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Abstract. The paper presents an experience of verifying a large scale,
real-life dataset describing various aspects of railway station design. We
discuss how a number of assorted digital artefacts were pooled together
and converted into a set-theoretic model over which a type inference
procedure is run. The typed model is then used to confirm or contradict
logical conjectures over data elements. We employ a number of state-of-
the-art SMT solvers as a verification back-end. The project is ongoing but
has already identified a number of issues in topology definition and sig-
nalling data that were missed by other automated tests and not revealed
by simulation tools.

1 Introduction

The SafeCap project has been working on railway modelling and formal ver-
ification for nearly five years. The original view consisted in fitting a railway
description into a formal setting through the means of a formal domain spe-
cific language [4]. Such a language enables formal and automatic verification of
integrity of a schema and its signalling as well as operational safety. True to
the well respected practice in computing science, a strict top-down approach
was used where a formal model spanning abstraction levels of increasing fidelity
covered concepts of safety (e.g., something bad should not happen), principles
of safety (e.g., route-based signalling) and implementation of safety principles
(ladder logic diagrams for interlocking) [1]. However, the reality turned out to
be far more fragmented and fluid to insist on a strict top-down view.

Collaboration with Siemens Rail Automation UK led to the realisation that
railway models, i.e., a description of a station, are rarely available in their entirety
while the scale of a project and the pace of changes make it unrealistic to under-
take an unhurried top-down validation. The variety of ways employed in the
industry to capture the same artefact both at conceptual and syntactic levels
(say a schema rendered as a track topology or node/edge model and persisted
in XML or LDL format) makes it much harder to come up with a universal ver-
ification pipeline. And at the signalling implementation level one finds a medley
of proprietary technology, notations and tools.

It is increasingly evident that safe and efficient exploitation of a railway net-
work depends on detailed and up to date knowledge of network characteristic
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spanning from macroscopic details of station and line capacity to precise char-
acterisation of track side equipment positioning, capabilities and state. Given
the scale and importance of such data, a modern railway operation critically
depends on data acquisition and storage that are suitably supported by higher
level activities of modelling, analysis and planning.

At the purely technological level, storage and distribution of large amount of
data is no longer a challenging problem. The issues of scaling, querying, replica-
tion and persistence are well researched by the data science community.

A far harder problem, however, is to make sure that collected and stored
data makes sense, especially in the presence of incremental updates and non-
trivial semantic overlaps in data originating from differing companies. A data
collection exercise carried out as merely a dutiful recording and redistribution
of incoming data is bound to result in a situation where same information is
duplicated and triplicated with slight changes and ever accumulating number of
inconsistencies making data interpretation increasingly difficult and the data less
valuable overall. What we endeavour to achieve in SafeCap is a way to ‘interpret’
data without human involvement and through this validate and normalise it to
deter ‘data rot’ while enabling much more semantically involved data querying
and processing.

One solution is defining a set of mechanisable validation rules that apply
automatically every time a new piece of data is added to a storage. At the
simplest level a rule is a piece of code (say, a stored routine for a database
engine) which role is to go through entries and check for known signs of mismatch.
This will undeniably save a great amount of time. However, given the scale of
the challenge - real-life examples contain hundreds of distinct concepts - a new
challenge arises almost immediately. Since the responsibility is now delegated to
validation code, such code has to be developed, verified and maintained to the
highest standard. This is a difficult task and, to start with, the formal verification
of a piece of code requires a formal model of its intended behaviour to check
against. What SafeCap offers is having just a formal model of data semantics
and a technique to match it, automatically, against a piece of data.

The technique comprises two stages: container agnostic extraction of a formal
model describing source data and model validation. To avoid a dependency on
certain syntax and container, the information necessary for validation comes in
the form of typed relations. We use a certain mathematical framework for rep-
resenting and classifying relations and their typing constraints. Any structured
data may be rendered as a collection of relations and, if it meets minimal con-
sistency requirements, relation types may be inferred. This process is completely
automatic and does not require any knowledge about structure or purpose of data
source. It applies equally to structured textual formats and relational databases.

2 Formal Model

We build a simple conceptual model of a railway operation. The basic premise is
that railway track is a contended resource and there is a number of actors that
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affect each other by consuming and freeing track resources. The basic unit of
consumption is a block. We do not define how small or large a block is in terms
of physical track; the block concept may be used for route-based and moving
block (ERTMS) signalling.

A pre-existing model of data semantics would speak about mathematical
relations as well; specifically the kind of relations that are permitted and consid-
ered well-formed. But these would generally be different from extracted relations
and with differing types. However, in such a formal setting it is not necessary to
translate source data into a new format: a potentially dangerous exercise that
may alter source data semantics. In its stead, one defines a formal link model
that semantically links extracted data model with the verification model. The
link does not need to be total: some elements of source may be uninterpreted
while some concepts of semantics might have no direct counterpart. Unlike a
software translator tool, such link model is generally not executable as we don’t
need actual translation of data to perform verification. At the same time it is
terse and white-box and can be easily evolved with the changes in source data
formats.

Once these three models - source data, link and semantics - are put together
we have a model that is consistent, when all model parts are in an agreement,
or not. The check is performed via automated theorem proving using a range
of state-of-the-art automatic verification tools. If the check fails, the reason can
often be narrowed down to a specific source data structure and semantic model
constraint.

Railway Track Topology. The first step is to define constraints on track topol-
ogy, that is a graph of blocks. For instance, track graph must have nodes of only
degree one (boundary), two (normal), three (point) and four (diamond crossing).
There should be no cycles, self-loops and disjointed sections. Points and diamond
crossings should not appear as boundary nodes.

Definition 1 (Track topology assumptions).

finite(BLOCK) (1)
next ⊆ BLOCK × BLOCK (2)

BLOCK = ran(next) ∪ dom(next) (3)
next ∩ (BLOCK � id) = ∅ (4)

next closure ⊆ BLOCK × BLOCK (5)
next closure;next = next closure (6)

next closure; (BLOCK � id) = next closure (7)
first = dom(next) \ ran(next) (8)
last = ran(next) \ dom(next) (9)

points ⊆ BLOCK (10)
. . . (11)
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Signalling Model. At the most abstract level we observe blocks being con-
sumed and freed. This is a high-level metaphor for train movement and
point/route locking. The following diagram shows three blocks consumed at
some point of time.

The model of behavior is given in a formal notation called Event-B. The first
model is extremely simple and defines one variable consumed ⊆ BLOCK (the
set of consumed blocks) and two events (actions) to consume and free blocks.

Definition 2 (Abstract model).
consume �
any b where

b ∈ BLOCK \ consumed
then

consumed := consumed ∪ {b}
end

free � any b where b ∈ consumed then consumed := consumed \ {b} end

Refinements. The abstract consume/free model is gradually refined to capture
route-based signalling based on a control table. We introduce the notion of actors
and keep track of which actor consumes which block. There are two main actor
kinds: the control actor that consumes only points and diamond crossing; and a
train actor that may consume any block kind. The following depicts a situation
where three blocks are consumed by three different actors (red, green and black
- colours differentiate into block reservation and train occupation).

We make model realistic by requiring that train actors consume contiguous
blocks and also keep track of train orientation. A train actor may only appear
and disappear (that is, consume its first block) on a boundary block; it may also
reverse its direction when its head is on a buffer stop block. At this stage, trains
travel through a point or crossing in any direction (even when point topology
would not allow this). The following diagram shows occupation and reservation
for directed trains (a triangle in block depicts train head):

The subsequent refinements introduce the notion of train path through a
schema; point and diamond crossing states, and the concept of block locking.
Now a block may only be consumed once it is locked for a given actor (a slanted
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stripe in the diagram below). For a control, the consumed state corresponds to
the switching time of points and crossings. A train may only lock a point or
crossing block if the block is in the right state for the train path. Hence, we
might observe the following sequence of actions of train B to travel through
some point block X after train A travelling over a conflicting route.

– free block X for train A
– lock block X for control
– consume block X for control
– free block X for control
– lock block X for train B
– consume block X for train B

The final stage is to introduce the notion of a route as a sequence of blocks.
Once the individual blocks of a route are locked, an actor may lock the route
made of the locked blocks. Train head movement has a dedicated action for
switching between two routes.

While a train actor is forced to inspect a route locking state, it is also directly
inspecting the state of blocks in front. To make the behaviour localised we intro-
duce conditions defining when a locked route may show one of proceed aspects.
It is then formally proven that inspecting route state alone is sufficient to ensure
train safety.

Definition 3 (Move train head onto a next route). Localised version.
move head new route �
any h, i , j ,nr , t where

t ∈ dom (train seq)
h = train seq (t) (train seq head (t))

j = line (train line (t))−1 (h)

i = line routes (train line (t))−1 (train head route (t))
i + 1 ∈ dom (line routes (train line (t)))
nr = line routes (train line (t)) (i + 1)
route aspect (nr) ≥ PROCEED

then
train seq head (t) := train seq head (t) + 1
train seq (t) := train seq (t) ∪ {(train seq head (t) + 1) �→ line (train line (t)) (j + 1)}
locking := {line (train line (t)) (j )} �− locking
train head route (t) := nr
route locking := {train head route (t)} �− route locking
route aspect (nr) := STOP

end

The diagram below shows blocks numbered with route indices. In reality, the
same block may be attributed to several routes.
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The model is still fairly abstract but covers all the essential aspects of safety
principles: we prove freedom of collision and derailment. We have not considered
many advanced properties such as absence of deadlocks, provision and treat-
ment of overlaps, flank protection and etc. These may be introduced in next
refinements of increasing fidelity.

3 Reading Station Dataset

The testing ground for the technique is a simulation data set provided by Siemens
Rail Automation UK. The data is made of roughly 12MB of XML and structured
text files describing topology and signalling of Reading station with signalling
split into three overlapping interlocking areas. The diagram in Fig. 1 provides an
indication of the scale of the studied data. The diagram was rendered directly
from a subset of the data which include the visual layout for tracks.

One immediate issue was that a part of the data is not XML but a propri-
etary text-based format called LDL (originating at Invensys Rail). The SafeCap
Platform has an import facility for LDL files but this silently ignores unknown
data fields. We thus developed a new, more basic import tool that treats XML-
based and LDL-based data on the same footing of an abstract relation-based
data representation.

There is a considerable overlap between various parts of this data set. Many
of them are not trivial to spot and for historic reason same elements are some-
times known under differing names. In addition, no provision for distinguishing
between sets of elements and a sequence of elements. A strict interpretation
would require regarding any multiplicity as a sequence or a tuple rather than a
set. This is inefficient from the verification viewpoint. To counter this, we allow
a user to manually demote sequence and tuples types into set types. For the case
of tuples, a unified type (which might not exist for incompatible types) is used.

Fig. 1. Rendering of Reading Station track layout data as a track schema from a subset
of the dataset (produced by SafeCap Platform). Black and orange (light gray) circles
are signal and fixed speed limit positions; triangles denote train stopping points.
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3.1 Reading Station Verification

The formal model presented above is used to validate Reading St. data. There is
no simple correspondence between the data structures used in our formal abstrac-
tion and the real-life data characterizing Reading St. Yet some correspondence
is bound to exist since both define, in their own way, a railway schema and
route-based signalling.

Our verification technique consists in matching a data set against the assump-
tions of formal behaviour model (such as, for instance, given in Definition 1. This
means there is no danger of state explosion and verification is comprehensive and
conclusion, when it can be reached, is definite.

In the source dataset, there is a significant amount of duplication. Some cases
are not trivial to spot and for various reasons same elements may, at times,
be known under differing names. At the structural level there is no indication
whether a collection of elements is a sequence or a set. A strict interpretation
necessitates sequences at all times but this make it harder to write and check
verification conditions. When data is imported, all such cases are treated as
sequences and user can do one of two things: manually demote type to set, or
request that there should be a separate, set based view of the same data. Thus,
for instance, relation r ∈ A → seq(B) can be replaced by some r′ ∈ A → pow(B)
or r and r′ may be present at the same time together with an axiom statement
r′ = r; (λt. ran(t)).

The process of verification consists in positing a conjecture and checking it
by combing with the data model to see if a contradiction arises. For instance, to
check no two train detection circuits overlap we can state the following:

P1 := [∀ t, s, a, x, y, b, i, j .
t : TrackSection and s : TrackSection and t �= s and
a 	→ x 	→ y : ran(“TRACK CIRCUIT.M SECTION”(t)) and
b 	→ i 	→ j : ran(“TRACK CIRCUIT.M SECTION”(s)) and
a = b

⇒x > j or y < i]

Here “INTERLOCKING.M SECTION” is a function name defined in a data
source (detailed station topology). It is taken intoquotes to escape characters clash-
ing with operator syntax. Expression ran(“TRACK CIRCUIT.M SECTION”(t))
defines all pieces of a graph defining the sub-graph of a train detection circuit. This
gives a set of tracknames.Thecondition checks thatany twodistinct traindetection
circuit t and s do not physically overlap.

The statement is conjoined with the mathematical model of source data H
to form conjecture H � P1. The conjecture undergoes a conservative filtering
to remove parts of data model H irrelevant to P1 and form a less constrained
model Hf where H ⊆ Hf . The typing information is removed and all the literal
values are encoded as integers. The un-typing and coding process has fairly
modest impact on proof success per se but without it some tools cannot ingest
and parse otherwise typically a very large input file. Every condition is checked
twice - once in the positive (i.e., as given) form and once in the negative form.
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Both cases must have a definite answer (that is, unknown result for either case
renders the whole condition false) so that a conjecture is assumed to hold only
when its positive is truth and the negative is false. The double check addresses
potential well-definedness problems such as applying a relation outside of its
domain or having self-contradictory data model.

When a conjecture of the form ∀x.P (x) is found to be false it is, at times,
possible to obtain a witness for ∃x.¬P (x) from the verification back-end. And for
certain types of expressions (sequences and sets and single elements of signals,
routes, tracks, points, etc.) a counter-example may be visualised on a track
diagram.

3.2 Verification Results

We went through all the conditions (47 total) of track topology assumptions
from Definition 1. In the process we have found that one condition does not
hold:

Condition (18) of Definition 1 states that edge (sink) blocks may not be
points or diamond crossings. However, we found a counter-example: track
UpReaWestC.

The majority of verification load is concerned with routes and signalling
rules. The data set does not define possible train paths but defines routes. The
analysis revealed a fair number of broken conditions but nearly all of these turned
out to be due to cutting of signalling data across interlocking area boundaries.
A simple aggregation of data leads to basic well-formedness problems, i.e., same
entity is defined twice. But throwing out overlapping data seems to produce a
number of validation errors. For instance

Mappings between track circuit and a sub-route must agree in both direc-
tions:

∀r.r ∈ “ILTrackSectionControlTables.SubRoutes”⇒
r ∈ “ILSubRouteControlTables.TrackSection”−1

There is a number of counter-examples.

and also

In a control table, track circuits locked that must be locked for a point
must be among the required track sections of a route. It is an essential
safety conditions and is rendered as the following property.

id(dom(“ILRouteControlTables.NormalPoints”)) ⊆
(“ILRouteControlTables.NormalPoints”;

“ILPointsControlTables.NormalLockingTrackSections”;

“ILRouteControlTables.TrackSections”−1)
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It does not hold for a number of cases when a route goes across interlocking
boundary.

There are six more issues that seems to arise due to basic data completeness
and consistency issues. This will need further investigation.

All in all, we have checked the data against 72 verification conditions and
the vast majority of the conditions were discharged. All the conditions were han-
dled completely automatically by a collection of theorem provers and constraint
solvers. It takes less than 2 min to go through all the conditions for the whole
station.

The majority of unsatisfied conditions exhibit the same pattern of incomplete
definitions and seem to be stemming from the issue of splitting and then re-
assembling signalling data for the three interlocking areas.

4 Discussion

Perhaps the most prevalent validation technique in the railway industry is simu-
lation. Simulation engines range from coarse-grained time stepping of a national
railway network to a detailed model of various aspects of mechanical perfor-
mance of specific rolling stock over certain track. Validation concerns span from
the analysis of digital communication protocols connecting trains and regional
control to stressing of tunnels and bridges by passing trains. Simulation is widely
applied for time table optimisation and interactive 3D simulation is sometimes
used for driver training. RailSys [12] and OpenTrack [10] are two of the more well-
known simulation suites applied in time table optimisation and general analysis
of signalling performance.

The main attraction of simulation is that it does not require deep under-
standing of railway functioning. Simulation tools present many aspects of rail-
way performance in an intuitive, visual manner helping to quickly obtain the
big picture of overall layout and signalling performance. There is, however, no
guarantee of safety as simulation can only ever consider a tiny proportion of all
scenarios.

The safety challenge of railways and the fact that collision and derail-
ment properties may be dealt with within the setting of discrete, inertia-less
train movement makes railway safety verification especially appealing for formal
method practitioners. The principal idea of railway model checking is quite sim-
ple: a model of train movement laws is combined with the definitions of track
topology and signalling rules. A model checking tool attempts to go through
all or many execution scenarios to confirm that unsafe scenarios are ruled out.
The list of modelling notations used in this setting is practically endless. Notable
examples include Coloured Petri nets [2], process algebra CSP [5], a continuation
work based on the model-based notation ASM [6], an algebraic language Maude
[3] and the B Method together with ProB model checking tool [9]. The latter can
also be used in the capacity of a property verifier for assertions written against
B or Event-B contexts. In this form ProB has been used for the validation of
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railway datasets [8] and this led to the development of a commercial toolset [11].
Our approach differs by the kind of properties we try to prove (safety principles
of signalling) and the provenance of verification constraints (an Event-B model
of signalling).

Model checking imposes limitations on the model size and performs best
with a relatively limited logical language. Theorem proving overcomes these
limitations and offers potentially unlimited opportunities for verifying safety
with the utmost level of rigour. Theorem proving is not necessarily an all-manual
process: there is a large and successful community developing automated theorem
provers [13]. At the moment, automated prove support is best in the domain of
first order logic and set theory; an attempt at reasoning about continuous train
dynamics is likely to require an intervention by a highly skilled verification expert
- the kind of people mostly found in academia.

Theorem proving, even with excellent tool support, requires a high level of
expertise in formal verification and mathematical modelling. The semantic gap
between logic and railway concepts is formidable. This leads to generally low
productivity (but we should notice efforts like the BART tool for automatic
refinement of B models [7]), difficulties in interpreting tool feedback, and posing
verification statements in a manner convincing to a non-expert reviewer.
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