
Using Formal Proof and B Method at System
Level for Industrial Projects

Denis Sabatier(✉)

ClearSy, Aix-en-Provence, France
denis.sabatier@clearsy.com

Abstract. Since several years, ClearSy has driven large projects about using
formal proofs at system level in the railway domain. The fundamental goal in
these projects is to extract the rigorous reasoning establishing that the considered
system ensures its requested properties, and to assert that this reasoning is correct
and fully expressed. In this paper, we give feedback about the methodology used
in all these projects, about the differences made by whether the concerned system
is currently under design or already existing and about the benefits obtained. The
formal proofs are performed using Event-B, with the Atelier-B toolkit.

Keywords: System level proof · Formal methods · Event-B · Atelier-B

1 Introduction

Since several years, ClearSy has driven large projects about using formal proofs at
system level for railway systems in the railway domain. The fundamental goal in these
projects is to extract the rigorous reasoning establishing that the considered system
ensures its requested properties, and to assert that this reasoning is correct and fully
expressed. At system level, this rigorous reasoning involves the properties of different
kind of subsystems (from computer subsystems to operational procedures), that the
formal proof shall all encompass.

It may seem that such a top-level reasoning should be very complicated, involving
all details of the complex system: in reality it is often quite simple. In the case of a CBTC
system (most of our system level proofs are about CBTCs), the requested properties are
ensured because equipped trains determine their position correctly, because protection
envelopes are determined using these correct positions, because the interlocking does
so that those envelopes remain within locked routes and because equipped trains remain
before their given limits. Well, it does not completely fit in a single sentence of course,
but nevertheless it is fortunately simple enough to be expressed, at least independently
from technical details below like track data format.

2 Role and Benefits

So contrary (and in complement to) many other methods, we start from the top level
before details appear. What are the expected benefits? The system level “reasons why”
properties are part of the domain knowledge. They are, however, known by domain

© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 20–31, 2016.
DOI: 10.1007/978-3-319-33951-1_2



experts in terms of complex design solutions, so the experts may not easily give the true
explanations without going through all the design details. This drives the focus away
from what actually ensures the properties and levels out all details as if they were of
equal importance. Extracting these “reasons why” in a formal way forces one to formu‐
late a self-sufficient and provable set of properties and assumptions: unnecessary details
are eliminated thanks to assumptions optimization, and the proof ensures that all that is
necessary has indeed been included.

Having a clear definition of these properties and assumptions will certainly not find
hidden bugs in low level design: providing proofs at high level does not suppress the
necessity to cover all the project’s stages. At least we can expect that a clearer definition
of what each sub-part should ensure (highlighted for important properties alone) will
draw the testing /verifications toward important bugs or avoid them in the first place
thanks to proper developers’ focus. More precisely, we can summarize the benefits in
two categories:

• Benefits thanks to a sufficient set of clear properties requested from developed sub-
systems: better focus on those properties, either during development /testing (if these
tasks occur during or later system level proofs) or for post verifications;

• Benefits thanks to a sufficient set of clear properties requested from context sub-
systems: usually such properties or assumptions about context concern very different
domains. In an industrial project each partner or company is eager to focus on its
domain of expertise, even when doing so means using unclear or not well defined
assumptions about context sub-systems. Important pitfalls can hide there, and they
could remain undetected until the final integration phase. The system level formal
proof typically helps to detect concerns that might fall in such “responsibility holes”
otherwise.

3 Projects

The first project of that sort done by ClearSy is the system formal verification for the
CBTC of New York subway line 7 (Flushing line system proof, see [4, 8]). New York
City Transit (NYCT) has awarded THALES Toronto for the design and fitting of this
CBTC (awarded in 2010, revenue service scheduled in 2016). This CBTC system is
composed of an on-board computer fitted in renewed R142 cars and of field and office
equipment (zone controllers and central supervision). It interfaces to the existing inter‐
locking system, adapted with specific modifications. This system level formal verifica‐
tion with proofs lasted from November 2010 until December 2012 and the workload
was several man years.

The second project was also for NYCT. Reusing the models developed for the
Flushing line, the goal was to provide system level proofs for all CBTC complying with
NYCT’s Interoperability Interface Specifications (I2S). In fact, I2S based CBTCs are
divided in subsystems with predefined roles: by clearly defining the required properties
of each subsystem and the context assumptions a formal proof of system level properties
is possible, even without knowing each possible vendor’s design. ClearSy obtained such

Using Formal Proof and B Method at System Level 21



a proof; the project lasted from November 2013 to July 2015 with a workload less than
half that of Flushing, thanks to reuse.

Two other projects of similar sizes and topics are currently going on concerning
French railways: one for SNCF has started last summer (2015), the second one for the
Paris metro operator RATP is about to start.

4 Functional or Safety Properties

Should the system proof include functional properties or be restricted to safety properties
only? This question may seem straightforward, because proving as many things as
possible seems natural. A closer look reveals that the proof of functional properties is
often expensive or with limited benefits, even if proving only safety properties means
that the proof will not give any guarantee about the system being functional at all.

Here is why functional properties are less accessible to proofs: the mechanism of a
formal demonstration consists in formulating target properties, gathering assumptions
and finding a logical path (i.e. using only known rules) from assumptions to target prop‐
erties. But functional properties are defined in terms of performances (delays, capacity)
and scenarios (typical situations where performance should be reached; in degraded
situations maximum performance is not expected). So the assumptions here would be
the scenarios themselves, together with all the mechanisms involved; any proof there
becomes very similar to a simulation on a particular case.

Conversely safety properties should be kept whatever the scenario, using minimal
assumptions about mechanisms: there a proof gives all its value by replacing testing or
simulation across an unbounded set of scenarios and situations. In our case of system
level proofs, we thus target global safety properties only. Of course there are cases where
the notions of “safety” and “functional” merge (think for example of systems aboard
planes), where keeping something functional becomes vital. Then the necessary redun‐
dancies multiply the scenarios, bringing back the value of a proof for such cases.

In railway systems and in particular in CBTCs, the safety properties remain well
separated from functional ones. Typical target safety properties are:

• Impossibility of collision between trains,
• Impossibility of derailment over an unlocked switch,
• Impossibility of over-speeding.

These safety properties are found in all kind of railway systems, whether they are
CTBC projects or signaling system projects. In ClearSy’s system level proof projects,
the top level reasoning is thus very similar despite the fact that the projects are from
different contexts and different designs; however similarities decrease rapidly at more
detailed levels, where the chosen design has a stronger importance.

This difference between safety properties and functional properties gives an important
clue about the role of a proof in a large system project, in particular the role of a system
level proof: it addresses the global safety properties that should hold whatever the scenarios
and whatever the conditions. The more a property is related only to specific scenarios, the
less the benefits of a proof: for such properties simulation and testing apply.

22 D. Sabatier



5 Methodology

5.1 Overview and Experiences

ClearSy’s methodology to obtain such system level proofs is divided in two main steps:

1. Write documents explaining how the system ensures the desired properties. We call
this natural language “proof”, with quotes because this step is not yet a formal proof.

2. Write event-B models such that the proof performed is the formal equivalent of the
natural language proof.

The first step is based on the fact that we do not use the formal method to understand
why a property is ensured, but to validate that it is really ensured once the “why” is
understood. We want to avoid mixing formal notation issues with domain issues, which
are paramount. The second step is of course necessary to obtain a true formal proof and
the correctness guarantee that comes with it. These two steps are duplicated for all topics,
starting from top level properties and repeated for sub-properties down to the chosen
level of details, in a hierarchical manner.

The first step “natural language proof” is deeply impacted by whether the system is
already designed, ranging from a new system currently in its first stages to an existing
system with legacy design. There is a paradox here: the job of the formal proof team is
easier if the design is stable and well known, but then the benefits of the proof are
reduced, because if pitfalls exist they will not be easily corrected and if there are no
pitfalls the whole proof work seems useless. Conversely, if the design is not yet decided
at all, there may be very little to prove.

In the Flushing NYCT project, the design was well known but currently under
modification: THALES designers were currently adapting their CBTC design to
NYCT’s requirements. ClearSy had extensive contacts with the designers, so the design
was easily accessible with comprehensive explanations. In the I2S project, the situation
was more difficult because we had to rely only on the part of the design imposed by the
interface specification: for the vendor specific part, we had to assume that the vendor’s
internal design would correctly establish the sub-properties taken as assumptions in the
proof. ClearSy so added documents called “proof requests” (not meaning “formal” proof
request) to the I2S explaining required properties and clarifying context assumptions
under which these properties should hold. Besides, the design fixed with the interface
was not to be changed at all, and the “reasons why” of this design was not so easily
accessible. In subsequent projects we also encounter the case of a design still in its very
first phases: because proving all possible solutions is not feasible, the initial task is then
reduced to defining the notions in preparation for future proofs.

5.2 The Natural Language Proof

In all cases, the necessary elements to extract for the “natural language proof” are:

• Well defined target properties;
• A set of fully realistic assumptions about concerned sub-systems and context;
• An understanding of how these assumptions ensure the properties.

Using Formal Proof and B Method at System Level 23



Defining target properties is not difficult at the system’s top level because it’s directly
linked to what the system should obviously ensure. It is conversely very difficult to find
the true properties from the sub-systems and the context constituting the set of assump‐
tions cited above: the role of each subsystem is known by each domain’s experts in terms
of internal design details, never (or practically never) as abstract properties. Actually, it
is far easier and less prone to errors to describe a subsystem using all its design details
“as so” than to formulate an abstract property that sums up this subsystem. When trying
such a formulation, one quickly discovers the asymptotic difference between an almost
true property and an always true property for characterizing the considered subsystem!

For the proof team, it would not be realistic to expect such well-defined abstract
properties from the experts or from the project documents. ClearSy uses the following
method, starting from identified top properties and a first understanding of subsystem
roles:

• Play scenarios trying to violate the wanted property (for instance, at top level try to
play a scenario leading to a train collision), in a light and fast way, until the reasons
why violating the property is impossible appear.
• Ask feedback about those scenarios from system designers: as the desired property

(for instance no collision at any time) has been their concern, they will quickly
explain why the property is ensured in that case (unless there is a real pitfall!).

• Once the reasons why the property is ensured have appeared, explain those reasons,
at first informally then more and more rigorously.
• Again, ask feedback about those simplest reasons why the property is ensured

from original system designers.

We repeat these steps until sufficient abstract properties for subsystems and context
appear, so that the target properties seem to be ensured. Like this, close contacts with
domain experts and designers ensure that the proof team manages to find the required
assumptions efficiently, without illegally re-designing the system (in a way that would
be incorrect compared to the real system and that would not be functional, as the proof
team is not the design team).

Starting from top level target properties, we use this process to obtain the three compo‐
nents previously cited: target properties, context /subsystems properties, reasoning. This is
done in several successive steps: the sub-properties of a step become targets properties for
next steps, and so on in a hierarchical way until we reach the appropriate level of detail.
Note that seen from a proof point of view, the context and subsystems properties are the
assumptions for a given proof step: for this reason we call them sub-properties or assump‐
tions indifferently. Of course, at the end of the whole process only the assumptions from
all the terminal branches of the hierarchical tree will be presented as the output assump‐
tions, to be finally validated and rechecked in case of system evolution (Fig. 1).

Key points in the methodology. Even if using “natural language” in this phase is
considered necessary, it means that before the formal stage (where we use Event-B [1,
3] and Atelier-B [2]) all the ambiguities of the natural language can remain. To detect
such ambiguities when first writing the properties, we use the following criterion: in any
possible scenario, it should be possible to state unambiguously whether the property is

24 D. Sabatier



true or false in that case. Testing properties using this criterion leads to many questions
before the formulation is satisfying. Another good test is that if an assumption or property
is required from a subsystem, then we should be able to find a realistic accident scenario
when removing this assumption. Such accident scenarios must be kept with the assump‐
tions, they are their best justification.

To work in such close contact with the designers /experts, the proof team has to
conform very strictly to its role:

– The proof team shall be neutral regarding the design choices;
– They should accept to go inside details with the experts, even if it means analyzing

a lot of “how” to find a small amount of “why” (we say that they should accept to
“plunge in the domain”);

– They should do so to be a help to find and solve potential pitfalls, they should avoid
at all costs any risk of discrediting the work of the designers.

Despite the fact that subsystems properties should be expressed without internal
design details, to close the gap between ‘almost true’ and ‘always true’ the proof team
often has to do incursions inside the design details. This is ‘plunging into the domain’

Fig. 1. Properties, sub-properties and assumptions

Using Formal Proof and B Method at System Level 25



as expressed above; it is ok as long as it is done with the experts, and with the will to
efficiently find the subsystems properties and to formulate them independently from
these details.

5.3 The Formal Phase

In the subsequent formal phase, all the natural language proofs are rewritten in formal
language. ClearSy uses Event-B and Atelier-B for this purpose: schematically, the target
properties are written into top level B models, the subsystem properties are written as
B refinement models in such a way so that the proof performed by Atelier-B (according
to the definition of refinement in B) shall be equivalent to the reasoning done in natural
language.

The formal proof in this phase is a verification, as the proof itself (the “reasons why”)
is found during the natural language phase. In our experience, the reasoning involved is
rarely very complicated or requiring high level mathematics: most of the difficulty in
the whole process resides in formulating subsystem and context properties. Once this is
done for a given topic and level, the keys of the reasoning already exist because the
contributing properties were revealed by examining how the subparts actually ensure
target properties. This work is done in collaboration with the experts and the designers,
so if pitfalls exist they are normally resolved (or at least discussed and mitigated) at
once. Thus, this process does not produce a list of bugs to be solved at the end: if every‐
thing goes well it should finish with a proof under approved assumptions, all pitfalls
resolved or mitigated.

Once found how a given target property is ensured, with context and concerned
subsystems roles optimally formulated, the reasoning often seems very simple. So there
is a temptation to conclude that the concerned proof step is obvious and that it is not
worth rewriting in B and Atelier-B. It is almost a quality sign: the better the expression
of the “reasons why”, the simpler the B models and the more obvious the proof. This is
particularly true for system level proofs because we remain before the complexity wall
of detailed functions names, data formats or electrical interfaces.

Our experience is that rewriting in B and proving with Atelier-B is always worth it.
With the best possible preparation, all the natural language demonstrations that we
transformed into actual B models and proved were changed during this process. Very
often, turning natural languages assumptions into B formulas reveals cases where the
meaning is uncertain or blurry: these are typically cases where the criterion (the one
defined as a key point above) does not hold, i.e. scenarios where one cannot state whether
the concerned property is true or false. Less often, extra pitfalls are discovered during
the proof phase; then it is usually complex cases that would probably be impossible to
find without proving.

An example of this kind of complex pitfall that we discovered only in the final proof
phase concerned the safe braking function of CBTC trains, in very specific cases where
an initial backward movement of the train during residual traction phase could impair
the correctness of the braking calculus. Real track slope values were probably such that
this could not actually occur, but well, the point was not spotted and not verified before.

26 D. Sabatier



6 Results and Their Usage

6.1 Where to Stop

The system level proof process ends when the chosen level of detail is reached, with all
the formal proofs done. This chosen level of detail is variable: one can decide to go down
to actual interfaces and design of subparts (for instance down to electrical relay sche‐
matics for parts done with this technology), or to stop at a higher level. In our CBTC
projects, ClearSy went down to a quite detailed level in subparts (including for instance,
how slipping wheels are detected by the onboard computer), but above the level of the
data formats and the actual internal design. The actual computer code was not examined;
neither the data formats like the system track database. We believe that this chosen limit
is suitable to solve system level problems in a sufficiently detailed way, without
including the complexity of software data representation or electrical signals. Note that
system interface specifications usually must go deeper, as they should dictate the
message formats between subsystems.

6.2 Output Documents

After the formal proof stage, all the final assumptions (about context, about subsystems
design below the chosen final level…) are expressed. In the B models this formulation
is not easily readable, so we translate them back into natural language in documents
called “books of assumptions”.

In these documents, we give the following information:

• Target properties (explained in natural language, illustrated with examples);
• Assumptions (explained in natural language)

Fig. 2. The global process with its outputs outlined.

Using Formal Proof and B Method at System Level 27



– For each assumption, we show scenarios of what could occur if it did not hold;
– We also give information about who validated the assumption, what are the

concerned teams and whether extra validation is needed (if the system is not yet
ready, or in case of evolutions).

The sentences used in these documents are indeed retranslated B formulas, so they
are very precise (although sometimes with a not very literary style!). Experts and
designers that participated in the process are already used to the extracted notions and
the agreed assumptions, however we found useful to organize several day long presen‐
tations to explain the results to a larger audience within our customers. The final results
are useful only as long as they are understood and used! (Fig. 2).

6.3 Safety Cases and Standards

Besides obtaining the assurance that a formal proof could be done at system level, the
benefits of this process for a given system should naturally concern the safety case, as
proven target properties are basically safety properties. Standards (like EN 50126, 50129
and 50128, see [5–7] in railway domain or EN 61508 more globally) favor formal
methods but more at software development level. Taking into account the extra guar‐
antee of a system level formal proof is left to the ISA to decide upon, although it is
probably in the spirit of these standards to seek ‘safety proofs’ in any sense.

Nevertheless, system level proofs certainly do not exempt from performing all
necessary safety cycle steps (including quality, organization, verification & validation,
etc.). One paramount topic is the study of possible failures and their probability. In the
system proof, safety target properties are clearly meant to hold whatever the possible
failures, considered at the appropriate level of probability regarding the possible acci‐
dents. So the sub-properties and assumptions that the proof relies on should also hold
whatever the possible failures, considered at the appropriate level of probability. This
is how the failures & probabilities studies are related to the proof.

So failure rates and hazard studies remain of paramount importance; the proof helps
in the definition of properties to be ensured despite these failures but does not change
this part of the safety case otherwise.

7 A Sample Case Study: The Route Cancellation Example

How exactly are the properties written, how is the proof performed and how is this
methodology based on natural language proof /formal proof applied? To give a better
idea of the process, let’s show a very simple example. Consider the following drawing:

In this Fig. 3, there is a switch beyond a signal. Obviously the switch should be
locked when a train arrives, otherwise a derailment could occur. The problem is the
following: what mechanism should be installed so that when the line operator wants to
close the signal and change the position of the switch, no derailment shall be possible?
The usual railway solution to this is to install a delay-based route cancellation system:

28 D. Sabatier



• If the train is far enough (before some “approach” zone limit), the line operator can
cancel the route and move the switch at once because the train has enough space and
time to stop before the signal;

• If the train is already near, when the route is cancelled the signal should close but the
system shall keep the switch locked for a certain time. Then the train will either stop
before the signal or go beyond during this time. If the train is detected beyond the
signal, the switch is maintained in locked state until the train has cleared the route.

Above is the purely informal reasoning. It is a good starting point; however it does not
give the constraints between the delay and the train’s stopping capabilities. Moreover,
such informal clues do not provide any certainty about whether the switch is protected
in all cases and under what assumptions (about train speed, braking, …). Things become
more precise when we define variables /constants /notions to denote this system. Let’s
not describe the possible variables here in too much detail; with obvious definitions we
can sense the necessary assumptions:

• If the train is beyond F (Pk > F), then no unlocking shall be possible;
• There must be a visibility zone (Zv) such that when the train is near (Pk > Zv) and

the signal is red, the train will always stop in a given maximum delay (Ts) and a given
maximum distance (Ds); otherwise the train could completely ignore the signal.

• The approach zone (Za) such that the train detection inside will trigger the locking
delay (T) when the route is cancelled must be larger than the worst stopping distance
Ds: otherwise the train could overrun the signal after a route cancel that unlocked the
switch without delay. For even more obvious reasons the visibility zone (Zv) shall
be larger than Ds: the signal F would be useless otherwise.
– Note: in the figure Za is before Zv, but this is just an example. There is no such

constraint.
• The unlocking delay T shall be greater than the worst stopping time Ts: otherwise

the timer may expire just before the train overruns F, thus unlocking the switch in
front of the train beyond F.

At this stage, the named variables allow a far more precise description of the problem;
the constraints and necessary assumptions appear thanks to the scenarios seen above.
These scenarios are what we could call “otherwise” scenarios: they reveal the necessity
of each assumption by showing what could occur otherwise. The target property is now
easily defined: if the train is beyond the signal (Pk > F), then the switch should remain
locked (using some variable named ‘unlocked’: unlocked = False).

Fig. 3. The route cancel example.

Using Formal Proof and B Method at System Level 29



We now have a strong intuition that the system is safe with only the few assumptions
above (F-Zv > Ds, F-Za > Ds, T > Ts), but this is not yet a proof. Here comes the natural
language proof step: finding out how we can conclude that the switch will always be
locked if the train reaches it. This is a case by case reasoning:

– If the route cancel occurs when the train is not yet in the approach zone (Pk < Za),
then it will stop before F (Za + Ds < F). So no question is to be asked about the
switch. The same applies if the route cancel occurs when the train is not yet in the
visibility zone (Pk < Zv), because the visibility zone is large enough (Zv + Ds < F).

– In the remaining case, the route cancel occurs when the train is already in the approach
zone and in the visibility zone. Because the signal is directly visible, the stopping
delay of the train can be counted from the route cancel event; because it is in the
approach zone, the switch will remain locked during T after this route cancel event.
So the switch is still locked when the final stopping of the train occurs before T; if
the train is beyond F at that moment it will be detected and the switch will remain
locked until the train has cleared the route.

This reasoning can be explained and checked with domain experts: this is the “natural
language proof”. It may seem simple, but it is now possible to carefully examine the
meaning of the variables and the related assumptions: the most crucial problems are
usually solved at this moment.

If we stopped here, there would be no quantifiable difference compared to an informal
text explaining the system, however rigorous the previous “proof” may seem. The next
step beyond is to use a computerized tool to verify this proof: we use Atelier-B with its
event-B language capabilities. Constructing an event-B model such that the proof will
denote the above reasoning is quite straightforward (provided enough knowledge in the
event-B method of course). A single B model is suitable, with sate variables denoting
Pk, time, date of the route cancellation if it occurred and so on. The target property
(Pk > F => unlocked = False) can be written in the invariant, if the set of B events in
the model is so that this invariant can be proven then this property is proved. Those
events will be:

• Events denoting the movements of the train (in different cases: without visible red
signal, with visible red signal, etc.);

• Events denoting the ground system: route cancellation, switch unlocking after the
delay, etc.

The obtained B-model in this case is about 80 lines long; its proof with Atelier-B is
almost fully automatic.

Such B models for system level proofs with this method are usually far simpler than
B models at software level: they are often less than 1000 lines per model, and each topic
is usually a single refinement chain with less than 3 or 4 refinement steps. Of course
they are more complex than this toy example (80 lines, no refinements), but actually the
“reasons why” at system level tend to be quite simple and so are the corresponding B
models. The difficulties in this task (and the benefits) reside in finding the correct
assumptions, and successfully turning all explanations into a rigorous reasoning. From
a mathematical point of view we use only simple rules and results; system designs can

30 D. Sabatier



rely on elaborated mathematical results or complex physical laws but then those central
aspects are well known and covered by theories and proofs that should be taken as
assumptions in the B proof.

8 Conclusion

According to ClearSy’s experience today, a system level proof is feasible with manage‐
able cost for any large system. Of course, the correct organization and the results and
their usage are highly dependent on the nature of the project, and particularly on whether
the design is known or under development. When driving such proof projects, the
important words are adaptation, flexibility and communication rather than theoretical
mathematics!

In industrial projects, the efforts to reach the required performance and to obtain the
mandatory documents obviously come first. Extra efforts to reach higher levels of confi‐
dence (like actually proving properties, using formulated assumptions and logics) are
always a matter of conviction. Let’s hope that global experiences in more and more
projects will accumulate evidence in favor of this conviction.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, Cambridge (2010)

2. Atelier B website. http://www.atelierb.eu/
3. Abrial, J.R.: The B-Book. Cambridge University Press, Cambridge (1996)
4. Boulanger, J.L.: Formal Methods Applied to Industrial Complex Systems. Wiley-ISTE,

Hoboken (2014)
5. EN50126: Railway Applications - The Specification and Demonstration of Reliability,

Availability, maintainability and Safety (RAMS)
6. EN50129: Railway Applications - Communications, signaling and processing systems – Safety

related electronic systems for signaling
7. EN50128: Railway Applications - Communications, signaling and processing systems
8. Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT line 7 (Flushing)

modernization project. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M.,
Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 369–372. Springer,
Heidelberg (2012)

Using Formal Proof and B Method at System Level 31

http://www.atelierb.eu/

	Using Formal Proof and B Method at System Level for Industrial Projects
	Abstract
	1 Introduction
	2 Role and Benefits
	3 Projects
	4 Functional or Safety Properties
	5 Methodology
	5.1 Overview and Experiences
	5.2 The Natural Language Proof
	5.3 The Formal Phase

	6 Results and Their Usage
	6.1 Where to Stop
	6.2 Output Documents
	6.3 Safety Cases and Standards

	7 A Sample Case Study: The Route Cancellation Example
	8 Conclusion
	References


