains) or new load
and unload equipment (configured to support densely packed trains).

To model trains with alternative payload configurations we simply modify
a single value in the associated data file for each network and run the solver
anew. No change to the optimisation model is needed. A similar data-driven
change would also be sufficient to model the densely-packed scenario (in this

Table 4. Experiments using a range of alternative payload sizes. We measure capacity
in three scenarios where all trains carry uniform payloads of 10, 12 and 14 Kt (kilo-
tonnes) of coal. For context, we also give results from the current capacity scenario
which considers fully-loaded trains of the maximal size currently permitted in each rail
system (see Table 1). Figures in bold indicate best results (highest capacity) found.

10Kt Scenario 12Kt Scenario 14Kt Scenario Current max scenario

Capacity T. Len Capacity T. Len Capacity T. Len Capacity T. Len

B/Moura 139.6 1587m 145.6 1904m 138.4 2205m 142.7 1670m

Goonyella 197.5 1578m 198.6 1904m 197.8 2205m 198.9 2071m

Newlands 69.3 1578m 61.9 1904m 64.1 2205m 77.9 1369m



Rail Capacity Modelling with Constraint Programming 183

case we would need to modify wagon length and wagon capacity parameters in
addition to payload size). All other parameters remain as in Sect. 5.2. Results
from this experiment are given in Table 4. We observe that with few exceptions
each increased/uniform payload scenario appears to make little difference to rail
capacity beyond what can be achieved by running trains with the maximum cur-
rently permissible payload size. One exception is the Blackwater/Moura system
where a small gain of 3 Mtpa can be achieved by running 12 Kt trains instead of
the current maximum payload size of 10.6 Kt.

5.4 Case Study: Decreased Headway

Another possibility for increasing the capacity of a rail system is to decrease the
cycle time (i.e. round-trip time) per train. Such scenarios could involve deploying
additional infrastructure or technology to allow decreased headway (i.e. a smaller
temporal separation) between trains or the introduction of new rolling stock
that can travel at faster speeds. We model the decreased headway scenario here
though new rolling stock is equally simple to analyse. In both cases we make
changes only to parameter values. The optimisation model remains unchanged.
Results are given in Table 5.

Table 5. Experiments using a range of fixed headway times. We evaluate their effective-
ness in terms of capacity and port utilisation. For context, we compare these results
against the capacity figures computed in Sect. 5.2 (row “Current”). Figures in bold
indicate best results (highest capacity) found.

Headway (mins) Blackwater/Moura Goonyella Newlands

Capacity Port util Capacity Port util Capacity Port util

6 145.8 89.6 % 195.9 87.9 % 60.1 73.7 %

16 144.7 89.0 % 198.9 89.2 % 64.8 79.4 %

26 147.6 90.7 % 202.6 90.9 % 66.7 81.7 %

30 142.2 87.4 % 195.5 87.7 % 80.5 98.6 %

Current 142.7 87.8 % 198.9 89.2 % 77.9 95.5 %

In a range of experiments we observe that the total throughput of each rail
system is largely invariant, even with reduced headway times. In the case of
Blackwater/Moura system an increase of 3 % (vs. the Current Capacity sce-
nario) appears achievable if we fix the headway time of all trains to 26 min. This
value is larger than the 20 min currently used for junctions in the Blackwater
system but much smaller than the 90 min used in Moura. A similar gain can be
achieved in Newlands when headways are reduced to 30 min (cf. 36 currently). It
is interesting to note that for the Goonyella system the best result is for 26 min
(cf. 16 currently). We interpret this as suggestive that small amounts of extra
waiting can help when there is a high degree of contention for rail resources.
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5.5 Case Study: Track Duplication

For a final case study we consider the impact on rail capacity through the dupli-
cation of key sections of rail track. Introducing new line capacity into the system
reduces waiting and track contention and allows parallel travel in both directions
(i.e. simultaneously to and from the port). There are two aspects to such an
analysis: (i) we must identify which sections of track are most likely to yield the
greatest benefit; (ii) we must evaluate the effect of the proposed simulation. We
begin with an analysis of the Blackwater system.

Figure 4 shows the arrival frequency of trains at the most visited junctions
in the Blackwater system. A junction is a reasonable candidate for duplica-
tion if the arrival frequency of trains traveling in the same direction is close
to or less than the minimum headway time. We observe that while the busiest
single-line junctions (Dingo, Walton, Umolo and Bluff) have trains arriving every
27–28 min, the frequency in any single direction is almost twice that at 50 min.
As there is no contention we may thus infer that track duplication at these
points will not increase the infrastructural throughput of the system. We con-
firmed this hypothesis empirically. Similar results hold for each of the other rail
systems under consideration.

It is important to note that track duplication e.g. between Dingo and Bluff
may still make sense operationally. With only 30 min of idle time between
arrivals, and round-trip times of over 17 h (see Table 3), it is entirely possible
that unforeseen delays during loading, unloading or during travel on the network
could result in contention for track resources at these locations.

Fig. 4. Most visited single-line junctions in the Blackwater system. We give the aver-
age time difference between arrival times for full and empty trains at each junction.
Measurements are in minutes and reflect system performance during its steady state.
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6 Conclusion

We evaluate the infrastructural capacity of four rail systems which together com-
prise the Central Queensland Coal Network. Similar capacity evaluation prob-
lems appear in a range of industrial settings but especially cases where bulk
goods and freight containers must be railed between inland terminals and the
waterfront. Effective models that capture the dynamics of a such a system are
prized tools of industry planners.

We propose a new approach for rail capacity estimation using constraint
programming with MiniZinc. Written in the form of a scheduling problem, our
model is simple to develop, easy to extend and can be used to compute fast and
accurate capacity estimates for large rail networks. Because it is data-driven the
model makes it especially easy to evaluate a wide range of “what-if” scenarios of
interest to industry planners. We give particular examples involving alternative
train payloads, alternative headway times and track duplication scenarios.

There are many other scenarios of practical interest such as mixed train
lengths and grade easing. We could extend our model to investigate these. We
can also extend our model to capture further dynamics of the system like: sched-
uled downtime, different train speeds, refuelling operations and crew changeover.
Most of these extensions appear quite straightforward to achieve.

We believe the principal lesson of this paper is that optimisation technology
has matured to the point where we can quickly undertake detailed infrastruc-
ture modelling and analysis. Such capability is essential to inform long-term
infrastructural investment decisions made by governments and large corpora-
tions.
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Abstract. We propose an exact optimization method for home hospice
care staffing and scheduling, using logic-based Benders decomposition
(LBBD). The objective is to match hospice care aides with patients and
schedule visits to patient homes, so as to maximize the number of patients
serviced by available staff, while meeting requirements of the patient plan
of care and scheduling constraints imposed by the patients and the staff.
The Benders master problem assigns aides to patients and days of the
week and is solved by mixed integer programming (MIP). The routing
and scheduling subproblem decouples by aide and day of the week and
is solved by constraint programming. We report preliminary computa-
tional results for problem instances obtained from a major hospice care
provider. We find that LBBD is superior to state-of-the-art MIP and
solves problems of realistic size, if the aim is to conduct staff planning
on a rolling basis while maintaining continuity of the care arrangement
for patients currently receiving service.

Keywords: Home health care problem · Routing and scheduling ·
Logic-based Benders decomposition · Home hospice care

1 Introduction

Home health care is one of the world’s most rapidly growing industries, due
primarily to cost advantages as well as aging populations. Home care allows
patients to receive basic medical or hospice care in comfortable and familiar
surroundings, rather than being transported or admitted to facilities that are
expensive to operate. It also reduces the risk of acquiring drug-resistant infections
that may spread in hospitals and nursing homes. The increasing availability of
portable equipment and online consultation makes home care feasible for an ever
wider variety of conditions.

The cost-effectiveness of home health care depends critically on the efficient
dispatch of health care aides, whom we call aides for short. This poses the home
health care problem (HHCP), which asks how home visits can be scheduled and
staffed so as to make the best use of aides while meeting patient needs. Aides
typically start their work shift at home or a central office, travel directly from
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 187–197, 2016.
DOI: 10.1007/978-3-319-33954-2 14
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one patient to the next, and return to home or office at the end of the shift.
The shift may be subject to a number of legal or contractual restrictions, such
as a maximum work time and the need for lunch/dinner breaks. Each medical
or hospice service must be performed by an aide with the proper qualifications,
and services may be restricted to specified days or time windows. It may be
necessary for two or more aides to visit a patient at the same time, to carry out
more complicated treatments.

We focus on hospice care, which has a few distinctive characteristics. Aides
frequently provide personal and household services rather than medical treat-
ment, or they may simply offer companionship. They tend to visit on a regular
schedule over a period of several weeks, such as three times a week in the morn-
ing. It is often important for a given service to be provided by the same aide
during every visit, so far as is possible. Staff planning is typically over a longer
time horizon, perhaps several weeks.

Because of the regularity of visits and the need for staffing continuity, the
primary challenge that arises in practice is to update the schedule and antici-
pate staffing needs as the patient population evolves. If patient turnover for the
next few weeks can be forecast, then a schedule can be computed for the new
population to determine what kind of work force will be required.

We therefore address the problem of recomputing the staff assignments and
visitation schedule when a specified subset of the patients are replaced by new
patients with known requirements. Due to the importance of continuity, we
require that existing patients be served by the same aide on the same days
as before, but allow for adjustments in the time of day. The models are easily
modified to maintain the time of day as well, or to reschedule both the time of
day and days of the week.

Due to the difficulty of the HHCP, nearly all existing solution methods are
heuristic algorithms. Recent work can be found in [1–10]. The few exact methods
include two branch-and-price methods [11,12] and a branch-and-bound method
that relies on a traveling salesman algorithm [13].

We propose a very different exact method that uses logic-based Benders
decomposition (LBBD) [14–18] and is well suited to scheduling on a rolling basis.
An exact method offers the advantage that one can know with certainty whether
a given work force can cover anticipated patient needs, and therefore when hiring
additional staff is really necessary. We find that LBBD makes exact solution
possible for applications of realistic size when the problem is to reschedule on a
rolling basis, rather than schedule all the patients from scratch.

LBBD exploits a natural decomposition of the HHCP into an assignment
component (allocation of patients to aides) and a routing and scheduling com-
ponent (dispatching and routing of aides). It combines the complementary
strengths of mixed integer programming (MIP) and constraint programming
(CP), with MILP solving the assignment problem and CP solving the routing
and scheduling problem.

LBBD is a generalization of classical Benders decomposition [19] in which
the subproblem can be any combinatorial problem, not necessarily a linear pro-
gramming problem. The Benders cuts are based on an inference dual of the
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subproblem, whose solution is regarded as a proof of optimality or infeasibil-
ity, rather than a linear programming dual. LBBD has reduced solution times
by orders of magnitude relative to conventional methods in a variety of prob-
lems [14–18,20–34]. In our solution of the HHCP, the Benders master problem
assigns aides to patients and to days of the week on which these patients are
serviced. The Benders subproblem is the routing and scheduling problem that
results from the assignment obtained by solving the master problem. The sub-
problem decouples into routing and scheduling micro-problems that correspond
to each aide and each day of the week. Infeasible micro-problems give rise to
Benders cuts that are added to the master problem. The process repeats until
all the micro-problems are feasible. Our primary methodological contribution is
to identify a relaxation of the scheduling subproblem that, when included in the
master problem, results in significantly faster solution.

The only previous application of LBBD to the HHCP of which we are aware
is a heuristic method in an unpublished manuscript [4]. It solves the master
problem with greedy heuristic and the subproblem with CP, while creating a
schedule for only one day.

2 The Problem

The problem can be stated as follows. For each patient j there is a time window
[rj , dj ] during which a visit to that patient must take place, as well as the visit
duration pj . It is assumed that each patient requires one type of visit. If a
patient requires two or more types of visits, the patient is regarded as two or
more distinct patients (with nonoverlapping time windows if the visits should not
overlap). Aides must be qualified to serve assigned patients, but this requirement
actually makes the problem easier to solve and is therefore not considered here.

Each aide i departs from home base bi and returns to home base b′
i (which

could be the same as bi). The allowable shift hours of aide i are specified by a
time window [rbi

, dbi
] for departure from the origin base and a window [rb′

i
, db′

i
]

for arrival at the destination base. Travel time between patient (or home base)
j and patient j′ is tjj′ .

We formulate the problem for a cyclic 7-day schedule with no visits on week-
ends. Each patient j requires vj visits per week, with vj ∈ {1, 2, 3, 5}. Twice-
a-week visits must be separated by at least 2 days, and thrice-a-week visits by
1 day. The variables are designed to facilitate a decomposition scheme in which
the scheduling subproblem is solved by constraint programming. Binary variable
δj = 1 when patient j is serviced, and binary variable xij = 1 when aide i is
assigned to patient j. Binary variable yijk = 1 when aide i visits patient j on
day k, so that yijk ≤ xij for all i, j, k. There are sequencing variables πikν that
represent the νth patient visited by aide i on day k. Variable sijk indicates the
time at which aide i’s visit to patient j starts on day k.

We maximize the number of patients that can be covered by a given work
force. This not only determines whether the work force is adequate, but it tends
to minimize idle time and driving time in an aide’s schedule. The problem can
be stated as follows:
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max
∑

j

δj (a)

∑

i

xij = δj ,
∑

i,k

yijk = vjδj , all j (b)

yijk ≤ xij , all i, j, k (c)
yibik = yib′

ik
= 1, all i, k (d)

yij,k+τ ≤ 1 − yijk, τ = 1, 4 − vj ,
all i, j, k with vj ∈ {2, 3}, 1 ≤ k ≤ vj + 1 (e)

δj , xij , yijk ∈ {0, 1}, all i, j, k, (f)

nik =
∑

j

yijk, alldiff
{
πikν

∣∣ ν = 1, . . . , nik

}
, all i, k (g)

πikν ∈ {j | yijk = 1}, all i, k, and ν = 1, . . . , nik (h)
πi1k = bi, πinikk = b′

i, all i, k (i)
rj ≤ sijk ≤ dj − pj , all i, j, k (j)
sπikν

+ pπikν
+ tπkνπk,ν+1 ≤ sπik,ν+1 , all i, k, and ν = 1, . . . , nik − 1 (k)

(1)

Constraint (b) defines δj and ensures that every patient is visited by the same
aide on the required number of days. Constraint (d) says that an aide’s start and
end home base must be visited every day. Constraint (e) controls the spacing of
assigned days. Constraint (g) defines variable nik to be the number of patients
assigned to aide i on day k and requires that the corresponding sequence variables
take distinct values. Constraint (h) says that an aide’s visits that are sequenced
on a given day are in fact those assigned to the aide on that day. Constraint (i)
ensures that the start and end home base are visited first and last, respectively.
Constraint (j) enforces time windows. Constraint (k) ensures that a visit does
not start before the aide can arrive from the previous visit.

When updating an existing schedule, we need only fix yijk = 1 when patient j
remains in the population and is assigned to aide i on day k. To require that existing
patients be served at the same time of day as before, their time windows can be set
equal to the visit period. To allow existing patients to be served on different days
of the week than before, we can fix the variables xij rather than yijk.

3 Benders Subproblem

The subproblem decouples into a separate micro-problem for each aide and each
day. Each is a feasibility problem that checks whether there is a schedule that
observes the time windows while taking account of the visit durations and travel
times. If not, a Benders cut is generated as described below.

The subproblem formulation consists of the scheduling constraints in (1) after
the daily assignment variables yijk are fixed to the values ȳijk they receive in the
previous solution of the master problem. The micro-problem Sik for each aide i
and day k is
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alldiff
{
πν

∣∣ ν = 1, . . . , n̄ik

}

π1 = bi, πn̄ik
= b′

i

rj ≤ sj ≤ dj − pj , all j ∈ Pik

sπν
+ pπν

+ tπνπν+1 ≤ sπν+1 , ν = 1, . . . , n̄ik − 1
πν ∈ Pik, ν = 1, . . . , n̄ik

where Pik = {j | ȳijk = 1} and n̄ik = |Pik|. If Sik is infeasible, we generate a
simple nogood cut

∑
j∈Pik

(1 − yijk) ≥ 1 that prevents the same set of patients
from being assigned to aide i on day k in subsequent assignments.

We can, in principle, generate stronger cuts by determining whether the same
proof of infeasibility remains valid when smaller sets of patients are assigned to
aide i on day k. Unfortunately, we do not have access to the mechanism by
which CP solver proves infeasibility. We therefore tease out stronger cuts by
re-solving Sik for subsets of Pik. Sik can be rapidly re-solved because of its
small size. We use the following simple heuristic, which has proved effective in
several studies [18,20–22,34]. We initially set P̄ik = Pik, and for each j ∈ P̄ik

we do the following: remove j from P̄ik, re-solve Sik, and restore j to P̄ik if the
modified Sik is feasible. This yields a Benders cut that results in significantly
better performance: ∑

j∈P̄ik

(1 − yijk) ≥ 1 (2)

Whenever we derive a cut for a given aide i and day k of the week, we can
generate a similar cut for every other day of the week. However, the resulting
proliferation of cuts causes the solution of master problem to bog down. We found
that an effective compromise is to sum the cuts for the remaining 4 weekdays.
Thus for each cut (2), we also generate the cut

∑

k′ �=k

∑

j∈P̄ik

(1 − yijk′) ≥ 4

4 Benders Master Problem

The basic master problem consists of constraints (a)–(f) of the original problem
(1) and the Benders cuts generated in all previous iterations as described above.
It also contains a relaxation of the subproblem, because computational experi-
ence in [22] and elsewhere indicates that including such a relaxation is crucial
to obtaining good performance of LBBD.

We found the following time window relaxation to be effective. For each aide
i, define a set {[rbi

, αi�] | � ∈ Li} of backward intervals that begin with the start
of the aide’s shift, and a set {[βi�, db′

i
] | � ∈ L′

i} of forward intervals that end with
the termination of the shift. For each backward interval � ∈ Li, let Ji� be the
set of visits whose time window [rj , dj ] is a subset of the interval, and define J ′

i�

similarly for forward intervals. Let the backward augmented duration p′
ijk for a

visit j, aide i and day k be the duration pj plus the minimum transit time from
the previous visit (which may be the origin base for the aide), and similarly for
the forward augmented duration p′′

ijk. That is,
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p′
ijk = pj + min

{
tbij , min

j′∈Qik

{tj′j}
}
, p′′

ijk = pj + min
{

min
j′∈Qik

{tjj′}, tjb′
i

}

where Qik is the set of visits that are already assigned aide i on day k, or that
have not yet been assigned an aide. Thus the backward augmented duration is
a lower bound on the time required to reach and carry out a visit, and similarly
for the forward augmented duration.

We now observe that sum of the backward augmented durations of visits in
Ji� must be at most the width of backward interval �, and similar for any forward
interval:

∑

j∈Ji�

p′
ijkyijk ≤ αi� − rbi

, � ∈ Li;
∑

j∈J ′
i�

p′′
ijkyijk ≤ db′

i
− βi�, � ∈ L′

i (3)

This because the visits and travel to each visit must fit between the beginning
of the aide’s shift and the end of the backward interval, and similarly for a for-
ward interval. Inequalities (3), collected over all aides i, comprise a time window
relaxation.

The backward and forward intervals should be chosen so that the visits that
can take place within them have a large total duration relative to the width
of the interval, as this results in tighter inequalities (3). In the test instances,
the time windows of the visits span either most of the morning or most of the
afternoon. It was therefore natural to use one backward interval ending at noon,
and one forward interval beginning at noon, for each aide i. Thus Li = L′

i = {1}
and αi1 = βi1 = noon for each i.

This is a weak relaxation when scheduling all patients from scratch, because
the shortest travel time from the last (or next) visit is a weak bound on the
actual travel time. However, it is more effective in the rolling problem, because
the shortest travel time is computed only over patients who are already assigned
aide i on day k or are unassigned.

5 Computational Results

We tested the LBBD algorithm on real-world data provided by a major hospice
care firm. To obtain an initial schedule, we ran a greedy heuristic on an 80-patient
population using 20 aides. Since the heuristic could schedule only 48 patients,
we ran the LBBD algorithm on 60 of these patients, including 40 pre-scheduled
by the greedy heuristic and 20 treated as new patients. LBBD scheduled all of
the new patients using 18 aides. The resulting 60-patient schedule was used as a
starting point for computational tests. It is better than a heuristic schedule but
worse than an optimal one, as one might expect when scheduling on a rolling
basis.

We compared the performance of LBBD and mixed integer programming
(MIP) for different rates of patient turnover in the 60-patient population. One
instance is generated for each number m = 6, . . . , 23 of new patients, where
the new patients are assumed to be the last m patients in the list of 60.
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We designated 8 of the 18 aides as available to cover the new patients (along
with their pre-assigned patients), because a minimum of 9 aides were required in
nearly every instance. This allowed us to test computational performance near
the phase transition for the problem.

We formulated an MIP model for the problem by modifying the well-known
multicommodity flow model for the vehicle routing problem with time windows
[35–37]. The model consists of (a)–(f) in (1) and the following:

wijb′
ik

+
∑

j′ �=j

wijj′k = wibijd +
∑

j′ �=j

wij′jk = yijk, all i, j, k

wibijk +
∑

j′ �=j

wijj′k = wijb′
ik

+
∑

j′ �=j

wijj′k, all i, j, k

sij′k ≥ sijk + pj + tjj′ − Mjj′(1 − wijj′k), all i, j, j′, k

rbi
≤ sibik ≤ db′

i
, rj ≤ sijk ≤ dj − pj , all i, j, k

plus similar constraints in which j and/or j′ is a home base. Here the binary
variable wijj′k ∈ {0, 1} represents flow and Mjj′ = max{0, dj − pj + tjj′ − rj′}.

We implemented LBBD using the IBM ILOG CPLEX Optimization Studio
version 12.6.2. The master problem was solved by CPLEX and the subproblem
by the IBM ILOG CP Optimizer. The routing and scheduling micro-problems
were formulated with a noOverlap constraint associated with sequencing and
interval variables. We solved the MIP model using CPLEX. The CPLEX pre-
solve routine removes variables in the MIP model and LBBD master problem
that are fixed to 0 or 1 by preassignments. The solver was run in Windows 7 on
a laptop with an Intel Core i7 processor and 7.75 GB RAM.

The results appear in Table 1. Since ILOG Studio does not report solution
time for LBBD, the times shown are total elapsed clock times as indicated on
the Studio console. They reflect overhead incurred in setting up the problem and
retrieving the solution, which can be a significant fraction of total time for the
smallest instances.

Both LBBD and MIP readily solve the smaller instances, but MIP suffers
a combinatorial blowup when there are more than 14 or 15 new patients. MIP
is disadvantaged by the fact that the number of variables grows quadratically
with the number of new patients, while in LBBD it grows only linearly. LBBD
therefore postpones the blowup significantly. Table 1 also shows that including
a subproblem relaxation in the master problem is crucial to the performance of
LBBD.

Patient records suggest that a 5–8 % turnover per week is typical in prac-
tice. LBBD therefore allows staff planning a month or so in advance for a patient
population of 60. This is adequate for many real-world problem instances, partic-
ularly given that improvements in the LBBD model and subproblem relaxation
are likely.
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Table 1. Effect of patient turnover on computation times in a population of 60 patients
and 18 aides, 8 of whom are available for new patients. The new patients replace an
equal number of existing patients. Number of Benders iterations is shown, along with
computation time (minutes : seconds). The last two columns show results for LBBD
without a subproblem relaxation in the master problem.

New patients Patients scheduled LBBD MIP LBBD no relax

Iters. Time Time Iters. Time

6 60 2 0:10 0:39 17 1:17

7 60 3 0:15 0:39 18 1:23

8 60 7 0:34 0:49 22 1:49

9 59 7 0:34 0:41 20 1:38

10 59 6 0:31 0:43 20 1:41

11 59 6 0:32 0:41 31 2:52

12 59 9 0:47 0:45 30 2:54

13 59 24 2:15 1:00 51 6:53

14 59 29 3:00 20:27 63 9:18

15 59 37 4:20 11:40 72 11:57

16 59 39 4:45 142:08 87 16:26

17 59 39 4:46 129 36:39

18 59 38 4:56 126 30:00

19 59 75 14:13 138 48:01

20 58 75 14:44 141 63:49

21 58 87 24:21

22 59 130 48:00

23 59 159 93:56

6 Conclusion

We find that logic-based Benders decomposition solves the home hospice care
problem on a rolling basis more rapidly than state-of-the-art mixed integer pro-
gramming, and it scales up to problems of realistic size. Unlike nearly all com-
peting methods developed for this problem, it computes an optimal schedule
and therefore allows planners to determine with certainty whether a given work
force can meet projected patient requirements.

LBBD has the advantage that the routing and scheduling subproblems
remain constant in size as the patient population grows, while the number of
scheduling variables in MIP increases quadratically. The performance of LBBD
also benefits from an effective time-window relaxation of the subproblem that we
developed for inclusion in the master problem. LBBD is particularly well suited
for scheduling on a rolling basis because continuity constraints strengthen this
relaxation.
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Due to the sensitivity of performance to the quality of the subproblem relax-
ation, future research will focus on identifying tighter relaxations, as well as
incorporating constraints and objectives that more adequately reflect the com-
plexity of the real-world problem.
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Abstract. Sequential pattern mining (SPM) under gap constraint is a
challenging task. Many efficient specialized methods have been devel-
oped but they are all suffering from a lack of genericity. The Constraint
Programming (CP) approaches are not so effective because of the size of
their encodings. In [7], we have proposed the global constraint Prefix-
Projection for SPM which remedies to this drawback. However, this
global constraint cannot be directly extended to support gap constraint.
In this paper, we propose the global constraint GAP-SEQ enabling to
handle SPM with or without gap constraint. GAP-SEQ relies on the
principle of right pattern extensions. Experiments show that our app-
roach clearly outperforms both CP approaches and the state-of-the-art
cSpade method on large datasets.

1 Introduction

Mining sequential patterns (SPM) is an important task in data mining. There
are many useful applications, including discovering changes in customer behav-
iors, detecting intrusion from web logs and finding relevant genes from DNA
sequences. In recent years many studies have focused on SPM with gap con-
straints [17,19]. Limited gaps allow a mining process to bear a certain degree
of flexibility among correlated pattern elements in the original sequences. For
example, [6] analyses purchase behaviors to reflect products usually bought by
customers at regular time intervals according to time gaps. In computational
biology, the gap constraint helps discover periodic patterns with significant bio-
logical and medical values [15].

Mining sequential patterns under gap constraint (GSPM) is a challenging
task, since the apriori property does not hold for this problem: a subsequence
of a frequent sequence is not necessarily frequent. Several specialized approaches
have been proposed [6,10,19] but they have a lack of genericity to handle simul-
taneously various types of constraints. Recently, a few proposals [4,8,11,12] have
investigated relationships between GSPM and constraint programming (CP) in
order to provide a declarative approach, while exploiting efficient and generic
solving methods. But, due to the size of the proposed encodings, these CP
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 198–215, 2016.
DOI: 10.1007/978-3-319-33954-2 15
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methods are not as efficient as specialized ones. More recently, we have pro-
posed the global constraint Prefix-Projection for SPM which remedies this
drawback [7]. However, this global constraint cannot be directly extended to
support gap constraint.

In this paper, we introduce the global constraint GAP-SEQ enabling to
handle SPM with or without gap constraint. GAP-SEQ relies on the principle
of right pattern extension and its filtering exploits the prefix anti-monotonicity
property of the gap constraint to provide an efficient pruning of the search space.
GAP-SEQ enables to handle simultaneously different types of constraints and
its encoding does not require any reified constraints nor any extra variables.
Finally, experiments show that our approach clearly outperforms CP approaches
as well as specialized methods for GSPM and achieves scalability while it is a
major issue for CP approaches.

The paper is organized as follows. Section 2 introduces the prefix anti-
monotonicity of the gap constraint as well as right pattern extensions that will
enable an efficient filtering. Section 3 provides a critical review of specialized
methods and CP approaches for sequential pattern mining under gap constraint.
Section 4 presents the global constraint GAP-SEQ. Section 5 reports experi-
ments we performed. Finally, we conclude and draw some perspectives.

2 Preliminaries

First, we provide the basic definitions for GSPM. Then, we show that the anti-
monotonicity property of frequency of SPM does not hold for GSPM. Finally,
we introduce right pattern extensions that will enable an efficient filtering for
GSPM.

2.1 Definitions

Let I be a finite set of distinct items. The language of sequences corresponds to
LI = In where n ∈ N

+.

Definition 1 (sequence, sequence database). A sequence s over LI is an
ordered list 〈s1 . . . sn〉, where si, 1 ≤ i ≤ n, is an item. n is called the length of
the sequence s. A sequence database SDB is a set of tuples (sid, s), where sid
is a sequence identifier and s a sequence denoted by SDB[sid].

We now define the subsequence relation �[M,N ] under gap[M,N ] constraint
which restricts the allowed distance between items of subsequences in sequences.

Definition 2 (subsequence relation �[M,N ] under gap[M,N ]). α = 〈α1 . . .
αm〉 is a subsequence of s = 〈s1 . . . sn〉, under gap[M,N ], denoted by (α �[M,N ]

s), if m ≤ n and, for all 1 ≤ i ≤ m, there exist integers 1 ≤ j1 ≤ . . . ≤ jm ≤ n,
such that αi = sji , and ∀k ∈ {1, ...,m − 1},M ≤ jk+1 − jk − 1 ≤ N . In this
context, the pair (s, [j1, jm]) denotes an occurrence of α in s, where j1 and jm

represent the positions of the first and last items of α in s. We say that α is
contained in s or s is a super-sequence of α under gap[M,N ]. We also say that
α is a gap[M,N ] constrained pattern in s.
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– Let AllOcc(α, s) = {[j1, jm] | (s, [j1, jm]) is an occurrence of α in s} be the set
of all the occurrences of some sequence α under gap[M,N ] in s.

– Let AllOcc(α, SDB) = {(sid,AllOcc(α, SDB[sid])) | (sid, SDB[sid]) ∈
SDB} be the set of all the occurrences of some sequence α under gap[M,N ]
in SDB.

– Let gap[M,∞] and gap[0, N ] the minimum and the maximum gap con-
straints respectively. The relation � stands for �[0,∞] where the gap constraint
is inactive.

For example, the sequence 〈BABC〉 is a super-sequence of 〈AC〉 under
gap[0, 2]: 〈AC〉 �[0,2] 〈BABC〉.

Definition 3 (prefix, postfix). Let β = 〈β1 . . . βn〉 be a sequence. The
sequence α = 〈α1 . . . αm〉 where m ≤ n is called the prefix of β iff ∀i ∈
[1..m], αi = βi. The sequence γ = 〈βm+1 . . . βn〉 is called the postfix of s w.r.t. α.
With the standard concatenation operator “concat”, we have β = concat(α, γ).

The cover of a sequence α in SDB is the set of all tuples in SDB in which
α is contained. The support of a sequence α in SDB is the cardinal of its cover.

Definition 4 (cover and support). Let α be a sequence. cover
[M,N ]
SDB (α)=

{(sid, s) ∈ SDB |α �[M,N ] s} and sup
[M,N ]
SDB (α) = #cover

[M,N ]
SDB (α).

Definition 5 (gap[M,N ] constrained sequential pattern mining (GS
PM)). Given a sequence database SDB, a minimum support threshold minsup
and a gap constraint gap[M,N ]. The problem of gap[M,N ] constrained sequen-
tial pattern mining is to find all subsequences α such that sup

[M,N ]
SDB (α) ≥ minsup.

Table 1. A sequence database example SDB1.

Sid Sequence

1 〈ABCDB〉
2 〈ACCBACB〉
3 〈ADCBEEC〉
4 〈AACC〉

Example 1. Table 1 represents a sequence database of four sequences where
the set of items is I = {A,B,C,D,E}. Let the sequence α = 〈AC〉. The
occurrences under gap[0, 1] of α in SDB1[2] is given by AllOcc(α, SDB1[2]) =
{[1, 2], [1, 3], [5, 6]}. We have cover

[0,1]
SDB1

(α) = {(1, s1), (2, s2), (3, s3), (4, s4)}. If
we consider minsup = 2, α is a gap[0, 1] constrained sequential pattern because
sup

[0,1]
SDB1

(α) ≥ 2.
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2.2 Prefix Anti-monotonicity of gap[M,N ]

Most SPM algorithms rely on the anti-monotonicity property of frequency [1] to
reduce the search space: all the subsequences of a frequent sequence are frequent
as well (or, equivalently, if a subsequence is infrequent, then no super-sequence of
it can be frequent). However, this property does not hold for the gap constraint,
and more precisely for the maximum gap constraint. A simple illustration from
our running example suffices to show that sequence 〈AB〉 is not a sequential
pattern under gap[0, 1] (for minsup = 3) whereas sequence 〈ACB〉 is a gap[0, 1]
constrained sequential pattern. As a consequence, one needs to use other tech-
niques for pruning the search space. The following proposition shows how the
prefix anti-monotonicity property introduced in [14] can be exploited to ensure
the prefix anti-monotonicity of the gap constraint.

Definition 6 (prefix anti-monotone property [14] ). A constraint c is called
prefix anti-monotone if for every sequence α satisfying c, every prefix of α also
satisfies the constraint.

Proposition 1. gap[M,N ] is prefix anti-monotone.

Proof. Let α = 〈α1 . . . αm〉 and s = 〈s1 . . . sn〉 be two sequences s.t. α �[M,N ] s
and m ≤ n. By definition, there exist integers 1 ≤ j1 ≤ . . . ≤ jm ≤ n, such that
αi = sji , and ∀k ∈ {1, ...,m− 1},M ≤ jk+1 − jk − 1 ≤ N . As a consequence, the
property also holds for every prefix of α. 
�

Hence, if a sequence α does not satisfy gap[M,N ], then all sequences that have
α as prefix will not satisfy this constraint. Section 4.2 shows how this property
can be exploited to provide an efficient filtering.

2.3 Right Pattern Extensions

Right pattern extensions of some pattern p gives all the possible subsequences
which can be appended at right of p to form a gap[M,N ] constrained pattern.
According to Proposition 1, the set of all items locally frequent within the right
pattern extensions of p in SDB can be used to extend p. In the following, we
introduce an operator allowing to compute all the right pattern extensions of a
pattern w.r.t. gap[M,N ].

Definition 7 (Right pattern extensions). Given some sequence (sid, s)
and a pattern p s.t. p �[M,N ] s. The right pattern extensions of p in s,
denoted by Ext

[M,N ]
R (p, s), is the collection of legal subsequences of s located at

the right of p and satisfying gap[M,N ]. To define Ext
[M,N ]
R (p, s), we need to

define BE[M,N ](p, s) basic right extensions:

BE[M,N ](p, s) =
⋃

[j1,jm]∈AllOcc(p,s)

{(jm, SubSeq(s, jm + M + 1, min(jm + N + 1, #s)))}

where SubSeq(s, i1, i2) =
{

〈s[i1], ..., s[i2]〉 if i1 ≤ i2 ≤ #s
〈〉 otherwise
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Right pattern extensions Ext
[M,N ]
R (p, s) is defined as follows:

Ext
[M,N ]
R (p, s) =

⎧
⎨

⎩

{Sb | (j′
m, Sb) ∈ BE[M,N ](p, s)∧ ifN ≥ #s

j′
m = min(jm,Sb)∈BE[M,N](p,s){jm}}

⋃
(jm,Sb)∈BE[M,N](p,s){Sb} otherwise

(1)

Formula (1) states exactly the set of all possible extensions of pattern p within s.
In case where (N ≥ #s), since that any extension from BE[M,N ](p, s) always
reaches the end of the sequence s, thus all possible extensions can be aggre-
gated within one unique extension going from the lowest starting position
j′
m = min(jm,Sb)∈BE[M,N](p,s){jm}. We point out that these cases (N ≥ #s)

cover the special case of no gap gap[0,∞].
The right pattern extensions of p in SDB is the collection of all its right

pattern extensions in all sequences of SDB:

Ext
[M,N ]
R (p, SDB) = {(sid, Ext

[M,N ]
R (p, s))|(sid, s) ∈ SDB ∧ p �[M,N ] s} (2)

Example 2. Let p1 = 〈AC〉 be a pattern and the gap constraint be gap[0, 1].
We have AllOcc(p1, SDB1[2]) = {[1, 2]), [1, 3], [5, 6]}. The right pattern exten-
sions of p1 in SDB1[2] is equal to Ext

[0,1]
R (p1, SDB1[2]) = {〈CB〉, 〈BA〉, 〈B〉}.

The right pattern extensions of p1 in SDB1 is given by Ext
[0,1]
R (p1, SDB1) =

{(1, {〈DB〉}), (2, {〈CB〉, 〈BA〉, 〈B〉}), (3, {〈BE〉}), (4, {〈C〉})}.
Let the gap constraint be gap[0,∞]. To compute Ext

[0,∞]
R (p1, SDB1[2]),

only the first occurrence of p1 in SDB1[2] need to be considered (i.e. [1, 2])
(cf. Definition 7). Thus, Ext

[0,∞]
R (p1, SDB1[2]) = {〈CBACB〉}). The right pat-

tern extensions of p1 in SDB1 is equal to Ext
[0,∞]
R (p1, SDB1) = {(1, {〈DB〉}),

(2, {〈CBACB〉}), (3, {〈BEEC〉}), (4, {〈C〉})}.

We define supext
[M,N ]
SDB (α, p) as the support of α within the right pattern

extensions:

supext
[M,N ]
SDB (α, p) = #{(sid, s) ∈ SDB | ∃(sid, E) ∈ Ext

[M,N ]
R (p, SDB),

∃ s′ ∈ E, 〈α〉 � s′)}.
(3)

Let RF [M,N ]
SDB (p) be the set of locally frequent items within the right extensions:

RF [M,N ]
SDB (p) = {v ∈ I | #{sid | ∃(sid, E) ∈ Ext

[M,N ]
R (p, SDB),

∃α ∈ E, 〈v〉 � α)} ≥ minsup}.
(4)

Given a gap[M,N ] constrained pattern p in SDB, according to Proposition 1,
items in RF [M,N ]

SDB (p) can be used to extend p. Proposition 2 establishes the sup-
port count of a sequence γ w.r.t. its right pattern extensions.

Proposition 2 (Support count). For any sequence γ in SDB with prefix α

and postfix β s.t. γ = concat(α, β), sup
[M,N ]
SDB (γ) = supext

[M,N ]
SDB (β, α).

This proposition ensures that only the sequences in SDB grown from α need
to be considered for the support count of a sequence γ. From Proposition 2, we
can derive the following proposition to establish a condition to check when a
pattern is a gap[M,N ] constrained sequential pattern.
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Proposition 3. Let SDB be a sequence database and a minimum support thresh-
old minsup. A pattern p is a gap[M,N ] constrained sequential pattern in SDB
if and only if the following condition holds: #Ext

[M,N ]
R (p, SDB) ≥ minsup

Example 3. Let minsup be 2 and the gap constraint be gap[0, 1]. From
Example 2, we have #Ext

[0,1]
R (p1, SDB1) = 4 ≥ minsup. Thus, p1 = 〈AC〉

is a gap[0, 1] constrained sequential pattern. The locally frequent items within
the right pattern extensions Ext

[0,1]
R (p1, SDB1) of p1 are B and C with supports

of 3 and 2 respectively. According to Proposition 2, p1 can be extended to two
gap[0, 1] constrained sequential patterns 〈ACB〉 and 〈ACC〉.

3 Related Works

Specialized Methods for GSPM. The SPM was first proposed in [1]. Since
then, many efficient specialized approaches have been proposed [2,13,18]. There
are also several methods focusing on gap constraints. Zaki [17] first proposed
cSpade, a depth-first search based on a vertical database format, incorporat-
ing constraints on gap (min gap and max gap) and time windows (max span).
Other constraints on length, items and classes for classification datasets are also
mentioned in the paper but they are not supported in the author’s cSpade imple-
mentation. Ji et al. [6] and Li [9] studied the problem of mining frequent patterns
with gap constraints. In [6], a minimal distinguishing subsequence that occurs
frequently in the positive sequences and infrequently in the negative sequences is
proposed, where the maximum gap constraint is defined. In [9], closed frequent
patterns with gap constraints are mined. All these proposals, though efficient,
lack genericity to handle simultaneously various types of constraints. Finally,
Pei et al. [14] have proposed an algorithm based on prefix-growth which han-
dles constraints that are prefix anti-monotone. These classes of constraints are
stated a posteriori and are only used for -testing- solutions (without any prun-
ing). For the particular case of the gap constraint, when a current prefix satisfies
a constraint, no pruning is achieved and all possible “right-parts” have to be
tested.

CP Methods for GSPM. There are few methods for SPM with gap con-
straints using CP. [11] have proposed to model a sequence using an automaton
capturing all subsequences that can occur in it. The gap constraint is encoded
by removing from the automaton all transitions that do not respect the gap con-
straint. [8] have proposed a CSP model for SPM with explicit wildcards1. The
gap constraints is enforced using the regular global constraint. [12] have proposed
two CP encodings for the SPM. The first one uses a global constraint to encode
the subsequence relation (denoted global-p.f), while the second one (denoted
decomposed-p.f) encodes explicitly this relation using additional variables and
constraints in order to support constraints like gap. However, all these propos-
als usually lead to constraint networks of huge size. Space complexity is clearly
1 A wildcard is a special symbol that matches any item of I including itself.
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identified as the main bottleneck behind the competitiveness of these declarative
approaches. In [7], we have proposed the global constraint Prefix-Projection
for sequential pattern mining which remedies to this drawback. However, this
constraint cannot be directly extended to handle gap constraints. This requires
changing the way the subsequence relation is encoded.

The next section introduces the global constraint GAP-SEQ enabling to
handle SPM with or without gap constraints. GAP-SEQ relies on the prefix
anti-monotonicity of the gap constraint and on the right pattern extensions to
provide an efficient filtering. This global constraint does not require any reified
constraints nor any extra variables to encode the subsequence relation.

4 GAP-SEQ Global Constraint

This section is devoted to the GAP-SEQ global constraint. Section 4.1 defines
the GAP-SEQ global constraint and presents the CSP modeling. Section 4.2
shows how the filtering can take advantage of the prefix anti-monotonicity prop-
erty of the gap[M,N ] constraint (see Proposition 6) and of the right pattern
extensions (see Proposition 5) to remove inconsistent values from the domain of
a future variable. Section 4.3 details the filtering algorithm and Sect. 4.4 provides
its temporal and spatial complexities.

4.1 CSP Modeling for GSPM

A Constraint Satisfaction Problem (CSP) consists of a set X of n variables, a
domain D mapping each variable Xi ∈ X to a finite set of values D(Xi), and a
set of constraints C. An assignment σ is a mapping from variables in X to values
in their domains. A constraint c ∈ C is a subset of the cartesian product of the
domains of the variables that occur in c. The goal is to find an assignment such
that all constraints are satisfied.
(a) Variables and Domains. Let P be the unknown pattern of size � we are
looking for. The symbol � (� /∈ I) stands for an empty item and denotes the
end of a sequence. We encode the unknown pattern P of maximum length � with
a sequence of � variables 〈P1, P2, . . . , P�〉. Each variable Pj represents the item in
the jth position of the sequence. The size � of P is determined by the length of
the longest sequence of SDB. The domains of variables are defined as follows: (i)
D(P1) = I to avoid the empty sequence, and (ii) ∀i ∈ {2 . . . �},D(Pi) = I ∪{�}.
To allow patterns with less than � items, we impose that ∀i ∈ {2..(�−1)}, (Pi =
�) → (Pi+1 = �).
(b) Definition of GAP-SEQ. The global constraint GAP-SEQ encodes both
subsequence relation �[M,N ] under gap constraint gap[M,N ] and minimum fre-
quency constraint directly on the data.

Definition 8 (GAP-SEQ global constraint). Let P = 〈P1, P2, . . . , P�〉
be a pattern of size � and gap[M,N ] be the gap constraint. 〈d1, ..., d�〉 ∈
D(P1) × . . . × D(P�) is a solution of GAP-SEQ(P, SDB,minsup,M,N) iff
sup

[M,N ]
SDB (〈d1, ..., d�〉) ≥ minsup.
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Proposition 4. GAP-SEQ(P, SDB,minsup,M,N) has a solution iff there
exists an assignment σ = 〈d1, ..., d�〉 of variables of P s.t. #Ext

[M,N ]
R (σ, SDB) ≥

minsup.

Proof: This is a direct consequence of proposition 3. �

(c) Other SPM constraints can be directly modeled as follows:
- Minimum Size constraint restricts the number of items of a pattern to be at
least �min: minSize(P, �min) ≡

∧i=�min

i=1 (Pi �= �)
- Maximum Size constraint restricts the number of items of a pattern to be at
most �max: maxSize(P, �max) ≡

∧i=�
i=�max+1(Pi = �)

- Membership constraint states that a subset of items V must belong (or not)
to the extracted patterns. item(P, V ) ≡

∧
t∈V Among(P, {t}, l, u) enforces that

items of V should occur at least l times and at most u times in P . To forbid
items of V to occur in P , l and u must be set to 0.

4.2 Principles of Filtering

(a) Maintaining a local consistency. SPM is a challenging task due to the
exponential number of candidates that should be parsed to find the frequent
patterns. For instance, we have O(nk) potential candidate patterns of length at
most k in a sequence of length n. With gap constraints, the problem is even much
harder since the complexity of checking for subsequences taking a gap constraint
into account is higher than the complexity of the standard subsequence relation.
Furthermore, the NP-hardness of mining maximal2 frequent sequences was estab-
lished in [16] by proving the #P-completeness of the problem of counting the
number of maximal frequent sequences. Hence, ensuring Domain Consistency
(DC) for GAP-SEQ i.e., finding, for every variable Pj , a value dj ∈ D(Pj),
satisfying the constraint is NP-hard.

So, the filtering of GAP-SEQ constraint maintains a consistency lower than
DC. This consistency is based on specific properties of the gap[M,N ] constraint
and resembles forward-checking (regarding Proposition 5). GAP-SEQ is con-
sidered as a global constraint, since all variables share the same internal data
structures that awake and drive the filtering. The prefix anti-monotonicity prop-
erty of the gap[M,N ] constraint (see Proposition 6) and of the right pattern
extensions (see Proposition 5) will enable to remove inconsistent values from the
domain of a future variable.
(b) Detecting inconsistent values. Let RF [M,N ]

SDB (σ) be the set of locally
frequent items within the right pattern extensions (see (4) in Sect. 2.3). The
following proposition characterizes values, of a future (unassigned) variable Pj+1,
that are consistent with the current assignment of variables 〈P1, . . . , Pj〉.

Proposition 5. Let3 σ = 〈d1, . . . , dj〉 be a current assignment of variables
〈P1, . . . , Pj〉, Pj+1 be a future variable. A value d ∈ D(Pj+1) occurs in a

2 A sequential pattern p is maximal if there is no sequential pattern q such that p � q.
3 We indifferently denote σ by 〈d1, . . . , dj〉 or by 〈σ(P1), . . . , σ(Pj)〉.
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solution for the global constraint GAP-SEQ(P, SDB,minsup,M,N) iff d ∈
RF [M,N ]

SDB (σ).

Proof: Assume that σ = 〈d1, . . . , dj〉 is gap[M,N ] constrained sequential pattern
in SDB. Suppose that value d ∈ D(Pj+1) appears in RF [M,N ]

SDB (σ). As the local
support of d within the right extensions (see (3)) is equal to supext

[M,N ]
SDB (〈d〉, σ),

from Proposition 2 we have sup
[M,N ]
SDB (concat(σ, 〈d〉)) = supext

[M,N ]
SDB (〈d〉, σ).

Hence, we can get a new assignment σ ∪ 〈d〉 that satisfies the constraint. There-
fore, d ∈ D(Pj+1) participates in a solution. �

From proposition 5 and according to the prefix anti-monotonicity property
of the gap constraint, we can derive the following pruning rule:

Proposition 6. Let σ = 〈d1, . . . , dj〉 be a current assignment of variables 〈P1,

. . . , Pj〉. All values d ∈ D(Pj+1) that are not in RF [M,N ]
SDB (σ) can be removed

from the domain of variable Pj+1.

Example 4. Consider the running example of Table 1, let minsup be 2 and the
gap constraint be gap[1, 2]. Let P = 〈P1, P2, P3, P4〉 with D(P1) = I and
D(P2) = D(P3) = D(P4) = I ∪ {�}. Suppose that σ(P1) = A. We have
Ext

[1,2]
R (〈A〉, SDB1) = {(1, {〈CD〉}), (2, {〈CB〉, 〈B〉}), (3, {〈CB〉}), (4, {〈CC〉,

〈C〉})}. As B and C are the only locally frequent items in Ext
[1,2]
R (〈A〉, SDB1),

GAP-SEQ will remove values A, D and E from D(P2).

4.3 Filtering Algorithm

Algorithm 1 describes the pseudo-code of GAP-SEQ filtering algorithm. It
takes as input: the index j of the last assigned variable in P , the current partial
assignment σ = 〈σ(P1), . . . , σ(Pj)〉, the minimum support threshold minsup,
the minimum and the maximum gaps. The internal data-structure ALLOCC
stores all the intermediate occurrences of patterns in SDB, where ALLOCCj =
AllOcc(σ, SDB), for j ∈ {1 . . . �}. If σ = 〈〉, then ALLOCC0 = {(sid, [1,#s]) |
(sid, s) ∈ SDB}.

Algorithm 1 starts by computing the right pattern extensions ExtR of σ
in SDB by calling function getRightExt (see Algorithm 2). Then, it checks
whether the current assignment σ satisfies the constraint (line 2). If not, we
stop growing σ and we return False. Otherwise, the algorithm checks if the
last assigned variable Pj is instantiated to � (line 4). If so, the end of the
sequence is reached (since value � can only appear at the end) and the sequence
〈σ(P1), . . . , σ(Pj)〉 is a gap[M,N ] constrained sequential pattern in SDB; hence,
the algorithm sets the remaining (� − j) unassigned variables to � and returns
True (5–6). If (Pj �= �), the set of locally frequent items, within the right pattern
extensions ExtR of σ in SDB, is computed by calling function getFreqItems
(line 7) and the domain of variable Pj+1 is updated accordingly (lines 8–9).

Algorithm 2 gives the pseudo-code of the function getRightExt. First, if
σ is empty (i.e. #σ = 0), all the sequences of SDB are considered as valid
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Algorithm 1. FILTER-GAP-SEQ(SDB, σ, j, P , minsup, M , N)

Data: SDB: initial database; σ: current assignment 〈σ(P1), . . . , σ(Pj)〉; minsup: the
minimum support threshold; ALLOCC: internal data structure for storing
occurrences of patterns in SDB; ExtR: internal data structure for storing right
pattern extensions of σ in SDB.

begin
1 ExtR ← getRightExt(SDB, ALLOCCj−1, σ, M, N) ;
2 if (#ExtR < minsup) then
3 return False ;

4 if (j ≥ 2 ∧ σ(Pj) = �) then
5 for k ← j + 1 to � do
6 Pk ← � ;

else
7 RF ← getFreqItems(SDB, ExtR, minsup) ;
8 foreach a ∈ D(Pj+1) s.t.(a �= � ∧ a /∈ RF) do
9 D(Pj+1) ← D(Pj+1) − {a} ;

10 return True ;

right pattern extensions; the whole SDB should be returned. Otherwise, the
function getAllOcc is called to compute the occurrences of σ in SDB (line 3).
Then, the algorithm processes all the entries of ALLOCCj , one by one (line 5),
and, for each pair (sid,OccSet), scans the occurrences of σ in the sequence
sid (line 7). For each occurrence [j1, jm] ∈ OccSet, the algorithm computes its
right pattern extensions, i.e. the part of the sequence sid which is in the range
[jm + M + 1,min(jm + N + 1,#s)] (line 8). If the new range is valid, it is
added to the set Sb (line 10). After processing the whole entries in OccSet, the
right pattern extensions of σ in the sequence sid are built and then added to
the set ExtR (line 11). The process ends when all entries of ALLOCCj have
been considered. The right pattern extensions of σ in SDB are then returned
(line 12).

Function getAllOcc computes incrementally ALLOCCj from ALLO-
CCj−1. More precisely, lines (18–19) and (24–25) are considered when the first
variable P1 is instantiated (i.e. #σ = 1), and consequently all of its initial occur-
rences should be found and stored in ALLOCC1 through the initialization step
(lines 24–25). After that, ALLOCCj(j > 1) is incrementally computed from
ALLOCCj−1 through line (26).

Example 5. Consider the running example of Table 1, let the gap constraint
be gap[0, 4], and σ = 〈ACB〉. The occurrences of 〈A〉 in SDB1 are stored
in ALLOCC1 = {(1, {[1, 1]}), (2, {[1, 1], [5, 5]}), (3, {[1, 1]}), (4, {[1, 1], [2, 2]})}.
From ALLOCC1, we get the occurrences of 〈AC〉: ALLOCC2 = {(1, {[1, 3]}), (2,
{[1, 2], [1, 3], [1,6], [5,6] }), (3, {[1, 3]}), (4, {[1,3], [2,3], [1,4], [2,4],})}. But,
as BE[M,N ](p, s) is only based on the final position jm of each occur-
rence (see Definition 7), the occurrences with the same final position jm

(in bold in our example) are considered only once. Thus, ALLOCC2 =
{(1, {[1, 3]}), (2, {[1, 2], [1, 3], [1, 6]}), (3, {[1, 3]} ), (4, {[1, 3], [1, 4]})}.
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Algorithm 2. getRightExt(SDB, ALLOCCj−1, σ, M , N)

Data: SDB: initial database; ALLOCCj−1: occurrences of the partial assignment
〈σ(P1), . . . , σ(Pj−1)〉 in SDB; σ: the current partial assignment 〈σ(P1), . . . , σ(Pj)〉;
OccSet: the positions of the first and last items of 〈σ(P1), . . . , σ(Pj−1)〉 in SDB[sid];
Sb: the positions of the first and last items of the right pattern extensions of σ in
SDB[sid].

begin
1 if (σ = 〈〉) then
2 return {(sid, (1,#s))|(sid, s) ∈ SDB} ;

3 ALLOCCj ← getAllOcc(SDB, ALLOCCj−1, σ, M, N) ;
4 ExtR ← ∅ ;
5 foreach pair (sid, OccSet) ∈ ALLOCCj do
6 s ← SDB[sid]; Sb ← ∅ ;
7 foreach pair [j1, jm] ∈ OccSet do
8 j′

1 ← jm + M + 1; j′
m ← min(jm + N + 1,#s) ;

9 if (j′
1 ≤ j′

m) then
10 Sb ← Sb ∪ {(j′

1, j′
m)} ;

11 ExtR ← ExtR ∪ {(sid, Sb)} ;

12 return ExtR ;

Function getAllOcc (SDB, ALLOCCj−1, σ, M , N) ;
begin

13 ALLOCCj ← ∅; inf ← 0; sup ← 0;
14 foreach pair (sid, OccSet) ∈ ALLOCCj−1 do
15 s ← SDB[sid]; newOccSet ← ∅; redundant ← false; i ← 1 ;
16 while (i ≤ #OccSet ∧¬redundant) do
17 [j1, jm] ← OccSet[i]; i ← i + 1;
18 if (#σ = 1) then
19 inf ← 1; sup ← #s ;

else
20 inf ← jm + M + 1; sup ← min(jm + N + 1,#s) ;

21 k ← inf ;
22 while ((k ≤ sup) ∧ (¬redundant)) do
23 if (s[k] = σ(Pj)) then
24 if (#σ = 1) then
25 newOccSet ← newOccSet ∪ {[k, k]} ;

else
26 newOccSet ← newOccSet ∪ {[j1, k]} ;

27 if (((sup = #s) ∧ (#σ > 1)) ∨ (N ≥ #s)) then
28 redundant ← true ;

29 k ← k + 1 ;

30 if (newOccSet �= ∅) then
31 ALLOCCj ← ALLOCCj ∪ (sid, newOccSet) ;

32 return ALLOCCj ;

We avoid computing occurrences leading to redundant right pattern exten-
sions thanks to the conditions ((sup = #s) ∧ (#σ > 1)) in line (27). Moreover,
when computing the right pattern extensions, instead of storing the part of sub-
sequence 〈s[j′

1], . . . , s[j
′
m]〉, one can only store the positions of its first and last

items (j′
1, j

′
m) in the sequence sid. Finally, the filtering algorithm handles as effi-

ciently the case without gap constraints. For each pair (sid,OccSet), only the first
occurrence [j1, jm] in OccSet is determined thanks to the condition (N ≥ #s)
in line (27).
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Table 2. Dataset Characteristics.

Dataset #SDB #I Avg (#s) Maxs∈SDB (#s) Type of data

Leviathan 5834 9025 33.81 100 book

PubMed 17527 19931 29 198 bio-medical text

FIFA 20450 2990 34.74 100 web click stream

BIBLE 36369 13905 21.64 100 bible

Kosarak 69999 21144 7.97 796 web click stream

Protein 103120 24 482 600 protein sequences

4.4 Temporal and Spatial Complexities of the Filtering Algorithm

Let m=|SDB|, d=|I|, and � be the length of the longest sequence in SDB. Com-
puting ALLOCCj from ALLOCCj−1 (see function GetAllOcc of Algorithm 2)
can be achieved in O(m × �2). The function getRightExt (see Algorithm 2)
processes all the occurrences of σ in each sequence of the SDB. The number of
occurrences may exceed �. However, as occurrences (s, [j1, jm]) with the same final
position jm are considered only once (see operator BE in Definition 7), there may
exist at most � of such occurrences in each sequence of the SDB in the worst case.
So, the time complexity of function getRightExt is O(m × �2 + m × �) i.e.
O(m × �2).

Proposition 7. In the worst case, (i) filtering can be achieved in O(m× �2 +d)
and (ii) the space complexity is O(m × �2).

Proof: (i) The complexity of function getRightExt is O(m × �2). The total
complexity of function GetFreqItems is O(m×�). Lines (8–9) can be achieved
in O(d). So, the whole complexity is O(m × �2 + m × � + d), i.e. O(m × �2 + d).
(ii) The space complexity of the filtering algorithm lies in the storage of the
ALLOCC internal data structure. The occurrences ALLOCCj of each assignment
σ in SDB, with the length of σ varying from 1 to �, have to be stored. Since it
may exist at most � occurrences of σ in each sequence sid, storing any ALLOCCj

costs in the worst case O(m × �). Since we can have � prefixes, the worst space
complexity of storing all the occurrences ALLOCCj(j = 1..�), is O(m × �2). �

5 Experiments

This section reports experiments on several real-life datasets [3,5] of large size
having varied characteristics and representing different application domains (see
Table 2). First, we compare our approach with CP methods and with the state-
of-the-art specialized method cSpade in terms of scalability. Second, we show
the flexibility of our approach for handling different types of constraints simul-
taneously.
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Fig. 1. Comparing GAP-SEQ with decomposed-p.f for GSPM: CPU times.

Table 3. GAP-SEQ vs. decomposed-p.fon FIFA dataset.

Dataset Minsup (%) #PATTERNS CPU times (s) #PROPAGATIONS #NODES

GAP-SEQ decomposed-p.f GAP-SEQ decomposed-p.f GAP-SEQ decomposed-p.f

FIFA 42 1 0.34 6.06 2 0 1 2

40 5 0.37 144.95 10 778010 6 11

38 10 0.4 298.68 20 2957965 11 21

36 17 0.48 469.3 34 9029578 18 35

34 35 0.59 − 70 − 36 −

Experimental Protocol. Our approach was carried out using the gecode
solver4. All experiments were conducted on a processor Intel X5670 with 24 GB
of memory. A time limit of 1 h has been set. If an approach is not able to com-
plete the extraction within the time limit, it will be reported as (−). � was set to
the length of the longest sequence of SDB. We compare our approach (indicated
by GAP-SEQ) with:

1. decomposed-p.f5, the most efficient CP methods for GSPM,
2. cSpade6, the state-of-the-art specialized method for GSPM,
3. the Prefix-Projection global constraint for SPM.

(a) GSPM: GAP-SEQ vs the most efficient CP method. We compare CPU
times for GAP-SEQ and decomposed-p.f. In the experiments, we used the gap
constraint gap[0, 1] and various values of minsup. Figure 1 shows the results
for the two datasets FIFA and LEVIATHAN (results are similar for other
datasets and not reported due to page limitation). GAP-SEQ clearly outperforms
decomposed-p.f on the two datasets even for high values of minsup: GAP-SEQ is
more than an order of magnitude faster than decomposed-p.f. For low values of
minsup, decomposed-p.f fails to complete the extraction within the time limit.

Table 3 reports for the FIFA dataset and different values of minsup, the
number of calls to the propagate function of gecode (col. 5) and the number of
nodes of the search tree (col. 6). GAP-SEQ is very effective in terms of number
of propagations. For GAP-SEQ, the number of propagations remains very small
compared to decomposed-p.f (millions). This is due to the huge number of

4 http://www.gecode.org.
5 https://dtai.cs.kuleuven.be/CP4IM/cpsm/.
6 http://www.cs.rpi.edu/∼zaki/www-new/pmwiki.php/Software/.

http://www.gecode.org
https://dtai.cs.kuleuven.be/CP4IM/cpsm/
http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software/
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Fig. 2. Varying the value of parameter N in the gap constraint (M = 0): CPU times.

Fig. 3. Varying the value of minsup with the gap constraint gap[0, 9]: CPU times.

reified constraints used by decomposed-p.f to encode the subsequence relation.
Regarding CPU times, GAP-SEQ requires less than 1s. to complete the extraction,
while decomposed-p.f needs much more time to end the extraction (speed-up
value up to 938).

(b) GSPM: GAP-SEQ vs the state-of-the-art specialized method. Second
experiments compare GAP-SEQ with cSpade. We first fixed minsup to the small-
est possible value w.r.t. the dataset used, and varied the maximum gap N from
0 to 9. The minimum gap M was set to 0. Figure 2 reports the CPU times of
both methods. First, GAP-SEQ clearly dominates cSpade on all the datasets. The
gains in terms of CPU times are greatly amplified as the value of N increases.
On FIFA, the speed-up is 9.5 for N=6. On BIBLE, GAP-SEQ is able to com-
plete the extraction for values of N up to 9 in 433 s, while cSpade failed to
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complete the extraction for N greater than 6. The only exception is for the
Kosarak dataset, where cSpade is efficient. For this dataset (which is the largest
one both in terms of number of sequences and items), the size of the domains
is important as compared to the other datasets. So, filtering takes much more
time. This probably explains the behavior of GAP-SEQ on this dataset.

We also conducted experiments to evaluate how sensitive GAP-SEQ and
cSpade are to minsup. We used the gap[0, 9] constraint, while minsup var-
ied until the two methods were not able to complete the extraction within the
time limit. Results are depicted in Fig. 3. Once again, GAP-SEQ obtains the best
performance on all datasets (except for Kosarak). When the minimum support
decreases, CPU times for GAP-SEQ increase reasonably while for cSpade they
increase dramatically. On PubMed, with minsup set to 0.1%, cSpade finished
the extraction after 3, 500 s, while GAP-SEQ only used 500 s (speed-up value 7).
These results clearly demonstrate that our approach is very effective as compared
to cSpade on large datasets.

Fig. 4. Scalability of GAP-SEQ global constraint on BIBLE, Kosarak and Protein.

(c) GSPM: evaluating the scalability of GAP-SEQ. We used three datasets
and replicated them from 1 to 20 times. The gap constraint was set to gap[0, 9],
and minsup to three different values. Figure 4 reports the CPU times according
to the replication factor (i.e. dataset sizes). CPU times increase (almost) linearly
as the number of sequences. This indicates that GAP-SEQ achieves scalability
while it is a major issue for CP approaches. The behavior of GAP-SEQ on Protein
is quite different for low values of minsup. Indeed, for large sequences (such as
in Protein), the size of ALLOCC may be very large and thus checking the gap
constraint becomes costly (see Sect. 4.4).
(d) GSPM: handling various additional constraints. To illustrate the
flexibility of our approach, we selected the PubMed dataset and stated addi-
tional constraints such as minimum frequency, minimum size, and other useful
constraints expressing some linguistic knowledge as membership. The goal is to
extract sequential patterns which convey linguistic regularities (e.g., gene - rare
disease relationships) [3]. The size constraint allows to forbid patterns that are
too small w.r.t. the number of items (number of words) to be relevant patterns;
we set �min to 3. The membership constraint enables to filter out sequential
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patterns that do not contain some selected items. For example, we state that
extracted patterns must contain at least the two items GENE and DISEASE.
We used the gap[0, 9] constraint, which is the best setting found in [3]. As no
specialized method exists for this combination of constraints, we thus compare
GAP-SEQ with and without additional constraints.

Table 4 reports, for each value of minsup, the number of patterns extracted
and the associated CPU times, the number of propagations and the number of
nodes in the search tree. Additional constraints obviously restrict the number of
extracted patterns. As the problem is more constrained, the size of the developed
search tree is smaller. Even if the number of propagations is higher, the resulting
CPU times are smaller. To conclude, thanks to the GAP-SEQ global constraint and
its encoding, additional constraints like size, membership and regular expressions
constraints can be easily stated.

Table 4. GAP-SEQ under size and membership constraints on the PUBMED dataset.

minsup #PATTERNS CPU times (s) #PROPAGATIONS #NODES

gap gap+size+item gap gap+size+item gap gap+size+item gap gap+size+item

1% 14032 1805 19.34 16.83 28862 47042 17580 16584

0.5% 48990 6659 43.46 34.6 100736 163205 61149 58625

0.4% 72228 10132 55.66 43.47 148597 240337 90477 87206

0.3% 119965 17383 79.88 59.28 246934 398626 151280 146601

0.2% 259760 39140 143.91 100.09 534816 861599 329185 321304

0.1% 963053 153411 539.57 379.04 1986464 3186519 1236340 1219193

(e) Evaluating the ability of GAP-SEQ to efficiently handle SPM. In
order to simulate the absence of gap constraints, we used the ineffective gap[0, �]
constraint (recall that � is the size of the longest sequence of SDB). We compared
GAP-SEQ[0, �] with Prefix-Projection and two configurations of cSpadefor
SPM: cSpadewithout gap constraint and cSpadewith M and N set respectively
to 0 and �, denoted by cSpade[0, �]. Let us note that all the above methods will
extract the same set of sequential patterns.

Figure 5 reports the CPU times for the four methods. First, cSpadeobtains
the best performance (except on Protein). These results confirm those observed
in [7]. Second, GAP-SEQ[0, �] and Prefix-Projection exhibit similar behavior,
even if GAP-SEQ[0, �] is slightly less faster. So, even if GAP-SEQ handles both
cases (with and without gap), it remains very competitive for SPM. Third,
GAP-SEQ[0, �] clearly outperforms cSpade[0, �] (except on Kosarak). This is prob-
ably due to the huge number of unnecessary joining operations performed by
cSpade[0, �].

To conclude, all the performed experiments demonstrate the ability of GAP-
SEQ to efficiently handle SPM.

Finally, the gecode implementation of GAP-SEQ and the datasets used in our
experiments are available online7.
7 https://sites.google.com/site/prefixprojection4cp/.

https://sites.google.com/site/prefixprojection4cp/
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Fig. 5. Comparing GAP-SEQ with Prefix-Projection and cSpade for SPM on
BIBLE, Kosarak and Protein.

6 Conclusion

In this paper, we have introduced the global constraint GAP-SEQ enabling
to handle SPM with or without gap constraints. The filtering algorithm bene-
fits from the principle of right pattern extensions and prefix anti-monotonicity
property of the gap constraint. GAP-SEQ enables to handle several types of
constraints simultaneously and does not require any reified constraints nor any
extra variables to encode the subsequence relation. Experiments performed on
several real-life datasets (i) show that our approach clearly outperforms existing
CP approaches as well as specialized methods for GSPM on large datasets, and
(ii) demonstrate the ability of GAP-SEQ to efficiently handle SPM.

This work opens several issues for future researches. We plan to handle con-
straints on set of sequential patterns such as closedness, relevant subgroup and
skypattern constraints.
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Abstract. A global CP constraint is presented which improves the prop-
agation of reservoir constraints on cumulative resources in schedules with
optional tasks. The global constraint is incorporated in a CP approach
to solve a Single-Commodity Pickup and Delivery Problem: the Bicycle
Rebalancing Problem with Time-Windows and heterogeneous fleet. This
problem was recently introduced at the 2015 ACP Summer School on
Constraint Programming competition. The resulting CP approach out-
performs a Branch-and-Bound approach derived from two closely related
problems. In addition, the CP approach presented in this paper resulted
in a first place position in the competition.

1 Introduction

In scheduling problems, three types of resources can be distinguished: renew-
able resources (manpower, machinery), non-renewable resources (money, time,
energy), and cumulative resources (containers, tanks, inventory). Cumulative
resources are a special type of renewable resources which are produced and con-
sumed by specific events in the schedule. Naturally, production events increase
the availability of a resource, whereas consumption events decrease its availabil-
ity. Resource constraints known as reservoir constraints restrict the minimum resp.
maximum availability of a cumulative resource. A consumption event cannot be
scheduled if there are not sufficient resources available. Likewise, a production
event cannot be scheduled when the resource storage is at its maximum capacity.

Cumulative resources with reservoir constraints are used in a variety of
scheduling and routing problems. In the Single-Commodity Pickup and Delivery
Vehicle Routing Problem [10] a single commodity is produced at so-called supply
nodes, and has to be distributed among a set of demand nodes. Practical applica-
tions arise for example in the distribution of left-over food from local restaurants
[8], bike-sharing [4], and redistribution of self-service electric cars [6]. In the con-
text of traditional scheduling problems, reservoir constraints are typically used
to model storage restrictions or production limitations. Kolisch [11] presents a
problem where spatial capacity constraints are used to model an assembly area
with limited space. Similarly, Simonis and Cornelissens [17] present a case where
reservoir constraints are extensively used in scheduling software for a herbicide
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production plant. The plant produces individual components of herbicides which
are stored in intermediate buffer tanks with finite capacity. Different batch orders
of pesticides require variable amounts of the individual components to be mixed.
Consequently, multiple orders compete for the same shared resource.

In Constraint Programming (CP), dedicated global constraints exist to model
cumulative resources. Verifying the feasibility of a (partial) schedule for a cumu-
lative resource can be efficiently performed by calculating a resource-profile,
which records, for each moment in time, the minimum and maximum utiliza-
tion of the given resource [16]. The schedule is infeasible whenever, at any point
in time, the consumption or production of the resource exceeds the capacity
limitations imposed by the reservoir constraints. To calculate a resource profile
for partial schedules, one has to compute a compulsory part for each task in
the schedule. Accurately determining these compulsory parts is however difficult
because tasks may be optional, or the time window during which the task has
to be executed is proportionally large compared to the duration of the task.
As a result, propagation of reservoir constraints may be very poor; determining
whether a partial schedule is infeasible with respect to a reservoir constraint
may only be possible late in the CP search when the start and end times of the
majority of tasks have been fixed.

Simonis and Cornelissens [17] presented an approach to model reservoir con-
straints using well-known Cumulative constraints [2], but this approach is only
applicable when there are no optional production and or consumption events. To
mitigate this and some of the aforementioned issues, building on the seminal work
by [12], this paper presents a new global constraint for cumulative resources. The
constraint captures the intuitive notation that consumption events can only be
scheduled when sufficient resources are produced, and vice versa. The constraint
provides a tighter coupling between the time a resource event occurs, and the
effective change in the availability of a resource.

In this work, we present the new global constraint in the context of a Bicycle
Inventory Rebalancing problem which was launched as part of the 2015 ACP
Summer School on Constraint Programming competition [1]. The CP model
presented in this paper, strengthened with our new global constraint, resulted
in a first place position in the aforementioned competition.

The remainder of this paper is structured as follows. First, Sect. 2 introduces
the Bicycle Inventory Rebalancing Problem. A CP model, together with the new
global constraint, is presented in Sect. 3. Finally, to assess the quality of our CP
model, Sect. 4 presents an alternative solution approach for the Bicycle Inven-
tory Rebalancing Problem based on a traditional Branch-and-Bound procedure.
Computational results and discussion are provided in Sect. 5.

2 The Bicycle Rebalancing Problem

The city of Toronto (Canada) runs a bike-sharing system in which bicycles are
made available for shared use to individuals. The bikes are kept at self-service
terminals (stations) throughout the city. Individuals can rent a bike at a station
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and return it, after a certain amount of time, to the same or another station.
Each station has a limited number of docks (places where bikes are positioned
inside the station). Due to the fact that bikes are not necessarily returned to the
station they originated from, certain stations may run out of bikes, or may have
no empty docks left. Consequently, inventory rebalancing has to be performed
periodically, thereby transporting bikes from stations with an excess of bikes to
stations with a shortage of bikes. This problem, solved for a homogeneous fleet
of vehicles, is known as the Bicycle Rebalancing Problem (BRP). The 2015 ACP
Summer School on Constraint Programming competition launched a variation
on this problem where each station has to be serviced within a given time window
by a heterogeneous fleet of vehicles. We will denote this variant as BRP-TW.

The BRP-TW is formally defined as follows. Given is a directed, weighted
graph G(V,A), with vertex set V = {0, 1, . . . , n} and a set of arcs A ⊂ V × V .
Vertex 0 represents a depot where a fleet of trucks is parked; the remaining ver-
tices represent bicycle stations. Each station i ∈ V \{0} has a positive or negative
demand di for bikes: di > 0 represents an excess of bikes, di < 0 a shortage of
bikes at station i. Bikes may be redistributed over the stations by a set of hetero-
geneous trucks K. Each truck has a capacity qk and a usage cost per time unit ck.
Each station i has an associated time window [ai, bi] during which the requested
bikes have to be delivered or removed. A positive driving time tij is associated with
each arc (i, j) ∈ A; the time required to service a station is negligible. Travel times
tij , tji, are symmetrical, but do not necessary comply with the triangle inequality
(e.g. tij + tjk may be smaller than tik). The objective is to calculate routes of min-
imum cost for each truck such that the demand of each station is met within its
respective time window. The cost of a route is computed by the total number of
time units the truck travels (excluding waiting time), multiplied by the usage cost
of the truck ck. A truck’s route must start and end at the depot. To facilitate oper-
ations, a station may only be serviced once by a single truck during a given time
interval. When the truck enters or leaves the depot, it may carry a positive number
of bikes. To model that a busy station s may be visited multiple times a day, one
can make a copy s of s and add it as a new station to the problem instance. Station
s′ has its own time window and demand. Travel times from/to station s are iden-
tical to those of station s. This simply results in an instance with one additional
station, and can be solved without any modifications to the models proposed in
the subsequent sections.

In what follows, let δ+(i), δ−(i) denote resp. the set of outgoing, incoming
arcs into/from a node i ∈ V . Furthermore, it is assumed that there are no
stations with a demand equal to zero. If such a station would exist, it can be
removed in pre-processing phase. Similarly, we can remove arcs (i, j) ∈ A if
ai + tij > bj .

3 Constraint Programming Model

BRP-TW can be modeled as a CP problem through the use of interval variables
[13,14]. An interval variable represents an interval during which an activity can
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be performed. More specifically, an interval variable α is a variable whose domain
dom(α) is a subset of {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}. An interval variable is fixed
if its domain is reduced to a singleton, i.e. if α denotes a fixed interval variable:

– α =⊥ if the interval is absent; the activity is not scheduled
– α = [s, e) if the interval is present.

An absent interval variable is ignored by any constraint or expression it
is involved in. Such a constraint or expression would treat the absent interval
variable as if it had never been specified to the constraint.

Each interval variable α has a start time startOf(α), an end time endOf(α),
and a duration dur(α). Whenever an interval is present, it must hold that
endOf(α) − startOf(α) ≥ dur(α). As shorthand notation, an interval variable
α is defined as a tuple: α = {r, d, t, o}, specifying respectively the earliest start
time of the interval, latest end time, minimum duration, and whether the inter-
val is optional or obligatory. The constraints used in our model are summarized
in Table 1.

To model the BRP-TW as a CP problem (Algorithm 1), three sets of interval
variables are used. Obligatory interval variables vk

0 , k ∈ K, represent the start of
the schedule for vehicle k. Next, obligatory intervals vk

n for all k ∈ K represent
the end of the schedule for vehicle k. Here, n = |V | represents a copy of the
depot 0. As such, ti,n = ti,0 holds for all i ∈ V . Interval variables vk

n are defined
on the interval [an, bn] = [0,H], where H is some valid upper bound on the time
horizon of the schedule. Finally optional intervals vk

i for all stations i ∈ V \ {0},
k ∈ K represent the servicing of station i by vehicle k.

In Algorithm 1, the constraint on line 7 ensures that each station is serviced
exactly once by a single vehicle. The constraints on lines 9–11 sequence the visits
to the stations for each vehicle, thereby ensuring that vk

0 and vk
n are always resp.

the first and last interval in the sequence. The objective function is defined on line
12. To simplify notation in the objective function, we use the shorthand ti,vk

j
to

denote ti,j . Constraints 11–13 are the capacity constraints which ensure that the
inventory of the vehicle is always between 0 (empty) and qk. The constraint on
line 15 is a new global constraint, described in the next subsection. Its purpose is
to provide a tighter coupling between the resource and time constraints. Finally,
the (redundant) constraints on line 17 strengthen the model by coupling the
start and end time of each interval in the schedule for each vehicle.

3.1 Reservoir Balancing Constraint

The inventory of each vehicle in BRP-TW is known as a reservoir resource. Each
reservoir has a minimum capacity of 0 and a maximum capacity of qk, for all
k ∈ K. Even though the constraints on lines 13–14 (Algorithm 1) are sufficient
to manage the reservoir levels, they provide very little propagation because they
do not consolidate at what time, how much of a particular resource is required to
guarantee a feasible schedule. Building upon the work of Laborie [12], we present
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Table 1. Description of CP constraints. All of these constraints, except the custom
reservoirConstr, are available in IBM’s CP Optimizer by default.

Constraint Description

presenceOf(α) Returns 1 if interval α is present, 0 otherwise

noOverlap(B, dist) Sequences the intervals in the set B. Ensures that
the intervals in B do not overlap. Furthermore,
the two-dimensional distance matrix dist specifies
for each pair of intervals a sequence dependent
setup time. Absent intervals are ignored. Returns
a sequence of the intervals in B

first(α, seq) If interval α is present in sequence seq, it must be
scheduled before any other interval in the
sequence

last(α, seq) If interval α is present in sequence seq, it must
scheduled after any of the intervals in the sequence

pred(α, seq) Returns the interval immediately preceding the
interval α in the sequence seq, or ⊥ is α is absent
in seq

succ(α, seq) Returns the interval immediately succeeding the
interval α in the sequence seq, or ⊥ is α is absent
in seq

startOf(α) Returns an expression representing the start time of
interval α

endOf(α) Returns an expression representing the end time of
interval α

stepAtStart(α, hmin, hmax) Function in time t which returns a value between
hmin and hmax, starting from time
t = startOf(α). The function returns 0 when α is
absent, or before the start of α

reservoirConstr( . . . ) Custom global constraint, see Sect. 3.1 for details

a new reservoir constraint, the Reservoir Balancing Constraint, which connects
the reservoir capacity constraints with the scheduling constraints.

Given are a set of resource events S which affect the capacity of a reservoir,
and a precedence graph which provides a (partial) ordering of these events. The
basic idea behind the reservoir constraint is to compute, for each event x ∈ S
in the precedence graph a lower and an upper bound on the reservoir level
just before and just after x, and to compare these levels to the maximum and
minimum capacities of the reservoir [12]. We extent upon the work by Laborie
[12] by incorporating optional resource events (i.e. the presence status of the
events is not necessarily fixed to present or absent) into the constraint, and by
applying it to BRP-TW.

Following the notation used by Laborie [12], let P resp. C be the set of pro-
duction, resp. consumption events, and let S = P ∪ C. In case of BRP-TW,
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Algorithm 1. CP model for BRP-TW.
Variable definitions:

1 vk
0 = {0, 0, 0, oblig.} ∀k ∈ K

2 vk
n = {0, H, 0, oblig.} ∀k ∈ K

3 vk
i = {ai, bi, 0, opt.} ∀i ∈ V \ {0}, k ∈ K

4 obj ∈ {0, ∞}
Objective:

5 Min obj

Constraints:

6 forall i ∈ V \ {0}
7

∑
k∈KpresenceOf(vk

i )= 1

8 forall k ∈ K

9 seqk =noOverlap({⋃i∈V ∪{n} vk
i , tk}, tij)

10 first(vk
0 , seqk)

11 last(vk
n, seqk)

12 obj += ck ∑

i∈V

ti,succ(vk
i ,seqk)

13 cumulFunck =stepAtStart(vk
0 , 0, qk)+

∑
i∈V \{0}stepAtStart(vk

i , di, di)

14 0 ≤ cumulFunck ≤ qk

15 reservoirConstr({⋃i∈V ∪{n} vk
i }, seqk, cumulFunc, qk)

16 forall i ∈ V \ {0} ∪ {n}
17 startOf(vk

i )=Max {ai,endOf(pred(vk
i , seqk))+tpred(vk

i ,seqk),i}

P = {i ∈ V |di > 0}, C = {i ∈ V |di < 0}. Furthermore, let B(x) ⊂ S be
the events that have to be completed strictly before the start of event x ∈ S,
U(x) ⊂ S the set of events who’s precedence relation with respect to x is
undecided, i.e. an event y ∈ U(x) can occur either before or after x. The rel-
ative change of the reservoir resource due to an event x ∈ S is denoted by
q(x). qmin(x), qmax(x) are respectively the smallest and largest values in the
domain of q(x)1. In case of BRP-TW, the relative change of the vehicle’s inven-
tory is modeled through the stepAtStart(α, hmin, hmax) constraints (line 13,
Algorithm 1), which implement a resource event x at the start of interval α,
with qmin(x) = hmin, and qmax(x) = hmax. Finally, we can define the sets
O, O, Õ, containing resp. the events which are present, absent, and the events
who’s presence status is undetermined. Obviously, the following relation holds:
O ∩ O = O ∩ Õ = ∅. For the sake of generality, we assume that 0 and Q are
fixed, finite bounds on the reservoir resource.

1 Observe that when x is a consumption event, i.e. q(x) < 0, then by definition,
qmax(x) corresponds to the largest (least negative) value in the domain of q(x).
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For each event x ∈ S, we can now define an upper bound L<
max(x), and a

lower bound L<
min(x) on the resource level just before x as follows:

L<
max(x) =

∑

y∈P∩(B(x)∪U(x))\O

qmax(y) +
∑

y∈C∩B(x)∩O

qmax(y) (1)

L<
min(x) =

∑

y∈C∩(B(x)∪U(x))\O

qmin(y) +
∑

y∈P∩B(x)∩O

qmin(y). (2)

Dead Ends and Presence Relations. Using the definitions from the previous
subsection, a number of conditions can be specified under which the propagator
of the Reservoir Balancing Constraint fails, or under which additional presence
relations can be deduced. The propagator fails if L<

max(x) < 0 or L<
min(x) >

Q, resulting in a backtrack. If x ∈ O, the propagator also fails if L<
max(x) +

qmax(x) < 0 or L<
min(x) + qmin(x) > Q. Finally, if x ∈ Õ, we can post a

constraint stating that x must be set to absent if L<
max(x) + qmax(x) < 0 or

L<
min(x) + qmin(x) > Q, because the presence of event x would instantly result

in a fail of the propagator.

Discovering New Precedence Relations. Let

Π<
min(x) = −

∑

y∈B(x)∩((P\O)∪(C∩O))

qmax(y)

be the smallest amount of resources that has to be produced before event x com-
mences. Intuitively, if Π<

min(x) yields a positive value, then a number of pro-
duction events must be scheduled before x, thereby producing at least Π<

min(x)
resources. Let P (x) = U(x) ∩ P \ O be the production events which can be
scheduled either before or after event x. If there exists a y ∈ P (x) such that:

∑

z∈P (x)∩(B(y)∪U(y))

qmax(z) < Π<
min(x) (3)

then a constraint stating that y must precede x can be posted. Intuitively, Condi-
tion (3) reads: take a production event y ∈ P (x), which can be scheduled before
or after x, and iterate over all remaining production events in P (x) that can
potentially precede y. If these events cannot produce at least Π<

min(x) resources,
then naturally y must precede x. Observe that when x ∈ O ∩ C, the right hand
side of Condition (3) can be strengthened to: Π<

min(x) + qmax(x). Furthermore,
when x ∈ Õ, an additional constraint can be posted, stating that presenceOf(x)
implies the presenceOf(y).

Following a similar line of reasoning, define

Π<
max(x) =

∑

y∈B(x)∩((C\O)∪(P∩O))

qmin(y) − Q
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as the least amount of resources that has to be consumed before x commences,
and let C(x) = U(x) ∩ C \ O. If there exists a y ∈ C(x) such that:

−
∑

z∈C(x)∩(B(y)∪U(y))

qmin(z) < Π<
max(x) (4)

then a constraint can be posted, stating that y must precede x. When x ∈ O∩P ,
the right hand side of Condition (4) can be strengthened to: Π<

min(x)+ qmin(x).
Furthermore, when x ∈ Õ, an additional constraint can be posted, stating that
presenceOf(x) implies the presenceOf(y).

4 Mixed Integer Programming Models

To compare the performance of our CP model in Sect. 5, we use a MIP model
which essentially combines the models for a Pickup-and-Delivery problem with
Time Windows [15] and a model for a related Bicycle Rebalancing Problem [4].
In contrast to this work, Dell’Amico et al. [4] do not consider time windows, and
they assume a homogeneous fleet. Consequently, their problem is closer related
to the Traveling Salesman Problem with Pickup and Deliveries as presented by
Hernández-Pérez and Salazar-González [9].

For each arc (i, j) ∈ A, let binary variable xk
ij denote whether vehicle k ∈ K

travels from station i to j. For each station i ∈ V , let variable Ci denote the time
at which servicing station i completes. Finally, for each arc (i, j) ∈ A, variable
fij counts the number of bikes in the vehicle that traverses arc (i, j). Obviously,
fij = 0 if xk

ij = 0 for all k ∈ K.

MILP :

min
∑

k∈K

ck

∑

(i,j)∈A

tijx
k
ij (5)

s.t.
∑

j∈δ+(0)

xk
0j ≤ 1 ∀k ∈ K (6)

∑

k∈K

∑

j∈δ+(i)

xk
ij = 1 ∀i ∈ V \ {0} (7)

∑

i∈δ−(j)

xk
ij =

∑

i∈δ+(j)

xk
ji ∀j ∈ V \ {0}, k ∈ K (8)

Cj ≥ Ci + tij − Mij(1 − xk
ij) ∀(i, j) ∈ A : j 	= 0, k ∈ K (9)

∑

j∈δ+(i)

fij −
∑

j∈δ−(i)

fji = di ∀i ∈ V \ {0} (10)

∑

k∈K

max{0, di, −dj}xk
ij ≤ fij ∀(i, j) ∈ A : j 	= 0 (11)

fij ≤
∑

k∈K

min{qk, qk + di, q
k − dj}xk

ij ∀(i, j) ∈ A : j 	= 0 (12)

xk
ij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (13)

ai ≤ Ci ≤ bi ∀i ∈ V \ {0} (14)
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Mij is a constant, defined as: Mij = max{0, bi+tij −aj}. The objective function
(5) minimizes the total distance traveled by each vehicle, weighted by the vehi-
cle’s cost. Constraints (6) ensures that a vehicle either stays at the depot (and
hence is not used), or that it leaves the depot to service one or more stations.
Constraints (7), (8) ensure that each station is serviced exactly once. Constraints
(9), (14) ensure that each station is only serviced within its respected time win-
dow. In addition, Constraints (9) serve as subtour elimination constraints as
they are a generalization of the Miller-Tucker-Zemlin subtour elimination con-
straints. Constraints (10)–(12) ensure that the desired amount of bikes are added
or removed from each station, while simultaneously enforcing vehicle capacities.
In particular, Constraints (11), (12) ensure that:

– the number of bikes in a vehicle k ∈ K is always between 0 and qk.
– if a vehicle collects bikes at node i, i.e. di > 0 then fij ≥ di after leaving node

i, for some j ∈ V .
– if a vehicle delivers bikes at node j, i.e. dj < 0 then the vehicle must have

sufficient bikes in its inventory before reaching station i, i.e. fij ≥ −dj .
– and vice versa for the other direction.

As shown by Desrochers and Laporte [5], the bounds on the completion time
variables Ci, i ∈ V may be strengthened:

Ci ≥ ai +
∑

k∈K

∑

j∈δ−(i)

max{0, aj + tji − ai}xk
ji ∀i ∈ V \ {0} (15)

Ci ≤ bi −
∑

k∈K

∑

j∈δ+(i)\{0}
max{0, bi − bj − tij}xk

ij ∀i ∈ V \ {0} (16)

Similarly, if for a given pair i, j ∈ V both arcs (i, j) and (j, i) are contained in
A then Constraint (9) may be replaced by a stronger equivalent:

Cj ≥ Ci + tij − Mij(1 − xk
ij) + (Mij − tij − max{tji, ai − bj})xji

∀(i, j) ∈ A : j 	= 0, k ∈ K. (17)

4.1 Valid Inequalities

The family of clique inequalities described by Dell’Amico et al. [4] can be mod-
ified to our problem. Let S(i, j, q) = {h ∈ δ+(j), h 
= i : |qi + qj + qh| > q} for
a given pair of nodes i, j ∈ V , j 
= 0, (i, j) ∈ A and a capacity q ≥ 0. Similarly,
let T (i, j, q) = {h ∈ δ−(i), h 
= j : |qi + qj + qh| > q} for a given pair of nodes
i, j ∈ V , i 
= 0, (i, j) ∈ A and a capacity q. Finally, let Q = {qk, k ∈ K} be the
set of different vehicle capacities. Then the following inequalities are valid for
BRP-TW:
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∑

k∈K:
qk≤q

(
xk

ij +
∑

h∈S(i,j,q)

xk
jh

)
≤ 1 (18)

∀(i, j) ∈ A : j 	= 0, q ∈ Q, S(i, j, q) 	= ∅

∑

k∈K:
qk≤q

( ∑

h∈T (i,j,q)

xk
hi + xk

ij

)
≤ 1 (19)

∀(i, j) ∈ A : i 	= 0, q ∈ Q, T (i, j, q) 	= ∅

The validity of inequalities (18) follows from the fact that (1) each station
must be visited by exactly one vehicle and (2) a vehicle k ∈ K : qk ≤ q does
not have sufficient capacity to serve all three stations i, j, h ∈ S(i, j, q). Similar
for inequalities (19). Some of the inequalities (18), (19) are dominated by other
inequalities in the same family, and can therefore be removed.

Separation of the clique inequalities (18), (19) is performed through complete
enumeration. For every inequality in (18), (19) we evaluate the left hand side for a
given solution x. If the left hand side is strictly larger than one, the corresponding
inequality is violated and is added to the problem.

Experiments were conducted with additional families of valid inequalities,
such as the Fractional and Rounded capacity inequalities [9], but they did not
have a positive impact on the performance of the MIP model. Hence they are
omitted in this discussion.

5 Computational Results and Discussion

The CP and MIP models are implemented in resp. ILOG CPLEX and CP Opti-
mizer (version 12.6.2), and executed with the default search parameters. The
Interval Sequence Inference Level in the CP model has been set to extended.

A data set containing 13 problem instances was used during the 2015 ACP
Summer School on Constraint Programming competition. According to the com-
petition organizers, this data set contained both randomly generated instances,
as well as instances based on Dumas’ TSP-TW benchmark [7]. To provide more
elaborate computational results in this paper, we added 11 random instances
using the competition’s random instance generator.

Table 2 summarizes the computational results. Out of a total of 24 instances,
two instances could not be solved. For clarity, these two instances have been
omitted from Table 2. Thus far it remains unknown whether these 2 instances
(resp. 100 and 201 stations) are infeasible, or whether they are just particularly
hard to solve. Table 2 shows for each instance the number of stations, and the
number of vehicles. Furthermore, for the MIP approach, Table 2 provides the best
upper (UB) and lower bound (LB) obtained after 30 min of computation time,
the gap between these bounds and the actual computation time. Finally, for the
CP approach, we show the upper bound, the gap between this upper bound and
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Table 2. MIP vs CP. Instances 0–10 were provided during the ACP competition, the
remaining instances have been generated to extend the computational results in this
paper. Note that the competition instances (0–10) have been solved on a different
(faster) system than instances (11–21).

Inst |V | |K| MIP CP

LB UB t(s) Gap UB t(s) Gap

0 5 1 137992 137992 0 0.00 % 137992 0 0.00 %

1 7 2 432270 432270 0 0.00 % 432270 1 0.00 %

2 28 6 424629 424629 193 0.00 % 518620 1800 18.12 %

3 16 4 770988 770988 1 0.00 % 770988 1800 0.00 %

4 14 4 317053 317053 1 0.00 % 317053 134 0.00 %

5 27 12 278734 453197 1802 38.50 % 443172 1800 37.10 %

6 42 10 353771 - 1803 - 895957 1800 60.51 %

7 81 10 488855 - 1800 - 2204450 1800 77.82 %

8 42 10 353771 - 1803 - 895957 1800 60.51 %

9 151 20 570806 - 1800 - 3348640 1800 82.95 %

10 50 6 107535 - 1804 - 255900 1800 57.98 %

11 55 10 336741 - 1807 - 981195 1800 65.68 %

12 49 10 407266 - 1803 - 655069 1800 37.83 %

13 41 10 279676 869799 1802 67.85 % 633738 1800 55.87 %

14 41 10 300006 737100 1803 59.30 % 573216 1800 47.66 %

15 51 10 477441 1410190 1803 66.14 % 965580 1800 50.55 %

16 49 10 471462 - 1803 - 1023970 1800 53.96 %

17 50 8 612040 - 1803 - 1142810 1800 46.44 %

18 37 8 501271 941084 1806 46.73 % 816506 1800 38.61 %

19 46 8 444028 - 1803 - 1024920 1800 56.68 %

20 51 8 497332 - 1803 - 1091130 1800 54.42 %

21 57 8 622815 - 1805 - 1414370 1800 55.97 %

the MIP lower bound, and the actual computation time. Whenever no feasible
solution could be found within the allotted time, the optimality gap is assumed
to be 100 %. As can be observed from Table 2, for the smaller instances, MIP
outperforms CP: it solves these instances to optimality in a fraction of the com-
putation time required by CP. However, for the larger instances, MIP is unable
to find any feasible solutions. A similar trend was observed for alternative MIP
based solution approaches used by other participants of the ACP competition.

Part of the decision problem is determining how many bikes each vehicle
carries when it leaves the depot. This aspect makes the problem significantly
harder to solve for a CP based approach. In particular, when we fix the number
of bikes in the initial inventory for each vehicle, the CP method is able to obtain
significantly better results in a shorter amount of time.
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Fig. 1. Impact of reservoir constraint. Smaller percentage represents a bigger reduction
of the optimality gap. (Color figure online)

Figure 1 analyses the impact of the Reservoir Balancing constraint pre-
sented in Sect. 3.1. We compare three situations: (1) the CP model without
the reservoir constraint, (2) the CP model with a partially implemented reser-
voir constraint which does not generate precedence relations, (3) the CP model
with the complete reservoir constraint. Figure 1 plots the increase/decrease of
the optimality gap when we add resp. the partial reservoir constraint to the
CP model (blue bars) or the complete reservoir constraint (orange bars). For
example, for instance 5, we obtain optimality gaps of resp. 40.68 %, 39.77 %,
37.10 %, resulting in a decrease of the optimality gap (improvement) by resp.
39.77 − 40.68 = −0.91 % (blue) and 37.10 − 40.68 = −3.58 % (orange). As can
be observed from Fig. 1, for all instances except instance 11, the Reservoir Bal-
ancing constraint improves the objective (orange bars). Only for instance 11 the
optimality gap increases by 0.3 % when the Reservoir Constraint is added to the
CP model. For the remaining instances, significant reductions in the optimality
gap are observed, up to 17 % for instance 9. Whenever no precedence relations
are deduced, the effectiveness of the Reservoir Balancing constraint is signifi-
cantly reduced, and, due to its computational overhead, may have a negative
impact on the solution quality. The latter may be observed from for example
instances 6, 7, and 8.

In future work, the Reservoir Rebalancing Constraint may be extended by
adding conditions on the earliest start and latest end times of an interval, based
on the availability of a resource. In addition, specific search procedures for the
BRP-TW may be developed, based on for example the station’s demands. We
conducted some preliminary tests with a search procedure which fixed the pres-
ence status of the vk

i variables one by one, starting with stations with a large
demand |di|, but this approach did not yield a notable improvement in the solu-
tion procedure. Finally, one may wish to incorporate constraints to improve the
propagation of the sequence constraints (see Bergman et al. [3] for details).
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Abstract. In cold weather cities, snowstorms can have a significant dis-
ruptive effect on both mobility and safety, and consequently the faster
that streets can be cleared the better. Yet in most cities, plans for snow-
plowing are developed using simple allocation schemes that while easy
to implement can also be quite inefficient. In this paper we consider the
problem of optimizing the routes of a fleet of snow plowing vehicles,
subject to street network topology, vehicle operating restrictions, and
resource (salt, fuel) usage and replenishment constraints. We develop
and analyze the performance of three different optimization models: a
mixed-integer programming (MIP) model, a constraint programming
(CP) model, and a constructive heuristic procedure that is amplified
by an iterative improvement search. The models are evaluated on a set
of snow plow routing problems of various sizes, constructed using Open
Streets map data of Pittsburgh PA. Experimental results are presented
that illustrate the differential strengths and weaknesses of each model,
and suggest an alternative hybrid solution approach.

1 Introduction

Each year, many northern cities face significant expenditures pertaining winter
road maintenance. Snow removal constitutes a significant part of these costs. For
example, the city of Pittsburgh (USA) spent a staggering $4.3M on consumable
resources (salt, deicing chemicals), $3.3M on personnel, and $800K on equipment
(vehicles, plows, maintenance) during last year’s winter season (2014/2015). In
addition to these direct costs, a number of indirect costs can also be identified.
Slippery roads deteriorate driving conditions thereby increasing the number of
traffic accidents. Extensive utilization of snow plows, salt and chemicals damage
the roads, corrode cars and metal bridges, and have an overall negative impact
on the environment. Consequently, any ability to optimize winter road mainte-
nance and deicing operations offers significant opportunities to realize substantial
savings, to improve mobility and to reduce societal and environmental impact
[4,14–16].
c© Springer International Publishing Switzerland 2016
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In this work we study the real-world snow plow routing problem (SPRP)
faced by the City of Pittsburgh PA where routes must be computed for a set of
heterogeneous vehicles such that they collectively cover a geographical area, and
comply with various resource constraints. Here, as in any snow plowing activity,
each vehicle removes snow from the streets and simultaneously spreads a mixture
of salt and chemicals for deicing purposes. Since each vehicle has only limited
fuel and salt capacity, resources have to be periodically replenished. A number
of resource depots are available throughout the city: these depots offer fuel, salt
or both. The objective is to compute a schedule for each vehicle, which satifies
resource constraints and minimizes the overall time it takes to clear all streets
(i.e., the schedule makespan).

This work is part of a larger initiative to provide the city with an adaptive
approach to snow plow route optimization and management. A route planning
system is under development which will ultimately issue optimized turn-by-turn
instructions to the vehicles in real-time during snow plowing operations, and
dynamically revise these plans as unexpected events force changes. This paper
lays the foundations for this project, by formally defining the problem and ana-
lyzing both exact (CP and MIP) and heuristic approaches for solving it. The
heuristics presented are designed with scalability and adaptivity in mind, such
that they can be adapted at a later stage of the project to modify schedules
in response to dynamic events such as blocked roads, equipment problems and
emergency requests.

The problem under consideration generalizes the well-known Chinese Post-
man Problem [8] and relates to other problems such as the Capacitated Arc
Routing Problem [2,3] and Resource Constrained Project Scheduling. Although
an extensive amount of research has been devoted to road maintenance and
snow control, only a limited number of works has studied snow plow routing
with resource constraints. For an excellent literature overview pertaining winter
road maintenance problems in general, and related solution approaches, we refer
to the survey series [9–12].

Salazar-Aguilar et al. [15] study a related routing problem where routes are
computed in such a way that street segments with two or more lanes in the same
direction are plowed simultaneously by different synchronized vehicles. This so-
called ‘tandem plowing’ pushes snow from one lane to the next and eventually to
the side of the road, thereby avoiding snow mounts building up between lanes.
The problem in [15] is first defined through a MIP model. In addition, an efficient
Adaptive Neighborhood Search approach is proposed. Although synchronized
plowing has certain benefits, it is not being applied in Pittsburgh due to the
added level of planning complexity that it implies. [15] primarily focuses on the
plowing aspects; management of resources such as salt and fuel is not considered.
The performance of their algorithms are evaluated on real-world data, including
an instance from the city of Dieppe, New Brunswick, Canada. With a population
of roughly 24,000 inhabitants, 462 intersections and 1,234 road segments, the city
of Dieppe is less than one fifth the size of downtown Pittsburgh. Consequently, it
is not obvious whether their approach can be scaled and adapted to our problem
setting.
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Perrier et al. [13] address another snow plow routing problem in urban areas.
Each area is partitioned into a number of districts. Routes have to be deter-
mined for vehicles, parked at the district’s depot, such that all road segments
are serviced and all operational constraints are satisfied. Routes crossing these
boundaries must be avoided from an administrative point of view. A similar sit-
uation arises currently in Pittsburgh where plows do not currently cross district
boundaries. Although these artificial boundaries simplify the problem, they may
also have an negative impact on the solution quality so these boundaries are not
considered in this work. In addition to traditional routing constraints, Perrier
et al. [13] consider road priorities, precedence relations between roads belonging
to different priority classes, tandem plowing and limitations on the plows which
can be used to service certain roads. The authors propose a multicommodity
network flow structure to impose the connectivity of the route performed by
each vehicle. Two heuristic approaches are presented: the first constructs routes
in parallel by solving a multiple vehicle rural postman problem with side con-
straints, the second is a cluster-first route-second approach.

Gupta et al. [5] devise an iteration method to solve a snow plow routing
problem on a network topography with a single depot. Per iteration, a trip,
starting and ending at the depot and servicing a number of street segments
is calculated. Every new iteration iteration, the street segments serviced in the
previous iteration are removed from the network and a trip covering a (subset of)
the remaining edges is calculated. The procedure repeats until all street segments
have been serviced. The length of a single trip is limited by a maximum duration.
Moreover, the total amount of salt required by the edges in a trip cannot exceed
the truck’s salt capacity. Although this problem bares strong similarities to our
problem, the solution approach is not applicable because in our problem vehicles
have to manage both salt and fuel resources, and not every depot offers both
resources.

The remainder of this paper is structured as follows. First, Sect. 2 formally
defines the problem and introduces notation. Next, Sects. 3 and 4 present a num-
ber of exact and heuristic models including a MIP model (Sect. 3.1), a CP model
(Sect. 3.2), a constructive heuristic (Sect. 4.1) and a Late Acceptance improve-
ment heuristic (Sect. 4.2). Finally, Sect. 5 compares the performance of these
methods on real-world data, and draws some conclusions.

2 Problem Description

For a given network of streets and a fleet of snow plows, our SPRP consists of
finding a route for each vehicle, such that the routes collectively cover the entire
network. The objective is to minimize the duration of the longest route, i.e. to
minimize the makespan of the schedule. The road network is modeled as a mixed
multigraph. Vertices in the graph represent intersections in the road network,
the arcs and edges represent resp. directed and undirected road segments. For
instance, a road in between two intersections, consisting of 2 lanes in each direc-
tion, translates to 4 directed arcs in the graph. We will refer to these arcs as
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Table 1. Parameters defining the snow plow optimization problem

Parameter Description

V R Set of intersections

ER Set of two-way, single lane residential streets

AR Multi-set of directed lanes and one-way streets

K Set of heterogeneous vehicles

F Fuel depots

S Salt depots

dij Time or distance it takes to get from intersection i to intersection j,
i, j ∈ V R

fk
ij Fuel required to get from intersection i to intersection j, i, j ∈ V R

sk
ij Salt required to get from intersection i to intersection j, i, j ∈ V R

0, n + 1 Resp. start and end depots of the trucks

F
k

Maximum fuel capacity of vehicle k ∈ K

S
k

Maximum salt capacity of vehicle k ∈ K

C Time horizon of the problem

unidirectional plow jobs. Unidirectional plow jobs are typically individual lanes
of a multi-lane street, or one-way roads. In addition to unidirectional plow jobs,
there also exist bidirectional plow jobs. Road segments in the latter category are
small enough to be covered by a single pass of a snow plow, and the plow may
come from either direction of the street. Typical examples of bidirectional plow
jobs are streets in residential neighborhoods where cars are parked on each side
of the road.

More formally, let GR(V R, AR∪ER) be a mixed multigraph where vertex set
V R represents the intersections, and ER, AR, the edges and arcs representing
resp. the uni- and bidirectional street segments. For simplicity, it is assumed that
graph GR is strongly connected.

The roads are serviced by a heterogeneous fleet of snow plows K. Servicing
a road segment (i, j) ∈ AR ∪ ER takes dij time. Vehicles may traverse road seg-
ments without servicing them. This is called deadheading. Due to the relatively
low speed limits within the city, deadheading and servicing a road take equal
amounts of time, independent of the road conditions. Each vehicle occasionally
needs to refuel and resupply salt. A vehicle k ∈ K has a fuel capacity F

k
and

salt capacity S
k
, k ∈ K. There are several depots throughout the city. Let F

denote the set of fuel depots, S the set of salt depots. Some depots may supply
both salt and fuel, hence S ∩ F �= ∅. The fuel (salt) consumption per street seg-
ment (i, j) ∈ AR ∪ ER using vehicle k is denoted by fk

ij (skij). In addition to the
fuel and salt depots, we define 0 and n + 1 as the origin and destination depots
where the vehicles are parked resp. before and after the trip. An overview of the
various parameters is provided in Table 1.
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3 Mathematical Models

In order to construct a MIP or CP model, we first define an auxiliary graph,
using a set of unidirectional jobs J̄ and bidirectional jobs J�

�

. For every (u, v) ∈ AR

define a unidirectional plow job j = (u, v) ∈ J , which takes dj = duv time to
complete and requires resp. fk

j fuel and skj salt when serviced by vehicle k ∈ K.
Similarly, for every (u, v) ∈ ER define a bidirectional plow job j ∈ J�

�

. Every
bidirectional plow job j ∈ J�

�

can be decoupled into two unidirectional plow jobs
j�, j

�

, representing the different orientations of the job. Obviously, in order to
service a bidirectional road, only j� or j

�

needs to be executed. Finally, define set
J consisting of all jobs, i.e. J = J ∪ {j�i, j

�

i | i ∈ J�

�

}.
Let i, j ∈ J be two different jobs, representing road segments i = (u, v), j =

(s, t). Define dij as the time it takes to travel from intersection v to intersection
s, plus the time required to complete job j. The travel time can be computed
through a shortest path calculation in the routing graph GR.

For each fuel depot i ∈ F, a new ordered set of refuel jobs F i = 1, 2, . . .,
is defined. Furthermore, let F =

⋃
i∈F

F i. A vehicle can refuel at a fuel depot
i ∈ F by executing one of the fuel jobs F i = 1, 2, . . . associated with depot i.
Analogous for the salt depots i ∈ S, we define sets Si = 1, 2, . . ., S =

⋃
i∈S

Si

representing salt resupply jobs.
We can now define our auxiliary graph, a directed, weighted multigraph

G(V0,n+1, A) having vertex set V0,n+1 = {0}∪J ∪F ∪S ∪{n+1} and arc set A.
For shorthand notation, denote V = V0,n+1 \ {0, n + 1}, V0 = V0,n+1 \ {n + 1},
Vn+1 = V0,n+1 \ {0}. Arc set A is defined as follows:

– there is an arc (0, j) for all j ∈ J ∪ {n + 1}.
– there is an arc (i, n + 1) for all i ∈ V0.
– there is an arc (i, j) for all i, j ∈ J , i �= j.
– there are arcs (i, j), (j, i) for all i ∈ J, j ∈ F ∪ S.
– there is an arc (i, j) for all i ∈ F ∪ S, j ∈ J .

Observe that any resource-feasible vehicle schedule for SPRP can be represented
in the auxiliary graph through a simple path from vertex 0 to vertex n + 1.

3.1 MIP Model

A MIP model for SPRP can be constructed through the auxiliary graph. Let
binary variables xk

ij denote whether vehicle k ∈ K travels from i to j, (i, j) ∈ A,
and executes job j. Integer variables Ci record the time that job i ∈ V0,n+1

is completed. In addition, Cn+1 records the makespan of the schedule. Finally,
integer variables F k

i , Sk
i indicate resp. the fuel and salt supply levels of vehicle

k after leaving node i. For notation purposes, let δ+(i) = {j | (i, j) ∈ A} and
δ−(i) = {j | (j, i) ∈ A}. Table 2 summarizes the various sets and parameters
used in the MIP model.

The model, solvable using a traditional branch-bound-cut approach, is as
follows:

P : min C
n+1 (1)
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Table 2. Sets and parameters used in the MIP model

Param. Description

V J ∪ F ∪ S

V0 V ∪ {0}
Vn+1 V ∪ {n + 1}
V0,n+1 V ∪ {0, n + 1}
dk

ij Setup time between job i ∈ V0,n+1 and j ∈ V0,n+1, i �= j, plus the time
required to perform job j, for vehicle k

fk
ij Fuel required to get from i ∈ V0,n+1 to j ∈ V0,n+1, i �= j, plus the fuel

required to perform job j, for vehicle k

sk
ij Salt required to get from i ∈ V0,n+1 to j ∈ V0,n+1, i �= j, plus the salt

required to perform job j, for vehicle k

s.t.
∑

j∈δ+(0)

x
k
0j =

∑

i∈δ−(n+1)

x
k
i,n+1 = 1 ∀k ∈ K (2)

∑

j∈δ−(i)

x
k
ji =

∑

j∈δ+(i)

x
k
ij ∀i ∈ V (3)

∑

k∈K

∑

j∈δ+(i)

x
k
ij = 1 ∀i ∈ J (4)

∑

k∈K

(
∑

j∈δ+(u)

x
k
uj +

∑

j∈δ+(v)

x
k
vj) = 1 ∀i ∈

↔
J , u =

←
j i, v =

→
j i, (5)

∑

k∈K

∑

j∈δ+(i)

x
k
ij ≤ 1 ∀i ∈ F (6)

∑

k∈K

∑

j∈δ+(u+1)

x
k
u+1,j ≤

∑

k∈K

∑

j∈δ+(u)

x
k
u,j ∀i ∈ F, u ∈ {1, . . . , |F i| − 1} (7)

∑

k∈K

∑

j∈δ+(i)

x
k
ij ≤ 1 ∀i ∈ S (8)

∑

k∈K

∑

j∈δ+(u+1)

x
k
u+1,j ≤

∑

k∈K

∑

j∈δ+(u)

x
k
u,j ∀i ∈ S, u ∈ {1, . . . , |Si| − 1} (9)

C
0 − M(1 − x

k
0j) ≤ C

j − d
k
0j ∀(0, j) ∈ A, k ∈ K (10)

C
i − M(1 − x

k
ij) ≤ C

j − d
k
ij ∀(i, j) ∈ A, i �= 0, k ∈ K (11)

F
k
j ≤ F

k
i − f

k
ij + F

k
(1 − x

k
ij) ∀i ∈ J ∪ {0}, j ∈ J ∪ {n + 1}, k ∈ K

(12)
F

k
j ≤ F

k − f
k
ijx

k
ij ∀i ∈ F, j ∈ J ∪ {n + 1}, k ∈ K (13)

S
k
j ≤ S

k
i − s

k
ij + S

k
(1 − x

k
ij) ∀i ∈ J ∪ {0}, j ∈ J ∪ {n + 1}, k ∈ K

(14)
S

k
j ≤ S

k − s
k
ijx

k
ij ∀i ∈ S, j ∈ J ∪ {n + 1}, k ∈ K (15)

x
k
ij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (16)

0 ≤ C
i ≤ C ∀i ∈ V ∪ {0, n + 1} (17)

0 ≤ F
k
i ≤ F

k ∀i ∈ V ∪ {0, n + 1} (18)
0 ≤ S

k
i ≤ S

k ∀i ∈ V ∪ {0, n + 1} (19)
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Constraints (2) define the starting and ending of the tour: every vehicle
must start and end at the depot. Constraints (3) enforce flow preservation. Each
unidirectional plow job must be performed exactly once ((4), (5)). Similarly, each
bidirectional plow job must be executed, but only in one direction (5). Optional
refueling/resupply jobs may be performed at most once (6), (8). Constraint (7)
orders the refueling jobs: a refueling job u ∈ F i must be performed before v ∈ F i,
v > u, can be performed. This constraint reduces the amount of symmetry
in the model. Constraint (9) is identical to Constraint (7) in the context of
salt resupply jobs. Constraint (10), (11) relate the completion time variables to
the nodes, while taking the setup times and job durations into consideration.
Similarly Constraints (12), (13), (14) and (15) manage resp. the fuel and salt
levels of the vehicles at each node. A vehicle leaves a refueling/resupply node
with a full tank/salt supply.

3.2 CP Model

To model SPRP efficiently through CP, we will rely on interval variables [6,7].
An interval variable represents an interval during which an activity can be per-
formed. For notation purposes, an interval variable will be denoted as a tuple
α = {r, d, t, [opt]}, where r denotes the earliest start time of the interval, d
the latest finish time, t the minimum duration of the interval, and the optional
parameter [opt] indicates whether scheduling of the interval is optional. Optional
intervals can be either present or absent in the final solution. An absent interval
variable is ignored by any constraint or expression it is part of. The CP model
presented in Algorithm 1 relies on three types of interval variables:

1. Job variables ji for all i ∈ V having duration di.
2. Assignment variables ak

i for all k ∈ K, i ∈ V0,n+1

3. Unidirectional plow job variables j�i, j

�

i for all i ∈ J�

�

to distinguish the two
possible orientations of bidirectional plow jobs.

A summary of the constraints used in Algorithm 1 is given in Table 3.
The objective of the model, minimize the makespan, is modeled through

Constraints 5, 9. Constraint 6 states that every bidirectional plowing job has to
be performed in only one direction and Constraint 7 ensures that every job is
assigned to a single vehicle. Next, a number of constraints per vehicle are spec-
ified. Sequencing of the jobs on each vehicle is performed through Constraints
10–12. Resources are managed through a number of cumulative resource con-
straints (Constraints 13–16). Vehicles start with a full load of salt, performing a
plow job i consumes ski salt, and visiting a salt depot replenishes the salt resource
(Constraints 13). For each truck, the salt level needs to remain between 0 and
S
k
, the maximum salt capacity of the truck (Constraints 14). Similar constraints

(15–16) are imposed for the fuel resource. In addition, Constraint 15 also takes
the fuel consumption related to traveling in between jobs (deadheading) into
account.

Finally, lines 17–20 specify a number of redundant constraints which are
meant to improve the performance of the model. Constraints 17, 18 reduce the



236 J. Kinable et al.

Table 3. Description of CP constraints. All of these constraints are available in IBM
ILOG CP Optimizer by default.

Constraint Description

presenceOf(α) Returns 1 if interval α is present, 0 otherwise

noOverlapSeq(B, dist) Sequences the intervals in the set B. Ensures that the intervals in B do not

overlap. Furthermore, the two-dimensional distance matrix dist specifies

for each pair of intervals a sequence dependent setup time. Absent

intervals are ignored. Returns a sequence of the intervals in B

first(α, seq) If interval α is present in sequence seq, it must be scheduled before any other

interval in the sequence

last(α, seq) If interval α is present in sequence seq, it must scheduled after all other

intervals in the sequence

succ(α, seq) Returns the interval immediately succeeding the interval α in the sequence

seq

pred(α, seq) Returns the interval immediately preceding the interval α in the sequence seq

startOf(α) Returns an expression representing the start time of interval α

endOf(α) Returns an expression representing the end time of interval α

stepAtStart(α, h−, h+) Function in time t which returns a value between h− and h+, starting from

time t = startOf(α). The function returns 0 when t is absent, or before

the start of α. When h− = h+, the shorthand stepAtStart(α, h) is used

instead

alternative(α, B) If interval α is present, then exactly one of the intervals in set B is present.

The start and end of interval α coincides with the start and end of the

selected interval from set B

amount of symmetry in the model by imposing an order on the refuel and resup-
ply salt jobs. Constraint 20 links the start and end times of consecutive intervals.

A Note on Implementation. The CP model presented in Algorithm 1 is
implemented in IBM ILOG CP Optimizer 12.6.2. To implement this model, a
minor modification is required, as CP Optimizer has no direct way to implement
the function stepAtStart(ak

i , fk
i,succ[ji,seqk]) used in Constraint 15. To resolve

this issue, a new variable fuelki is introduced into the model which records the
fuel level of vehicle k after performing job i. Constraints 15–16 may now be
replaced by the equivalent constraints from Algorithm 2.

4 Heuristic Models

4.1 Constructive Heuristic

The constructive heuristic uses a greedy approach to construct a feasible initial
schedule. The heuristic works in two stages: stage one sequences all plow jobs
while ignoring resource feasibility. Stage two makes the schedule feasible in terms
of resources. The heuristic starts off with an empty schedule for every vehicle,
that is, each vehicle has a schedule: [0, n + 1]. The heuristic iterates over all
unscheduled plow jobs and schedules them one-by-one. To schedule a particular
job, the heuristic evaluates for every vehicle all possible places to insert the job
into its schedule. The impact of the job insertion onto the completion time of
the vehicle’s schedule is computed by factoring in the added travel time and job
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Algorithm 1. CP model.
Variable definitions:

1 ji =

{
{0, ∞, di} if i ∈ J ∪ J�

�

{0, ∞, di, opt} if i ∈ F ∪ S

2 ak
i =

⎧
⎪⎨

⎪⎩

{0, 0, 0} if i = 0

{0, ∞, 0} if i = n + 1

{0, ∞, di} otherwise

3 j�i, j

�

i = {0, ∞, di, opt} ∀i ∈ J�

�

4 obj ∈ {0, ∞}
Objective:

5 Min obj

6 alternative(ji, {j

�

i, j�i}) ∀i ∈ J�

�

7 alternative(ji,
⋃

k∈K ak
i ) ∀i ∈ J ∪ F ∪ S

8 forall k ∈ K

Objective Constraints:

9 obj ≥ endOf(ak
n+1)

Sequencing Constraints:

10 seqk = noOverlapSeq(
⋃

i∈J∪F∪S ak
i , [dij − dj | (i, j) ∈ A])

11 first(ak
0 , seqk)

12 last(ak
n+1, seqk)

Salt Constraints:

13 saltCumulFunck =stepAtStart(ak
0 , S

k
)−∑i∈JstepAtStart(ak

i , sk
i )

+
∑

i∈SstepAtStart(ak
i , 0, S

k
)

14 0 ≤ saltCumulFunck ≤ S
k

Fuel Constraints:

15 fuelCumulFunck =stepAtStart(ak
0 , F

k
)+
∑

i∈F stepAtStart(ak
i , 0, F

k
)

−∑i∈J∪F∪S∪{0}stepAtStart(ak
i , fk

i,succ[ji,seqk])

16 0 ≤ fuelCumulFunck ≤ F
k

Performance Constraints:

17 presenceOf(jv) =⇒ presenceOf(ju) ∀i ∈ F, u ∈ {1, . . . , |F i| − 1}, v = u + 1

18 presenceOf(jv) =⇒ presenceOf(ju) ∀i ∈ S, u ∈ {1, . . . , |Si| − 1}, v = u + 1
19 forall k ∈ K

20 startOf(ji)=endOf(pred(ji,seq
k))+tpred[ji,seqk],ji

∀i ∈ J ∪ F ∪ S ∪ {n + 1}
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Algorithm 2. CP model extension
1 forall k ∈ K

2 fuelkj ∈
{

[F
k
, F

k
] if j = ak

0

[0, F
k
] if j = ak

i , i ∈ J ∪ F ∪ S ∪ {n + 1}
3 fuelksucc[j,seqk] =

{
fuelkj − fk

j,succ[j,seqk] − fk
succ[j,seqk] if j = ak

0

F
k − fk

j,succ[j,seqk] − fk
succ[j,seqk] if j = ak

i , i ∈ J ∪ F ∪ S ∪ {0}

duration. In addition, a lower bound is calculated on the number of refuel and
resupply trips the vehicle will have to make based on the amount of salt (fuel)
the vehicle will need to complete its schedule. The number of refuel/resupply
operations is then multiplied with the duration of a refuel/resupply job, thereby
obtaining a lower bound on the time required to refuel and resupply. The actual
driving time to a refuel or resupply depot is neglected in these calculations.
Finally, recall that the bidirectional plow jobs can be performed from either
direction. While evaluating a candidate position to insert the job, the heuristic
chooses the best orientation of the plow job in respect to the jobs immediately
preceding/succeeding the insert position.

After the plow jobs have been scheduled, phase two of the constructive heuris-
tic will make the schedule resource feasible by inserting refuel and resupply jobs.
For a given vehicle k ∈ K, the resupply salt jobs are inserted as follows. Let the
plow jobs assigned to vehicle k in phase 1 be indexed from 0, . . . , n, and let j be
the job for which

∑j
i=0 ski > S

k

i . That is, after j − 1 jobs, the vehicle runs out
of salt and as such, cannot complete job j. In such cases, the heuristic schedules
a resupply job between jobs j − 1 and j, thereby choosing the nearest resupply
depot. This procedure is repeated until the schedule is feasible in terms of salt.
Next, refuel jobs are inserted in a similar fashion. However, before inserting a
new fuel job between jobs j − 1 and j, an extra check has to be performed to
verify that after job j − 1 the vehicle has sufficient fuel to reach the nearest fuel
depot. If not, we iterate backwards through the schedule, thereby searching for
the nearest feasible position to insert a refuel job. A visual representation of the
heuristic is given in Fig. 1.

4.2 Late Acceptance Improvement Heuristic

After executing the first phase of the constructive heuristic, a Late Acceptance
(LA) heuristic [1] is used to improve the quality of the solution before phase 2
is initiated. To generate new solutions, the heuristic utilizes two simple search
neighborhoods:

1. bestSwapMove: randomly choose a vehicle k1 ∈ K, a job j1 from the schedule
of vehicle k1 and a target vehicle k2. For every possible plow job j2 scheduled
on vehicle k2, and for every possible orientation of jobs j1, j2, evaluate the
impact of swapping jobs j1 and j2.
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?

(a) Phase one: insert the plow jobs one-
by-one, thereby selecting a insert posi-
tion and potentially an orientation for
the bidirectional jobs.

? ?

F
ue

l

Time

(b) Phase two: making the schedule
resource feasible by inserting resource
jobs

Fig. 1. Constructive heuristic

2. bestRemoveInsertMove: randomly choose a vehicle k1 ∈ K, a job j1 from
the schedule of vehicle k1 and a target vehicle k2. For every possible insert
position of the schedule of vehicle k2 and for every possible orientation of
job j1, evaluate the impact of removing job j1 from the schedule of k1 and
inserting it into k2.

To move from one solution to a neighboring solution, we randomly select one
of the two neighborhoods and evaluate the best candidate solution produced
by this neighborhood. Following a standard LA approach, a move is accepted
if its cost is better (or equal) to the cost of a solution L iterations ago, where
L is a user-controlled parameter of the heuristic. The heuristic is terminated
if (a) a maximum time limit is reached or (b) the incumbent solution has not
been improved during 10000 consecutive iterations, where 10000 is determined
empirically. Notice that when L = 1, the heuristic behaves as a greedy heuristic,
only accepting improving moves. Selecting a larger value for L generally decreases
the convergence rate of the heuristic, but reduces the chance of getting stuck in
a local optimum.

5 Computation Experiments

5.1 Setup

Experiments are conducted on real world data, in collaboration with the city
of Pittsburgh. Routing data is obtained through Open Street Maps (OSM). To
extract data from a geographical area, including information about the roads,
lanes, shapes, speed limits, traffic restrictions, etc., rectangular shaped snapshots
are taken from an area on the map. In this experimental setup, we captured 21
different regions of Pittsburgh, varying from residential areas, downtown, rural
areas, and business districts. Travel times between two neighboring intersections
are computed by multiplying the length of the road with the maximum allowed
driving speed.

Pittsburgh has 9 depots at different locations, 8 of which have salt, 5 of
which have fuel. For experimental purposes, we use a small heterogeneous fleet
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of five vehicles to service each area. The smallest pickup-truck in our fleet has
a capacity of 2 tons of salt and 26 gallons of fuel, whereas the largest plow has
a capacity of 20 tons of salt and 75 gallons of fuel. Currently, the city utilizes
about 1 ton of salt per mile, rendering salt the most constraining resource.

5.2 Results

Experiments have been conducted on 22 instances, which are summarized in
Table 4. For each instance, the total number of plow jobs, percentage of bidirec-
tional jobs, and total plowing distance (miles) is given. The MIP and CP models
have been implemented using Cplex, resp. CP Optimizer 12.6.2. Experiments
were run using default parameters and extended inference on the CP sequence
variables.

Figure 2 compares the performance of CP and the LA Heuristic. Since each of
these methods is warm-started with the solution obtained from the Constructive
heuristic, we only show how much either of these approaches could improve the
constructive solution. Runtimes for the CP approach were capped at resp. 10 min
and 1 h. Similarly, the runtime of the LA Heuristic was capped at 10 min, or 10000
non-improving iterations, whichever came first. To measure the impact of the
randomization in the LA Heuristic, 8 runs of the heuristic have been performed
for each instance. The results of these runs are visualized by boxplots in Fig. 2.

The constructive heuristic produces an initial solution of reasonable quality
in very little time, usually in the order of milliseconds for instances with less
than 1000 jobs. For the smaller instances, up to 1000 jobs, the CP approach is
capable of improving upon the constructive heuristic. For the larger instances, we
noticed that the CP model ran out of memory and had to fall back on the much
slower swap memory, thereby slowing down the CP approach tremendously. The
largest instances, Residential Pittsburgh and inst18, could not be solved through
CP on our machine due to insufficient memory. The LA approach produces good
results in relatively little time. As can be observed from the largest instances,
and most notably the Residential instance, the LA approach scales well. An addi-
tional advantage of this method is that the convergence rate can be adjusted,
depending on the availability of computation time. Occasionally, as for instance
inst12, the CP approach significantly outperforms the LA approach. The LA
approach tracks for each vehicle how often it needs to resupply fuel and salt
based on its resource consumption, and multiplies this with the average distance
to a resupply depot to approximate the time spent on resupplying and refueling.
This approximates becomes inaccurate when the travel time to a depot varies
substantially, depending on the location of the vehicle. Calculating a more accu-
rate approximation on the travel time to a depot, for instance by considering the
position of the vehicle at the time it needs to resupply, would help mitigating
this issue.

In addition to experiments with the CP model, a number of experiments were
conducted with the MIP Model. For all but the smallest instance in our data set
(Kaminst), the MIP model did not fit into our computer memory (16 GB + 30 GB
swap). The latter is mainly attributed to the vast number of variables in each
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Table 4. Instance data: number of jobs, percentage of jobs that are bidirectional, total
distance to plow (mi).

Inst. Jobs Bidir. Dist. Inst. Jobs Bidir. Dist. Inst. Jobs Bidir. Dist.

kaminst 45 38 3.4 inst5 631 74 55.2 inst13 529 59 47.3

downtown 724 38 38.1 inst6 632 68 52.9 inst14 498 64 37.2

mntWash 577 81 52.1 inst7 796 58 50.9 inst15 531 63 36.9

Residential 4073 64 315.5 inst8 500 31 42.8 inst16 498 92 47.5

inst1 233 61 27 inst9 481 38 38.4 inst17 499 75 42.6

inst2 346 93 38.6 inst10 574 64 41.5 inst18 1324 24 80.5

inst3 451 53 32.1 inst11 547 54 42.2

inst4 287 87 22.9 inst12 339 91 30.7

model, namely |K||V |2 flow variables, and 2|K||V | resource variables. For the
Kaminst instance, after a 1 h runtime, the MIP model (warm-started by the
constructive heuristic) did not manage to improve upon its initial solution and
had an optimality gap of 91.98 %. The large optimality gap is explained by the
presence of the big-M constraints, where the ratio between M and the length of
the jobs dkij is very large.

Figure 3 shows more details for the 4 named instances in Table 4, and the
spreading of the depots (blue squares). Each of these 4 instances represents a
different geographical area in Pittsburgh, marked on the map in Fig. 5. From left
to right: Mnt Washington, Downtown, Residential, Kaminst. The x-axis of the
graphs in Fig. 3 shows the makespan of the schedule, converted to a HH::MM::SS
format. At time 0, 0% of the area has been serviced (y-axis), whereas, by the
end of the schedule, 100% of the area has been serviced. Some of the graphs, e.g.
the Kamin instance, have a flat section at the beginning and end of the graph.
This is where the vehicles travel from the nearest depot to the service area, and
eventually back to the depot. The graphs have been generated using the same
settings as before, unless mentioned otherwise.

Each graph shows the best CP solution, when one could be found, a solu-
tion from the constructive heuristic and LA improvement heuristic. For the LA
heuristic, the graphs plot the average solution, as well as the diversity of solu-
tions encountered. The MIP approach was unable to improve upon its warm-start
solution, and is therefore not included in any of the graphs. As can be observed
from the largest instance, the LA heuristic finds significant improvements over
the constructive heuristic. Furthermore, when focusing on the robustness of the
heuristic, the LA solutions show only a moderate variance in solution quality
over multiple runs; the longer the heuristic runs, the smaller the variance.

Figure 4 presents a progress-over-time graph for the LA Heuristic for various
list lengths L (see Sect. 4.2). Choosing L small results in an aggressive conver-
gence, whereas higher values L allow a wider exploration of the search space at
the cost of a slower convergence.
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Fig. 2. Improvement over constructive heuristic: LA heuristic (8 iterations, 10 min
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Finally, Fig. 6 shows for the Residential instance the amount of plowing ver-
sus deadheading for every vehicle. The completion time of a vehicle schedule is
obtained by summing these two values. As can be observed, the makespan of
the schedule is dominated by the the completion time of the first vehicle. The
capacity of this vehicle (1 ton salt) is significantly smaller than the capacity of
the largest vehicle (20 ton). For such a large instance, the number of trips to a salt
depot becomes significantly large, especially for smaller vehicles. Having a better
approximation of the time required to travel to a depot would resolve this issue.

6 Conclusion

The constructive heuristic is capable of finding initial solutions of reasonable
quality fast. The CP approach finds good solutions to instances up to a 1000
jobs, but does not scale well beyond that. The LA heuristic scales considerably
better. A logical direction for further research would be to combine the LA
heuristic and the CP approach in a Large Neighborhood Search. First, the LA
heuristic is used to find a good global solution, after which the CP approach can
be used to locally optimize small area’s of the map in an iterative procedure.
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Another research direction for this project involves online adaptations of the
schedule. Unexpected events such as a blocked road, traffic congestion, emer-
gency request etc., could necessitate modifications to the schedule. Again, the
CP approach may be of use to ‘repair’ a small portion of the schedule, while
leaving the remainder of the schedule intact.

Finally, from a model perspective, a number of additional features may be
incorporated, including:

– Road priorities. The city assigns priorities to roads. In general, roads with
high priorities should be serviced as fast as possible. This can be achieved by
replacing the makespan objective by a weighted objective which minimizes
the completion time per priority class.

– U-turns. Due to the size of the plows, having a large number of U-turns
in a schedule is undesirable. As such, U-turns should be forbidden (hard-
constrained) or penalized in the objective function.

– Road limitations. Some roads are too small or too steep to be plowed by
the largest (and heaviest) vehicles. Similarly, in rural areas, the weight of
large plows may exceed weight limitations on certain bridges. Consequently,
a routing graph per vehicle category will be necessary. In addition, some plow
jobs cannot be assigned to some of the heavier vehicles.

Road priorities are easily accounted for in the models presented, by assigning
a priority class to each job and by using a weighted objective function which
keeps track of the completion time of each priority class. Similarly, U-Turns can
be penalized by increasing the setup time between a pair of jobs which would
require a u-turn if one is performed immediately after the other. In case of a
forbidden U-Turn, the setup-time will be significantly larger, representing the
detour the truck has to make to get back, e.g. the time it takes to drive around
the block.
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Abstract. Given a sequence of tasks T subject to precedence con-
straints between adjacent tasks, and given a set of fixed intervals I, the
TaskIntersection(T , I, o, inter) constraint restricts the overall inter-
section of the tasks of T with the fixed intervals of I to be greater than
or equal (o = ‘≥’) or less than or equal (o = ‘≤’) to a given limit inter .
We provide a bound(Z)-consistent cost filtering algorithm wrt the starts
and the ends of the tasks for the TaskIntersection constraint and
evaluate the constraint on the video summarisation problem.

1 Introduction

More and more real world applications require taking into consideration a
resource with a cost that is time dependent. A good example is electricity
whose cost may change from one period to another [12]. Indeed, there exists an
extension of the Cumulative constraint [1,3] that takes into consideration such
resource [13]. Nevertheless, that extension assumes fixed duration for the tasks
and ignores precedence constraints between tasks. Recently, Kumar et al. [10]
modelled this scheduling problem as a simple temporal problem extended with
taboo regions. Taboo regions model periods of time where no job should be
scheduled. The proposed algorithm evaluates the number of jobs scheduled in a
taboo region rather than the intersection of the jobs with the taboo regions.

First this paper introduces the TaskIntersection constraint, for concisely
capturing scheduling problems with (1) varying 0–1 resource cost, with (2) vari-
able duration tasks, and with (3) precedence constraints. Second it provides a
dedicated cost filtering algorithm for the TaskIntersection constraint. The
provided filtering algorithm is bounds(Z) consistent wrt tasks start and end
i.e. assuming fixed durations.

The TaskIntersection constraint enforces the size of the intersection of a
set of chained variable duration tasks with a fixed set of intervals to be greater
than or equal (o = ‘≥’) or less than or equal (o = ‘≤’) than an integer variable.
Tested on real instances of the video summarisation problem [4,6–8], it allows
to improve by more than 20% the solution.

In practice, assumptions are made on the start, on the duration and on the
end of a task. For instance, (1) the start of a task is restricted by the availability of
resources, (2) the duration of a task depends on resource properties, and (3) the
end of a task is typically restricted by a deadline. The TaskIntersection
constraint is compatible with those assumptions and can be used to miminise or
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 246–261, 2016.
DOI: 10.1007/978-3-319-33954-2_18
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to maximise a resource usage. Given a fixed task start, its intersection with a set
of fixed intervals increases with its duration. Indeed, since the task durations are
variable, one can not just express the maximum intersection by taking a dual of
the fixed intervals. In [14], the cost function to be minimized depends only on
the end the taks.

Section 2 defines the TaskIntersection constraint. Section 3 states and
proves a necessary and sufficient condition for the feasibility of the constraint.
Sections 4 and 5 are dedicated to the filtering algorithm and its implementation.
Experimental results are presented in Sect. 6 and finally Sect. 7 concludes.

2 The TaskIntersection Constraint

Definition 1 (Task). A task t is described by its start st, its duration dt and
its end et variables.

Definition 2 (Domain of a variable). The domain of an integer variable var
is denoted by dom(var) and consists of one single interval [var , var ].

Definition 3 (Feasible instantiation of a task). A feasible instantiation of
a task t is a triple (st, dt, et) such that dt > 0 and st + dt = et.

Definition 4 (Normalised task). A task t is normalised iff:

• ∃dt, d′
t ∈

[
dt, dt

]
, et, e′

t ∈
[
et, et

]
such that st + dt = et and st + d′

t = e′
t,

• ∃st, s′
t ∈

[
st, st

]
, et, e′

t ∈
[
et, et

]
such that st + dt = et and s′

t + dt = e′
t,

• ∃st, s′
t ∈

[
st, st

]
, dt, d′

t ∈
[
et, et

]
such that st + dt = et and s′

t + d′
t = et.

From now on we assume all the tasks to be normalised.

Definition 5 (Normalised sequence of tasks). A sequence T = (t0, t1, . . . ,
tn−1) of tasks is normalised iff:

(1) all tasks of T are normalised, (2) ∀t ∈ [0, n−2]: et ≤ st+1, et ≤ st+1.

Definition 6 (Normalised sequence of intervals). A sequence of intervals
I = (r0, r1, . . . , rm−1), where each interval r is described by two integer values
�r, ur, is normalised iff:

(1) ∀r ∈ [0,m − 1]: �r < ur, (2) ∀r ∈ [0,m − 2]: ur < �r+1.

Definition 7 (TaskIntersection). Given a normalised sequence T of n
tasks, a normalised sequence I of m intervals, a comparison operator o ∈ {≤,≥}
and a variable inter , the TaskIntersection(T , I, o, inter) constraint holds iff

n−1∑

t=0

(
m−1∑

r=0

max(min(et, ur) − max(st, �r), 0)

)
o inter .

In Definition 7, the value max(min(et, ur) − max(st, �r), 0) represents the
intersection of task t with interval r ([st, et] ∩ [�r, ur]).
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Example 1. Consider the TaskIntersection
(

(〈s0, d0, e0〉, 〈s1, d1, e1〉, 〈s2, d2, e2〉),
([5, 9], [23, 25], [30, 40]), ≤, inter

)

constraint where:
⎧
⎨

⎩

dom(s0) = [2, 8], dom(d0) = [3, 15], dom(e0) = [11, 17],
dom(s1) = [18, 23], dom(d1) = [5, 6], dom(e1) = [23, 29],
dom(s2) = [31, 40], dom(d2) = [4, 5], dom(e2) = [35, 45],

and dom(inter) = [0, 5].

Figure 1 gives a solution for this TaskIntersection constraint. Rectangles
represent the three tasks instantiated in such a way that the total intersection is
9−5 = 4with the fixed intervals belongs to the domain of the intersection variable.

Proposition 1. A reformulation of the TaskIntersection is obtained by dire-
ctly rewriting the relation

∑n−1
t=0

(∑m−1
r=0 max(min(et, ur) − max(st, �r), 0)

)
o inter

as a constraint (i.e. the sum of n · m terms where each term denotes the inter-
section between a given task and a given interval. We will use this reformulation
in Sect. 6 for benching purposes.

The filtering algorithm of this paper considers bounds(Z) consistency [5].
Assuming the domain of all variables of a constraint have no hole, bounds(Z)
consistency ensures that the minimum and maximum value of a variable are part
of a solution for that constraint. W.l.o.g. the comparison operator o is from now
set to "≤".

3 Checking Feasibility of the TaskIntersection
Constraint

Assuming no holes in the domains, this section provides a necessary and suffi-
cient condition for the feasibility of the TaskIntersection constraint. First,
Proposition 2 gives a tight lower bound for the intersection of all the tasks with
all the intervals. A tight lower bound is a lower bound archieved by construct-
ing a fixed sequence of tasks T verifying Definition 5. Second, using this tight
lower bound, Proposition 3 provides a necessary and sufficient condition to the
TaskIntersection constraint.

3.1 Tight Lower Bound for the Overall Intersection

To construct a tight lower bound, we proceed as follows:

2 5 9 23 25 30 40 4517 18

Fig. 1. A solution for the constraint of Example 1 with a total intersection of 4
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Step 1 First, for each potential start s of the first task of T (i.e. task 0), we
compute the minimum intersection between the intervals of I and all
feasible instances of task 0 for which the start variable s0 is fixed to
value s.

Step 2 Second, assuming we have already computed the minimum intersection
of tasks 0, 1, . . . , t− 1 with the intervals of I, we compute the minimum
intersection of all tasks 0, 1, . . . , t with I for the different possible starts
of task t.

Step 3 Finally, the overall minimum intersection of tasks 0, 1, . . . , n−1 with the
intervals of I is obtained after considering the last task.

We now detail those three steps. One key point to address is to directly take
into account the variable task duration together with the constraint linking the
start, the duration and the end of each task, in order to get a tight lower bound.

Step 1: Minimum Intersection of a Single Task. For a given potential start
s ∈ dom(st) of a task t they may exist more than one feasible instantiation of t
with st = s. To any of these instantiations corresponds a value for the intersection
of task t with I. The function ft gives the minimum of those intersections:

ft(s) = mind∈dom(dt),e∈dom(et)|s+d=e

( ∑m−1
r=0 max (min(e, ur) − max(s, �r), 0)

)

Step 2: Minimum Intersection of Tasks 0,1, . . . , t . For a task t (with
t ∈ [0, n − 1]) and a potential start s ∈

[
st, st

]
, there may exist more than one

feasible instantiation of the sequence of tasks 0, 1, . . . , t with st = s. To any of
these instantiations corresponds a value for the intersection of tasks 0, 1, . . . , t
with I. The function gt gives the minimum of those intersections. It is defined
by Proposition 2.

Proposition 2. For a task t and a start s ∈
[
st, st

]
, the minimum intersection

gt(s) of tasks 0, 1, . . . , t, where st = s, with the intervals of I is given by:

gt(s) =

{
f0(s), If t = 0,
ft(s) + minvt−1∈[st−1,min(s−dt−1,st−1)] gt−1(vt−1) Otherwise.

Example 2. Fig. 2b gives the curves of the functions gt and Fig. 2a gives curves
of the functions ft, for each task t from Example 1.

Step 3: Overall Minimum Intersection. Function gt(s), s ∈
[
st, st

]
com-

putes the minimum intersection of all tasks 0, 1, . . . , t with the fixed intervals
I, provided that st = s. Consequently, to find a lower bound for the overall
minimum intersection of all n tasks, one needs to evaluate the minimum of gn−1

for all s ∈
[
sn−1, sn−1

]
.

Example 3. From Fig. 2b of Example 2, we have mins∈[31,40] g2(s) = g2(40) = 1.
Hence the lower bound for the overall minimum intersection of tasks 0,1 and
2 is 1.
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(b) gt, (0 ≤ t ≤ 2): minimum inter-
section of tasks 0, 1, . . . , t

Fig. 2. Minimum intersection functions ft and gt(0 ≤ t ≤ 2) wrt all fixed intervals

3.2 Necessary and Sufficient Condition for Feasibility

Based on the gt function introduced in Proposition 2 of Sect. 3.1 this section pro-
vides a necessary and sufficient condition for the TaskIntersection constraint.

Proposition 3 (Necessary and sufficient condition). Given a sequence T
of n tasks and a sequence I of m intervals a necessary and sufficient condition
for the TaskIntersection(T , I,≤, inter) constraint to hold is

min
s∈[sn−1,sn−1]

gn−1(s) ≤ inter . (1)

The necessary part follows from the definition of gn. The proof of the suffi-
ciency part consists of constructing a solution for the TaskIntersection con-
straint. We first introduce Lemmas 1 and 2 regarding the characterisation of the
suitable task duration required for minimising its intersection. Finally Lemma 3
shows how to construct a solution to the TaskIntersection constraint with
the task durations characterised by Lemma 2. This construction process of a
solution will be illustrated in Example 4.

Notation 1. Given a sequence I of intervals and a task t with start, duration
and end respectively fixed to s, d and e, ft(s, d, e) denotes the intersection of task
t with the intervals of I.

Lemma 1. Let I be a set of m intervals and let t be a task. Given two feasi-
ble instances (s, d, e) and (s, d′, e′) of task t where d ≤ d′, we have f(s, d, e) ≤
f(s, d′, e′).

Proof.

d ≤ d′ ⇒ e ≤ e′ (since e = s + d and e′ = s + d′)

⇒
m−1∑

r=0

max(min(e, ur) − max(s, �r), 0) ≤
m−1∑

r=0

max(min(e′, ur) − max(s, �r), 0)

⇒ f(s, d, e) ≤ f(s, d′, e′).

�	
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Notation 2. Given a task t, the minimum possible duration of those feasible
instances of task t starting at time s is denoted dmin

s . To this minimum possible
duration dmin

s corresponds a minimum possible end that we denote emin
s (s+dmin

s ).

Lemma 2. Given a task t, the minimum possible duration dmin
s of those feasible

instances of task t starting at time s is max(dt, et − s).

Proof. Note that s + dt ≤ et, since we assume task t to be normalised.

1 If s+dt ≥ et dt is a feasible duration for the start s, and dt = max(dt, et −s).
2 Otherwise if s + dt < et, we must extend the minimum duration dt from at

least δ = et − (s + dt) to reach the earliest end et which leads to a minimum
duration of dt + δ = et − s, which is equal to max(dt, et − s). �	

The next Lemma shows how to construct a feasible solution for the TaskInter-
section constraint.

Lemma 3. Let T be a sequence of n tasks and let I be a sequence of m intervals.
Let (αn−1, d

min
αn−1

, emin
αn−1

), (αn−2, d
min
αn−2

, emin
αn−2

), . . . , (α0, d
min
α0

, emin
α0

) be an instan-
tiation of tasks n − 1, n − 2, . . . , 0 of T , where αt is the largest value such that:

{
ft(αt) = mins∈[st,st] ft(s), if t = n − 1,
ft(αt) = mins∈[st,min(αt+1−dt,st)] ft(s) otherwise.

If
min

αn−1∈[sn−1,sn−1]
gn−1(αn−1) ≤ inter (2)

then (αn−1, d
min
αn−1

, emin
αn−1

), (αn−2, d
min
αn−2

, emin
αn−2

), . . . , (α0, d
min
α0

, emin
α0

) is a solu-
tion for the TaskIntersection(T , I,≤, inter) constraint.

Proof. We prove Lemma 3 in two steps.
First we show by induction on the task indices that (αn−1, d

min
αn−1

, emin
αn−1

),
(αn−2, d

min
αn−2

, emin
αn−2

), . . . , (α0, d
min
α0

, emin
α0

) is a feasible instantiation of tasks
n − 1, n − 2, . . . , 0.

Second we show that if Eq. (2) is verified then the intersection of these fixed
tasks with the intervals of I is less than or equal to inter .

(1) • [t = n − 1]
By hypothesis αn−1 ∈

[
sn−1, sn−1

]
. and by Lemma 2

dmin
αn−1

∈
[
dn−1, dn−1

]
. By definition of dmin

αn−1
, emin

αn−1
∈

[
en−1, en−1

]
.

Hence (αn−1, d
min
αn−1

, emin
αn−1

) is a feasible instance of task n − 1.
• [t < n − 1]

Assume that (αt, d
min
αt

, emin
αt

), (αt+1, d
min
αt+1

, emin
αt+1

), . . . , (αn−1, d
min
αn−1

, emin
αn−1

)
is a feasible instantiation of tasks t, t + 1, . . . , n − 1.
To show that (αt−1, d

min
αt−1

, emin
αt−1

), (αt, d
min
αt

, emin
αt

), . . . , (αn−1, d
min
αn−1

, emin
αn−1

)
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is a feasible instantiation of tasks t − 1, t, . . . , n − 1, we need to show
that:
(a) the instantiation (αt−1, d

min
αt−1

, emin
αt−1

) is feasible and
(b) αt−1 + dmin

αt−1
≤ αt.

(a) Since αt−1 ∈ [st−1,min(αt − dt−1, st−1)] ⊆
[
st−1, st−1

]
then

dmin
αt−1

∈
[
dt−1, dt−1

]
and emin

αt−1
∈

[
et−1, et−1

]
.

Hence (αt−1, d
min
αt−1

, emin
αt−1

) is feasible.
(b) Since αt−1 ∈ [st−1,min(αt − dt−1, st−1)], then αt−1 ≤ min(αt −

dt−1, st−1). It follows that αt−1 + dmin
αt−1

≤ αt.
(2) By construction,

n−1∑

t=0

(
f(αt, d

min
αt

, emin
αt

)
)
= min

αn−1∈[sn−1,sn−1]
gn−1(αn−1)

Thus

min
αn−1∈[sn−1,sn−1]

gn−1(αn−1) ≤ inter ⇒
n−1∑

t=0

(
f(αt, d

min
αt

, emin
αt

)
)

≤ inter

i.e. (αn−1, d
min
αn−1

, emin
αn−1

), (αn−2, d
min
αn−2

, emin
αn−2

), . . . , (α0, d
min
α0

, emin
α0

) is a feasi-
ble solution for the TaskIntersection(T , I,≤, inter). �	

Proposition 3 follows directly from Lemma 3.

Example 4. In the context of Example 3, this example illustrates how to con-
struct a solution for the TaskIntersection constraint. We have mins∈[31,40]

g2(s) = g2(40) = 1, we find instantiations (s0, d0, e0), (s1, d1, e1) and (s2, d2, e2)
such that f(s0, d0, e0) + f(s1, d1, e1) + f(s2, d2, e2) = g2(40) = 1.

t = 2: mins∈[31,40] f2(s) = f2(40) i.e. α2 = 40. We thus compute dmin
α2

and emin
α2

which are 4 and 44.
t = 1: From the curve of f1 in Fig. 2a, mins∈[18,23] f1(s) = f1(18) = 0 i.e.

α1 = 18. We thus compute dmin
α1

and emin
α1

which are 5 and 23.
t = 0: From the curve of f0 in Fig. 2a, mins∈[2,8] f0(s) = f0(8) = 1 i.e. α0 = 8.

We thus compute dmin
α0

and emin
α1

which are 3 and 11.

Hence {(8, 3, 11), (18, 5, 23), (40, 4, 44)} is a solution, with f(8, 3, 11) +
f(18, 5, 23) + f(40, 4, 44) = mins∈[s3,s3] g3(s) = g3(40) = 1.

4 Filtering the TaskIntersection Constraint

This section shows how to filter the domains of the tasks start and end, in such
a way that we get a feasible earliest (respectively latest) start and a feasible
earliest (respectively latest) end time for each task wrt the maximum allowed
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intersection. Moreover, we adjust the minimum value of the intersection variable
to a feasible value and also adjust the domain of the duration of the tasks by
normalising them. All filtering will be derived from the necessary and sufficient
condition given in Sect. 3, which is assumed to hold. We first describe the sets
of values to filter out and characterise the corresponding filtering.

4.1 Characterising the Sets of Values to Filter Out

This section presents three propositions 4, 5 and 6 describing the sets of values
to filter out from the domain of inter and from the domain of the start and end
of each task.

Proposition 4. The minimum feasible value of the intersection variable inter
is mins∈[sn−1,sn−1] gn−1(s).

Proof. This stems from Proposition 2. �	

To characterise whether a value s can be removed or not from the domain
[
st, st

]

of the start st of a task t, (with t ∈ [0, n−1]), we first need to define the reverse of
a TaskIntersection constraint, and to introduce the minimum prefix/suffix
intersection wrt the start of a task (Lemmas 4 and 5). Second, we use those
minimum prefix/suffix intersections to evaluate the overall minimum intersection
of all the tasks with the fixed intervals, given a potential task’s start or end
(Lemmas 6 and 7).

Definition 8 (Reverse of a TaskIntersection constraint). Let T = (s0,
d0, e0), . . . , (sn−1, dn−1, en−1) be a sequence of n tasks, and let I = [�0, u0], . . . ,
[�m−1, um−1] be a sequence of m fixed intervals. Given theTaskIntersection(T ,
I,≤, inter) constraint, we define its reverse as the constraint TaskIntersection
(T ′, I ′,≤, inter), where to each task (st, dt, et) of T (with t ∈ [0, n−1]) corresponds
a task t′ = (s′

t, d
′
t, e

′
t) of T ′ defined by

• st
′ = en−1 − et • dt

′ = dt • et
′ = en−1 − st

and to each interval [�r, ur] of I (with r ∈ [0,m−1]) corresponds an interval
[�′

r, u
′
r] of I ′ defined by

• �′
r = en−1 − um−1−r • u′

r = en−1 − �m−1−r

Lemma 4 (Minimum prefix/suffix intersection wrt the start of a task).
The minimum prefix (resp. minimum suffix) intersection wrt the start of a task
t of T denoted P start

t (s) (resp. Sstart
t (s)) is the minimum intersection of the

tasks 0, 1, . . . , t (resp. t, t+1, . . . , n − 1) with the m intervals of I, provided task
t starts at s ∈

[
st, st

]
. We have P start

t (s) = gt(s) and Sstart
t (s) = gt′(s′) where

s′ = en−1 − emin
s .

Proof. The proof follows from the definition of function g (see Proposition 2). �	



254 G. Madi Wamba and N. Beldiceanu

Lemma 5. (Minimum prefix/suffix intersection wrt the end of a task).
The minimum prefix (resp. minimum suffix) intersection wrt the end of a task
t of T denoted P end

t (e) (resp. Send
t (e)) is the minimum intersection of the tasks

0, 1, . . . , t (resp. t, t+1, . . . , n−1) with the m intervals of I, provided task t ends
at e ∈

[
et, et

]
. We have P end

t (e) = P start
t′ (e′) and Send

t (e) = Sstart
t′ (e′) where

e′ = en−1 − e.

Proof. The proof stems from definition of the reverse of a TaskIntersection
constraint. �	
Lemma 6. For a TaskIntersection(T , I,≤, inter) constraint the minimum
intersection of all the n tasks with the intervals of I, provided that task t starts
at s ∈

[
st, st

]
, is equal to P start

t (s) + Sstart
t (s)− ft(s) and is denoted by mstart

st=s .

Proof. Let s ∈
[
st, st

]
and assume that task t starts at s.

• The minimum intersection of tasks 0, 1, . . . , t is given by P start
t (s)

and the minimum intersection of tasks t, t+1, . . . , n− 1 is given by Sstart
t (s).

• Since the contribution ft(s) of task t occurs both in P start
t (s) and in Sstart

t (s),
we subtract it once, thus:
mstart

st=s = P start
t (s) + Sstart

t (s) − ft(s). �	

Lemma 7. For a TaskIntersection(T , I,≤, inter) constraint the minimum
intersection of all the n tasks with the intervals of I, provided that task t ends
at e ∈

[
et, et

]
, is equal to P end

t (e) + Send
t (e)− ft′(e′) where e′ = en−1 − e and is

denoted by mend
et=e.

Proof. The proof is similar to the one of Lemma 6. �	
Proposition 5. For any task t (with t ∈ [0, n − 1]) the minimum feasible value
of st is αst

such that ∀s ∈ [st, αst
−1],mstart

st=s > inter and mstart
st=αst

≤ inter . Simi-
larly, the maximum feasible value of st is βst

such that ∀s ∈ [βst
+1, st],mstart

st=s >

inter and mstart
st=βst

≤ inter .

Proof. The proof stems directly from Lemma 6. �	
Proposition 6. For any task t (with t ∈ [0, n − 1]) the minimum value feasible
value of et is αet

such that ∀e ∈ [et, αet
− 1],mend

et=e > inter and mend
et=αet

≤
inter . Similarly, the maximum feasible value of et is βet

such that ∀e ∈ [βet
+

1, et],mend
et=e > inter and mend

et=βet
≤ inter .

Proof. The proof stems directly from Lemma 7. �	
Example 5. This example shows how Propositions 4, 5 and 6 prune the inter
variable as well as the start and end variables of each task of Example 1. From
Fig. 2b, we have mins∈[s2,s2] g2(s) = g2(40) = 1. Proposition 4, filters out value 0
from the domain of inter , i.e. dom(inter) = [1, 5]. Applying Propositions 5 and 6
and normalising the tasks adjusts the minimum value of s0 to 6, the maximum
value of d0 to 11, the minimum value of s2 to 38 and the minimum value of e2
to 42.
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4.2 Characterising the Filtering

Proposition 7 of this section shows how bounds(Z) consistency is achieved on a
TaskIntersection(T , I,≤, inter) constraint, with respect to the start of each
task when the task durations are fixed.

Proposition 7. Assuming fixed durations, applying Propositions 4 and 5 on
the TaskIntersection(T , I,≤, inter) constraint makes it bounds(Z) consis-
tent wrt the start variables of the tasks.

Proof. First, Proposition 4 ensures feasibility of the TaskIntersection con-
straint. Second the quantities αst

and βst
of Proposition 5 resp. are the smallest

and the largest feasible values for the start of task t. �	

5 Implementation

The filtering algorithm of the TaskIntersection constraint is decomposed in
3 parts:

– A first part evaluates the functions ft introduced in Step 1 of Sect. 3.1.
– A second part computes the functions gt introduced in Step 2 of Sect. 3.1.
– A third part uses function gt in order to filter (1) the intersection variable of

the TaskIntersection constraint wrt Proposition 4, and (2) the start and
the end of each task wrt Propositions 5 and 6.

Since the evaluation of functions ft is the most involved part and for space
reason this section focusses on an efficient algorithm for computing the minimum
intersection ft of a task. Note that the algorithms that implement Propositions 5
and 6 update the lower and upper limits of the start and end variables of each
task in one single step.

Computing ft . By using two key ideas, this algorithm computes a piecewise
continuous curve that gives the value of ft(s), the minimum intersection of task
t wrt the fixed intervals provided task t starts at s ∈

[
st, st

]
. The difficulty

for computing ft is twofold: first we have to consider the feasibility constraint
st + dt = et, second we want to avoid iterating over each value of dom(st) in
order to have a time complexity that only depends on the number of tasks and
on the number of intervals.

The first idea is that, if the position of the start of task t varies from one
unit from a start s ∈

[
st, st

]
to s+1 ∈

[
st, st

]
, then the minimum intersection of

task t also varies from at most one unit, i.e. |ft(s) − ft(s + 1)| ≤ 1. This results
in a curve of slope varying between −1, 0 or 1. The algorithm creates a partition
P = (p0, p1, . . . , pk) of

[
st, st

]
, with st = p0 < p1 < · · · < pk = st + 1 and k ≥ 0,

such that ft [pi,pi+1[, the restriction of ft to [pi, pi+1[, is either strictly increasing
(its slope is equal to 1), strictly decreasing (its slope is equal to −1) or constant
(its slope is equal to 0), and for any two consecutive subintervals [pi, pi+1[ and
[pi+1, pi+2[ the functions ft [pi,pi+1[ and ft [pi+1,pi+2[ do not have the same slope.
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The second idea to find a subinterval’s end pi+1 is as follows: there exists δi ∈ N

such that ft [pi,pi+δi[(pi + δi) �= ft [pi+δi,pi+2[(pi + δi). The value of pi+1 is thus
given by pi+δi. To compute δi we first need to introduce three quantities δis , δid

and δie that we now define:

(1) When pi belongs to an interval of I, δis is the distance from pi to the end
of that interval (case (a) of Fig. 3), otherwise δis is the distance from pi to
the next interval’s start when it exists (case(b) of Fig. 3), or +∞ when it
doesn’t (case (c) of Fig. 3).

δis =

⎧
⎨

⎩

ur − pi if in(pi) ∧ �r ≤ pi < ur, (a)

�r − pi if ¬in(pi) ∧ interval r is the first interval to the right of pi, (b)

+∞ if ¬in(pi) ∧ �r | �r > pi. (c)

where in(pi) is the function that returns true if there is a fixed interval r
containing pi, i.e. such that �r ≤ pi < ur, and false otherwise.

(2) δid is the difference between dmin
pi

and dt: δid = dmin
pi

− dt.
(3) When emin

pi
belongs to an interval of I, δie is the distance from emin

pi
to the

end of that interval (d), otherwise δie is the distance from emin
pi

to the next
interval’s start when it exists (e), or +∞ if it does not exist (f).

δie =

⎧
⎨

⎩

ur − emin
pi

if in(emin
pi

) ∧ �r ≤ emin
pi

< ur, (d)
�r − emin

pi
if ¬in(emin

pi
) ∧ r is the first interval after emin

pi, (e)
+∞ if ¬in(emin

pi
) ∧ �r | �r > emin

pi
. (f)

The value of δi is given by min(δis , δie) or by min(δis , δid) depending on
whether the value of dmin

pi
is equal to dt or to et − pi:

δi =
{
min(δis , δie) if dmin

pi
= dt,

min(δis , δid) otherwise (if dmin
pi

= et − pi).

(a)

... r ... m − 1
δis

pi (b)

r ...... m − 1δis

pi

m − 1
...

(c)

time

δis = +∞
pi

Fig. 3. Illustration of positions (a), (b) and (c) of pi and corresponding values to δis

After creating the partition P the algorithm computes ft [pi,pi+1[, the restric-
tion of ft in [pi, pi+1[. To do so, the value of ft [pi,pi+1[(pi) = ft(pi) is explicitly
computed and used together with the slope of ft [pi,pi+1[. Table 1 gives the slope
values for ft [pi,pi+1[ according to the positions of pi, emin

pi
and dmin

pi
.

Once the partition is created and the slope of ft [pi,pi+1[ is known for any
subinterval [pi, pi+1[ of the partition, it is easy to obtain the constant part of
the equation of the curve of ft in [pi, pi+1[ knowing the value of ft at pi. The
process is illustrated in Example 6.
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Table 1. Different values taken by the slope of ft [pi,pi+1[
relatively to the positions

of pi and emin
pi , given by values of in(pi) and in(emin

pi ) as well as on the values of dmin
pi

in(pi) = true in(pi) = false

in(emin
pi ) = true

−1 if dmin
pi = et − pi

0 if dmin
pi = dt

0 if dmin
pi = et − pi

1 if dmin
pi = dt

in(emin
pi ) = false −1 0

Example 6. We illustrate the algorithm sketched in Sect. 5 to compute functions
f0, f1 and f2, the minimum intersection of tasks 0, 1 and 2 of Example 1 with
intervals [5, 9], [23, 25], [30, 40].

(1) For task 0, we first compute values for p0, d
min
p0

, emin
p0

, in(p0) and in(emin
p0

).

p0 = s0 = 2,

dmin
p0

= max(e0 − p0, d0) = max(11 − 2, 3) = 9,

emin
p0

= p0 + dmin
p0

= 2 + 9 = 11,

in(p0) = false (interval i0 is the first interval to the left of p0),

in(emin
p0

) = true (emin
p0

is included in interval i0),

Since dmin
p0

= e0 − p0, we have δ0 = min(δ0s , δ0d),

δ0s = �0 − p0 = 5 − 2 = 3, δ0d = dmin
p0

− d0 = 9 − 3 = 6, thus δ0 = 3,

p1 = p0 + δ0 = 2 + 3 = 5,

Since in(p0) = false and in(emin
p0

) = true, then slope0 = 0.

(2) We explicitly compute the value f0(p0) = f0(2) = 4.
(3) The equation of f0 [p0,p1[ is given by f0 [p0,p1[(s) = s · slope0 + (f(p0) − p0 ·

slope0). Hence f0 [2,5[(s) = 4.

We proceed similarly until pk = s0 +1 and repeat the process for the remaining
tasks. The results are presented in Table 2, which match the curves f0, f1 and
f2 of Fig. 2a.

Proposition 8. Given n tasks and m intervals, the worst-case time complexity
for computing all functions ft (with t ∈ [0, n − 1]) is O(nm).

Proof. For a task t, the complexity of the algorithm is given by the number k of
subintervals of the partition P = (p0, p1, . . . , pk) of

[
st, st

]
. For any pi, pi+1 ∈ P,

∃δi such that pi+1 = pi + δi. Given an interval r, and any pi ∈ P, δi is either
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Table 2. Partition of
[
st, st

]
, slope and constant values for ft restricted to each subin-

tervals of the partitions, for each task t, t ∈ [0, 2].

(a) Task 0: s0 = [2, 8]

Subintervals [2, 5[ [5, 9[

Slope 0 −1
Constant 4 9

(b) Task 1: s1 = [18, 23]

Subintervals [18, 20[ [20, 24[

Slope 1 0
Constant 18 2

(c) Task 2: s2 = [31, 40]

Subintervals [31, 36[ [36, 41[

Slope 0 −1
Constant 4 40

min(δis , δie) or min(δis , δid), i.e. δi ∈ {ur − pi, �r − pi, ur − emin
pi

, �r − emin
pi

, δid}.
δid does not depend on the interval r and can take at most 2 values: 0 when
dmin

pi
= dt and et−pi−dt when dmin

pi
= et−pi. Since there is a total of m intervals,

the complexity for computing ft is of order 4m + 2. The overall complexity for
all n tasks is thus O(nm). �	

6 Evaluation

We implement the algorithms of Sect. 5 in Choco [9]. Benchmarks were run on an
Intel i7 (2.93GHz) processor running under Mac OS X Yosemite. We conduct two
types of benchmarks: a first type comparing the TaskIntersection constraint
wrt its reformulation (presented in Proposition 1) on random generated instances
available at [11], a second type for testing the TaskIntersection constraint
in the context of the video summarisation problem [4,6,8] on real instances also
used in [7].

6.1 Evaluation of the TaskIntersection Constraint
wrt its Reformulation

We generate random instances, of 50 tasks and 100 intervals each. For each
randomly generated instance we use the necessary and sufficient condition stated
in Sect. 3 to obtain the feasible lower bound for the total intersection, and fix
the inter variable to that lower bound and try to find a solution. Then we relax
more and more the maximum value of the inter variable by adding a percentage
of that lower bound, creating 11 configurations: ∀i ∈ [0, 10], configuration i
corresponds to a relaxation of the inter variable by 100 − 10 · i percent of the
lower bound. For each configuration we generate 43 instances on which we run
the tests with a time out of 10min. First we perform a reliability test to evaluate
how difficult it is for both approaches to find a solution for the 43 instances of
each configuration before time out. Second we compute the average time needed
for each configuration to find a solution, excluding the cases were no solution
was found before the time out. On the one hand our algorithm always finds a
solution for every instance of each configuration before the time out. On the other
hand the reformulation finds increasingly fewer solutions as the inter variable is
less relaxed, resulting in the decreasing curve depicted by Fig. 4a. From Figs. 4b
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and 4c depicting average times to find a solution, we observe that the average
time needed by the reformulation increases significantly, as the inter gets relaxed
by a smaller percentage of the optimal value. The curve representing the average
time needed by our algorithm has an opposite slope. The explanation is that,
the more we restrict the inter variable, the more values are removed from the
start and end variables to satisfy the necessary and sufficient condition for the
feasibility of the TaskIntersection constraint.

Conf.
0 2 4 6 8 10

successful runs in %

0

50

100

(a) Reliability test of the re-
formulation of the TASKIN-
TERSECTION constraint.

Conf.
0 2 4 6 8 10

Average time in s

0.42

0.52

0.62

(b) Filtering algorithm for
TASKINTERSECTION.

Conf.
0 2 4 6 8 10

Average time in s

0,7
5,4
9.2

21.6
26.5

(c) Reformulation of
TASKINTERSECTION.

Fig. 4. Evaluation of the TaskIntersection constraint wrt its reformulation for each
configuration.

6.2 Evaluation on Real Instances of a Video Summarisation
Problem

The video summarisation problem [4,6] consists of extracting video segments out
of an input video under some constraints. Using Allen relations [2], Derrien et al.
design in [7] the ExistAllen constraint as well as a propagator that they use in
an application that generates video summary out of tennis match input video.
A preprocessing step extracts several features from the input video (e.g. games,
applause, speech) that are modelled as intervals. The problem is then to select
video segments that will constitute the video summary, maximising the amount
of applause in the summary under the following constraints:

(1a) a segment should not intersect a speech interval,
(1b) a segment should not intersect a game interval,
(2) each selected segment should contain an applause interval,
(3) the cardinality of the intersection between the segments and the dominant

colour intervals should exceed one third of the summary.

We start from the model described in [7] where we rather use the TaskIn-
tersection constraint to enforce constraints (2) and (3). The summary should
have a total duration between four and five minutes, and should be composed of
ten video segments whose duration varies from 10 to 120 s. We run our model on
the available 3 instances real dataset provided by Boukadida et al. [6]. To ensure
we explore the same search tree as in Fig. 2 of [7] we consider a static search
heuristic, selecting variables in lexicographic order and assigning them values
in increasing order. The results of the comparative evaluation are reported in
Fig. 5:
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– For Instance1 and Instance2 the TaskIntersection propagation algorithm
finds the best solution right from the beginning and improves it by up to 25%
in both instances.

– For the last instance, the TaskIntersection propagation algorithm firstly
finds similar quality solutions and finally significantly improves them by
up to 23%.

0 300 600 900

Objective

50
75

100

143
161

Instance1

(allen)
(TI)

0 300 600 900

Objective

50
75

115
137

Instance2

(allen)
(TI)

time (sec)
0 300 600 900

Objective

98

123
138
155

Instance3

(allen)
(TI)

Fig. 5. Evaluation of the contribution of the model that include the TaskIntersec-
tion constraint (TI) wrt the model described in [7] (allen) on the video summarisation
problem; the plots report the evolution of the objective, i.e. the total duration of
applauses, wrt the processing time within a time out of 900 s.

7 Conclusion

We introduce the TaskIntersection for scheduling problems where variable
duration tasks are subject to a chain of precedence constraints and where there is
a resource with a 0–1 cost that varies over time. We provide a tight lower bound
for the overall intersection and a filtering algorithm based on this bound. We
evaluate this filtering algorithm on randomly generated instances and compare
the results to a reformulation of the TaskIntersection constraint. We also
conduct a comparative evaluation on real instances of the video summarisation
problem [7]. The positive outcome of these experiments actually shows that our
filtering algorithm allows to find significantly better solutions in terms of cost,
i.e. to increase by 20% the total value of the applause.
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Abstract. MiniZinc is a solver-independent constraint modeling lan-
guage which is increasingly used in the constraint programming com-
munity. It can be used to compare different solvers which are currently
based on either Constraint Programming, Boolean satisfiability, Mixed
Integer Linear Programming, and recently Local Search. In this paper we
present a stochastic continuous optimization backend for MiniZinc mod-
els over real numbers. More specifically, we describe the translation of
FlatZinc models into objective functions over the reals, and their use as
fitness functions for the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) solver. We illustrate this approach with the declarative
modeling and solving of hard geometrical placement problems, motivated
by packing applications in logistics involving mixed square-curved shapes
and complex shapes defined by Bézier curves.

1 Introduction

MiniZinc [11] is a medium-level constraint modeling language which is becoming
a standard in the Constraint Programming community. It is high-level enough
to express most constraint problems easily, but low-level enough to be mapped
onto existing solvers easily and consistently. This mapping is done through a
flattening process which takes as input a MiniZinc instance and produces a
FlatZinc instance. FlatZinc is a low-level solver input language designed to be
easy to translate into the form required by a solver. It is chosen for that reason
as target language for MiniZinc.

Currently, there exist FlatZinc backends for Mixed Integer Linear Program-
ming (CPLEX, OR-tools1, SCIP, . . . ), Finite Domain Constraint Programming
solvers (Choco2, Eclipse3, Gecode4, JaCoP, Opturion-CPX5, Oscar, SICStus

1 https://code.google.com/p/or-tools/.
2 https://github.com/chocoteam/choco-parsers.
3 http://eclipseclp.org/doc/bips/lib public/flatzinc/.
4 http://www.gecode.org/flatzinc.html.
5 http://www.opturion.com/cpx.
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prolog, . . . ), SAT solvers (MinisatID, . . . ) and recently Local Search (iZplus6,
Oscar-cbls [1]).

Most of FlatZinc implementations are thus dedicated to discrete domains.
However, constraint optimization and decision problems over real numbers can
be expressed in MiniZinc with high generality. Curently, such continuous con-
straint problems can be solved either using Linear Programming backends, with
restrictions on the linearity of the constraints, or using interval arithmetic back-
ends (e.g. G12ic, Eclipse fzn ic).

In this paper, we study another kind of solver based on stochastic continuous
optimization for solving FlatZinc instances over real numbers, using namely the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [6]. More specifi-
cally, we show how a FlatZinc instance over real numbers can be translated into
a fitness function which can be directly used by CMA-ES to compute approxi-
mate solutions to the problem. The transformation we describe is quite general
and applies virtually to any MiniZinc model over real numbers. The choice of
CMA-ES among other evolutionary or particle swarm optimization algorithms
is motivated by the absence of parameterization for this algorithm and by its
performances on hard problems.

For discrete domains, there has been related work on the design of high-level
constraint-based modeling languages for local search and genetic algorithms. The
seminal work of Van Hentenryck and Michel on Comet [7,10] showed how a finite
domain constraint model can be compiled into an objective function for local
search metaheuristics, such as Tabu search, with default neighborhoods derived
from the constraint model. In [1], Björdal et al. present a constraint-based local
search backend for MiniZinc and show that it produces competitive results on
the 2010 to 2014 MiniZinc challenges. In these systems, the local search solver
is limited to finite domain constraints and use neighborhoods derived from the
finite domains of the variables.

Here in the continuous domain, we illustrate our CMA-ES backend for FlatZinc
with the solving of hard geometrical placement problems which, to the best of our
knowledge, go beyond the state-of-the-art of declarative constraint modeling and
solving. As a matter of fact, the only FlatZinc implementations listed on the MiniZ-
inc web page that parse the FlatZinc instances presented in this paper are those
based on exact methods using interval arithmetic (i.e. Eclipse fzn ic and G12ic)
but none of them can find solutions in reasonable computation time even for the
examples presented here. In [9], we have already shown that the non-overlap con-
straint between squares, cubes, rectangles, boxes, triangles, polygons circles and
spheres, can be associated with a measure of overlap between objects which can
be used directly as a fitness function in CMA-ES for packing mixed shapes in a
bin, with an interesting trade-off between generality and efficiency. The measure
of overlap does not need to be the area of the intersection (and should not if one
object can be included in another) but can be any measure equal to 0 in case of non-
overlap, and capable of guiding the continuous optimization solver by measuring
progress toward satisfaction [4]. On a benchmark of consecutive sizes circle packing

6 http://www.minizinc.org/challenge2014/descriptionizplus.txt.

http://www.minizinc.org/challenge2014/descriptionizplus.txt
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problems, we showed that CMA-ES finds solutions at 2 % of the best known costs
obtained by running the three global optimization methods reported in Castillo
et al. [3]. In [12], Salas and Chabert show that the overlap measures which were
defined in an ad hoc manner in [9], can be computed by interval methods in IBEX7

with a numerical algorithm that automatically measures the penetration depth of
two objects of virtually any shape defined by conjunction and disjunction of non-
linear inequalities. In this paper, we give general MiniZinc definitions for the pene-
tration depths, or simpler overlap measures, between polygons, circles, and also
complex shapes defined by Bézier curves, motivated by packing problems in the
cosmetic and automotive industries. This illustrates the performance of MiniZinc-
CMAES in terms of both declarative modeling and efficient (yet suboptimal)
resolution of very hard geometrical packing problems with complex shapes and
continuous rotations.

The rest of the paper is organized as follows. In the next section, we present
the translation of a FlatZinc instance over real numbers in a fitness function
over the reals, and the interface to the CMA-ES solver. In Sect. 4 we describe
MiniZinc models of continuous packing problems involving continuous rotations,
mixed square-curved shapes and complex shapes defined by Bézier curves. There
we use some simple distance formulae for circles, Minkowski sums for the pen-
etration depth between polygons [5] and De Casteljau’s numerical algorithm
for linearizing Bézier curves. In Sect. 5, we report on the performance results
obtained through the compilation chain from MiniZinc, FlatZinc to CMA-ES,
on complex shape packing problems. Finally, we conclude on the general per-
spective opened by this MiniZinc backend for continuous optimization and novel
applications at the intersection of Optimization and Computer-Aided Design.

2 Compiling FlatZinc Instances over Real Numbers
in Real-Valued Fitness Functions

In this section we describe our transformation of a FlatZinc instance containing
arithmetic and trigonometric constraints over float variables in a fitness function
which aggregates the costs of each constraint violation. This transformation is
at the heart of the continuous optimization backend.

2.1 Arithmetic Expressions

The arithmetic expressions that constitute the constraint satisfaction problem
need be rebuilt from the FlatZinc instance, since arithmetic sub-expressions and
intermediary variables are introduced by the transformation from MiniZinc to
FlatZinc. The constraints that result from this transformation are split in three
groups:

1. inequality constraints, which are turned into costs,

7 http://www.ibex-lib.org.

http://www.ibex-lib.org
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2. arithmetic and trigonometric constraints, which always appear to be directed
and are turned into functional expressions,

3. and equality constraints, which can either be solved statically if there exists
a topological sort of the constraint graph that makes the constraint directed,
or turned into a cost otherwise.

Every variable X of the model is associated to an expression [X] defined as
[X] = X if X is one of the search variables, or as the arithmetic or trigonometric
expression deduced from the constraints on X. The notation is extended to float
constants, [f ] = f , and vectors of variables and/or float constants, i.e. for a
vector U = (X1, . . . , Xn), [U ] denotes the vector ([X1], . . . , [Xn]).

Concerning the first group, the inequality constraints in FlatZinc are either
strict or non-strict inequalities between linear expression of the form:

constraint float_lin_lt(U0,U1,K);
constraint float_lin_le(U0,U1,K);

where K is a constant, U0 is a vector of constant coefficient and U1 is a vector
of variables. The semantics is respectively U0 · U1 < K and U0 · U1 ≤ K
where · denotes the scalar product. The cost we associate to such an inequality
constraint c is

cost(c) = max(0, [U0] · [U1] − K)

where [U0] and [U1] are the expressions constructed from the arguments. For
strict inequality, one could refine the cost to

cost(c) =

{
1 + [U0] · [U1] − K if [U0] · [U1] ≥ K

0 otherwise

in order to ensure that the cost is null if and only if the constraint is satis-
fied. However, this is not necessary to guide the search for solutions since the
constraints a < b and a ≤ b are equivalent almost everywhere in a continuous
setting.

Concerning the second group, every float variable X of the model is consid-
ered as a search variable, except if it appears in the result position of one of the
following directed constraint:

constraint float_min(A, B, X);
constraint float_max(A, B, X);
constraint float_times(A, B, X);
constraint float_sqrt(A, X);
constraint float_cos(A, X);
constraint float_sin(A, X);

If X is in the result position of one of these constraints, then [X] is defined as
the expression that computes the associated value.

For the third group, FlatZinc linear equality constraints are of the form:

constraint float_lin_eq(U0,U1,K) :: defines_var(X) :: weight(w);

The FlatZinc compiler generates the annotation defines_var(X) which directs the
constraint from its arguments to its result, in the case where the constraint
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results from a linear arithmetic expression. In that case, [X] is defined as the
expression that computes the linear combination.

For the equality constraints that result from reification, of the form:

constraint float_eq_reif(X,Y,B);
constraint float_lin_eq_reif(X,U,B);

we eliminate them statically if enough information is available. Otherwise, the
model is currently rejected.

It is worth noting that this minimal handling of reification is needed to
cope with the code generated by the MiniZinc compiler for partial functions like
sqrt, where the formal argument is unified with the actual argument only if the
function is defined for this argument. On the other hand, general reified equality
constraints impose integrity constraints on the boolean variables. Turning an
integrity constraint into a cost function causes rugged landscapes which may be
difficult to explore, although CMA-ES is also a pretty good solver in this case.
Since our benchmarks do not use reified constraints nor discrete variables, they
are currently out of the scope of our MiniZinc backend.

2.2 Cost Aggregation

In our backend, the gathering of the cost functions can be tuned by using anno-
tations. First, each constraint can be annotated with a weight which will affect
the cost in the aggregation. By default, the weight of a constraint is 1.

annotation weight(float);

Second, every MiniZinc model contains one and only one solve instruction,
which gives the objective. The solve item can be annotated with one of the
following annotations which change the definition of the violation cost of the
whole constraints. By default, weighted_sum is assumed.

annotation weighted_sum;

violation cost =
∑

c

weight(c) · cost(c)

annotation fuzzy;

violation cost = max
c

weight(c) · cost(c)

annotation probabilistic;

violation cost = 1 −
∏

c

(
1

1 + cost(c)
)weight(c)

Third, if the FlatZinc instance is a constraint satisfaction problem, the fitness
function is defined to be equal to the violation cost.
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solve satisfy;

If the FlatZinc instance requires to minimize an expression e, the fitness function
is defined to be equal to α · (1+violation cost)+ e, where α is a coefficient large
enough to dominate e. Then α can be set with the following annotation applied
to the solve item.

annotation alpha(float);

By default, α = 1010.

3 Stochastic Continuous Optimization with CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES8) [6] is one
of the most powerful global optimization strategy for minimizing an objective
function over the reals in a “black-box” scenario, i.e. without assuming any prop-
erty about the objective function. This method is a multi-point method which
uses a population of configurations (here valuations of the FlatZinc search vari-
ables, e.g. packings defined by the coordinates and orientations of the objects)
to sample the search space, estimates the covariance matrix at each sampling,
determines the next move in the most promising direction (e.g. translations and
rotations of objects), and updates accordingly the multi-variate normal distrib-
ution for the next sampling (i.e. mean value and covariance of the variables).

CMA-ES behaves in effect like a second-order method where the landscape
is estimated by sampling, according to some multi-variate normal distribution
of the variables, which is itself updated during search in the most promising
direction to adapt to the landscape, using an estimation of the second-order
moment, the covariance matrix. When the objective function does not improve,
CMA-ES can be restarted to find different local optima. We refer to [6] for more
details on that stochastic optimization algorithm.

One advantage of CMA-ES is that it requires very little parameter tuning.
All our benchmarks have been performed with the C implementation of CMA-
ES using the same parameter set: a population size of 100, an initial standard
deviation of 20 and a stopping criterion based on a difference less than 10−3 for
the fitness function.

CMA-ES thus tries to minimize an arbitrary function f : Rn → R, where n is
the dimension of the search space (i.e. the number of FlatZinc search variables).
The result is a vector x ∈ Rn such that f(x) is the smallest value encoun-
tered so far. The C implementation of CMA-ES expects that the function f
has the following interface: double f(double x[]). The FlatZinc-to-CMA-ES
back-end derives such a fitness function from the FlatZinc model according to
the transformations described in Sect. 2.

8 https://www.lri.fr/∼hansen/cmaesintro.html.

https://www.lri.fr/~hansen/cmaesintro.html
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4 MiniZinc Models of Geometrical Placement Problems

The problems addressed in this section are taken from the industry of cosmetics
packaging. They consist of packing products with various shapes. In this applica-
tion the objective is to pack a given quantity of a product in a minimum number
of bins. The study of different forms in the industry of cosmetics packaging show
that convex approximations of objects give poor results but that the objects can
be modeled using a combination of Bézier curves. Existing Constraint Program-
ming tools are limited and do not offer capabilities to solve such problems. We
show here how to model and solve such problems in MiniZinc.

4.1 Overlap Measures Between Objects

The overlap measure should guide the optimization procedure towards a geomet-
rical placement without overlap, i.e., ideally, the cost should decrease as long as
the placement gets closer towards a placement without overlap. φ-functions [4]
have been introduced for the same purpose of continuous optimization for geo-
metrical placement problems, using decompositions in half-planes, triangles and
circles. In this section, we describe three overlap measures for polygones and
complex shapes delimited by Bézier curves using the intersection area, the pen-
etration depth, or the sum of the pairwise distances between the intersection
points of the borders.

Intersection Area. Object intersection area can be used as an overlap measure,
which could seem quite natural. However, this area can be costly to compute and
does not guide the optimization well. For example, when an object fully contains
another one, the overlap measure remains in a plateau for every possible position
where the contained object stays inside the container, giving no direction for
getting outside the overlap zone (Fig. 1). In pratice, we do not use this measure.

O1

O2

x(O2)

area(O1 ∩ O2)

Fig. 1. Intersection area between two rectangles O1 and O2 in function of x(O2), with
a plateau when O2 is included in O1.
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Penetration Depth. The penetration depth is a common measure in computer-
aided design [2]: the penetration depth between two objects is the smallest norm
such that there exists a translation vector to apply to one of the two objects
such to lead to a placement where the two objects do not intersect.

The penetration depth between two circles (C1, r1) and (C2, r2) is trivial to
compute:

pd(C1, r1); (C2, r2)) = max(0, r1 + r2 − C1C2)

that is to say the difference between the sum of their radius and the distance
between their centers (Fig. 2). This distance was already used for circles in [4,9].

C1

C2

r1r1

r2

Fig. 2. Penetration depth between two circles (C1, r1) and (C2, r2)

More generally, the penetration depth between two objects O1 and O2 is
equal to the distance between the origin (0, 0) and the complementary of the
Minkowski difference O1 � O2 = {p1 − p2 | p1 ∈ O1, p2 ∈ O2}.

pd(O1;O2) = min{‖u‖ | u /∈ O1 � O2}

Indeed, this distance is by definition the smallest norm such that there exists
a vector u such that u /∈ O1 � O2, that is to say a vector such that for all
p1 ∈ O1, p2 ∈ O2, u �= p1 − p2, thus we have O1 ∩ (O2 + u) = ∅.

The Minkowski difference of two polygons is a polygon, computable in a time
quadratic to the number of edges, and the Minkowski difference of two convex
polygons is a convex polygon, computable in a time linear to the number of
edges [5] (Fig. 3).

Note that the penetration depth only consider translations, whereas the
search space we consider for optimization may include rotation angles as addi-
tional “dimensions”. [12] extends the Minkowski difference to consider object
rotations as well. This extension is difficult to interpret geometrically and makes
overlap measures depend on the choice of the origin for each object. We will
restrict ourselves to Minkowski difference in the Euclidean space.

Sum of the Pairwise Distances Between the Intersection Points of the Borders.
For the overlap measure between two objects O1 and O2 that have non polygonal
shapes like those delimited by Bézier curves, or for heterogeneous shapes (for
example, when mixing Bézier curves and polygons), we prefer to use another
measure simpler to compute: the sum of the pairwise distances between the
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O1

O2

(0, 0)

Fig. 3. Minkowski difference between two pentagons O1 and O2. The penetration depth
between O1 and O2 is the distance between the origin and the border of the Minkowski
difference.

intersection points of the borders ∂O1 and ∂O2. We suppose that ∂(O1)∩∂(O2)
is a finite set, applying infinitesimal offsets if necessary.

spd(O1;O2) =
∑

pi,pj∈∂(O1)∩∂(O2)
i<j

‖−−→p1p2‖

There exist several methods to compute the intersections between two Bézier
curves numerically [13] (Fig. 4). We use a dichotomic search by using de Castel-
jau’s algorithm for splitting the curves. The dichotomic search can also be used
to compute numerically the intersections between Bézier curves and circles.

Fig. 4. Intersection points of the borders of two objects delimited by Bézier curves.

The intersections between a Bézier curve and a segment can be computed
algebraically. Indeed, by changing the frame, we can suppose without loss of
generality that the segment lays on the abscissa axis. The Bézier curve (p0, p1, p2)
intersects the axis for every parameter t, 0 ≤ t ≤ 1, such that (1− t)((1− t)yp0 +
typ1) + t((1 − t)yp1 + typ2) = 0: this is a second-order polynomial in t. For each
solution t0, it suffices to check that the abscissa (1 − t0)((1 − t0)xp0 + t0xp1) +
t0((1 − t0)xp1 + t0xp2) belongs to the segment.

This measure does not fulfill the requirements of an ideal overlap measure: the
measure is null when one object is included in the other and is not monotonic
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with respect to the penetration depth. However, it is locally monotonic in a
neighborhood around overlap-free placements: in the context of a local search,
by choosing an overlap-free initial placement (spreading the objects enough far
ones from the others), this measure experimentally appears to be sufficient to
preserve the overlap-freeness during the placement compaction process.

4.2 Continuous Packing Model

This section makes use of the overlap measures introduced above to express
MiniZinc models for continuous packing of circles, arbitrary polygons with rota-
tion and other complex shapes like rosettes delimited by Bézier curves. The pen-
etration depth is used as measure of overlap between two circles and between
two polygons, while the sum of distances between the intersection points is used
for every other pair of shapes.

Circles. The following predicate expresses the constraint that the two circles
((x1, y1), r1) and ((x2, y2), r2) do not overlap.

predicate non_overlap_circles(
var float: x1, var float: y1, var float: r1,
var float: x2, var float: y2, var float: r2) =
pow(x1 - x2, 2) + pow(y1 - y2, 2) > pow(r1 + r2, 2);

It is worth noticing that the inequality (x1 − x2)2 + (y1 − y2)2 > (r1 + r2)2

is compiled into the cost function (r1 + r2)2 − (x1 − x2)2 − (y1 − y2)2,
which is monotonic with respect to the penetration depth (r1 + r2) −√

(x1 − x2)2 − (y1 − y2)2, introduced in the previous section.
We consider a benchmark of circle placement problems [3] where there are

n circles to place in a circular bin. The usual modelling [9] supposes that the
circular bin is centered on the origin. The following function compute for each
circle the minimum radius for the circular bin to contain the circle (x, y), r).

function var float: bounding_circle_radius(
var float: x, var float: y, var float: r) =
sqrt(pow(x, 2) + pow(y, 2)) + r;

The search variables are the positions of the circle centers.

int: n;
array[1 .. n] of var float: x;
array[1 .. n] of var float: y;

The circle positions are constrained to be non-overlapping.

constraint forall(i in 1..n,j in i+1..n)(
non_overlap_circles(x[i], y[i], radius(i), x[j], y[j], radius(j)));

The goal is to minimize the radius of the circular bin. Intermediary variables
are introduced to store the minimal bounding radius for each circle to circumvent
a limitation of the max function for arrays in MiniZinc that needs to know the
bounds of the arguments (Fig. 5).



272 T. Martinez et al.

array[1 .. n] of var 0.0 .. 1000.0: bounding_radii;

constraint forall(i in 1 .. n)(
bounding_radii[i] = bounding_circle_radius(x[i], y[i], radius(i)));

constraint bounding_radius = max(bounding_radii);

solve minimize bounding_radius;

Fig. 5. Example of packing found by MiniZinc-CMAES for 18 circles of radii i−1/2 for
1 ≤ i ≤ 18 (circle packing benchmark of [3]).

It is worth noticing that applying min and max functions to overlap measures
allows Boolean combinations of geometrical shapes to be expressed. For instance,
the Fig. 6 shows a placement for 20 geometrical rosettes, where each rosette
R((x, y), r) is defined as the union of six intersections between pairs of circles:

R((x, y), r) =
6⋃

i=1

C((x + cos(2 · i · π

6
) · r, y + sin(2 · i · π

6
) · r), r)

∩ C((x + cos(2 · (i + 2) · π

6
) · r, y + sin(2 · (i + 2) · π

6
) · r), r)

Objects with Rotations. The placement of each object in the subsequent examples
is described by three search variables: the position on the x axis, the position on
the y axis, and the rotation angle r.

set of int: position = 1 .. 3;
int: x = 1;
int: y = 2;
int: r = 3;

An object is described by a variable of type array[position] of var float, that is
to say an array of three variables. The constants x, y and r are used as projec-
tors: given an array object, components can be accessed as object[x], object[y] and
object[r]. (Note that MiniZinc has not yet support for records.)

Points are stored in an array of two coordinates. The points that describe
the shapes of an object are expressed in a frame relative to the given object
position and orientation. The function image_of_point defined below transforms
the coordinates of a point to the global frame.
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Fig. 6. Placement found by MiniZinc-CMAES for 20 geometrical rosettes, defined as
unions of circle intersections.

set of int: coordinates = 1 .. 2;
function array[coordinates] of var float: image_of_point(

array[position] of var float: object ,
array[coordinates] of float: point

) = [
cos(object[r]) * point[x] - sin(object[r]) * point[y] + object[x],
sin(object[r]) * point[x] + cos(object[r]) * point[y] + object[y]

];

Object positions are stored in a matrix.

set of int: objects = 1 .. n;
array [objects , position] of var float: object_positions;

The following function returns the position of an object given its index.

function array[position] of var float: object_position(int: object) =
[object_positions[object , d] | d in position ];

Polygons. We consider pentagons with the following vertex coordinates (relative
to the object frame).

array [1..5 , coordinates] of float: pentagon =
[| 2.2024586 , 58.90577
| 18.54966 ,8.594238
| 71.45033 ,8.594238
| 87.79755 ,58.90576
| 45.0 ,90.0 |];

These pentagons approximate the Bézier rosettes that we consider below: the
vertices join the ends of the petals (Fig. 7). It is not exactly the convex hull since
one petal goes outside the pentagon but it is close to (and the convex hull of the
rosette is not polyhedric). However, this approximation is sufficient to observe
the gain obtained in the placements by considering the precise Bézier rosettes
instead of such approximations.
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Fig. 7. The pentagon obtained by considering each petal’s end as a vertex is not a
correct approximation of a Bézier rosette.

We suppose that the following function computes the penetration depth
between two (convex) polygons.

function var float: penetration_depth_between_polygons(
array[int , coordinates] of var float: vertices0 ,
array[int , coordinates] of var float: vertices1

);

The Minkowski difference between two polygons can be expressed with arith-
metic constraints through reification: the constraint is cumbersome to write
directly, but can be automatically generated, for example by a ClpZinc model [8].
Alternatively, the function can be implemented in the back-end as an auxiliary
C function, which is the case of our current implementation (Fig. 8).

Fig. 8. Placement found by MiniZinc-CMAES for 29 pentagons

Bézier Curves. The rosettes that we consider are delimited by the 10 following
quadratic Bézier curves (one curve by line, each curve is described by three
control points).

set of int: curves = 1 .. 10;
set of int: quadratic_bezier_control_points = 1 .. 3;
array [

1 .. card(curves) * card( quadratic_bezier_control_points),
coordinates] of float: curve_points =
[| 2.2024586 , 58.90577 | 16.01051 , 34.989525 | 31.150425 , 40.5
| 31.150425 , 40.5 | 17.211597 , 23.888353 | 18.54966 , 8.594238
| 18.54966 , 8.594238 | 42.69821 , 17.38359 | 45.0, 30.437695
| 45.0, 30.437695 | 52.512943 , 17.424889 | 71.45033 , 8.594238
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| 71.45033 , 8.594238 | 73.003426 , 26.34613 | 58.84958 , 40.5
| 58.84958 , 40.5 | 82.6242 , 44.69211 | 87.79755 , 58.90576
| 87.79755 , 58.90576 | 70.514114 , 71.00775 | 53.55951 , 56.78115
| 53.55951 , 56.78115 | 63.23457 , 83.36317 | 45.0, 90.0
| 45.0, 90.0 | 29.181046 , 76.72632 | 36.44049 , 56.781155
| 36.44049 , 56.781155 | 18.055468 , 72.20802 | 2.2024586 , 58.90577 |];

We suppose that the following function computes the sum of the distances
between the intersections of two sets of curves. This function is implemented in
the back-end as an auxiliary C function.

function var float: sum_of_distances_between_bezier_intersection_points(
array[int , coordinates] of var float: curves0 ,
array[int , coordinates] of var float: curves1

);

Fig. 9. Placement found by MiniZinc-CMAES for 10 Bézier rosettes

Mixing Bézier Curves and Rectangles. For computing the overlaps between
Bézier curves and rectangles, we suppose that the following function computes
the sum of the distances between the intersections of a Bézier curve and a rectan-
gle. This function is implemented in the back-end (as an auxiliary C function),
but the arithmetic could be expressed in MiniZinc as well (Fig. 9).

function var float:
sum_of_distances_between_bezier_and_polygon_intersection_points(

array[int , coordinates] of var float: curves ,
array[int , coordinates] of var float: vertices

);

The Fig. 10 shows a placement found for 16 Bézier rosettes and 16 rectangles.
It is worth noticing that even if the optimization procedure has found a non-
trivial placement, for instance for the rectangles and the rosettes in the bottom
right of the figure, some visually obvious improvements of the placement of the
left rosettes are not found in this run of CMA-ES.



276 T. Martinez et al.

Fig. 10. Placement found by MiniZinc-CMAES for 16 Bézier rosettes and 16 rectangles,
in this run of CMA-ES which stays stick in a local minimum.

5 Evaluation Results of MiniZinc-CMAES

The following Tables 1 and 2 summarize the performance obtained with
MiniZinc-CMAES, in terms of computation time, smallest area found, mean
area and variance of the area among 50 runs of CMA-ES. For every example,
results are averaged over 50 runs. All these results have been obtained with the
default parameters of CMA-ES described in Sect. 3. It is worth noticing that
smaller initial standard deviations tend to generate solutions with overlaps that
the optimization fails to remove, and bigger standard deviations augment con-
vergence times. Total time is the sum of the computation times for all the 50
restarts: for each problem, all the restarts have been computed in parallel on a
cluster, one problem per core.

It is worth noticing that Eclipse and G12 with their interval constraint solvers
can parse the MiniZinc models of the previous section that do not use predicates

Table 1. Computation time for placement of geometrical rosettes.

Roses Total time (50 restarts) Mean time Smallest area found Mean area Variance (area)

10 17min 32 s 21 s 25.266 27.303 1.893

11 31min 13 s 37 s 27.369 29.692 1.585

12 41min 18 s 49 s 28.761 32.511 3.675

13 1 h 1min 39 s 1min 13 s 32.936 34.987 2.648

14 1 h 17min 37 s 1min 33 s 33.816 37.714 2.926

15 1 h 43min 19 s 2min 3 s 37.233 41.085 3.57

16 2 h 6min 57 s 2min 32 s 39.729 43.86 5.891

17 2 h 26min 23 s 2min 55 s 41.883 46.113 5.947

18 3 h 11min 20 s 3min 49 s 43.582 49.123 13.828

19 3 h 47min 24 s 4min 32 s 46.74 52.594 10.769

20 5 h 8min 42 s 6min 10 s 49.006 54.89 8.579
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Table 2. Computation time for placement of mixed shapes: Bézier’s rosettes and rec-
tangles.

Shapes Total time (50 restarts) Mean time Best area Mean area Area variance

10 + 10 7 j 17 h 35min 10 s 3 h 42min 42 s 66 715.294 70 080.254 3.784 · 105
11 + 11 12 j 5 h 34min 30 s 5 h 52min 18 s 72 846.432 78 495.343 4.434 · 105
12 + 12 41min 18 s 49 s 87 257.346 90 238.345 5.499 · 105
13 + 13 13 j 23 h 13min 39 s 6 h 42min 16 s 85 492.98 1.024 · 105 6.985 · 105
14 + 14 17 j 9 h 27min 23 s 8 h 20min 56 s 1.11 · 105 1.398 · 105 8.219 · 105
15 + 15 23 j 9 h 18min 63 s 11 h 13min 35 s 1.078 · 105 1.584 · 105 1.281 · 106

defined as auxiliary C functions in the back-end. However the performances are
very poor with results obtained only for 3 circles.

6 Conclusion

We have presented here a stochastic continuous optimization backend for MiniZ-
inc models over real numbers. We have shown the benefits of this approach using
the CMA-ES solver for continuous optimization on a series of geometrical place-
ment problems motivated by industrial applications in logistics, involving mixed
square-curve shapes, and also complex shapes defined by Bézier curves. Proba-
bly because of the novelty of these problems for complex shapes, we have not
identified benchmarks for comparing the techniques presented here, but in [9]
we showed that the solutions found with CMA-ES on circle packing were at just
2 % of the best solutions found with dedicated solvers.

The declarative modeling in MiniZinc combined to the solving using the
transformation to CMA-ES described in this paper, does not come with any
significant overhead and provides fully declarative solutions to very hard geo-
metrical placement problems. The non-overlap constraint has a cost function
based on the penetration depths between objects, using Minkowski sums for
polygons, and a simpler measure of overlap for Bézier curves. A classical diffi-
culty in the definition of the error function of a conjunction of constraints is the
normalization of the error function for each constraint. This has been solved here
by letting the modeller specify in MiniZinc the cost function if different from the
default cost aggregation function (i.e. the sum of the costs).

The recourse to such a black-box optimization procedure for FlatZinc makes
sense especially in presence of non-linear constraints, and in absence of inte-
ger variables, but the transformation we have given of a FlatZinc model in
a non-negative real-valued cost function is quite general. We have focused on
continuous placement problems, but our MiniZinc/CMA-ES can be applied in
principle to any constraint model over real numbers. The examples taken here
from industrial problems in logistics, including objects defined by Bézier curves,
should contribute to open a new domain of application of constraint methods in
computational geometry, at the intersection of optimization and computer-aided
design.
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Abstract. This papers extends in three ways our previous work about
efficient operations on Multi-valued Decision Diagrams (MDD) for build-
ing Constraint Programming models. First, we improve the existing
methods for transforming a set of tuples, Global Cut Seeds or sequences
of tuples into MDDs. Then, we present in-place algorithms for adding
and deleting tuples from an MDD. Finally, we describe an incremental
version of an algorithm which reduces an MDD. We show on a real-
life application that in-place operations on MDDs combined with this
incremental algorithm outperform classical operations. Furthermore, we
give some experimental results showing that the creation algorithms we
propose strongly improve upon existing ones.

1 Introduction

Table constraints are useful constraints for modeling and solving many real-world
problems. They are explicitly defined by the set of elements of the Cartesian
product of the variables, also called tuples, that are allowed. The complexity
of arc consistency algorithm associated with table constraints mainly depends
on the number of involved tuples. Thus, Cheng and Yap proposed to compress
the tuple set of the constraint by using Multi-valued Decision Diagrams (MDD)
leading to MDD-based constraints. They designed mddc, one of the first filter-
ing algorithms establishing arc consistency for them [7,8]. Recently, we have
presented MDD-4R, a new algorithm which improves mddc [17]. MDD-4R pro-
ceeds like GAC-4R (an efficient arc consistency algorithm for table constraints)
and, unlike mddc, maintains the MDD during the search for a solution. MDD-4R
outperforms table constraints when the compression is effective.

MDDs can also be directly used to express complex constraints that cannot
be represented by Table constraints because the number of tuples would be
exponential. We have introduced efficient algorithms for creating and reducing
an MDD and some powerful algorithms for combining MDDs [18]. Thanks to
these new algorithms, some experiments based on real-life applications have
shown that the MDD approach becomes competitive with ad-hoc approaches like
the filtering algorithms associated with the regular or the knapsack constraints.
More precisely we have shown that modeling a complex problem by a succession
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of operations between MDDs may be a competitive approach with the design of
a complex ad-hoc algorithm.

In this paper, we extends our work by showing that MDDs can also be used to
efficiently implement partially compressed table constraints like the ones defined
by Global Cut Seeds (GCS) or tuple sequences and by proposing some in-place
algorithms for combining MDDs in order to avoid using intermediate MDDs,
and by introducing an incremental reduction algorithm.

Table constraints can be specified either directly, by input from the user, or
indirectly by synthesizing other constraints or subproblems [14,15]. They have
been reinforced in order to deal either from tuple sets or from sequences of
tuples [10,12,19]. This has two advantages: it improves their expressiveness and
it reduces the number of tuples that are explicitly used and so decreases the
practical complexity of the filtering algorithms because they mainly depends on
that number.

GCSs and tuple sequences are partial compression of table constraints. This
compression can be improved by transforming tables defined by GCS or tuple
sequences into MDDs. In the first part of this paper we propose such transfor-
mations and we show that the obtained MDDs always uses less space than a set
of GCS or tuple sequence for representing the same table. We will also present
the first linear algorithm for building an MDD from a list of tuples.

Next, we consider in-place deletion and addition operations, that is opera-
tions that do not create a new MDD. Instead they directly modify the current
MDD. In-place operations have three advantages: it avoids some memory con-
sumption, it decreases the computation time, and it allows the design of more
efficient reduction algorithms because they can be incremental. In this part, we
show that the addition and the deletion of one tuple from an MDD can be effi-
ciently done by using the method which consists of isolating the path of the MDD
corresponding to the tuple in case of deletion and to the common prefix of the
tuple in case of addition. These operations make addition/deletion operations
easier on MDDs. Then, we generalize the algorithm for the addition/deletion of
a set of tuples.

After each modification of an MDD the reduction operation must be applied
and since the deletion or the addition of tuples may modify only a few nodes, we
introduce ipReduce an incremental version of the reduction operation which
allows us to reduce the complexity of the pair of operations formed by the mod-
ification and the reduction.

Before concluding, we present some experiments on a real life application
showing some strong improvements brought by our algorithms notably compared
to the ones previously proposed. We also empirically establish the advantages of
the new creation algorithms we propose.

2 Background

MDD. Multi-valued decision diagram (MDD) is a data structure for representing
discrete functions. It is a multiple-valued extension of BDDs [6]. An MDD, as
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used in CP [1,3,11,13,14], is a rooted directed acyclic graph (DAG) used to
represent some multi-valued function f : {0...d− 1}r → {true, false}, based on a
given integer d. Given the r input variables, the DAG representation is designed
to contain r layers of nodes, such that each variable is represented at a specific
layer of the graph. Each node on a given layer has at most d outgoing arcs to
nodes in the next layer of the graph (i.e. one per value). We will denote by L[i]
the nodes in layer i and by ω+(x) the set of outgoing arcs of the node x. Each
arc is labeled by its corresponding value. The final layer is represented by the
true terminal node (the false terminal node is typically omitted). There is an
equivalence between f(v1, ..., vr) = true and the existence of a path from the root
node to the true terminal node whose arcs are labeled v1, ..., vr. Nodes without
any outgoing arc or without any incoming arc are removed.

MDD Constraint. In an MDD constraint, the MDD models the set of tuples
satisfying the constraint, such that every path from the root to the true terminal
node corresponds to an allowed tuple. Each variable of the MDD corresponds to
a variable of the constraint. An arc associated with an MDD variable corresponds
to a value of the corresponding variable of the constraint. Figure 1 gives the MDD
representing the tuples {a,a}, {a,b}, {c,a}, {c,b} and {c,c}. For each tuple, there
is a path from the root node (node 0) to the terminal node (node tt) which is
labeled by the tuple values.

Fig. 1. An MDD (left graph) and a trie (right graph) representing the tuple set
{{a,a},{a,b},{c,a},{c,b},{c,c}}

MDD Reduction. The reduction of an MDD is one of the most important oper-
ations. It consists of merging equivalent nodes, i.e. nodes having the same set of
outgoing neighbors associated with the same labels. Usually, a reduction algo-
rithm merges nodes until there is no more equivalent nodes. Most of the time,
only reduced MDDs are considered mainly because they are smaller. Figure 5
exhibits an MDD having two equivalent nodes: b and e. These nodes will be
merged by the reduction operation. Note that the reduction operation cannot
increase the number of nodes or arcs. Recently, a new reduction algorithm with
a linear space and time complexity has been proposed [18].

For convenience, we will denote by d the maximum number of values in the
domain of a variable; and by (x, v, y) an arc from x to y labeled by v.
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3 Transformations

In this section, we improve existing algorithms for building MDDs from tuple sets
and we introduce new algorithms for building MDDs from compressed tuple sets.

3.1 From Trie to MDD

A trie is a data structure used by Gent et al. for compressing tuple sets [12]. Each
path from the root to a leaf represents an allowed tuple. A trie representing a set
of T tuples will have |T | leaves. Each variable corresponds to a layer of the trie.
A node has a maximum of d children, where d is the size of the domain of the
corresponding variable of the node. An example of trie is given in Fig. 1. A trie
can be transformed into an MDD by merging all the leaves into the terminal
node tt and by applying the reduction operation [7].

3.2 From Table to MDD

A table is a data structure where each row represents a tuple and where each
column corresponds to a value of a variable.

Cheng and Yap build an MDD from a table by defining a trie. Tuples are
successively added to the trie. First, a common node is created: the root of the
trie. Then paths starting from the root are created. The rooted subpaths com-
mon to several tuples are merged together in order to be represented only once.
Afterwards, all the leaves are merged and the MDD is reduced. The drawback of
this approach is the addition of a tuple, because we need to compute the common
subpath of the tuple and the MDD. This operation can be performed in linear
time only if we have d entries per node, so we increase the space complexity.
Alternatively, we can keep a linear space complexity if we accept to increase the
time complexity.

We propose a simple method with a linear time and space complexity: we
lexicographically sort the table and we build the trie from the sorted table. Here
is an example:

table sorted table trie
a a c a a a a b a b a a b a b
a b a b b a a b a c c
a a b a c a a c a a c a a
a a b a b a b a a b b a a b
a b a a b a b a b b b b

This can be done efficiently because all tuples are consecutive and so there is
no need to search for any position for a tuple: the last one is always the correct
one. So we do not need the random access to children and this step can be
achieved in linear time. In addition, the sort can be performed in linear time
because a tuple can be viewed as numbers having r digits where a digit can take
on up to d values. Thus we can sort a table containing t tuples in O(r(t+ d)) by
using a radix sort, which is linear in its size. Since, the merge of the leaves and
the reduction can be performed in linear time, we obtain a linear time algorithm.
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3.3 From GCS and Tuple Sequence to MDD

Compressed tuples improve the expressiveness of table constraints and reduce
the complexity of the filtering algorithms. Therefore, it is interesting to represent
them by MDDs in order to reinforce the compression.

A GCS (Global Cut Seed), is a compact representation of a tuple set
[10]. A GCS is defined by a set of value sets: {{v1,1, v1,2, ..., v1,k1}, ..., {vn,1,
vn,2, ..., vn,kn

}}, where each value set corresponds to a variable. The Carte-
sian product of these sets defines the represented tuples. For instance, given
D ={1,2,3,4}, the GCS c = {D,D,D,D} represents the tuple set {{1,1,1,1},
{1,1,1,2},..., {4,4,4,3}, {4,4,4,4}}. One GCS may represent an exponential num-
ber of tuples. However all the tuples cannot be compressed by only one GCS.
Two tuples can be represented by the same GCS if they have a Hamming dis-
tance equals to 1. For instance, the tuples {1,1,1} and {1,1,2} may be compressed
into {1,1,{1,2}}. By contrast the tuples {1,1,1} and {1,2,2} have an Hamming
distance equals to 2 and so cannot be represented by only one GCS. So, the
compression of a table by a set of GCSs may require a huge number of GCSs. In
order to remedy this problem, tuple sequences have been introduced [19]. They
generalize GCSs.

A tuple sequence encapsulates a GCS and two tuples: tmin a minimum tuple,
and tmax a maximum tuple. It bounds the lexicographic enumeration of the
tuples of the GCS by these two tuples. For instance, let D = {1, 2, 3, 4} then the
tuple sequence s = {{D,D,D,D}, {1, 2, 2, 2}, {3, 1, 3, 2}} represents the tuple
set {{1,2,2,2}, {1,2,2,3}, ..., {3,1,3,1}, {3,1,3,2}}.

Since a tuple sequence is a generalization of a GCS, a method transforming
a tuple sequence into an MDD could also be used for transforming a GCS into
an MDD.

First, we propose an algorithm for representing one tuple sequence by an
MDD. Then, we will show how we can deal with several tuple sequences. Let
s = (g, tmin, tmax) be a tuple sequence. For transforming s into an MDD we
introduce special nodes: wild card nodes. There is at most one wild card node
per layer i which is denoted by w[i]. The wild card nodes are linked together.
All the arcs outgoing from w[i] are incoming arcs of node w[i + 1] and all arcs
outgoing w[n − 1] are incoming arcs of tt.

The MDD representing s is built in three steps:

1. The paths corresponding to tmin and tmax are created.
2. Arcs from the nodes of the paths previously created to wild card nodes are

created as follows. Consider the path created for tmin. For each layer i, let
val[i] be the value set of g for the layer i. For each value a ∈ val[i] such that
a > tmin[i] we create an arc from the node ni of the path representing tmin

to the wild card node w[i+1]. We repeat this process for the path created for
tmax. In addition, we add a particular treatment when a node is shared by
the two initial paths: instead of considering all values of val[i], we consider
only the values in the interval val[i]∩]tmin[i], tmax[i][.

3. From nodes w[i] to node w[i + 1] we add as many arcs as there are values in
val[i + 1].
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Fig. 2. Creation of an MDD from a tuple sequence

Figure 2 shows the resulting MDD. The left graph contains the two paths
representing the minimum and maximum tuples. The right graph represents
with dashed lines the added arcs to wild card nodes. For instance, for node a
each value in {1,2,3,4} greater than 2 labels an arc to node w2. Arcs joining wild
card nodes together and with tt are represented by dotted lines.

Let r be the number of involved variables. The number of nodes of the
obtained MDD is bounded by 3(r − 1) + 2. There are 2r arcs for the paths
corresponding to tmin and tmax. There are at most |val[i]| arcs from nodes of
the tmin (resp. tmax) path to wild card nodes; There are |val[i + 1]| arcs from
node w[i] to node w[i + 1]. Thus, there are at most 2

∑r
i=1 |val[i]| + 2r arcs in

the MDD. This is equivalent to the number of values of the tuple sequence.
Now, suppose that we have a set of tuple sequences. We can consider suc-

cessively each tuple sequence and build for each sequence an MDD with the
previous algorithm. Then, there are two possibilities. Either the tuple sequences
are disjoint or not. The former case arises frequently (for instance when the tuple
sequences represent a set of forbidden tuples). We just have to make the union
of MDDs. This can be easily done because they are disjoint. The resulting MDD
has a space complexity equivalent to the set of tuple sequences and we have:

Property 1. A set of disjoint tuple sequences can be represented by an MDD
having an equivalent space complexity.

The latter case is more complex. A set of disjoint tuple sequences may be
computed from a set of non disjoint tuple sequences and each disjoint tuple
sequence can be represented by an MDD. Nevertheless, it may create an expo-
nential number of tuple sequences [19] so an exponential number of MDDs.

4 Addition and Deletions of Tuples from an MDD

In this section, we define in-place algorithms for the addition/deletion of tuples
from an MDD. Some work have been carried out for performing operations
on BDDs. For instance, Bryant define some algorithms for applying different
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operators [5,6]. However, the described algorithms are not in-place (i.e. there is
the creation of a resulting BDD) and it is not easy to generalize some algorithms
designed for BDDs to MDDs mainly because some Booleans rules are no longer
true when we have d values in the domain and because the complexity of some
algorithms is multiplied by O(d) when dealing with d values. Some generic algo-
rithms have been proposed for applying operators on MDDs [2,18], but they are
not in-place. An in-place algorithm has been given by Ciré and Hooker [9] but
it only deal with partial assignments and has no incremental reduction.

4.1 Deletion of Tuples from an MDD

First, we give an algorithm for deleting one tuple from an MDD. Then, we
generalize it for a set of tuples.

Fig. 3. Tuple {0,0,0} is removed from the left MDD. The isolation of the path corre-
sponding to the tuple is performed (middle MDD) and then the reduction is applied
(right MDD). Nodes aI and bI are created from nodes a and b during the path isolation.

The deletion of a tuple τ from an MDD is based on an operation named path
isolation, which is a kind of local decompression. The idea is to build a specific
path whose arcs are labeled by the values of τ . Furthermore, arcs equivalent
to the ones of the isolated path are deleted from the MDD. After the isolation
process, the MDD is reduced. Let τ [i] be the value for the variable x[i]. The
isolation is performed in 3 steps:

Step 1. We identify a1 = (root, τ [1], n1) the arc of the first layer labeled by τ [1]
the first value of the tuple. We create the node ne1, the arc (root, τ [1], ne1) and
we delete the arc a1. We set xmdd (a node of the MDD) to n1 and xpath (an
isolated node) to ne1.

Step 2. For each layer i from 2 to r − 1 we repeat the following operation. We
identify ai = (xmdd, τ [i], ni+1) the outgoing arc from xmdd labeled with τ [i]. We
create the node nei+1 and the arc (xpath, τ [i], nei+1). For each arc (xmdd, w, y)
such that w �= τ [i] we create the arc (xpath, w, y). We set xmdd to ni+1 and xpath

to nei+1.
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Fig. 4. The left MDD represents all the possible tuples for the values {0,1,2,3}. The
right MDD represents the deletion of the GCS {1,{0,1,2,3},1} from the left MDD.

Step 3. For each arc (xmdd, w, tt) such that w �= τ [r] we create the arc
(xpath, w, tt).

If at any moment we cannot identify an arc then it means that τ does not
belong to the MDD. Figure 3 shows the application of this algorithm. The com-
plexity of the deletion of a tuple is bounded by O(rd) because for each isolated
node we need to recreate its arcs. However, in practice it is often close to O(d).

Deletion of a Set of Tuples. We propose a better method than repeating
the previous algorithm for each tuple. We transform the set of tuples into an
MDD and we subtract this new MDD from the initial one by following the same
steps of the previous algorithm. We isolate nodes having a common path in both
MDDs, then we remove the common arcs to the isolated nodes of the second last
layer. At last, we call the incremental reduction algorithm.

Figure 4 shows the subtraction of the GCS {1,{0,1,2,3},1} from the MDD
representing all the tuples possible for the values {0,1,2,3}. The GCS is isolated
from the MDD. Then, the deletion of the arc labeled 1 of node d correspond
to the deletion of only the tuples contained in the GCS. It is difficult to bound
the complexity of the deletion of T tuples, because the MDD created from them
may compress the information.

4.2 Addition of Tuples to an MDD

The addition of tuples into MDD follows the same principles as for the deletion.
In this case, the isolated path contains arcs labeled by the values of the tuple that
must be added. It is performed by applying the same steps as for the deletion.

First, we consider the addition of one tuple τ . The two first steps are very
similar to the ones of the deletion. Excepted that at a point, there will be no
more path in the MDD having the same subpath as τ . Otherwise, it would
mean that τ is already in the MDD. Thus, at a certain moment we will not be
able to identify any arc (xmdd, τ [i], ni+1) as in step 2 in the deletion algorithm.
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Fig. 5. The right MDD represents the addition of the tuple {1,2,1} to the left MDD,
before the reduction.

When this case arises we can stop step 2 and directly create the path from
the current isolated node to the terminal node. This path will be labeled by the
values of τ for the remaining layers. Step 3 can be skipped. At last, we call
the incremental reduction algorithm. The complexity of the addition of a tuple
is in O(rd) because for each isolated node we need to recreate its arcs.

Addition of a Set of Tuples. Let mdd1 be the initial MDD. We transform
the set of tuples into an MDD, named mdd2. We add mdd2 to mdd1 by following
the same steps as for the previous algorithm. We isolate nodes having a common
path in both MDDs. When an arc belongs to mdd2, we create an isolated node
and we create an arc from the current isolated node to it. When an arc belongs
only to mdd1, we create an arc from the current isolated node to the node in
mdd1.

Figure 5 shows the effect of the addition of the tuple {1,2,1} in the MDD
given in Fig. 4. We can see the usefulness of the path isolation for avoiding the
addition of the tuples {1,{0,1,3},1}. The right MDD shows the impact of the
reduction on the MDD: nodes e and b are merged because they have the same
outgoing arcs. It is difficult to bound the complexity of the addition of T tuples,
because the MDD created from them may compress the information.

Algorithm 1 is a possible implementation of the in-place deletion and addition
operations.

4.3 Incremental Reduction

A reduction step is needed after the deletion/addition of tuples. Using a generic
algorithm is costly because it will traverse all the nodes of the MDD and merge
the equivalent ones. Since we consider that we add/delete tuples from an MDD
which is reduced we can save some computations for the reduction applied after
the operation. Only certain nodes have to be considered:
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Algorithm 1. In-place deletion and addition algorithms
Deletion(L, mdd1, mdd2)

for each (root(mdd1), v, y1) ∈ ω+(root(mdd1)) do

if ∃(root(mdd2), v, y2) ∈ ω+(root(mdd2)) then

addArcAndNode(L, 1, root(mdd1), v, y1, y2)

deleteArc(root(mdd1), v, y1)

for each i ∈ 1..r − 2 do

L[i] ← ∅
for each node x ∈ L[i − 1] do

get x1 and x2 from x = (x1, x2)

for each (x1, v, y1) ∈ ω+(x1) do

if ∃(x2, v, y2) ∈ ω+(x2) then

addArcAndNode(L, i, x, v, y1, y2)

else createArc(L, i, x, v, y1)

for each node x ∈ L[r − 1] do

get x1 and x2 from x = (x1, x2)

for each (x1, v, tt) ∈ ω+(x1) do

if � ∃(x2, v, y2) ∈ ω+(x2) then

createArc(L, r, x, v, tt)

ipReduce(L)

Addition(L, mdd1, mdd2)

for each v ∈ ω+(root(mdd1)) ∪ ω+(root(mdd2)) do

if ∃ (root(mdd1), v, y1) ∈ ω+(root(mdd1)) then

if ∃ (root(mdd2), v, y2) ∈ ω+(root(mdd2)) then

addArcAndNode(L, 1, root(mdd1), v, y1, y2)

deleteArc(L, i, root(mdd1), v, y1)

else addArcAndNode(L, 1, root(mdd1), v, nil, y2)

for each i ∈ 1..r − 2 do

L[i] ← ∅ for each node x ∈ L[i − 1] do

get x1 and x2 from x = (x1, x2)

// If x1 is nil then ω+(x1) is empty

for each v ∈ ω+(x1) ∪ ω+(x2) do

if ∃ (x1, v, y1) ω+(x1) then

if ∃ (x2, v, y2) ∈ ω+(x2) then

addArcAndNode(L, i, x, v, y1, y2)

else createArc(L, i, x, v, y1)

else addArcAndNode(L, i, x, v, nil, y2)

for each node x ∈ L[r − 1] do

// If x1 is nil then ω+(x1) is empty

for each v ∈ ω+(x1) ∪ ω+(x2) do

createArc(L, i, x, v, tt)

ipReduce(L)

addArcAndNode(L, i, x, y1, v, y2)

if � ∃y ∈ L[i] s.t. y = (y1, y2) then

y ← createNode(y1, y2)

add y to L[i]

createArc(x, v, y)
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Property 2. After the application of an in-place operator, if two nodes are
merged then one of these nodes must be an isolated node.

Proof. Two nodes are merged if and only if they have the same set of outgoing
neighbors associated with the same labels. Before the operation the MDD is
reduced, so no two pairs of nodes can be merged. By induction from the terminal
node to the root we prove the property: it is obvious for two nodes of the last
layer. Then, from the definition of the path isolation, if a merge exists then it
necessarily involved an isolated node because it was not possible to merge nodes
of the MDD existing before the operation. ��

Thus, we can easily adapt pReduce algorithm [18] by rejecting a pack of nodes
if it does not involve any isolated node. In addition, it is easy to identify isolated
nodes because they belong to the list L of the in-place algorithms. The advantage
of this approach is that the reduction step does not increase the complexity of
the addition or deletion operations. This new algorithm is named ipReduce.

5 Experiments

The algorithms have been developed on top of or-tools 3158, a constraint pro-
gramming solver developed by Google. The experiments have been executed on
a MacBook Pro (Intel Core I7, 2.3 GHz, 8 GB memory).

Real Life Application. We consider the problem given in [16] which deals with
Markov Sequence Generations on corpus having more than 10,000 words. The
goal is to generate phrases having 24 words where all successions of 4 words come
from the corpus and where there is no sequence of more than 8 words coming from
the corpus. This problem can be modeled by using MDDs expressing sequences
of words [18]. Values of variables are words of the corpus, so we have a huge
number of values. From an initial MDD representing allowed sequences of 4
words, 20 intersections of MDDs are performed until obtaining mddr the final
MDD. The main issue with this approach is the size of the MDDs because mddr
has 1,208,219 nodes and 188,035,203 arcs. With the operators given in [18] were
able to compute mddr in 425s. This requires to perform 20 intersections and 20
reductions of huge MDDs.

In this problem, twice a deletion followed by a reduction of the MDD are
made. The results are given in the table below. Times are expressed in seconds.
In the “Classic” columns, the algorithms given in [18] are used whereas the algo-
rithm proposed in this paper are used in the “In-place” columns. These results
clearly show the advantage of using the new algorithms. Using in-place algo-
rithms instead of building intermediate MDDs reduces the memory consumption
of the resolution of the whole problem from 52GB to 32GB.

Operations and Reduction. We propose to compare the performance of the clas-
sical and the in-place algorithms and the performance of the classical and the
incremental reduction algorithms. We use random instances obtained from the
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Classic In-place

deletion reduction total deletion reduction total

First Operation 2 1.7 3.7 1.3 0.9 2.2

Second Operation 23.9 14.6 38.5 1.5 6.3 7.8

Table 1. Arity 12, domain size 10. Average deletion time (s) for random instances.

Instances Classic In-place

deletion reduction deletion reduction

30*300K-300K 35,4 4.2 24.8 1.8

300K - 1K 5.3 0.7 1.2 0.6

90K-30K 2.1 0.2 1.6 0.2

300K-10 4.7 0.6 0.002 0.2

real life instances. The first number corresponds to the number of the tuples rep-
resented by the MDD whereas the second number is the number of tuples that
are removed from the MDD. Table 1 gives the results we obtain. Our algorithms
clearly improve the previous ones.

We also proposes a table summarizing the advantages of the different algo-
rithms. We add results for the BDD and MDD packages proposed in [4,20] (See
column Bryant). “P&R15” represents the results we previously obtained and “in-
place” column corresponds to the new algorithms. Table 2 gives some resultats
for MDD representing 10,000s tuples. Note that huge MDD are not tractable
with some old methods.

From Tables to MDDs. We study the performance of the new creation algo-
rithms. The times for sorting the elements are included into our results. First,
we tested our algorithm on the instances of the XCSP competition. We give
the results for the most representative ones. Sorted creation corresponds to our
algorithm, unsorted creation is the classical creation.

These experiments show that it is always better to sort the table and use our
creation algorithm.

Table 2. Arity 12, domain size 10. Average deletion time (ms) for random instances.

#tuples #deleted Bryant P&R15 in-place

20000 1000 159 11.5 6

40000 2000 291 40 21

40000 20000 663 51 33

80000 40000 2643 174 114

40000 10 466 185 19
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Fig. 6. Sorted vs unsorted creation
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Instances Creation

sorted (ms) unsorted (ms)

crossword-m1c-ogd 31.5 66.2

crossword-m1c-uk-vg 9.6 23.1

nonogram-gp 25.1 34.5

rand-10-60-20-30 70.9 179.9

bdd-21-2713 8.1 11.6

bdd-21-133 98.23 122.3

On the other hand, we tested both algorithms on random instances. We have
tested instances having 22 variables, 1,000 tuples and we increased the domain
size. The results given in Fig. 6 show that the domain size does not influence the
creation time. We can see that even if we increase the number of tuples or the
number of variables, our creation algorithm outperforms the existing one. We
have also tested instances for all the combinations with domain size in the set
{2, 4, 8, 12, 20, 25, 30, 45, 60}, arity in the set {6, 10, 14, 18, 22, 25, 30} and
number of tuples in the set{30, 100, 150, 200, 250, 300, 500, 700, 800, 900, 1000,
2000, 3000, 4000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 24000, 28000,
30000}. For all these cases, our method was better.

6 Conclusion

We have given an algorithm for transforming tuple sets, GCS and tuple sequences
into an MDD. Then, we have described efficient in-place algorithms for adding
or deleting tuples from an MDD. These algorithms are based on the idea of
path isolation. Furthermore, we have introduced a simple modification of the
pReduce algorithm for improving the reduction of an MDD when it is used after
an in place operation. We have experimentally shown on a real life application,
on a set of benchmarks and on random problems that the algorithms we propose
outperform the existing ones.

Acknowledgments. We would like to thank very much Laurent Perron and
Christophe Lecoutre for their useful comments which helped to improve the paper.
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Abstract. Nursing workload in hospitals has an impact on the quality
of care and on job satisfaction. Understandably there has been much
recent research on improving the staffing and nurse-patient assignment
decisions in increasingly realistic settings. On a version of the nurse-
patient assignment problem given a fixed staffing of neonatal intensive
care units, constraint programming (CP) was shown to perform better
than competing optimization methods. In this paper we take advantage
of recent improvements to the CP approach to solve the integrated prob-
lem of staffing and nurse-patient assignment. We then consider a more
difficult but also more realistic version of the problem in which patients
are categorized into a small number of types and the workload associated
with each type is nurse-dependent.

1 Introduction

Because of its impact on the quality of care, job satisfaction, and staff retention,
nursing workload is a constant preoccupation in hospitals and it has received
some recent attention in the scientific literature (e.g. [1,7,11]). Arguably the most
important factor influencing nursing workload is patient acuity but others have
been identified such as job interruption, patient turnover rate, and administrative
paperwork [4]. If we define the workload of a nurse as the sum of the acuities of
the patients he cares for, then we try to keep that value low but we also try to
balance the individual workloads in order to avoid an overworked nurse and to
show fairness between staff members.

Given a set of patients distributed in a number of units and an available nurs-
ing staff (previously determined as a result of nurse rostering), the nurse staffing
problem consists of assigning an appropriate number of nurses to each unit. The
nurse-patient assignment problem (NPA) then assigns patients to nurses. The
number of patients per nurse may be as low as two or three in an intensive care
unit [3] or around six in oncology and surgery units [10]. These two levels of
assignments must be made so as to balance the resulting workloads. The typical
time frame for the decision maker is one to two hours to perform staffing and
30 min to perform NPA [3].

This short paper focuses on solving the integrated nurse staffing and NPA
problem in a neonatal intensive care setting (Sect. 2) and a version of the NPA
with nurse-dependent patient acuities (Sect. 3).
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 294–302, 2016.
DOI: 10.1007/978-3-319-33954-2 21
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Table 1. CP models for the NPA (left) and staffing (right) problems

2 Integrated Staffing and Nurse-Patient Assignment

The problem originally proposed by Mullinax and Lawley [3] asks for a balanced
workload for nurses being assigned patients requiring various amounts of care
(acuity) in a neonatal intensive care unit. Patients each belong to a zone, a nurse
can only work in one zone, and there are upper limits both on the number of
patients assigned to a nurse and on the corresponding workload.

Mullinax and Lawley solve that problem as a mixed integer linear program
with a linear objective function minimizing the sum of differences between min-
imum and maximum workloads in each zone, which may lead to imbalance
between zones. Schaus et al. [8,9] describe a constraint programming model min-
imizing the standard deviation of workloads globally using the spread constraint
[6]. They significantly improve the quality of solutions and the computational
efficiency, solving two-zone instances optimally. For larger instances they first
compute a staffing decision heuristically by solving a continuous relaxation of
that problem and then solve each zone separately, often finding provably optimal
solutions. Ku et al. [2] applied mixed integer quadratic programming and con-
straint integer programming (CIP). The latter, coupled with a variable order-
ing heuristic prioritizing the staffing and workload variables, solves two-zone
instances significantly faster than the previous CP approach. A stronger filtering
algorithm (achieving domain consistency) was recently proposed by Pesant [5]
for the spread constraint and evaluated empirically on the NPA (i.e. on individ-
ual zones). It was found to solve instances one to two orders of magnitude faster
than the CIP approach.1 Building on that performance we investigate solving
the integrated staffing and nurse-patient assignment problem.

2.1 Nurse-Patient Assignment

Our CP model shown in Table 1 on the left is standard: given the set of nurses
N , the set of patients P , the list of patient acuities 〈ai〉, and the minimum and
maximum number of patients per nurse pmin and pmax respectively, we use one
variable ni per patient i indicating which nurse it is assigned to and one variable
wj per nurse j indicating his workload. To the usual constraints we add static
symmetry breaking among nurses, enforce domain consistency on the spread

1 Personal communication from the authors of [2].
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constraint, and use a simple static branching heuristic that first selects the wj

variables in lexicographic order and then the ni variables in decreasing order of
acuity (values are selected in lexicographic order) [5].

2.2 Staffing

In order to solve the integrated problem exactly in principle we need to con-
sider every staffing configuration. Fortunately most configurations are of poor
quality and we can eliminate them implicitly by computing a lower bound on
the standard deviation from partial configurations. We first use the heuristic
staffing from Schaus et al. [8] to solve the NPA in each zone to optimality in
order to provide a good upper bound. We then express the staffing problem as a
constraint satisfaction problem coupled with the computation of a lower bound.
For a given zone k ∈ Z with its total patient acuity Ak and number of nurses
xk, Schaus et al. describe a lower bound on its contribution to the standard
deviation, which we adapt here:

α(�Ak/xk� − μ)2 + β(�Ak/xk� − μ)2

where μ =
∑

ai/|N | is the mean workload, α = Ak + xk(1 − �Ak/xk�), and
β = xk − α. Summing them over all zones, dividing the result by the total
number of nurses, and then taking its square root provides a bound on the
standard deviation. We pre-compute these lower bounds in each zone for every
possible value of xk and put them in a matrix LB. Let Pk represent the set of
patients in zone k, ub an upper bound on the deviation (provided by the best
solution so far), and f = |N | −

∑
i∈Z�|Pi|/pmax� the number of nurses that

are free to be assigned to any zone. Table 1 (right) gives our CP model for the
staffing problem: every solution of this model is a staffing from which we solve
a CP model for the NPA in each zone.

2.3 Results

The benchmark instances used in the literature are inspired from a neonatal
intensive care unit, with an upper limit of 3 newborns per nurse and of 105 for
the total workload of a nurse. They were randomly generated by Schaus et al. [8]
using a realistic statistical model proposed in [3]. They range from 2 to 20 zones
and up to 102 nurses and 258 patients. All experiments were run on Dual core
AMD 2.1 GHz processors with 8 GB of RAM, using IBM ILOG Solver 6.7 as the
CP solver.

We solve all ten 2-zone instances in an average of 0.12 s and 319 fails com-
pared to 2.07 s (on a similar processor) and 9254 fails for Schaus et al. [8] using
their two-step approach in which they fix the staffing decision heuristically.2

Our approach did not require to evaluate more staffing configurations: all others
2 For these 2-zone instances they can show that their solutions are optimal for the inte-

grated problem. Their initial model combining staffing and nurse-patient assignment
took about two orders of magnitude more time.
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Table 2. Results on the three larger instances

Zones Nurses Patients Mean SD Schaus and Régin [9] This paper

Fails Time(s) Fails Time(s) Staffings

6 31 78 84.58 4.20 12019 0.57 1387 0.37 1

15 71 198 81.95 5.33 38651 2.27 784 0.46 1

20 102 258 82.71 5.54 1176852 25.17 291286 27.04 5

were discarded during enumeration based on the lower bound calculation. The
2-zone instances used by Ku et al. [2] are not the same but were generated with
the same parameters. Their best approach solves the instances to optimality in
an average of 74.05 s on a faster processor.

For the 3-zone instances we require an average of 0.40 s and 1323 fails compared
to 0.48 s and 16528 fails for Schaus and Régin [9] but for the latter the problem is
decomposed by zone and optimized separately. Schaus and Régin could verify the
optimality of all their solutions except in the case of Instance 7 — this is indeed
the only instance for which we needed to explore a second staffing configuration
and we can confirm that their solution is optimal. Ku et al. [2] do not report results
beyond two zones.

Table 2 reports results on the three larger instances: we give the size of each
instance, its mean workload, the optimal standard deviation on the workloads,
the performance of the zone-decomposition approach of Schaus and Régin [9],
and the performance of our approach for the integrated staffing and NPA prob-
lem including the number of staffing configurations we had to explore. We notice
that our approach scales very well: indeed the increase in the number of zones
does not increase the size of the problem within a zone and only the 20-zone
instance took significantly more time because we needed to explore several
staffing configurations (and solve more zones). Still, it is remarkable that the
good quality of the lower bounds and of the initial configuration considered keep
the number of eligible configurations so low. The optimality of the solution for
the 20-zone instance was unknown until now: we confirm that it is. We thus close
all current benchmark instances for this problem.

We created a new set of ten instances that are harder to solve to optimality
in the sense that the best staffing may be different from the one obtained by
solving the continuous relaxation. They were generated on 6 zones using the
same parameters as Schaus et al. [8] except for the probability of success in the
binomial distribution used to generate the acuity of patients which we increased
from 0.23 to 0.33, yielding a wider span of acuities. Table 3 reports the perfor-
mance of our approach on these instances. We see that for some of them a few
staffing configurations had to be explored and, more importantly, that the opti-
mal standard deviation is sometimes noticeably lower than the first one obtained
with the heuristic staffing (shown in bold).
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Table 3. Results on ten harder 6-zone instances

Nurses Patients Mean First SD Optimal SD Fails Time(s) Staffings

34 80 94.88 6.09 6.04 3183 1.05 2

38 88 94.16 5.82 5.82 1133 0.40 1

40 89 92.38 6.23 5.16 13655 14.25 5

40 88 96.48 5.84 5.79 212304 26.38 4

37 88 93.00 4.30 4.30 1748 0.62 1

39 93 94.92 4.07 4.07 26740 2.71 1

36 83 93.94 5.57 5.57 3885 0.48 1

39 87 93.49 5.41 5.41 2875 0.81 1

37 83 92.70 5.45 5.08 2200 1.85 2

35 83 89.46 3.99 3.99 1295 0.56 1

3 Nurse-Dependent Patient Acuity

Patient classification systems (PCS) are commonly used in hospitals to estimate
the amount of care needed by each patient. For example AcuityPlus R© classi-
fies patients into six types according to a weighted sum of 26 acuity indicators.
Sir et al. [10] argue that, because of differences in experience, training, or prefer-
ences, nurses may not equally perceive the acuity associated with a given patient
type. Through a survey of nurses in oncology and surgery units, they found that
there could indeed be quite a bit of variation in perceived acuity between nurses
and advocate that nurse-dependent patient acuity should be used when balanc-
ing nursing workloads. In this section we consider a variant of the NPA where
patients are grouped according to their type and the acuity associated with each
patient type is nurse-dependent.

Because the acuity of care provided for a given patient type is not perceived
uniformly across nurses, we cannot know in advance what the total workload nor
the mean workload will be. Hence there are really two dimensions to the quality
of a solution: we wish to keep the total workload of the nursing staff low in order
to offer better care and to admit new patients more seamlessly, but we also wish
to balance the workload between nurses so as to be fair. In such a situation a
useful decision support tool will provide the Pareto optimal front so that the
decision maker has a small set of attractive solutions to work with.

Working with a variable mean is problematic for the spread constraint: its
filtering algorithms either assume a fixed mean or sustain a significant increase in
their time complexity. We propose to solve a succession of fixed mean-workload
problems where we gradually increase that mean. Finding a good starting mean
proved important for the efficiency of our approach: we initially minimize the
mean workload by recasting our problem as a Generalized Assignment Problem.
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3.1 Generalized Assignment Problem as Lower Bound
on Total Workload

If we relax the balancing aspect of our problem and simply minimize the total
workload, we can express it as a generalized assignment problem in which the
patients are the tasks and the nurses are the agents, with a capacity to perform
multiple tasks corresponding to the minimum and maximum number of patients
per nurse. We solve it using the Hungarian algorithm by framing it as the follow-
ing simpler assignment problem: we make as many copies of each nurse as the
maximum number of patients he can care for but add a penalty to the assign-
ment costs for the copies in excess of the minimum number of patients required
(to ensure that the minimum is reached). The resulting assignment, with its
total workload and its standard deviation from the mean workload, gives us an
initial point from which to proceed.

3.2 Solving Fixed Mean-Workload Instances

Each COP we solve imposes a total workload fixed to one unit less than that
of the previously found solution (except in the case of our first solution from
the Hungarian algorithm, which we try to improve) and a standard deviation
upper bounded by that of the previous solution. We branch using the default
smallest-domain-first variable selection heuristic and lexicographic value selec-
tion heuristic. We stop this iterative process when either we reach a standard
deviation of zero or an upper bound on the total workload.

3.3 Empirical Evaluation

The data used by Sir et al. [10] is proprietary but we generated instances using
their reported findings. Specifically we consider five patient types (the sixth type
was not sufficiently represented in their data) and use the mean acuity associated
with each type for the oncology unit as reported in Fig. 6 of their paper to draw
nurse-dependent acuities from a normal distribution with standard deviation
equal to 2.5 (loosely extrapolated from Table 6). The number of patients of each
type is generated using a Poisson distribution with an expected value chosen so
that the average number of patients per nurse is close to six, which is consistent
with oncology and surgery units. The typical size of such a unit is reported as
about 30 patients and 5 nurses. We generated ten instances of that size and ten
smaller ones with 3 nurses (and about 18 patients).

All experiments were run on Dual core AMD 2.1 GHz processors with 8 GB
of RAM, using IBM ILOG Solver 6.7 as the CP solver. Each COP was given
up to 5 min to run to completion. The plot on the left at Fig. 1 presents the
individual Pareto optimal fronts for the ten smaller instances. Observe that
each instance admits a solution with perfect balance (standard deviation equal
to zero). The highest point of each front corresponds to the first solution provided
by the Hungarian algorithm; note that sometimes we can find a solution of same
mean but with much better balance (e.g. for instance A a standard deviation
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Fig. 1. Pareto solutions to the 3-nurse instances (left) and a comparison of solutions
to one 5-nurse instance

Table 4. Solving the 3-nurse instances

Instance A B C D E F G H I J

DC time(s) 1.56 112.79 1.03 33.47 1.44 28.82 2.59 6.96 1.50 57.74

fails 4007 43719 2327 71521 6894 54211 3165 36120 1699 24442

decomp. time(s) 4.30 9.75 4.84 7.28 5.95 8.08 0.97 3.61 1.23 11.64

fails 36305 93023 47939 118838 96734 85546 12922 81567 11200 95309

equal to 7.07 instead of 43.01). Table 4 compares the total computation time
and number of fails to solve each 3-nurse instance between our model using
the spread constraint and achieving domain consistency (DC) and a simpler
model using linear and quadratic constraints instead (decomp.). Not surprisingly
the stronger filtering of DC always exhibits fewer fails. However the latter is
sometimes much slower on these instances. Upon closer inspection, there appears
to be a strong correlation between the computation time and how long it takes
to find solutions with a low standard deviation: instances B, J, D and F are the
slowest to solve and also have several solution points in the top part of the plots
at Fig. 1 (left); in contrast, instance A starts high but immediately finds solutions
with a much lower standard deviation. This is not surprising because the time
complexity of the domain filtering algorithm is influenced by the magnitude of
the standard deviation. Regardless of this all these instances are solved well
within the practical time frame of the hospital planner.

Moving on to the more challenging 5-nurse instances, Table 5 presents a sim-
ilar comparison. The computation times jump up by a few orders of magnitude
but DC is always faster here. (The difference in the number of fails, even more
striking, is not shown in the table.) Note that the 5 min time limit is often
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Table 5. Solving the 5-nurse instances

Instance A B C D E F G H I J

DC time(s) 3207 9638 20496 17078 6819 6444 4811 547 15505 5733

last mean 86 141 108 130 126 113 102 104 115 91

last SD 0 0 0 0 0 0 0 0 0 0

decomp. time(s) 26181 21304 50298 31705 33027 48783 42723 15219 36663 54237

last mean 95 142 127.6 138 141.8 138.4 125.6 108 128 116.6

last SD 0 0 0.49 0 0.49 0.4 0.4 0 0.4 0.4

reached on these instances so the solutions found are not necessarily optimal for
a given mean workload. Hence we do not provide a Pareto optimal front for them
but show the typical behaviour of the two models on instance A in the right plot
at Fig. 1: initially for higher bounds on the standard deviation the decomposi-
tion finds solutions more quickly but as the bound on the standard deviation
gets tighter the trend reverses and DC performs better, which is consistent with
the previous explanation of the variation in computation times on the 3-nurse
instances. We also give in the table the mean and standard deviation of the last
solution found by each: DC always finds a solution with perfect balance in the
end but this is not always the case with the other model (it eventually terminates
because of the upper bound on the total workload), and even when it does find
a solution with perfect balance it is always strictly dominated by that of DC.

4 Conclusion

In this paper we considered the problem of balancing the workload of nurses.
We closed the benchmark instances for the integrated staffing and nurse-patient
assignment problem in the neonatal context and proposed a new set of instances
that show better the advantage of our approach. The computation times are well
within the usual time frame for this problem. We also considered a challenging
variant of the nurse-patient assignment problem in which patient acuities are
nurse-dependent. To be useful in practice for this problem, our approach should
solve faster the instances considered, which are of realistic size. We could investi-
gate better branching heuristics and it would also be interesting to evaluate the
performance of a bound-consistent filtering algorithm for the spread constraint
here, given what was observed with the domain-consistent filtering algorithm at
larger standard deviations.
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Abstract. In the race to space, the reduction of the cost and weight
of spacecrafts is one of the keys to progress further and further. In this
perspective, a key component to consider in a spacecraft is the com-
mand system. The latter is a vital system which gives control over all
the onboard devices, and which is materialized as a set of cables connect-
ing devices with a set of controllers. To reduce the cost of development
and the weight of this command system, there is a need to define opti-
mization techniques for helping space engineers during the design phase.
The objective of this paper is to present the problem tackled, which is a
kind of Vehicle Routing Problem which we call a Two-dimension Vehicle
Routing Problem, and to compare several solution techniques. One of
these techniques is currently used for production.

1 Problem Description

In this paper, we tackle a problem from the space domain where the goal is to
design the architecture responsible for controlling devices onboard spacecrafts.
Spacecrafts typically contain hundreds to thousands of separate devices, which
allow the mission assigned to the spacecrafts to be achieved.

A first possible way for being able to send commands to each of these devices
during flight would be to define one command loop per device, linking the device
with the central controller of the spacecraft. The main drawback of this approach
would be a huge increase in weight, because physically each command loop is
materialized as a cable. This is why space engineers developed command archi-
tectures where command loops are shared between devices. More precisely, the
spacecrafts we consider use architectural components called command matrices,
which are illustrated in Fig. 1(a). At an abstract level, a command matrix is a
component made of rows and columns. One command loop is associated with
each row and one command loop is associated with each column. Then, in the
command architecture, each device d is placed in one row r and one column c
of one matrix, and for sending a command signal to d, it suffices to send one
signal on the command loop associated with r and one signal on the command
loop associated with c. Doing so, the two emitted signals simultaneously reach
device d positioned at the intersection between r and c. Several matrices are used
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 303–318, 2016.
DOI: 10.1007/978-3-319-33954-2 22
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instead of a single one mainly due to power and resistance constraints (placing
too many devices on a single loop would generate too much resistance, reducing
or destroying the functionality of the circuit). On real spacecrafts, command
matrices typically range from size 2 × 2 to size 8 × 16 or even 16 × 16.

The main advantage of this command matrix architecture is that command
loops, and therefore cables, are shared between devices. This reduces the weight
and cost of the spacecraft. However, one difficulty is that for spacecraft reliability
issues, some segregation constraints between devices must be satisfied, meaning
that some devices are not allowed to be placed on the same row or on the same
column of a command matrix. For instance, spacecrafts are often composed of
sets of redundant devices, and the latter must not share a common command
loop so that in case of failure of one loop, at least one device is still available.
As a result, designing the placement of devices inside command matrices quickly
becomes a combinatorial task.

Another feature of such an architecture is that each row (resp. each column)
of a command matrix only defines the set of devices present on the command
loop associated with that row (resp. with that column). On this point, one must
also decide on the order of traversal of these devices by a physical cable, with
the objective of minimizing the required cable length. For example, in Fig. 1(b),
devices d4, d3, d7, d8 placed in row 2 of command matrix 1 are traversed in order
[d3, d7, d8, d4] in the physical command loop. Similarly, devices d2, d6, d9 placed
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Fig. 1. Architecture for commanding devices: (a) allocation of positions in command
matrices to a set of devices numbered from d1 to d9; (b) command loops physically
used onboard the spacecraft; command loops associated with rows and columns are
depicted using solid lines and dashed lines respectively
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in row 1 of command matrix 2 are traversed in order [d9, d2, d6] by the cable
associated with the command loop of this row.

The design problem considered in this paper consists in placing devices in
command matrices and in deciding on the order in which these devices are tra-
versed by cables, while satisfying segregation constraints and minimizing the
total length (or weight) of cables used. In other words, the goal is to produce
solutions such as the one depicted in Fig. 1. Also, in the problem we consider, the
physical placement (x, y, z) of each device onboard the spacecraft is an input, as
well as the length of a direct cable linking any two devices. In practice, this phys-
ical placement is produced based on other concerns such as thermal constraints
or assembly constraints.

In the former approach used prior to this work, the problem was tackled using
a two-step procedure, with (1) the dispatch of devices onto matrices, based on
a genetic algorithm which tries to group devices which are near from each other
in the spacecraft, and (2) the optimization of each order of traversal of devices
in each command matrix, based on an home-made Traveling Salesman Problem
(TSP) solver using Constraint Programming technology. This paper describes
the new techniques developed to solve the problem based on a more global
perspective. These new techniques have already been applied to one spacecraft
which is currently active and to eight spacecrafts which are currently being built.
From an industrial point of view, they led to a 15 % improvement in cable weight,
and they allowed to reduce computation times to solve this problem from several
days to a few hours.

The rest of the paper is organized as follows: the problem is first related to
existing work (Sect. 2), then an integer linear programming formulation is pro-
posed (Sect. 3), approximate search schemes are described (Sect. 4), and finally
experimental results on realistic instances are provided (Sect. 5).

2 Problem Analysis

The command architecture design problem considered can be related with the
design of electronic devices, which contain several electronic components which
must be linked with a controller or with a power source. One key difference
here is that the topology considered for spacecrafts is very different from that of
electronic devices, as well as the architecture choice.

In another direction, the command architecture design problem can be
related to Vehicle Routing Problems (VRPs [8]). In a VRP, the inputs are a
set of customers placed at some positions and a set of vehicles placed at depots,
and the goal is to find vehicle tours which start and end at depots, which visit
all customers once, and which minimize the sum of the length of vehicle tours.
In our design problem, devices can be seen as customers and each row (resp.
each column) of a command matrix can be seen as a vehicle whose tour is the
command loop of that row (resp. of that column). For each matrix, there is one
depot per row and one depot per column. As these depots may be placed at
different locations in the physical architecture of the spacecraft, the problem is
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actually a kind of Multi-Depot Vehicle Routing Problem (MDVRP). Moreover,
as each loop associated with a row (resp. a column) cannot traverse more devices
than the number of columns (resp. the number of rows) in a matrix, the problem
can be related with the Capacitated Vehicle Routing Problem (CVRP), where
vehicles have a limited capacity.

However, the design problem to solve has several differences with classical
forms of VRPs. The first difference is that some devices (some customers) must
be segregated in order to meet reliability constraints. Such kinds of segregation
constraints were also considered in [4], where the goal was to compute vehicle
routes for vehicles transporting hazardous materials with some constraints on
materials which can be put together in a single vehicle. Another difference with
standard VRPs is that each device (each customer) needs to be visited twice: once
by a command loop associated with a row of a matrix, once by a command loop
associated with a column of the same matrix. Moreover, due to the command
matrix architecture, devices belonging to the same row cannot belong to the same
column, therefore row allocation and column allocation are not independent.
Because of this interaction between the VRP on the rows and the VRP on the
columns, we call this problem the Two-dimension Vehicle Routing Problem. We
are not aware of any previous work involving such a two-dimensional aspect,
with or without additional segregation constraints and/or heterogeneous vehicle
capacities and/or multiple depots. In the following, we propose a formulation for
this new problem and we study different resolution techniques.

3 Integer Linear Programming Formulation

To formalize the command loop design problem, we consider the following input
data:

– a set D of devices;
– a set M of command matrices; each command matrix m contains a set of rows
Rm and a set of columns Cm;

– the set R of command matrix rows, defined as R = ∪m∈MRm;
– the set C of command matrix columns, defined as C = ∪m∈MCm;
– the set P of positions available for placing devices, defined as P = ∪m∈M (Rm×

Cm); in other words, P contains all pairs (r, c) formed by a row and a column
belonging to the same matrix; we assume that there are more positions than
devices (|P | ≥ |D|), otherwise the problem is directly inconsistent;

– a set of segregation constraints Seg ⊆ D × D; a pair (i, j) belongs to Seg
when devices i and j must not belong to the same row or to the same column
of a command matrix;

– the set of arcs AR = (D × D) ∪ (R × D) ∪ (D × R) containing all possible
connections between successive devices on row command loops; for r ∈ R
and i ∈ D, pair (r, i) corresponds to the connection from the controller of
the command loop of row r to device i, and pair (i, r) corresponds to the
connection from device i to this controller;
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– the set of arcs AC = (D × D) ∪ (C × D) ∪ (D × C) containing all possible
connections between successive devices on column command loops; for c ∈ C
and i ∈ D, pair (c, i) corresponds to the connection from the controller of
the command loop of column c to device i, and pair (i, c) corresponds to the
connection from device i to this controller;

– a length function L such that for any arc (i, j) ∈ AR∪AC , Lij gives the length
of a direct cable associated with arc (i, j); lengths specified by L are computed
in a preprocessing step using a Floyd-Warshall algorithm on the graph which
contains possible cable routes between devices.

Matrix Allocation. In order to model the problem, we first represent the alloca-
tion of devices to command matrices. To do this, we consider the following sets
of variables:

– posip ∈ {0, 1} (i ∈ D, p ∈ P ), for representing whether device i is placed in
matrix position p (value 1) or not (value 0);

– rowir ∈ {0, 1} (i ∈ D, r ∈ R), for representing whether device i is placed in
matrix row r (value 1) or not (value 0);

– colic ∈ {0, 1} (i ∈ D, c ∈ C), for representing whether device i is placed in
matrix column c (value 1) or not (value 0).

Matrix allocation Constraints 1 to 6 are then imposed on these variables.
Constraint 1 expresses that a device is allocated to exactly one position in com-
mand matrices. Constraint 2 expresses that each matrix position can be associ-
ated with at most one device. Constraints 3 and 4 define the row and the column
associated with a device from the position at which this device is placed. Last,
Constraints 5–6 impose that row and column choices must differ for devices
which must be segregated. Note that the capacity constraints on the number
of devices involved in a command loop is indirectly expressed by this set of
constraints.

∀i ∈ D,
∑

p∈P

posip = 1 (1)

∀p ∈ P,
∑

i∈D

posip ≤ 1 (2)

∀i ∈ D,∀r ∈ R, rowir =
∑

p∈P | p=(r,c)

posip (3)

∀i ∈ D,∀c ∈ C, colic =
∑

p∈P | p=(r,c)

posip (4)

∀r ∈ R,∀(i, j) ∈ Seg, rowir + rowjr ≤ 1 (5)
∀c ∈ C,∀(i, j) ∈ Seg, colic + coljc ≤ 1 (6)

Cable Routing. In order to represent how devices are connected to each other,
i.e. in order to represent vehicle routing constraints, we introduce two sets of
variables:
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– xR
ij ∈ {0, 1} ((i, j) ∈ AR), for representing whether arc (i, j) is traversed for

connecting i and j on a row command loop;
– xC

ij ∈ {0, 1} ((i, j) ∈ AC), for representing whether arc (i, j) is traversed for
connecting i and j on a column command loop.

Constraints 7 to 12 are imposed on these variables. These constraints are
standard constraints used for representing vehicle routing problems. Concerning
row connections, Constraints 7 and 8 are flow constraints expressing that for
each device and each row controller, there is a unique incoming connection and
a unique outgoing connection. Constraint 9 corresponds to sub-tour elimination,
that is it forbids cable tours which do not contain any command loop controller.
These sub-tour elimination constraints can be added incrementally when solving
the problem, in order to avoid an exponential blow-up in the problem size.
Constraints 10 to 12 impose similar constraints for columns.

∀i ∈ D ∪ R,
∑

j | (i,j)∈AR

xR
ij = 1 (7)

∀i ∈ D ∪ R,
∑

j | (j,i)∈AR

xR
ji = 1 (8)

∀S ⊆ D s.t. S �= ∅
∑

(i,j)∈AR | i,j∈S

xR
ij ≤ |S| − 1 (9)

∀i ∈ D ∪ C,
∑

j | (i,j)∈AC

xC
ij = 1 (10)

∀i ∈ D ∪ C,
∑

j | (j,i)∈AC

xC
ji = 1 (11)

∀S ⊆ D s.t. S �= ∅
∑

(i,j)∈AC | i,j∈S

xC
ij ≤ |S| − 1 (12)

Compatibility Between Matrix Allocation and Cable Routing. In order to rep-
resent the coupling between matrix allocation and cable routing, we introduce
Constraints 13 to 20. Constraints 13 and 14 express that if device j is the succes-
sor of device i on the cable route associated with a row, then these two devices
must be placed on the same matrix row. Constraint 15 imposes that if there is a
connection from the controller of the command loop of row r to device i, then i
must be placed on matrix row r. Similarly, Constraint 16 imposes that if device
i is connected to the controller of the command loop of row r, then i must be
placed on matrix row r. Constraints 17 to 20 impose similar specifications for
columns. Note that some of these constraints are redundant.

∀i, j ∈ D,∀r ∈ R, rowir + xR
ij ≤ rowjr + 1 (13)

∀i, j ∈ D,∀r ∈ R, rowjr + xR
ij ≤ rowir + 1 (14)

∀i ∈ D,∀r ∈ R, xR
ri ≤ rowir (15)

∀i ∈ D,∀r ∈ R, xR
ir ≤ rowir (16)



Designing Spacecraft Command Loops 309

∀i, j ∈ D,∀c ∈ C, colic + xC
ij ≤ coljc + 1 (17)

∀i, j ∈ D,∀c ∈ C, coljc + xC
ij ≤ colic + 1 (18)

∀i ∈ D,∀c ∈ C, xC
ci ≤ colic (19)

∀i ∈ D,∀c ∈ C, xC
ic ≤ colic (20)

Global Model. From all previous elements, the global model of the problem
corresponds to the following integer linear program, in which the goal is to
minimize the total length used for routing cables on row command loops and
column command loops:

minimize
∑

(i,j)∈AR

xR
ijLij +

∑

(i,j)∈AC

xC
ijLij (21)

subject to :
Matrix allocation constraints (Constraints 1−6)
Vehicle routing constraints (Constraints 7−12)
Allocation/routing compatibility constraints (Constraints 13−20)
posip ∈ {0, 1} (i ∈ D, p ∈ P )
rowir ∈ {0, 1} (i ∈ D, r ∈ R), colic ∈ {0, 1} (i ∈ D, c ∈ C)
xR
ij ∈ {0, 1} ((i, j) ∈ AR), xC

ij ∈ {0, 1} ((i, j) ∈ AC)

Resolution. From the previous Integer Linear Program (ILP), it is possible to
use standard solvers such as IBM ILOG CPLEX, by adding sub-tour elimination
constraints step by step. As shown in the experiments (see Sect. 5), this approach
does not scale well, even when considering only medium size instances. This is
why we also defined approximate search schemes (see Sect. 4).

Constraint Programming Formulation. To model this problem, we also tried a
pure Constraint Programming (CP) approach. For space limitation reasons, it
is presented only at a global level. The CP model built contains:

– for each device i ∈ D, variables row i ∈ R, col i ∈ C, posi ∈ P , to respectively
describe the row, the column, and the matrix position associated with i;

– for each element i ∈ D∪R, one variable rnext i ∈ D∪R representing the index
of the element following i on its row (compared to the ILP model, introduction
of integer variables instead of 0/1 variables);

– for each element i ∈ D ∪ C, one variable cnext i ∈ D ∪ C representing the
index of the element following i on its column.

Over these variables, several basic constraints are imposed, including:

– alldifferent constraints over variables posi, to express that two devices cannot
be located at the same matrix position;

– element constraints linking the row/column of a device with its position;
– constraints expressing that a device cannot follow itself on a row or column;
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– row/column segregation constraints for device pairs (i, j) ∈ Seg;
– element constraints expressing that the row (resp. column) of a device i is the

same as the row (resp. column) associated with rnext i (resp. cnext i);
– alldifferent constraints over variables rnext i (resp. cnext i).

To improve the power of constraint propagation, as in existing CP models
of VRPs/TSPs, the model built also contains redundant variables rprev i (resp.
cprev i) to represent the element which precedes i on its row (resp. on its column),
together with alldifferent constraints over these variables and constraints such
as rprev rnexti = i for every i ∈ D ∪ R, and cprevcnexti = i for every i ∈ D ∪ C.

Last, the CP model built contains a set of symmetry breaking constraints.
First, for every command matrix, it is possible to impose that any row (resp. any
column) in this matrix always contains more devices than the next row (resp.
the next column) in the matrix. When all matrices share the same dimension, it
is also possible to enforce that the number of devices in matrix k cannot be less
than the number of devices in matrice k+1. Such symmetry breaking constraints
were also tested for the ILP model, where they were shown to degrade the results.

Many other CP models could be considered. With the CP model developed,
we managed to find solutions, but their quality was not as good as the solutions
obtained with ILP, which is why we focus on ILP in the rest of the paper.

4 Two Local Search Approaches

In this section, we present the two local search algorithms we developed and
which permit to find good quality solutions within limited computing times.
These algorithms start from a complete assignment of the decision variables
of the problem and try to iteratively improve the current solution by apply-
ing actions towards promising regions of the search space. These actions are
local moves that modify the current solution to neighbor solutions. We first
present the neighborhood structure which is used, and then the two metaheuris-
tics employed for driving local moves. These two metaheuristics are Simulated
Annealing (SA [5]) and Iterated Local Search (ILS [6]).

4.1 Neighborhood Definition

The neighborhood we consider is obtained by combining two kinds of updates:

– command matrix updates, which update the allocation of devices to the rows
and columns of the command matrices;

– cable routing updates, which update the way cables are routed to cover the set
of devices belonging to a same row or to a same column.

More precisely, a local move in the neighborhood is performed as follows:

– select one device d placed at a position p, select one position p′ �= p (possibly
in a different matrix), and exchange the contents of p and p′; as a result, if
position p′ selected for reallocating d contains a device d′, then after the move,
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position p contains device d′ and position p′ contains device d; if position p′

contains no device, then after the move, position p contains no device and
position p′ contains device d;

– after the previous step, for all rows and columns whose associated set of devices
is modified (at most 2 rows and 2 columns concerned), use a TSP routine for
improving the routing of cables for these rows and columns.

For the second step, several strategies can be used for updating cable routes.
A first possible strategy is to use a complete TSP solver for solving the TSP
associated with each impacted row or column. However, this increases the dura-
tion required for performing a local move, and such a strategy is effective only for
small size problems. A second possible strategy is to use a very fast mechanism
which only looks for a good insertion position in cable routes for the device(s)
whose rows and columns are updated (computing time linear in the maximum
number of rows and columns). However, the cable routes obtained based only
on such a greedy insertion rule may lead to a poor quality evaluation of the
best cable routes, and therefore to a poor quality evaluation of candidate matrix
updates.

To find a compromise between the speed of each move and the quality of
the evaluation, we chose, after several experiments, an intermediate strategy
which works well on the largest instances (16 × 16 command matrices). This
strategy consists in running the standard 2-opt heuristic algorithm [3] on the
TSP defined by each impacted row and column. Given a TSP tour [d1, d2, . . . , dn]
corresponding to a routing of cables between devices, the idea in 2-opt is to
remove at each step two edges (di, di+1) and (dj , dj+1) from the tour (with
i < j), and to reconnect the subtours created to consider the new valid tour
[d1, . . . , di, dj , dj−1, . . . , di+1, dj+1, . . . , dn] (head and tail of the initial tour kept,
and part between di+1 and dj traversed in the other way around). The move
is accepted only if the new tour obtained is shorter, which can be evaluated in
constant time. In 2-opt, such moves are applied until no more 2-opt improvement
is possible. The advantage of the 2-opt algorithm is that it is known to produce
good quality routings within short computing times (complexity quadratic in
the number of elements to be covered by the tour). Other approximate TSP
resolution schemes could be considered such as 3-opt, k-opt [7] or or-opt [1]. The
global idea is that faster TSP search permits to do more local moves, while a
better quality TSP search permits to choose the most promising local moves.

4.2 Constraint Satisfaction and Criterion Evaluation

In practice, the local search algorithm is implemented by handling integer vari-
ables instead of 0/1 variables as in the ILP model. For instance, instead of
manipulating variables posip ∈ {0, 1} for representing whether device i is placed
at position p, we maintain integer variables posi representing the position of
device i in matrices, as in the Constraint Programming model. Also, for realizing
the local search algorithms, we do not consider symmetry breaking constraints
because they reduce the accessibility between some neighbor solutions in the
search space.
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A first key property of the problem considered is that if device segregation
constraints are discarded (Constraints 5–6), then it is easy to produce a first
solution which satisfies all constraints of the problem. Indeed, it suffices to put
device 1 in position 1, device 2 in position 2... and so on until all devices are
put in matrices, and then it is possible to run any TSP algorithm on each non
empty row and column obtained to get a routing of cables.

A second key property is that the local moves introduced in Sect. 4.1 pre-
serve the satisfaction of all constraints, again except from segregation constraints
whose satisfaction can be improved or deteriorated by each local move.

The satisfaction of segregation constraints being non-trivial, we relax the
satisfaction of these constraints and manipulate a violation degree instead. To
evaluate the overall quality of a solution, this violation degree is combined with
the total cable length to get a global score. To do this, we maintain a score for
each row r as:

scoreRow(r) = cableLengthRow(r) + nSegViolated(r) × SEG COST

with cableLengthRow(r) the total length of cables for row r, nSegViolated(r) the
number of segregation constraints violated on row r, and SEG COST a constant
factor set big enough for having the satisfaction of segregation constraints pre-
ferred to any improvement in cable length at the end of the local search. For each
column c, a score scoreCol(c) is defined similarly, and the total score associated
with a solution sol is given by:

score(sol) =
∑

r∈R

scoreRow(r) +
∑

c∈C

scoreCol(c)

In other words, compared to the optimization criterion defined in Eq. 21,
we add a constraint violated degree to the expression of the score. The score
formulation provided also shows that the score can be decomposed by rows and
columns, which allows incremental evaluations to be performed when changes
occur only on a small part of the problem.

4.3 Simulated Annealing Metaheuristics

To obtain good sequences of local moves with the neighborhood structure
defined, it is first possible to consider a standard Simulated Annealing algo-
rithm [5]. The latter corresponds to Algorithm 1. It starts from an initial solu-
tion s0 and at each step, it considers a random solution s′ in the neighborhood
of the current solution s. Solution s′ is accepted as the new current solution
if its score is better than the score of s. It is also accepted with some proba-
bility when s′ deteriorates the score (see lines 6 to 8). Accepting deteriorating
moves allows local minima to be escaped. The acceptance probability depends
on the criterion deterioration Δ and on the temperature parameter temp of the
simulated annealing (use of the Metropolis rule exp(−Δ/temp)). Initially, the
temperature is high and many deteriorating moves can be accepted, whereas at
the end of the search the temperature is low and almost only improving moves
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are accepted. In our case, the temperature is decreased step by step: as shown in
lines 4–5, several iterations are performed with the same temperature, and the
time spent with a particular temperature depends on the maximum time allowed
and on the number of temperature steps required. The solution returned is the
best solution found during all iterations.

As usual in local search, setting good values for parameters is not straightfor-
ward. In our settings, initial temperature initTemp is set using a fast automatic
procedure which ensures that at the first temperature step, approximately 80%
of the local moves are accepted. To obtain such a setting, we start from a low
temperature and progressively increase this temperature until we estimate that
80% of the local moves are accepted. To obtain such an estimation, we perform
10000 local moves and we compute the number of these moves which would have
been accepted by the simulated annealing acceptance rule. Following experimen-
tal evaluations, decreasing factor λ is arbitrarily set to 0.98 and the number of
temperature steps nTempSteps is set to 1000. Last, the maximum time allocated
to the search (MaxTime) is left free.

Algorithm 1. SimulatedAnnealing(initTemp,λ,nTempSteps ,MaxTime)
Data: initTemp: initial temperature, λ: temperature reduction factor,

nTempSteps: number of temperature reduction steps, MaxTime:
maximum computing time allowed

1 tempStep ← 1;
2 s ← firstSolution();
3 while tempStep ≤ nTempSteps do
4 MaxTimeStep ← tempStep · (MaxTime/nTempSteps) ;
5 while currentT ime() < MaxTimeStep do
6 s′ ← selectRandomNeighbor(s) ;
7 Δ ← score(s′) − score(s);
8 if (Δ < 0) ∨ (rand() < exp(−Δ/temp)) then s ← s′ ;

9 temp ← λ · temp;
10 tempStep ← tempStep + 1;

4.4 Iterated Local Search Metaheuristics

A second approximate algorithm considered is the Iterated Local Search algo-
rithm (ILS [6]), which has already been applied to Vehicle Routing Problems [4].
This algorithm iteratively tries to find local minima in the search space. More
precisely, the ILS algorithm (Algorithm 2) iterates two phases:

– a local search phase during which the algorithm searches for a local optimum
(lines 3 to 11);

– a perturbation phase, during which the local optimum found at the previ-
ous phase is perturbed by some random changes (line 12); usually, the per-
turbation strength must be sufficient for driving the search to another local
optimum, and not too large for avoiding performing a kind of random restart.

The solution returned is the best solution found during all iterations.
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Local Search Phase Setting. In our settings, the local search phase works on
the neighborhood introduced in Sect. 4.1 and tries to select at each step the best
neighbor in this neighborhood. As this neighborhood can be quite large (number
of neighbors quadratic in the number of matrix positions), we use a neighbor
selection strategy which tests only a subset of the candidate local moves. To do
this, we first evaluate for each device d a contribution contrib(d) to the global
score. This contribution is given by:

contrib(d) = contribCableLength(d) + contribSegViolation(d)

with contribCableLength(d) the sum of the length of incoming and outgoing
cables for device d on its row and its column, and contribSegViolation(d) the
number of violated segregation constraints which involve device d times constant
factor SEG COST .

Then, we select a device d which has the highest contribution contrib(d) to
the score, and we analyze all neighbors in which d is moved to another position
in command matrices (line 7). If the best neighbor found improves the global
score, this best neighbor is kept as the new current solution and some device
contributions are recomputed before going to the next iteration of the local
search. If no best neighbor is found, then the algorithm considers another device
d′ not considered yet and which has the highest contribution contrib(d′). If all
devices have already been considered, then a local minimum has been reached
and the ILS procedure goes on with the perturbation phase.

Perturbation Phase Setting. For the perturbation phase (line 12), several strate-
gies were tested, like doing an increasing number of random moves or doing
many random moves. Experiments showed that for our problem, doing just one
random move often suffices to go out from a local optimum. Also, in our prob-
lem, making several random moves at each perturbation phase slows down the
local search phase because it then takes more time to converge to another local
optimum.

Algorithm 2. IteratedLocalSearch(maxTime)
Data: MaxTime: maximum computation time allowed

1 s ← firstSolution();
2 while currentT ime() < MaxTime do
3 Candidates ← D ;
4 while (Candidates �= ∅) ∧ (currentT ime() < MaxTime) do
5 contribMax = maxe′∈Candidates contribs(d′);
6 select d in {d′ ∈ Candidates | contrib(d′) = contribMax};
7 s′ ← selectBestNeighbor(s, d) ;
8 if score(s′) < score(s) then
9 s ← s′;

10 Candidates ← D ;

11 else Remove d from Candidates ;

12 s ← selectRandomNeighbor(s) ;
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5 Experiments

To compare the different resolution techniques proposed (ILP, SA, ILS), exper-
iments were performed on real instances. We also developed a random instance
generator which allowed us to test the different techniques on a wide set of realis-
tic instances. This generator takes several parameters as an input: (1) the number
of command matrices nM in the instance, (2) the number of rows nRbM and the
number of columns nCbM in each command matrix; (3) the filling percentage of
matrices pctFill; the number of devices in the instance generated is then auto-
matically computed by nD = 
pctF ill · nM · nRbM · nCbM�; distances between
devices are generated by computing all pair shortest paths in a graph whose edge
weights are given by a uniform random distribution (this way, device distances
satisfy the triangle inequality, as in real instances); (4) the percentage pctSeg of
devices which must be segregated in the instance generated; the number of seg-
regation constraints in Seg is then given by 
pctSeg ·nD (nD − 1)/2�; devices to
be segregated are chosen randomly using a uniform distribution. Figure 2 gives
an idea of how the problem becomes more and more constrained when para-
meters pctFill and pctSeg are increased. Such results are useful to help space
engineers to define the dimensions of the command system.

Experimental Environment. The experimental results presented in the paper
only concern randomly generated benchmarks. More precisely, for every fixed
parameters settings, we generated at least 5 random instances. As shown in
Figures 3, 4 and 5, we also made several experiments to evaluate the sensibil-
ity to the variation of some parameters (sensibility to the maximum CPU time
allowed in Fig. 5a, and sensibility to the size of matrices in Fig. 5b). In a longer
version, we could give more details concerning the influence of parameters set-
tings, and also concerning the influence of algorithmic settings such as the initial
temperature of the Simulated Annealing (more exploration of the search space
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with a high temperature, faster production of first solutions with a low tem-
perature). Experiments are performed on a processor Intel Xeon CPU W3530
2,80 GHz and 16 GiB of RAM.

Evaluation of the ILP Approach. To evaluate the ILP model presented in Sect. 3,
we used IBM ILOG CPLEX 12.5. As shown in Fig. 3(a), based on the ILP model,
finding optimal solutions and proving their optimality is only possible for very
small instances. For example, when considering only 2 command matrices of size
4 × 4, there is already an exponential blow-up in computing times when the
filling percentage increases. On this point, we believe that the two-dimension
aspect of the VRP problems to solve and the segregation constraints make the
search space much more combinatorial than in a standard VRP. However, the
ILP approach allows us to have some optimum solutions which can be used to
evaluate the efficiency of other algorithms on small instances. Such results are
shown in Fig. 3(b), where we can see that the solutions obtained using SA and
ILS are almost optimal for problems involving only 2 × 2 matrices which can
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be solved optimally by ILP. For matrices of size 4 × 4, Fig. 3(b) shows that
the quality of the best solution found by ILP is rather poor compared to the
approximate solutions produced by SA and ILS.

Evaluation of SA and ILS. Compared to ILP, the SA and ILS approaches are
designed for tackling medium and large instances. Figure 4(a) gives a first com-
parison between SA and ILS on a large instance involving 8 matrices of size
16×16. This figure shows the evolution of the score associated to the best known
solution in function of the computation time. It is possible to see that ILS finds
an acceptable solution faster than SA (the steep decreasing of the score corre-
sponds to the satisfaction of all segregation constraints). However, after some
computing time, when the temperature of the SA algorithm decreases, SA man-
ages to find an acceptable solution and this solution is better than the solution
provided by ILS (see Fig. 4(b)). Such results can be explained by the fact that
given the size of the problems considered, the convergence to a local optimum
during the local search phase of ILS is rather slow, which entails that the ILS
algorithm only visits a small number of local optima. On the opposite, the SA
algorithm is looking first for the best area in the solution space without looking
for the local optimum at each step, therefore it offers a greater diversity in the
traversal of the search space.

Figure 5(a) shows that such conclusions are rather robust to the increase in
the allowed computation time, since even for quite high values of the maximum
computation time, the SA algorithm still produces better results. For low com-
putation times, it is possible to see that ILS is still working on the satisfaction
of the segregation constraints while SA is already improving the total length of
cables. Additionally, Fig. 5(b) shows that the dominance of SA over ILS increases
with the size of the problem, which again means that with the settings chosen,
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fixed parameters nRbM = nCbM = 16, pctF ill = 80 %, pctSeg = 10 %. In all case, the
segregation constraints are satisfied.
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SA performs a better exploration of the search space which seems to contain
many local minima. Another possible explanation to these results is that in the
settings chosen, SA adapts its behavior depending on the maximum computation
time, thanks to the particular law chosen for decreasing the temperature. On the
opposite, ILS does not exploit the maximum computation time information.

6 Conclusion

In this paper, we described the treatment of a design problem from the space
domain which corresponds to a kind of Two-dimension Vehicle Routing Problem
with segregation constraints. Several algorithms were proposed to solve this prob-
lem. Many other algorithmic settings could be considered, even for the Iterated
Local Search scheme, but for the moment the best solution found is the Simu-
lated Annealing approach. One of the perspective would be to use CP modeling
elements dedicated to TSP problems [2]. A point is that the problem presented
in this paper actually makes some simplifications compared to the real problem,
which contains other aspects such as decisions on the width of cables used, con-
strained due to resistance issues. Additional work is required to optimize these
other parts of the real problem. However, even with this approximation, it is still
interesting to use the work presented in this paper. The Simulated Annealing
(SA) is in production and it allowed to save one week in design time, 15 % in
cable length, and approximately 10000 euros per satellite.

References

1. Babin, G., Deneault, S., Laporte, G.: Improvements to the or-opt heuristic for the
symmetric traveling salesman problem. J. Oper. Res. Soc. 58, 402–407 (2007)
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Abstract. The Spatial Packaging Problem (SPP) aims to solve a mix-
ture of the 3D Packing Problem (3DPP) and the 3D Pipe-Routing Prob-
lem. The main feature that distinguishes the SPP from the traditional
3DPP is the interconnections that exist between its components. The
SPP is more challenging because the shape and dimensions of the inter-
connections are unknown, and must be determined as part of the solu-
tion. In this paper, we propose a relaxation, a constraint programming
model and a search heuristic to solve the SPP. We relax the SPP by using
taxicab geometry and model it as a constraint satisfaction problem, then
solve it by using a search heuristic based on interconnection volumes.
The proposed approach has been evaluated on a challenging benchmark
that reflects a range of aerospace and commercial applications varying
in number of components and interconnections. The preliminary results
show the effectiveness and efficiency of the proposed approach.

Keywords: Constraint programming · 3D Packing Problem · Spatial
Packaging Problem · Pipe-routing problem · Taxicab geometry

1 Introduction

When developing a multi-component physical product, it is important to design
its components and their interconnections in an optimal geometric manner,
where the same functionality is provided in less volume, with shorter length
of connections, and using simpler shapes. Achieving better geometric designs
is important across different engineering industries. In building systems [2], the
optimal design of heating, ventilation and air-conditioning products reduces their
material and transportation costs, and simplifies their installation. In the elec-
tronics industry, the relative positions of devices and wires determine electrical
interference or thermal overheating which causes component damage [9]. In the
aerospace [6,22] and naval industries [20], the reduction of the system size, length
of wires and pipes, and the duct volume significantly reduces the system weight,
costs, and often enables performance improvements. Moreover, better geometric
designs can significantly increase the manufacturability, assembly, and main-
tainability of systems. Yet, despite such an importance of optimized geometric
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 319–328, 2016.
DOI: 10.1007/978-3-319-33954-2 23
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layouts, the standard industrial-design processes are still manual. Skilled per-
sonnel – who understand the engineering applications, manufacturing, assembly,
maintenance, and repair requirements – start from an existing product design
and modify it to meet the new requirements. This process is time-consuming
and results in inferior geometric layouts even with the use of computer-aided
design tools which help design product packaging. Inefficiencies of these meth-
ods will only increase as product requirements grow more complex and required
packaging volumes shrink.

The Spatial Packaging Problem (SPP) attempts simultaneously to pack com-
ponents into a given volume and route interconnections between them. The
packing problem (PP) [4,7,15,23] is well-known in the transportation sector [5],
aiming to reduce the number of vehicles required. In the steel industry, optimal
3D cutting is important to minimize material cost. Similarly, 2D cutting appears
in the textile, wood, glass, and paper industry where shapes of known dimen-
sions are to be cut out of a strip with a given width, but variable length. The
routing problem (RP) is commonly encountered in electronics [14], in vehicle
routing [13,21], in artificial intelligence [11] and in computer networks [17]. The
pipe-routing problem (PRP) [3,8,16,19,20] is a sub-class of the RP in which the
locations are generally represented by components positioned in a 3D space that
must be properly connected through pipes and wires used to transport mate-
rial, energy, or information. The authors are not aware of any successful prior
SPP solution approaches. To solve the SPP, we have previously tried both Mixed
Integer Linear Programming (MIP) and Local Search (LS). We attempted to use
a MIP-based approach - but unfortunately could not solve SPP instances with
more than 3 interconnections. We concluded that this is partly due to the pipe-
routing aspect of SPP and to the scalability of MIP techniques to 3D packing
with a large number of items [4]. Recently, we contributed an instance of SPP
as a challenge problem at the 110th European Study Group with Industry1.
A follow-up effort is currently exploring LS as a solution technique for that
instance. Based on these two experiences with SPP we believe that its complex-
ity is driven primarily by the PRP (i.e., the number of interconnections) rather
than the PP, i.e., the number of components. This led us to investigate Con-
straint Programming (CP) as an SPP solution method, due to its strength in
routing.

In this paper, we propose to automate the generation of geometric designs
for multi-component products, and demonstrate that CP is a viable solution
approach. We formulate an industrially relevant version of the SPP in which
only the components are known but interconnections have to be designed. The
dimensions of components and interconnection diameters are known, but all
other elements, such as 3D location and orientation of components, as well as
the shape and the length of interconnections have to be determined by solving
the SPP. We propose a relaxed version of the SPP using Taxicab Geometry [12]
and a CP model of the SPP. We then show how to efficiently solve the feasibility
version of a highly challenging benchmark through an effective search heuristic.

1 http://www.macsi.ul.ie/esgi110/.

http://www.macsi.ul.ie/esgi110/
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Fig. 1. Aircraft engine Fig. 2. An SPP example with 3 com-
ponents and 3 interconnections

2 The Spatial Packaging Problem

Figure 1 shows an aircraft-engine system in which hundreds of components must
be linked using hundreds of interconnections. This is very challenging to design
and impractical to optimize manually. The problem grows more difficult as
the trend toward smaller-diameter engine cores drastically reduces the surface
area, and thus the packaging volume (PV), within which these components and
interconnections must fit. Automatically solving such problems would enable a
designer to explore different solutions, compare them, and choose the one that
best satisfies design requirements and multiple objectives.

The SPP determines 3D position and orientation of given components and
designs interconnections between them so that each required pair of compo-
nents is connected while all elements fit within a given (or smallest possible)
packaging volume. Figure 2 illustrates a simple SPP example that involves three
components (A, B, and C) which must be connected with three different inter-
connections (1, 2, and 3) so they can fit into the smallest possible packaging
volume. The component A must be connected to component C via the connec-
tion 1 and to component B via the connection 3; also, the component B must
be connected to component C via connection 2. Figure 3 shows a solution to
the problem, determining the position of each component, the shape of each
interconnection, and the packaging volume dimensions.

The components are represented as basic Euclidean-geometric forms (i.e.,
sphere, cylinder, or rectangular prism) since irregular shapes add mathematical-
modeling complexity [10]. Their shapes and dimensions are provided as an input
to the problem while their positions and orientations are determined as part of
the solution. Some components need to be connected via interconnections, which
are represented as a chain of cylinders with uniform diameter, each cylinder act-
ing as a connector. For example, in Fig. 4 the shapes 3.1, 3.2, 3.3, and 3.8 are
connectors that represent the interconnection 3. Interconnection diameter, start
and end positions, at corresponding components, are given as part of the problem
specification while their shape and position are determined as part of the solu-
tion. Interconnection length and the number of connectors should be minimized.
The packaging volume (PV) is an enclosure of all components and interconnec-
tions. PV shape and dimensions can be either fully or partially specified as part
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Fig. 3. An illustrative SPP solution in
Euclidean geometry

Fig. 4. An illustrative SPP solution in
the taxicab geometry

of the problem. PV dimensions can also be part of the optimization objectives:
the total PV volume or some of its dimensions should to be minimized. Finally,
no spatial interference between components, interconnections, or the packaging
volume (PV) is allowed. The formulation above captures the key elements that
if solved would be most important in industrial applications. In this paper, we
focus on the feasibility version of the SPP in which the PV dimensions are fixed.
Also, our approach assumes a fixed 3D orientation of input components, i.e., it
does not attempt to rotate the components in search of feasible solutions.

Reduction to Taxicab Geometry. In this paper, we work on a specialization of the
SPP through projection into the taxicab geometry [12] which transforms certain
Euclidean-geometric forms into orthogonal forms (rectangular prisms). Figure 4
shows a taxicab solution corresponding to the Euclidean solution in Fig. 3. In
this solution, all components, interconnections, and packaging volume consist of
rectangular prisms. The interconnections become rectangular prisms with fixed
width/height and variable length. The taxicab geometry defines Manhattan dis-
tance dT (P,Q) = |xP −xQ|+|yP −yQ| as a distance metric between the points (P
and Q) which allows reduction of the possibly infinite number of pipe directions
in Euclidean geometry to only 6 possible directions in 3D space. Only intercon-
nection bends of 90◦ are allowed, and each connector is parallel to one of the
3 principal axes. This significantly reduces the computational complexity and
simplifies modelling of SPP as a CP problem.

The taxicab relaxation is used to generate a diverse set of solutions as starting
points for design. Each solution to the taxicab-relaxed SPP captures core aspects
of a corresponding feasible Euclidean solution and can be transformed back to it
for post processing, as an initial assignment for a local optimization. This is done
by defining round cross-section pipes inside the rectangular interconnections,
rounded bends at their corners, and rotated components inside the component
boxes with internal connections.

3 Constraint Programming Model

We describe the input data, decision variables, and constraints that form the
CP model of SPP. SPP can be seen as a special packing problem with strongly
constrained items, some of which have variable dimensions.
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Input Data. Lpv, Wpv, Hpv denote the maximum length, width, and height of the
packaging volume (PV), respectively. C denotes the set of components, and for
each c ∈ C, Lc, Wc, Hc denote the component length, width and height respec-
tively. Opc denotes the origin point of the component c, i.e., the corner with
the smallest x, y and z coordinates. Cx denotes the set of all interconnections
and MB denotes the maximum number of bends in any interconnection. For each
interconnection cx ∈ Cx, dcx denotes its diameter, Scx its source component,
and Lscx, Wscx, Hscx the length, width and height of the source point Spcx rela-
tive to the Opc of the source component. Analogously, Tcx is a target component
while Ltcx, Wtcx, Htcx are the length, width, and height of the target point Tpcx
relative to the origin point of the target component.

Decision Variables and Constraints. For each component c in C, we define
three assignment variables Xc, Yc, and Zc respectively that indicate the coordi-
nates of the origin point Opc of component c. For each interconnection cx ∈ Cx,
variables Xscx, Yscx, Zscx denote the coordinates of source point Spcx while
Xtcx, Ytcx, Ztcx denote the coordinates of the target point Tpcx.

For each cx ∈ Cx we define CTcx to be the set of all possible connectors
which form the interconnection. The number of connectors is limited by the
maximum number of bends, MB. For each connector ct ∈ CTcx, variable Ect ∈
{0, 1} indicates if the connector exists as part of the interconnection cx. Each
connector has an Opct which denotes a corner with the smallest x, y, and z
coordinates. Variables Xct, Yct, and Zct denote the coordinates of Opct while Lct,
Wct and Hct denote the dimensions of ct along the x, y, and z-axis. Geometric
position of a connector is fully specified by an assignment to the above variables.
We model the relationship of a connector to its neighbouring connectors by
introducing a variable dirct ∈ [1, 6] which indicates the relative direction of
connector ct with respect to its predecessor connector: 1 represents a direction
that increases x-axis, 2: direction that decreases x-axis, 3 and 4: increase and
decrease of y-axis, while 5 and 6 increase and decrease z-axis respectively.

Interconnection Constraints ensure that connectors form interconnec-
tions that connect appropriate start and end points at given components.
CTcx = {ct1, . . . , ctMB} denote the maximal set of connectors for an intercon-
nection cx. Connectors in CTcx have a fixed diameter dcx. Depending on the
direction of a connector cti, two of its dimensions must be fixed, e.g., if the direc-
tion increases or decreases x-axis coordinates, then its dimension along the y and
z-axis are assigned to dcx, i.e. Hcti = Wcti = dcx. We further enforce that the min-
imal dimensions of each connector is dcx. Furthermore, we enforce that the first
and the last connector have all dimensions fixed to a diameter, i.e. they are cubes
with the size equals to interconnection diameter, i.e. Lct1 = Hct1 = Wct1 = dcx,
LctMB = HctMB = WctMB = dcx. The taxicab distance between the first connector
ct1 and the source-point Spcx must be equal to 0. The taxicab distance between
the last connector ctMB and the target-point Tpcx must be equal to 0.

We model the variable number of connectors by allowing connectors preced-
ing the last connector not to exist. Therefore, the connector ctMB−1 either does
not exist, or its distance to the last connector ctMB is 0. For each connector cti
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other then the last connector (i �= MB), if connector does not exist (Ecti = 0)
then its successor does not exist as well (Ecti+1 = 0). If connector cti does not
exist then all its coordinates and dimensions are equal to 0, i.e. Xct = Yct =
Zct = Lct = Wct = Hct = 0. If connector cti exists, it is either connected to the
last connector ctMB or its successor cti+1 exists. Each intermediate connector cti
must start at the point where its predecessor stops. This is best understood as
a restriction that the ending cube of a connector’s predecessor with dimensions
dcx × dcx × dcx is sharing a surface of dimensions dcx × dcx with the starting
cube of the successor connector. Which surface is shared depends on the relative
direction of the connector. For example, if cti is increasing across the z-axis, then
the surface shared with cti−1 is in a plane parallel with the x and y-axis. Finally,
we enforce that if a connector cti exists, it can neither reverse nor maintain the
direction of its predecessor since in the first case the connector would occupy
the same area as its predecessor, while in the second case it could be replaced
with a longer version of the predecessor connector.

In addition to the above constraints, we also enforce Interference Constraints
which forbid overlap of rectangular prisms in 3D space. There is a 3D version of
a general diffn constraint [1] which is supported by several solvers and can also
be implemented as n·(n−1)

2 of pairwise interference constraints. This formulation
is straightforward and we omit it due to space limitations.

4 Search Heuristic

A search heuristic significantly improved search-space exploration efficiency. Our
search strategy selects branching variables and values based on the volume of
components and interconnections. For a given component c, its component vol-
ume Vc denotes the volume in a standard geometric sense: Lc × Wc × Hc. For a
given interconnection cx, its interconnection volume Vcx is defined as the sum of
volumes of source and target component (Scx, Tcx) as well as the volumes of all
connectors directly attached to the source and the target components regardless
of which interconnection they belong to. We refer to them as attached-connectors.
An example of an interconnection volume is shown in Fig. 4: the volume of the
interconnection 3, connecting the component A and B, is V3 = V3,A + V3,B ,
where V3,A includes the volume of component A (VA) as well as the volumes of
connector V3.1 and V1.8. Note that connector 1.8 is not part of interconnection
3. Analogously, volume V3,B includes the volume of component B (VB) as well
as the volumes of connectors V2.1 and V3.8.

The heuristic proceeds as follows. It first sorts interconnections in a descend-
ing order based on their volumes. For each interconnection cx (in this order),
the component with largest volume – that is attached to cx – is packed first.
Using this order, the search heuristic packs each component with its attached-
connectors; then, its interconnections within the existing set of already packed
components are built: interconnections with a larger diameter are built first. To
build an interconnection, the search heuristic starts by sequentially assigning the
direction and the dimension of connectors from first to last.
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5 Experimental Evaluation

In this paper, we propose a SPP benchmark that is the result of a long and
careful process: we reviewed applications with product designers in a diverse set
of United Technologies Corporation businesses, gathered a diverse set of rele-
vant product architectures, and created a benchmark to represent their range
of number of components and interconnections and their relative dimensions.
The benchmark is typical of the SPP challenges encountered in commercial and
defense applications within elevator, jet engine, helicopter, and aircraft subsys-
tem businesses while also being a suitable non-proprietary challenge problem
that can be shared broadly while complying with international trade regulations
and intellectual property restrictions. A detailed description of the benchmark
can be obtained directly from the authors.

The SPP benchmark describes ten components with volumes ranging from
4.000 to 36.000 units. These components are connected via fifteen interconnec-
tions with three different diameters: three interconnections with diameter of 5
units, nine interconnections with diameter of 10, and three interconnections with
diameter of 20. Each component is involved in at least two, and at most four
interconnections. We relaxed this benchmark using the Taxicab geometry and
derived 212 SPP instances: we randomly generated fourteen sets of fifteen SPP
instances with sizes ranging from 1 to 14, one size 0 instance, and one size 15
instance. Each instance, with size n, contains the ten components and n different
interconnections that are randomly selected from the initial SPP benchmark.

5.1 Results

To better evaluate our heuristic, we compare it to a widely used heuristic for
packing problems that chooses variables/values based on component volume (i.e.,
the highest-volume component is packed first) [4,15].

The SPP model and the search heuristic were implemented using the C#
library Google OR-Tools solver [18]. We also implemented a search heuristic
based on component volume. We performed our experiments on the 212 SPP
instances using an Intel Core i7 (2.8 GHz, 8 GB Ram). Each run finishes with a
success, when a feasible solution is found, or an out-of-time if it exceeds 1 min.
The goal of generating a diverse set of taxicab solutions drives the 1-minute
upper-bound for computing each solution.

Table 1 shows the results, grouped by number of interconnections, shown in
the first column. The second column shows the number of instances per group.
For each heuristic, we show the success rate (% Success) and the computation
time (Avg. Time) in milliseconds, averaged over the instances that were success-
fully solved. Our heuristic, Heuristic Based Interconnection (HBI), outperforms
a widely used packing-problem heuristic, Heuristic Based Component (HBC).
HBI solved all the groups of instances with a high success rate, whereas HBC
could not solve the benchmark with size 15 and its overall success rate is low, i.e.,
HBC solved only one instance with 14 interconnections and only 6 instances with
8 interconnections. For the solved instances, both heuristics found the solutions
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Table 1. Percentage of success in terms of the number of interconnections

H. based interconnection H. based component

# inter. # instances % success Avg. time (ms) % success Avg. time (ms)

0 to 7 15 100 <715 83–100 <590

8 15 93 815 40 658

9 15 87 947 40 816

10 15 87 1.129 27 1.010

11 15 93 1.348 13 1.214

12 15 73 1.549 20 1.447

13 15 67 1.651 13 1.684

14 15 67 2.068 7 1.783

15 1 100 8.129 0 −

within a few seconds with a slight advantage for HBC. This can be explained
by the complexity and the number of instances solved, i.e., HBC solved fewer
instances than HBI and these instances might be less complex than the others
that HBI solved.

The instances with fewer interconnections (<8) were solved in less than
715 ms with 100 % success rate. For sizes ranging from 8 to 14, the model and HBI
were grater than 67 % successful and could not solve 1 to 4 instances. The third
column shows that the number of unsolved instances increases in terms of the
number of interconnections. This can be explained by the increasing complexity
of the problem (i.e., more interconnections). For example, if each interconnec-
tion, on average, uses only 4 connectors, for 10 interconnections there would
be 40 connectors to be determined and packed which increases the number of
decision variables in the model.

6 Conclusion

The Spatial Packaging Problem (SPP) is a challenging problem that involves two
NP-hard problems: the 3D Packing Problem (3DPP) and the 3D Pipe-Routing
Problem. The main feature that distinguishes the SPP from the traditional 3DPP
is the interconnections that exist between its components. This feature adds
wholly new dimensions of complexity because the shape and dimensions of the
interconnections are unknown, and must be determined as part of the solution.
This paper presented the first constraint programming model and search heuris-
tic to formulate and solve the SPP. The proposed approach relaxes the problem
and models the SPP as a constraint-satisfaction problem, then solves it using
a search heuristic based on interconnection volume. We presented experimental
results for a challenging benchmark which indicate that constraint programming
is a promising approach for the SPP.
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Our future focus will be on: (1) developing a global interconnection constraint
to significantly reduce the SPP search space, and (2) combining the proposed
approach with local search to optimally solve the SPP.
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23. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and
packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007)



Detecting Semantic Groups in MIP Models

Domenico Salvagnin1,2(B)

1 IBM Italy, Segrate, Italy
2 DEI, University of Padova, Padua, Italy

salvagni@dei.unipd.it

Abstract. Current state-of-the-art MIP technology lacks a powerful
modeling language based on global constraints, a tool which has long
been standard in constraint programming. In general, even basic seman-
tic information about variables and constraints is hidden from the under-
lying solver. For example, in a network design model with unsplittable
flows, both routing and arc capacity variables could be binary, and the
solver would not be able to distinguish between the two semantically dif-
ferent groups of variables by looking at type alone. If available, such
semantic partitioning could be used by different parts of the solver,
heuristics in primis, to improve overall performance. In the present paper
we will describe several heuristic procedures, all based on the concept
of partition refinement, to automatically recover semantic variable (and
constraint) groups from a flat MIP model. Computational experiments
on a heterogeneous testbed of models, whose original higher-level parti-
tion is known a priori, show that one of the proposed methods is quite
effective.

1 Introduction

Mixed-integer-programming (MIP) is a powerful paradigm to solve many com-
binatorial optimization problems coming from both theory and applications.
Despite the admittedly limited set of constructs that are allowed in the para-
digm, namely linear inequalities and integer constrained variables, it turns out
that surprisingly many optimization problems of practical interest can be exactly,
or approximately, formulated as MIP models [27]. At the same time, MIP solvers
improved so much in the last decades that MIP is considered nowadays a mature
technology. The seemingly limited language of MIP was indeed (partly) instru-
mental to its success: although powerful enough to model many optimization
problems, it was at the same time easy enough to allow for a development of a
rich and general theory, and for the definition of a standard file format (namely
MPS) since the very beginning. By modeling an optimization problem as a MIP
and solving it with a MIP solver, one takes advantage from decades of past (and
future) developments in solver technology.

On the other hand, the limited language of MIP is actually a double-edged
sword: modeling real-world problems as MIPs is far from obvious—a thing that
seasoned MIP modelers tend to forget—and, more importantly, part of the global
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structure, which could be exploited by problem-specific approaches, is lost when
translated into a flat MIP model. In general, even basic semantic information
about variables and constraints is hidden from the underlying solver.

Let us consider for example the prepack optimization problem [23]. This
problem arises in inventory allocation applications, where the operational cost
for packing the bins is comparable, or even higher, than the cost of the bins
(and of the items) themselves. Assuming that automatic systems are available
for packing, the required workforce is related to the number of different ways
that are used to pack the bins to be sent to the customers. Pre-packing items
into box configurations has benefits in terms of easier and cheaper handling;
on the other hand, it can reduce the flexibility of the supply chain, leading to
situations in which the set of items that are actually shipped does not match
exactly the demands—such deviations are usually penalized in the objective
function. Using the notation in [15], a mixed-integer nonlinear model for the
prepack optimization problem reads:

min
∑

s∈S

∑

i∈I

(αuis + βois) (1)

qbis = xbsybi (b ∈ B; i ∈ I; s ∈ S) (2)
∑

b∈B

qbis − ois + uis = ris (i ∈ I; s ∈ S) (3)

∑

i∈I

ybi =
∑

k∈K

k tbk (b ∈ B) (4)

∑

k∈K

tbk = 1 (b ∈ B) (5)

ois ≤ δis (i ∈ I; s ∈ S) (6)
tbk ∈ {0, 1} (b ∈ B; k ∈ K) (7)

xbs ≥ 0 integer (b ∈ B; s ∈ S) (8)
ybi ≥ 0 integer (b ∈ B; i ∈ I) (9)

where I is the set of types of products, S the set of stores, K ⊂ Z+ the set of
available bin capacities, and B is the set of box configurations. Parameters ris
are the actual demands, while δis are upper bounds on the amount overstock-
ing. As for variables, integer variables ybi encode products’ packing into boxes,
while integer variables xbs encode the shipping of box configurations to stores.
Understocking and overstocking are expressed by decision variables uis and ois.
Then, we have additional binary variables tbk to map box configurations to bin
capacities and additional integer variables qbis = xbs ybi used to count the num-
ber of items of type i sent to store s through boxes loaded with configuration b.
Finally, the nonlinear products that define variables qbis are actually formulated
in a MIP framework by adding artificial binary variables (say v and w) that
basically provide the binary expansion of variables x and y and the correspond-
ing products. We refer to [15] for more details on the model. Although far from
complex, model (1)–(9) is a typical example of the ingenuity needed to model a
real-world problem as a MIP.
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From a high-level point of view, model (1)–(9) is made of several different
sets of variables that are semantically distinct: for example x variables encode
shipping decisions, while y encode packing decisions. On the same line, v, and
w are artificial binary variables that are needed for the sole purpose of being
able to encode the constraints of the model as linear inequalities, and are also
semantically different. However, this semantic grouping is completely lost and
hidden from the MIP solver, that basically sees only a bunch of integer and
binary variables. In other words, for the purpose of solving, model (1)–(9) gets
flattened as an arbitrary general MIP model like:

min{cT z : Az ≤ b, zj ∈ Z ∀j ∈ J ⊆ {1, . . . , n}} (10)

Semantic partitioning is not the only piece of information which is lost in the
flattening process: the overall specific structure of the model (or part of it) is
usually lost too, as well as the mapping between variables and elements of the
sets of indices—actually, the index sets used during modeling are not even part
of the model that is submitted to the solver. As a matter of fact, modern MIP
solvers have a rich arsenal of algorithms that basically try to reverse-engineer
combinatorial substructures from a flat model like (10). Unfortunately, while
these procedures are usually cheap and effective, they are still heuristic in nature
and can be fooled by the many transformations that are applied to a given MIP
formulation in the preprocessing phase.

In this paper we are interested in general-purpose heuristic procedures to
recover, or approximate, the semantic partitioning of variables (and constraints)
present in the original high-level model from a flat one. The paper is organized as
follows: in Sect. 2 we will overview existing literature on the subject and provide
motivations for our study. In Sect. 3 we will present several different partitioning
algorithms and discuss their respective strengths and weaknesses. In Sect. 4 we
will present some computational results on a heterogenous testbed of models,
showing that some methods are indeed quite successful in this reconstruction.
Conclusions are finally drawn in Sect. 5.

2 Related Work

Current state-of-the-art MIP technology lacks a powerful modeling language
based on global constraints, a tool which has long been standard in constraint
programming [32]. For this reason, it has become standard practice in MIP
implementations to devise algorithms that basically try to reverse-engineer com-
binatorial substructures from a flat list of linear inequalities. In [3], a procedure
for detecting network structures was presented; such structure, when present, is
then used to improve cutting plane separation. In [34], a procedure for detect-
ing permutation problems, i.e., problems that optimize and arbitrary objective
function over the set of all possible permutations of a given ground set, was
introduced, with the purpose of devising a specialized primal heuristic for this
class of problems. Similarly, MIP solvers often have simple heuristics to detect
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whether the problem at hand admits a specialized solution algorithm—for exam-
ple, a knapsack problem might be solved via dynamic programming—and switch
to the latter according to some effort predictions.

In addition to algorithms that look for specific structures, like networks and
permutations, modern MIP solvers also detect, usually during the preprocess-
ing stage, general-purpose global structures that are used later in the process
to improve the performance of the solver. Examples of global structures that
are widely used include the clique table, the implication graph [36], and sym-
metries [28]. Those global structures are used to improve different parts of the
solver, like domain propagation, cutting plane generation, and branching, see,
e.g., [1]. Recently, in [18], the clique table and the implication graph have been
used to define neighborhoods for a LNS primal heuristic.

Semantic partitioning naturally belongs to the class of general-purpose global
structures, like the clique table or the symmetry group of the formulation. Such
piece of information, if available, could be used in many different components of
a MIP solver. In particular:

– branching: branching rules could be biased in order to prefer branching on
variables of the same class. This could help when other branching scores are
flat.

– aggregation: if a variable from a given class can be aggregated out, chances
are that all variables in the same class can be aggregated out—this happens,
for example, in many time-indexed formulations for scheduling problems [8].
This would eliminate part of the guess-work in the aggregation heuristics.

– relaxation: a partitioning of constraints based on semantics could open the
way to automatic Lagrangian relaxations, where constraints from the same
class are relaxed into the objective function.

– primal heuristics: semantic groups can be used to devise neighborhoods in
LNS approaches, for biasing fix-and-dive heuristics and to implement general-
purpose metaheuristics. An example is the alternate heuristics: given two
subsets of variables, it consists in alternately solving the problem with the
variables of one of the subsets fixed, and this is quite effective for some classes
of problems like pooling [6] and prepack optimization [15].

An alternative approach to the one studied here consists in extending the
solver to accept a higher-level model in the first place. In such an enriched
environment, the user is allowed to model the problem using expressions that
compactly encode complex substructures, and the solver, which is fully aware
of those expressions, can take advantage of specialized methods. This is the
de-facto standard in constraint programming, where global constraints are used
exactly for this purpose. A further generalization of the concept is metacon-
straints [12,20]: a metaconstraint is syntactically specified much as a global
constraint is, but it is also amended with additional annotations that specify
how it is to be relaxed, how it is supposed to do constraint propagation and to
direct search (via branching) in case it is violated. Metaconstraints, pioneered
in the modeling system SCIL [5], are partially supported in recent versions of
high-level modeling systems, like AMPL [17], ECLiPSE [30], MiniZinc [37] and
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SIMPL [40]: however they are fully exploited only if the underlying solver pro-
vides some native support for them, which is currently not the case for most MIP
solvers. A notable exception is the open-source solver SCIP [2], whose constraint
handlers are basically metaconstraints implemented at the C level.

While exploiting, as opposed to reverse-engineering, higher-level knowledge
has clear benefits and should be the winning approach in the long run, we have
to face the fact that currently most state-of-the-art MIP solvers accept only
very limited extensions w.r.t. the regular MIP language, namely indicator con-
straints [25] and piece-wise linear functions [19]. In addition, a modeling lan-
guage based on metaconstraints is not without its share of problems: as the
solver automatically translates global constraints into a MIP model, it often cre-
ates auxiliary variables. Variables introduced by different metaconstraints might
actually have the same meaning, but without some form of additional annota-
tions, like the semantic typing proposed in [12], the solver is unable to recognize
such relationships and produce a tight model, equivalent to what a human mod-
eler might produce by hand. The issue of modeling with metaconstraints ver-
sus reverse-engineering them from a flat model is also discussed, among others,
in [5,21,22,31].

Finally, there are connections between the subject of the current paper and
symmetry detection [28]: intuitively, if two variables are symmetric, they also
belong to the same semantic class, but the converse is not true. As such, semantic
grouping generalizes the orbit partitioning that is obtained as a side product of
symmetry detection, and it applies to a much wider range of problems, albeit
with a completely different usage.

3 Detection Algorithms

Recovering the high-level partition of variables (and constraints) is inherently
an ill-posed problem, as MIP solvers cannot truly have a notion of semantics.
As such, we need to replace the notion of belonging to the same semantic class
with something that is within the reach of the solver and can be inferred from
the model alone. In the present paper, we propose an overall approach based on
partition refinement, a basic tool in computer science. According to [4], partition
refinement is defined as follows: given a set S, an initial partition π of S into
pairwise disjoint blocks (also called cells) {B1, . . . , Bp}, and a function f on S1,
the task is to find the coarsest partition of S, say π′ = {E1, . . . , Eq}, such that:

1. π′ is consistent with π, that is each Ei is a subset of some Bj ;
2. π′ is compatible with f , which means that a and b in Ei imply f(a) and f(b)

are in some Ej .

Partition refinement can be implemented in O(n log n) time, for arbitrary π and
f , where n = |S|.

1 In applications, such as graph automorphism and DFA minimization, function f is
extended to dependent on a more complex domain than just S.
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In our context, the partition we are interested in is obviously the one of vari-
ables and constraints in the model. The final outcome will depend on two choices,
namely the initial partition π and function f . As for the initial partition, we can
split variables according to their type and, optionally, according to whether
they appear in the objective function or not. For constraints, we can start from
their initial classification. Constraint classification [2,16] is a technique used to
achieve faster constraint propagation: for example, variable bounds, or set cover-
ing constraints, can be propagated way more efficiently than an arbitrary linear
constraint, and MIP solvers usually implement some form of classification in
order to take advantage of that. More details about the constraint classes used
in this paper are given in Sect. 4. As for function f , it must necessarily take
into account how variables and constraints are structurally connected in model:
a convenient tool is to encode the connections we are interested in a graph, and
then define f accordingly—in this case function f usually encodes some form
of vertex invariant in the graph. This is the approach taken, for example, in
symmetry detection codes [13,14,29], that work by implicitly constructing an
auxiliary graph and computing its automorphism group. Incidentally, partition
refinement is a crucial building block of all graph automorphism packages. In
those algorithms, function f is the so called connection function: given a vertex
v and a set of vertices B, f(v,B) gives the number of elements in B which are
connected to v. In other words, each refinement step will pick a target cell Bi, an
inducing cell Bj , and it will split the vertices in Bi according to their connection
count w.r.t. Bj . Note that there is no actual choice of B: each time a cell is split,
its pieces will act in turn as inducing cells, and the whole process is iterated
until a fixed point is reached. An example of partition refinement according to
the connection function is depicted in Fig. 1.

In the rest of this section, we will describe several partitioning schemes, that
can all be cast into the refinement framework just described.

1

2

3

4

5

6

7

(a)

1, 2, 3, 4 5, 6 7
2, 1, 1, 0 0, 0 0

1 2, 3 4 5, 6 7
2 1, 1 0 0, 0 0

(b)

Fig. 1. Example of partition refinement according to connection function. The first
row of each matrix on the right encodes the current partition, while the second gives
the connection function w.r.t. cell [5, 6].
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3.1 Simple Refinements

Some simple strategies rely entirely on carefully constructing an initial partition
π, and take function f as the identity. In this case, it trivially holds that π′ = π.
The two strategies that we tried in this class are:

– type: partition variables by type alone, and constraints according to their
initial classification.

– histogram: partition variables and constraints according to their so called
histogram. For variables, this amounts to counting the number of constraints in
which each variable appears, and partition based on this count—analogously
for constraints.

It is quite obvious that method typewill not be powerful enough in most cases,
as it is often not possible to distinguish semantically different variables by type
alone—model (1)–(9) is an example, as is network design with unsplittable flows.
However, it is convenient to have the method as a baseline for benchmarking.

3.2 Iterative Refinements

The strategies in this class implement the full-blown partition refinement algo-
ritm. They all start from the same initial partitioning described at the beginning
of the section, but use different connection functions. The three strategies that
we tried in this class are:

– fast. We construct a bipartite graph G = (V,K,E), where V is the set of
variables, K is the set of constraints classes, and there is edge (vi, kj) in the
graph if and only if variable vi appears in at least one constraint of class kj .
The connection function f is the regular connection function used in graph
automorphism packages.

– recursive. We construct a bipartite graph H = (V,C,E), where V is the set
of variables, C is the set of constraints, and there is edge (vi, cj) in the graph
if and only if variable vi appears in constraint cj . The connection function f
is a modified version of the regular connection function, that ignores actual
counts when deciding how to split a cell. In other words, a target cell Bi is
split only distinguishing between its elements that connect to the inducing cell
Bj from those that do not, without further refinement based on the actual
counts. On the example in Fig. 1, refining cell [1, 2, 3, 4] w.r.t. [5, 6] would thus
yield [1, 2, 3|4] instead of [1|2, 3|4].

– auto. We construct the same bipartite graph H = (V,C,E) as in recursive,
but use the regular connection function. Note that H is the very same bipar-
tite graph that would be constructed to compute symmetries in a binary
model [33], and auto then just performs the initial refinement step without
doing the enumeration required to properly compute the set of generators.

It is worth noting that fast could have been equivalently defined as using
the same connection function as recursive: given that the graph is bipartite,
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and one set of vertices, namely K, is already partitioned into blocks of size 1,
no refinement can happen on K, and the connection count of a vertex v ∈ V
with a cell of K is always at most 1. As a result, fast can also be equivalently
implemented with a specialized algorithm that just computes for each variable
the subset of constraint classes it appears in and then just splitting V according
to this piece of information, with a bucket-sort like procedure. Note also that
fast does not produce a partitioning for constraints, although such a partition
can be computed a-posteriori, with a second bucket sort in which the roles of
constraints and variables are reversed.

The iterative refinement used in these methods is needed to be able to dis-
tinguish variables depending of the class of variables they connect to and not
just basing on the kind of constraints they participate in: for example, in the
prepack model, we have two sets of binary variables, namely w and v, that
encode a binary expansion of two semantically different sets of variables (x and
y respectively). Without further information, a method like fast would not be
able to distinguish w from v, as those variables appear always in constraints of
the same kind. At the same time, this behaviour can be an overkill and lead
to an artificial split of variables. Consider, for example, a flow formulation on a
layered graph2: the flow variables associated to the first (and/or last) layer are
usually connected to some other variables in the model, while those associated
with inner layers are not. Iterative refinement will not only distinguish outer
layers from inner layers, but also recursively partition flow variables by layer,
ending up with a semantic class for each and every layer.

A common characteristic of all methods is that they completely ignore the
actual values of the coefficients in the model, but rather distinguish only between
zero and non-zero values. This is in stark contrast with the symmetry detection
case: actual values are needed to compute proper symmetries, but they are com-
pletely unsuited for semantic grouping, as variable semantics are independent
of numerics. Similarly, actual connection counts are ignored for all methods
but auto and histogram, although the situation is not as obvious as for val-
ues: in some cases connection counts could indeed help, but they would make
the partitioning process too sensitive to trivial changes. For example, fixing a
variable—and getting rid of it during presolve—would create an unwanted dis-
tinction between the variables that were connected to it and those that were
not, while ideally it should be a neutral chance in most circumstances. Simi-
larly, connection counts can be misleading when zero is a legitimate value for a
parameter. For example, on instance markshare 5 0 from MIPLIB2010, which
is basically a multidimensional subset sum problem, the constraint matrix is
randomly generated and is almost fully dense: using exact counts would split
the (very few) variables whose columns do not cover all rows from those who do.

Finally, all methods come in two variants: one in which the initial partition
takes into account the objective function, by distinguishing whether a variable
appears in it or not, and one in which no such distinction is made. It is not

2 The same argument applies to the more common case of a general graph, but we
will consider the layered case for simplicity.
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obvious which one is more suited for the job: in some cases, like balanced sub-
graph problems [24], the objective function is the only way to distinguish between
vertex variables and edge variables, given the current constraint classification.
On the other hand, as with the constraint matrix, zero might be a (rare but)
legitimate value for some of the parameters of the model, say a cost, hence the
resulting distinction would be artificial.

4 Computational Results

We implemented our code in C++, using IBM ILOG CPLEX 12.6.2 [25] as MPS
reader. All tests have been performed on a PC with an Intel Core i5 CPU running
at 2.66 GHz, with 8 GB of RAM. We collected a heterogeneous set of instances—
most included in MIPLIB2010 [26]—whose high-level structure was either known
or easily recoverable (by the author) from variables’ and constraints’ names,
and used that as our testbed. As for constraint classification, we considered the
following classes:

– set covering: inequality of the form
∑

j xj ≥ 1, involving binary variables only
(possibly complemented).

– set partitioning: equality of the form
∑

j xj = 1, involving binary variables
only (possibly complemented).

– set packing: inequality of the form
∑

j xj ≤ 1, involving binary variables only
(possibly complemented).

– cardinality: inequality of the form
∑

j xj ≤ K or
∑

j xj ≥ K, involving binary
variables only (possibly complemented).

– cardinality equation: equality of the form
∑

j xj = K, involving binary vari-
ables only (possibly complemented).

– variable bounds: inequality of the form ax ≤ by or ax ≥ by, with y binary.
– mixed: any inequality that does not fall in any of the classes above.
– mixed equality: any equality that does not fall in any of the classes above.

This classification is pretty basic, yet it can distinguish most of the constraint
classes used in practice, and can be implemented (and executed) very efficiently
with a single pass through the constraint matrix.

We tested all the methods described in the previous section, both in their
objective and no-objective variants: detailed results about the objective variant
are available in Table 1. In the table, we provide basic statistics about each
instance (namely, number of rows m and columns n), the known number of
variable semantic groups (column g), and the number of groups identified by the
proposed methods.

Interpreting the results of the table is not straightforward, as a method may
have incorrectly partitioned the set of variables even if it got the number of
blocks right, so a deeper analysis of the outcome of the algorithms is needed.
Here are some preliminary conclusions drawn from the synthetic numbers in the
table plus a detailed analysis of the outcome of the algorithms on the individual
instances. No method is always recovering the original semantic partitioning,
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Table 1. Number of variable groups found by objective variant of partition refinement
methods.

Instance Size Methods

n m g Type Fast Recursive Histogram Auto

ash608gpia-3col [26] 3,651 24,748 2 2 2 2 18 1,217

csched007 [39] 1,758 351 4 3 4 1,758 4 1,758

dfn-gwin-UUM [41] 938 158 3 3 3 8 3 26

n3700 [38] 10,000 5,150 2 2 2 2 2 2

reblock166 [9] 1,660 17,024 1 1 1 1 28 1,660

Seymour [26] 1,372 4,944 1 1 1 1 126 1,155

Toll-like [24] 2,883 4,408 2 2 2 2 31 2,163

triptim1 [10] 30,005 15,076 16 4 13 30,055 55 30,055

uc-case3 [26] 37,749 52,003 7 3 6 12,898 190 14,410

Wachplan [26] 3,361 1,553 5 2 4 617 50 673

Prepack [15] 84,376 197,154 8 4 8 12 8 12

Multiactsched [35] 11,180 8,222 6 4 6 975 11 5590

Classification [11] 204 100 5 3 4 4 4 4

zib54-UUE-SAN [41] 240,240 81,134 2 2 2 2 2 150

Fac.location [7] 90,300 90,601 2 3 3 7 3 7

confirming that such a reverse-engineering is not a trivial task. In addition, it is
pretty clear that all methods that rely on exact counts, namely histogram and
auto, perform quite poorly, splitting the set of variables in way too many blocks.
The phenomenon is quite clear, for example, on seymour, which is a pure set
covering model, with all variables belonging to the same class. Surprisingly, also
recursive, which does not keep exact counts, often splits the blocks too finely,
in particular for scheduling models. The issue there (and on the multi-activity
from [35]) is exactly the one described in the previous section concerning flow
models.

Overall, fast qualifies as the best method: it is able to refine over the ini-
tial partitioning (type) when needed, and it never returns too fine a partition,
achieving a reasonable approximation of the true number of blocks. The method
is still not perfect though: for example, on the prepack model it cannot dis-
tinguish understocking from overstocking variables (and similarly for the multi-
activity scheduling instance), and on the classification model it cannot distin-
guish the coefficients of the separating hyperplane from its right hand side–
although whether the two are actually semantically different is debatable.

As for running times, all methods except recursive and auto always execute
in a fraction of a second, while the other two can be relatively expensive, up to
a few seconds. In any case, all methods required a negligible time w.r.t. the time
that is needed to solve the instances, so that detection runtime is never an issue,
and we are actually free to choose the method to apply based on success rather
than on time.
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Concerning the no-objective variant, the results are mixed: ignoring the objec-
tive function is not enough to fix the intrinsic weaknesses of recursive and
histogram, and it only marginally affects fast, which is often able to infer the
same partitioning with and without objective. On the one hand, ignoring the
objective fixes the behaviour of fast on the facility location problems; on the other
hand, it causes missing refinements on 5 other instances. Overall, taking the objec-
tive function into accounts seems slightly superior.

5 Conclusions

We described a family of procedures, all based on partition refinement, to heuris-
tically recover the semantic grouping of variables from a MIP model. The prob-
lem is inherently ill-posed, given the lack of a truly semantic notion within MIP
solvers, but partition refinement seems to capture decently well the concept
of structurally equivalent variables, which is a proxy for semantic equivalence.
Indeed, one of the proposed methods is quite successful at recovering the high-
level variable partitioning of the model on an heterogeneous testbed of problems.

Still, no method is perfect, and for each example that supports a design
decision, like whether to ignore the objective function or to iteratively refine the
partition, there is a counterexample supporting the very opposite, confirming
the fact that once semantic information is lost, it is quite difficult to recover
in a robust way, if at all. As such, the experiments in the present paper are
yet another piece of evidence that we should not dismiss so easily high-level
knowledge about the optimization models that we want to solve.
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Abstract. We show that previous filtering propositions on two-sided
stability problems do not enforce arc consistency (AC), however they
maintain bound(D) consistency (BC(D)). We propose an optimal algo-
rithm achieving BC(D) with O(L) time complexity where L is the length
of the preference lists. We also show an adaptation of this filtering app-
roach to achieve AC. Next, we report the first polynomial time algorithm
for solving the hospital/resident problem with forced and forbidden pairs.
Furthermore, we show that the particular case of this problem for sta-
ble marriage can be solved in O(n2) which improves the previously best
complexity by a factor of n2. Finally, we present a comprehensive set of
experiments to evaluate the filtering propositions.

1 Introduction

Many real world problems involve matching preferences between two sets of
agents while respecting some stability criteria. For instance, in College Admis-
sions one needs to assign students to colleges while respecting the students’
preferences over colleges, the colleges’ preferences over students, as well as col-
lege quotas [3]. Gale and Shapley introduced the first polynomial time algorithm
for solving this problem in their seminal paper [3]. Since then a number of algo-
rithms have been proposed for solving variants of these problems. Such ad-hoc
methods are unlikely to be reusable if there are minor changes to the problem.

Constraint programming (CP) is a rich framework for modelling and solv-
ing many combinatorial problems. Expressing problems involving preferences in
CP is extremely beneficial for tackling variants that involve side constraints. We
consider the notion of two-sided stability as a global constraint. We first make
the observation that the previous CP propositions on two-sided stability prob-
lems (such as [4,7,9,10]) do not enforce Arc Consistency (AC), however they
do maintain Bound(D) Consistency (BC(D)). We propose an incremental algo-
rithm that achieves BC(D) with O(L) time complexity where L is the length of
the preference lists, thereby improving the previously best known complexity of
O(c × L) (where c is the maximum quota). We also present, for the first time,
an adaptation of the filtering to achieve AC on this global constraint with an
additional cost of n × L (where n is the number of residents).
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Based on the BC(D) propagator, we show that the hospital/resident problem
with forced and forbidden pairs can be solved in polynomial time. Furthermore,
we show that the particular case of this problem for stable marriage can be solved
in O(n2) which improves the previously best complexity by a factor of n2. Finally,
we present a set of experiments to evaluate the filtering efficiency on randomly
generated instances. The experimental results show compelling evidence that
AC does further prune the search space as compared with BC(D), however, it
considerably slows down the exploration of the search space.

The remainder of the paper is organized as follows. In Sect. 2 we give the
definitions and the notation used throughout the paper. In Sect. 3 we show that
the level of filtering of previous CP approaches is only BC(D). Next, we show an
optimal implementation of a BC(D) algorithm running in O(L) time in Sect. 4.
We also show how to use the same algorithm to achieve AC. In Sect. 5 we discuss
the complexity of the hospital/resident problem with forced and forbidden pairs.
Finally, we present the experimental results in Sect. 6.

2 Definitions and Related Work

2.1 Constraint Programming

Let X be a set of integer variables. A domain for X , denoted by D, is a mapping
from variables to finite sets of integers. For each variable x, we call D(x) the
domain of the variable x. We use min(x) to denote the minimum value in D(x)
and max(x) to denote the maximum value in D(x). Let [x1, . . . , xk] be a sequence
of integer variables. A constraint C defined over [x1, . . . , xk] is a finite subset
of Zk. The sequence [x1, . . . , xk] is the scope of C (denoted by X (C)) and k is
called the arity of C. A support for C in a domain D is a k-tuple τ such that
τ ∈ C and τ [i] ∈ D(xi) for all i ∈ [1, . . . , k]. The constraint C is Arc-Consistent
(AC ) in D iff ∀i ∈ [1, . . . , k], ∀j ∈ D(xi), there exists a support τ for C in D
such that τ [i] = j. C is Bound (D) Consistent (BC(D)) in D iff ∀i ∈ [1, . . . , k],
there exists two supports τ1 and τ2 for C in D such that τ1[i] = min(xi) and
τ2[i] = max(xi) [1].

2.2 The Hospital/Resident Problem

Given a sequence S of distinct elements and j ∈ S, we denote by S−1[j] the
index i such that S[i] = j. We define a complete order ≺≺

S
on S as follows:

∀k, l ∈ S, k ≺≺
S

l iff S−1[k] < S−1[l]. We will also use the notation l ��
S

k

when k ≺≺
S

l. In the context of preferences, k ≺≺
S

l (respectively k ��
S

l) can be

understood as k is better (respectively worse) than l with respect to S.
In the Hospital/Resident (HR) problem (called College Admissions in [3]),

we are seeking the assignment of residents r1, . . . , rnR
to hospitals H1, . . . , hnH

.
Each hospital hj has a capacity cj as the maximum number of assigned residents.
Each resident ri has a sequence of integers Ri ranking some hospitals in a strictly
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increasing order of preferences. That is, ri prefers hospital hk to hospital hl iff
k ≺≺

Ri

l. Conversely, each hospital hj is associated with a sequence of integers

Hj ranking some residents in a strictly increasing order. We denote by lenr
i the

length of Ri and lenh
j the length of Hi.

Let E = {(i, j) | i ∈ [1, nR]∧j ∈ [1, nH ]∧i ∈ Hj∧j ∈ Ri} the set of acceptable
pairs. A matching M is a subset of E where |{j | (i, j) ∈ M}| ≤ 1 ∀i ∈ [1, nR]
and |{i | (i, j) ∈ M}| ≤ cj , ∀j ∈ [1, nH ]. A resident ri is said to be unassigned
in M iff |{j | (i, j) ∈ M}| = 0. Similarly, a hospital hj is under-subscribed in M
iff |{i | (i, j) ∈ M}| < cj . A pair (i, j) ∈ E \ M is said to be blocking M iff the
following two conditions are true:

1. ri is unassigned in M or ∃k ∈ [1, nH ] such that (i, k) ∈ M and j ≺≺
Ri

k

2. hj is under-subscribed in M or ∃l ∈ [1, nR] such that (l, j) ∈ M and i ≺≺
Hj

l

A matching M is said to be stable iff there is no blocking pair for M.
The Hospital/Resident (HR) problem is to find a stable matching for a given

instance. The stable marriage problem (SM ) is a particular case of HR where
cj = 1 for all j ∈ [1, nH ]. We assume, without loss of generality in the remainder
of the paper, that a resident r has a hospital h in its preference list iff h has r in its
preference list. In this case, the length of the preference lists L =

∑nR

i=1 lenr
i =∑nH

j=1 lenr
j .

Gale and Shapley proposed an O(L) algorithm for solving the HR prob-
lem [3]. The algorithm, known as the resident-oriented Gale/Shapley algorithm
(RGS) returns the unique matching where each resident is assigned to the best
possible hospital that it can be assigned to in any stable matching. A similar
algorithm for hospitals (i.e. hospital-oriented Gale/Shapley algorithm (HGS))
exists and has the same complexity O(L). RGS and HGS operate by removing
residents/hospitals from preference lists. The intersection of the reduced lists
(returned by RGS and HGS) is called the GS-lists. The GS-lists are important
since every stable matching is included in it [5].

Theorem 1. From [5]

1. The number of assigned residents per hospital is the same in all stable
matchings.

2. If a resident ri is unassigned in one stable matching then it is unassigned in
all stable matchings.

3. If a hospital hj is under-subscribed in one stable matching then it is assigned
exactly the same residents in all stable matching.

We will use the following notation:

– HUnder = {j| hj is under-subscribed in all stable matchings}.
– HUnderj = {i|ri is assigned to hj in all stable matchings} where j ∈ HUnder
– HFull = [1, nH ] \ HUnder.
– RUnassigned = {i| ri is unassigned in all stable matchings}.
– RFree = {i| ri /∈ RUnassigned and {j|i ∈ HUnderj} = ∅}.
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2.3 Related Work in Constraint Programming

We first describe one of the CP models for the HR problem proposed in [7]. Each
resident ri is associated with an integer variable xi where D(xi) = [1, .., lenr

i] ∪
{nH + 1}. Each hospital hj is associated with cj + 1 integer variables yj,k (k ∈
[0..cj ]) where D(yj,0) = 0 and D(yj,k) = [k, lenh

j ] ∪ {n + k}. Assigning xi to
nH + 1 is understood as the resident ri being unassigned. Assigning xi to a
value a ∈ [1, lenr

i] is semantically equivalent to assigning ri to its ath favourite
hospital. Similarly, assigning yj,k to a value b ∈ [1, lenh

j ] means that the bth
favourite resident to hj is assigned to the kth position of hj . If yj,k is assigned
to {n + k} then the kth position for hospital hj is not assigned to any resident.
These variables are subject to the following constraints (in these constraints pi,j
denotes the rank of hospital hj in Ri and qi,j denotes the rank of the resident
ri in Hj):

yj,k < yj,k+1 (∀j ∈ [1, nH ],∀k ∈ [1, cj − 1]) (1)

yj,k ≥ qi,j =⇒ xi ≤ pi,j (∀j ∈ [1, nH ],∀k ∈ [1, cj ],∀i ∈ Hj) (2)

xi = pi,j =⇒ yj,k = qi,j (∀i ∈ [1, nR],∀j ∈ Ri,∀k ∈ [1, cj ]) (3)

(xi ≥ pi,j∧yj,k−1 < qi,j) =⇒ yj,k ≤ qi,j (∀i ∈ [1, nR],∀j ∈ Ri,∀k ∈ [1, cj ]) (4)

yj,cj < qi,j =⇒ xi = pi,j (∀j ∈ [1, nH ],∀i ∈ Hj) (5)

We refer to this encoding as Γ . Enforcing AC on Γ yields to a domain that
is equivalent to the GS-lists [7]. This property is important, however, it does not
necessarily rule out all inconsistent values. The authors of [7] showed an effi-
cient implementation of this encoding using one constraint. Their filtering runs
in O(c × L) (where c = max{cj |j ∈ [1, nH ]}) and does not further prune the
domains. In fact, in terms of the level of propagation, all previous work in the
literature including SM [4,7,9,10] focus on showing how their encodings main-
tains the GS-lists and never investigate the question of completing the filtering.

Note also that the notion of GS-lists is not well-defined during search. That
is, for instance, when few residents are assigned/unassigned to some specific
hospitals at a given node of the search tree.

3 Characterizing the Level of Consistency

We show in this section that the previous CP models are not complete and
enforce only BC(D).

Example 1 (Counter-Example). Consider the case where nR = nH = 4, c1 = c2 =
c3 = c4 = 1,R1 = [3, 2, 1],R2 = [4, 1, 3, 2],R3 = [2, 4, 3],R4 = [1, 3, 4],H1 =
[1, 2, 4],H2 = [2, 1, 3],H3 = [3, 2, 4, 1],H4 = [4, 3, 2]. The domain is initialised as
follows: D(x1) = D(x3) = D(x4) = {1, 2, 3, 5},D(x2) = {1, 2, 3, 4, 5},D(y1,0) =
D(y2,0) = D(y3,0) = D(y4,0) = 0,D(y1,1) = D(y2,1) = D(y4,1) = {1, 2, 3, 5},
and D(y3,1) = {1, 2, 3, 4, 5}. Constraint 2 with y1,1 >= 1 enforces x1 ≤ 3, hence
removing the value 5 from D(x1). A similar propagation is performed on Con-
straint 2 with y2,1 ≥ 1, y3,1 ≥ 1, and y4,1 ≥ 1 and the value 5 is removed from
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D(x2),D(x3), and D(x4). Now consider Constraint 4 with x1 ≥ 1 ∧ y3,0 < 4.
This enforces y3,1 ≤ 4. The same constraint is triggered with x2 ≥ 1 ∧ y4,0 < 3,
x3 ≥ 1 ∧ y2,0 < 3, and x4 ≥ 1 ∧ y1,0 < 3. Therefore the value 5 is removed from
D(y1,1),D(y2,1),D(y3,1), and D(y4,1). No more propagation is needed. However,
assigning x2 to 3 does not belong to any solution. �

Example 1 shows that AC on Γ is not sufficient to provide complete filtering.
Note that since all capacities cj = 1 this example confirms the property even for
the particular case of stable matching.

In the rest of the paper we use 2-SidedStability(X ,A,B, C) to denote
the global constraint modelling 2-sided stability. More precisely, for a given HR
problem:

– X is the set of variables x1, . . . , xnR
defined the same way in Γ ,

– A = {R1, . . . ,RnR
}

– B = {H1, . . . ,HnH
}

– C = {c1, . . . , cnH
}

We show that AC on Γ enforces BC(D) on any domain D.

Lemma 1. If Γ is AC then

1. ∀i ∈ RUnassigned, D(xi) = {nH + 1}.
2. ∀j ∈ HUnder, ∀i ∈ HUnderj, D(xi) = {k} such that k = Ri

−1[j].
3. ∀j ∈ HUnder, ∀k ∈ [1, |HUnderj |], D(yj,k) = {ak} such that ak is the kth

favourite resident to hj whose index is in HUnderj.
4. ∀j ∈ HUnder, ∀k > |HUnderj |, D(yj,k) = {n + k}.
5. ∀j ∈ HFull, ∀i ∈ [1, nR], if ∃k ∈ D(xi), such that j = Ri[k], then i ∈ RFree.
6. ∀i ∈ RFree, ∀j ∈ [1, nH ] if ∃k ∈ D(xi), such that j = Ri[k], then j ∈ HFull.
7. |RFree| =

∑
j∈HFull cj.

Proof. The lemma is a direct consequence of Theorem 1 and the fact that AC
on the initial domain is a superset of any domain returned by AC in the search
tree. Recall that AC on the initial domain is equivalent to the GS-lists. �

Lemma 2. If Γ is AC then for all i ∈ [1, nR], 1 ≤ k < max(xi), and h = Ri[k],
we have h ∈ HFull.

Proof. Consider the domain D∗ obtained after enforcing AC on the initial
domain. We know that this domain corresponds to the GS-lists. Therefore,
assigning all variables to their maximum in D∗ is a support (i.e. the hospital-
oriented stable matching). Hence for all 1 ≤ k < max(D∗(xi)), and h = Ri[k],
h ∈ HFull (from the definition of stability). Therefore, if Γ is AC on any
arbitrary domain, then we know that max(xi) ≤ m, and consequently for all
1 ≤ k < max(xi), and h = Ri[k], we have h ∈ HFull. �

Lemma 3. If Γ is AC then ∀j ∈ HFull, |{i | Ri[min(xi)] == j}| = cj.
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Proof. Let Φj = {i | Ri[min(xi)] == j}. We first show that |Φj | ≤ cj . Suppose
by contradiction that ∃j ∈ HFull, |Φj | > cj . For all k ∈ [1, |Φj |], we define rak

to
be the kth favourite resident to hj whose index is in Φj (i.e. ak ∈ Φj).

We show by induction that ∀k ∈ [1, cj ],max(yj,k) ≤ Hj
−1[xak

]. For k = 1,
since Constraint 4 of Γ is AC, and yj,0 = 0 < Hj

−1[xa1 ] then max(yj,1) ≤
Hj

−1[xa1 ]. Suppose that the property holds for k ∈ [1, cj − 1]. We have
max(yj,k) ≤ Hj

−1[xak
]. Therefore, Constraint 4 of Γ enforces max(yj,k+1) ≤

Hj
−1[xak+1 ] since Hj

−1[xak
] < Hj

−1[xak+1 ].
Consider now k ∈ [cj + 1, |Φj |]. We have max(yj,cj ) < Hj

−1[xak
] (since

Hj
−1[xacj

] < Hj
−1[xak

]). Therefore Constraint 5 of Γ removes Rak

−1[j] from
D(xak

) which contradicts the fact that Rak
[min(xak

)] = j. Hence |Φj | ≤ cj .
Using Properties 5, 6, and 7 of Lemma1 we obtain

∑

j∈HFull

|Φj | =
∑

j∈HFull

cj .

Therefore, |Φj | = cj . �

Lemma 4. If Γ is AC then ∀j ∈ HFull, |{i | Ri[max(xi)] == j}| = cj.

Proof. We show first that ∀j ∈ HFull, ∀k ∈ [1, cj ], if Hj [min(yj,k)] = i, then
Ri[max(xi)] = j. Suppose by contradiction that there exists j, k, i such that
Hj [min(yj,k)] = i and Ri[max(xi)] = j. Then Constraint 2 enforces max(xi) ≤
Ri

−1[j]. Therefore we have max(xi) < Ri
−1[j]. Thus, Constraint 3 removes

Hj
−1[i] from D(yj,k) which contradicts the hypothesis. Hence we have ∀j ∈

HFull, ∀k ∈ [1, cj ], if Hj [min(yj,k)] = i, then Ri[max(xi)] = j.
Observe that propagating Constraint 1 enforces min(yj,1), min(yj,2), . . . ,

min(yj,cj ) to have different values. Therefore ∀j ∈ HFull,|{min(yj,k) | k ∈
[1, cj ]}| = cj . Thus |{i | Ri[max(xi)] == j}| ≥ cj .

Since Ri[max(xi)] == j is true only when i ∈ RFree, and for all i ∈ RFree,
Ri[max(xi)] ∈ HFull then

∑
j∈HFull |{i | Ri[max(xi)] == j}| = |RFree| =∑

j∈HFull cj . Therefore, ∀j ∈ HFull, |{i | Ri[max(xi)] == j}| = cj . �

We now introduce a sufficient and necessary condition for stability in Theorem2.

Theorem 2. 2-SidedStability(X ,A,B, C) is satisfiable iff

∀ 1 ≤ j ≤ nH ,

nR∑

i=1

(Ri[xi] == j) ≤ cj ∧

∀ 1 ≤ i ≤ nR, ∀ 1 ≤ j ≤ nH + 1, xi = j =⇒ ∀k ∈ [1, j[, if h = Ri[k], then∑nR

m=1(Rm[xm] == h) = ch ∧ ∀l ��
Hh

i, Rl[xl] = h.

Proof. (⇒) Let M be a stable matching and suppose that the variables are
assigned accordingly. Clearly, by construction, ∀ 1 ≤ j ≤ nH ,

∑nR

i=1(Ri[xi] ==
j) ≤ cj . Let xi be assigned to j, 1 ≤ k < j, and h = Ri[k]. We show that∑nR

m=1(Rm[xm] == h) = ch ∧ ∀l ��
Hh

i,Rl[xl] = h.



348 M. Siala and B. O’Sullivan

If we suppose by contradiction that
∑nR

m=1(Rm[xm] == h) = ch ∨
∃l ��

Hh

i,Rl[xl] = h, then, Hh is under subscribed or ∃(l, h) ∈ M and i ≺≺
Hh

l.

Therefore, (i, h) is blocking M. Hence the contradiction.
(⇐) Consider an assignment of the the variables x1, .., xn satisfying the property.
We show that the corresponding matching M is stable. If M is not stable then
there exists a blocking pair (a, b). There are two cases to consider:

– ra is unassigned in M: In this case xa = nH + 1, hence ∀h ∈
[1, nH ],

∑l=nR

l=1 (Rl[xl] == h) = ch ∧ ∀l ��
Hh

a,Rl[xl] = h. Therefore hb cannot

be under-subscribed and there does not exist l ∈ [1, nR] such that (l, b) ∈ M
and a ≺≺

Hb

l.

– ∃k ∈ [1, nH ] such that (a, k) ∈ M and b ≺≺
Ra

k: In this case xa = e where

e = Ra
−1[k], hence for all w ≺≺

Ha

k,
∑nR

m=1(Rm[xm] == w) = cw ∧ ∀l ��
Hw

a,Rl[xl] = w. Since b ≺≺
Ra

k, then hb cannot be under-subscribed and there

does not exist l ∈ [1, nR] such that (l, b) ∈ M and a ≺≺
Hb

l.

Therefore M is stable. �

Lemma 5. If Γ is AC then assigning all variables to their minimum value is
solution.

Proof. We use Theorem 2 to prove that assigning all variables to their minimum
satisfies the constraint. We already know that ∀j ∈ [1, nH ], |{i | Ri[min(xi)] ==
j}| ≤ cj by Lemmas 1 and 3. Let 1 ≤ i ≤ nR, j = min(xi), k ∈ [1, j[, h = Ri[k].
We show that

∑nR

m=1(Rm[min(xm)] == h) = ch ∧ ∀l ��
Hh

i,Rl[min(xl)] = h.

Note first that h ∈ HFull (Lemma 2). Therefore, by using Lemma 3 we obtain∑nR

m=1(Rm[min(xm)] == h) = ch. Recall that min(xi) > Ri
−1[h]. There-

fore, Constraint 2 of Γ enforces max(yh,k) < Hh
−1[i] for all k ∈ [1, ch]. Thus,

Constraint 5 removes Rl
−1[h] from D(xl) for all l ��

Hh

i. �

Lemma 6. If Γ is AC then assigning all variables to their maximum value is
solution.

Proof. Here again we use Theorem 2 to prove the result. First observe that ∀j ∈
[1, nH ], |{i | Ri[max(xi)] == j}| ≤ cj by Lemmas 1 and 4. Let 1 ≤ i ≤ nR,
j = max(xi), k < j, and h = Ri[k], we show that

∑nR

m=1(Rm[max(xm)] ==
h) = ch ∧ ∀l ��

Hh

i,Rl[max(xl)] = h. Observe first that h ∈ HFull (Lemma 2).

Therefore, by using Lemma 4 we have
∑nR

m=1(Rm[max(xm)] == h) = ch. Next,
we show that for any l such that Rl[max(xl)] = h, then ∃k ∈ [1, ch] such that
min(yh,k) = Hh

−1[l]. In fact, if it’s not the case, then by the proof of Lemma4,
we know that if min(yh,k) = Hh

−1[a] (for any a ∈ [1, nR]), then Ra[max(xa)] = h
and in this case we have

∑nR

m=1(Rm[max(xm)] == h) > ch which contradicts
Lemma 4 because h ∈ HFull.
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Suppose now by contradiction that ∃l ��
Hh

i,Rl[max(xl)] = h and consider

k such that Hh
−1[min(yh,k)] = l. Since l ��

Hh

i then min(yh,k) ≥ Hh
−1[i].

Therefore, Constraint 2 enforces max(xi) ≤ Ri
−1[h] which is false since h ≺≺

Ri

Ri[max(xi)]. Therefore we have ∀l ��
Hh

i,Rl[max(xl)] = h. �

The following Theorem is an immediate consequence of Lemmas 5 and 6.

Theorem 3. Enforcing AC on Γ makes 2-SidedStability(X ,A,B, C) Bound
(D) consistent.

4 Revisiting Bound(D) Consistency

We assume that a preprocessing step is performed where the GS-lists are com-
puted and that the domain is updated accordingly. We suppose without loss of
generality that ∃n ∈ [1, nR] such that ∀i ∈ [1, n], i ∈ RFree and |RFree| = n.
Note that ∀i > n, |D(xi)| = 1 after the preprocessing step. Therefore, we
shall assume that this holds for the rest of the section and we will focus only
on [x1, . . . , xn]. We show that BC(D) on 2-SidedStability(X ,A,B, C) can be
implemented with O(L) time complexity down a branch of the search tree which
improves the previous complexity O(c × L) (where c = max{cj |j ∈ [1, nH ]}).
Next we show an adaptation of the filtering to achieve AC on this constraint.

4.1 Bound(D) Consistency

Our revision of BC(D) for this constraint is based essentially on Theorem 4.

Theorem 4. 2-SidedStability(X ,A,B, C) is BC(D) iff assigning every vari-
able to its maximum is a solution and assigning every variable to its minimum
is a solution.

Proof. (⇒) Let D be a domain where 2-SidedStability(X ,A,B, C) is BC(D).
Consider the encoding Γ on a domain D∗ where D∗(xi) = D(xi) for all xi ∈ X
and D∗(yj,k) equals to the initial domain detailed in Sect. 2.3 for all j ∈ [1, nH ]
and k ∈ [0, cj ]. Let D′ be the domain obtained after enforcing AC on Γ . We
know that D′ cannot be empty (i.e., failure) since otherwise it will contradict
the fact that 2-SidedStability(X ,A,B, C) is BC(D). Moreover, no lower/upper
bound can change after AC on Γ since every lower/upper bound has a support.
Therefore, by using Lemmas 5 and 6, we know that assigning every variable to
its minimum (respectively maximum) is a solution.
(⇐) Straightforward. �

Theorem 4 shows that in order to maintain BC(D), it is sufficient to make sure
that two specific solutions exist: one by assigning all variables to their minimum,
and the other to their maximum. In the following, we show that one can maintain
this property in O(L) time down a branch of the search tree using an incremental
algorithm.
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Algorithm 1. BC(D)
1 while ∃ < i, j >∈ Newlb do

UpdateLB(i, j,min(xi) − 1, Newlb) ;
Apply(i, Newlb) ;

2 while ∃ < i, j >∈ Newub do
UpdateUB(i, j,Newub) ;

Given a domain D, we define for each hospital h in HFull the following:

– MINh = {k | RHh[k][min(xHh[k])] = h}
– MAXh = {k | RHh[k][max(xHh[k])] = h}
– maxofMAXh = max{l | l ∈ MAXh}.

For any k ∈ MINh (respectively k ∈ MAXh), if r is the correspondent
resident (i.e., r = Hh[k]), then h is the hospital of index min(xr) (respectively
max(xr)) in Rr.

We also define lastLefth for every hospital h ∈ HFull as follows:
lastLefth = max{k | k ∈ [1, lenh

h] ∧ RHh[k]
−1[h] ∈ D(xHh[k])}. That is

lastLefth is the last index in the list of Hh where the corresponding resident
still has the rank of h in its domain.

We suppose that MINh, MAXh, maxofMAXh, and lastLefth are imple-
mented as “reversible” data structures (i.e. their values are restored whenever
the solver backtracks).

Let DBC(D) be a domain that is BC(D) for 2-SidedStability(X ,A,B, C).
Let Newlb (respectively Newub) be a set of pairs such that < i, j >∈ Newlb

(respectively < i, j >∈ Newub) iff the lower (respectively upper) bound j has
been removed from DBC(D)(xi). We show that Algorithm 1 maintains BC(D).

Take the case where only one variable xi has a new lower bound min(xi)
and j was the previous lower bound. To maintain BC(D), we need to compute
the new domain where assigning all variables to their minimum/maximum value
is a solution. We therefore need to maintain ∀ 1 ≤ j ≤ nH ,

∑nR

i=1(Ri[xi] ==
j) ≤ cj , and ∀a ∈ [1, n],∀h ≺≺

Ra

Ra[min(xa)], ∀l ��
Hh

a,Rl[min(xl)] = h. In other

words, ∀a ∈ [1, n],∀v < min(xa),∀k > idx,min(xr) = Rr
−1[h] where h = Ri[v],

idx = Hh
−1[i], and r = Hh[k].

Consider first the variable xi. Since DBC(D) is BC(D), then the property
already holds for all v < j. Let [a, b] = [j,min(xi) − 1]. The property must be
enforced for all v ∈ [a, b]. This is precisely what Algorithm 2 does. Let h ← Ri[v].
Observe that ∀k > lastLefth, if r = Hh[k] then Rr

−1[h] /∈ D(xr) (from the
definition of lastLefth). Therefore, one needs only to enforce the property for
k ∈ [idx, lastLefth] (Line 1) where idx = Hh

−1[i] and perform the filtering in
Line 5. Note that this value removal might change the lower (respectively upper)
bound for a given xr. In this case, the pair 〈r,min(xr)〉 (respectively 〈r,max(xr)〉)
is added to Newlb (respectively Newub) in Line 3 (respectively Line 4). The case
where k ∈ MINh is handled at Line 2 by removing k from MINh.
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Algorithm 2. UpdateLB(i, a, b,Newlb)
for v ∈ [a, b] do

h ← Ri[v] ;
idx ← Hh

−1[i] ;
1 for k ∈ [idx, lastLefth] do

r ← Hh[k] ;
if k ∈ MINh then

2 MINh ← MINh \ {k} ;

if Rr
−1[h] == min(xr) then

3 Newlb ← Newlb ∪ {〈r,min(xr)〉} ;

if Rr
−1[h] == max(xr) then

4 Newub ← Newub ∪ {〈r,max(xr)〉} ;

5 D(xr) ← D(xr) \ {Rr
−1[h]} ;

if lastLefth > idx − 1 then
6 lastLefth ← idx − 1 ;

Now once the call to UpdateLB (i, j,min(xi) − 1, Newlb) ends, we have to
make sure that it is actually possible to assign xi to its new minimum. This
is performed by calling Algorithm3 Apply(i,Newlb). More precisely, let h =
Ri[min(xi)]. Obviously if Hh

−1[i] > lastLefth then xi cannot be assigned to
its minimum (Lines 9 and 10). Otherwise, Hh

−1[i] is added to MINh (Line 1).
Suppose now that MINh has more than ch elements. We can easily show that
this happens only if |MINh| = ch + 1. In this case, we can see that the resident
associated with the maximum index in MINh cannot be assigned to hospital
h anymore. The maximum is computed by looking for the first index less than
or equal to MINh (Line 3). Lines 4, 5, 6, 7, and 8 handle the fact that the
corresponding resident cannot be assigned to hospital h.

At the end of the first loop in Algorithm1, we may argue that |MINh| = ch.
Therefore ∀ 1 ≤ j ≤ nH ,

∑nR

i=1(Ri[xi] == j) ≤ cj , and ∀a ∈ [1, n],∀h ≺≺
Ra

Ra[min(xa)], ∀l ��
Hh

a,Rl[min(xl)] = h. Thus assigning all variable to their

minimum is a solution.
Consider now the case where only one variable xi has a new upper bound

max(xi) and j was the previous upper bound. We use the following lemma to to
compute the new domain.

Lemma 7. Assigning all variables to their maximum is a solution iff ∀ h ∈
HFull, |MAXh| = ch, and ∀ i ≤ maxofMAXh, let r = Hh[i], and l = Rr

−1[h],
then i /∈ MAXh =⇒ max(xr) < l.

Proof. (⇒) Let M be the matching where each resident is assigned to the hospital
corresponding to the maximum value in its domain. Let h ∈ HFull. We know
that |MAXh| = ch since M is stable. Consider now i ≤ maxofMAXh, such
that i /∈ MAXh. Let r = Hh[i], and l = Rr

−1[h]. Observe first that max(xr) = l
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Algorithm 3. Apply(i,Newlb)
j ← min(xi) ;
h ← Ri[j] ;
if Hh

−1[i] ≤ lastLefth then
1 MINh ← MINh ∪ {Hh

−1[i]} ;
if |MINh| = ch + 1 then

2 max ← lastLefth ;
max found = false ;

3 while not(max found) do
if max ∈ MINh then

max found = true ;

else
max ← max − 1

4 MINh ← MINh \ {max} ;
5 l = Hh[max] ;
6 D(xl) ← D(xl) \ {Hl

−1[h]} ;
7 Newlb ← Newlb ∪ {〈l,min(xl)〉} ;
8 lastLefth ← max

else
9 D(xi) ← D(xi) \ {min(xi)} ;

10 Newlb ← Newlb ∪ 〈i,min(xi)〉 ;

(otherwise i ∈ MAXh). Next, one can easily show that if max(xr) > l then the
pair (r, h) blocks M . Therefore, max(xr) < l.

(⇐) We use Theorem 2 to show that assigning all variables to their maximum
is a solution. We already have ∀ 1 ≤ j ≤ nH ,

∑nR

i=1(Ri[max(xi)] == j) ≤ cj . We
show that ∀ 1 ≤ i ≤ nR, ∀ 1 ≤ j ≤ nH + 1,max(xi) = j =⇒ ∀k ∈ [1, j[, if h =
Ri[k], then

∑nR

m=1(Rm[max(xm)] == h) = ch ∧ ∀l ��
Hh

i,Rl[max(xl)] = h. Note

first that the property is true for all i ∈ [n+1, nR]. Let i ∈ [1, n] j = max(xi), and
h ≺≺

Ri

Ri[j] (note that j = nH + 1). We have necessarily h ∈ HFull (Lemma 2),

and therefore
∑nR

m=1(Rm[max(xm)] == h) = ch since |MAXh| = ch. Let l ��
Hh

i.

We show that Rl[max(xl)] = h. Suppose by contradiction that Rl[max(xl)] =
h, and let m = Hh

−1[l]. We have m ∈ MAXh, hence m ≤ max{MAXh}.
Therefore, Hh

−1[i] < max{MAXh} because l ��
Hh

i. Since Hh
−1[i] /∈ MAXh,

then max(xi) < Ri
−1[h] which contradicts the hypothesis that h ≺≺

Ri

Ri[j]. �

We maintain the property in Lemma7 by calling Algorithm4, UpdateUB
(i, j,Newub). Recall that, in this case, the current upper bound of xi is strictly
less than j.

Let h = Ri[j] and idx = Hh
−1[i]. There are two cases to consider. First if

idx ∈ MAXh, we know that MAXh has to be of cardinality ch. Therefore, a
new index needs to be added to MAXh. From Lemma 7 we can argue that the
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Algorithm 4. UpdateUB(i, j,Newub)
h ← Ri[j] ;
idx ← Hh

−1[i] ;
if idx ∈ MAXh then

1 MAXh ← MAXh \ {idx} ;
new resident ← false ;
max = maxofMAXh ;

2 do
max ← max+ 1 ;
r ← Hh[max] ;
if Rr

−1[h] ≤ max(xr) then
new resident ← true ;

while not new resident;
3 MAXh ← MAXh ∪ {max} ;
4 maxofMAXh ← max ;

rankOfh = Rr
−1[h] ;

if rankOfh < max(xr) then
5 Newub ← Newub ∪ {〈r,max(xr)〉} ;

% make a new upper bound for xr ;
6 D(xr) ← D(xr) ∩ ] − ∞, rankOfh] ;

else
if j − 1 > max(xi) then

Newub ← Newub ∪ {〈i, j − 1〉} ;

new index cannot correspond to a value less than or equal to maxofMAXh.
Therefore, we start looking for a new index in the main loop (Line 2) starting
from maxofMAXh + 1. The loop ends when we find a replacement for ri. The
new index corresponds to a resident r such that Rr

−1[h] ≤ max(xr). The set
MAXh is updated accordingly in Lines 1 and 3. The upper bound of xr is
changed if h is better than the hospital corresponding to max(xr) (Line 6). In
this case, 〈r, h〉 is added to Newub in Line 5.

Second, in the case where idx /∈ MAXh, we just need to make sure that if
j − 1 is not the current upper bound of max(xi), then we need to simulate the
case where j − 1 was an upper bound for xr and has been removed.

To maintain BC(D) in Algorithm 1, we loop over all the lower/upper bound
changes and call the appropriate algorithms. The new domain is BC(D) as an
immediate consequence of Theorems 4 and 2, and Lemma 7.

Complexity. We discuss now the complexity of this incremental algorithm. We
assume that all set operations are implemented in constant time.

Observe that down a branch of the search tree the value of lastLefth can
always decrement (Line 6 in Algorithm 2 and Line 8 in Algorithm3). Now con-
sider one iteration of the main loop in Algorithm2. The number of operations is
bounded by O(|idx − lastLefth|). Similarly, one call to Algorithm 3 is bounded
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by O(|m − m′|) where m (respectively m′) is the value of lastLefth at Line 2
(respectively 8). Since lastLefth can only decrement, then the time complexity
of all lower bound operations down a branch is O(lenh

h) for any hospital h.
Therefore the complexity for lower bound operations is O(L).

Consider now upper bound operations. Each call to Algorithm4 is bounded
by O(|m′ − m|) where m and m′ are the values of maxofMAXh at Lines
1 and 4 respectively. And since maxofMAXh can only increment down a branch
of the search tree, then the number of upper bound operations for any hospital
h is O(lenh

h). Therefore the total upper bound operations is O(L). Hence the
complexity of enforcing BC(D) is O(L) down a branch of the search tree.

4.2 Arc Consistency

Assume that 2-SidedStability(X ,A,B, C) is BC(D). We use a straightforward
way to enforce AC based on the BC(D) propagator. For every variable xi, we
remove its upper bound u then we enforce BC(D). Let u′ the new upper bound
for xi. Clearly any value v ∈]u′, u[ cannot be part of any support, hence should
be removed from D(xi). Moreover, the new upper bound u′ has a support on the
constraint because BC(D) is maintained. By repeating the process until reaching
the lower bound of xi, we are guaranteed that all values without a support in
D(xi) are removed. Therefore AC is maintained by using this procedure for every
variable xi. The overall complexity is O(n × L) since for each variable it takes
O(L) to enforce BC(D) from max(xi) to min(xi). Note that the algorithm is not
incremental and the cost of O(n × L) is for each call to the propagator.

5 On the Complexity of the Hospital/Resident Problem
with Forced and Forbidden Pairs

The variant of the Hospital/Resident problem with forced and forbidden pairs
(HRFF ) seeks to find a stable matching that includes or excludes, respectively,
a number of pairs 〈r, h〉 (r denotes a resident and h denotes a hospital). To the
best of our knowledge no polynomial algorithm exists in the literature to solve
this problem; this observation is also true even if there is no forced pairs [7]. We
show that the problem is indeed polynomial and can be solved in O(L) time.

Recall that Theorem 4 states that once Bound(D) consistency is established,
then assigning every variable to its maximum is a solution and assigning every
variable to its minimum is a solution. Therefore, it is sufficient to enforce
Bound(D) consistency on the problem and then take the minimum value in
the domain of each variable as the assignment of the correspondent resident.
Since BC(D) takes O(L) time, then the complexity of solving HRFF is O(L).

Consider now the particular case of stable marriage with forced and for-
bidden pairs. There exist a number of polynomial algorithms for solving this
problem. The best algorithm for solving this problem runs in O(n4) time ([2]
and Sect. 2.10.1 in [8]) where n is number of men/women. Now since this problem
is a particular case of HRFF, then the complexity for solving it using the above
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Table 1. Summary of the experimental results

Set BC(D)-min AC-min BC(D)-max

Time Nodes Opt Time Nodes Opt Time Nodes Opt

2k 2 16.56 100 19 13.33 100 8 256.38 100

4k 5 18.14 100 151 14.69 100 37 394.86 100

6k 9 18.08 100 393 14.89 93 86 648.82 100

8k 19 18.16 100 332 15.80 79 131 491.50 100

AC-max BC(D)-rand AC-rand

Time Nodes Opt Time Nodes Opt Time Nodes Opt

2k 28 204.53 100 4 67.36 100 12 81.91 100

4k 202 320.33 100 12 81.91 100 160 65.61 100

6k 564 535.65 85 25 120.58 100 502 99.20 92

8k 530 432.87 69 42 98.88 100 475 88.11 77

approach is also O(L). Recall that in the case of stable marriage L is bounded
by n2, therefore the worst case complexity is O(n2), hence it is optimal.

6 Experimental Results

We consider a variant of the HR problem where some couples can express their
desire to be matched together, assuming that they have the same preference
lists. The problem is to find a stable matching maximizing the number of such
couples who are matched together.

We generated a set of random instances as follows. Each instance is described
by a tuple 〈r, h, c〉 where: r ∈ {2000, 4000, 6000, 8000} is the number of residents;
h ∈ {100, 200, 300, 400, 500} is the number of hospitals; and c ∈ {100+50∗k | k ∈
[0, 8]} is the number of couples. We implemented the AC and BC(D) propaga-
tors in Mistral-2.0 [6]. We use Intel Xeon E5-2640 processors for the experiments
running on Linux. The variable ordering is fixed to be lexicographical for all
experiments. As for the value ordering, we use three different branching strate-
gies: minimum value (static); maximum value (static); and random min/max.
We also use a geometric restart. Note that for random min/max, we use five dif-
ferent seeds since the heuristic is randomized. The time limit is fixed to 20 min
for each instance and configuration.

The results are shown in Table 1 and Fig. 1. The table is split into two parts.
In each part, each column depicts one configuration a-b where a is the propaga-
tor (BC(D) or AC) and b is the value branching strategy. Each row represents
the results for one set of instances by their size (i.e. number of residents). We
report for each configuration the runtime (Time) in second, the number of nodes
(Nodes), and the percentage of instances where optimality where proven (Opt).
All the statistics are given as averages across all successful runs (i.e. when opti-
mality is found). Bold faced values show the best results in terms of percentage
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Fig. 1. Runtime and speed of exploration

of optimality. Figure 1 shows two plots corresponding to the runtime and the
speed of exploration in terms of nodes explored per second.

There are a number of observations based on Table 1 and Fig. 1. First, clearly
the models enforcing BC(D) outperform the AC models in terms of optimality.
For instance, in the 8k set, with min value branching, BC(D) finds the opti-
mal solution for all instances whereas the AC models finds optimality only for
79% of the instances. Second, we observe that enforcing AC considerably slows
down the exploration of the search tree. For instance, with set 2k and min value,
BC(D) is 21 times faster at exploring the search space (see Fig. 1). This behav-
iour negatively affects the total runtime for AC. For instance, it takes AC 150 s to
find optimal solutions for the 4k set with min value, whereas the BC(D) models
needs about 5 s. Last, it should be noted that the search tree is slightly different
between the two models. AC does prune some additional nodes as compared to
BC(D), but the impact of the pruning does not pay off as it consumes an enor-
mous amount of time. This behaviour is mainly due to the non-incrementality
of the AC algorithm.

7 Conclusion

We addressed the filtering aspect of the 2-SidedStability constraint. We first
showed that the filtering level of all previous approaches is BC(D). Then, we
proposed an optimal BC(D) algorithm, as well as an AC algorithm for this
constraint. Our experiments showed that, in practice, BC(D) completely out-
performs AC on a variant of the HR problem involving couples. While the aim
of this paper was to revisit the current filtering approaches for two-sided sta-
bility constraints, we found new theoretical results related to the complexity
of the variant of HR with forced and forbidden pairs. We showed, for the first
time, that this problem is polynomial and we improved the best known existing
complexity for the particular case of stable marriage with forced and forbidden
pairs by a factor of n2.
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Abstract. Globally, flooding is the most frequent among all natural
disasters, commonly resulting in damage to infrastructure, economic
catastrophe, and loss of life. Since the flow of water is influenced by the
shape and height of topography, an effective mechanism for preventing
and directing floods is to use structures that increase height, e.g., levees
and sandbags. In this paper, we introduce the Optimal Flood Mitigation
Problem (OFMP), which optimizes the positioning of barriers to pro-
tect critical assets with respect to a flood scenario. In its most accurate
form, the OFMP is a challenging optimization problem that combines
nonlinear partial differential equations with discrete barrier choices. The
OFMP requires solutions that combine approaches from computational
simulation and optimization. Herein, we derive linear approximations to
the shallow water equations and embed them in the OFMP. Preliminary
results demonstrate their effectiveness.

Keywords: Flood mitigation · Nonlinear programming · Mixed integer
programming · Approximations

1 Introduction

Throughout human history, water-related natural disasters, e.g., the Johnstown
Flood of 1889, the Great Mississippi Flood of 1927, and Hurricane Katrina in
2005, have caused immense human suffering and economic consequences. While
the causes of such disasters (hurricanes, dam failures, excessive rainfall, etc.)
vary, all are characterized by flooding, i.e., the flow of water into undesired areas.
As a result, societies and governments have invested considerable resources into
controlling and preventing the occurrence of floods. Despite these efforts, risks
remain, and floods continue to be a subject of intense scrutiny [5,9,10].

One of the most influential factors in flooding is the shape of the ground sur-
face (topography). As an example, under the influence of gravity, water naturally
flows downhill and around areas of higher topographic elevation. Topography
can be adjusted through construction of permanent structures, such as levees
and berms, or temporary structures, such as sandbags. This paper introduces
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the Optimal Flood Mitigation Problem (OFMP), an optimization problem that
aims to mitigate flooding by adjusting topographic elevation. Its goal is to select
the position of barriers, e.g., sandbags or levees, to protect critical assets and/or
enable the evacuation of threatened populations.

The OFMP is an inherently difficult optimization problem. Since these bar-
riers divert flow, it is critical to accurately model the flood’s propagation, tradi-
tionally captured by the two-dimensional (2D) shallow water equations. These
nonlinear partial differential equations (PDEs) express flow conversation and
momentum along two horizontal dimensions at every point in space and time. In
practice, these equations are discretized over space and time, resulting in a set
of nonlinear equations of high dimensionality. In addition, the OFMP aims to
choose the position of barriers in space, introducing additional sources of non-
convexity and combinatorial explosion. However, unlike many control-related
optimization problems, the OFMP optimizes only the initial conditions. Flood
propagation is predetermined once initial conditions have been selected; there
are limited opportunities to modify the flood behavior once the topography is
adjusted. This observation provides the key intuition for our contribution: the
development of a principled approach for approximating the response of a flood
to changes in topography that is tractable for current optimization technology.

The main contributions of this paper can be summarized as follows:

– The formalization of the OFMP problem integrating simulation and optimiza-
tion in the flood domain;

– The derivation of linear lower and upper space-time approximations to the
PDEs describing flood propagation;

– The definition of optimization models for the OFMP based on these approxi-
mations;

– Preliminary empirical results that highlight the accuracy and tractability of
the approximations and demonstrate the potential of optimization technology
in this area.

The derivation of linear approximations to flood propagation is a critical step in
bringing the OFMP into the realm of optimization technology. Our results show
that these approximations can provide reasonable estimates of flood extent and
water depth using the historical Taum Sauk dam failure as an example. The
empirical results also demonstrate the potential of optimization technology on
some preliminary case studies.

It is important to emphasize that the literature associated with optimizing
the locations of barriers for flood mitigation is limited. To the best of our knowl-
edge, the closest related work is [6]. They propose an interdiction model for flood
mitigation and develop flood surrogates from simulation to serve as proxies for
calculating flood response to mitigation efforts. However, these surrogates do not
define strict relationships with the original PDEs. There are a number of papers
focused on simulation-optimization approaches for flood mitigation, where the
PDEs are treated as a black box. These papers are focused on controlling the
release of water to prevent floods and do not attempt to exploit the structure of
the PDEs themselves. Reference [2] is a recent example of this type of approach
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and contains an extensive literature review of these methods. The work in [4]
has considered the PDEs, but their focus is on optimizing normal operations
of an open-channel system. Hence their model only requires one spatial dimen-
sion, whereas the flooding application considered here has an inherent second
spatial dimension and is thus significantly more difficult. Finally, the problem of
optimizing dike heights with uncertain flood possibilities was considered in [1].
The PDEs for flood propagation are not considered, and probability models for
maximum flood depths are used instead.

The rest of this paper is organized as follows: Sect. 2 discusses the background
of flood modeling. Section 3 presents the linear flood relaxations. Section 4 intro-
duces the OFMP and proposes a preliminary optimization model exploiting the
linear flood relaxations. Section 5 describes empirical results, and Sect. 6 con-
cludes the paper.

2 Background

The Two-Dimensional Shallow Water Equations. The 2D shallow water equa-
tions are a system of hyperbolic PDEs increasingly used to accurately model
flooding phenomena. With recent advances in high-performance computing,
numerical solutions to these equations have become tractable for large-scale
simulation problems. They are especially useful in the context of urban flood-
ing, where one-dimensional models fail due to increased topographic complexity.
With bottom slope, bottom friction, and volumetric source terms, the 2D shallow
water equations may be defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
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(1)

where h is the water depth, u and v are horizontal velocities, B is the bottom
topography (or bathymetry), g is the acceleration due to gravity, τx and τy are
horizontal components of the bottom friction, ρ is the water density, and R is a
volumetric source term [3]. Although these equations represent the state of the
art in flood modeling, even when discretized, they remain nonlinear and non-
convex, making them difficult to optimize over. It is thus beneficial to consider
more tractable approximations.

A Hydrostatic Approximation. To obtain a more tractable approximation of
flood propagation, we instead consider a simplified fluid model similar to that
described by Mei et al. [8]. In this model, each cell (i, j) exchanges water con-
tent with adjacent cells using a set of virtual “pipes.” For each time step, the
model associates various information with each cell and pipe. In particular,
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Fig. 1. The pipe flow model is discretized
into columnar components, with h denot-
ing the water depth, B the topographic
elevation, and w the water surface.
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Fig. 2. Two-dimensional representa-
tion of the pipe flow discretization
containing cell (i, j), adjacent cells,
and the four interfaces of (i, j).

hijt represents the depth of the water in cell (i, j) at time index t, wijt represents
the water surface elevation, and Bij represents the topographic elevation. Each
cell (i, j) also has four connected pipes, one for each of its four neighboring cells,
denoted by W (est), E(ast), N(orth), and S(outh). Each pipe is associated with
an outgoing volumetric flux, fk

ijt, which represents the flow of water from cell
(i, j) to its neighbor in position k (k ∈ W,E,N, S) at time index t. For instance,
fW
ijt represents the outgoing flux from (i, j) to its “western” (left) neighbor (i.e.,

cell (i − 1, j)) at time index t.
In the model, the flux of a pipe is accelerated by the hydrostatic pressure

difference between adjacent cells. The water volume V of a cell is integrated using
the accumulated flux from all connected pipes. This corresponds to a change
in the cell’s depth and water surface elevation. These concepts are illustrated
visually in Figs. 1 and 2.

For each cell, we first define the estimated flux vector f̃ijt = (f̃W
ijt, f̃

E
ijt,

f̃N
ijt, f̃

S
ijt) using the hydrostatically derived relation

f̃k
ijt = max

(
0, fk

ij,t−1 +
AgΔt

Δs
Δwk

ij,t−1

)
, (2)

where A is the cross-sectional area of the pipe, g is the acceleration due to
gravity, Δs is the length of the virtual pipe (typically the grid cell spacing, e.g.,
Δx or Δy), Δt is the simulation time step, and Δwk

ijt is the difference in water
surface elevation between cell (i, j) and its k-neighbor at time index t, i.e.,

Δwk
ijt = (Bij + hijt) − (Bk

ij + hk
ijt). (3)

In this approximation, the estimated outgoing flux from a cell may exceed
the available water content within that cell. This is obviously not desirable from
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a volume conservation standpoint. More importantly, if left uncorrected, this can
lead to negative water depths and numerical instabilities. This may be resolved
by scaling the outgoing flux with respect to the water content available in the
cell. A scaling factor, Kijt, for the outgoing flux vector may be defined as

Kijt = min

⎛

⎝1,
hij,t−1ΔxΔy(

f̃W
ijt + f̃E

ijt + f̃N
ijt + f̃S

ijt

)
Δt

⎞

⎠ . (4)

The estimated outgoing flux vector f̃ijt is then scaled by Kijt to produce the
actual outgoing flux vector fijt, i.e.,

fijt = Kijtf̃ijt. (5)

The change in water volume may then be computed using the accumulation
of incoming flux, f in, and subtraction of outgoing flux, fout. For cell (i, j), the
volumetric change in water is thus

ΔVijt =
(∑

f in
ijt −

∑
fout
ijt

)
Δt

=
(
fE
i−1,j,t + fW

i+1,j,t + fN
i,j−1,t + fS

i,j+1,t −
∑

fk
ijt

)
Δt.

(6)

Finally, the water depth in each cell may be integrated:

hijt = hij,t−1 +
ΔVijt

ΔxΔy
. (7)

For completeness, we also suggest the naive reflective boundary conditions

hijt = 0, fijt = 0, f̃ijt = 0 (8)

along the four boundaries of the domain.

3 Linear Approximations of the Pipe Flow Model

The pipe flow model described includes nonlinear terms, even when A, B, g, Δt,
Δx, and Δy are treated as constants. Fortunately, these terms are only used
for corrective measures, i.e., in Eq. 4. We now present two approximations to
remove them. For convenience, we call them the lower and upper approximations
because they underestimate and overestimate the water being sent from a cell
to its neighbors instead of applying the scaling factor K.

Lower Approximation. The lower approximation is based on the following idea:
if the estimated outgoing flux from a cell exceeds the available water content
within that cell, the outgoing flux is approximated as zero, i.e., when

hij,t−1ΔxΔy <
(
f̃W
ijt + f̃E

ijt + f̃N
ijt + f̃S

ijt

)
Δt, (9)

fijt is approximated as zero. This bypasses the need for Eqs. (4) and (5). Intu-
itively, this means that, “when there is not enough water to be transferred,” the
water is held back within the cell.
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Upper Approximation. The upper approximation implements another intuitive
idea: if the estimated outgoing flux from a cell exceeds the available water content
within that cell, the model assumes there is enough water, and no scaling occurs.
This again bypasses the need for Eqs. (4) and (5).

However, it is important to note that, in the case of positive fluxes calculated
as a result of differing dry topographies (and thus differing water surface ele-
vations), Eqs. (4) and (5) provide an additional correction beside scaling. When
the available water content within a cell is equal to zero, Kijt is always forced to
zero, and the resultant fluxes fijt are thus calculated as zero. Although a similar
correction is achieved automatically by the lower approximation, it is necessary
to impose the constraint fijt = 0 when hij,t−1 = 0 in the upper approximation.

4 The Optimal Flood Mitigation Problem

This section describes two optimization models based on the lower and upper
approximations, respectively. Both optimization models aim to protect a set A
of assets by minimizing maximum water depths at asset locations over time. To
protect the assets, one or more barriers (e.g., sandbags or levees) can be placed on
a cell to increase its elevation; a fixed number of barriers, n, are available for that
purpose. The models are similar, differing only in the approximations used. We
present them both to give a global view of the lower and upper approximations.
Boundary conditions are omitted in the optimization models for simplicity.

Lower Approximation Optimization Model. The lower approximation optimiza-
tion model is presented in Model 1. The objective function (10a) minimizes max-
imum water depths over the set A of assets. Constraints (10b) and (10c) limit
the number of barriers, nij , that may be placed in each cell. This number must
be no greater than M , the maximum allowable number of barriers per cell,
as specified in (10b). The budget of barriers is limited by Constraint (10d).
Constraint (10e) defines the water surface elevation as the sum of topographic
elevation (i.e., base elevation and barrier additions, each with height ΔB) and
water depth. Constraint (10f) defines estimated outgoing flux values, which must
always be greater than or equal to zero. Constraints (10g) and (10h) define the
outgoing flux values as prescribed by the lower approximation. Constraint (10i)
provides a convenient definition for f in, the sum of all incoming flux. Finally,
the integration of water depth is defined using an Euler step in Constraint (10j).

Upper Approximation Optimization Model. The upper approximation optimiza-
tion model is presented in Model 2. The model is clearly similar to the lower
approximation optimization model. The only differences are in Constraints (11g)
and (11h), which ensure that outgoing fluxes are nonzero only when the water
depth within a cell is greater than zero, and in Constraint (11j), which ensures
nonnegative depths: if the predicted net flux results in the transfer of water
greater than what is contained within the cell, this depth is set to zero.
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Model 1. Lower approximation optimization model

minimize
∑

ij∈A
max

t
hijt (10a)

subject to nij ∈ [0, M ] (10b)
nij = 0; ∀(i, j) ∈ A (10c)
∑

ij
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wijt = (Bij + nijΔB) + hijt (10e)
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Model 2. Upper approximation optimization model

minimize
∑

ij∈A
max

t
hijt (11a)

subject to nij ∈ [0, M ] (11b)
nij = 0; ∀(i, j) ∈ A (11c)
∑

ij

nij = n (11d)

wijt = (Bij + nijΔB) + hijt (11e)
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ijt = f̃k

ijt if hij,t−1 > 0 (11g)

fk
ijt = 0 if hij,t−1 ≤ 0 (11h)
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i,j+1,t (11i)
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0, hij,t−1 + Δt
f in
ijt −∑k fk

ijt

ΔxΔy

)

(11j)
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5 Empirical Results

This section reports some preliminary results regarding the proposed approxi-
mations and the associated optimization models.

5.1 Evaluation of the Flood Model Relaxations

This section compares differences among the discussed simulation models, i.e.,
the 2D shallow water equations, pipe flow, lower approximation, and upper
approximation models. The comparison uses the historical Taum Sauk dam fail-
ure as an example scenario, with a thirty meter spatial resolution and a grid
containing approximately 38,000 cells. In the models, a gravitational accelera-
tion constant of 9.80665 m/s2 was used, and the dam failure was modeled as a
time-dependent volumetric point source, using a hydrograph similar to a United
States Geological Survey estimate [11]. In the shallow water equations model, a
Manning’s roughness coefficient of 0.035 was used, and time steps varied based on
a Courant condition. In the remaining models, various constant cross-sectional
pipe areas and time steps were used. Note that, in a simulation context, Mei
et al. did not suggest using constant cross-sectional pipe areas or time steps;
however, our intent was to simplify these models as much as possible.

For flood mitigation, we are primarily concerned with the accuracy of maxi-
mum depth estimates over a simulation’s time extent.1 Figure 3 compares images
of maximum depth results from a 2D shallow water equations model (SWE)
similar to [3], as well as pipe flow (P), lower approximation (L), and upper
approximation (U) models which used various pipe areas and time steps.

The top row of Fig. 3 compares SWE with P, L, and U using a parameteri-
zation calibrated to minimize the root-mean-square error between P and SWE.
P and L provided very reasonable estimates of SWE, but U greatly overesti-
mated maximum depths. This is because, in U, the large pipe area of 500 m2

resulted in unrestricted large fluxes and thus poor volume conservation. In the
second row, the pipe area was substantially decreased, and the pipe flow and
lower approximation models overestimated SWE, although U behaved more
reasonably. Finally, in the third row, as Δt was decreased, U began to converge
upon P and L. Most model parameterizations provided reasonable simulated
flood extents, similar to those found in the literature [7,11].

Finally, Fig. 4 reports volume conservation error for selected upper approxi-
mation parameterizations. As anticipated, the pipe flow and lower approximation
models conserved volume well, with error on the order of machine epsilon. The
upper approximation accumulated error more rapidly, although it displayed good
convergence as the time step was decreased.

It is important to note a unique difference between pipe flow simulations
and traditional two dimensional hydrodynamic simulations based on the shallow
water equations. When using a full two-dimensional shallow water model, the

1 This is different from evacuation settings, in which the flood arrival time at various
locations is critical information.
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Fig. 3. Maximum flood depths for ten-hour simulations of the historical Taum Sauk
dam failure using shallow water equations (SWE), pipe flow (P), lower approximation
(L), and upper approximation (U) models. Pipe flow, lower approximation, and upper
approximation models are compared using constant time steps (Δt) of 1.0 and 0.1 s
and cross-sectional pipe areas (A) of 500 and 5 m2.
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Fig. 4. Volume conservation error in upper approximation models (U) for ten-hour
simulations of the Taum Sauk dam break using various time steps. Volume conservation
error was computed as (Vcomputed − Vadded)/Vadded.

Taum Sauk scenario can be almost fully simulated using a simulation time extent
of three hours. In contrast, the pipe flow and approximated models allow for
faster or slower propagation, depending on the model parameterization. As an
example, the large pipe area used to produce simulation results in the top row of
Fig. 3 resulted in fast propagation; the flood was fully propagated in less than an
hour. The smaller pipe areas used in the second and third rows resulted in slower
propagation; a time extent of roughly three hours was required. In general, as
the cross-sectional pipe area decreased, a longer time extent was required for
full propagation. Nonetheless, since flood mitigation is primarily concerned with
protecting assets, and thus maximum water depth, we found differences in flood
propagation speed acceptable for our current application.

5.2 The Potential of Optimization

This section describes some small case studies to highlight the potential and chal-
lenges of optimization for flood mitigation and, more generally, the integration
of simulation and optimization.

Experimental Setting. The lower and upper optimization models were imple-
mented using the C++ CPLEX interface and run on twenty Intel Xeon E5-2660
v3 cores at 2.60 GHz, with 128 GB of memory. Conditional expressions and
min/max functions were eliminated using big-M transformations. No attempt
was made to optimize the model or exploit problem structure.

A Simple Case Study. To validate the optimization model, an 8× 8 scenario was
constructed, with Δx and Δy equal to one meter. In this scenario, a topographic
gradient was introduced, from the top to the bottom of the domain, with ele-
vations linearly decreasing from 0.7 to zero meters in steps of 0.1 m. Four cells
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Fig. 5. Optimal elevation fields and maximum depths using the lower approximation,
where the allowable number of barriers per cell is one (first two rows) or two (next
two rows), and the total number of barriers ranges from zero to five. Darker oranges
and blues correspond to larger topographic elevations and depths, respectively, and red
circles correspond to assets that were protected. (Color figure online)

near the top of the domain were initialized to contain one meter of water depth.
Under the influence of gravity and in the presence of the topographic gradient,
the water was pushed down the domain over time. Three assets to protect were
arbitrarily placed throughout the domain, and individual barrier heights (ΔB)
of 0.5 m were employed. A constant time step of 0.1 s was used, and eight time
steps were simulated. The optimization problem was varied to understand how
solutions changed using various rules for resource allocation. In particular, the
experiments studied limits on the total number of barriers and limits on the
number of allowable barriers per cell.

Optimal Asset Protection. Figure 5 displays optimization results from the lower
optimization models. Observe that, when only one barrier was allowed per cell,
the optimization model tried to mitigate flooding in the asset regions almost
one at a time, before placing more barriers in interesting places throughout the
domain. When two barriers were allowed per cell, it clearly became preferen-
tial to protect the topmost asset, which received a large amount of water over
the duration of the simulation. Figure 6 displays optimization results from the
upper optimization models. These show similarly interesting outcomes. In the
one barrier per cell case, the optimization decided to protect the topmost asset
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Fig. 6. Optimal elevation fields and maximum depths using the upper approximation
(same setting as the lower approximation in Fig. 5). (Color figure online)

less in favor of protecting the bottom assets. When two barriers were allowed
per cell and enough barriers were available, it was clearly beneficial to protect
the topmost asset as much as possible from the water above it, which greatly
reduced the objective value. It is also important to observe the non-monotonic
behavior of the optimization results. Allowing more barriers often changed their
optimal positions. This was the case when moving from four to five barriers
in the top row and when moving from three to four in the bottom row. Since
the barrier placements differed in both models, it was important to study how
they behaved using the other model. These results are shown in the last two
columns of Table 1. Column oopt gives the optimal solutions, and the last col-
umn describes the objective value obtained when the optimal solution of the
upper model was used in the lower model and vice-versa. They are particularly
interesting, as they sometimes show significant differences in objective values.
This indicates the need to apply robust optimization techniques. In practice,
of course, solutions could be evaluated using full hydrodynamic simulations for
various scenarios.

Evolution of the Objective Value. Figure 7 depicts the value of the objective
function as the number of available barriers increased, for cases where the models
allowed one or two barriers per cell. The critical information is the importance of
using multiple barriers at a specific location, since it brings significant benefits
as the number of barriers increases. We anticipate similar behavior when the
number of allowable barriers per cell is increased to three or four. Note also
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Fig. 7. Optimal objective function values using lower and upper approximations
(L and U) and increasing allowable numbers of barriers. Also compared are the differ-
ences among objective values when one barrier is allowed per cell (L1 and U1) versus
two barriers per cell (L2 and U2). (Color figure online)

that the lower and upper approximations behaved comparably as the number
of maximum barriers was increased and, as expected, the upper objective value
was always greater than the lower objective value.

Computational Results. Finally, Table 1 presents preliminary computational
results. The first column describes the instance in terms of lower (L) or
upper (U) approximations. The superscript represents the maximum number
of barriers per cell, and the subscript represents the total number of barriers.

Table 1. General statistics and analysis of selected optimization models.

Model tCPU (s) nnodes nvar ncon nbin oopt (m) ocom (m)

L1
3 49.65 37808 2280 4410 840 0.111607 0.134935

L1
4 83.66 71528 2280 4410 840 0.0878997 0.123499

L1
5 91.53 66485 2280 4410 840 0.0837807 0.112588

L2
3 82.74 86964 2646 4998 975 0.0739754 0.134935

L2
4 134.58 121477 2651 5004 978 0.0484597 0.155655

L2
5 80.61 56586 2651 5004 978 0.0248889 0.13016

U1
3 55.56 41487 2027 3840 840 0.178971 0.239858

U1
4 46.17 25037 2027 3840 840 0.17244 0.234095

U1
5 123.50 83850 2027 3840 840 0.166794 0.225759

U2
3 77.29 55398 2379 4292 1018 0.178971 0.197646

U2
4 263.72 203168 2382 4297 1019 0.161937 0.163313

U2
5 234.85 108909 2382 4297 1019 0.127602 0.157531
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The second column denotes (wall clock) execution time, in seconds. The third
column shows the number of nodes in the search tree. The fourth, fifth, and sixth
columns describe the number of variables, constraints, and binary variables after
presolve. Column oopt describes the optimal objective value in meters of flood
depth. The last column describes the objective value obtained when the optimal
solution of the upper model was used for the lower model and vice-versa.

As mentioned earlier, no attempt was made to optimize the model or to
exploit the problem structure. The instances have about 2,000 (mostly binary)
variables and 4,000 constraints, and they can typically be solved in a few minutes.
In general, CPLEX was not able to find high-quality solutions quickly, which
substantially increased computation times. Integrating good primal heuristics
should improve performance significantly. This is illustrated in Fig. 8, where
CPLEX spent significant time improving the primal bound.

6 Conclusion

Each year, flood-related disasters cause billions of dollars in damage, loss of life,
and significant human suffering. Resources such as levees and berms are con-
structed and utilized to mitigate the consequences of such events. The deploy-
ment of these mitigation efforts is often ad hoc and relies on subject matter
expertise, as computational methods are immature due to the complexity of
embedding flood models in modern optimization technologies. The goal of this
paper was to establish the foundations for a more principled approach to flood
mitigation. It introduced the Optimal Flood Mitigation Problem (OFMP), which
aims at integrating simulation and optimization tightly by including flood simu-
lation equations as part of the optimization model. To ensure the tractability of
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the approach, the main contribution of the paper is the development of linear,
physics-based approximations of flood propagation models. Experimental results
on the Taum Sauk dam failure show the potential of the models for predicting
flood extent and maximum water depths. The integration of these approxima-
tions in optimization models was tested on a small case study, demonstrating
the potential of optimization in this context.

Our current work is focused on addressing the computational challenges
raised by the OFMP. Surprisingly, state of the art MIP solvers are not capable
of exploiting the structure of this application. In particular, they do not seem to
recognize that, once the barriers are placed, the problem is predetermined. That
is, given a fixed topographic elevation field, only the deterministic simulation
step remains. A combination of constraint programming (for fast propagation
of the water depths) and linear programming (for computing a strong lower
bound) has much potential in addressing this challenge. In addition, it would
be interesting to consider whether strong dominance relationships hold between
candidate solutions. More generally, exploiting the natural separation between
mitigation decisions and flood propagation variables will be key when scaling to
realistic problems.
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Abstract. Reasoning with bit-vectors arises in a variety of applications
in verification and cryptography. Michel and Van Hentenryck have pro-
posed an interesting approach to bit-vector constraint propagation on
the word level. Each of the operations except comparison are constant
time, assuming the bit-vector fits in a machine word. In contrast, bit-
vector SMT solvers usually solve bit-vector problems by bit-blasting,
that is, mapping the resulting operations to conjunctive normal form
clauses, and using SAT technology to solve them. This also means gen-
erating intermediate variables which can be an advantage, as these can
be searched on and learnt about. Since each approach has advantages
it is important to see whether we can benefit from these advantages by
using a word-level propagation approach with learning. In this paper
we describe an approach to bit-vector solving using word-level propa-
gation with learning. We provide alternative word-level propagators to
Michel and Van Hentenryck, and give the first empirical evaluation of
their approach that we are aware of. We show that, with careful engi-
neering, a word-level propagation based approach can compete with (or
complement) bit-blasting.

1 Introduction

Since most time-critical and safety-critical software is built on fixed-width inte-
gers, it is vital to reason about fixed-width integers correctly and accurately in
a software verification context. We consider the problem of how to support this
reasoning with modern constraint solving techniques.

SAT Modulo Theory (SMT) solvers are the most common tools in this area,
and almost all the modern SMT solvers ultimately rely on bit-blasting [4,5,9,
13,17] to solve bit-vector constraints, that is, translating constraints to propo-
sitional logic form. But bit-blasting tends to cause two problems. First, it may
result in very large propositional formulas that even the most powerful current
SAT solvers struggle to handle. Second, it disperses important word level infor-
mation during the encoding—much is obscured in translation. Here we investi-
gate alternatives to bit-blasting, replacing it with word-level propagation entirely
to produce a pure word-level bit-vector SMT solver.

c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 374–391, 2016.
DOI: 10.1007/978-3-319-33954-2 27
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Usingword-level propagationwas suggestedbyMichel andVanHentenryck [18]
who viewed the problem as a Constraint Satisfaction Problem (CSP). Each vari-
able is associatedwith a “bit-vector domain”which is progressively tightened using
word-level constraint propagation rules (wewillmake these clear shortly). The idea
is appealing, as the propagation rules can be made to run in constant time (as long
as the bit width of the bit-vector is less than or equal to the size of machine reg-
isters). An additional rule to check if a tightened domain remains valid also runs
in constant time. However, we are not aware of any experimental evaluation of the
method. Moreover, there is no “learning” mechanism in Michel and Van Henten-
ryck’s proposal. We show that real improvement relies on the communication of
explanations for the propagated bits. We also propose alternative (“decomposed”)
word-level propagators for some operations, based on insights in Warren’s com-
pendium [22] and we investigate the relative strengths and weaknesses of decom-
posed and composed propagators.

Additionally we use our solver to investigate different algorithmic possibili-
ties. In a learning solver we can generate explanations in a “forward” manner,
as propagation progresses, as is done in a SAT solver, or we can generate them
in a “backward” manner during conflict analysis, as in an SMT solver. Forward
explanation is simpler to implement, while backward explanation may require less
explanation work overall. In our experiments we compare the two approaches.

Another potential benefit of word-level propagation is deeper conflict analy-
sis. Normally, using bit-blasting, conflict analysis starts as soon as the first
conflict is found. In the word-level solver, we could do the same, to find the
first conflict clause and backtrack to the level indicated by this conflict (we
call this “standard backjumping”). With word-level propagation, since we can
discover several conflicts at once, we may find several learnt clauses at once, cor-
responding to several backtrack levels. We choose the smallest level from them
in order to backtrack to the highest level of the search tree and add all the
learnt clauses along the way to prevent all the conflicts from happening again
(we call this “multi-conflict backjumping”). We also offer a comparison of these
two approaches.

To construct the solver we have extended MiniSAT [6] so that it can keep
track of opportunities for word-level propagation and intersperse this kind of
propagation with unit propagation. Our word-level propagators contribute to
MiniSAT’s powerful search and learning mechanism by providing clauses as
explanations for word-level propagated bits. In this way, the word level prop-
agators become lazy clause generators [20] for a SAT solver extended with con-
straint programming technology [21]. In summary the main contributions of this
paper are:

– a word-level propagating (but bit-level explaining) constraint solver;
– algorithms for generation of explanations for word-level propagators;
– an investigation of the algorithmic design space in building word-level prop-

agation with explanation;
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– the first (as far as we know) empirical evaluation of the proposal by Michel and
Van Hentenryck [18], and comparison with the standard bit-blasting approach
to these problems;

– results suggesting that, with careful engineering, a word-level propagation
approach can be competitive with, or a useful supplement to, bit blasting.

The remainder of the paper is arranged as follows. Section 2 introduces bit-
vector constraints and notation. Section 3 outlines the architecture of MiniSAT
extended with word-level propagation. Section 4 introduces the propagators used
in our solver. Section 5 explores several options for the design of the word-level
solver and Sect. 6 evaluates these options and also compares to pure bit-blasting
through experiments using standard benchmarks. Section 7 outlines related work
and Sect. 8 concludes. The reader is assumed to have a basic understanding of
modern SAT-solving technology.

2 Bit-Vector Constraints

In the following we shall need to distinguish word-level logical operations from
Boolean operations carefully. As bit-wise operations we use ˜, &, |, and ⊕
for bit complement, conjunction, disjunction, and exclusive or, respectively. As
Boolean connectives, we use ¬, ∧ and ∨ for negation, conjunction, and disjunc-
tion, respectively.

A bit-vector x[w] is a sequence of w binary digits (bits) and xi denotes the
ith bit in this sequence. The elements of the sequence are indexed from right
to left, starting with index 0 : x = xw−1...x1x0. Here we take Boolean variables
as bit-vectors of length 1. A “trit-vector” (for bit-width w) is a sequence of w
elements taken from {0, 1, ∗}. Here the ∗ represents an undetermined bit, so a
trit-vector x corresponds to the cube (

∧
i∈I0

¬xi) ∧ (
∧

i∈I1
xi), where I0 is the

set of index positions that hold a 0, and I1 is the set of index positions that
hold a 1.

In an implementation, the trit-vector can be represented by a pair of bit-
vectors: 〈lo(x), hi(x)〉, where lo(x) and hi(x) are bit-vectors representing the lower
and upper bound of x respectively, with

lo(x)i =
{

0 if xi = ∗
xi otherwise hi(x)i =

{
1 if xi = ∗
xi otherwise

For example, trit-vector z = 011*0*11 is written 〈01100011, 01110111〉 in
this “lo-hi” form. The advantage of this form is that, as long as the bit width
of a trit-vector x is less than or equal to the size of machine registers, lo(x)
and hi(x) can be treated as unsigned integers, that is, z is 〈99, 119〉. Supported
by an implementation language (such as C) that can utilise word-level oper-
ations, we can rephrase bit-propagation on a trit-vector as word-level opera-
tions on its bounds. For an example, consider y = *1110*** corresponding to
〈01110000, 11110111〉, and the constraint y = z. We can utilize the word-level
rule: lo(y) = lo(z) = lo(y) | lo(z), hi(y) = hi(z) = hi(y) & hi(z) to obtain the new
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lo-hi form of y (and z): 〈01110011, 01110111〉 representing 01110*11. Instead of
propagating the bits one by one, we effectively fix the bits y7, y1, y0 and z4
simultaneously with the word-level operations on the bounds.

The lo-hi form allows for invalid representations of trit-vectors. That happens
when, for some x, a bit in lo(x) is 1 while the corresponding bit in hi(x) is 0. As
will be seen, propagation can produce such invalid forms, but this happens when,
and only when, an inconsistency is present in the current set of constraints. The
validity checking rule is simple:

valid(x) = lo(x) | hi(x) (1)

The result for a valid bit-vector lo-hi form should be a bit-vector of all 1 bits
with the same bit width of the bit-vector variable; otherwise it is invalid, and
the 0 bits in the result are the bits that cause the invalidity.

The following predicates on trit-vectors will prove useful:

fixed(x) ≡ lo(x) = hi(x)
msb(x[w]) = xw−1

lit(b) =
{

�b� if lo(b) = 1
�¬b� if hi(b) = 0

pos(x) = {lit(xi) | lo(xi) = 1}
neg(x) = {lit(xi) | hi(xi) = 0}
lits(x) = pos(x) ∪ neg(x)

We use fixed(x) to return a Boolean value indicating whether every bit in bit-
vector x is fixed. We use msb(xw) to denote the most significant bit of bit-vector x.
We use lit(b) to return the literal corresponding to the Boolean bit b under the con-
dition that b is fixed (hence the use of Quine corners). We use pos(x) (neg(x)) to
return the set of literals fixed to 1 (resp. 0) in bit-vector x, and lits(x) to return the
set of fixed literals in x. In the later algorithms, we take the set of literals to mean
the conjunction of the literals.

Our solver handles all operations in the QF BV category of SMT-LIB2 except
for multiplication, division, modulus and remainder. The operations have the
usual semantics [15]. We summarize the most important constraints:

Logical Constraints. Logical constraints include bitwise equality x = y, bit-
wise negation x = ˜ y, bitwise conjunction z = x & y, bitwise disjunction
z = x |y, bitwise exclusive-or z = x⊕y, bitwise nand, bitwise nor, reified equality
b ⇔ x = y, and if-then-else operation ite(b, x, y) = z where b is Boolean. The
semantics of ite(b, x, y) = z is (b ∧ (z = x)) | (¬b ∧ (z = y)).

Arithmetic Constraints. Arithmetic constraints include (fixed-width) addi-
tion x + y = z, two’s complement unary minus y = −x which is equivalent to
y = ˜x + 1, subtraction z = x − y which is equivalent to z = x + (˜ y + 1),
unsigned inequality b ⇔ x ≤u y, b ⇔ x <u y, b ⇔ x ≥u y, b ⇔ x >u y, and the
corresponding signed inequality constraints. Signed inequality constraints can
be translated into unsigned inequality constraints. For instance, b ⇔ x ≤s y is
equivalent to b ⇔ (x ≤u y) ⊕ xw−1 ⊕ yw−1.

Structural Constraints. Structural constraints include left shift (), unsigned
and signed right shift (�u, �s), left and right rotate (rotl , rotr), concatena-
tion (::), extraction (extract(x, n,m) = y) where y is the extraction of bits
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Algorithm 1. General algorithm for MiniSAT and word-level solver
add the input into the system � initialization; CNF or word-level formulas
if Propagate() �= true then � unit/word-level propagation; top level conflict

return UNSAT
while true do

if Propagate() = true then � no conflict
if all variables are assigned then

return SAT
else

decide()
else � conflict happens

if top-level conflict found then
return UNSAT

else
learnt clause := conflict analyze()
backjump(learnt clause)

n down to m from x, signed and unsigned extension (extu, exts), and repeat
(repeat(x, n) = y) where y is the concatenation of n copies of x.

3 Extending MiniSAT

MiniSAT [6] is a small, complete, and efficient SAT solver which was designed
with domain specific extension in mind. The general algorithm for both the
MiniSAT and word-level SAT based solver is suggested in Algorithm 1 [6,15],
based on the architecture shown in Fig. 1.

3.1 The Architecture and SAT Solving Process in MiniSAT

The input to MiniSAT is a CNF formula, that is, the conjunction of clauses. Each
clause is the disjunction of literals, that is, Boolean variables or their negation.
The output is either the assignment of all the variables that satisfies the input
CNF formula, or “UNSAT” if the formula is unsatisfiable.

First, a literal � is dequeued from the propagation queue, to see if any new
literal can be propagated based on this literal, by looking up its Boolean watch
list (BWatch(�)) and sending the related clauses to do the unit propagation.
The unit propagation is the only propagation method applied in MiniSAT which
finds clause C where all literals except for one literal �′ have been made false,
then propagates �′ to true. After each round of unit propagation, either a new
literal may be propagated in which case this literal will be enqueued into the
Boolean propagation queue (BPQueue), and the clause C will be added to the
explanation database as the reason for this variable b (Reasons(b)); or a conflict
happens in which case the clause C becomes the conflict clause. If clause C is
at the top-level then it means the whole problem is unsatisfiable; otherwise the
conflict clause is analyzed based on the explanations of the fixed literals and
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Fig. 1. Overall architecture: MiniSAT (top) and word-level mechanism (bottom)

a learnt clause is synthesized to direct “back-jumping”. In addition, the learnt
clause is added into the clause database to avoid the same conflict from occurring
in the future, which is known as “no-good learning”.

3.2 Architecture and Solving Process in Word-Level Solver

The extended architecture for our word-level SAT based solver is shown in the
bottom part of Fig. 1. The input of the word-level solver is both the word-level
formulas which are for bit-vector operations, and the CNF formulas which are for
Boolean operations. A separate static watch list (WWatch(x)) for the word-level
propagators of each related bit-vector is added to MiniSAT. Correspondingly, a
separate word-level propagator queue (WPQueue) for the word-level propagators
is added (it will have a lower priority than the Boolean propagation queue). Note
that at the beginning, we put all the propagators into the propagator queue and
run them to the fix-point.
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Algorithm 2. Extended solving process in word-level SAT based solver
function Enqueue(literal �, clause C)

BPQueue.enqueue(�)
b := var(�) � get the corresponding boolean variable b
Reasons[b] := C � add the explanation C for b to the explanation database
if � is in a bit-vector then

x := word(b) � get the corresponding bit-vector x
for p in WWatch(x) do

if p is not in WPQueue then
WPQueue.enqueue(p) � enqueue propagators not in WPQueue

function Propagate( )
clause confl := true
while confl = true do � no conflict

while ¬BPQueue.isEmpty() ∧ confl = true do
� := BPQueue.dequeue()
confl := unit prop(�)

if confl = true then � BPQueue is empty, no conflict
p := WPQueue.dequeue()
confl := word prop(p)

return confl

The extended solving process is shown in Algorithm 2. Once a bit � of an
integer x is newly propagated, both this literal is enqueued into the Boolean
propagation queue, and all the related word-level propagators of integer x in the
word-level watch list are enqueued into the propagator queue. When a literal
is dequeued from the Boolean propagation queue, the corresponding Boolean
constraints in the Boolean watch list are invoked to do the unit propagation.
Only when the Boolean propagation queue is empty do we start to dequeue
propagators from the propagator queue. We thus favour unit propagation since
it is faster but weaker, while the word level propagation is more powerful but
slower. In addition, since the previously learnt clauses are in the priority queue,
previous conflicts can be avoided earlier.

As can be seen from Fig. 1, the interactions1 between MiniSAT (top part) and
the word-level mechanism (bottom part) are the propagated literals 1©, expla-
nations 2©, and the conflict clauses 3©. The word-level propagators are required
to return explanations for the literals they propagate and return conflict clauses
when they detect conflict. Without these capabilities, word-level propagators
cannot benefit from the learning capabilities of the SAT solver, including back-
jumping and powerful autonomous search.

4 Word-Level Propagators with Bit-Level Explanation

Bit-blasting is the most common approach to bit-vector constraint solving. Bit-
blasting rewrites all the word level formulas into large number of low-level propo-
sitional formulas although many of them may be redundant and never used in
1 The algorithms below point out where/when the interactions 1©, 2©, 3© occur.
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the solving process. Instead of doing bit-blasting, we use word-level propagation.
The propagators perform propagation, and they also generate explanations in
the form of clauses, for literals fixed by propagation. They can be seen as lazy
clause generators, generating clauses only as these are needed.

The input of the word level propagators are all bit-vectors. Inside the prop-
agator, we utilize and also extend the propagation rules introduced in [18] to do
the propagation on the word level. At the same time we explain every propagated
bit at the bit level. After each round of propagation for the bit-vector interval,
validity checking (1) is applied on the new intervals. After the checking, either
some bits are propagated, or a conflict happens which means a conflict clause (or
several conflict clauses) should be returned. The explanation for the propagated
bit is a set of literals which are the reason for making the propagated bit fixed.
Note that the explanation for each fixed bit can also explain the conflict which
happens because of this bit.

Logical Constraints. The detailed word-level propagation rules for the logical
constraints can be found in [18]. The explanations for the basic logical constraints
are as following. We take the bitwise equality (x = y) as an example: when the
ith bit of integer xi is fixed to 1, we know that the reason is that yi is already
fixed to 1. So the clause c2 : ¬yi ∨ xi is the explanation that could explain why
xi is fixed to 1. The explanation for reified equality constraint b ↔ x = y is
introduced in Sect. 5.1.

– Bitwise Equality (x = y):

c1 : ¬xi ∨ yi c2 : ¬yi ∨ xi

– Bitwise Conjunction (z = x ∧ y):

c1 : ¬zi ∨ xi c2 : ¬zi ∨ yi c3 : ¬xi ∨ ¬yi ∨ zi

– Bitwise Negation (x = ˜ y):

c1 : ¬xi ∨ ¬yi c2 : xi ∨ yi

– Bitwise Disjunction (z = x ∨ y):

c1 : ¬xi ∨ zi c2 : ¬yi ∨ zi c3 : xi ∨ yi ∨ ¬zi

– Bitwise Exclusive Or (z = x ⊕ y):

c1 : xi ∨ yi ∨ ¬zi c2 : xi ∨ ¬yi ∨ zi c3 : ¬xi ∨ yi ∨ zi
c4 : ¬xi ∨ ¬yi ∨ ¬zi

– Bitwise Conditional (ite(b, x, y) = z):

c1 : ¬b ∨ ¬xi ∨ zi c2 : ¬b ∨ xi ∨ ¬zi c3 : b ∨ ¬yi ∨ zi
c4 : b ∨ yi ∨ ¬zi c5 : ¬xi ∨ ¬yi ∨ zi c6 : xi ∨ yi ∨ ¬zi

Arithmetic Constraints. A constraint z = x+y is translated into constraints
that introduce two new variables: c for the sequence of carry-ins, and d for
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carry-outs. As pointed out by Michel and Van Hentenryck [18], a full adder can
then be captured with the constraints

z = x ⊕ y ⊕ c
d = (x & y) | (c & (x ⊕ y))
c = d  1

where the last constraint connects the carry-in bit-vector c and carry-out bit-
vector d. By adding the intermediate variables into the addition constraint, the
propagator for addition can be divided into several decomposed propagators
which solve the basic constraints individually. The explanations for the addi-
tion constraint simply combines the explanations of these basic constraints. The
propagation rules and explanations for inequality constraints will be introduced
in Sect. 5.1.

Structural Constraints. We have extended the propagation rules mentioned
in [18] to solve all the structural constraints in the QF BV category of SMT-
LIB2. We can take the structural constraints as the variants of the bitwise
equality constraints for bit manipulation. Therefore, the propagation rules for
structural constraints are based on the propagation rules of the bitwise equality
constraints but with different “masks” designed to fix the particular bits to be
1 or 0. The explanations for the structural constraints are also similar to the
bitwise equality constraints but with some bit shift (,�u, �s, rotl, rotr), or
fixing some bits value (, �u, �s, extu, exts).

5 Word-Level Propagation Solving

5.1 Propagators: Composed vs Decomposed

To solve a complicated constraint, one way we can proceed is to create a single
“composed” propagator. This propagator may be complex to implement, and
may end up finding long explanations. In many cases it can be worth splitting
the complicated constraint into several smaller constraints thus decomposing
it. Not only are the decomposed components easier to implement, but more
importantly, in a learning solver, the intermediate variables introduced may be
useful for both search as well as making explanations shorter. Of course the
end line for this approach is effectively full bit-blasting. On the other hand, the
composed propagators are compact, while the decomposed propagators need the
communication among the components. We propose both single propagators and
decompositions to implement the reified equality constraint b ⇔ x = y and the
reified inequality constraint b ⇔ x ≤u y.

Composed Propagators. Propagators return a conflict clause (“true” indi-
cates no conflict) and enqueue the propagated literals together with their
explanations.
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Algorithm 3. Propagator for b ⇔ x = y

function Prop ReifEq(bit b, bit-vec x, y)
if lo(b) = 1 then

return Prop Eq(x, y) 3©
else if hi(b) = 0 then

return Prop DisEq(x, y) 3©
else

if fixed(x) ∧ fixed(y) ∧ lo(x) = lo(y) then � x = y
Explanation := lits(x) ∧ lits(y) → b
Enqueue(b, Explanation) 1© 2©

else
z := lo(x) &˜ hi(y) |˜ hi(x) & lo(y)
if z �= 0 then � x �= y

choose i with zi = 1
Explanation := lit(xi) ∧ lit(yi) → ¬b
Enqueue(¬b, Explanation) 1© 2©

return true

We can implement a propagator for the reified equality constraint: b ⇔ x =
y as shown in Algorithm 3. The propagator reuses the implementation of the
propagators for x = y and x �= y, or checks that x = y in the current domain in
which case it explains b, or that x �= y in the current domain, in which case it
explains ¬b.

Algorithm 4. Propagator for x �= y

function DisEq(bit-vec x, y)
if fixed(x) ∧ (lo(x) = lo(y) ∨ lo(x) = hi(y)) then � x fixed; y possibly not fixed

f := lo(y) ⊕ hi(y)
if unique 1 bit in f then � only one bit of y is unknown

find i with fi = 1
if lit(xi) = xi then � := ¬yi else � := yi

Explanation := lits(x) ∧ lits(y) → �
Enqueue(�, Explanation) 1© 2©

return true

function Prop DisEq(bit-vec x, y)
if fixed(x) ∧ lo(x) = lo(y) then � x = y

return lits(x) ∧ lits(y) → false 3©
if lo(x) &˜ hi(y) |˜ hi(x) & lo(y) then � x �= y

return true
DisEq(x, y)
DisEq(y, x)
return true
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The propagator for x �= y (Algorithm 4) first checks whether x and y are
known to be equal and if so, returns a failure explanation. If x and y are known
to differ, it simply returns true. Otherwise if there is at most one unfixed bit,
and they are otherwise equal it explains why the unfixed bit should be set to the
opposite value of the corresponding fixed bit in the other variable. For example,
if x = 11010, y = 110 ∗ 0, we propagate bit y1 = 0, the explanation is x4 ∧ x3 ∧
¬x2 ∧ x1 ∧ ¬x0 ∧ y4 ∧ y3 ∧ ¬y2 ∧ ¬y0 → ¬y1.

Similar to the way of solving the equality constraint, for the inequality con-
straint b ⇔ x ≤u y, we also need two propagators, one for the constraint x ≤u y
and one for x >u y. Since the propagation rules and the way of generating the
explanations of these two constraints are similar, we show only the propagator
for x ≤u y, as Algorithm 5. First, we still need to check if there is a conflict, that
is, if the lower bound of x is (unsigned) greater than the upper bound of y, in
which case a conflict clause needs to be returned. To generate the conflict clause,
we go through every bit of x and y bit by bit from the most significant bits to
find the first “bit pair” of 1 bit in x and 0 bit in y, and add all the 1 bits in x and
0 bits in y before the “bit pair” (included) to the conflict clause. For example, if
x = 10010**, y = 1000*11 then the conflict clause is x6∧x3∧¬y5∧¬y4 → false.

After the conflict checking, we start the propagation which utilizes the prop-
agation rules introduced in [18]. We take the propagation for the bits in variable
x as an example. In the propagation of constraint x ≤u y, we can only fix x to
0. But we pretend to fix the first free bit (from left) of x to 1 to see if there is
a conflict in which case we know that this free bit must be fixed to 0; otherwise
we cannot propagate anything. The way of generating the explanation for this
fixed bit is similar to how the conflict clause was generated, but with the pre-
tend lower bound of x. For example, if x = 1100*1* and y = 11000** then xl =
1100110, and the explanation is x6 ∧ x5 ∧ ¬y4 ∧ ¬y3 ∧ ¬y2 → ¬x2.

The explanations generated by the composed propagators are often large,
especially when the bit width of the involved bit-vectors is large. In comparison,
each explanation for a basic constraint introduced in Sect. 4 contains at most
three literals.

Decomposed Propagators. The decomposed propagator for equality con-
straint b ⇔ x = y is based on this observation [22]:

b = msb(˜((x − y) | (y − x)))

We add intermediate variables to split this constraint into several basic con-
straints which can be processed by the word level propagators already intro-
duced. Note that the m1 = x−y constraint will be further split as the arithmetic
constraint introduced in Sects. 2 and 4. The explanation for the reified equality
constraint b ⇔ x = y is made up by those of the basic constraints—several small
explanations with the intermediate literals involved.

m1 = x − y; m2 = −m1; m3 = m1 | m2; m4 = ˜m3; b = msb(m4)
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Algorithm 5. Propagator x ≤u y

if lo(x) >u hi(y) then
f := lo(x) &˜ hi(y)
i := first 1 bit position in f � find first bit pair: 1 bit of x and 0 bit of y
return pos(x) \ {xj | j < i} ∧ neg(y) \ {¬yj | j < i} → false 3©

for i := w − 1 downto 0 do � propagate the bits in x
if ¬fixed(xi) then

xl := lo(x) | (1 � i) � pretend ith bit is fixed to 1
if xl >u hi(y) then

� := ¬xi � fix xi to 0
f := lo(xl) &˜ hi(y)
i := first 1 bit position in f
Explanation := pos(x) \ {xj | j < i} ∧ neg(y) \ {¬yj | j < i} → �
Enqueue(�, Explanation) 1© 2©

else
break

/* the similar algorithm to propagate the bits in y */
return true

The decomposed propagator for inequality constraint b ⇔ x ≤u y is based on
this observation:

b = msb((˜x | y) & ((x ⊕ y) | ˜(y − x)))

The way to solve an inequality constraint with decomposed propagators is the
same as for the equality constraint.

It is worth pointing out that the two kinds of propagator do not lead to
identical search trees. The presence of intermediate variables introduced by the
decomposition makes a considerable difference to activity based search, since
there are new variables to search on and different initial activities.

5.2 Explanation: Forward vs Backward

Normally in a SAT solver, for every fixed Boolean literal, a reason why it became
true is required for conflict analysis. Therefore, normally when we fix a Boolean
literal in our word-level propagator, we return an explanation for it eagerly,
so-called “forward explanation.” Another approach, standard for SMT theory
solvers [19] and discussed by Gent et al. [10], is to generate the explanation only
during conflict analysis where the reason for a propagated literal is required.
Compared to the forward explanation method, this has the advantage that expla-
nations are only generated as needed. Furthermore, the “backward explanation”
is especially good for our word-level propagator. Our propagators have two parts:
one is the propagation part, the other is the explanation generation part which is
the more time consuming. Therefore, backward explanation makes propagation
faster, but possibly makes conflict analysis slower.
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5.3 Conflict Analysis: First vs Highest Level

As already mentioned we can detect conflicts in many bit positions simultane-
ously. But to choose which one to do the conflict analysis on remains a question.

With bit-blasting, as soon as the first conflict is found, conflict analysis is
started, returning a learnt clause of the form C ∨ �, where � is the unique lit-
eral (UIP) at the current decision level, and the maximum decision level in the
remainder of the clause C determines the level to backjump to. One way to man-
age conflict analysis for word-level propagation is to choose the first conflict to
do the conflict analysis as usual for SAT. We call this “standard backjumping”.

An alternative approach is to generate a conflict clause for each bit position
that is in conflict. We can then add all the learnt clauses generated to the clause
database and then jump to the highest decision level indicated by one of them.
This has the advantage of generating more information from the failure, and
potentially higher backjumps. We call this “multi-conflict backjumping”.

6 Experimental Evaluation

For the experimental data, we pick the folders from the QF BV category of SMT-
LIB2 benchmarks which do not make use of multiplication, division, modulus
and remainder, and the bit width for the bit-vector operations is no greater than
64 (the size of our machine register). In total there are more than 12000 test
cases. We split them into two categories: easy and difficult, according to the
per-problem solve time of the bit-blaster baseline solver. We use a time limit
of 500 s. In Tables 1 and 2, “time” means the total time in seconds for all the
successful test cases in the folder; “TO” is the number of cases that timed out;
“Total” is the total time of all successful test cases; “Overall time” is “Total” plus
500 s penalty for each unsuccessful case, which gives an overall “score” similar
to what is used in SMT competitions. All the experiments were performed on a
commodity computer with a Core-i7 CPU (2.7 GHz) and 5 GB RAM.

The first experiment compares forward explanation (F) versus backward
explanation (B), as well as standard backjumping (S) versus multi-conflict back-
jumping (M). We implemented three variants of the word-level bit-vector solvers
which all use the decomposed word-level propagators for equality and inequality
constraints. The reason we only look at three variants is that the two parameters
(F/B, S/M) do not interact with each other. Table 1 shows that, first, backward
explanation outperforms the forward explanation significantly, especially when
the test cases are easy. Second, the multi-conflict backjumping outperforms the
standard backjumping considerably in both categories.

The second experiment compares bit-blasting with word-level bit-vector solv-
ing using composed and decomposed propagators. We implemented a vanilla
bit-blaster as a baseline to compare against, which uses the decomposition of
equality and inequality applied in the decomposed word-level solver Deq+ Dle.
Since Table 1 suggests the B+M combination has merit, all word-level bit-vector
solvers listed in Table 2 use backward explanation and multi-conflict backjump-
ing. However, they use different combinations of composed propagators (C) and
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Table 1. Forward explanation vs backward explanation and standard backjumping vs
multi-conflict backjumping (times are in seconds)

Problem F + S B + S B + M

Name Number Time TO Time TO Time TO

sage: app1 1176 727 0 432 0 416 0

sage: app2 475 8 0 5 0 5 0

sage: app5 990 44 0 27 0 29 0

sage: app6 245 0 0 0 0 0 0

sage: app7 339 4 0 3 0 3 0

sage: app8 1760 662 1 447 1 542 0

sage: app9 2096 370 1 732 0 587 0

sage: app12 4905 2118 0 1226 0 1262 0

stp samples 424 18 0 13 0 13 0

bench ab 284 0 0 0 0 0 0

Total 12694 3951 2 2885 1 2857 0

Overall time 4951 3385 2857

brummayerbiere3 42 495 33 310 33 271 33

spear: cvs v1.11.22 5 0 4 0 4 0 4

spear: openldap v2.3.35 6 0 6 0 6 0 6

spear: samba v3.0.24 4 0 4 0 4 494 3

rubik 7 524 2 308 2 407 1

uclid contrib smtcomp09 7 149 6 90 6 72 6

Total 71 1168 55 708 55 1244 53

Overall time 28668 28208 27744

decomposed propagators (D) for equality (eq) and inequality constraints (le).
Table 2 shows the resource consumption including the running time and average
memory usage (mem) in MB. The results show that the Deq+ Dle word-level
propagator is typically faster than bit-blasting on the easy cases, using less mem-
ory. For the difficult cases, the Ceq + Cle word-level propagator outperforms the
bit-blasting in some cases and also uses much less memory. But in general the
bit-blasting method is more robust.

Table 3 shows the average number of conflicts per second (fail/sec), and the
average number of inspections2 in thousand per second (insp(k)/sec) that occur
during the search. We compare bit-blasting only against the best word-level
solver as identified above, that is, Deq+ Dle for easy cases and Ceq + Cle for
difficult cases. Note that the bit-blasting often finds fewer conflicts during the

2 A call to a unit or word-level propagator (which may or may not result in fixing
new bits).
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Table 2. Resource consumption: bit-blaster vs word-level bit-vector solver and com-
posed propagators vs decomposed propagators (memory is in MB)

Problem bit-blaster Deq + Dle Ceq + Dle Deq + Cle Ceq + Cle

Name Time TO mem Time TO mem Time TO mem Time TO mem Time TO mem

app1 393 0 27 416 0 25 381 0 23 1985 32 16 905 32 12

app2 9 0 7 5 0 11 60 1 11 252 18 10 6311 1 8

app5 49 0 23 29 0 20 271 1 15 1505 15 16 1025 17 10

app6 0 0 7 0 0 8 0 0 8 0 0 8 0 0 8

app7 3 0 7 3 0 8 3 0 8 1 14 8 1 14 8

app8 1127 0 16 542 0 16 828 1 14 2062 2 13 1585 2 10

app9 863 0 15 587 0 14 303 2 13 2122 1 12 1387 3 9

app12 1052 0 19 1262 0 20 994 2 16 972 6 17 595 8 11

stp sam 37 0 39 13 0 31 8 0 23 13 0 30 7 0 20

bench ab 1 0 7 0 0 8 0 0 8 0 0 8 0 0 8

Total 12694 0 167 2857 0 161 2848 7 139 8912 88 138 11816 77 104

Overall time 3534 2857 6348 52912 50316

brumm3 402 31 33 271 33 41 422 33 31 228 32 27 208 32 16

cvs 688 2 9 0 4 10 0 4 9 0 5 10 0 5 8

openldap 176 5 353 0 6 240 0 6 46 0 6 238 0 6 47

samba 0 4 1005 494 3 676 24 0 124 0 4 751 5 0 87

rubik 87 2 7 407 1 16 838 1 11 589 1 13 56 2 10

uclid 0 7 7 72 6 109 710 3 25 0 7 138 393 4 25

Total 1353 51 1414 1244 53 1092 1994 47 246 817 55 1177 662 49 193

Overall time 26853 27744 25494 28317 25162

search with more propagation, while the word-level solvers often find more con-
flicts with less propagation. That is because propagating and checking the con-
flicts at word-level is parallel in some sense, resulting in a higher rate of conflict-
finding as well as the reduction in inspections.

7 Related Work

Word-level reasoning on bit-vector logic is NEXPTIME-complete [14]. In spite
of this, the problem has received much attention recently, albeit with limited
progress. Current related work falls into one of or the combination [1] of three
categories:

Word-Level Reasoning Based on Lazy SMT Techniques: Hadarean
et al. [12] propose two word-level solvers an equality solver and inequality solver
as the theory solver in their lazy bit-vector solver. But they cannot express the
conflict at the bit-level which significantly affects the efficiency of the method as
they showed in [12].

Word-Level Reasoning Based on Constraint Programming: Bardin
et al. [2] propose two word-level propagators based on the Constraint Logic
Programming framework. One is called Is/C which is to solve linear arithmetic
constraints, and the other is the BL (Bit-List) propagator which runs in linear
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Table 3. Conflicts and inspections during the search (a ‘-’ indicates a time of 0)

Problem Bit-blaster Deq + Dle

Name fail/sec insp(k)/sec fail/sec insp(k)/sec

app1 2.6 14.4 3.1 12.6

app2 4.8 20.3 9.2 24.0

app5 1.0 6.3 2.1 9.1

app6 - - - -

app7 76.3 66.0 61.3 36.7

app8 2.6 21.3 4.5 11.7

app9 2.2 16.0 3.8 10.4

app12 1.5 4.2 1.4 3.2

stp sam 0.3 10.1 1.1 10.4

bench ab 2.0 23.0 - -

Problem Bit-blaster Ceq + Cle

Name fail/sec insp(k)/sec fail/sec insp(k)/sec

brumm3 41.5 507.0 109.9 297.0

cvs 1507.7 6041.5 11134.8 6645.2

openldap 211.5 2404.3 930.7 1833.7

samba 84.0 2675.5 200.0 1800.0

rubik 280.6 4155.5 875.0 2141.1

uclid 198.9 335.1 3506.5 7354.8

time to solve the linear bitwise constraints. Constraint propagators for modu-
lar arithmetic constraints have been proposed by Gotlieb et al. [11] who utilize
so-called clockwise intervals in a linear fragment of modular integer constraints.
None of these CP approaches support learning, or compare with bit-blasting.

Word-Level Reasoning Based on Linear Programming: This approach is
to transform the problem into linear programming constraints [3,23]. For RTL
verification, the performance of LP solvers are often no better than SMT solvers
as reported in [16].

8 Conclusion

We have extended word-level propagation algorithms of Michel and Van
Hentenryck [18] to produce an explaining solver. We have introduced decom-
posed counterparts to the proposed propagators, as these were not constant
time. We also utilize a concept of multi-conflict backjumping, capitalizing on
the fact that word-level propagation can detect multiple failures simultaneously.
We have given an empirical comparison of word-level propagation versus bit-
blasting, the standard approach to these problems. Our solver is a prototype,
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still to be tuned. Nevertheless it shows that, with careful engineering, a word-
level propagation solver can compete with bit-blasting, particularly on easier
problems.

For future work, it may be advantageous to apply some word-level simplifi-
cation as done with the linear solver in STP [8,9]. We also need to deal with
non-linear arithmetic operations, one way or other. Finally, an interesting line
of research would be to combine word-level propagation with word-level search,
especially stochastic local search as recently suggested by Fröhlich et al. [7].

Acknowledgment. This work is supported by the Australian Research Council under
ARC grant DP140102194.
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12. Hadarean, L., Bansal, K., Jovanović, D., Barrett, C., Tinelli, C.: A tale of two
solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 680–695. Springer, Heidelberg (2014)



A Bit-Vector Solver with Word-Level Propagation 391

13. Hutter, F., Babic, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: Formal Methods in Computer Aided Design
(FMCAD 2007), pp. 27–34. IEEE Comp. Soc. (2007)
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Abstract. Given a vertex-weighted graph G = 〈V, E〉, the minimum
weighted vertex cover (MWVC) problem is to choose a subset of vertices
with minimum total weight such that every edge in the graph has at
least one of its endpoints chosen. While there are good solvers for the
unweighted version of this NP-hard problem, the weighted version—i.e.,
the MWVC problem—remains understudied despite its common occur-
rence in many areas of AI—like combinatorial auctions, weighted con-
straint satisfaction, and probabilistic reasoning. In this paper, we present
a new solver for the MWVC problem based on a novel reformulation to
a series of SAT instances using a primal-dual approximation algorithm
as a starting point. We show that our SAT-based MWVC solver (SBMS)
significantly outperforms other methods.

1 Introduction

Given a directed or undirected graph G = 〈V,E〉, a vertex cover of G is defined
as a collection of vertices S ⊆ V such that every edge in E has at least one of its
endpoint vertices in S. A minimum vertex cover (MVC) of G is a vertex cover
of minimum cardinality. When G is vertex-weighted—i.e., each vertex vi ∈ V
has a non-negative weight wi associated with it—the minimum weighted vertex
cover (MWVC) for it is defined as a vertex cover of minimum total weight.

Two important combinatorial problems equivalent to the MVC problem are
the maximum independent set (MIS) problem and the maximum clique (MC)
problem [8]. The MVC problem and its equivalent MIS and MC problems have
numerous real-world applications such as in AI scheduling, logistics and oper-
ations management, and VLSI design. More recent applications have also been
discovered in information retrieval, signal processing, and sequence alignment in
computational genomics [14].

Since the MVC problem is a special case of the MWVC problem, the latter
not only captures all of the real-world combinatorial problems that the MVC
problem can model but also captures a wide range of other combinatorial prob-
lems central to AI. For example, consider a simple combinatorial auction prob-
lem. We are given a set of items with bids placed on subsets of the items. Each
bid has a valuation. The goal is to pick a set of winning bids that maximizes
the total valuation—i.e., revenue of the auctioneer—and allocates each item to
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at most one winning bid. This can be modeled as a maximum weighted inde-
pendent set (MWIS) problem—equivalent to the MWVC problem—as follows.
We create a vertex for each bid such that the weight of the vertex is equal to
the valuation of that bid. Two vertices are connected by an edge if and only if
their corresponding bids have a non-empty intersection. It is easy to see that the
winning bids correspond to the vertices in the MWIS for the graph.

In [19,20], the MWVC problem has also been identified as being fundamental
to solving weighted constraint satisfaction problems (WCSPs). Any combinatorial
problem posed as a WCSP is equivalent to the MWVC problem for its associated
constraint composite graph [19,20]. An efficient solver for the MWVC problem,
therefore, has important implications on how well we can solve the plethora of
real-world problems that can be modeled as WCSPs. Examples include—but
are not limited to—representing and reasoning about user preferences [3], over-
subscription planning with goal preferences [10], and various resource allocation
problems. Quite importantly, WCSPs also arise as energy minimization problems
(EMPs) in probabilistic settings. In computer vision applications, for example,
tasks such as image restoration, total variation minimization, and panoramic
image stitching can be formulated as EMPs derived in the context of markov
random fields [17,18].

The MVC problem has received a lot of recent attention in response to the
DIMACS Implementation Challenge [14]. There are both exact and heuristic
algorithms for solving the MVC problem. Exact algorithms mainly use branch-
and-bound techniques [21,28]. While they guarantee optimality, they may not
scale efficiently to be able to solve large problem instances. Heuristic and local
search methods, on the other hand, can provide near-optimal solutions to larger
and harder problem instances [6,26]. As a matter of fact, the NuMVC solver [5]
integrates many interesting local search techniques for the MVC problem and
performs very well in practice.

While there are reasonably good solvers for the MVC problem, the MWVC
problem remains understudied. Clearly, the MWVC problem is a generalization
of the MVC problem and is harder to solve efficiently. Exact algorithms based on
the branch-and-bound technique are not expected to do well for large instances
of the MWVC problem simply because they do not scale well even for large
instances of the MVC problem. Moreover, the local search techniques used in the
best solvers for the MVC problem are also not expected to generalize well to the
MWVC problem. This is because the MVC problem is fixed-parameter tractable
while the MWVC problem is not [7]. The local search solvers for the MVC
problem [5,26] heavily rely on this property as they solve the fixed-parameter
vertex cover problem in their inner loops.

In this paper, we present a new solver for the MWVC problem based on a
novel reformulation to a series of SAT instances using a primal-dual approx-
imation algorithm as a starting point. Our SAT-based MWVC solver (SBMS)
implements an anytime algorithm that trades off running time with the quality of
the produced solution. Moreover, SBMS also reports on how good the produced
solution is guaranteed to be with respect to the optimal solution. In many cases,
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SBMS converges to the optimal solution in a few iterations and reports it within
the allocated amount of time. Empirical results show that SBMS significantly
outperforms other methods.

2 Background

The MVC problem is a well known NP-hard problem [8]. There exists a sim-
ple factor-2 approximation algorithm for it that runs in polynomial time [29].1

There are also polynomial-time algorithms that yield slightly better approxi-
mation factors but are more involved [15]. However, the MVC problem is also
known to be APX-complete. It cannot be approximated arbitrarily well unless
P = NP [29]. Furthermore, PCP theorems yield inapproximability results for
designing polynomial-time algorithms with approximation factors better than
1.36 [9].2

The MWVC problem is harder than the MVC problem since it is a gener-
alization of the latter. The negative results associated with the MVC problem
therefore carry over to the MWVC problem. Fortunately, the MWVC problem
is still amenable to a fairly simple polynomial-time factor-2 approximation algo-
rithm based on the idea of linear programming duality [29]. However, unlike the
MVC problem, the MWVC problem is not fixed-parameter tractable [7]. The
MVC problem is in fact studied as a central problem in parameterized complex-
ity theory and can be formulated as a half-integral linear programming problem
whose dual yields a maximum matching in the corresponding graph [29].

The good solvers for the MVC problem are based on local search [5,6,26].
They implicitly exploit the fixed-parameter tractability of the MVC problem in
their inner loops. In order to solve the k-vertex cover problem—i.e., find a vertex
cover of size k—in their inner loops, they maintain a current set of vertices of
size k and iteratively exchange two vertices—one inside and one outside of this
set—until it becomes a valid vertex cover. The state-of-the-art solver for the
MVC problem, NuMVC [5], also exploits the fixed-parameter tractability of the
MVC problem but with added optimizations.

The NuMVC solver mainly introduces two new techniques not present in its
predecessors [5]. The first optimization decomposes the exchange process into
two stages—one stage for removing a vertex from the set and the other for
adding a vertex to the set. This decomposition leads to linear-time subroutines
for each stage instead of the original quadratic-time subroutine that deliberates
all pairs of vertices for a possible exchange. The second optimization involves
weighting the edges across different iterations while simultaneously employing a
mechanism to forget weighting decisions made too far in the past [5].

1 While the MVC is approximable within a constant factor, this has no implications
on the MIS problem. In fact, the MIS problem is one of the hardest combinator-
ial problems and has no polynomial-time constant-factor approximation algorithm
unless P = NP [29].

2 This inapproximability result is tighter under the unique games conjecture [16].
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3 Reformulations of the MWVC Problem

Given that there are no standard solvers for the understudied MWVC problem,
we develop a solver based on reformulating it to a series of SAT instances. We
study the usefulness of this reformulation in comparison to modeling the MWVC
problem as an Integer Linear Program (ILP), a Pseudo-Boolean Optimization
(PBO) problem, a MAX-SAT problem, or an Answer Set Program (ASP).

3.1 Reformulation as an ILP or a PBO Problem

For a given vertex-weighted undirected (or directed) graph G = 〈V,E〉, the
MWVC problem can be formulated as an ILP as follows. We simply associate a
0/1 variable Xi with each vertex vi ∈ V . Xi indicates the presence of vi in the
MWVC. Here, wi is the non-negative weight associated with vertex vi.

Minimize
|V |∑

i=1

wiXi

∀ vi ∈ V : Xi ∈ {0, 1}
∀ (vi, vj) ∈ E : Xi + Xj ≥ 1

(1)

To reformulate the MWVC problem as a PBO problem, we simply change
the “type” of each variable Xi in the ILP formulation from a 0/1 integer to a
Boolean variable.

3.2 Reformulation as a MAX-SAT Problem

The MWVC problem can also be formulated as a weighted MAX-SAT problem—
simply referred to as the “MAX-SAT problem” here. In a MAX-SAT problem,
we are given a set of clauses on Boolean variables. Each clause has a reward
associated with satisfying it. The goal is to find a complete assignment of Boolean
values to all variables so as to maximize the sum of the rewards associated
with the satisfied clauses. The MAX-SAT problem is a well known NP-hard
problem [8].

The reformulation of the MWVC problem to the MAX-SAT problem is
easy to understand by first modeling the complement of the MWVC problem—
i.e., the MWIS problem—as a MAX-SAT problem. Once again, we associate
a Boolean variable Xi with each vertex vi ∈ V of weight wi. For each edge
(vi, vj) ∈ E, we create the clause (Xi ∨ Xj) with a very high reward so that
there is no incentive to violate it.3 These clauses represent an independent set
in the graph. For each vertex vi ∈ V , we also add the singleton clause Xi with
an associated reward of wi. It is easy to see that solving the MAX-SAT problem
over all these clauses with their associated rewards solves the MWIS problem on
the given graph.
3 It suffices for this reward to be greater than the sum of the weights of all vertices in

the graph.
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3.3 Reformulation as an ASP

To formulate the MWVC problem as an ASP, we use a constant to represent
each vertex. We define a predicate “edge” to represent the edges in the graph. We
also define a predicate “picked” to represent whether a vertex is in the MWVC.
We define a function “cost” to denote the cost of picking a vertex. Equation 2
captures the nature of undirected edges and vertex cover constraints. The goal
is to minimize the sum of the costs of all picked vertices.

edge(X,Y ) ← edge(Y,X)
picked(X) ∨ picked(Y ) ← edge(X,Y )

(2)

3.4 Reformulation as a Series of SAT Instances

An instance of the MWVC problem can be reformulated as a series of SAT
instances with each SAT instance answering the question: “Is there a vertex cover
of weight less than a given test weight wtest?” Solving these SAT instances itera-
tively converges to a solution of the MWVC problem since we can conduct binary
search for the cost of the optimal solution within the interval [0,

∑|V |
i=1 wi].4

Formulating Each SAT Instance: Consider associating a Boolean variable
Xi with each vertex vi ∈ V of weight wi. Xi indicates the presence of vi in the
MWVC. Each SAT instance is intended to search for a vertex cover of weight
less than a test weight wtest. The clauses in the SAT instance should therefore
encode two properties: (a) the validity of the vertex cover; and (b) the weight of
the vertex cover being less than wtest.

The validity of the vertex cover is enforced simply by having a clause (Xi∨Xj)
for each (vi, vj) ∈ E. The weight of the vertex cover being less than wtest is
enforced by converting the arithmetic operations involved into Boolean opera-
tions just like in a digital circuit.

Figure 1 illustrates how to make use of a digital circuit to enforce that the
weight of a vertex cover is less than a test weight. In other words, it enforces
the condition

∑|V |
i=1 wiXi − wtest < 0. For simplicity of exposition, assume that

all weights are non-negative integers. Each given weight wi is first converted
to its 2’s complement representation. For example, w1 is converted to ‘0101’
in the figure. Replacing the ‘1’s in this binary representation by Xi represents
the term wiXi. To represent −wtest on the left side of the condition, we simply
use its 2’s complement. For example, −wt = −3 in the figure is represented
as ‘1101’. A hierarchy of adder circuits adds all these terms—two numbers at a
time as shown in Fig. 1—and produces a final output that represents the quantity∑|V |

i=1 wiXi − wtest. Since we require it to be negative, we simply enforce that
the final sign-bit s is ‘1’.

4 We can compute much more informed lower and upper bounds as explained later.
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Fig. 1. Shows how to use a digital circuit to enforce the weight of a vertex cover to
be less than a given test weight. Assume that there are 3 vertices, v1, v2, and v3, with
associated Boolean variables X1, X2, and X3, respectively. The corresponding weights
are w1 = 5, w2 = 1, and w3 = 3. The test weight is wt = 3. w1 is converted to its binary
representation ‘0101’ and the ‘1’s are replaced by X1 to represent the term w1X1. w2

and w3 are converted in a similar way. For wt, however, the binary representation
‘0011’ is converted to its negative ‘1101’ in 2’s complement representation to represent
−wt (Xt is set to ‘1’). The final output of the adder circuits represents the quantity
w1X1 + w2X2 + w3X3 − wt. The internal variables of the hierarchy of adder circuits
are added to the SAT encoding. The constraints dictated by the gates of the digital
circuit are added as clauses to the SAT encoding. The final sign-bit s is set to ‘1’ in
the SAT encoding to enforce that the result is negative as required.

Once we have a digital circuit, we can convert it into a CNF Boolean
formula—i.e., a SAT instance—with Tseitin transformation. The internal vari-
ables of the hierarchy of adder circuits are added to the SAT encoding. The
constraints dictated by the gates of the digital circuit are also added as clauses
to the SAT encoding.5 Each integer is represented using a non-redundant num-
ber of bits. When we add two integers with the longer of the two having k bits,
the result is allocated k + 1 bits. All operations are done consistently with the
2’s complement representation of integers. This reformulation is similar to [30]
in the context of translating CSPs into SAT, to [11] in the context of translating
pseudo-Boolean constraints into SAT, to [24] in the context of solving disjunctive
temporal reasoning problems efficiently, and to [4,27] in the context of solving
planning problems.

Several issues need to be addressed in this reformulation of the MWVC
problem. Some of them are: (a) the number of auxiliary variables in the SAT
instances; (b) the number of clauses in the SAT instances; and (c) the precision
of the numbers used to specify the weights. However, these issues have already
been addressed in [4,11,24,27] for SAT encodings of other combinatorial prob-
lems. The arithmetic operations that we encode using the digital circuit are very

5 We skip a detailed discussion of this transformation since it is similar to the works
of various authors mentioned later.
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simple: addition (‘+’), negation (‘-’), and comparison (‘<’). This makes the cir-
cuit representation compact with only logarithmic depth. If each weight has an
L-bit representation, then there are about |V | numbers with L bits each in the
bottom level, |V |/2 numbers with L+1 bits each in the next level, and so on.
This leads to O(L|V |) variables in the SAT encoding. The number of internal
gates is thus of the same order. This makes the SAT encoding small enough to
be solvable by powerful SAT solvers.6 When the weights are not integral, scaling
techniques similar to those in [24] can be used.

Optimizations: Once we have the ability to answer the question of whether
there is a vertex cover with a weight less than a given test weight wtest, we
can employ binary search in the interval [0,

∑|V |
i=1 wi] to converge to the MWVC.

However, this naive strategy is not very effective without the following optimiza-
tions that significantly reduce the number of iterations—i.e., the number of SAT
instances to be solved.

The first optimization, quasi binary search, is based on the following obser-
vation. Suppose, in some iteration, the binary search is in the interval [L,U ], the
test weight is wtest = (L+U)/2, and the SAT solver determines that there exists
a vertex cover with a weight less than the given test weight wtest. Then, the SAT
solver is also able to produce a candidate solution with weight w′ < wtest. In
the next iteration, therefore, the interval for the binary search can be reduced to
[L,w′] instead of [L,wtest]. This can reduce the number of iterations significantly
whenever we find a “good” solution, i.e., a small w′.

The second optimization is to make use of an approximation algorithm to
produce tighter lower and upper bounds for use in the very first iteration instead
of the conservative interval [0,

∑|V |
i=1 wi]. Clarkson’s primal-dual factor-2 approx-

imation algorithm can be used to do so [29]. This algorithm is motivated by a
linear programming perspective on the MWVC problem. Using a simple greedy
strategy, it constructs integral primal and integral dual solutions simultaneously
with the cost of the primal solution being at most twice the cost of the dual
solution. The cost of the optimal solution should be in between; and, therefore,
the greedily constructed primal solution serves as a factor-2 approximation. If
the cost of such an approximate solution is S, then we can set [S/2, S] as the
binary search interval in the very first iteration. It is unlikely that we can do
better since finding a 2 − ε approximation for the MVC or MWVC problem is
UG-hard [16].7

The third optimization is to run an MVC solver by ignoring all the weights
before the first iteration. The cost of the MVC solution produced can then be
evaluated to serve as an upper bound for the first iteration of the binary search.
However, this method is not guaranteed to be effective since it is completely
oblivious to the weights. Nonetheless, it could often produce something useful.

6 In fact, this approach is employed by CircuitTSAT, a state-of-the-art solver for
disjunctive temporal reasoning problems [24].

7 UG-hard means “Unique Games-hard”, i.e., hard under the unique games conjecture.
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4 Empirical Evaluation

We now compare the ILP, MAX-SAT, PBO, ASP and SAT-based approaches
on a variety of MWVC problem instances. We also make important observations
about the behaviors of these solvers. For the ILP-based solver, we use Gurobi [13],
a state-of-the-art solver for mathematical programming, and lp solve [1], a pop-
ular open source mixed integer linear programming solver. For the MAX-SAT-
based solver, we use EvaSolver [23], a state-of-the-art MAX-SAT solver. For
the PBO-based solver, we use WBO [22]. For the ASP-based solver, we use
clingo from Potassco—the Potsdam Answer Set Solving Collection [12]. Because
the MWVC problem is equivalent to the MWIS problem, we can also use a

Table 1. Shows the performances of SBMS, Gurobi and cliquer on unweighted
BHOSLIB benchmark problem instances. The column “Iteration” indicates the number
of iterations needed to produce the optimal solution or reach the running time limit of
2 h. The column “Initial Bounds” indicates the bounds generated by Clarkson’s algo-
rithm. The column “Running Time” indicates the running time in seconds. When the
running time exceeds the running time limit, the upper bound in column “Bounds”
indicates the cost of the current candidate solution and the lower bound indicates that
there cannot be a solution of lower cost. If either the lower bound or upper bound is not
specified, it is marked with a ‘-’. When a problem instance is solved within the running
time limit, the cost of the produced solution matches the entry in column “MVC” and
the column “Bounds” is marked with a ‘-’ in such a case.

Graph SBMS Gurobi cliquer
Instance Vertices MVC Running Iteration Bounds Initial Running Bounds Running Bounds

Time Bounds Time Time
frb30-15-1 450 420 49.83 8 - [218, 437] 22.80 - 15.29 -
frb30-15-2 450 420 40.84 8 - [219, 438] 11.76 - 30.26 -
frb30-15-3 450 420 36.22 8 - [218, 437] 34.05 - 120.33 -
frb30-15-4 450 420 40.38 8 - [219, 439] 29.10 - 0.99 -
frb30-15-5 450 420 34.84 8 - [219, 438] 10.38 - 0.15 -
frb35-17-1 595 560 65.73 8 - [292, 584] 84.87 - 14.20 -
frb35-17-2 595 560 84.39 8 - [292, 584] >7200 [560, 561] 53.66 -
frb35-17-3 595 560 66.97 8 - [291, 582] >7200 [560, 561] >7200 [-, 582]
frb35-17-4 595 560 55.37 8 - [292, 584] >7200 [560, 561] 5189.27 -
frb35-17-5 595 560 54.70 8 - [290, 581] >7200 [560, 561] 98.84 -
frb40-19-1 760 720 90.76 8 - [371, 743] >7200 [720, 722] >7200 [-, 736]
frb40-19-2 760 720 131.52 9 - [372, 745] >7200 [720, 722] >7200 [-, 733]
frb40-19-3 760 720 127.73 9 - [372, 744] >7200 [720, 721] 273.22 -
frb40-19-4 760 720 243.98 9 - [372, 744] >7200 [720, 722] 1555.14 -
frb40-19-5 760 720 198.27 9 - [372, 745] >7200 [720, 722] 42.77 -
frb45-21-1 945 900 2955.26 9 - [465, 930] >7200 [900, 904] >7200 [-, 917]
frb45-21-2 945 900 235.59 9 - [465, 930] >7200 [900, 903] >7200 [-, 917]
frb45-21-3 945 900 2036.46 9 - [465, 930] >7200 [900, 902] >7200 [-, 913]
frb45-21-4 945 900 884.90 9 - [465, 931] >7200 [900, 902] >7200 [-, 914]
frb45-21-5 945 900 1958.17 9 - [465, 931] >7200 [900, 903] >7200 [-, 922]
frb50-23-1 1150 1100 3208.50 10 - [556, 1133] >7200 [1100, 1104] >7200 [-, 1102]
frb50-23-2 1150 1100 >7200 9 [1100, 1101] [567, 1135] >7200 [1100, 1103] >7200 [-, 1113]
frb50-23-3 1150 1100 111.09 10 - [567, 1135] >7200 [1100, 1105] >7200 [-, 1112]
frb50-23-4 1150 1100 113.10 10 - [567, 1135] >7200 [1100, 1104] 1868.10 -
frb50-23-5 1150 1100 113.68 10 - [568, 1137] >7200 [1100, 1104] >7200 [-, 1129]
frb53-24-1 1272 1219 >7200 8 [1219, 1221] [625, 1250] >7200 [1219, 1225] >7200 [-, 1232]
frb53-24-2 1272 1219 114.87 10 - [625, 1251] >7200 [1219, 1224] >7200 [-, 1239]
frb53-24-3 1272 1219 >7200 9 [1219, 1220] [628, 1256] >7200 [1219, 1224] >7200 [-, 1237]
frb53-24-4 1272 1219 >7200 9 [1219, 1220] [628, 1257] >7200 [1219, 1224] >7200 [-, 1228]
frb53-24-5 1272 1219 120.37 10 - [627, 1255] >7200 [1219, 1226] >7200 [-, 1247]
frb56-25-1 1400 1344 >7200 9 [1344, 1345] [692, 1384] >7200 [1344, 1350] >7200 [-, 1365]
frb56-25-2 1400 1344 >7200 9 [1344, 1345] [691, 1383] >7200 [1344, 1352] >7200 [-, 1371]
frb56-25-3 1400 1344 6717.57 10 - [692, 1384] >7200 [1344, 1348] >7200 [-, 1377]
frb56-25-4 1400 1344 >7200 9 [1344, 1345] [692, 1385] >7200 [1344, 1350] >7200 [-, 1348]
frb56-25-5 1400 1344 120.31 10 - [690, 1381] >7200 [1344, 1350] >7200 [-, 1379]
frb59-26-1 1534 1475 >7200 9 [1475, 1476] [757, 1514] >7200 [1475, 1482] >7200 [-, 1493]
frb59-26-2 1534 1475 >7200 9 [1475, 1476] [757, 1515] >7200 [1475, 1481] >7200 [-, 1513]
frb59-26-3 1534 1475 >7200 9 [1475, 1476] [757, 1514] >7200 [1475, 1482] >7200 [-, 1509]
frb59-26-4 1534 1475 >7200 8 [1475, 1477] [756, 1513] >7200 [1475, 1481] >7200 [-, 1516]
frb59-26-5 1534 1475 131.04 10 - [759, 1519] >7200 [1475, 1481] >7200 [-, 1496]
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Table 2. Shows the performance of SBMS on a subset of the weighted BHOSLIB
benchmark problem instances. “Q” refers to enabling quasi binary search. “C” refers to
enabling Clarkson’s algorithm. “N” refers to enabling the use of an initial upper bound
derived from running NuMVC for 30 s. “None” refers to disabling all optimizations. All
running times include the time to perform optimizations as well as the time to perform
the actual search. The running times in the “Q+C+N” column and the “C+N” column
are almost identical because the evolution of the bounds for these benchmark instances
is not affected much by quasi binary search.

Graph Running time of SBMS (mins)

Instance Vertices MWVC Q+C+N C+N Q+C Q+N Q C N None

frb30-15-1 450 825 38.33 38.32 37.68 60.00 35.10 37.49 29.99 35.23

frb30-15-2 450 825 59.97 59.98 58.98 75.12 74.87 59.00 75.00 74.80

frb30-15-3 450 790 0.84 0.84 36.43 0.87 36.84 36.32 0.86 36.73

frb30-15-4 450 825 16.92 16.84 14.47 18.79 18.33 14.39 18.80 18.71

frb30-15-5 450 827 28.28 28.34 47.80 27.73 43.13 47.77 27.75 44.35

clique-based solver that searches for the maximum weighted clique in the edge-
complement graph. We therefore additionally use one such state-of-the-art solver
in our experiments. In particular, we use cliquer [25] for this purpose. For the
SAT-based solver, we use SBMS, which makes use of Lingeling [2], a state-of-the-
art complete SAT solver. For SBMS, we also use Clarkson’s primal-dual factor-2
approximation algorithm for the MWVC problem [29] to generate the initial
lower and upper bounds for the quasi binary search. For the BHOSLIB and
DIMACS benchmark problems described below, SBMS also runs NuMVC [5] for
30 s in order to yield a possibly tighter upper bound. Except for Gurobi and Eva-
Solver for which we used prebuilt binaries, all solvers were implemented in C++,
were compiled by gcc 4.9.2 with the -O3 option, and were run on a GNU/Linux
workstation with Intel Xeon Processor E3-1240 v3 (8 MB Cache, 3.4 GHz) and
16 GB RAM.

Since the MWVC problem has not received much attention, there do not
exist any benchmark instances for it. However, benchmark instances for the
MVC problem do exist, such as the BHOSLIB and DIMACS suites used in [5].
We created MWVC versions of these instances by arbitrarily assigning a weight
of i mod 3 + 1 to a vertex with index i to achieve repeatability of the experi-
ments. As argued before, the number of variables in the SAT encoding increases
linearly with the size of the bit representations of the weights and thus only
logarithmically with their values (scaled to be non-negative integers).

Clearly, any good MWVC solver should also perform well on regular MVC
problem instances. Our first experiment, therefore, used the unweighted version
of the BHOSLIB instances. In essence, we solved hard benchmark instances of the
MVC problem using a complete solver. Table 1 shows our performance results.
We solved more than 50 % of these benchmark instances quite comfortably. Even
in the cases that were not solved within the running time limit, SBMS returned
solutions with the guarantee that they were no more than a cost of 1 away from
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Table 3. Shows the performances of Gurobi, lp solve, EvaSolver, WBO, clingo, cliquer
and SBMS on weighted DIMACS benchmark problem instances. When the running
time exceeds the running time limit of 1 h, the corresponding entry is marked with
“>3600”.

Graph Running times (secs)

Instance Vertices Edges Gurobi lp solve EvaSolver WBO Clingo Cliquer SBMS

brock200 2 200 10024 32.41 168.44 83.86 >3600 23.28 <0.01 212.34

brock200 4 200 6811 52.64 1078.76 491.10 >3600 558.61 0.08 1438.92

brock400 2 400 20014 >3600 >3600 >3600 >3600 >3600 226.74 >3600

brock400 4 400 20035 >3600 >3600 >3600 >3600 >3600 208.74 >3600

brock800 2 800 111434 >3600 >3600 >3600 >3600 >3600 3220.27 >3600

brock800 4 800 111957 >3600 >3600 >3600 >3600 >3600 2826.08 >3600

C1000.9 1000 49421 >3600 >3600 >3600 >3600 >3600 >3600 >3600

C125.9 125 787 0.72 28.64 1649.65 >3600 >3600 3.37 >3600

C2000.5 2000 999164 >3600 >3600 >3600 >3600 >3600 >3600 >3600

C2000.9 2000 199468 >3600 >3600 >3600 >3600 >3600 >3600 >3600

C250.9 250 3141 2058.10 >3600 >3600 >3600 >3600 >3600 >3600

C4000.5 4000 3997732 >3600 >3600 >3600 >3600 >3600 >3600 >3600

C500.9 500 12418 >3600 >3600 >3600 >3600 >3600 >3600 >3600

DSJC1000.5 1000 249674 >3600 >3600 >3600 >3600 >3600 43.42 >3600

DSJC500.5 500 62126 >3600 >3600 >3600 >3600 >3600 0.46 >3600

gen200 p0.9 44 200 1990 3.38 >3600 >3600 >3600 >3600 1722.84 >3600

gen200 p0.9 55 200 1990 0.10 2921.30 872.60 >3600 >3600 43.05 >3600

gen400 p0.9 55 400 7980 >3600 >3600 >3600 >3600 >3600 >3600 >3600

gen400 p0.9 65 400 7980 >3600 >3600 >3600 >3600 >3600 >3600 >3600

gen400 p0.9 75 400 7980 381.13 >3600 >3600 >3600 >3600 >3600 >3600

hamming10-4 1024 89600 >3600 >3600 >3600 >3600 >3600 >3600 >3600

hamming8-4 256 11776 1.34 >3600 800.69 >3600 >3600 0.97 71.42

keller4 171 5100 0.63 475.42 55.65 >3600 132.62 0.03 69.69

keller5 776 74710 1510.35 >3600 >3600 >3600 >3600 >3600 >3600

keller6 3361 1026582 >3600 >3600 >3600 >3600 >3600 >3600 >3600

MANN a27 378 702 <0.01 0.11 0.12 0.16 >3600 >3600 43.66

MANN a45 1035 1980 0.01 1.30 0.82 1.26 >3600 >3600 242.38

MANN a81 3321 6480 0.03 19.54 10.12 18.85 >3600 >3600 1783.03

p hat1500-1 1500 839327 >3600 >3600 >3600 >3600 >3600 0.98 >3600

p hat1500-2 1500 555290 >3600 >3600 >3600 >3600 >3600 >3600 >3600

p hat1500-3 1500 277006 >3600 >3600 >3600 >3600 >3600 >3600 >3600

p hat300-1 300 33917 56.33 309.62 17.88 >3600 3.01 <0.01 131.43

p hat300-2 300 22922 94.83 >3600 >3600 >3600 1512.84 0.13 >3600

p hat300-3 300 11460 1764.59 >3600 >3600 >3600 >3600 47.11 >3600

p hat700-1 700 183651 >3600 >3600 2887.61 >3600 1548.55 0.04 3532.76

p hat700-2 700 122922 >3600 >3600 >3600 >3600 >3600 1247.51 >3600

p hat700-3 700 61640 >3600 >3600 >3600 >3600 >3600 >3600 >3600

the optimal ones.8 The running times of lp solve, EvaSolver, WBO and clingo
are not listed in Table 1 since none of them could solve any of the benchmark
instances within 2 h. It is also easy to see that SBMS significantly outperforms
8 frb53-24-1 and frb59-26-4 are the only two exceptions with a gap of 2.
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Fig. 2. Shows the evolution of the lower and upper bounds with the running time of
SBMS on the weighted BHOSLIB instance frb30-15-1. The mid-point of the bounds is
used as the testing weight for the SAT instance posed at that time.

even Gurobi and cliquer both in terms of the number of problem instances solved
as well as the quality of the bounds produced.

As expected, the running times of NuMVC are smaller on these benchmark
instances compared to the running times of SBMS [5]. However, NuMVC also
fails to find an optimal solution on a few of these benchmark instances. In
addition, NuMVC solves only MVC problem instances and, furthermore, is an
incomplete solver that cannot prove the optimality of the produced solution nor
provide optimality bounds. Some other state-of-the-art complete solvers, like
MaxCLQdyn+EFL+SCR [21], were not included in the evaluation of NuMVC
in [5] since their performance was poor.9 SBMS, therefore, is a state-of-the-art
complete solver for MVC instances.

Our second experiment used the weighted BHOSLIB instances. None of
lp solve, EvaSolver, WBO, clingo or cliquer could solve any of these instances
in less than 2 h. Table 2 shows the performance of SBMS—and its variants with
various optimization features enabled or disabled—on the first five weighted
benchmark instances that it could solve.10 For the instances that it could not
solve, SBMS still produced useful bounds. For generality, our third experiment
used a different set of benchmark instances—the weighted DIMACS instances.
Table 3 shows the performances of Gurobi, lp solve, EvaSolver, WBO, clingo,
cliquer and SBMS on these instances. Once again, SBMS produces useful bounds
when it cannot solve a problem instance.

To understand the anytime property of SBMS, we also ran experiments to
observe patterns in its behavior. Figures 2 and 3 show the typical behavior of
9 See the second paragraph on page 18 of [5] that states “... MaxCLQdyn+EFL+SCR

is not evaluated on BHOSLIB benchmark which is much harder and requires more
effective technologies for exact algorithms ...”.

10 Gurobi was competitive with SBMS on these five instances.
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Fig. 3. Shows the iteration number as a function of the running time of SBMS on the
weighted BHOSLIB instance frb30-15-1.

SBMS on a fixed benchmark instance. Figure 2 illustrates that the intervals
between the optimality bounds typically decrease very quickly, and the solver
thus finds a good solution fast. SBMS spends most of the time in trying to
improve a good solution to the optimal solution. This “diminishing returns”
property which is so pronounced that it is apparent despite a log scale used in
the figure is very desirable for an anytime algorithm. Figure 3 reinforces this
observation by showing that the SAT instances in the early iterations are much
easier to solve than in later iterations (which have smaller intervals between
optimality bounds). Thus, by the time the SAT instances get hard to solve, the
solver has already found a good solution and is only trying to improve it further.

5 Conclusions and Future Work

In this paper, we presented a SAT-based solver for the MWVC problem. We first
argued that, because the MWVC problem is not fixed-parameter tractable, none
of the state-of-the-art methods for the MVC problem can be easily modified to
tackle the MWVC problem. We compared several solvers based on ILP, MAX-
SAT, PBO, ASP and SAT reformulations. Our reformulation of the MWVC
problem as a series of SAT instances yields an anytime algorithm that exhibits
the “diminishing returns” property and quickly converges to a good solution.
In most cases, SBMS significantly outperforms the other methods. SBMS uses
quasi binary search in the inner loop and a primal-dual approximation for the
MWVC to provide a good starting point.

While SBMS appears to provide an alternative to the few competitive solvers
that currently exist for the MWVC problem, we presented it here mostly as a
strawman solver for the purpose of gaining interest among AI researchers to
study this combinatorial problem more closely. Recent results—like in [19,20]—
have demonstrated the importance of the MWVC problem for a wide range of
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other combinatorial problems in AI applications. Future work will not only be
directed toward developing a better solver for the MWVC problem but also
toward exploring the full implications of having good solvers available.
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Abstract. In this paper, a generalization of a recently proposed optimal
path problem concerning decisions for improving connectivity is consid-
ered [see 6]. Each node in the given network is associated with a con-
nection delay which can be reduced by implementing upgrading actions.
For each upgrading action a cost must be paid, and the sum must satisfy
a budget constraint. Given a fixed budget, the goal is to choose a set of
upgrading actions such that the total delay of establishing paths among
predefined node pairs is minimized. This model has applications in areas
like multicast communication planning and wildlife reserve design.

A novel formulation is provided along with an ad-hoc branch-and-
cut and a stabilized Benders decomposition algorithm. These strategies
exploit connections of the considered problem with other well-known net-
work design problems. Computational results on a large set of instances
show the efficacy of the proposed preprocessing methods and optimization
algorithms with respect to existing alternatives for the problem. Comple-
mentary, the scalability of the models and the corresponding algorithms
is investigated with the aim of answering questions raised by [6].

1 Introduction and Motivation

Finding optimal paths in networks is a fundamental task in a plethora of decision
making contexts involving traffic in some form. The basic variant consists of
finding a minimum distance path between two predefined points (nodes), source
and target. The decision on which connections (or edges) must be chosen to
connect source and target is typically taken by considering the sum of the lengths
or weights of these edges (which is generally minimized), while respecting some
other set of topological and/or operative requirements (the reader is referred
to [10,16] and the references therein, which propose models and algorithms for
different optimal path problems).

Although edge-weighted networks offer a broad range of modeling possibilities
in several applications, there exist problems in which decisions must be taken
based on the set of nodes traversed by a given path. Hence, the performance
of a path depends on node weights rather than edge weights. For instance, in
c© Springer International Publishing Switzerland 2016
C.-G. Quimper (Ed.): CPAIOR 2016, LNCS 9676, pp. 406–420, 2016.
DOI: 10.1007/978-3-319-33954-2 29
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a multicast communication setting a backbone server broadcasts a signal to
many subscribers; the layout of such communication network should be such
that delays (which express when the signal traverses a node) between the server
and all subscribers must be minimal or bounded. In such a problem, the decision
maker seeks for an arrangement of nodes, technologies, and connections such that
a positive function of node delays is minimized or it fulfills a Quality-of-Service
(QoS) requirement.

The Upgrading Shortest Path problem (USP), originally proposed by [6], fits
within the above mentioned context. In this problem, an upgrading action can
be taken, at a certain cost, in order to decrease the delay induced by nodes.
The optimization problem corresponds to (i) finding an upgrade strategy that
induces a minimum network delay while respecting a total upgrade cost budget,
or (ii) finding an upgrade strategy that yields a minimum total upgrade cost
while ensuring that the overall delay is not greater than a given QoS bound.
Moreover, and as stated in [6], the USP can be regarded as a decision aid tool
for the design of wildlife reserves (see, e.g., [5]).

The problem of finding optimal upgrading schemes for improving network
effectiveness has been addressed before. In the seminal work [14] several variants
of network upgrading problems are proposed. For these variants delays can be
caused both along edges and across nodes, so the upgrade decisions involve both
components. The complexity of these problems is provided, showing that they
range from polynomially solvable problems up to NP-hard problems. Later on,
in [12], a problem closely related to the USP is proposed. If a node is upgraded at
a given cost, the weight of all incident edges is decreased. The goal is to find an
upgrade strategy so as to reduce the total weight of a corresponding minimum
spanning tree in the graph. Only complexity results are provided. In [3] a set
of arc-based upgrading problems is proposed; in all cases the aim is to find an
upgrading strategy so that a min-max type of objective is optimized. Complexity
results are provided as well as heuristic approaches.

From an algorithmic point of view, [6] first prove that the USP is NP-hard.
Additionally, the authors provided a mixed integer linear programming (MIP)
formulation for the USP and designed two greedy algorithms. The performance
of these algorithms is contrasted with results obtained by solving the formula-
tion using a stand-alone MIP solver. The MIP model and the heuristics are able
to tackle synthetic grid instances with up to 20×20 nodes and a medium size
real-world instance taken from a wildlife planning application. Although interest-
ing, the obtained results reveal the need of developing more sophisticated exact
tools able to solve larger instances while still providing reasonable guarantees of
optimality.

Contribution and Paper Outline. The aim of this paper is to provide dif-
ferent exact algorithmic tools to solve the budget constrained variant of the
generalized counterpart of the USP. Generalized means that one can choose
among several upgrading actions at each node. This generalization is mentioned
in [6] as an interesting topic for further work. Experimental results on a large set
of benchmark instances show that the proposed methods are capable of outper-
forming the results provided by the compact formulation presented in [6] and,
moreover, are capable of solving larger instances.
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The paper is organized as follows. A formal definition of the problem and a
formulation based on node separators, along with a corresponding exact algo-
rithm, are presented in Sect. 2. A decomposable formulation along with a Benders
decomposition scheme is provided in Sect. 3. Computational results on different
data sets are reported in Sect. 4. Finally, concluding remarks are drawn in Sect. 5.

2 Cut-Based Formulation

In this Section a formal definition of the problem is first presented. Afterwards,
a formulation based on connectivity cuts is given along with a B&C scheme for
tackling it.

Problem Definition. Let G = (V,E) be an undirected graph, where V is the
set of nodes and E is the set of edges. Set P ⊆ V × V corresponds to the set
of node pairs, say p = (s, t), that must be connected by paths. Let dv ≥ 0, be
the delay of node v, v ∈ V ; likewise, for each upgrading level l ∈ L and node
v ∈ V , let dl

v ≥ 0 be the reduced delay of node v, if the node is upgraded to level
l. Complementary, cl

v ≥ 0 corresponds to the cost of upgrading node v ∈ V to
level l ∈ L. Finally, let B ≥ 0 be the total cost budget.

An upgrading scheme S is a partition V 0 ∪ V 1 ∪ . . . ∪ V l of the node set V ,
with the meaning that a node i ∈ V l is updated to level l, a node i ∈ V 0 is
not updated. An upgrading scheme S is feasible, if the cost of the upgrading
actions induced by S do not exceed B. Let S denote the family of all upgrading
schemes. Let Dp(S) be the delay of the shortest path connecting p = {s, t}
under upgrading scheme S. Using this notation, the problem can be formulated
as follows

min

⎧
⎨

⎩
1

|P |
∑

p∈P

Dp(S) |
∑

l∈L

∑

v∈V l

cl
v ≤ B,S ∈ S

⎫
⎬

⎭ .

In other words, we look for a feasible upgrading scheme that induces a minimum
average path delay. This definition corresponds to the budget-constrained variant
of the general USP. Note that even in the case where |L| = 1, the problem has
been proven to be NP-hard [6]. In the following, the constant term 1

|P | will be
neglected for ease of exposition.

2.1 Node Separators and MIP Formulation

Let x ∈ {0, 1}|V |×|L| be a vector of binary variables such that xl
v = 1 if node v ∈

V is upgraded to level l ∈ L, and xl
v = 0 otherwise. Likewise, let y ∈ {0, 1}|V |×|P |

be a vector of binary variables such that ypv = 1 if node v ∈ V is part of the
path connecting the pair p = (s, t) ∈ P , and ypv = 0 otherwise. Complementary,
let z ∈ {0, 1}|V |×|P |×|L| be a vector of binary variables such that zl

pv = 1 if the
node v ∈ V , upgraded to level l ∈ L, is part of the path connecting the pair
p = (s, t) ∈ P , and zl

pv = 0 otherwise. For an arbitrary set of nodes, say S ⊆ V ,
for any pair p ∈ P and for a given l ∈ L, the notation yp(S) =

∑
v∈S yvp and

zl
p(S) =

∑
v∈S zl

vp will be used. The following definition is required.
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Definition 1 (Node separator). For a given pair (s, t) ∈ P , a subset of nodes
N ⊆ V \{s, t} is called (s, t) node separator if and only if after eliminating N
from V there is no (s, t) path in G. A separator N is minimal if N\{i} is not
a (s, t) separator, for any i ∈ N . Let N (s, t) denote the family of all (s, t)
separators.

With these elements, a feasible set of paths along with an upgrading scheme
must fulfill the following set of constraints,

yp(N) +
∑

l∈L

zl
p(N) ≥ 1, ∀N ∈ N (s, t), p = (s, t) ∈ P (C.1)

zl
pv ≤ xl

v, ∀l ∈ L, ∀v ∈ V \{s, t}, ∀p = (s, t) ∈ P (C.2)

∑

l∈L

∑

v∈V

cl
vxl

v ≤ B. (C.3)

Constraints (C.1) ensure that for every pair p = (s, t) in P , there is a path com-
prised by a combination of normal nodes or upgraded nodes. Constraint (C.2)
imposes that an upgraded node can be used (zl

pv = 1), if and only if it has been
actually upgraded (xl

v = 1). Finally, constraint (C.3) imposes that any feasible
upgrading scheme must meet the budget limitation. Hence, one can formulate
the budget constrained USP as follows,

(NODE) min
∑

(s,t)=p∈P

∑

v∈V |v �=s,t

(
dvypv +

∑

l∈L

dl
vzl

pv

)
(1)

s.t. (C.1)−(C.3) (2)

(x,y, z) ∈ {0, 1}|V |×|L|+|V |×|P |+|V |×|P |×|L|. (3)

Note that although this formulation contains an exponential number of con-
straints (C.1), it can be solved efficiently by a branch-and-cut (B&C) algorithm
in which these constraints are added on-the-fly.

2.2 Branch-and-Cut Algorithm

The main ingredient of the B&C approach is its separation scheme, in which
violated constraints of type (C.1) are identified during the exploration of the
branch-and-bound tree. Moreover, two primal heuristic procedures are also dis-
cussed in this Section.

Separation Schemes. Each time (NODE) is solved, the current LP solution
(x̃, ỹ, z̃) is used to compute a set of violated inequalities (C.1). To perform sepa-
ration, the following transformation of G into a bi-directed graph G′

A = (V ′, A′)
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is needed (see also [1,7] for similar transformations). This graph is obtained
by first bi-directing G (i.e., each edge is replaced by two anti-parallel arcs),
and then splitting each node i ∈ V into an arc (i1, i2). In other words, a
graph G′

A = (V ′, A′) is created such that V ′ = {i1 | i ∈ V } ∪ {i2 | i ∈ V },
A′ = {(i2, j1) | (i, j) ∈ A} ∪ {(i1, i2) | i ∈ V }. To separate inequalities (C.1) for
a path (s, t) = p ∈ P , arc capacities in G′

A are defined as follows:

capuv =

{
ỹpi +

∑
l∈L z̃l

pi, if u = i1, v = i2, i ∈ V, i �= s, t

∞, otherwise.

Next, the maximum flow/minimum cut between s2 and t1 in G′
A is calculated.

Note that due to the choice of arc capacities, a minimum (s2, t1) cut in G′
A

solely contains split-arcs, and thus corresponds to an (s, t) node separator in G.
If the computed maximum flow is smaller than one, the associated inequality of
type (C.1) is violated, and subsequently added to (NODE).

Alternatively, if the current LP solution (x̃, ỹ, z̃) is integer at a given node
of the search tree, the following more efficient separation scheme runs in linear
time for each p ∈ P :

Let G̃p = (Ṽ p, Ẽp) be the subgraph induced by Ṽ p = {v ∈ V | ỹpv +∑
l∈L z̃l

pv = 1}. If G̃p contains a path between s and t, no violated inequality
exists. Otherwise, G̃p contains at least two disconnected components Hp

s and
Hp

t , such that s ∈ Hp
s and t ∈ Hp

t .
Let H̄p

t be the set of neighboring nodes of Hp
t in G, i.e., H̄p

t = {v ∈ V \Hp
t |

∃{u, v} ∈ E and u ∈ Hp
t }. A minimal separator between s and t can be found

as follows: (i) delete from G all edges induced by Hp
t ∪ H̄p

t ; (ii) apply a BFS
from s, and let R(s) be the set of all the reached nodes; finally, (iii) the set
Ns,t = R(s)∩ H̄p

t defines a minimal (s, t) node separator, and the corresponding
cut of type (C.1) is added to the model.

Primal Heuristic. In order to accelerate the convergence of the method, a
simple, but effective, LP-based procedure has been designed with the aim of using
the current LP values for the construction of feasible (and eventually incumbent)
solutions.

Let (x̃, ỹ, z̃) be the current LP solution; the primal heuristic works as follows,

Step 1: For every v ∈ V , find �v = arg maxl∈L(x̃l
v), and calculate d̃v = (1 −

x̃�v
v )dv + x̃�v

v d
�v

v .
Step 2: Compute the shortest path (SP) for every (s, t) = p ∈ P using the

delay values calculated in Step 1; let Ỹ =
{

Ỹ 1, Ỹ 2, . . . , Ỹ |P |
}

be such
paths.

Step 3: For every v ∈ V and l ∈ L, compute γl
v = dv−dl

v

cl
v

∑
p∈P

∣∣∣Ỹ p ∩ v
∣∣∣ .

Afterwards, use a knapsack-like heuristic to pack as many upgrades
into the paths as possible (which defines x), considering the order given
by the values γ.
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In this procedure, the values of the x variables are set in Step 3; hence, the
values of the (y, z) variables can be straightforwardly calculated from the paths
obtained in Step 2.

Local Branching. Along with the above mentioned construction heuristic, a
state-of-the-art procedure for generating primal solutions using an MIP-solver
as black-box, known as Local Branching is implemented (see [8]; the technique is
also known as Limited Discrepancy Search [11] within the constraint program-
ming community).

Roughly speaking, for a given (feasible) upgrade scheme x̃, Let S = {(l, v) |
x̃l

v = 1, ∀v ∈ V,∀l ∈ L} be a set of pairs such that each element denotes if a
node is upgraded using a certain upgrade type in the current incumbent solution.
The goal is to find an improved neighboring solution containing at least |S| − k
upgrades from the current incumbent solution. This is achieved by solving the
current model via branch-and-bound (B&B) after adding the following so-called
asymmetric local branching constraint

∑
(l,v)∈S(1 − xl

v) ≤ k.
Initially, k := 10 and a B&B node limit of 10000 and time limit of 10 s are

imposed. If within the current neighborhood no improving solution is found for
the given node and time limit, k is increased by 5. The procedure is repeated
as long as k ≤ 20. As soon as an improving solution has been found, the B&B
is restarted, and k is reset to its initial value. In each B&B node the proposed
primal heuristic is executed. Only integer solutions are cut off, i.e., inequalities
are only separated when the current LP solution is integral. The cuts separated
are gathered in a cut pool and added to the model for subsequent iterations.

At the beginning of the resolution process, the previously described primal
heuristic is used to produce a starting solution, using the original delay values.

3 Benders-Based Formulation

3.1 Decomposable Formulation

The USP problem embodies the typical structure of a two-stage like problem;
in a first stage one would decide over the upgrading scheme, and on a second
stage one would define the corresponding shortest paths. Therefore, the USP
becomes a natural candidate to be solved via Benders Decomposition: the master
problem decides over the values of vector x (upgrading decisions); this solution is
then used as parameter when solving the corresponding slave problems (shortest
paths) whose solutions are mapped back in the master in the form of so-called
(optimality) Benders cuts.

Considering the definition of variables presented before, the master problem
is given by

(BF) min

{
∑

p∈P

θp | θ ≥ Φ(x, P ), (C.3) x ∈ {0, 1}|V |×|L| and θ ∈ R
|P |
≥0

}

, (MP)

where θ ∈ R
|P |
≥0 corresponds to a set of |P | auxiliary variables, where each of them

serves as a surrogate of the lower-bound, given by Φ(x, p), of corresponding p-th
path.
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Recall the graph transformation described before for the separation of con-
nectivity cuts for the linear case. For an optimal solution, say x∗, of (MP), and
a given path (s, t) = p ∈ P , the underlying slave problem corresponds to

(BF-Sub) Φ(x∗, p) = min
∑

v∈V |v �=s,t

(
dv ȳv +

∑

l∈L

dl
v z̄l

v

)
(SP.1)

s.t z̄l
v ≤ xl∗

v ∀l ∈ L, ∀v ∈ V (SP.2)∑

e∈δ−(s−)

fpe = 0 and
∑

e∈δ+(s+)

fpe = 1 (SP.3)

∑

e∈δ−(t−)

fpe = 1 and
∑

e∈δ+(t+)

fpe = 0 (SP.4)

∑

e∈δ−(v−)

fpe = ȳv +
∑

l∈L

z̄l
v and

∑

e∈δ+(v+)

fpe = ȳv +
∑

l∈L

z̄l
v, ∀v ∈ V \{s, t} (SP.5)

(ȳ, z̄) ∈ {0, 1}|V |+|V |×|L| and f ∈ [0, 1]|A
′|, (SP.6)

where f ∈ [0, 1]|A
′| is a set of flow variables that enable to model an s, t-path on

G′ and associate the corresponding delay values in the objective function.
The algorithmic scheme designed on the basis of this decomposable formula-

tion will be outlined in detail in Sect. 3.2.

3.2 Benders Decomposition

In the following, the generation of Benders cuts and the details of the imple-
mented stabilization procedure are described. Note that in this paper the Ben-
ders decomposition has been implemented within a B&C framework.

Benders Cuts: Fractional and Integer Case. Due to the structure of the
above presented formulation, it holds that the slave problem is always feasible for
any master solution; therefore the generated cuts are then regarded as optimality
cuts.

The separation of Benders cuts depends on whether the current master solu-
tion x̃ is integer or not. If x̃ is fractional, the corresponding slave problem (SP.1)–
(SP.6) is solved as a linear problem and the dual multipliers are then used to
build the cut.

Note that this decomposition scheme falls within the general scheme for solv-
ing fixed-charged (uncapacitated) network design problems (see [4,13], for fur-
ther details). In particular, for integer x̃, the subproblem for a p ∈ P reduces
to a shortest-path problem in the graph induced by the upgrades selected in x̃.
Let SPp(x̃) be the value of a shortest-path in this graph and for each l ∈ L, let
Sl = {v ∈ V | x̃l

v = 1}. If for a given p ∈ P it holds that θ̃p < SPp(x̃, p), the
following inequality cuts off the current integer point,

θp ≥ SPp(x̃, p) −
∑

l∈L

∑

v/∈Sl

(dv − dl
v)xl

v. (CC)
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The validity of (CC) can be explained as follows. Clearly, removing any node
from Sl cannot improve the value of the shortest path. Moreover, adding a node v
to some Sl may improve the value SPp(x̃, p) obtained with the currently selected
updates, but the improvement is bounded by (dv − dl

v).

Stabilization. Benders decomposition frequently exhibits a strong tailing-off
effect, i.e., cutting planes get significantly less effective as the lower bound
increases. A possible strategy to address this issue is to include some form of
stabilization into the performed separation scheme. In the proposed implemen-
tation, a simple stabilization procedure similar to the in-out-method (see [2,9])
is applied at the root node. Instead of performing separation for the (optimal)
master LP solution x̃, a separation point xsep is computed as linear combination
between a stabilization point x̄ and the optimal LP solution x̃.

For x̄, the vector 1n is used. The separation point xsep is computed as
xsep := γ x̄ + (1 − γ) x̃, for some γ ∈ (0.1, 1]. In each cutting plane iter-
ation, separation points are iteratively generated until the generated point is
violated. The parameter γ is chosen in the form of a binary-search, approaching
x̃ with each iteration. If no violated point is found within five iterations, the
stabilization procedure is terminated and separation is performed for x̃.

When performing separation based on x̃, adding a small ε to x̃ improves the
strength of cuts. However, during the final cutting plane iterations, this approach
may lead to numerical difficulties, so the ε is removed once the lower bound
increase between iterations is below a fixed threshold. If the removal of ε does not
decrease tailing-off, the cut-loop is terminated and branching is performed. After
the root node, separation of optimality cuts is performed without stabilization
and the number of cutting plane iterations is limited to five per B&B node.

Primal Heuristic. As for the B&C approach, a scheme for generating primal
(master) feasible solutions is embedded into the Benders decomposition. This
scheme is basically equivalent to the one designed for the B&C: the master
(optimal) solution x̃ is used for computing a vector of delays d̃ (Step 1), which
are then used to compute a new feasible vector x̌ along with values θ̌p (the value
of the corresponding p-th shortest path). The pair (x̌, θ̌) is therefore a candidate
of a new incumbent solution.

4 Computational Results

Experimental Setting. The algorithmic schemes described in Sects. 2 and 3
have been implemented in C++ using the CPLEX 12.6 Concert framework. All
experiments have been performed on an Intel Xeon CPU with 2.5 GHz and 20
cores (only one core is used per run). A fixed memory limit of 16 GB and a
time limit of 1800 s have been imposed. The budget B has been set to βBmax,
where Bmax corresponds to the total budget necessary to achieve the shortest
delay possible. Three different budget configurations have been tested, i.e., β ∈
{0.1, 0.25, 0.5}.
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Benchmark Instances. Two types of instances are considered. The first type
corresponds to N× N grid graphs (see [6]). The second type are random instances
generated by the following scheme: Given the number of nodes, arcs are placed
randomly between nodes until a specified density α = |E|/|V | is reached and
the graph is connected. For each type, set P is defined by randomly selecting
|P | pairs of nodes.

For both types of instances, the upgrade costs c have been chosen uniformly
at random from the range [50, 1000]. For defining the delay of upgraded nodes,
the following schemes have been considered [6]: (i) Scaled – each upgraded delay
value is set to d′

v = cdv, ∀v ∈ V , where c ∈ [0, 1] scales dv. For experiments, c has
been set to 0.1, 0.5 and 0.9. (ii) Constant – each upgraded delay value d′

v = 50.
(iii) Tiered – for dv ∈ (500, 1000], d′

v = 500, for dv ∈ (100, 500], d′
v = 75, and

for dv ∈ [50, 100], d′
v = 50. Thus in total five upgrading schemes are considered:

Scaled = 0.1, Scaled = 0.5, Scaled = 0.9, Constant, Tiered.
One grid instance has been generated for every combination between upgrad-

ing schemes, graph size N ∈ {20, 30} and number of paths |P | ∈ {5, 10, 20, 40}
(40 grid instances). Similarly, one dense instance has been generated for every
combination between upgrading schemes, number of nodes |V | ∈ {1000, 2000}
and graph density α ∈ {4, 8, 6, 32}, with a fixed number of paths |P | = 20
(40 dense instances).

4.1 Algorithmic Performance

First, experiments are reported which measure the average effect of all imple-
mented algorithmic components separately, i.e., the stabilization procedure,
primal heuristics and preprocessing. Afterwards, a detailed comparison of the
algorithmic strategies is given. These strategies include B&C algorithms based
on the proposed Benders formulation (BF) and cut formulation based on node
separators (NODE). As a third strategy the multi-commodity flow formulation
(MCF) proposed in [6] is considered.

Table 1 shows the average influence of the implemented stabilization proce-
dure. For each considered budget slack β, all instances have been run once with
and without stabilization. Columns t′R(s) and tR(s) display the average root
relaxation solution time for formulation (BF), with and without stabilization,
respectively. The column gR(%) lists the average root gap to the best known
solution. Results show that the speedup increases with the value of β, reaching

Table 1. Comparison of the average root relaxation solution time for formulation (BF)
with (tR) and without stabilization (t′

R).

β tR(s) t′
R(s) gR(%)

0.1 21.49 19.88 1.59

0.25 58.19 44.62 3.64

0.5 573.48 23.43 0.69
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one order of magnitude for β = 0.5. The gap of the root relaxation is on aver-
age already close to the optimum, suggesting that both (MCF) and its Benders
reformulation (BF) achieve high-quality bounds.

Table 2 compares the influence of primal heuristics. For each considered bud-
get slack β, all instances have been run once with and without primal heuristics.
The columns compare running time and gap for each configuration. Average
results are reported only for formulations (NODE) and (BF). For formulation
(MCF), the implemented primal heuristics did not manage to outperform the
default CPLEX heuristics, and were thus switched off for (MCF) in all sub-
sequent runs. The results show that the primal heuristics play a crucial role
for formulations (BF) and (NODE), where less information is available for the
LP solver to exploit than for (MCF). Note that since the implemented local
branching heuristic is potentially very time-consuming, as the exploration of
neighborhoods involves the solution of LPs, in our implementation it is only
applied once after solving the root relaxation.

Table 2. Average influence of primal heuristics on running time and gap.

β = 0.1 β = 0.25 β = 0.5

t(s) g(%) t(s) g(%) t(s) g(%)

W/O HEUR 535 5.51 600 8.93 470 4.47

HEUR 391 2.68 451 4.70 365 2.04

As a preprocessing step the same procedure as proposed in [6] is implemented,
which can be directly incorporated into (BF) and (NODE). On average, the
percentage of fixed node variables is 2.82 % (constant), 4.64 % (scaled = 0.1),
25.28 % (scaled = 0.5), 57.24 % (scaled = 0.9) and 24.55 % (tiered). The results
show that the preprocessing is not very effective for the delay types which were
established as difficult in [6].

Tables 3 and 4 compare the algorithms’ performance for |L| = 1. For each
setting both the running time (in seconds, columns “t(s)”) and optimality gap
(in percent, columns “g(%)”) are reported. All results are partitioned based on
budget slack β and delay structure (scaled, tiered, constant). If a run exceeds
its time limit, the corresponding time column contains TL. If for a run the
formulation’s root relaxation could not be solved within the time limit, the gap
column contains “–”. For each configuration the best results are marked in bold.

The results in Table 3 compare scalability with respect to the number of
paths on grid graphs 20 × 20 and 30 × 30. For β = 0.1, the performance of (BF)
is best for delay structures scaled = 0.5, scaled = 0.9 and tiered, where (MCF)
is outperformed even for small values of |P |. For delay structures scaled = 0.1
and constant, the performance is more erratic, and (MCF) frequently achieves
comparable or better performance even for |P | = 40.

For higher budgets, (BF) also tends to perform worse in general. As already
observed by [6], delay structures constant and scaled = 0.1 are more difficult for
(MCF), and this also holds for (BF). The worse performance of (BF) for the
aforementioned configurations can be explained by the fact that in these cases
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Table 3. Test results on grid graphs.

β = 0.1 β = 0.25 β = 0.5

MCF BF NODE MCF BF NODE MCF BF NODE

|P | t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%)

N = 20 × 20, Constant

5 4 0.0 4 0.0 26 0.0 16 0.0 159 0.0 143 0.0 6 0.0 229 0.0 28 0.0

10 5 0.0 5 0.0 21 0.0 30 0.0 76 0.0 63 0.0 1 0.0 7 0.0 12 0.0

20 271 0.0 266 0.0 TL 0.1 741 0.0 TL 5.8 TL 17.1 146 0.0 254 0.0 549 0.0

40 TL 10.6 TL 18.5 TL 24.0 TL 15.0 TL 22.3 TL 41.3 693 0.0 TL 0.8 TL 5.5

N = 20 × 20, Scaled = 0.1

5 2 0.0 4 0.0 20 0.0 14 0.0 72 0.0 187 0.0 10 0.0 61 0.0 44 0.0

10 10 0.0 12 0.0 59 0.0 52 0.0 178 0.0 1363 0.0 20 0.0 90 0.0 78 0.0

20 184 0.0 112 0.0 1279 0.0 1662 0.0 TL 0.5 TL 22.1 197 0.0 530 0.0 1692 0.0

40 TL 5.7 TL 4.1 TL 24.2 TL 18.1 TL 15.8 TL 43.7 TL 1.6 TL 6.1 TL 31.3

N = 20 × 20, Scaled = 0.5

5 2 0.0 2 0.0 9 0.0 3 0.0 2 0.0 16 0.0 2 0.0 2 0.0 7 0.0

10 2 0.0 1 0.0 18 0.0 2 0.0 3 0.0 22 0.0 1 0.0 1 0.0 15 0.0

20 9 0.0 5 0.0 93 0.0 6 0.0 6 0.0 74 0.0 29 0.0 28 0.0 117 0.0

40 310 0.0 42 0.0 TL 0.0 328 0.0 124 0.0 1736 0.0 215 0.0 197 0.0 1485 0.0

N = 20 × 20, Scaled = 0.9

5 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 2 0.0 0 0.0 0 0.0 2 0.0

10 1 0.0 1 0.0 3 0.0 1 0.0 1 0.0 2 0.0 1 0.0 1 0.0 2 0.0

20 2 0.0 1 0.0 10 0.0 2 0.0 1 0.0 10 0.0 3 0.0 3 0.0 8 0.0

40 5 0.0 2 0.0 53 0.0 6 0.0 3 0.0 45 0.0 5 0.0 4 0.0 31 0.0

N = 20 × 20, Tiered

5 1 0.0 1 0.0 7 0.0 2 0.0 2 0.0 10 0.0 2 0.0 2 0.0 10 0.0

10 2 0.0 1 0.0 7 0.0 1 0.0 1 0.0 7 0.0 1 0.0 1 0.0 13 0.0

20 86 0.0 27 0.0 417 0.0 20 0.0 12 0.0 154 0.0 26 0.0 17 0.0 106 0.0

40 333 0.0 72 0.0 TL 1.1 372 0.0 54 0.0 TL 0.1 29 0.0 20 0.0 438 0.0

N = 30 × 30, Constant

5 16 0.0 24 0.0 59 0.0 33 0.0 203 0.0 74 0.0 62 0.0 TL 3.2 138 0.0

10 663 0.0 TL 8.6 TL 17.0 1492 0.0 TL 33.5 TL 36.1 192 0.0 TL 17.1 857 0.0

20 TL 1.8 TL 11.1 TL 24.2 TL 66.1 TL 31.1 TL 46.2 TL 0.2 TL 5.1 TL 12.8

40 TL – TL 33.0 TL 48.2 TL 75.0 TL 41.1 TL 60.8 TL 5.4 TL 10.8 TL 20.4

N = 30 × 30, Scaled = 0.1

5 5 0.0 8 0.0 10 0.0 7 0.0 13 0.0 27 0.0 5 0.0 19 0.0 23 0.0

10 55 0.0 86 0.0 1778 0.0 1089 0.0 TL 1.9 TL 6.6 648 0.0 TL 6.0 TL 37.2

20 TL 1.9 TL 3.0 TL 15.8 TL 66.6 TL 34.5 TL 44.9 TL 20.8 TL 25.8 TL 48.0

40 TL – TL 29.2 TL 44.3 TL 74.8 TL 49.7 TL 62.1 TL 64.4 TL 28.5 TL 50.4

N = 30 × 30, Scaled = 0.5

5 4 0.0 5 0.0 49 0.0 12 0.0 17 0.0 55 0.0 14 0.0 46 0.0 56 0.0

10 5 0.0 3 0.0 24 0.0 13 0.0 6 0.0 42 0.0 6 0.0 6 0.0 24 0.0

20 381 0.0 36 0.0 1632 0.0 1687 0.0 316 0.0 TL 0.3 TL 0.1 1209 0.0 TL 0.6

40 TL 0.0 270 0.0 TL 5.4 TL 0.2 546 0.0 TL 9.9 TL 0.0 TL 0.0 TL 0.4

N = 30 × 30, Scaled = 0.9

5 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 2 0.0 1 0.0 1 0.0 1 0.0

10 5 0.0 5 0.0 70 0.0 9 0.0 4 0.0 84 0.0 9 0.0 4 0.0 68 0.0

20 8 0.0 7 0.0 95 0.0 7 0.0 4 0.0 96 0.0 4 0.0 10 0.0 80 0.0

40 69 0.0 53 0.0 TL 0.0 90 0.0 32 0.0 720 0.0 113 0.0 27 0.0 936 0.0

N = 30 × 30, Tiered

5 2 0.0 1 0.0 3 0.0 1 0.0 1 0.0 3 0.0 1 0.0 1 0.0 3 0.0

10 28 0.0 19 0.0 256 0.0 13 0.0 21 0.0 129 0.0 7 0.0 8 0.0 99 0.0

20 73 0.0 32 0.0 TL 0.5 228 0.0 80 0.0 TL 0.0 70 0.0 79 0.0 1635 0.0

40 378 0.0 65 0.0 TL 8.8 727 0.0 1034 0.0 TL 2.3 144 0.0 62 0.0 TL 1.6
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Table 4. Test results on dense graphs.

β = 0.1 β = 0.25 β = 0.5

MCF BF NODE MCF BF NODE MCF BF NODE

|E|/|V | t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%)

|V | = 1000, |P | = 20, Constant

4 255 0.0 372 0.0 1277 0.0 1205 0.0 544 0.0 710 0.0 65 0.0 36 0.0 46 0.0

8 TL 1.3 537 0.0 366 0.0 173 0.0 444 0.0 112 0.0 112 0.0 1057 0.0 37 0.0

16 TL 0.4 855 0.0 307 0.0 815 0.0 404 0.0 108 0.0 81 0.0 63 0.0 12 0.0

32 797 0.0 811 0.0 42 0.0 460 0.0 415 0.0 25 0.0 118 0.0 87 0.0 12 0.0

|V | = 1000, |P | = 20, Scaled = 0.1

4 185 0.0 84 0.0 225 0.0 514 0.0 670 0.0 TL 1.2 379 0.0 320 0.0 328 0.0

8 102 0.0 63 0.0 33 0.0 225 0.0 168 0.0 86 0.0 381 0.0 330 0.0 83 0.0

16 62 0.0 73 0.0 9 0.0 101 0.0 103 0.0 11 0.0 83 0.0 138 0.0 14 0.0

32 51 0.0 108 0.0 4 0.0 123 0.0 104 0.0 8 0.0 118 0.0 81 0.0 6 0.0

|V | = 1000, |P | = 20, Scaled = 0.5

4 6 0.0 2 0.0 10 0.0 20 0.0 6 0.0 17 0.0 39 0.0 13 0.0 18 0.0

8 23 0.0 8 0.0 10 0.0 22 0.0 7 0.0 13 0.0 13 0.0 3 0.0 11 0.0

16 14 0.0 6 0.0 5 0.0 51 0.0 8 0.0 12 0.0 46 0.0 9 0.0 16 0.0

32 38 0.0 20 0.0 5 0.0 146 0.0 31 0.0 8 0.0 241 0.0 53 0.0 10 0.0

|V | = 1000, |P | = 20, Scaled = 0.9

4 10 0.0 2 0.0 13 0.0 11 0.0 3 0.0 13 0.0 6 0.0 1 0.0 6 0.0

8 15 0.0 3 0.0 10 0.0 20 0.0 10 0.0 8 0.0 24 0.0 8 0.0 8 0.0

16 21 0.0 3 0.0 5 0.0 25 0.0 4 0.0 5 0.0 20 0.0 4 0.0 4 0.0

32 34 0.0 8 0.0 4 0.0 42 0.0 7 0.0 4 0.0 43 0.0 8 0.0 4 0.0

|V | = 1000, |P | = 20, Tiered

4 23 0.0 11 0.0 40 0.0 63 0.0 21 0.0 31 0.0 26 0.0 27 0.0 20 0.0

8 29 0.0 22 0.0 23 0.0 39 0.0 22 0.0 22 0.0 76 0.0 32 0.0 25 0.0

16 13 0.0 9 0.0 6 0.0 38 0.0 10 0.0 6 0.0 17 0.0 7 0.0 5 0.0

32 70 0.0 26 0.0 10 0.0 53 0.0 29 0.0 6 0.0 71 0.0 8 0.0 4 0.0

|V | = 2000, |P | = 20, Constant

4 977 0.0 TL 4.1 TL 1.8 TL 60.9 TL 16.0 TL 33.7 983 0.0 1001 0.0 1466 0.0

8 TL 7.9 TL 7.3 TL 5.0 TL 3.6 TL 7.3 TL 26.7 494 0.0 439 0.0 83 0.0

16 TL – TL 17.2 TL 29.2 TL 64.5 TL 8.2 1792 0.0 291 0.0 510 0.0 42 0.0

32 TL – TL 19.3 776 0.0 TL 56.7 TL 9.4 273 0.0 1486 0.0 1466 0.0 96 0.0

|V | = 2000, |P | = 20, Scaled = 0.1

4 60 0.0 127 0.0 69 0.0 276 0.0 518 0.0 303 0.0 447 0.0 TL 0.2 210 0.0

8 85 0.0 139 0.0 30 0.0 222 0.0 383 0.0 69 0.0 484 0.0 973 0.0 133 0.0

16 560 0.0 912 0.0 125 0.0 563 0.0 520 0.0 86 0.0 380 0.0 542 0.0 38 0.0

32 98 0.0 261 0.0 14 0.0 385 0.0 403 0.0 31 0.0 893 0.0 1047 0.0 102 0.0

|V | = 2000, |P | = 20, Scaled = 0.5

4 12 0.0 5 0.0 35 0.0 28 0.0 7 0.0 36 0.0 31 0.0 13 0.0 47 0.0

8 86 0.0 21 0.0 60 0.0 64 0.0 30 0.0 67 0.0 72 0.0 24 0.0 58 0.0

16 81 0.0 29 0.0 23 0.0 48 0.0 20 0.0 19 0.0 77 0.0 26 0.0 25 0.0

32 70 0.0 42 0.0 19 0.0 324 0.0 148 0.0 76 0.0 298 0.0 63 0.0 17 0.0

|V | = 2000, |P | = 20, Scaled = 0.9

4 24 0.0 6 0.0 15 0.0 10 0.0 2 0.0 21 0.0 33 0.0 14 0.0 18 0.0

8 26 0.0 5 0.0 30 0.0 49 0.0 12 0.0 21 0.0 24 0.0 7 0.0 27 0.0

16 45 0.0 7 0.0 15 0.0 21 0.0 6 0.0 12 0.0 53 0.0 11 0.0 22 0.0

32 70 0.0 15 0.0 28 0.0 96 0.0 16 0.0 13 0.0 108 0.0 27 0.0 22 0.0

|V | = 2000, |P | = 20, Tiered

4 43 0.0 41 0.0 149 0.0 131 0.0 115 0.0 239 0.0 41 0.0 58 0.0 84 0.0

8 110 0.0 42 0.0 62 0.0 142 0.0 109 0.0 82 0.0 569 0.0 412 0.0 193 0.0

16 62 0.0 32 0.0 20 0.0 76 0.0 43 0.0 24 0.0 246 0.0 72 0.0 46 0.0

32 55 0.0 38 0.0 11 0.0 118 0.0 47 0.0 12 0.0 63 0.0 37 0.0 7 0.0
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Table 5. Test results on grid graphs with three upgrade types per node.

β = 0.1 β = 0.25 β = 0.5

MCF BF NODE MCF BF NODE MCF BF NODE

|P | t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%)

N = 20, |P | = 20, |L| = 3, Scaled = {0.1,0.5,0.9}
5 21 0.0 237 0.0 173 0.0 81 0.0 TL 5.3 804 0.0 23 0.0 TL 3.3 152 0.0

10 15 0.0 16 0.0 192 0.0 78 0.0 52 0.0 84 0.0 12 0.0 46 0.0 44 0.0

20 TL 5.2 TL 7.8 TL 16.8 TL 12.2 TL 27.5 TL 44.4 176 0.0 1035 0.0 TL 0.1

40 TL 54.7 TL 5.9 TL 31.8 TL 9.9 TL 35.6 TL 51.6 397 0.0 540 0.0 TL 0.1

N = 30, |P | = 20, |L| = 3, Scaled = {0.1,0.5,0.9}
5 14 0.0 35 0.0 197 0.0 34 0.0 459 0.0 496 0.0 27 0.0 TL 13.4 201 0.0

10 TL 7.5 TL 17.9 TL 23.8 TL 16.0 TL 49.0 TL 53.4 250 0.0 TL 2.2 1365 0.0

20 TL 13.4 TL 14.6 TL 29.6 TL 24.8 TL 40.9 TL 42.5 431 0.0 TL 5.8 TL 3.0

40 TL – TL 41.0 TL 63.9 TL – TL 53.9 TL 67.5 TL 6.0 TL 13.7 TL 32.4

Table 6. Test results on dense graphs with three upgrade types per node.

β = 0.1 β = 0.25 β = 0.5
MCF BF NODE MCF BF NODE MCF BF NODE

|E|/|V | t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%) t(s) g(%)

|V | = 1000, |P | = 20, |L| = 3, Scaled = {0.1,0.5,0.9}
4 526 0.0 405 0.0 726 0.0 94 0.0 235 0.0 208 0.0 608 0.0 1100 0.0 1471 0.0

8 1346 0.0 809 0.0 578 0.0 1359 0.0 920 0.0 805 0.0 212 0.0 94 0.0 38 0.0

16 TL 4.5 TL 4.3 1528 0.0 TL 4.6 1558 0.0 1275 0.0 279 0.0 159 0.0 31 0.0

32 TL 23.6 1369 0.0 290 0.0 693 0.0 594 0.0 77 0.0 95 0.0 120 0.0 21 0.0

|V | = 2000, |P | = 20, |L| = 3, Scaled = {0.1,0.5,0.9}
4 1164 0.0 966 0.0 398 0.0 TL 14.7 TL 13.5 TL 36.4 952 0.0 1106 0.0 709 0.0

8 TL – TL 21.7 TL 23.1 TL – TL 22.5 TL 40.4 868 0.0 1648 0.0 510 0.0

17 TL – TL 4.5 878 0.0 TL – TL 28.3 TL 26.3 TL 0.3 1450 0.0 336 0.0

32 TL – TL 7.3 1519 0.0 TL – TL 31.2 TL 9.8 756 0.0 843 0.0 105 0.0

far more optimality cuts are generated, which in turn slow down the solution of
the master problem. For (NODE), which clearly performs worst in most observed
cases, a similar problem occurs. Here a large number of cuts is required to enforce
connectivity on extremely sparse grid graphs. The high difficulty of this instance
type for algorithms based on branch-and-cut is also known for similar problems,
e.g., the Steiner tree problem, where large-scale grid graphs remain challenging
even for state-of-the-art approaches (see, e.g., [15]).

In Table 4, results on dense graphs with varying values for |E|/|V | are
reported. Here (MCF) only manages to outperform other approaches on
instances with constant delay structure which are relatively sparse. For all higher
densities, (MCF) quickly becomes less practical, and is outperformed both by
(BF) and (NODE). Here (NODE) clearly performs best, and is less affected by
different delay structures and budget slacks. The performance of (BF) is similar
to (NODE) except for delay structures constant and scaled = 0.1.

4.2 Multiple Upgrades

In this section the case |L| > 1 is explored. For this purpose grid and dense
graphs with three upgrade levels have been constructed based on the scaled
delay structure, i.e., for each node there exist three possible upgrades using 0.1,
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0.5 and 0.9 as scaling factor. Again costs are computed randomly in the range
of [50, 1000], but are assigned to upgrades per node such that the upgrade with
the lowest delay is assigned the highest cost.

Table 5 reports results for grid graphs with varying values of |P |. The results
show that on the grid graphs (MCF) performs best for the considered weights.
Only for low budgets and a high number of paths becomes (BF) more compet-
itive. Table 6 reports results for dense graphs with varying values of |E|/|V |.
As for |L| = 1, (NODE) performs best on average, only being outperformed by
(MCF) for graphs of lowest density. For higher densities, the root relaxation of
(MCF) cannot be solved within the time limit.

5 Conclusions and Future Work

In this paper, algorithmic expedients along with computational results are pre-
sented for the Upgrading Shortest Path Problem (USP). The USP is a recently
proposed network optimization problem that enables to model a variety of deci-
sion making problems where the goal is to optimize the effectiveness of the sought
network while respecting a design budget.

The proposed algorithms show to be effective for quite large instances, being
able to reach rather small optimality gaps, within reasonable computing times,
for instances with medium to large sizes. Moreover, these tailored strategies
outperform the use of a compact formulation even if medium size instances are
considered.

Acknowledgements. E. Álvarez-Miranda is supported by the Chilean Council of
Scientific and Technological Research through the grant FONDECYT N.11140060
and through the Complex Engineering Systems Institute (ICM:P-05-004-F, CONI-
CYT:FBO16). M. Sinnl is supported by the Austrian Research Fund (FWF, Project
P 26755-N19). M. Luipersbeck acknowledges the support of the University of Vienna
through the uni:docs fellowship programme.

References

1. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The rooted maximum node-weight
connected subgraph problem. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013.
LNCS, vol. 7874, pp. 300–315. Springer, Heidelberg (2013)

2. Ben-Ameur, W., Neto, J.: Acceleration of cutting-plane and column generation
algorithms: applications to network design. Networks 49(1), 3–17 (2007)

3. Campbell, A., Lowe, T., Zhang, L.: Upgrading arcs to minimize the maximum
travel time in a network. Networks 47(2), 72–80 (2006)

4. Costa, A.: A survey on benders decomposition applied to fixed-charge network
design problems. Comput. OR 32(6), 1429–1450 (2005)

5. Dilkina, B., Gomes, C.P.: Solving connected subgraph problems in wildlife conser-
vation. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140,
pp. 102–116. Springer, Heidelberg (2010)
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