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Abstract. In recent years, formal methods have become an important
approach to ensure the correct function of complex hardware and soft-
ware systems. Many standards for safety critical systems recommend
or even require the use of formal methods. However, building a formal
model for a given specification is challenging. This is, because verifica-
tion results must be considered with respect to the validity of the model.

This leads to the question: “Did I build the right model?”. For sys-
tem development the analogous question “Did I build the right system?”.
This is often answered with requirements traceability through the whole
development cycle. For formal verification this question often remains
unanswered.

The standard model, which is used in development of safety criti-
cal applications is the V-model. The core idea is to define tests for each
phase during system development. In this paper, we propose an approach
- analogously to the V-model for development - which ensures correct-
ness of the formal model with respect to requirements. We will illustrate
the approach on a small example from the railways domain.

Keywords: Formal modelling process * Requirements traceability -
System verification + Railway system verification

1 Introduction

Reliability, Availability, Maintainability and Safety are important aspects of the
development of railway transportation systems. But, the more complex the sys-
tem gets the harder it becomes to verify, often by hand, whether a system meets
its given specification. Since modern systems are too complex to get verified
and validated by hand, especially for the safety critical parts, formal verifica-
tion comes into the focus. Moreover, formal verification techniques are highly
recommended in standards, like the EN 50129 [7]. However, developing a formal
model which is a sufficient representation of the real system, is a quite challeng-
ing task. It is not only to build the model, but to ensure that the formal models
meets all requirements, i.e., is a representative projection of the system-to-build
— especially in front of some governmental certification authority.

© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 106-122, 2016.
DOI: 10.1007/978-3-319-33951-1.8



Correct Formalization of Requirement Specifications 107

The goal of this paper is to propose a development approach that simplifies
the application of formal methods in the development of safety critical systems
in general, but in special in the development of railway systems. The whole
process had been determined in cooperation with the German Federal Railway
Authority! and an independent and certified appraiser for the rail domain.

To overcome the difficulty of building the correct formal model, we focus on
the traceability of all requirements to their formal realization, i.e., as for the real
system, it shall be possible to trace each formal model element to its original
requirement. Moreover, we derive additional acceptance and system tests from
the different development phases and present how they can be verified with the
help of model checking [11] techniques. In the scope of this paper, we concentrate
on the verification of system safety requirements. However, with the help of the
formal model, other reliability and availability measures, e.g., Fault Tree Analysis
or Failure Mode Effects Analysis, can be executed.

Unfortunately, domain experts are often unfamiliar with formal verification
languages and techniques. Therefore, we use our Verification Environment for
Critical Systems (VECS?) [17], aiming to simplify the application of formal
methods, which implements an import interface to the more popular Unified
Modeling Language (UML). For the life-cycle pattern, we propose a process
inspired by the established V-model. Project specific variations of the V-model
have already been applied successfully in a range of different software projects
and they all share the prominent V-shape. In 1984 Boehm introduced the char-
acteristic V-shape [1]. However, it still symbolizes a linear project progression. It
is divided into two branches: the left branch symbolizes exploratory and design
tasks whereas the right branch represents verification and validation tasks. The
methodology does not require a specific (formal) implementation language. It
rather specifies what a product describes and recommends methods for the pro-
duction [3] and thus can be used to develop a formal model. Further, it helps to
ensure the traceability throughout the whole process.

The paper is structured as follows: Sect.2 gives a short overview of related
works from other authors. In Sect. 3 we present the proposed approach ensuring
the correct formalization of large requirement sets while preserving traceability.
Section 4 reports our experiences made with the proposed process while verifying
a real world spot transmission based train breaking system. In the end, we
conclude our paper in Sect. 5.

2 Related Work

A lot of work has been done for formalizing a set of requirements using UML as
an intermediate language. Typically, these approaches cover the extraction and
formalization of a semi-formal given architecture [2,4,16,19]. Some approaches
consider the extraction of behavior, denoted as state machines, in order to gener-
ate a formal model from UML [12,20-22,24,27]. However, the execution seman-
tics of state machines in UML is ambiguous [14]. Snook and Butler proposed an

! http://www.eba.bund.de.
2 http://cse.cs.ovgu.de/vecs.
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approach to translate architectural and behavioral UML entities into B [24]. The
authors propose to develop a formal model from classes and their relation. Fur-
ther, they require a complete behavioral description in UML. Utilizing classes
requires the definition of a detailed architecture derived only from the set of
requirements. Defining a system in this degree of detail requires a lot of insight
in the developed system inappropriate for requirement analysis. The authors
also propose to translate contents of a package into a single formal component,
which we think is unsuitable for larger requirement specifications.

Brill et al. use the V-model in order to generate a formal model, but developed
as state charts, in particular statemate [3]. In contrast to our approach, they
propose to use live sequence charts derived in earlier and refined in later phases
in order to “aid in debugging” the formal model. Although not proposed, their
approach can be extended to be similar to ours. This is, because the methodology
to use commonly known behavior descriptions in order to proof the feasibility
of the formal model is shared. In contrast to our approach they utilize send
and receive events in order to express interfaces between components. Thus,
their approach does not feature parameters for operations - vital in almost every
state-of-the-art programming language. This means, that their approach cannot
be used to validate whether the architecture of the model is feasible.

Other approaches verify the feasibility of scenarios described in a SRS [25].
The authors propose to refine scenarios, manually extracted from the require-
ments, with sequences. Every sequence shall then be translated into a temporal
logic formula. A model checker can compute whether the specification holds for
a specific model. The authors do not convincingly demonstrate how architecture
and behavior of the formal model are developed nor emphasize the traceability
between model and requirements in their approach. Further, the computation
of witnesses in order to support reviews through domain experts is not covered.
However, we think such witnesses are important for the proposed approach as
the formal model can be erroneous and witnesses can serve as provable example
paths in the models state space, emphasizing the requirement coherence.

Carnevali et al. proposed a methodology to integrate preemptive time petri
nets into a given software development cycle [5]. They utilized a V-model issued
by the German Federal Administration for software development, maintenance
and modification. However, they did not describe the integration in a semi-formal
description language, such that the traceability of requirements through the hole
process life cycle is not emphasized. As a result, a reviewing process of domain
experts which are typically not familiar with timed petri nets is required.

3 A Process for Building Formal Models “right”

Building a formal model is a challenging task. It typically takes numerous iter-
ations until one is satisfied with the model. In each iteration some unwanted
behavior is removed, extra functionality is added and/or inconsistencies are elim-
inated. In contrast to unstructured modeling, we propose a structured process,
inspired by the V-model, which ensures the coherence of the formal model and
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Fig.1. The adapted V-model for developing a traceable, complete, consistent and
correct formal model.

its informal SRS by preserving the traceability between elements in the formal
model and their origin. The core idea is — like in the system development model
— to define different phases of the modeling process and use state as well as
sequence acceptance criteria, test properties or hierarchically analysis questions
for validating the model (cf. Sects. 3.5, 3.6 and 3.7).

Figure 1 illustrates the proposed process. All in all, the proposed process
consists of seven consecutive phases (Phase A - Phase G). As starting point, we
assume some informal specifications to be given, mainly written system require-
ments or additional documents, e.g., some sketched system architecture, speci-
fications of subcomponents, failure mode specifications or other safety relevant
documents.

In the following, we give a more detailed description of the different phases.
For a better understanding, we illustrate each phase with a small example from
a real world case study, issued by the Federal Railway Authority of Germany.
This is a standard protection system in German railroads: the “Punktférmige
Zugbeeinflussung” (PZB?) — a spot transmission based train braking system.
The informal specification consists of a 46 paged document, containing text,
graphics and tables. Altogether, this results in 777 requirements and a formal
model with a state space of approx. 5, 8 * 10%* states®.

3.1 Phase A: Requirement Categorization

The goal of this phase is to prepare the informal text such that it can be better
processed by the following phases. Therefore, the SRS is divided into a set of
atomic and indexable text fragments. Further, the atomic fragments are catego-
rized to determine their semantics for the following process phases. For example,
a requirement categorized as architecture fragment is proposed to be used in con-
nection with the architecture modeling (cf. Sect. 3.2). According to the projects

3 https://cse.cs.ovgu.de/vecs/index.php/techniques/examples/17-casestudies/25-pzb-
achievements.
4 Worst case approximation by multiplying all possible state variable values.
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needs one can choose different requirement patterns. In our developed case stud-
ies, we found an adoption of the pattern [15] originally defined by Cimatti
et al. [8] most applicable for our process. This pattern defines eight different
categories for functional requirement fragments. Every category is defined by a
condition rule (shown in Table 1) supporting the mapping of fragment and cate-
gory. Unfortunately, this categorization has to be done manually. This is the case,
because processing informal requirements, written without given rules, is, even
for humans, a challenging task. Especially, since the mapping of the fragments
is not unique. Of course, it is possible that one fragment can be responsible for
the architecture (e.g. defining a required method) as well as for some system
state behavior (the method sets a specific value). However, the benefit of having
ordered requirements, that can be mapped to the different design stages, make
it easier to get an overview of the set of requirements. This preponderates the
effort of categorizing each requirement fragment by hand.

Table 1. Functional requirement categories adopted from Cimatti et al. [8].

Category Condition

Glossary requirement Does the text fragment define a specific concept of
the domain?

Architecture requirement Does the requirement introduce some system’s
modules and describe how they interact?

State requirement Does the requirement describe the steps a particu-
lar module performs or the states where a module
might be in?

Communication requirement | Does the requirement describe messages modules
exchange?

Property requirement Does the requirement describe expected properties
of the domain or constraints of the system-to-be?

User requirement Does the requirement describe actions or con-
straints which have to be considered, satisfied or
performed by the user?

Safety requirement Does the requirement describe necessary safety
constraints?
Annotation Is the text fragment a note that does not add any

information about the ontology or the behavior of
the specified system?

We illustrate this phase with a subset of requirements taken from the PZB
(Table 2). Requirement PZB1 does not provide any new information and thus
is an annotation. PZB2 and PZB3 introduce two different modules, thus they
are architecture fragments. PZB4 defines a message being issued by the system’s
modules and is a communication requirement. PZB5 gives further information
on the methods issued in PZB4. PZB6 describes interaction with a surrounding
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Table 2. Excerpt of requirements taken from the case study.

1D Requirement Category

PZB1 | The PZB is a train protection system devel- | Annotation
oped in Germany.

PZB2 | The system relies on onboard transmitter | Architecture requirement
coils with different frequiencies.

PZB3 | On the trackside different passive tuned | Architecture requirement
inductors are installed.

PZB4 | If a trackside inductor is passed the active | Communication requirement
onboard transmitter coil induces a voltage.

PZB5 | Three frequencies, which can be induced | Property requirement
by the magnets, have to be distinguished:
1000 Hz, 500 Hz, 2000 Hz.

PZB6 | Trackside inductors can be deactivated or | User requirement
activated depending on the signal.

PZBT | If the frequencies match, an oscillation is | State requirement
generated in the trackside inductor result-
ing in an onboard voltage drop indicating
an overrun.

PZB8 | Depending on the transited inductor’s fre- | Safety requirement
quency different actions have to be issued.

PZB9 | 2. The Indusi Glossary requirement

system: the signal. Here, we consider the signal as an external actor and thus
consider it as an user interaction. PZB7 describes the steps a trackside inductor
has to perform and thus is a state requirement. PZB8 states that specific actions
have to be triggered — relevant for the overall systems safety — meaning an
overrun should not be missed and thus, is a safety requirement. PZB9, a section
heading, introduces a concept of the domain and therefore is categorized as a
glossary fragment.

3.2 Phase B: Architecture Extraction

Typically, functional requirements contain information about system modules
and surrounding systems. Their direct formalization, however, is error-prone,
as natural language is ambiguous. Thus, we propose to translate informal text
into an intermediate language: UML [23]. This is, because UML, as a de facto
standard, has a broad audience ensuring that domain experts not familiar with
formal verification methods are able to understand basic architecture and in
later phases intended behavior (cf. Sect.3.3) of the formal model. Further, it
offers the possibility to derive the architecture of the actual implementation.

In order to represent an architecture, UML offers a variety of elements. We
restrict ourselves to components, ports and interfaces in order to define the
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high-level architecture. This is, because elaborate elements like classes are
designed to reflect implementational aspects. Formal models typically behave
differently. Hence, to be able to define a proper transformation from UML into a
more formal representation, we need to define the used subset of UML elements.

Definition 1 (Component). Components in UML describe hierarchically
ordered units within a system or subsystem [23]. C is the set of a all compo-
nents defined by the given requirements. A single component ¢; € C' is a tuple
¢i = (ni, Py, Csup,) with an identifier n;, a set of ports P; and a set of subcom-
ponents Cgyp, -

Further, we define that ¢; ¢ Cgyp,. In order support the interaction of different
components, we need to define interfaces. I is the set of all interfaces defined
by the requirement specification in specific: also derived from architectural
requirements.

Definition 2 (Interface). An interface i € I is a declaration of a set of coher-
ent public features and obligations [23]. It is a tuple i; = (n;, Aj,O;) with an
identifier n;, a set of attributes A; € A where an attribute a = (ng,tx) is a
tuple with an identifier ny, a type ty and a set of operations O; € O. An oper-
ation is a tuple o, = (ny, t;, PAR;) with an identifier n;, a type t; and a set of
parameters PAR; where every parameter par; is a tuple pary, = (N, ty) with
an identifier n,, and a type t,,.

Components can either provide or require an interfaces, which is exposed through
a port.

Definition 3 (Port). A port p; € P is a tuple p = (n, i, type) with an identifier
n, an interface i and the type € {provides, requires}.

Further, we define a function provides : P — (I U_L) mapping a port to exactly
one interface:

iff type = provides

(n, i, type) { (1)

1L iff type = requires
Analogously, requires : P — (I U 1) is defined as

i iff type = requires

(n,i,type) — { (2)

1 iff type = provides

Multiple components shall be assembled using their shared boundary: the inter-
face exposed through a port.

Definition 4 (Assembly). An assembly is a tuple assembly = (P, P) where

(p1,p2) € assembly = requires(py) = provides(pa)A
provides(p) = requires(ps) = L.
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All UML elements must be manually derived from the requirements. The
categorization of requirements (cf. Phase A) allows to define components much
more systematically. Components are typically derived from architecture or glos-
sary requirements. Interfaces and methods shall be extracted from property
requirements. We illustrate the proposed approach with the running example.
The architecture in Fig.2 has been derived from the requirements in Table 2.
The three different components are derived from the glossary and architecture
requirements PZB2, PZB3 and PZB9 namely trackside inductors (ti), onboard
transmitter coils (otc) and indusi. PZB5 was used to derive the interfaces mag-
net and transit. Further, ports needed to be specified, i.e. inductors requiring
magnet and coils providing magnet. Both components ¢ and otc interchange
information, thus an assembly connector is denoted to visualize this information.
Analogously, the information has been modeled for otc and indusi. In order to
ensure traceability all requirements had been linked to their UML element as
shown in Fig. 2.

cmp architecture req [Package] Archil [archi | ility]

N (ol R indusi N
trackside o) 1 «interface» - _— PZB9
inductors magnet h «trace» J

(from

+ inductPower(int)

Requirements)

. onboard transmitter r
inductors coils e PZB2 ‘
coils «trace»
)

P

() ~ &
U U onboard ] L ) (from
magnet - transmitter coils ( I Requirements)
magnet trackside inductors T 2
- PZB3
L ( 1 ) ) «trace»
. . [onl T 'bus L J (from
indusi J N Requirements)
bus . «interface»
/N "
( J PN | transit
transit transit + magnetTransited(int): boolean

«trace»

. PZBS
«trace» | | )

(from
Requirements)

«interface»

transit magnet

«interface» }

+ magnetTransited(int): boolean + inductPower(int)

Fig. 2. Example architecture derived from the requirements of the real world case
study defined in Table 2.

During this phase, we also refine the requirements that are important for
the system testing phase. Safety requirements shall be used in context with the
architecture. In order to refine the requirements we propose to use a formal
specification language, e.g. linear temporal logic [13]. But the actual formaliza-
tion depends on the used model checker. An example from the running example,
namely for requirement PZBS, is given in Sect. 3.6.

3.3 Phase C: Behavior Extraction

In this step, the intended system behavior is modeled. This is, of course, done
with respect to the architecture modeled in the previous step. Often the behavior
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in the SRS is not specified completely, i.e., some parts are free to be designed
by the modeler in the way that no requirements are not violated. We propose to
translate communication requirements into sequences, as a sequence is intended
to represent some excerpt of the complete behavior.

Definition 5 (Sequence). A sequence is a tuple seq, = (N, Cm, My, ) where
N 15 its identifier, C,, € C' a finite set of components and a finite set of mes-
sages M,, € M.

Each sequence describes some communication between different modules speci-
fied as messages [23].

Definition 6 (Message). A message m = (source, target, o,val,v,index) is a
tuple with a source € C,, and a target € Cy, representing the origin and desti-
nation component of the message m. Further, the tuple consists of a operation
0. Fach operation o must be discrete, meaning each parameter par, € o shall
be valued. This is expressed through the function val : PAR, — V', which labels
every parameter with a concrete value with respect to its type. v is the return
value of the operation and index sorts all messages of a sequence seq.

An example sequence is given in Fig. 3, it depicts the behavior described in
PZB4. Three actors are imported from the architecture: ti, otc and indusi. indusi
checks whether a 2000 Hz magnet has been overrun (cf. magnetTransited(2000))

sd 2000HzTransit

onboard
transmitter coils

trackside inductors

(from Archiz‘ecz‘ure) (from Arcbitecture) (from Architecture)
‘ magnetTransited(2000)
false
inductPower(2000)
CJ
magnetTransited(2000)
‘true

Fig. 3. An example sequence derived from the requirement PZB4: If a trackside induc-
tor is passed the active onboard transmitter coil induces a voltage.
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or not. Every time a voltage is inducted from t¢i into otc an overrun shall be
symbolized. The exchanged messages utilize operation defined in the architecture
shown in Fig. 2.

3.4 Phase D: Formal Implementation

During this phase the formal model is implemented. In order to ensure traceabil-
ity, we propose to generate a formal skeleton from the UML model which had
been build from the requirements. Thereby, we retain the option to later use spec-
ifications, automatically generated from the corresponding UML sequences, to
build integration tests (see Sect. 3.5). Further, it is possible to provide traceabil-
ity links from the formal implementation tool to the corresponding requirement.
However, the modeler has to complete the formal model manually by defining
the complete behavior, i.e., modeling all necessary state variables and transition
rules.

Definition 7 (Formal Model). We define a formal model fm as a tuple fm =
(FC,SPEC) of a finite set of formal components FC and a finite set of formal
specifications SPEC.

Definition 8 (Formal Component). A formal component fc € FC is tuple
fe=(n,V,T, F, FCgyp) where n is the name, V is a finite set of state variables
and a set of transition rules T'. FCgyp, is the set of subcomponents in fc, where
Vfe, € FC : fep ¢ FCsuy,. F is a set of formulae, whereas a formula f =
(n,t,prop) is a tuple with an identifier n, a type t and a proposition prop. Thus, a
formula is a stateless, parameter-free, typed and named expression that commonly
1s an abbreviation for conditions.

Using formal components and formulae, we are able to define a translation
from the previous defined UML subset (cf. Sect. 3.2) into a formal model fm. In
order to translate the architecture, every component ¢ € C has to be transformed

into a formal component fc. We define a translation function transComp : C' —
FC with

(n, P,Cgyp) — (n, L, L, L {transC(Cgyp) UtransP(P)}). (4)

It generates for every component ¢ € C' a formal component fc with the same
identifier. Further, it recursively invokes the translation of every subcomponent
in Cgyup. Note that state variables and transition cannot be generated as the
architecture does not contain a behavioral definition.

Every port in ¢ has to be translated using transP : P — FC with

(n,i,ty — (n, L, L transI(i), L). (5)

This generates a new formal component for each port with the same identifier.
Further, it invokes the translation transl (cf. Eq.6) for the interface. It returns
the formalization of an interface provided or required by the port. The function
transl : I — F translates an interface into a set of formulae where
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(n, A, O) — {transA(A) U transO(O)}. (6)
The formalization of an attribute is specified by transA : A — F, whereas
(n,t) — (n,t, L). (7)

It transforms an attribute with name and type into a formula with the same
name and type. The proposition is empty, because its value is not defined by the
attribute.

A given operation is translated into a set of formulae with transO : O — F.
With the ‘.” operator, we access an attribute of the object, e.g., par;.type access
the type of parameter par;.

(n,t, PAR) — {(ncau, bool, L), (npar,, par;.type, L), ...,
<nparv 7Parj~typ€7 J—>7 <nreturna t, J—>}
J

(®)

Every operation is translated into a formula representing the method call, a
formulae for every parameter and a formula representing the return. Note that
the propositions cannot be generated as the complete intended behavior is not
defined in UML. Thus, the propositions have to be denoted manually.

Applying these translation rules to the UML model generates a formal model
with multiple components and formulae. Until now, assemblies have not been
considered. It can be done automatically by linking the call, parameter and
return formulae in the code of the formal model. An interface provided by a
port exposes methods to other components. Its methods must react on external
input and provide feasible return values, determined through the formal imple-
mentation of the modeler. Hence, call and parameter formulae are determined
through the requiring port. Methods not defined by an interface can not be
“invoked”. This increases the quality of the formal model as the modeler has
to use provided interfaces to “invoke” necessary behavior. In the formal model
return values have to be computed with respect to the method call and parame-
ter formulae.

An example is given in Listing 1.1. The example is denoted in the System
Analysis Modeling Language (SAML) [18]. A SAML model describes a set of
finite state automata. These are executed in a synchronous parallel fashion. An
automaton is described as a component that can contain state variables which
are updated according to a set of transition rules. An example is shown in line
1. As we described before, the formal skeleton does not contain any states or
transition rules, thus they are not shown here. Only formulae can be generated.
An example formulae is shown in line 4, typically it is used as an abbreviation for
typed expressions. Valid types are bool, integer, floats, and previously specified
enumerations. In addition to components and formulae, traceability links are
generated. These links are added as structured comments (cf. lines 1, 2 and 8).
They are used by the VECS-IDE, to provide one-click tool support, for tracing
formal elements to their original requirement (in the requirement specification
IDE). Note that we use the abbreviations ¢ and otc for the components trackside
inductors and onboard transmitter coils. Further, we abbreviate inductPower and
magnetTransited with iP and mT.



Correct Formalization of Requirement Specifications 117

Listing 1.1. Formal skeleton generated from the architecture given in Fig. 2.

1|component ti //<<trace>> PZB3

2| //<<trace>> PZB5

3| component inductors

4 formula bool iP_call := null;

5 formula int iP_freq := null;

6| endcomponent

7| endcomponent

8| component indusi //<<trace>> PZBY
9| //<<trace>> PZB5

10| component bus

11 formula bool mT_call := null;
12 formula int mT_freq := null;

13 formula bool mT_return := otc.bus.mT_return;
14| endcomponent

15| endcomponent

16| component otc //<<trace>> PZB2

17| //<<trace>> PZB5
18| component bus

19 formula bool mT_call := indusi.bus.mT_call;
20 formula int mT_freq := indusi.bus.mT _freq;
21 formula bool mT_return := null;

22| endcomponent

23| //<<trace>> PZB5

24| component coils

25 formula bool iP_call := ti.inductors.iP_call;
26 formula int iP_freq := ti.inductors.iP_freq;
27| endcomponent

28| endcomponent

Having the formal skeleton generated, the model needs to be manually com-
pleted by the modeler. The modeler has to systematically formalize all state
requirements manually. If completed, the correct formal implementation shall
be validated. Utilizing control data, a formal modeler is able to test single for-
mal components through its behavioral triggers. Depending on overall project
structure, the specification of the control data is either indirectly defined through
requirements (e.g. it can be inherited from state requirements) or it can be gener-
ated through state-of-the-art algorithms (e.g. [3]). The corresponding assertions,
representing the test checks, have to be formalized as temporal logic specifica-
tions and executed using a model checker.

3.5 Phase E: Integration Testing

The correct integration of every single formal unit is validated during this phase.
Having the correct behavioral integration formally validated can help finding
requirement specification errors by proving mathematically that the given behav-
ior is underspecified or inconsistent. The modeler can identify erroneous behavior
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and trace the corresponding transitions rules through the UML to their origin
in the SRS with counterexamples calculated by the model checker.

In order to efficiently ensure the correct behavioral requirement formaliza-
tion, we utilize the UML behavior descriptions. We defined sequences to rely on
the architecture, thus, every message of a sequence is well-defined and invoked
from one component to another. This is, because a message symbolizes a method
call and/or return with a parameter configuration and a return value.

Under these assumptions, we can automatically formalize every sequence. We
propose to generate a specification for every sequence such that it evaluates to
true if the correct method call/return with the specific parameters is invoked
in the correct order. Applying these semantics to the running example we can
generate the branching-time logic specification shown in Listing 1.2.

Listing 1.2. Formal specification generated from Fig. 3.

1|SPEC EF(indusi.bus. mT_call = true & indusi.bus.mT_freq = 2000

& EF(otc.bus. mT_return = false & EF(ti.inductors.iP_call
= true & ti.inductors.iP_freq = 2000 & EF(indusi.bus.
mT_call = true & indusi.bus.mT_freq = 2000 & EF (otc.bus
.mT _return = true)))));

rrrs

However, this specification does not generate a witness — a proof that the
specified path exists in the state space. Thus, we propose to translate every
specification into an acceptor automaton [26]. A witness can then be calculated
by constructing a specification such that it evaluates to true if there is globally
no path to the final valuation of the acceptor. The model checker then computes
a counterexample providing a path such that the sequence is fulfilled which can
be used during a safety assessment in order to argue about the feasibility of the
formal model.

3.6 Phase F: System Testing

The goal of the system testing phase is to ensure that the formal implementa-
tion is tested for compliance. To do so, we utilize the safety requirements defined
in the SRS. Safety requirements typically state unwanted hazardous behavior or
states of system components or the whole system. With the help of the described
architecture these requirements can be translated into temporal logic specifica-
tions. Further, state-of-the-art model checkers can be used to evaluate these
specifications and objectify the assessment.

We use PZBS8 to demonstrate the manual extraction of a safety specification
from the running example. PZBS8 states that a magnet transit triggers different
safety relevant action, e.g. an emergency stop of the train. Thus, an overrun shall
not be missed. Utilizing the architecture defined in phase B the following linear
time logic formula was developed:

G((ipcall = true N\ in’req = 2000) =
(Mot = tre AmTyyeq = 2000 ATy = truc))

9)



Correct Formalization of Requirement Specifications 119

With respect to the formal architecture depicted in Listing 1.1 the formula
can be translated into the specific formal language as follows:

Afterwards, a state-of-the-art model checker computes whether the specifi-
cation holds or not. If so, the formalization of the requirements is correct. If
not, the model checker generates a counterexample indicating where an error is
stated. Then, the modeler has to manually locate the error and conclude dif-
ferent solutions. The manual translation of state requirements can be erroneous
which has to be resolved. If the formal behavior is correct, the UML model can
be faulty. Further, the SRS can be under specified or erroneous. Thus, the pro-
posed approach can either be used to validate if a formal model violates the
SRS, the UML model is not consistent or if the SRS is erroneous.

Listing 1.3. Final formal specification generated from Eq. 9.

//<<trace>> PZBS8

SPEC G((ti.inductors.iP_call = true & ti.inductors.iP_freq =
— 2000) => (indusi.bus.mT_call = true & indusi.bus. mT_freq
— = 2000 & otc.bus.mT_return = true))

N =

3.7 Phase G: Acceptance Testing

Acceptance testing aims to validate if the system meets its user requirements.
Cimperman defines user acceptance tests as the validation if the system works
for the user [10].

In phase A user requirements have been identified and have been modeled in
UML as use cases. In order to objectify the test a use case is refined with multiple
sequences. This is necessary, because a use case does not specify behavior in
terms of the architecture. Using sequences refines a use case with the underlying
architecture. Thus, we can use the same mechanism as described phase E (cf.
Sect. 3.5) to verify the validity: acceptor automata. This eliminates a manual
review of use cases.

4 Using the V-Model to Formalize the PZB

We demonstrate the proposed approach on a real world example from the rail-
ways domain: the “Punktformige Zugbeeinflussung”. The PZB is a train protec-
tion system which uses three different kind of trackside and onboard magnets
to detect speed limitations and signals in order to ensure the safety of the train
with automatically breaking actions if speed limits or signals are ignored. The
German Federal Railway Authority issued a SRS with over 770 text fragments.
These fragments were indexed, inter-linked and categorized resulting in over 500
functional requirements. A domain expert identified 18 use cases from four user
requirements refined through 13 sequence diagrams.

An UML model with ten components, 19 ports and eleven interfaces has been
derived from 45 glossary and 35 architecture requirements. Further, we identi-
fied 62 methods with 17 parameters where 32 were non-void from 129 property
requirements. 23 sequences have been exemplary derived from 38 communication
requirements.
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We developed elaborate tool support integrated in the verification environ-
ment VECS [17]. We generated a formal skeleton in SAML [18] with 29 formal
components with 226 different formulae. 73 state requirements have been for-
malized into 76 state variables and 164 transition rules. Further we added 129
components, 228 formulae for readability purposes. In order to test the behavior
of single formal units, a variety of individual tests have been developed.

Further, 23 acceptor automata have been generated with 23 state variables
and 1037 update rules. Using the IC3 approach [28] of NuXMV [6] a variety of
errors have been found. Typical errors found were incorrect value assignments
across different components. With the proposed approach these mistakes have
been found systematically. At the end of the integration testing phase, each
acceptor automaton provided a witness for its corresponding sequence. These
witnesses were used to demonstrate feasibility of the formal model and as a
proof for the correctness of the process method.

Further, 30 safety specifications have been checked with the k-liveness app-
roach [9] of NuXMV. Especially underspecified behavior in the SRS has been
found during this phase. For example, stopping the train directly on an trackside
inductor has not been mentioned in the SRS. Using the proposed approach, a
counterexample has been generated describing the unintended behavior in detail.
With the help of the requirement links the intended behavior was traced to the
SRS, where the requirements had been extended to cover this behavior. After-
wards, the faulty behavior definition has been fixed in the formal model.

In order to validate if the developed formal model does fulfill all user stories,
the refined use cases have been formalized into additional acceptor automata.
Through their formalization and executing using the IC3 approach, we proved
the correct implementation of all required use cases.

Following the proposed approach for building a “correct” formal model
improved the quality and feasibility of the PZB model. Architecture and behav-
ior for the model had been specified more systematically. Further, traceability
of requirements had be achieved by automatically adding structured comments
as requirements links. These links helped identifying faulty behavior and getting
deeper insight the formal model. Generating automated tests cases also improves
the quality of the model. This is, because erroneous behavior had be found much
more systematically.

5 Conclusion and Further Work

In this paper, we proposed a process in order to formalize even large system
requirement specifications while preserving traceability through all stages. We
apply the well known V-model to ensure the correct transformation of require-
ments. Doing so, we ensure that a formal model is developed which is mathe-
matically proven consistent to a set of requirements.

This was done by categorizing requirement fragments and transforming them
into UML. It ensures that domain experts, not familiar with formal verification
techniques but with a set of UML artifacts, can review the generated formal ver-
ification results and trace them to their origins. Further, we proposed a method
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to transform an architecture into a formal representation without the need of
generating state variables. We showed how to transform partial UML behavior
to ensure a correct a formal model. By utilizing state-of-the-art model check-
ers manual reviewing of correct formal behavior specification was eliminated.
Further, we have shown how to validate mathematically that the formal model
fulfills every use case specified in the requirements.

Finally, we successfully applied the proposed process on a real world system
requirement specification from the railway domain. We were capable of finding
and correcting specification errors in all three formalization stages: we found
inconsistencies in the informal requirements, manual transformation errors in
UML artifacts and faulty behavior in the formal model.

We plan to apply and extend the proposed methodology in an even larger
case study: In cooperation with the German Federal Railway Authority, we will
formalize a subset of the European Train Control System requirement specifi-
cation in order to prove its functional safety. We will develop new mechanisms
to support a broader subset of UML artifacts like combined fragments, activity
diagrams and state charts. Further, we will extend the process in order to work
in cooperation with state-of-the-art code generators and develop new method-
ologies to ensure the consistency of the generated code and the developed formal
model.

Acknowledgment. The work presented in this paper is funded by the German Min-
istry of Education and Science (BMBF) in the VIP-MoBaSA project (project-Nr.
16V0360).
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