
Thierry Lecomte · Ralf Pinger
Alexander Romanovsky (Eds.)

 123

LN
CS

 9
70

7

First International Conference, RSSRail 2016
Paris, France, June 28–30, 2016
Proceedings

Reliability, Safety,
and Security
of Railway Systems
Modelling, Analysis, Verification, and Certification

Lecture Notes in Computer Science 9707

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Thierry Lecomte • Ralf Pinger
Alexander Romanovsky (Eds.)

Reliability, Safety,
and Security
of Railway Systems

Modelling, Analysis, Verification,
and Certification

First International Conference, RSSRail 2016
Paris, France, June 28–30, 2016
Proceedings

123

Editors
Thierry Lecomte
ClearSy
Aix en Provence
France

Ralf Pinger
Siemens AG
Braunschweig
Germany

Alexander Romanovsky
Newcastle University
Newcastle upon Tyne
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-33950-4 ISBN 978-3-319-33951-1 (eBook)
DOI 10.1007/978-3-319-33951-1

Library of Congress Control Number: 2016938374

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Welcome to the proceedings of the International Conference on Reliability, Safety and
Security of Railway Systems: Modelling, Analysis, Verification, and Certification
(RSSRail 2016). We are very pleased that RSSRail 2016 is taking place in Paris during
June 28–30, 2016.

This is the first international conference focusing on the reliability, safety, and
security of railway systems. The conference is hosted by RATP (Régie Autonome des
Transports Parisiens) and held in the main auditorium at their head office in Paris,
adjacent to the Gare de Lyon railway station. The conference aims to bring together
researchers and engineers interested in building critical railway applications and sys-
tems. This is a working conference in which research advances are discussed and
evaluated by both researchers and engineers, focusing on their potential to be deployed
in industrial settings.

Our aim is to hold a conference that will contribute to a range of key objectives. We
feel that there is a pressing need to bring together researchers and developers working
on railway system reliability, security, and safety to discuss how these requirements
can be met in an integrated way. It is also vital to ensure that all advances in research
(both in academia and industry) are driven by real industrial needs. This can help
ensure that such advances are followed by industrial deployment. Another particularly
important objective is to integrate research advances into the current development
processes, and make them usable and scalable. Finally, a key goal is to develop
advanced methods and tools that will ensure that the systems meet the requirements
imposed by the standards and in building the arguments.

We hope that this conference will successfully contribute to all of these objectives.
The conference covers topics related to all aspects of reliability, safety, and security

engineering for railway systems and networks, including:

• Safety in development processes and safety management
• Combined approaches to safety and security
• System and software safety analysis
• Formal modelling and verification techniques
• System reliability
• Validation according to the standards
• Safety and security argumentation
• Fault and intrusion modelling and analysis
• Evaluation of system capacity, energy consumption, costs, and their interplay
• Tool and model integration, and tool chains
• Domain-specific languages and modelling frameworks
• Model reuse for reliability, safety, and security

RSSRail 2016 attracted 36 submissions from 14 countries. Fifteen papers were
accepted after a rigorous review process with each paper receiving at least three

reviews. These include nine technical papers, three industrial experience reports, and
three PhD students’ papers. They cover a number of topics, including failure analysis,
interlocking verification, formal system specification and refinement, security analysis
of ERTMS, safety verification, formalisation of requirements, proof automation,
operational security, railway system reliability, risk assessment for ERTMS, and ver-
ification of EN-50128 safety requirements.

Three prominent researchers working on railway engineering — Robin Bloomfield
from Adelard/City University (UK), Denis Sabatier from ClearSy, and Jan Peleska
from University of Bremen/Verified Systems — kindly agreed to deliver keynote talks.
The papers describing the research presented in the keynote talks are also included in
this volume.

We would like to thank the Program Committee members and the additional
reviewers for all their efforts. We are indebted to RATP for hosting our event in Maison
de la RATP in Paris. We would like to acknowledge the help of Newcastle University
staff: Joan Atkinson, Tom Anderson, Wayne Smith, and Dee Carr. We are grateful to
Alfred Hofmann from Springer for supporting the publication of these proceedings in
the LNCS series. But, most of all, our thanks go to all the contributors and the attendees
of the conference for making this conference a success.

March 2016 Ralf Pinger
Thierry Lecomte

Alexander Romanovsky

VI Preface

Organization

Conference Chairs

Thierry Lecomte ClearSy, France
Ralf Pinger Siemens Mobility, Germany
Alexander Romanovsky Newcastle University, UK

Program Committee

Mark Behrens DLR, Germany
Andrea Bondavalli University of Florence, Italy
David Bonvoisin RATP, France
Stephane Callet SNCF, France
Simon Collart-Dutilleul IFFSTAR, France
Veronique Delebarre SafeRiver, France
Alessandro Fantechi University of Florence, Italy
Francesco Flammini Ansaldo STS, Italy
Wan Fokkink Vrije University, The Netherlands
Stefania Gnesi ISTI, Italy
Michael Jastram Formal Mind, Germany
Alexei Iliasov Newcastle University, UK
Tim Kelly University of York, UK
Hironobu Kuruma Hitachi, Japan
Michael Leuschel University of Düsseldorf, Germany
Jean Marc Mota Thales R&T, France
Odd Nordland SINTEF, Norway
Yiannis Papadopoulos Hull University, UK
Andras Pataricza BUTE University, Hungary
Peter Popov City University, UK
Etienne Prun ClearSy, France
Joris Rehm ClearSy, France
Aryldo Russo CERTIFER, France
Kenji Taguchi AIST, Japan
Ina Schaefer TU Braunschweig, Germany
Reiner Schmid Siemens CT Munich, Germany
Walter Schon University of Technology Compiegne, France
Laurent Voisin Systerel, France
Kirsten Winter University of Queensland, Australia

Additional Reviewers
Dominik Hansen University of Düsseldorf, Germany
Anne E. Haxthausen TU Denmark, Denmark
Sebastian Krings University of Düsseldorf, Germany
Sentot Kromodimoeljo University of Queensland, Australia
Marco Paolieri University of Florence, Italy
Steve Schneider University of Surrey, UK
Daisuke Souma AIST, Japan
Enrico Vicario University of Florence, Italy
David M. Williams Thales, UK
Shunsuke Yatabe JR-West, Japan

VIII Organization

Sponsors

AdaCore

ClearSy

Newcastle
University

RATP

Siemens

Systerel

Organization IX

Contents

Keynote Talks

The Risk Assessment of ERTMS-Based Railway Systems from a Cyber
Security Perspective: Methodology and Lessons Learned 3

Robin Bloomfield, Marcus Bendele, Peter Bishop, Robert Stroud,
and Simon Tonks

Using Formal Proof and B Method at System Level for Industrial Projects. . . 20
Denis Sabatier

A Novel Approach to HW/SW Integration Testing of Route-Based
Interlocking System Controllers . 32

Jan Peleska, Wen-ling Huang, and Felix Hübner

Security

A Formal Security Analysis of ERTMS Train to Trackside Protocols 53
Joeri de Ruiter, Richard J. Thomas, and Tom Chothia

Operational Security – A Coming Evolution of Railway Operational
Procedures Under the IT Security Threat . 69

Po-Chi Huang and Birgit Milius

Risk Assessment of the 3Des in ERTMS . 79
Florent Pépin and Maria Grazia Vigliotti

Systems

Failure Analysis of Chinese Train Control System Level 3 Based
on Model Checking. 95

Xiao Han, Tao Tang, Jidong Lv, and Haifeng Wang

Correct Formalization of Requirement Specifications: A V-Model
for Building Formal Models . 106

Marco Filax, Tim Gonschorek, and Frank Ortmeier

Static Verification of Railway Schema and Interlocking Design Data 123
Alexei Iliasov, Paulius Stankaitis, and David Adjepon-Yamoah

Verification of Railway Interlocking - Compositional Approach
with OCRA . 134

Christophe Limbrée, Quentin Cappart, Charles Pecheur,
and Stefano Tonetta

http://dx.doi.org/10.1007/978-3-319-33951-1_1
http://dx.doi.org/10.1007/978-3-319-33951-1_1
http://dx.doi.org/10.1007/978-3-319-33951-1_2
http://dx.doi.org/10.1007/978-3-319-33951-1_3
http://dx.doi.org/10.1007/978-3-319-33951-1_3
http://dx.doi.org/10.1007/978-3-319-33951-1_4
http://dx.doi.org/10.1007/978-3-319-33951-1_5
http://dx.doi.org/10.1007/978-3-319-33951-1_5
http://dx.doi.org/10.1007/978-3-319-33951-1_6
http://dx.doi.org/10.1007/978-3-319-33951-1_7
http://dx.doi.org/10.1007/978-3-319-33951-1_7
http://dx.doi.org/10.1007/978-3-319-33951-1_8
http://dx.doi.org/10.1007/978-3-319-33951-1_8
http://dx.doi.org/10.1007/978-3-319-33951-1_9
http://dx.doi.org/10.1007/978-3-319-33951-1_10
http://dx.doi.org/10.1007/978-3-319-33951-1_10

Safety Verification of Heterogeneous Railway Networks 150
Paulius Stankaitis and Alexei Iliasov

Comparing Formal Verification Approaches of Interlocking Systems 160
Anne Elisabeth Haxthausen, Hoang Nga Nguyen,
and Markus Roggenbach

Predictive Reasoning and Machine Learning for the Enhancement
of Reliability in Railway Systems . 178

Luke J.W. Martin

Verification and Validation

Applying Abstract Interpretation to Verify EN-50128 Software
Safety Requirements . 191

Daniel Kästner and Christian Ferdinand

The PERF Approach for Formal Verification . 203
Nazim Benaissa, David Bonvoisin, Abderrahmane Feliachi,
and Julien Ordioni

Abstract Software Specifications and Automatic Proof of Refinement 215
Claire Dross and Yannick Moy

S3: Proving the Safety of Critical Systems . 231
Nicolas Breton and Yoann Fonteneau

Increasing Proofs Automation Rate of Atelier-B Thanks to Alt-Ergo 243
Sylvain Conchon and Mohamed Iguernlala

Author Index . 255

XII Contents

http://dx.doi.org/10.1007/978-3-319-33951-1_11
http://dx.doi.org/10.1007/978-3-319-33951-1_12
http://dx.doi.org/10.1007/978-3-319-33951-1_13
http://dx.doi.org/10.1007/978-3-319-33951-1_13
http://dx.doi.org/10.1007/978-3-319-33951-1_14
http://dx.doi.org/10.1007/978-3-319-33951-1_14
http://dx.doi.org/10.1007/978-3-319-33951-1_15
http://dx.doi.org/10.1007/978-3-319-33951-1_16
http://dx.doi.org/10.1007/978-3-319-33951-1_17
http://dx.doi.org/10.1007/978-3-319-33951-1_18

Keynote Talks

The Risk Assessment of ERTMS-Based
Railway Systems from a Cyber

Security Perspective: Methodology
and Lessons Learned

Robin Bloomfield1(&), Marcus Bendele1, Peter Bishop1,
Robert Stroud1, and Simon Tonks2

1 Adelard LLP, London, UK
{reb,mmb,pgb,rjs}@adelard.com

2 Porterbrook Leasing Company, Derby, UK
simon.tonks@porterbrook.co.uk

Abstract. The impact that cyber issues might have on the safety and resilience
of railway systems has been studied for more than five years by industry spe-
cialists and government agencies. This paper presents some of the work done by
Adelard in this area, ranging from an analysis of potential vulnerabilities in the
ERTMS specifications through to a high-level cyber security risk assessment of
a national ERTMS implementation and detailed analysis of particular ERTMS
systems on behalf of the GB rail industry. The focus of the paper is on our
overall methodology for security-informed safety and hazard analysis. Lessons
learned will be presented but of course our detailed results remain proprietary or
sensitive and cannot be published.

Keywords: Security assessment � Safety-critical systems � Security-informed
safety � ERTMS � Railway signaling systems

1 Introduction

The European Railway Traffic Management System (ERTMS) is a major industrial
project that aims to replace the many different national train control, command and
signaling systems in Europe with a standardized system. In Great Britain, Network Rail
are preparing to introduce ERTMS as part of the upgrade of the signaling and com-
munications systems running on Britain’s rail infrastructure. This upgrade has the
potential to increase the risk of an electronic attack on the rail infrastructure, as it brings
more systems under centralized control. Government and railway stakeholders iden-
tified a need to understand the security implications of the new technology more than
five years ago and there have been a number of studies by industry specialists and
government agencies of the impact that cyber issues might have on the safety and
resilience of railway systems.

This paper presents some of the work done by Adelard in this area, ranging from an
analysis of potential vulnerabilities in the ERTMS specifications through to a high-level
cyber security risk assessment of a national ERTMS implementation and detailed

© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-33951-1_1

analysis of particular ERTMS systems on behalf of the GB rail industry. The focus of the
paper is on our overall methodology for security-informed safety and hazard analysis.
Lessons learned will be presented but of course our detailed results remain proprietary or
sensitive and cannot be published.

2 Railway Security Requirements

Traditionally, computer security deals with threats to confidentiality, integrity, and
availability, but here we are concerned with train movements rather than information,
so our primary concern is integrity, then availability, and finally confidentiality. Loss of
integrity could result in accidents or collisions, whereas loss of availability would bring
the railway system to a halt. Loss of confidentiality is less of an immediate threat, but
might result in the leak of sensitive operational information. Reliability is also
important, since an unreliable train service will result in a loss of public confidence in
the railway operators.

Thus, the hazards or potential failures or undesirable outcomes to be avoided are:

• a collision involving multiple trains;
• an accident such as derailment involving a single train;
• widespread disruption of train services over a large area;
• disruption to individual trains, or trains within a local area;
• creation of a situation that leads to panic and potential loss of life (e.g., an emer-

gency stop and uncontrolled evacuation onto the track);
• creation of a situation that leads to passenger discomfort and dissatisfaction (e.g.,

stopping a train indefinitely in a tunnel);
• loss of public confidence in the railway system due to intermittent low-level

problems affecting the reliability of the service;
• leak of sensitive information (e.g., movements of hazardous cargoes or VIPs).

The ERTMS safety analysis considers the effect of potentially catastrophic events on
the integrity of the system. Faults that could result in an accident need to be considered
in both a safety and security analysis, regardless of the underlying cause of the fault
(accidental, deliberate or malicious).

3 Security Analysis of ERTMS Specifications

The starting point for our ERTMS work was a security analysis of the ERTMS
specifications that we were commissioned to perform on behalf of key UK railway
stakeholders and UK government about five years ago [1]. The aim of the study was to
examine the ERTMS specifications for potential security vulnerabilities and identify
systemic weaknesses in the ERTMS specifications. We were concerned with concep-
tual problems with the specifications rather than vulnerabilities caused by design flaws,
bugs in implementations of ERTMS technology, or weaknesses in the operation or
maintenance procedures for an ERTMS system. Such vulnerabilities are important but
were outside the scope of our study.

4 R. Bloomfield et al.

Our analysis was holistic and considered whether a national deployment of ERTMS
might introduce vulnerabilities into the national rail infrastructure. Our review focused
on ERTMS Application Level 2, which made it possible to restrict attention to a
number of core specifications, and ignore specifications for interacting with legacy train
protection systems and trackside signaling equipment. We also considered the security
of GSM-R and analyzed how GSM security impacts on GSM-R security. We were
particularly interested in electronic attacks that could be launched remotely and would
cause widespread disruption.

3.1 Methodology

Our approach was to consider the trust relationships between the various components
of the overall architecture and analyze the consequence of a breach of trust. This
enabled us to identify a set of potential weaknesses and vulnerabilities in the specifi-
cations. We then developed scenarios that showed how these weaknesses could be
exploited by an attacker. These scenarios were refined and validated in discussion with
railway stakeholders, and proved to be a very effective way of communicating the risks
of an ERTMS implementation being compromised.

Analysis of Trust Relationships. ERTMS is implemented using a number of track-
side and on-board sub-systems, and the ERTMS specifications describe the interfaces
by which these various subsystems interact to ensure that trains move safely without
exceeding their movement authority. We performed a systematic analysis of the
ERTMS specifications from a security perspective by examining the on-board ETCS
application, and considering its interfaces and trust relationships with other components
of the ERTMS system, both trackside and on-board the train.

Development of Attack Scenarios. Having identified some potential vulnerabilities in
the ERTMS specifications, we devised attack scenarios to explore the ways in which an
attacker could exploit these potential weaknesses and vulnerabilities to achieve one of
the undesirable outcomes identified in Sect. 2.

We devised seven attack scenarios and then analyzed each scenario in detail by
considering the following questions:

• how is the attack performed?
• what vulnerabilities does the attack exploit?
• where can the attack be launched from?
• what are the possible mitigations?

We then graded each attack according to a range of criteria:

• the type of access required to exploit a vulnerability;
• the level of technical sophistication required to exploit a vulnerability;
• the type of failure caused by a successful attack;
• the scale of effect for a successful attack;
• the scalability of the attack from the attacker’s perspective;
• the type of impact caused by a successful attack;

The Risk Assessment of ERTMS-Based Railway Systems 5

• the types of mitigation strategy that are possible;
• the level of difficulty for implementing each mitigation.

We did not attempt to rank the various attack scenarios using a weighted average of the
category scores because we believe that such a ranking would be too simplistic – the
relative weighting of the various categories and the ranking of the scenarios is a matter
for government and industry stakeholders. Similarly, we did not attempt to estimate the
likelihood of attacks being successful because this would depend on the national
implementation of ERTMS and is therefore best left to the domain experts. Instead, we
used color coding (HIGH, MEDIUM, Low) to highlight the issues. Using this color coding,
we produced a table summarizing our grading of each attack scenario under the various
headings to enable the scenarios to be easily compared.

Broadly speaking, attacks that can be launched remotely do not require a high level
of sophistication and are highly scalable – however, such attacks are relatively easy to
mitigate. Conversely, attacks that require local access are less scalable but also more
difficult to mitigate. Hence important trade-offs need to be made by the relevant
decision makers and risk managers. The advantage of the analysis and grading
approach presented here is that it identifies these trade-offs and helps the stakeholders
to make more informed decisions.

4 Risk Assessment of a National Implementation of ERTMS

Following on from our initial security analysis of the ERTMS specification, we were
asked to provide a risk assessment for a national implementation of ERTMS.

In Great Britain, Network Rail are planning to implement an ERTMS overlay on
top of the existing signaling and control system [2]. There are also plans to introduce a
new traffic management system and eliminate the need for about 800 small signal boxes
by centralizing traffic management into a small number of regional control centers. This
centralization will require a more network-oriented architecture with remote access to
local (normally unmanned) equipment rooms via Network Rail’s fixed telecommuni-
cations network (FTN). The infrastructure is expected to evolve over time, with more
equipment being centralized and the core FTN being updated to use IP-based protocols
rather than dedicated voice and data channels.

Adelard were asked to determine on behalf of Government whether these changes
represented a high-level risk to the national infrastructure. At this stage in the upgrade
programme, the exact details of the planned infrastructure changes had not yet been
defined, so we provided a high level assessment of the cyber security risks associated
with a generic ERTMS-based railway infrastructure.

4.1 Approach

The first step of our risk assessment was to establish the system context and agree on
the scope and motivation for the assessment with stakeholders. The major system assets
and services were identified in order to ensure that the risk assessment was focused on

6 R. Bloomfield et al.

high impact scenarios. Potential threat sources were identified and attack capabilities
and impact levels were defined.

The next step was to perform a preliminary risk analysis, identifying potential
hazards and consequences, and relevant vulnerabilities and causes, together with any
intrinsic mitigations and controls. This analysis was then refined to identify specific
attack scenarios, which were prioritized according to the capabilities required and the
potential consequences of the attack.

The final step was to summarize the results of the risk analysis, identify areas of
uncertainty, possible mitigations and controls, and present the results of the risk
assessment in the following terms:

• a set of potential attacks on an ERTMS-based system
• the capabilities needed to implement these attacks
• the worst case impact of each attack

In order to quantify the actual risk, it would be necessary to combine these results
with an intelligence assessment of the likelihood of a particular threat source having the
necessary capabilities to perform each attack.

4.2 System Context

ERTMS is designed to be an overlay on an existing signaling infrastructure, so it is
necessary to consider the underlying railway system as part of any implementation of
ERTMS. Following discussions with Network Rail, we modelled the railway system as
a series of layers.

Table 1 summarizes the functionality provided by each layer and the required
safety integrity level (SIL).

With conventional signaling systems, the safety layer is implemented solely by
trackside equipment, but the introduction of in-cab signaling and automatic train pro-
tection systems such as ERTMSmeans that the safety layer is now partially implemented

Table 1. Railway layers

Layer Safety Integrity Level Functionality

Business SIL 0 Timetable,
Train Information,
Operations and Maintenance

Control SIL 2 Traffic management,
Automatic Route Setting,
SCADA

Safety SIL 4 ETCS (trackside and on-board),
Interlocking

Communications SIL 0 Fixed Telecommunications Network (FTN),
Radio (GSM-R)

Lineside SIL 4 Signals, Points, Train Detection

The Risk Assessment of ERTMS-Based Railway Systems 7

by on-board equipment. Thus, it is important to consider both trackside and on-board
equipment as part of any risk assessment.

Figure 1 provides a high-level overview of the architecture of a national railway
system implemented using ERTMS. The diagram illustrates the main interactions
between the various layers and system components, and the criticality of each layer
(SIL 0, SIL 2, SIL 4). Since railway signaling and control is a socio-technical system,
the diagram includes people as well as equipment. The main roles considered include
the controller, the driver, and the system maintainers.

4.3 Scope of Assessment

The focus of the risk assessment was on failures of the railway signaling and control
system that could have a major national impact, namely:

• attacks that result in unsafe train movements, which could cause a train accident
with considerable loss of life;

• attacks that result in loss of service, which could lead to major transport disruptions.

We chose to exclude attacks that result in the theft of information because our focus
was on the integrity and safety of the rail signaling and control system; loss of con-
fidentiality is not a major concern except for some very specific attacks (e.g., on high
value passengers, hazardous or high value cargoes) and the possible knock-on effect of
information theft enabling future attacks on the systems.

Balise

Traffic management
TMS

Indications
Interlocking

Train detection
Track controls

RBC

Movement authority

Position reports

EVC

Balise antenna

Odometry

Controller

PSTN

Instructions

Queries

Driver

Business systems
FTN

GSM-R

External
network

SIL 0

Key:

SIL 2

SIL 4

Power management
SCADA

Control layer

Safety layer

Business layer

Lineside layer

Fig. 1. Conceptual architecture of an ERTMS-enabled railway signaling system

8 R. Bloomfield et al.

Moreover, as this was a security risk assessment, we only considered failures
resulting from the effect of deliberate attacks. We would expect failures resulting from
non-malicious causes (like fallen trees, driver error, etc.) to be covered by engineering
safety assessments.

4.4 Impact Assessment

We assessed the impact of a successful attack on the railway system using a scale from
1 to 5, where 5 was the most serious.

Our risk assessment identified the capabilities that an attacker would need in order
to achieve a high impact failure. Attacks were assessed with respect to the capability
levels shown in Table 2.

Table 2. Attack capability levels

Capability
level

Interpretation for railway systems

E An expert in security engineering who can:
∙ use tools specific to the domain, which may be customized for the attacks;
∙ develop novel equipment and tools specific to the attack;
∙ use publicly available and proprietary information on how the system works
and what mitigations are in place against attacks;

∙ develop large test beds and trials for the attack;
∙ coordinate timing of several attacks;
∙ influence expert insiders.

D An expert in security engineering who can:
∙ use tools specific to the domain, which may be customized for the attacks;
∙ access equipment for trials and attack development;
∙ use publicly available and proprietary information on how the system works
and what mitigations are in place against attacks;

∙ influence knowledgeable insiders.
C Someone with a basic understanding of security engineering who can:

∙ use tools specific to the domain but without customization;
∙ use publicly available information on how the system works and what
mitigations are in place against attacks;

∙ influence insiders (but at routine skill level).
B Someone with physical access to the system, for example:

∙ an engineer who is able to plug a maintenance console into the equipment but
has no specific training or authorization to access the system in this way;

∙ an unwitting participant, using a compromised machine or device.
A Someone without access to the system, for example:

∙ unskilled individuals using scripts or programs developed by others to attack
computer systems and networks;

∙ someone who has been co-opted into scaling a distributed denial of service
attack;

∙ an enterprise IT user.

The Risk Assessment of ERTMS-Based Railway Systems 9

Although our risk assessment was mainly concerned with cyber attacks, we also
considered the effect of physical attacks on cyber assets because the infrastructure is
geographically distributed and is therefore more open to such attacks. We used a
similar set of criteria (skills, resources, equipment, etc.) to grade the capability needed
for physical attacks on cyber equipment.

Evaluation of the likely attack frequencies and capabilities of specific threat sources
is outside the assessment scope and would normally be undertaken by government
agencies.

4.5 Risk Analysis

In this section we describe each step of our risk analysis, which considered possible
attack scenarios that could compromise railway assets to cause either:

• unsafe movements;
• no movement when it is safe to proceed.

Preliminary Fault Tree Analysis. The initial stage of risk analysis was to construct
fault trees in order to identify possible attacks on operational assets that could lead to
the top events (unsafe movements and no movement). The fault trees systematically
considered:

attacks on messages sent between
systems, typically by:

blocking transmission;
modifying / inserting messages;

attacks on the systems themselves,
typically via compromises of:

system firmware;
system configuration data.

The fault trees considered the effect of application-level attacks and only dealt with
the consequence of these attacks, not their technical difficulty or potential impact.

Attack Vectors and Capabilities. The next stage of analysis was to consider what
capabilities (as defined in Table 2) were needed to implement each attack scenario. The
scale ranges from A (little skill required) to E (capabilities usually possessed only by
nation states).

The preliminary risk analysis identified a number of possible attack vectors, so
attack capabilities were estimated for each of these attack vectors. The primary attack
vectors considered were:

physical attacks;
cyber intrusion;
data preparation / installation;

software maintenance;
network attacks.

The estimated attack capabilities took account of the safety integrity level (SIL) of the
system being attacked because we would expect the vulnerabilities and defenses to
differ between SIL 0 and SIL 4 systems. However, because our analysis was based
on a generic system architecture for a national implementation of an ERTMS-based

10 R. Bloomfield et al.

signaling system, our estimates of attack capability were necessarily quite broad. For a
more precise assessment, we would need to have detailed knowledge of the actual
system architecture.

Attack Scenarios. Using the fault trees and attack capabilities required for each attack
vector, we developed a series of potential attack scenarios. Each scenario identifies the
target asset, the potential attack vectors, and the capability required for the attack.
These capability estimates were fairly broad to accommodate uncertainties in the
security features present in the systems and the maintenance processes.

We also considered the immediate effect and the potential scale of each attack,
which we used to inform the impact assessment.

Impact Assessment. Our criticality scale distinguishes between loss of service and
loss of life, so we make this distinction in our impact assessment.

Loss of Life. It is credible that an attack that resulted in “unsafe movement” could
cause an accident with 100 or more deaths in the worst case. The Eschede [3] and
Amagasaki [4] train accidents exceeded this level while the Santiago de Compostela [5]
accident was just below it. One could envisage multiple attacks causing multiple
accidents and several hundred deaths, but it is likely that rail operators would respond
to multiple accidents by shutting down the network.

However, we also need to consider the associated disruption. For a physical attack,
we estimate that the disruption would be localized to a particular part of the network
and would last for about a week until the physical repairs were completed. In contrast,
if the accident was shown to be due to a systemic cyber security problem within the
safety, communications, or lineside layer, the disruption could be far greater. To
respond to a systemic cyber problem:

• all assets of the same type within the rail infrastructure would need to be assessed in
order to determine if they were vulnerable to the same attack;

• operational changes would need to be put in place to minimize the risk. This would
imply degraded service levels for all vulnerable parts of the network;

• systems will need to be updated and validated before normal service can be
restored.

In the worst-case scenario, the resulting disruption could be nationwide and last
several weeks.

Loss of service. There are many attacks that could result in a wide-scale loss of service,
particularly at the business, control and communications layers.

Cyber attacks on the business and control layers (for example, attacks on the
timetable or traffic management system) would be a cause for concern, but it might be
easier to accept systemic vulnerabilities in these layers if the attacks could be detected
and rapidly corrected (e.g., by restoring systems from secure backup storage). Given
rapid system restoration, a recovery to normal service might take 1 or 2 days. However,
the impact might be increased by repeat attacks if the vulnerability could not easily be
addressed.

The Risk Assessment of ERTMS-Based Railway Systems 11

Successful physical attacks could also have a widespread effect at the business and
control layers but again recovery would be fairly rapid (a few days) unless there were
repeated attacks.

Loss of service could also be achieved by physical attacks on the safety and lineside
layers but the effect would be localized and physical repairs would only take a few
days, so the impact would be low. Repetition of attacks is possible but the impact
would still be fairly low.

In practice, it is difficult to be too specific about the impact from loss of service as
this depends on the resilience built into the system architecture. In particular, the impact
of a cyber attack depends on the recovery process and could be reduced by switching to
a fallback mechanism.

Impact vs Capability Summary. We combined the capabilities needed for the attacks
on specific layers to obtain an overall capability range and assigned a worst-case impact
based on the rationale outlined in the previous section. We then summarized our results
graphically, as shown in Fig. 2. The lines plot the range of impact and likelihood for
the different layers, attacks and impacts. The figure identifies the highest impact and
lowest capability attack for each layer and shows the scope for driving the risks down
by reducing the impact or increasing the capability for each attack.

Fig. 2. Impact vs. capability diagram

12 R. Bloomfield et al.

Further information about the implementation would enable us to develop more
precise capability estimates. Similarly, we could reduce our impact estimates if the
implementation included features to limit the level of disruption caused by a successful
attack.

Although our analysis identified cases where relatively low capability attacks could
have a high impact, this is partly due to our uncertainty about the actual capability
needed to perform cyber attacks.

The capability required for physical attacks is easier to assess and relatively modest
capabilities can have quite significant effects.

For cyber attacks on the network, the capability needed at the communications
layer to cause loss of life depends critically on the protection provided at the endpoint
subsystems in the safety and lineside layers, which in turn depends on whether the
network is considered to be open or closed. A cyber attack on the connection between
the interlocking and lineside equipment is currently difficult. However, this may change
as newer technology (like IP) is introduced. If the communications layer is always
regarded as untrusted and the endpoints are protected, the capability needed for a
successful cyber attack rises from C-E to D-E.

The other low capability-high criticality attacks relate to attacks on the data used to
configure SIL 4 systems in the safety layer. Our capability B assessment is at the low
end of the capability range and might be overly pessimistic.

5 Cyber Security Risk Assessments of ETCS On-board
Systems

As part of the ERTMS upgrade programme, the companies that own the trains (Rolling
Stock Operating Companies or ROSCOs) are in the process of tendering for
‘first-in-class’ fitments of ETCS on-board systems for each class of locomotive that will
be used on ERTMS-enabled infrastructure. In the light of concerns about the security of
ERTMS, Adelard and MWR InfoSecurity were commissioned by Porterbrook on
behalf of the National Joint ROSCO Programme (NJRP) to provide advice and
guidance on any additional security requirements that might need to be included in the
contract. Adelard have expertise in risk assessment whilst MWR InfoSecurity have
expertise in security testing.

Each risk assessment was informed by our generic research into ERTMS security
issues, the results of a security-focused Hazop workshop that was held with the sup-
pliers, subsequent analysis of the system by Adelard, and the results of security testing
performed by MWR InfoSecurity at each supplier’s test facility.

5.1 Security-Informed Hazop Methodology

A series of workshops was held to study the security risks associated with each system.
The workshops took the form of security-informed Hazard and Operability (Hazop)
studies, and were attended by experts from each supplier.

The Risk Assessment of ERTMS-Based Railway Systems 13

A Hazop study is a structured approach to the identification of potential hazards and
deviations from design and operating intention. The technique is qualitative, and aims
to stimulate the imagination of participants to identify potential hazards and operability
problems.

The study is based on the architecture of the system and involves a multi-disciplinary
team of experts. Each element of the system is reviewed systematically, using a set of
guidewords to prompt the experts to identify potential hazards. The experts are asked to
identify

• causes of a potential malfunction
• potential consequences of the malfunction
• any system features that can detect or mitigate the malfunction
• any follow-up activities

Each study was based on a simplified architecture diagram that was intended to capture
the most relevant components and interfaces of the ETCS on-board system from a
cyber security perspective. Adelard created this diagram after reviewing the various
documents provided by the supplier.

The goal of each Hazop study was to identify potential attacks on the ETCS
on-board system that could be investigated further during the security testing, and to
suggest some additional controls and assurance activities that would provide confi-
dence that the system was protected against such attacks.

The workshops also provided an opportunity to clarify the system architecture and
the test environment available for the security testing, and identify particular areas of
concern to be the focus of the security testing.

The findings of each workshop were systematically recorded as a series of Hazop
tables, and recommendations were categorized and numbered to ensure consistency.
Each study resulted in a detailed analysis of possible attack scenarios, potential haz-
ards, existing protections, and recommendations for additional security controls.

5.2 Security Testing

In this section, we describe our general approach to security testing and the specific
objectives of the security testing that was performed on each supplier’s system by a
team of experienced penetration testers from MWR InfoSecurity.

General Approach to Security Testing. An ETCS on-board system can be attacked
externally via interfaces that are required for ERTMS interoperability or internally via
interfaces that are proprietary to the system. Attacks can be at the application level,
network level, or platform level. In particular, the underlying platform might be built
using commercial off-the-shelf components that contain security vulnerabilities or
expose additional services that are not required for the application.

At the application level, security weaknesses in the ERTMS specifications allow a
variety of attacks that are not described here for obvious reasons.

At the network level, security testing should include robustness testing of all the
major interfaces, both external and internal, in order to probe whether the system is

14 R. Bloomfield et al.

robust against deliberately crafted messages that pass the integrity checks but are
invalid at the application level.

Testing should also challenge closed network assumptions. This requires investi-
gating the security of the network used to connect together components of the ETCS
on-board system and assessing the damage that could be done to the system by an
attacker with access to these networks.

Security Testing Objectives. The overall goal of the security testing is to explore this
range of attack vectors and determine whether any of the attacks are feasible. In
practice, depending on the test environment, it may not be possible to perform the full
range of tests, so the aim is to achieve broad coverage of the possible attack vectors.

More specifically, the security testing objectives can be broken down as follows:

• explore the feasibility of attacks allowed by the ERTMS specifications and discover
whether the driver receives any notification if something unexpected happens;

• determine whether the ETCS implementation is robust against malformed messages
or whether it is possible to crash the system or cause it to behave in an arbitrary way;

• investigate whether the closed network assumption is valid and determine what
damage could be done by an attacker with access to the network and some inside
knowledge;

• perform a security audit of the underlying platform and any third-party components.

Some of the test results exposed anomalies or ambiguities in the ERTMS specifica-
tions. Although these anomalies do not raise any safety or security concerns, it is
important to resolve any ambiguities in the ERTMS specifications in order to remove
the potential for an attacker to exploit differences in behavior between implementations.

5.3 Recommendations

Our final set of recommendations were divided into four categories:

1. technical or procedural controls that would improve the security of the ETCS
on-board system;

2. assurance activities to improve confidence in the security of the ETCS on-board
system;

3. recommendations for the national implementation of ERTMS;
4. suggested changes to the ERTMS specifications.

Unfortunately, we cannot publish any of our recommendations here because they
implicitly identify potential vulnerabilities in the systems.

6 Discussion/Lessons Learned

6.1 Context

There is a growing awareness that safety and security can no longer be considered in
isolation and that a system cannot be considered to be safe unless it has also been
shown to be secure. However, there is currently a lack of underpinning analysis to

The Risk Assessment of ERTMS-Based Railway Systems 15

demonstrate how and whether cyber security issues can be integrated in to hazard and
risk analyses, and hence a lack of consensus about the best way to integrate safety and
security. In particular, there are no clear guidelines about methodology, and standards
in this area are still evolving. As a result of the work on security-informed safety that
Adelard and others have been doing in the railway industry, this situation is changing
within the UK. The Department of Transport has recently published guidance on Rail
Cyber Security [6] and commissioned work to develop a code of practice for the
railway industry on how best to develop security-informed safety cases. Adelard has
been active in this area and worked with the Railway Safety and Standards Board
(RSSB) to develop a security-informed safety case as an exemplar for the railway
industry. However, security-informed safety is not just a concern for the railway
industry – Adelard was a partner in the SESAMO project [7], which was concerned
with security and safety modelling for embedded systems across a wide range of
industrial domains, including avionics, automotive, industrial control, medical, smart
grid as well as rail. There is now a much greater awareness of the need to consider
cyber security in the design of safety-critical systems, and the focus has shifted from
raising awareness to developing guidance, standards and worked examples.

6.2 Strategy

Adopting a phased approach towards cyber security assessment has proved to be an
effective strategy. We started by performing a security audit of the ERTMS specifi-
cations, which enabled us to identify a number of systemic vulnerabilities in the
specification and potential areas of concern. These were refined by developing specific
attack scenarios, which proved to be an excellent way of communicating and engaging
with railway stakeholders because the attacks became real rather than theoretical and
abstract.

The next stage was to conduct a high-level risk assessment of a national imple-
mentation of ERTMS, which was used to inform the national risk register. Focusing on
the potential risks at a national level gave our risk assessment a sense of proportionality
and perspective.

In practice, the worst-case impact in terms of loss of life or loss of service depends
on many implementation factors (including provisions for resilience) that have not yet
determined at this stage in the upgrade programme. Thus, our assessment will need to
be revisited as the upgrade progresses and more operational experience is gained.
However, we believe that our main findings are robust.

Our risk assessment of a national ERTMS implementation was based on a generic
system architecture with little specific information about the vulnerabilities and
defenses that might exist in the actual system. In contrast, our risk assessment of ETCS
on-board systems from each of the major suppliers looked at real systems in detail and
took into account the results of security testing and vulnerabilities discovered in the
configuration of each system. These assessments were performed on behalf of the
rolling stock operating companies (ROSCOs), who wished to purchase ETCS on-board
systems for new and existing trains and needed to have some reassurance that their
assets would be robust against cyber attack. The results of the assessments were used to

16 R. Bloomfield et al.

inform the procurement process for the ‘first-in-class’ fitment programme to install
ETCS on each class of locomotive, and the recommendations from each assessment
were written into the contract with each supplier. The assessments were beneficial to
both the purchasers and the suppliers because they enabled the purchasers to reduce
their risk whilst providing guidance to the suppliers on how to improve the security of
their products.

6.3 Where Next?

Over the last few years, government and industry have been mobilizing and com-
missioning research and support for developing cyber security strategies and guidance
and there is now a plethora of groups working in this area. It is important to develop a
coherent strategy that clearly identifies roles and responsibilities at different levels of
governance (project, industry, government) and identifies gaps where further research
and development of standards and guidance is necessary.

Railway-Specific Issues. In the railway context, management of cyber risk is com-
plicated by the divided responsibilities for maintaining safety in an ERTMS-based
signaling system. Responsibility for the safety layer is split between the trackside and
the train, which are owned and managed by different organizations. Security needs to
be embedded in the processes used by all stakeholders in order to maintain the overall
safety and integrity of the signaling system.

Another complicating factor is the widespread use of legacy systems that were
designed in a different age to protect against different threats. Closed network
assumptions are no longer valid but it is not always possible to add security features to
legacy systems, so alternative approaches are needed.

At a more general level, we need to consider if there is adequate oversight for the
introduction and operation of new technology like ERTMS and whether there are
sufficient technical resources available to the regulator.

Incident Reporting. It is important to ensure that we can learn from incidents, so that
safety issues with the new technology can be identified and rectified. Ideally, incident
reporting should be undertaken by all ERTMS users and suppliers. We recommend the
introduction of policies for the collection, analysis and sharing of cyber incident
information, even when such incidents have no safety impact.

Resilience Requirements. There is currently a lack of any clear definition of resilience
requirements from a policy perspective. While safety is governed by existing legisla-
tion, there do not appear to be any system level resilience requirements. Governance
and business models should be established to ensure that sufficient resilience is pro-
vided by the system as a whole. Incentives may need to be provided for diversity that is
justified from wider societal considerations rather than from an infrastructure owner’s
business case.

The Risk Assessment of ERTMS-Based Railway Systems 17

Secure by Design. There is also clearly a need for industry guidance on methodology
and guidance for developing and assessing systems that are intended to be both safe
and secure. Suppliers need guidance on how to build security into their products, and
purchasers need to be informed about cyber security and be given tools to help them
assess whether a product is adequately secure for its intended use. This is particularly
important during the procurement phase of a large railway project, where there is an
opportunity to influence both the generic product and a specific application of the
product to the GB context.

There are already a number of sources of guidance available, including:

• 20 Critical Controls for Effective Cyber Security Defense;
• DHS Cyber Security Procurement Language;
• Trustworthy Software Initiative;
• Cyber Essentials;
• BSIMM, OWASP, Microsoft SDL, SafeCode;
• Common Criteria.

These need to be customized and adapted for the railway sector.

Standards and Legislation. In Europe, any significant changes to a mainline railway
system must be assessed in accordance with the Common Safety Method. This is a
legal requirement. Similarly, the ERTMS specifications form part of the Technical
Specification for Interoperability, which is mandated by European law. This makes it
difficult for GB concerns about cyber security within the railway industry to be
addressed at a national level, and makes it necessary to engage at a European level to
influence the development of these standards to ensure that they include adequate
provision and protection against cyber attacks.

Risk and Uncertainty. A risk assessment should be a living document and needs to be
revisited periodically during the system life cycle. Risks can change during the
development of the system and also during its operation, so it is important to under-
stand the risks and the mitigations in place at every stage of the life cycle. This is
particularly true for risks arising from cyber security threats – security decays faster
than safety.

Our risk assessments of ETCS on-board systems were assessments of real systems
and were performed with the benefit of detailed design documents, access to system
experts, and the opportunity to perform security testing on the actual system to
determine whether potential vulnerabilities existed in reality and could be exploited.
The systems were still under development but the manufacturers were receptive to our
recommendations and willing to incorporate changes into the design of their systems to
make them more robust and resilient against cyber attack.

In contrast, our risk assessment of a national ERTMS implementation was per-
formed at an early stage in the upgrade programme, and was therefore based on a
generic system architecture. As a result, there is significant uncertainty in the results
and it is therefore important to revisit the assessment as more implementation detail is
provided and more operational experience is gained. An updated risk assessment would
need to address:

18 R. Bloomfield et al.

• the impact of the differing responsibilities of the multiple stakeholders (operators,
leasing companies and the supply chain) for safety management and hence cyber
risk;

• the susceptibility of data preparation and maintenance processes to cyber attack;
• the extent to which the overall system architecture is designed to limit cyber attack

as the system evolves (e.g., when there are changes in network technology);
• the resilience and recovery from cyber attack provided by fallback options (both in

fixed infrastructure and on board the train);
• the co-operation and security culture of the stakeholders.

7 Conclusions

The next generation of railway signaling and control systems will potentially have
more risk and less resilience than the current generation of systems due to security
vulnerabilities and increased connectivity. However, this increased connectivity means
that the new systems could potentially be engineered with stronger controls, greater
defense in depth, and improved recovery mechanisms, thus eventually presenting less
risk overall and providing greater resilience. The risk assessments presented in this
paper are one contribution to ensuring that this is the case.

Acknowledgements. We are grateful to our sponsors for their permission to publish this
summary of our work over the last five years. We would also like to acknowledge the contri-
bution of Richard Bloomfield and Ilir Gashi to our initial analysis of the ERTMS specifications.

References

1. Bloomfield, R., Bloomfield, R., Gashi, I., Stroud, R.: How secure is ERTMS? In: Ortmeier, F.,
Daniel, P. (eds.) SAFECOMP Workshops 2012. LNCS, vol. 7613, pp. 247–258. Springer,
Heidelberg (2012)

2. Network Rail, Strategic Business plan for 2014/2019, January 2013
3. Wikipedia, Eschede train disaster. http://en.wikipedia.org/wiki/Eschede_train_disaster
4. Wikipedia, Amagasaki rail crash. http://en.wikipedia.org/wiki/Amagasaki_rail_crash
5. Wikipedia, Santiago de Compostela derailment. http://en.wikipedia.org/wiki/Santiago_de_

Compostela_derailment
6. Department for Transport, Rail Cyber Security, Guidance to Industry, February 2016. http://

www.rssb.co.uk/Library/improving-industry-performance/2016-02-cyber-security-rail-cyber-
security-guidance-to-industry.pdf

7. SESAMO – Security and Safety Modelling, ARTEMIS Embedded Computing Systems
Initiative 2011, Project Number 295354, May 2012

The Risk Assessment of ERTMS-Based Railway Systems 19

http://en.wikipedia.org/wiki/Eschede_train_disaster
http://en.wikipedia.org/wiki/Amagasaki_rail_crash
http://en.wikipedia.org/wiki/Santiago_de_Compostela_derailment
http://en.wikipedia.org/wiki/Santiago_de_Compostela_derailment
http://www.rssb.co.uk/Library/improving-industry-performance/2016-02-cyber-security-rail-cyber-security-guidance-to-industry.pdf
http://www.rssb.co.uk/Library/improving-industry-performance/2016-02-cyber-security-rail-cyber-security-guidance-to-industry.pdf
http://www.rssb.co.uk/Library/improving-industry-performance/2016-02-cyber-security-rail-cyber-security-guidance-to-industry.pdf

Using Formal Proof and B Method at System
Level for Industrial Projects

Denis Sabatier(✉)

ClearSy, Aix-en-Provence, France
denis.sabatier@clearsy.com

Abstract. Since several years, ClearSy has driven large projects about using
formal proofs at system level in the railway domain. The fundamental goal in
these projects is to extract the rigorous reasoning establishing that the considered
system ensures its requested properties, and to assert that this reasoning is correct
and fully expressed. In this paper, we give feedback about the methodology used
in all these projects, about the differences made by whether the concerned system
is currently under design or already existing and about the benefits obtained. The
formal proofs are performed using Event-B, with the Atelier-B toolkit.

Keywords: System level proof · Formal methods · Event-B · Atelier-B

1 Introduction

Since several years, ClearSy has driven large projects about using formal proofs at
system level for railway systems in the railway domain. The fundamental goal in these
projects is to extract the rigorous reasoning establishing that the considered system
ensures its requested properties, and to assert that this reasoning is correct and fully
expressed. At system level, this rigorous reasoning involves the properties of different
kind of subsystems (from computer subsystems to operational procedures), that the
formal proof shall all encompass.

It may seem that such a top-level reasoning should be very complicated, involving
all details of the complex system: in reality it is often quite simple. In the case of a CBTC
system (most of our system level proofs are about CBTCs), the requested properties are
ensured because equipped trains determine their position correctly, because protection
envelopes are determined using these correct positions, because the interlocking does
so that those envelopes remain within locked routes and because equipped trains remain
before their given limits. Well, it does not completely fit in a single sentence of course,
but nevertheless it is fortunately simple enough to be expressed, at least independently
from technical details below like track data format.

2 Role and Benefits

So contrary (and in complement to) many other methods, we start from the top level
before details appear. What are the expected benefits? The system level “reasons why”
properties are part of the domain knowledge. They are, however, known by domain

© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 20–31, 2016.
DOI: 10.1007/978-3-319-33951-1_2

experts in terms of complex design solutions, so the experts may not easily give the true
explanations without going through all the design details. This drives the focus away
from what actually ensures the properties and levels out all details as if they were of
equal importance. Extracting these “reasons why” in a formal way forces one to formu‐
late a self-sufficient and provable set of properties and assumptions: unnecessary details
are eliminated thanks to assumptions optimization, and the proof ensures that all that is
necessary has indeed been included.

Having a clear definition of these properties and assumptions will certainly not find
hidden bugs in low level design: providing proofs at high level does not suppress the
necessity to cover all the project’s stages. At least we can expect that a clearer definition
of what each sub-part should ensure (highlighted for important properties alone) will
draw the testing /verifications toward important bugs or avoid them in the first place
thanks to proper developers’ focus. More precisely, we can summarize the benefits in
two categories:

• Benefits thanks to a sufficient set of clear properties requested from developed sub-
systems: better focus on those properties, either during development /testing (if these
tasks occur during or later system level proofs) or for post verifications;

• Benefits thanks to a sufficient set of clear properties requested from context sub-
systems: usually such properties or assumptions about context concern very different
domains. In an industrial project each partner or company is eager to focus on its
domain of expertise, even when doing so means using unclear or not well defined
assumptions about context sub-systems. Important pitfalls can hide there, and they
could remain undetected until the final integration phase. The system level formal
proof typically helps to detect concerns that might fall in such “responsibility holes”
otherwise.

3 Projects

The first project of that sort done by ClearSy is the system formal verification for the
CBTC of New York subway line 7 (Flushing line system proof, see [4, 8]). New York
City Transit (NYCT) has awarded THALES Toronto for the design and fitting of this
CBTC (awarded in 2010, revenue service scheduled in 2016). This CBTC system is
composed of an on-board computer fitted in renewed R142 cars and of field and office
equipment (zone controllers and central supervision). It interfaces to the existing inter‐
locking system, adapted with specific modifications. This system level formal verifica‐
tion with proofs lasted from November 2010 until December 2012 and the workload
was several man years.

The second project was also for NYCT. Reusing the models developed for the
Flushing line, the goal was to provide system level proofs for all CBTC complying with
NYCT’s Interoperability Interface Specifications (I2S). In fact, I2S based CBTCs are
divided in subsystems with predefined roles: by clearly defining the required properties
of each subsystem and the context assumptions a formal proof of system level properties
is possible, even without knowing each possible vendor’s design. ClearSy obtained such

Using Formal Proof and B Method at System Level 21

a proof; the project lasted from November 2013 to July 2015 with a workload less than
half that of Flushing, thanks to reuse.

Two other projects of similar sizes and topics are currently going on concerning
French railways: one for SNCF has started last summer (2015), the second one for the
Paris metro operator RATP is about to start.

4 Functional or Safety Properties

Should the system proof include functional properties or be restricted to safety properties
only? This question may seem straightforward, because proving as many things as
possible seems natural. A closer look reveals that the proof of functional properties is
often expensive or with limited benefits, even if proving only safety properties means
that the proof will not give any guarantee about the system being functional at all.

Here is why functional properties are less accessible to proofs: the mechanism of a
formal demonstration consists in formulating target properties, gathering assumptions
and finding a logical path (i.e. using only known rules) from assumptions to target prop‐
erties. But functional properties are defined in terms of performances (delays, capacity)
and scenarios (typical situations where performance should be reached; in degraded
situations maximum performance is not expected). So the assumptions here would be
the scenarios themselves, together with all the mechanisms involved; any proof there
becomes very similar to a simulation on a particular case.

Conversely safety properties should be kept whatever the scenario, using minimal
assumptions about mechanisms: there a proof gives all its value by replacing testing or
simulation across an unbounded set of scenarios and situations. In our case of system
level proofs, we thus target global safety properties only. Of course there are cases where
the notions of “safety” and “functional” merge (think for example of systems aboard
planes), where keeping something functional becomes vital. Then the necessary redun‐
dancies multiply the scenarios, bringing back the value of a proof for such cases.

In railway systems and in particular in CBTCs, the safety properties remain well
separated from functional ones. Typical target safety properties are:

• Impossibility of collision between trains,
• Impossibility of derailment over an unlocked switch,
• Impossibility of over-speeding.

These safety properties are found in all kind of railway systems, whether they are
CTBC projects or signaling system projects. In ClearSy’s system level proof projects,
the top level reasoning is thus very similar despite the fact that the projects are from
different contexts and different designs; however similarities decrease rapidly at more
detailed levels, where the chosen design has a stronger importance.

This difference between safety properties and functional properties gives an important
clue about the role of a proof in a large system project, in particular the role of a system
level proof: it addresses the global safety properties that should hold whatever the scenarios
and whatever the conditions. The more a property is related only to specific scenarios, the
less the benefits of a proof: for such properties simulation and testing apply.

22 D. Sabatier

5 Methodology

5.1 Overview and Experiences

ClearSy’s methodology to obtain such system level proofs is divided in two main steps:

1. Write documents explaining how the system ensures the desired properties. We call
this natural language “proof”, with quotes because this step is not yet a formal proof.

2. Write event-B models such that the proof performed is the formal equivalent of the
natural language proof.

The first step is based on the fact that we do not use the formal method to understand
why a property is ensured, but to validate that it is really ensured once the “why” is
understood. We want to avoid mixing formal notation issues with domain issues, which
are paramount. The second step is of course necessary to obtain a true formal proof and
the correctness guarantee that comes with it. These two steps are duplicated for all topics,
starting from top level properties and repeated for sub-properties down to the chosen
level of details, in a hierarchical manner.

The first step “natural language proof” is deeply impacted by whether the system is
already designed, ranging from a new system currently in its first stages to an existing
system with legacy design. There is a paradox here: the job of the formal proof team is
easier if the design is stable and well known, but then the benefits of the proof are
reduced, because if pitfalls exist they will not be easily corrected and if there are no
pitfalls the whole proof work seems useless. Conversely, if the design is not yet decided
at all, there may be very little to prove.

In the Flushing NYCT project, the design was well known but currently under
modification: THALES designers were currently adapting their CBTC design to
NYCT’s requirements. ClearSy had extensive contacts with the designers, so the design
was easily accessible with comprehensive explanations. In the I2S project, the situation
was more difficult because we had to rely only on the part of the design imposed by the
interface specification: for the vendor specific part, we had to assume that the vendor’s
internal design would correctly establish the sub-properties taken as assumptions in the
proof. ClearSy so added documents called “proof requests” (not meaning “formal” proof
request) to the I2S explaining required properties and clarifying context assumptions
under which these properties should hold. Besides, the design fixed with the interface
was not to be changed at all, and the “reasons why” of this design was not so easily
accessible. In subsequent projects we also encounter the case of a design still in its very
first phases: because proving all possible solutions is not feasible, the initial task is then
reduced to defining the notions in preparation for future proofs.

5.2 The Natural Language Proof

In all cases, the necessary elements to extract for the “natural language proof” are:

• Well defined target properties;
• A set of fully realistic assumptions about concerned sub-systems and context;
• An understanding of how these assumptions ensure the properties.

Using Formal Proof and B Method at System Level 23

Defining target properties is not difficult at the system’s top level because it’s directly
linked to what the system should obviously ensure. It is conversely very difficult to find
the true properties from the sub-systems and the context constituting the set of assump‐
tions cited above: the role of each subsystem is known by each domain’s experts in terms
of internal design details, never (or practically never) as abstract properties. Actually, it
is far easier and less prone to errors to describe a subsystem using all its design details
“as so” than to formulate an abstract property that sums up this subsystem. When trying
such a formulation, one quickly discovers the asymptotic difference between an almost
true property and an always true property for characterizing the considered subsystem!

For the proof team, it would not be realistic to expect such well-defined abstract
properties from the experts or from the project documents. ClearSy uses the following
method, starting from identified top properties and a first understanding of subsystem
roles:

• Play scenarios trying to violate the wanted property (for instance, at top level try to
play a scenario leading to a train collision), in a light and fast way, until the reasons
why violating the property is impossible appear.
• Ask feedback about those scenarios from system designers: as the desired property

(for instance no collision at any time) has been their concern, they will quickly
explain why the property is ensured in that case (unless there is a real pitfall!).

• Once the reasons why the property is ensured have appeared, explain those reasons,
at first informally then more and more rigorously.
• Again, ask feedback about those simplest reasons why the property is ensured

from original system designers.

We repeat these steps until sufficient abstract properties for subsystems and context
appear, so that the target properties seem to be ensured. Like this, close contacts with
domain experts and designers ensure that the proof team manages to find the required
assumptions efficiently, without illegally re-designing the system (in a way that would
be incorrect compared to the real system and that would not be functional, as the proof
team is not the design team).

Starting from top level target properties, we use this process to obtain the three compo‐
nents previously cited: target properties, context /subsystems properties, reasoning. This is
done in several successive steps: the sub-properties of a step become targets properties for
next steps, and so on in a hierarchical way until we reach the appropriate level of detail.
Note that seen from a proof point of view, the context and subsystems properties are the
assumptions for a given proof step: for this reason we call them sub-properties or assump‐
tions indifferently. Of course, at the end of the whole process only the assumptions from
all the terminal branches of the hierarchical tree will be presented as the output assump‐
tions, to be finally validated and rechecked in case of system evolution (Fig. 1).

Key points in the methodology. Even if using “natural language” in this phase is
considered necessary, it means that before the formal stage (where we use Event-B [1,
3] and Atelier-B [2]) all the ambiguities of the natural language can remain. To detect
such ambiguities when first writing the properties, we use the following criterion: in any
possible scenario, it should be possible to state unambiguously whether the property is

24 D. Sabatier

true or false in that case. Testing properties using this criterion leads to many questions
before the formulation is satisfying. Another good test is that if an assumption or property
is required from a subsystem, then we should be able to find a realistic accident scenario
when removing this assumption. Such accident scenarios must be kept with the assump‐
tions, they are their best justification.

To work in such close contact with the designers /experts, the proof team has to
conform very strictly to its role:

– The proof team shall be neutral regarding the design choices;
– They should accept to go inside details with the experts, even if it means analyzing

a lot of “how” to find a small amount of “why” (we say that they should accept to
“plunge in the domain”);

– They should do so to be a help to find and solve potential pitfalls, they should avoid
at all costs any risk of discrediting the work of the designers.

Despite the fact that subsystems properties should be expressed without internal
design details, to close the gap between ‘almost true’ and ‘always true’ the proof team
often has to do incursions inside the design details. This is ‘plunging into the domain’

Fig. 1. Properties, sub-properties and assumptions

Using Formal Proof and B Method at System Level 25

as expressed above; it is ok as long as it is done with the experts, and with the will to
efficiently find the subsystems properties and to formulate them independently from
these details.

5.3 The Formal Phase

In the subsequent formal phase, all the natural language proofs are rewritten in formal
language. ClearSy uses Event-B and Atelier-B for this purpose: schematically, the target
properties are written into top level B models, the subsystem properties are written as
B refinement models in such a way so that the proof performed by Atelier-B (according
to the definition of refinement in B) shall be equivalent to the reasoning done in natural
language.

The formal proof in this phase is a verification, as the proof itself (the “reasons why”)
is found during the natural language phase. In our experience, the reasoning involved is
rarely very complicated or requiring high level mathematics: most of the difficulty in
the whole process resides in formulating subsystem and context properties. Once this is
done for a given topic and level, the keys of the reasoning already exist because the
contributing properties were revealed by examining how the subparts actually ensure
target properties. This work is done in collaboration with the experts and the designers,
so if pitfalls exist they are normally resolved (or at least discussed and mitigated) at
once. Thus, this process does not produce a list of bugs to be solved at the end: if every‐
thing goes well it should finish with a proof under approved assumptions, all pitfalls
resolved or mitigated.

Once found how a given target property is ensured, with context and concerned
subsystems roles optimally formulated, the reasoning often seems very simple. So there
is a temptation to conclude that the concerned proof step is obvious and that it is not
worth rewriting in B and Atelier-B. It is almost a quality sign: the better the expression
of the “reasons why”, the simpler the B models and the more obvious the proof. This is
particularly true for system level proofs because we remain before the complexity wall
of detailed functions names, data formats or electrical interfaces.

Our experience is that rewriting in B and proving with Atelier-B is always worth it.
With the best possible preparation, all the natural language demonstrations that we
transformed into actual B models and proved were changed during this process. Very
often, turning natural languages assumptions into B formulas reveals cases where the
meaning is uncertain or blurry: these are typically cases where the criterion (the one
defined as a key point above) does not hold, i.e. scenarios where one cannot state whether
the concerned property is true or false. Less often, extra pitfalls are discovered during
the proof phase; then it is usually complex cases that would probably be impossible to
find without proving.

An example of this kind of complex pitfall that we discovered only in the final proof
phase concerned the safe braking function of CBTC trains, in very specific cases where
an initial backward movement of the train during residual traction phase could impair
the correctness of the braking calculus. Real track slope values were probably such that
this could not actually occur, but well, the point was not spotted and not verified before.

26 D. Sabatier

6 Results and Their Usage

6.1 Where to Stop

The system level proof process ends when the chosen level of detail is reached, with all
the formal proofs done. This chosen level of detail is variable: one can decide to go down
to actual interfaces and design of subparts (for instance down to electrical relay sche‐
matics for parts done with this technology), or to stop at a higher level. In our CBTC
projects, ClearSy went down to a quite detailed level in subparts (including for instance,
how slipping wheels are detected by the onboard computer), but above the level of the
data formats and the actual internal design. The actual computer code was not examined;
neither the data formats like the system track database. We believe that this chosen limit
is suitable to solve system level problems in a sufficiently detailed way, without
including the complexity of software data representation or electrical signals. Note that
system interface specifications usually must go deeper, as they should dictate the
message formats between subsystems.

6.2 Output Documents

After the formal proof stage, all the final assumptions (about context, about subsystems
design below the chosen final level…) are expressed. In the B models this formulation
is not easily readable, so we translate them back into natural language in documents
called “books of assumptions”.

In these documents, we give the following information:

• Target properties (explained in natural language, illustrated with examples);
• Assumptions (explained in natural language)

Fig. 2. The global process with its outputs outlined.

Using Formal Proof and B Method at System Level 27

– For each assumption, we show scenarios of what could occur if it did not hold;
– We also give information about who validated the assumption, what are the

concerned teams and whether extra validation is needed (if the system is not yet
ready, or in case of evolutions).

The sentences used in these documents are indeed retranslated B formulas, so they
are very precise (although sometimes with a not very literary style!). Experts and
designers that participated in the process are already used to the extracted notions and
the agreed assumptions, however we found useful to organize several day long presen‐
tations to explain the results to a larger audience within our customers. The final results
are useful only as long as they are understood and used! (Fig. 2).

6.3 Safety Cases and Standards

Besides obtaining the assurance that a formal proof could be done at system level, the
benefits of this process for a given system should naturally concern the safety case, as
proven target properties are basically safety properties. Standards (like EN 50126, 50129
and 50128, see [5–7] in railway domain or EN 61508 more globally) favor formal
methods but more at software development level. Taking into account the extra guar‐
antee of a system level formal proof is left to the ISA to decide upon, although it is
probably in the spirit of these standards to seek ‘safety proofs’ in any sense.

Nevertheless, system level proofs certainly do not exempt from performing all
necessary safety cycle steps (including quality, organization, verification & validation,
etc.). One paramount topic is the study of possible failures and their probability. In the
system proof, safety target properties are clearly meant to hold whatever the possible
failures, considered at the appropriate level of probability regarding the possible acci‐
dents. So the sub-properties and assumptions that the proof relies on should also hold
whatever the possible failures, considered at the appropriate level of probability. This
is how the failures & probabilities studies are related to the proof.

So failure rates and hazard studies remain of paramount importance; the proof helps
in the definition of properties to be ensured despite these failures but does not change
this part of the safety case otherwise.

7 A Sample Case Study: The Route Cancellation Example

How exactly are the properties written, how is the proof performed and how is this
methodology based on natural language proof /formal proof applied? To give a better
idea of the process, let’s show a very simple example. Consider the following drawing:

In this Fig. 3, there is a switch beyond a signal. Obviously the switch should be
locked when a train arrives, otherwise a derailment could occur. The problem is the
following: what mechanism should be installed so that when the line operator wants to
close the signal and change the position of the switch, no derailment shall be possible?
The usual railway solution to this is to install a delay-based route cancellation system:

28 D. Sabatier

• If the train is far enough (before some “approach” zone limit), the line operator can
cancel the route and move the switch at once because the train has enough space and
time to stop before the signal;

• If the train is already near, when the route is cancelled the signal should close but the
system shall keep the switch locked for a certain time. Then the train will either stop
before the signal or go beyond during this time. If the train is detected beyond the
signal, the switch is maintained in locked state until the train has cleared the route.

Above is the purely informal reasoning. It is a good starting point; however it does not
give the constraints between the delay and the train’s stopping capabilities. Moreover,
such informal clues do not provide any certainty about whether the switch is protected
in all cases and under what assumptions (about train speed, braking, …). Things become
more precise when we define variables /constants /notions to denote this system. Let’s
not describe the possible variables here in too much detail; with obvious definitions we
can sense the necessary assumptions:

• If the train is beyond F (Pk > F), then no unlocking shall be possible;
• There must be a visibility zone (Zv) such that when the train is near (Pk > Zv) and

the signal is red, the train will always stop in a given maximum delay (Ts) and a given
maximum distance (Ds); otherwise the train could completely ignore the signal.

• The approach zone (Za) such that the train detection inside will trigger the locking
delay (T) when the route is cancelled must be larger than the worst stopping distance
Ds: otherwise the train could overrun the signal after a route cancel that unlocked the
switch without delay. For even more obvious reasons the visibility zone (Zv) shall
be larger than Ds: the signal F would be useless otherwise.
– Note: in the figure Za is before Zv, but this is just an example. There is no such

constraint.
• The unlocking delay T shall be greater than the worst stopping time Ts: otherwise

the timer may expire just before the train overruns F, thus unlocking the switch in
front of the train beyond F.

At this stage, the named variables allow a far more precise description of the problem;
the constraints and necessary assumptions appear thanks to the scenarios seen above.
These scenarios are what we could call “otherwise” scenarios: they reveal the necessity
of each assumption by showing what could occur otherwise. The target property is now
easily defined: if the train is beyond the signal (Pk > F), then the switch should remain
locked (using some variable named ‘unlocked’: unlocked = False).

Fig. 3. The route cancel example.

Using Formal Proof and B Method at System Level 29

We now have a strong intuition that the system is safe with only the few assumptions
above (F-Zv > Ds, F-Za > Ds, T > Ts), but this is not yet a proof. Here comes the natural
language proof step: finding out how we can conclude that the switch will always be
locked if the train reaches it. This is a case by case reasoning:

– If the route cancel occurs when the train is not yet in the approach zone (Pk < Za),
then it will stop before F (Za + Ds < F). So no question is to be asked about the
switch. The same applies if the route cancel occurs when the train is not yet in the
visibility zone (Pk < Zv), because the visibility zone is large enough (Zv + Ds < F).

– In the remaining case, the route cancel occurs when the train is already in the approach
zone and in the visibility zone. Because the signal is directly visible, the stopping
delay of the train can be counted from the route cancel event; because it is in the
approach zone, the switch will remain locked during T after this route cancel event.
So the switch is still locked when the final stopping of the train occurs before T; if
the train is beyond F at that moment it will be detected and the switch will remain
locked until the train has cleared the route.

This reasoning can be explained and checked with domain experts: this is the “natural
language proof”. It may seem simple, but it is now possible to carefully examine the
meaning of the variables and the related assumptions: the most crucial problems are
usually solved at this moment.

If we stopped here, there would be no quantifiable difference compared to an informal
text explaining the system, however rigorous the previous “proof” may seem. The next
step beyond is to use a computerized tool to verify this proof: we use Atelier-B with its
event-B language capabilities. Constructing an event-B model such that the proof will
denote the above reasoning is quite straightforward (provided enough knowledge in the
event-B method of course). A single B model is suitable, with sate variables denoting
Pk, time, date of the route cancellation if it occurred and so on. The target property
(Pk > F => unlocked = False) can be written in the invariant, if the set of B events in
the model is so that this invariant can be proven then this property is proved. Those
events will be:

• Events denoting the movements of the train (in different cases: without visible red
signal, with visible red signal, etc.);

• Events denoting the ground system: route cancellation, switch unlocking after the
delay, etc.

The obtained B-model in this case is about 80 lines long; its proof with Atelier-B is
almost fully automatic.

Such B models for system level proofs with this method are usually far simpler than
B models at software level: they are often less than 1000 lines per model, and each topic
is usually a single refinement chain with less than 3 or 4 refinement steps. Of course
they are more complex than this toy example (80 lines, no refinements), but actually the
“reasons why” at system level tend to be quite simple and so are the corresponding B
models. The difficulties in this task (and the benefits) reside in finding the correct
assumptions, and successfully turning all explanations into a rigorous reasoning. From
a mathematical point of view we use only simple rules and results; system designs can

30 D. Sabatier

rely on elaborated mathematical results or complex physical laws but then those central
aspects are well known and covered by theories and proofs that should be taken as
assumptions in the B proof.

8 Conclusion

According to ClearSy’s experience today, a system level proof is feasible with manage‐
able cost for any large system. Of course, the correct organization and the results and
their usage are highly dependent on the nature of the project, and particularly on whether
the design is known or under development. When driving such proof projects, the
important words are adaptation, flexibility and communication rather than theoretical
mathematics!

In industrial projects, the efforts to reach the required performance and to obtain the
mandatory documents obviously come first. Extra efforts to reach higher levels of confi‐
dence (like actually proving properties, using formulated assumptions and logics) are
always a matter of conviction. Let’s hope that global experiences in more and more
projects will accumulate evidence in favor of this conviction.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, Cambridge (2010)

2. Atelier B website. http://www.atelierb.eu/
3. Abrial, J.R.: The B-Book. Cambridge University Press, Cambridge (1996)
4. Boulanger, J.L.: Formal Methods Applied to Industrial Complex Systems. Wiley-ISTE,

Hoboken (2014)
5. EN50126: Railway Applications - The Specification and Demonstration of Reliability,

Availability, maintainability and Safety (RAMS)
6. EN50129: Railway Applications - Communications, signaling and processing systems – Safety

related electronic systems for signaling
7. EN50128: Railway Applications - Communications, signaling and processing systems
8. Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT line 7 (Flushing)

modernization project. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M.,
Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 369–372. Springer,
Heidelberg (2012)

Using Formal Proof and B Method at System Level 31

http://www.atelierb.eu/

A Novel Approach to HW/SW Integration
Testing of Route-Based Interlocking System

Controllers

Jan Peleska(B), Wen-ling Huang, and Felix Hübner

Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany

{jp,huang,felixh}@cs.uni-bremen.de

Abstract. Recent progress in bounded model checking and inductive
reasoning has shown that the fully automated verification of route-based
interlocking system designs of realistic “real-world” complexity is pos-
sible and ready for industrial application. In this paper, we present a
new model-based testing strategy for interlocking system controllers that
exploits the fact that the design has already been verified, so that it can
be used as a reference model for test case and test oracle generation.
Our special interest lies in the field of complete testing strategies that
are able to uncover every implementation error, provided that the imple-
mentation behaviour is captured in a pre-specified fault domain. Despite
their guaranteed test strength, these strategies have two well-known dis-
advantages: (1) applied in a naive way, they often result in an infeasible
amount of test cases, and (2) the hypothesis that the real implementa-
tion behaviour is captured by a member of the fault domain can rarely
be justified in a convincing way. We describe a new combination of com-
positional reasoning and input equivalence class generation techniques
that removes problem (1). For coping with disadvantage (2), we sug-
gest a combination of equivalence class and random testing that - while
not being able to guarantee complete fault coverage for implementations
outside the fault domain - results in a test strength that is significantly
higher than heuristic test approaches for interlocking system controllers.
Estimates are presented that show how application of this novel strategy
reduces the effort for HW/SW integration testing, while simultaneously
increasing the fault coverage in comparison to more conventional testing
approaches.

Keywords: Interlocking systems · Model-based testing · Equivalence
class partition testing · HW/SW integration testing

1 Introduction

Objectives. In this paper we suggest a new approach to safety-related HW/SW
integration testing of controllers for route-based interlocking systems. This app-
roach is based on the fact that recent advances in design verification have shown
c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 32–49, 2016.
DOI: 10.1007/978-3-319-33951-1 3

Testing Route-Based Interlocking System Controllers 33

that it is possible to completely verify the safety of complex railway networks
in combination with their interlocking tables and control algorithms on design
level. Moreover, given a network description and a specification of the interlock-
ing tables, the behavioural model of the associated safe route controller can be
automatically generated. The design verification technique is based on bounded
model checking in combination with inductive reasoning and can be fully auto-
mated [9,10].

As a consequence, we can count on the availability of reference models for
safe route controller behaviours which are a priori known to be complete and
correct. This suggests a likewise automated model-based testing approach for
the route controller implementation. For such a test suite it is not necessary to
elaborate a set of test cases from the safety requirements induced by the design
and justify their completeness: instead, we can design a test suite that just shows
the behavioural equivalence1 of the system under test (SUT) and the reference
model. Since the model is known to be safe, the safety of the SUT follows.

When selecting an automated test case generation approach for this pur-
pose (see [1] for an overview of model-based testing methods available today),
methods allowing full automation are of course the most attractive. At the same
time, we would like these methods to come with guaranteed error detection
capabilities, because this would reduce the effort to obtain certification credit
for the test suite in a considerable way: the applicable standards do certainly not
require test suites to uncover every error. They demand, however, that the test
strength of test suites is assessed experimentally2 and that test case reduction
techniques like equivalence partitioning approaches are justified with respect to
the trustworthiness of the reductions applied.

Complete Testing Strategies. This additional objective suggests to inves-
tigate the usability of complete testing strategies whose test suites are sound
(SUT behaviours conforming to the reference model are never rejected) and
exhaustive (non-conforming SUT behaviours are always detected by at least one
test case of the suite). Completeness is usually asserted with respect to a fault
model F = (S,≤,D) [8], expressing the hypotheses under which completeness is
asserted. Here S denotes the reference model and ≤ the conformance relation –
we only consider I/O-equivalence, that is, behavioural equivalence on the visible
input/output interface and denote this by ∼. Set D denotes the fault domain
which is a collection of models conforming or non-conforming to S. Typically,
black-box testing strategies can guarantee completeness only under the hypoth-
esis that the true behaviour of the SUT is represented by a member of the fault
domain.

1 Since route controllers are deterministic and the SUT accepts all inputs in every
state, it is not necessary to investigate other conformance relations, where the SUT
only performs a subset of the behaviours allowed according to the reference model.

2 This is typically achieved by applying the suite against mutants of the implementa-
tion and checking how many of them are “killed”, i.e. how many injected errors are
uncovered.

34 J. Peleska et al.

Though complete testing strategies were always of high interest from a the-
oretical point of view, they were often not considered in practical testing cam-
paigns, because (1) they resulted in an intractable number of test cases, and
(2) the hypothesis that the true SUT behaviour is reflected by a member of the
fault domain is hard to justify in many cases. Recent results on complete input
equivalence class testing methods, however, have shown that problem (1) can
be overcome for certain classes of models by abstracting the – usually unman-
ageable – number of concrete input vectors to the SUT to input equivalence
classes [3]. To deal with problem (2), it has been shown that a randomisation of
this input equivalence class testing strategy, while preserving its completeness,
results in surprisingly high test strength when applied to the test of implemen-
tations outside the fault domain: instead of using a fixed collection of represen-
tatives from input equivalence classes, one selects a random representative from
the class whenever it is needed [4].

Main Contribution. The main contribution of this paper consist in the presen-
tation of evidence showing that this approach is effective for testing controllers
of route-based interlocking systems, when the integration test strategy is com-
bined with compositional reasoning. It should be emphasised however, that we
do not claim that this approach will always lead to the detection of every error in
the SUT: interlocking systems can have a highly complex architecture involving
many cooperating components; achieving 100 % fault coverage just for the route
controller would not allow us to conclude that the complete interlocking system
is free of any errors. Instead, our objective is to show that

1. application of this strategy exhibits significant test strength which is probably
better than what can be achieved with heuristic test case design,

2. the test case generation process, including the calculation of concrete test
data, can be fully automated, so that this test strength may even be reached
with less effort in comparison with manual test suite development methods,

3. the number of test cases to be performed is adequate for safety critical inter-
locking system components and can be executed within reasonable time.

Overview. In Sect. 2 some essential facts about route-based interlocking sys-
tems are described. In Sect. 3, the case studies performed are described, and a
concrete behavioural model for a route controller is presented. Using the exam-
ples from the case study for illustration purposes, the underlying testing method
is described in Sect. 4. The experiments and their evaluation showing the effec-
tiveness of the advocated approach, as well as a discussion of threats to validity
are presented in Sect. 5. Section 6 contains the conclusions. References to related
work are given throughout the text at the appropriate places. For a comprehen-
sive list of references related to the underlying testing strategy see [3, Sect. 5].

Due to the usual space limitations, this paper does not contain all the details
readers might be interested in. A comprehensive technical report is therefore
available under [7].

Testing Route-Based Interlocking System Controllers 35

2 Route-Based Interlocking Systems

The material presented in this section is based on [9,10]. We consider modern
route-based interlocking systems with sequential release, as they are currently
introduced, for example, for the new Danish high-speed train network designed
according to the European Train Control System (ETCS) specification.

2.1 Railway Networks, Routes, and Interlocking Systems

To illustrate the terms and concepts introduced in the subsequent paragraphs,
consider the small railway network in Fig. 1. It consists of linear sections (such
as b10, t10, t12, . . .) and points (t11, t13). These are collectively called detec-
tion sections, because the presence or absence of trains in these sections can
be determined. Marker boards (mb10, mb11, . . .), represent virtualised signals.3

Each network portion controlled by some interlocking system has two dedicated
directions UP and DOWN which are defined in relation to a fixed point (e.g. a
train station at one end of the line) along the complete network. Each marker
board is associated with either the UP-direction (mb10, mb13, . . .) or the DOWN-
direction (mb15, mb12, . . .).

Fig. 1. Simple railway network (taken from [9]).

The network is traversed on pre-defined routes that are controlled by the
interlocking system. Each route starts at a marker board pointing in train direc-
tion and ends at a neighbouring marker board pointing in the same direction: for
example, the sequence of track elements t10, t11, t12 guarded at the beginning
by mb10 and at the end by mb13 represents the route mb10 → mb13. The points
inside a route need to be in appropriate position: for the route mb10 → mb13,
point t11 has to be in PLUS-position (i.e. connecting t10 and t12); for the route
mb10 → mb21 the MINUS-position connecting t10 and t20 is required. Before a
train may enter the route, additional signals and points need to be switched into
specific states for offering additional safety, such as flank protection or head-on
collision protection. Using route mb10 → mb13, for example, requires that point
t13 shall be switched into MINUS-position, so that trains travelling in DOWN
direction cannot enter t12. Moreover, marker boards mb11, mb12, mb20 must be
switched to HALT.

3 We omit here ETCS track-side elements that are only implicitly used in this paper,
such as balises or radio block centres.

36 J. Peleska et al.

The interlocking system allocates a route for a train (points and signals are
switched into the appropriate states), locks it (points are fixed in their position
and cannot be changed until the train has passed through), allows the train to
enter the route, and detects when the route is occupied. Detection sections along
the route are freed as soon as the train has passed them. The route is freed when
the train has left it and entered the next route. Routes possessing common track
elements – for example, routes mb10 → mb13 and mb20 → mb11 – are said to be
in conflict with each other, because they must not be used simultaneously in
order to avoid collisions. A route can only be allocated to a train if it is not in
conflict with other routes currently being allocated or already locked or occupied
by a train.

The sequential release principle allows for allocating a conflicting route, when
the train occupying the current route has already passed the critical track ele-
ments where a collision might take place. Similarly, points and signals outside
the route, offering protection to certain route portions may already be unlocked
as soon as the train has traversed these portions. For example, when a train
occupies route mb10 → mb13 but has already passed t10 and t11, so that it
completely resides in t12, route mb20 → mb11 may already be allocated.

The route descriptions and their associated protection requirements are spec-
ified in interlocking tables; an example for the network above is given in Table 1.

Table 1. Interlocking table for the network layout in Fig. 1 (Taken from [9]; p means
PLUS, m means MINUS.)

id src dst Path Points Signals Conflicts

1 mb10 mb13 t10;t11;t12 t11:p;t13:m mb11;mb12;mb20 2;3;4;5;6;7

2 mb10 mb21 t10;t11;t20 t11:m;t13:p mb11;mb12;mb20 1;3;6;7;8

3 mb12 mb11 t11;t10 t11:p mb10;mb20 1;2;5;6;7

4 mb13 mb14 t13;t14 t13:p mb15;mb21 1;5;6;8

5 mb15 mb12 t14;t13;t12 t11:m;t13:p mb13;mb14;mb21 1;3;4;6;8

6 mb15 mb20 t14;t13;t20 t13:m mb10;mb12;mb13;mb14;mb21 1;2;3;4;5;8

7 mb20 mb11 t11;t10 t11:m mb10;mb12 1;2;3

8 mb21 mb14 t13;t14 t13:m mb13;mb15 2;4;5;6

2.2 Route Controllers

The central component of a route-based interlocking system is the route con-
troller. It is responsible for allocating requested routes to trains, for preventing
simultaneous allocation of conflicting routes, performing sequential release of
track elements, freeing routes after they are no longer occupied, and for reacting
to cancellation commands. Moreover, the route controller supervises the validity
of all safety conditions and triggers a transition to a safe state (all marker boards
on HALT, no state changes for points) if one of these conditions is violated. A
typical architecture for route controllers is shown in Fig. 2.

Testing Route-Based Interlocking System Controllers 37

Fig. 2. Route controller interface and internal structure.

The safety layer manages the routes. It reads interlocking tables, route and
element states from the data pool, and writes route state updates as well as
track element commands into the data pool. Typical implementations use one
controller sub-component C(id) per route id. If these are scheduled sequen-
tially, route allocations can never interfere with each other. If, however, the sub-
components run concurrently, some locking mechanism (spin lock or semaphore)
is needed to avoid that allocations are started for conflicting routes: each sub-
component performs its evaluation whether an allocation request is in conflict
with another route and records the transition into the allocating state in a criti-
cal section. For detection sections, the route controller distinguishes two Boolean
attributes: the locking status is 1 (= true), when the segment has been locked –
that is, specifically allocated – for a given route. The occupancy status is 1, if and
only if a train resides (partially or completely) in the section. Safety conditions
require that a segment may be locked for at most one route, and that it may
only be occupied if it is also locked. Points have a third attribute denoting their
position: in the examples below, the PLUS position is denoted by 0, and the
MINUS position by 1. Marker boards only have status values (0 = HALT, 1 =
GO). The current status of all these values is stored in the data pool. Route con-
trollers send commands to points and marker boards for changing their position
and their HALT/GO aspect, respectively. These commands are written by the
route controller sub-components into the data pool.

The hardware abstraction layer (HAL) processes the hardware interfaces. On
its input interface, it receives requests for routes through the network portion
the route controller is responsible for. Before a route is occupied by a train,
the allocation and locking process can still be aborted by means of a cancella-
tion request. The HAL stores requests and cancellations in the data pool, to be
processed by the controller sub-components residing in the safety layer. More-
over, the HAL receives status information from detection sections: the occupancy

38 J. Peleska et al.

status of linear segments and points, as well as the feedback information about
actual point positions and actual marker board states are also written into the
data pool.

The HAL reads the output interface changes requested by the controller
sub-components from the data pool. On its output interface, the HAL sends
position commands to points, requesting PLUS(0) or MINUS(1) positions. To
marker boards, GO(1) or HALT(0) requests are sent. Finally, safety violations
are indicated (1 denotes a violation).

3 Case Studies

3.1 First Route Controller Sub-component

As will be justified below in Sect. 4.8, we can test each route controller sub-
component C(id) separately. Therefore, as the first part of the case study, the
sub-component C(7) for route id 7 (mb20 → mb11, see Table 1) in the simple
railway network shown in Fig. 1 is tested. The complete route controller archi-
tecture shown in Fig. 2 induces the following component testing configuration
which is depicted in Fig. 3.

Fig. 3. Integration test configuration for C(7), controlling route mb20 → mb11.

As inputs, C(7) gets the Boolean request and cancel command for this spe-
cific route. Moreover, the route status of the other routes (route(mbx → mby))
influences its behaviour. The relevant track elements are t10 and t11, and their
Boolean status information t10 occ and t11 occ (= 1 if occupied), t10, t11
(= 1 if locked by another route), t11 pos (= 1 if point position is MINUS), and
mb10 act, mb12 act, mb20 act (= 1 if signal aspect is GO) are further inputs
to the SUT. The states of all other track elements (which are also part of the
data pool and available for this sub-component test) should not influence C(7)’s
behaviour, so they are not shown in Fig. 3.

The controller for route mb20 → mb11 writes locking commands t11 out,
t10 out for both track elements into the data pool. For C(7), this is an output

Testing Route-Based Interlocking System Controllers 39

to the test environment. Moreover, requests for changing the point position are
written to t11 cmd (= 1 for requested position MINUS). Requests for marker
boards to change the signal aspect are written to mb10 cmd, mb12 cmd, mb20 cmd
(= 1 to request signal aspect GO). Finally, the controller raises the error flag
if it detects a safety violation related to its route. The outputs shown in Fig. 3
are the ones where C(7) is expected to write to.

In Fig. 4, the behaviour of the route controller sub-component C(7) is mod-
elled as a state machine in SysML style. On receiving a request for this route,
C(7) transits into mode MARKED, where it remains until no conflicts with other
routes exist. The Boolean operation no conflicts() returns true if and only
if t10 and t11 are not locked by another route (and therefore empty) and no
conflicting route is in mode ALLOCATING or LOCKED.

Fig. 4. Route controller state machine for route mb20 → mb11 from Fig. 1.

Note that these conditions can be directly generated from the interlocking
table shown in Table 1, row id 7, columns path and conflicts. Then the con-
troller transits into mode ALLOCATING, where elements t11, t10 are locked,
the point t11 is switched into MINUS position, and the protecting marker boards
mb10, mb12 are set to HALT. Note that these actions are directly generated from
Table 1, row id 7, columns path, points, signals.

The operation all elements locked() returns true, if and only if the
requested point position has been reached according to the feedback input
t11 pos, and the feedbacks mb10 act, mb12 act from the marker boards show
the requested HALT aspect. Then C(7) transits into mode LOCKED, setting
mb20 to GO, so that the train is free to enter the route. When the route’s first
segment t11 is occupied by the train, C(7) transits into mode OCCUPIED1,

40 J. Peleska et al.

and mb20 is switched back to HALT. The controller sub-component now tra-
verses the modes OCCUPIED2 and OCCUPIED3, whereafter the point t11 is
unlocked according to the sequential release principle. As soon the train has left
the route, C(7) reaches the mode FREE again.

While residing in modes LOCKED, OCCUPIEDx, C(7) monitors the sys-
tem status with respect to safety violations concerning its route. Operation
safetyViolation0(), for example, returns true if and only if

(t11_occ == 0 && t10_occ==1) // train has not yet entered route 7, but segment t10 is
// occupied by an unexpected conflicting train

|| (t11_pos == 0) // Unexpected change of point position
|| (mb10_act == 1) // Unexpected change to aspect GO
|| (mb12_act == 1) // Unexpected change to aspect GO
|| t10 // t10 has been locked for another route
|| t11 // t11 has been locked for another route

3.2 Second Route Controller Component

The complexity of a route controller sub-component depends on the length of the
route (each track element along the route adds another OCCUPIEDx mode in
the state machine described above) and on the surrounding railway network: the
network layout in the vicinity of the route may induce additional flank protection
requirements and offer different variants for ensuring this protection by means of
points and marker boards. For this reason, a second route from a more complex
network (the Lyngby train station in Denmark, see [9] for more details) has been
selected as representative for the experimental evaluation of the testing strategy
described in this paper. In the description of the experiments performed (Sect. 5),
this sub-component reference model is denoted by C(Lyngby).

4 Model-Based Equivalence Class Partition Testing

4.1 Semantic Domain

The equivalence class partition strategy and its associated complete testing the-
ory applied in this paper is based on the semantics of reactive I/O state transition
systems (RIOSTS) S = (S, s,R) with state space S, initial state s and transition
relation R ⊆ S × S. The state space S consists of variable valuation functions
s : V → D associating variables v ∈ V with their concrete value s(v) in the
state s. The variable space V is partitioned into input variables (subset I ⊆ V),
internal model variables (M ⊆ V), and output variables (O ⊆ V). It is assumed
that variables from M ∪ O only have finite domains, so that they can be enu-
merated for test purposes, whereas the input variables from I can have infinite
domains. We require RIOSTS state spaces to be partitioned into quiescent states
(SQ ⊆ S) and transient states (ST ⊆ S, SQ∩ST = ∅). Transitions from “stable”
quiescent states can only change the values of input variables and may end up in
either quiescent or transient states. Transitions from transient states must have
quiescent post-states, and these transitions may affect internal model variables
and outputs only. It is assumed that the SUT outputs can only be observed
when it resides in quiescent states.

Testing Route-Based Interlocking System Controllers 41

The semantic domain of RIOSTSs captures a wide variety of control systems,
such as speed controllers in train protection systems [3], airbag controllers [4],
thrust reversal controllers in aircrafts, and other systems performing discrete
control decisions based on inputs from conceptually infinite domains. Various
concrete modelling formalisms can be associated with RIOSTS semantics. As
shown in [3], the SysML semantics of models consisting of blocks and state
machines can be expressed by means of RIOSTS in a way that is consistent with
the semi-formal OMG semantics4.

Two RIOSTSs S,S ′ are I/O-equivalent (S ′ ∼ S), if and only if the lan-
guages L(S ′) and L(S) are identical. In analogy to finite state machines, the
language L(S) of RIOSTS S is the set of all state traces of S, restricted to their
input/output pairs (s(x1), . . . , s(xp))/(s(y1), . . . , s(y�)) in the sub-sequence of
quiescent states (because I/O is assumed not to be observable in transient states).

4.2 Construction of Input Equivalence Classes

Given an RIOSTS S = (S, s,R), its transition relation R can be represented by
specifying a proposition R with free variables from V ∪ V ′, V ′ = {v′ | v ∈ V },
such that

R = {(s, s′) ∈ S × S | R[s(v)/v, s′(v)/v′ | v ∈ V, v′ ∈ V ′]}
R is specified in such a way that (s, s′) ∈ R holds if and only if R evaluates to
true when replacing every unprimed version of v ∈ V by its pre-state value s(v)
and every primed variable symbol v′ by the post-state value s′(v) of v.

In [3] an algorithm is presented that allows to transform an arbitrary repre-
sentation of R into a normalised one which is structured as

R ≡
∨

i∈IDX

(
gi,i ∧ (m ,y) = (d i, e i) ∧ (m ′,y ′) = (m ,y)

) ∨
∨

(i,j)∈J

(
gi,j ∧ (m ,y) = (d i, e i) ∧ (m ′,y ′) = (d j , ej) ∧ x ′ = x

)

where (1) gi,i, gi,j are propositions with free variables from I only, (2) (m ,y)
denotes the pair of internal state variable tuples and output variable tuples, that
is, M = {m1, . . . mk} and m = (m1, . . . mk), O = {y1, . . . y�} and y = (y1, . . . y�),
(3) x = (x1, . . . , xp) denotes the tuple of input variables, I = {x1, . . . , xp}, and
(4) (d i, e i), i ∈ IDX is the enumeration of reachable pairs of internal state value
tuples d i and output value tuples e i. The input conditions gi,i specify which
input changes are possible while staying in the quiescent state class specified
by gi,i ∧ (m ,y) = (d i, e i). The input conditions gi,j , i �= j denote propositions
associated with transient state classes specified by gi,j ∧ (m ,y) = (d i, e i), and
leading to members of quiescent state classes specified by gj,j∧(m ,y) = (d j , ej).
Each condition gi,i ∧ (m ,y) = (d i, e i) induces a state class

Ai = {s ∈ S | (gi,i ∧ (m ,y) = (d i, e i))[s(v)/v | v ∈ V]}
of I/O-equivalent quiescent states.
4 http://www.omg.org/spec/SysML/1.4.

http://www.omg.org/spec/SysML/1.4

42 J. Peleska et al.

Example 1. For the route controller sub-component C(7) shown in Fig. 4, m just
denotes the actual control mode (one of FREE, MARKED, ALLOCATING, . . . ,
interpreted as integer values in range 0,. . . ,7), and y is the output vector

(t10 out, t11 out, t11 cmd, mb10 cmd, mb12 cmd, mb20 cmd, error).

The quiescent state class A2 associated with control mode ALLOCATING(2),
for example, is specified by

g2,2 ≡ (request ∨ !cancel) ∧ !all elements locked()
≡ (request ∨ !cancel) ∧ (t11 pos = 0 ∨ mb10 act = 1 ∨ mb12 act = 1)

(m ,y) = (2, (1, 1, 1, 0, 0, 0, 0)) �
The normalised representation R now allows us to construct an input domain

partition I = {X1, . . . , Xq} containing input equivalence classes (IECs), so that
for every i ∈ IDX and s1 ∈ Ai, the effect of applying a sequence c1 . . . cp of inputs
to s1, only depends on the sequence of Xi1 . . . Xip the c1 . . . cp reside in, but not
on the concrete representatives cj ∈ Xij . If I is such an input equivalence class
partitioning (IECP), applying c1 . . . cp to s1 ∈ Ai and c′

1 . . . c′
p to s2 ∈ Ai results

in the same sequence of outputs, whenever ∀j ∈ {1, . . . , p} : ∃X ∈ I : cj , c
′
j ∈ X

is fulfilled. The proof of these properties and an algorithm for constructing I
has been presented in [3]. It is easy to see that any refinement of the input
equivalence class partitioning I constructed according to these rules is again an
IECP of the underlying RIOSTS.

4.3 Complete Testing Theories for RIOSTS

With state equivalence classes Ai and input equivalence classes X ∈ I at hand,
the RIOSTS S can be abstracted to a deterministic, completely specified finite
state machine (DFSM) with input alphabet I, output alphabet DO, and state
space Q = {A1, A2, . . . }. The DFSM’s transition relation h ⊆ Q × I × DO × Q
is specified in such a way that

(Ai,X, ej , Aj) ∈ h if and only if there exist S-states s ∈ Ai, s
′ ∈ Aj and

an input c ∈ X, such that RIOSTS S transits with input change c from
s to s′, and s′ satisfies (s′(y1), . . . , s′(y�)) = ej

As shown in [3], this DFSM specification is well-defined, and two determin-
istic RIOSTSs are I/O-equivalent if and only if their DFSM abstractions are
I/O-equivalent. As a consequence, complete testing theories elaborated for
DFSMs can be translated to complete theories for RIOSTSs: the input sequences
X1 . . . Xq,Xi ∈ I to be used as DFSM test cases according to such a complete
theory are translated to sequences c1 . . . cq of concrete RIOSTS input data sat-
isfying ci ∈ Xi for i = 1, . . . , q, that is, each ci is an arbitrary representative of
class Xi.

The associated fault models are of the form

F = (S,∼,D(m, I)),

Testing Route-Based Interlocking System Controllers 43

where the fault domain D(m, I) contains all deterministic RIOSTSs S ′ whose
input equivalence partitionings coincide with the partitioning I of the reference
model S, and whose minimised DFSM abstractions do not have more than m
states.

4.4 W-method and Wp-method

For generating the complete abstract DFSM test suites, the W-method and the
Wp-method [2,6] have been applied. Both methods represent complete test-
ing theories for completely specified DFSM and I/O-equivalence as conformance
relation; the Wp-method is also applicable to nondeterministic FSMs. Test suites
can be represented as sets W of test cases, each case consisting of a DFSM input
sequence. For both methods, test cases are structured into three parts: the first
part is an input sequence suitable for visiting a specific state of the DFSM refer-
ence model. The second part exercises arbitrary input sequences up to a length
depending on the difference between the maximal state number expected in an
implementation and the actual state number present in the reference model.
The last part of each test case exercises an input sequence that helps to distin-
guish the expected target state reached before from other states that might have
erroneously been reached due to transition faults.

The detailed algorithms for automatically generating W/Wp-test suites from
DFSM reference models are described in [2,6,7]. As is shown in [7], the Wp-test
suites had the same test strength as the suites based on the W-method; at the
same time, application of the Wp-method resulted in considerably smaller test
suites. Therefore we only refer to the Wp-method for the rest of this paper.

4.5 Discussion of Fault Hypotheses

It will be very difficult in general to prove that the estimates of m and the
assumed IECP I are adequate for an SUT. One way to cope with this problem
is to increase m and to refine I. The test suite size, however, is increased expo-
nentially by increasing m. Moreover, refining the IECP I leads to exponential
growth of I, and, consequently, again to exponential growth of the test suite
size. As a consequence, it is desirable to investigate alternative methods that,
while keeping the test suite size at an acceptable level, still possess superior
test strength when applied against SUT whose behaviours are outside the fault
domain.

4.6 Randomisation

The completeness of RIOSTS input equivalence class testing theories translated
from DFSM theories as described above is preserved, if, instead of always choos-
ing the same representative from each IEC X ∈ I, a random value is selected
from X each time a test cases requires an X-input. A set of experiments has
been performed and published in [4], showing that the test strength of the result-
ing suite is significantly higher for SUT behaviours outside D(m, I) than the

44 J. Peleska et al.

strength of naive random testing, where inputs are just selected at random from
the complete range of input data in each test step, instead of performing ran-
dom selections from IECs and generating the test cases by means of a complete
method.

4.7 Boundary Value Tests

When selecting representatives from input equivalence classes at random, we
will apply a strategy ensuring that the selected values are evenly distributed
over the inner part of an input equivalence class and its boundary. The exper-
iments evaluated in Sect. 5 show that this further increases the test strength
for implementations outside the fault domain. For the solution sets of proposi-
tions the boundaries of these sets can be calculated using the MC/DC coverage
conditions; this is explained in detail in [7, Sect. 4.8].

4.8 Compositional Reasoning

A system S consisting of components C1, . . . , Cn is called compositional, if the
specification fulfilled by S can be derived from the specifications fulfilled by each
of its components Ci and from the way these components interact (e.g. sequential
or concurrent composition). Compositionality depends on the underlying com-
munication and synchronisation mechanisms applied by the components, and on
the condition that components will not interfere with each others’ private data.

We observe that the route controllers in this paper are compositional, pro-
vided that the controller sub-components are scheduled either sequentially or
concurrently with proper protection of their critical sections. As a consequence,
we can test each controller sub-component separately and then conclude, that
their composition operates correctly as well.5 As a consequence, we can apply
the testing methods described above locally to the controller sub-component of
each route, verify the HAL, verify the synchronisation mechanism used to pro-
tect critical sections, and then conclude by compositional reasoning that these
local verification activities yield certification credit for the integrated HW/SW
system.

4.9 Resulting Test Strategies

In the following description of test strategies evaluated for testing route controller
sub-components, S always denotes the SysML reference model of the controller
sub-component, interpreted in RIOSTS semantics. I denotes the input equiv-
alence class partitioning constructed for S as specified in Sect. 4.2. F denotes
the minimal DFSM with input alphabet I created from S by means of the
abstraction technique described in Sect. 4.3. It is assumed that F has n states.
By W we denote the DFSM test suite created from F using the Wp-method
5 The hardware abstraction layer would also have to be verified locally, but this is

outside the scope of this paper.

Testing Route-Based Interlocking System Controllers 45

with assumption n = m. This induces the fault domain D(n, I). A (possibly
erroneous) implementation S ′ is part of the fault domain if and only if I applies
also as IECP for S ′ and the DFSM abstraction F ′ of S ′ has at most n states.

As an alternative, we also use a refined IECP I that partitions each X ∈ I
into several boundary value segments and the “interior” part of X. The DFSM
test suite created from F using the Wp-method is denoted by W. The induced
fault domain is D(n, I). Obviously D(n, I) ⊂ D(n, I) holds.

With these prerequisites, the following test strategies have been applied and
compared with respect to their test strength.

STRAT 1. Input equivalence class partitioning I, fault domain D(n, I), W is
translated to an RIOSTS test suite by using a fixed representative c ∈ X ∈ I,
whenever X occurs in an input sequence of W.

STRAT 2. Input equivalence class partitioning I, fault domain D(n, I), W is
translated to an RIOSTS test suite by performing a random selection c ∈
X ∈ I, whenever X occurs in an input sequence of W.

STRAT 3. Input equivalence class partitioning I, fault domain D(n, I), W is
translated to an RIOSTS test suite by performing a random selection c ∈
X ∈ I, whenever X occurs in an input sequence of W. 50 % of these random
selections are chosen from inner points of X, the other half is chosen from
boundary values of X.

STRAT 4. Refined input equivalence class partitioning I, fault domain D(n, I),
W is translated to an RIOSTS test suite by performing a random selection
c ∈ X ∈ I, whenever X occurs in an input sequence of W.

STRAT-RND. For comparing the test strength of the other test strategies
under investigation, a naive random test strategy is used which does not
require a model, but only an interface specification: in each test step, the
input vector to the route controller is changed at random.

5 Experiments and Evaluation

5.1 Experiment Setup

Reference Models. As reference models, the two route controller sub-components
C(7) and C(Lyngby) described in Sect. 3 were used.

Reference Implementations. For C(7), two reference implementations in Java
were programmed, using different programming paradigms: IMPL1 uses the state
machine paradigm to create a code structure that is directly traceable to the
reference model: for each control mode of the model, a separate Java method
evaluates control decisions, handles actions in the respective mode and sets the
new mode if state machine transitions are performed. As an alternative, imple-
mentation IMPL2 uses a generic interpreter programming paradigm, where the
executable evaluates conditions and performs actions according to the interlock-
ing table data specified for the route. IMPL2 is close to typical implementations
of route controllers used in practise. For C(Lyngby), only IMPL2 was re-used

46 J. Peleska et al.

with the Lyngby-interlocking table. Due to the considerable programming effort
that would have been required for creating an implementation in the style of
IMPL1, this has not been evaluated for C(Lyngby).

Mutations. From each reference implementation, mutations have been generated,
using the Major mutation framework [5]. For IMPL1, 277 non-equivalent muta-
tions were generated (non-equivalence has been verified by hand). For IMPL2,
246 non-equivalent mutations were generated for C(7), and 269 non-equivalent
mutations were generated for C(Lyngby). Note that the mutant generator is
unaware of fault domains. It simply injects syntactical changes to the reference
implementation in a systematic way. Thus, the resulting mutants are both from
inside and outside the pre-defined fault domains. This facilitates a fair assess-
ment of the test strength of different strategies, given that in realistic black-box
scenarios the validity of the testing hypotheses cannot be checked either.

Test Suites. For both reference models C(7) and C(Lyngby), test cases were
automatically generated according to the strategies STRAT 1,2,3,4 as described
above. Then for STRAT-RND test suites with the same number of test cases
with the same length as generated for STRAT1,2,3,4 were produced at random.

Test Execution. Each test suite has been executed against every mutant, and the
mutation score for each suite was recorded. Since strategies STRAT 2,3,4,RND
depend on the utilisation of random numbers, each of their test suites has been
executed 10 times against every mutant, and the standard deviation from the
mean number of mutants killed has been recorded.

5.2 Experimental Results

Table Description. Table 2 below shows the evaluation results for tests against
model C(7), and Table 3 shows the evaluation results for tests against model
C(Lyngby).

In each table, the second column shows the number of test cases that have
been generated with the respective strategy; in each case, abstract tests on DFSM
level were generated by means of the Wp-method. The results for STRAT 4
are not shown here, because the refined input equivalence class partitioning

Table 2. Evaluation results for C(7) (route mb20 → mb11), Wp-method.

Strategy No. test cases Mutation score (IMPL1) M utation score (IMPL2)

avg. σ avg. σ

STRAT 1 670 236/277 (85.2 %) - 240/246 (97.6 %) -

STRAT 2 670 264.2/277 (95.4 %) 3.3 245/246 (99.6 %) 0

STRAT 3 670 271.5/277 (98.0 %) 2.1 244.8/246 (99.5 %) 0.4

STRAT-RND 670 136.5/277 (49.3 %) 14.5 98.7/246 (40.1 %) 18.1

Testing Route-Based Interlocking System Controllers 47

Table 3. Evaluation results for C(Lyngby) (route mb30 → mb21), Wp-method.

Strategy No. test cases Mutation score (IMPL2)

avg. σ

STRAT 1 2291 256/269 (95.2 %) -

STRAT 2 2291 259.9/269 (96.6 %) 0.7

STRAT 3 2291 264.7/269 (98.4 %) 1.2

STRAT-RND 2291 46.4/269 (17.2 %) 1.3

resulted in significantly larger test suites, while the increase in test strength was
negligible; again, details are shown in [7].

The double columns with heading ‘mutation score’ show the test strength
achieved with the respective strategy. The first sub-column documents this in
format k/m (p %), where m denotes the number of generated non-equivalent
mutants, k the mean value of killed mutants, and p the mean percentage of
killed mutants. Column σ records the standard deviation of k.

Interpretation of Results. Unsurprisingly, naive random testing (strategy
STRAT-RND) is unacceptable as a candidate for testing route controllers, since
it does not exhibit sufficient test strength: less than 50 % of the mutants are
killed for the simpler C(7) controller; for C(Lyngby), where the detection of
errors depends on passing longer sequences of guards, the test strength even
drops to less than 20 %. Further results described in [7] also show that the test
strength is only marginally improved for STRAT-RND when increasing the size
of the test suite.

All verification results show that STRAT 3 exhibits the best test strength
among strategies STRAT 1,2,3 and STRAT-RND. Therefore STRAT 3 in com-
bination with the Wp-method is the preferred testing strategy.

In [7], an extensive discussion of threats to validity is performed. The utilisa-
tion of different reference models and implementations ensures that the excellent
performance of strategy STRAT 3 is not an accidental result; furthermore, the
result is confirmed by previous experiments with other types of control sys-
tems [4]. From our analysis, the only critical threat to be addressed in future
experiments is the fact that the current evaluation does not consider typical
HW/SW integration faults originating from mismatches of SW design and HW
design.

6 Conclusion

In this paper, a novel testing strategy with guaranteed error detection capabili-
ties has been presented for the purpose of HW/SW integration testing in route-
based railway interlocking systems. This strategy is based on a complete input
equivalence testing method, but performs random selections whenever a repre-
sentative from an input equivalence class is needed. The selection is performed

48 J. Peleska et al.

in such a way that an even distribution of input data selected from the bound-
ary and from the interior of each class is achieved. It has been demonstrated
that this strategy can be practically applied with fully automated model-based
testing support. The strategy guarantees the detection of every possible error for
implementations whose behaviours are captured by models inside a well-defined
fault domain. Moreover, the experiments performed suggest that this strategy
is superior to heuristic test case development approaches, because it exhibits
significant test strength even for erroneous implementations outside the fault
domain.

Our observation of the current state of practise in industrial V&V of safety-
critical systems indicates that, while test execution and test evaluation is cer-
tainly automated, the elaboration of test cases is often done in a manual way,
without utilising formal test models as advocated in this paper. It should be
emphasised, however, that test case generation for the strategy described in this
paper can only be performed with tool support, because the underlying test
case and test data generation algorithms are quite complex. This suggests that
a change of paradigm is still required in industry before the advantages of the
approach presented here can be fully exploited.

Acknowledgements. The authors would like to express their gratitude to
Anne E. Haxthausen and Linh Hong Vu for their contributions to the field of formal
modelling and automated verification of railway interlocking systems, and for the excel-
lent collaboration in this field, which was always most productive and very enjoyable.

The work presented in this paper has been elaborated within project ITTCPS –
Implementable Testing Theory for Cyber-physical Systems(http://www.informatik.
uni-bremen.de/agbs/projects/ittcps/index.html) which has been granted by the Uni-
versity of Bremen in the context of the German Universities Excellence Initiative
(http://en.wikipedia.org/wiki/German Universities Excellence Initiative).

References

1. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodolo-
gies for automated software test case generation. J. Syst. Softw. 86(8), 1978–2001
(2013)

2. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. SE–4(3), 178–186 (1978)

3. Huang, W., Peleska, J.: Complete model-based equivalence class testing. Int.
J. Softw. Tools Technol. Transf. pp. 1–19 (2014). http://dx.doi.org/10.1007/
s10009-014-0356-8

4. Hübner, F., Huang, W., Peleska, J.: Experimental evaluation of a novel equiv-
alence class partition testing strategy. In: Blanchette, J.C., Kosmatov, N.
(eds.) TAP 2015. LNCS, vol. 9154, pp. 155–172. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-21215-9 10

5. Just, R.: The Major mutation framework: efficient and scalable mutation analysis
for Java. In: Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), San Jose, pp. 433–436, 23–25 July 2014

http://www.informatik.uni-bremen.de/agbs/projects/ittcps/index.html
http://www.informatik.uni-bremen.de/agbs/projects/ittcps/index.html
http://en.wikipedia.org/wiki/German_Universities_Excellence_Initiative
http://dx.doi.org/10.1007/s10009-014-0356-8
http://dx.doi.org/10.1007/s10009-014-0356-8
http://dx.doi.org/10.1007/978-3-319-21215-9_10

Testing Route-Based Interlocking System Controllers 49

6. Luo, G., von Bochmann, G., Petrenko, A.: Test selection based on
communicating nondeterministic finite-state machines using a gener-
alized wp-method. IEEE Trans. Softw. Eng. 20(2), 149–162 (1994).
http://doi.ieeecomputersociety.org/10.1109/32.265636

7. Peleska, J., Huang, W., Hübner, F.: A novel approach to hw/sw integration test-
ing of route-based interlocking system controllers - technical report. Technical
report, University of Bremen, 10 Mar 2016. http://www.cs.uni-bremen.de/agbs/
jp/jp papers e.html

8. Petrenko, A., Yevtushenko, N., Bochmann, G.V.: Fault models for testing in con-
text. In: Gotzhein, R., Bredereke, J. (eds.) Formal Description Techniques IX -
Theory, Application and Tools, pp. 163–177. Chapman & Hall, London (1996)

9. Vu, L.H., Haxthausen, A.E.: Formal development and verification of railway control
systems - in the context of ERTMS/ETCS level 2. Ph.D. thesis (2015)

10. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of
interlocking systems featuring sequential release. In: Artho, C., Ölveczky, P.C.
(eds.) FTSCS 2014. CCIS, vol. 476, pp. 223–238. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-17581-2 15

http://doi.ieeecomputersociety.org/10.1109/32.265636
http://www.cs.uni-bremen.de/agbs/jp/jp_papers_e.html
http://www.cs.uni-bremen.de/agbs/jp/jp_papers_e.html
http://dx.doi.org/10.1007/978-3-319-17581-2_15

Security

A Formal Security Analysis of ERTMS Train
to Trackside Protocols

Joeri de Ruiter, Richard J. Thomas(B), and Tom Chothia

School of Computer Science, University of Birmingham, Birmingham, UK
r.j.thomas@cs.bham.ac.uk

Abstract. This paper presents a formal analysis of the train to trackside
communication protocols used in the European Railway Traffic Manage-
ment System (ERTMS) standard, and in particular the EuroRadio pro-
tocol. This protocol is used to secure important commands sent between
train and trackside, such as movement authority and emergency stop
messages. We perform our analysis using the applied pi-calculus and the
ProVerif tool. This provides a powerful and expressive framework for
protocol analysis and allows to check a wide range of security properties
based on checking correspondence assertions. We show how it is possi-
ble to model the protocol’s counter-style timestamps in this framework.
We define ProVerif assertions that allow us to check for secrecy of long
and short term keys, authenticity of entities, message insertion, deletion,
replay and reordering. We find that the protocol provides most of these
security features, however it allows undetectable message deletion and
the forging of emergency messages. We discuss the relevance of these
results and make recommendations to further enhance the security of
ERTMS.

1 Introduction

The European Railway Traffic Management System (ERTMS) is a European
standard for next-generation train management and signalling. It is intended to
make it easier for trains to cross borders and optimise the running of the railway.
Currently the system is being rolled out across Europe, and on high-speed lines
across the world. By the end of 2014, over half of the 80,000 km of tracks that
were equipped with ERTMS were located in Asia.1

Within this wholly-digitised system, a number of protocols are employed
to provide functionality to the ERTMS platform. For example, the EuroRadio
protocol is used to ensure that messages exchanged between entities are gen-
uine and have not been forged by an attacker, or to handover trains from one
system responsible for a stretch of track to another. Moving from a largely ana-
logue, manual or semi-automatic system to a digital, fully supervised system may
expose it to threats which were not previously possible. These threats require
appropriate analysis to ensure that the replacement system protects the under-
lying infrastructure and vehicles from attacks. In such a safety-critical system,
1 http://www.ertms.net.

c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 53–68, 2016.
DOI: 10.1007/978-3-319-33951-1 4

http://www.ertms.net

54 J. de Ruiter et al.

it is key that the train is never allowed to be influenced externally to enter an
unsafe state or perform in a manner which is not expected.

In this paper we perform a formal analysis of the EuroRadio protocol and
parts of the ERTMS application protocol using the applied pi-calculus [1] and
the ProVerif analysis tool [4,5]. The applied pi-calculus provides an expres-
sive, powerful framework to model protocols; functions can be used to define
new cryptographic primitives. The ProVerif tool can automatically check a wide
range of security properties including the secrecy of particular values, equiva-
lence between processes and correspondence assertions between modeller-defined
events. ProVerif uses a theorem proving method to establish if these queries hold,
therefore it is able to establish if secrecy properties hold even in the face of an
active attacker, for an unlimited number of protocol runs and arbitrary attacker
behaviour. However, it may not always terminate and it makes the usual Dolev-
Yao assumptions: i.e., the cryptography is unbreakable, the attacker cannot learn
key material by other means than observing communication and interacting with
the protocol participants, etc. The applied pi-calculus’s expressiveness and the
powerful checking methods of ProVerif have led to them being used to analyse
a wide range of security properties for many important systems.2

We model the EuroRadio protocol in the applied pi-calculus, with one process
representing the train side of the communication and another process represent-
ing the Radio Block Controller (RBC) which receives messages from the train.
Our model allows for an arbitrary number of trains and RBCs running at the
same time, and, using standard ProVerif methods, we can check if EuroRadio
keeps its keys secret and successfully authenticates the trains and the RBC.
After the EuroRadio protocol finishes, we model the application level sending
three messages. These application level messages sent over EuroRadio use a
counter-style timestamp to help ensure freshness and stop attacks, where we
introduce new functions to model this. We tag our model with events indicating
each party starting a run of EuroRadio, finishing a run of EuroRadio, sending
messages and receiving messages. We then come up with novel correspondence
assertions between these events which let us check if messages can be deleted,
inserted, reordered or replayed.

Checking our correspondence assertions in ProVerif, we find that the protocol
succeeds in most of its security goals, i.e., an attacker cannot learn the secret keys
in use, or pretend to be a train or a RBC. Furthermore, after successfully com-
pleting a run of the EuroRadio protocol both sides will have securely established
a secret session key. However, we also find that the attacker may delete/jam
messages without this being detected, they can inject emergency stop messages
into a communication between an train and an RBC, and that an attacker may
change the “safety feature” in a communication, possibly downgrading security.
These issues could be looked at as moderately security critical, we do not believe
that they require immediate fixes but that designers and train operators should
be aware of them.

2 A collection of such studies can be found at http://prosecco.gforge.inria.fr/personal/
bblanche/proverif/proverif-users.html.

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/proverif-users.html
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/proverif-users.html

A Formal Security Analysis of ERTMS Train to Trackside Protocols 55

Related Work: Some past work has also looked at the EuroRadio protocol:
Esposito et al. [10] and Franekova et al. [11] use UML, Zhang et al. [18] use the
SPIN model checker and Hongjie et al. in [14] use Petrinets. However, all of these
analyses only look at single runs of the protocol, they do not consider an active
attacker, and they do not try to test the security properties we focus on in this
paper, rather they look at general correctness issues such as deadlock detection.
A generic analysis of ERTMS was performed by Bloomfield et al. [6], however
the paper itself gives a high-level overview of the process involved, and does not
specify exact issues and mitigations. Our methodology in this paper is similar to
our previous work that has included looked at modelling EMV protocols [8] and
e-passports [3] in the applied pi-calculus. Other work looks at complex models of
time in the applied pi-calculus (e.g. [7,15]) - our novel modelling of counter-style
timestamps provides an abstract model of time which is much similar than these,
but still expressive enough to model ERTMS.

The contributions of this paper are:

– Formal analysis of the EuroRadio protocol using the ProVerif tool.
– Introduction of a light-weight notion of counter-style timestamps in ProVerif.
– Showing how it is possible to use ProVerif to check if the attacker can delete,

insert and re-order messages.
– Identification of potential issues in the ERTMS protocols, with appropriate

recommendations.

In Sect. 2, we describe ERTMS and the EuroRadio protocol. We describe our
formal model in Sect. 3 and then analyse this model in Sect. 4. We discuss the
implications of our results in Sect. 5, and then we conclude in Sect. 6.

2 ERTMS Communication

In this section, we present a high-level overview of the components within ERTMS
that are used for communication between the train and trackside equipment.

During its journey, a train communicates with a Radio Block Centre (RBC),
which provides commands to the train. RBCs are responsible for a specific geo-
graphical area of approximately 70 kilometres [2]. They authorise trains to drive
on particular parts of the track using Movement Authorities, which also include
maximum speeds. Every RBC is connected to a fixed network in order to hand
over trains to the next RBC when a train leaves its area of responsibility.

Within ERTMS, several layers are used for communications between the train
and trackside (see Fig. 1), where each layer provides some services and security
features to upper layers.

GSM-R is the lowest layer for the communication between trains and the
back-end specified in ERTMS [12,13]. It is based on the original GSM specifica-
tion, but provides additional rail-specific functionality and makes use of different

56 J. de Ruiter et al.

Application layer Type Length Time-stamp [data] Padding

EuroRadio Type Direction MAC

GSM-R GSM-R header GSM-R footer

Fig. 1. Overview of the different communication layers in ERTMS.

frequencies. The additional functionality includes emergency calls and communi-
cations involving multiple drivers. Also, pre-defined short messages are included
in the specification, which may be sent by driver and signaller, for example,
‘standing at signal’ [16], where the signaller may also send a message to the
train at any time informing the driver that they must contact the signaller.

The EuroRadio Protocol is used on top of GSM-R and added to provide
additional authentication and integrity protection to the communication [17].
EuroRadio uses the GSM-R communication layer to send messages between the
base station and the train. When a connection is set up, an authentication pro-
tocol is used to provide mutual authentication for the train and back-end (see
Fig. 2). The two parties exchange nonces and compute a shared symmetric ses-
sion key based on this and a unique train key. This session key is then used to
compute a MAC to prove knowledge of the session key to the other party. Once
the authentication protocol has completed successfully, the application layer can
use the communication channel and the EuroRadio layer will add a MAC to all
messages that have a normal priority. Exactly which MAC algorithm is used is
indicated in a data field called the Safety Feature.

The Application Layer builds on top of the EuroRadio layer and is described
in [9]. As not all threats are taken care of by the lower layers, the application
layer has to provide protection against replay and deletion attacks. A 32 bit
timestamp is added to the messages. Every received message needs to contain
a timestamp that is greater than that of the previous message, the exact value
of the time stamp is not important, therefore it acts partly as a counter. If the
timestamp is not greater than the last message received, the new message will
be discarded. In order to synchronise the time between the train and the RBC,
the RBC will maintain multiple clocks and sets them based on the time from
the train.

3 Formal Modelling in ProVerif

We performed our formal analysis of the EuroRadio key establishment protocol
and part of the application level protocol using the applied pi-calculus [1] and

A Formal Security Analysis of ERTMS Train to Trackside Protocols 57

A B

RB ∈R {0, 1}64

TypeB | AU1 | to responder | IDB | SaF | RB

RA ∈R {0, 1}64

KS,1 = 3DES((K1, K2, K3), R
L
A|RL

B)
KS,2 = 3DES((K1, K2, K3), R

R
A|RR

B)
KS,1 = 3DES((K3, K2, K1), R

L
A|RL

B)

TypeA | AU2 | to initiator | IDA | SaF | RA | MAC(KS ,
length | IDB | TypeA | AU2 | to initiator | IDA | SaF |
RA | RB | IDB | padding)

KS,1 = 3DES((K1, K2, K3), R
L
A|RL

B)
KS,2 = 3DES((K1, K2, K3), R

R
A|RR

B)
KS,1 = 3DES((K3, K2, K1), R

L
A|RL

B)

000 | AU3 | to responder | MAC(KS , length | IDA | 000
| AU3 | to responder | RB | RA | padding)

Key Description

AUx Authentication Message x

IDx ETCS Entity ID of party x

Rx Nonce generated by party x

SaF Safety Feature selected

To Initiator/Responder Flag to indicate in which direction the message is being sent

Typex ETCS Entity ID type (e.g. RBC or train)

Fig. 2. Authentication protocol used by EuroRadio. A and B share a symmetric key
K. RL and RR are used to indicate the leftmost and rightmost 32 bits respectively. A
3DES key K consists of three single DES keys: K = (K1,K2,K3).

the ProVerif automated verifier [4]. This protocol analysis framework can be
used to identify potential leakage of information or other flaws in the protocols.
The ProVerif syntax for the applied pi-calculus is given in Fig. 3.

This language allows us to specify processes that perform inputs and out-
puts, run in parallel and replicate. The calculus also allows processes to declare
new, private names which can be used as private channels or nonces [5]. Func-
tions in the applied pi-calculus can be used to model a range of cryptographic
primitives, e.g. MACs, signing and key generation. These functions abstract any
implementations, which are therefore considered to be cryptographically perfect.
In our analysis, we focus only on the protocol, rather than any weaknesses and
exposure as the result of cryptographic schemes used. The “let” statement can
be used to check that two terms that used these equations are equal and branch
on the result. This can be used to encode “if” statements, and conditional inputs
in (c,=a).P which inputs a value from channel c and proceeds only if the value
received equals a (see e.g. [5]). For the verification, events can be added to a

58 J. de Ruiter et al.

M, N ::= terms
x, y, z variables
a, b, c, k, s names
f(M1, . . . , Mn) constructor application

D ::= g(M1, . . . , Mn) destructor application

P, Q ::= processes
lin0

out (M, N).P output N on channel M
in (M, x).P input x from channel M
P | Q parallel composition
!P replication
ν a.P create new name
let x = D in P else Q term evaluation
event(x) execute event

Fig. 3. Syntax of the applied pi calculus

model. These events can be used to identify critical points of the protocol, and
may be parameterised with variables from the model. Currently, the ProVerif
tool is able to make guarantees for soundness, where if no attack is found, it is
correct, however, it is not complete and might return false attacks [5].

ProVerif supports several types of queries to check security properties of pro-
tocols. The most basic type is to check for secrecy, i.e. whether the attacker
is able to learn specific values. This can be used to verify whether crypto-
graphic keys do not leak in a protocol. Another type of query is correspondence
assertions, which can be used to check that if a particular event is executed,
another event was executed before. Two types of correspondence assertions can
be checked by ProVerif: non-injective and injective. An example of a non-injective
query is ev:event1(vars) ==> ev:event2(vars), which holds if event2 was
executed at some point before event1. For an injective assertion to hold, say
evinj:event1(vars) ==> evinj:event2(vars), for every execution of event1
there must have been a unique execution of event2.

Our Model of EuroRadio. Our models of the two parties in the EuroRadio
protocol are given in Figs. 4 and 5. For the analysis of normal priority messages,
these processes are followed by the ones in Figs. 6 and 7 respectively. In these
last processes three messages are sent and received, where MACs and timestamps
are added and checked. Another model was constructed to check high-priority
messages. This model is almost the same as for the normal priority messages,
except no MACs are added to messages in the application layer and timestamps
are not checked. All models are available online.3

The expressive language of ProVerif allows us to define processes which are
run by the verifier in a number of ways. In our model, we instantiate both

3 http://www.cs.bham.ac.uk/∼rjt195/rssrail2016.

http://www.cs.bham.ac.uk/~rjt195/rssrail2016

A Formal Security Analysis of ERTMS Train to Trackside Protocols 59

l e t Train =
(∗ Set up a new sess ion for the model ∗)
(∗ Create a f re sh sess ion i d e n t i f i e r used to l i n k d i f f e r e n t events

in the model ∗)
new s e s s i o n ;
(∗ Get the i d en t i t y of the RBC the tra in wants to communicate with ∗)
in (id , r b c e t c s i d) ;
(∗ Star t of the ac tua l authent ica t ion protoco l ∗)
(∗ T−CONN. reques t −− Au1 SaPDU ∗)
new trainNonce ;
event t r a i nS t a r t S e s s i o n (r b c e t c s i d , t r a i n e t c s i d , trainNonce , SAF) ;
out (c , (TRAIN ETCS ID TYPE, AU1, DF SEND, t r a i n e t c s i d , SAF,

trainNonce)) ;
(∗ T−CONN. confirmation −− Au2 SaPDU ∗)
in (c , (=RBC ETCS ID TYPE, =AU2, =DF RESP, i n r b c e t c s i d , rbcSaF ,

rbcNonce , inMAC)) ;
(∗ Generate the sess ion key ∗)
l e t trainKS = genSessionKey (trainNonce , rbcNonce , getKey (

i n r b c e t c s i d , t r a i n e t c s i d)) in
(∗ Output encrypted secre t to check secrecy of keys ∗)
out (c , encrypt (SECRET, trainKS)) ;
out (c , encrypt (SECRET, getKey (i n r b c e t c s i d , t r a i n e t c s i d))) ;
(∗ Verify whether the rece ived MAC i s correc t ∗)
i f inMAC = mac(trainKS , ((PAYLOAD LENGTH, t r a i n e t c s i d ,

RBC ETCS ID TYPE, AU2, DF RESP, i n r b c e t c s i d , rbcSaF) , rbcNonce ,
trainNonce , t r a i n e t c s i d)) then

(∗ T−DATA. reques t −− Au3 SaPDU ∗)
event t r a i nF i n i s hS e s s i o n (i n r b c e t c s i d , t r a i n e t c s i d , trainNonce ,

rbcSaF , rbcNonce , trainKS) ;
out (c , (ZEROS, AU3, DF SEND, mac(trainKS , (PAYLOAD LENGTH,

t r a i n e t c s i d , ZEROS, AU3, DF SEND, trainNonce , rbcNonce))))

Fig. 4. The ProVerif model of the calling party in the EuroRadio protocol

models for the RBC and train as replicating processes using the ‘!’ command,
which may be nested, i.e. an arbitrary number of trains and RBCs can be run
in parallel. This allows the verifier to provide a thorough examination of the
protocol, giving the attacker in ProVerif the opportunity to reuse variables it
has previously observed in previous protocol runs. ProVerif is then able to assess
whether the properties defined hold, or it provides a trace if an attack is found.

Next we will discuss the models in Figs. 4 and 5. To represent the EuroRa-
dio protocol, we must first introduce a session value which allows us to perform
additional verification on the protocol for the reordering and replay of messages.
Additionally, during the setup process, the train and RBC are sent the identity
of the RBC. This allows us to assert that the train knows the identity of the
RBC it is connecting to. The session, as specified by the EuroRadio specifications
then starts, where the nonces and identities are exchanged, with the appropriate
derivation of the session key to use. We generate and output some secret value
encrypted with the negotiated session key. The confidentiality of this secret value
is checked to verify that the attacker is not able to establish the session key. At
each stage of messages being received, we verify the MAC prior to proceeding
with protocol execution. This simulates the process that is in use within Euro-
Radio. After this, the EuroRadio link is established. We then are able to use one
of two different variants of the model - for normal or high-priority messages.

Figures 6 and 7 show the application messages sent through EuroRadio,
including the use of timestamps. Once the session is established, we generate

60 J. de Ruiter et al.

l e t RBC =
(∗ Set up a new sess ion for the model ∗)

(∗ Get an RBC id en t i t y ∗)
in (id , r b c e t c s i d) ;
(∗ Star t of the ac tua l authent ica t ion protoco l ∗)
(∗ T−CONN. ind ica t ion −− Au1 SaPDU ∗)
new rbcNonce ;
in (c , (sent ETCS ID TYPE , =AU1, =DF SEND, i n t r a i n e t c s i d , trainSaF ,

trainNonce)) ;
event rb cS ta r tS e s s i on (r b c e t c s i d , i n t r a i n e t c s i d , rbcNonce ,

trainSaF , trainNonce) ;
(∗ Generate the sess ion key ∗)
l e t rbcKS = genSessionKey (trainNonce , rbcNonce , getKey (r b c e t c s i d ,

i n t r a i n e t c s i d)) in
(∗ Output encrypted secre t to check secrecy of keys ∗)
out (c , encrypt (SECRET, rbcKS)) ;
out (c , encrypt (SECRET, getKey (r b c e t c s i d , i n t r a i n e t c s i d))) ;
(∗ T−CONN. response −− Au2 SaPDU ∗)
out (c , (RBC ETCS ID TYPE, AU2, DF RESP, r b c e t c s i d , trainSaF ,

rbcNonce , mac(rbcKS , ((PAYLOAD LENGTH, i n t r a i n e t c s i d ,
RBC ETCS ID TYPE, AU2, DF RESP, r b c e t c s i d , trainSaF) , rbcNonce ,
trainNonce , i n t r a i n e t c s i d)))) ;

(∗ AU3 SaPDU ∗)
in (c ,(=ZEROS, =AU3, =DF SEND, inMAC)) ;
(∗ Verify whether the rece ived MAC i s correc t ∗)
i f inMAC = mac(rbcKS , (PAYLOADLENGTH, i n t r a i n e t c s i d , ZEROS, AU3,

DF SEND , trainNonce , rbcNonce)) then
event rb cF in i shSe s s i on (r b c e t c s i d , i n t r a i n e t c s i d , rbcNonce ,

trainSaF , trainNonce , rbcKS)

Fig. 5. The ProVerif model of the called party in the EuroRadio protocol

(∗ Send three messages from the tra in to the RBC ∗)
new time ;
l e t msg1 = (DT, time , MESSAGE 1) in
event DataSent1 (s e s s i on , msg1) ;
out (c , (msg1 , mac(trainKS , msg1))) ;
l e t msg2 = (DT, inc (time) , MESSAGE 2) in
event DataSent2 (s e s s i on , msg2) ;
out (c , (msg2 , mac(trainKS , msg2))) ;
l e t msg3 = (DT, inc (inc (time)) , MESSAGE 3) in
event DataSent3 (s e s s i on , msg3) ;
out (c , (msg3 , mac(trainKS , msg3)))

Fig. 6. The ProVerif model of the application layer to send messages with normal
priority

some value for a timestamp, and proceed to use it when sending messages. Each
time, we use a light-weight notion of time which we discuss below. The RBC then
verifies the timestamps were greater than that of the previous received message,
and if it is, it will accept the message and execute the appropriate event to indi-
cate that it was received in the context of that session. We include the session
to verify that an attacker cannot combine messages from different sessions.

Modelling Counter-Style Timestamps. To support the checking of
timestamps, we add a minimal notion of time to our model. In the applica-
tion layer, it is checked whether the timestamp on a message is greater than on
the previous message. For the time a counter on the train is used. In our model,
we therefore only modelled relative time: time can increase and we can com-

A Formal Security Analysis of ERTMS Train to Trackside Protocols 61

(∗ Receive messages from the tra in ∗)
in (c , ((=DT, timeA , msgA) , macA)) ;
(∗ Check the MAC of the rece ived message ∗)
i f macA = mac(rbcKS , (DT, timeA , msgA)) then
event DataReceived1 ((DT, timeA , msgA)) ;
in (c , ((=DT, timeB , msgB) , macB)) ;
(∗ Check the MAC and timestamp of the rece ived message ∗)
i f macB = mac(rbcKS , (DT, timeB , msgB)) then
i f g r ea t e r : timeB , timeA then
event DataReceived2 ((DT, timeB , msgB)) ;
event MessagesReceived2 ((DT, timeA , msgA) , (DT, timeB , msgB)) ;
in (c , ((=DT, timeC , msgC) , macC)) ;
(∗ Check the MAC and timestamp of the rece ived message ∗)
i f macC = mac(rbcKS , (DT, timeC , msgC)) then
i f g r ea t e r : timeC , timeB then
event DataReceived3 ((DT, timeC , msgC)) ;
event MessagesReceived3 ((DT, timeA , msgA) , (DT, timeB , msgB) , (DT,

timeC , msgC))

Fig. 7. The ProVerif model of the application layer to receive messages with normal
priority

data i nc /1 .
pred g r ea t e r /2 .
clauses

g r ea t e r : inc (x) , x ;
g r e a t e r : x , y −> g r ea t e r : inc (x) , y .

Fig. 8. The ProVerif model for counter-style timestamps

pare different timestamps that are based on the same initial timestamp. This
mean we have no notion of how much time actions take, but our model proves
to be sufficient for its purpose. In Fig. 8, our model of time can be found. A
timestamp can be increased using inc, and two timestamps can be compared
using the predicate greater.

4 Analysis of ERTMS Protocols

Using ProVerif, we can check that the protocol keeps the keys secret and that
an attacker cannot disrupt the agreement process. These checks are standard
ProVerif queries. Next, we wish to check if an attacker can insert, reorder, replay
or delete messages without being noticed. Our methods of doing this are new,
and a contribution of this paper. We perform these checks by making the train
send three messages to the RBC and tagging each of these with a particular
event. We also use events to tag the three messages send by the train, and their
order, and the three messages received by the RBC and their order. We then
check for insertion, reordering, replay and deletion using queries on these events.

Secrecy of Keys. We check if the EuroRadio protocol keeps the long term
RBC/train key and session key secret from an active attacker. This check is
performed by creating a new private value ‘SECRET’, encrypting this value

62 J. de Ruiter et al.

using these keys and publicly broadcasting the encryption. If the attacker can
then learn the value ‘SECRET’ it means the keys have been learnt. We checked
this using the query attacker:SECRET. This verifies whether the attacker is able
to establish the value ‘SECRET’. Private values are not disclosed to the attacker
and ‘SECRET’ is only output on the public communication encrypted using the
long term and session key. Therefore, if the attacker is able to learn the value
‘SECRET’ this means at least one of the keys was compromised.

Running ProVerif, we find that the attacker cannot learn the value
‘SECRET’, this means that the EuroRadio protocol succeeds in its main goal
of keeping the cryptographic keys secure from an active Delov-Yao attacker.
The theorem proving method of ProVerif, further tells us that this holds for an
unlimited number of runs of the protocol.

Agreement on Shared Session Key. Even if attackers cannot learn the ses-
sion key, they may still be able to interfere with the key establishment process.
To check if any such attacks are possible, we use the injective ProVerif corre-
spondence assertions:

evinj:trainFinishWithKey(ks) ==> evinj:rbcUsing(ks)
evinj:RBCFinishWithKey(ks) ==> evinj:trainUsing(ks)

These queries will only hold if, whenever the train believes it has successfully
completed the EuroRadio protocol having established the key ks, then there is a
single RBC that has also run the protocol and believes the established key is ks,
and vice versa. ProVerif tells us that these queries hold, therefore the EuroRadio
protocol succeeds in its second major goal of security and successfully setting up
a key between a train and a RBC.

Mutual Authentication: Agreement on All Shared Values. To check if
it is possible for an attacker to interfere with any other parts of the protocol we
extend our queries with all the key values used by the train and the RBC, i.e.,
the nonces, the trains and RBC identities and the safety feature (SaF):

evinj:trainFinishSession(rbc_id,train_id,train_nonce,saf,
rbc_nonce,ks) ==>

evinj:rbcStartSession(rbc_id,train_id,rbc_nonce,saf,train_nonce)

evinj:rbcFinishSession(rbc_id,train_id,rbc_nonce,saf,train_nonce,
ks) ==>

evinj:trainStartSession(rbc_id,train_id,train_nonce,saf)

While the first correspondence assertion holds, the second fails. Looking at
the attack trace produced by ProVerif, we see that it is possible for the attacker
to redirect the messages from the train to a second, different RBC as the train
does not verify whether the returned ID is the same as the expected one. While

A Formal Security Analysis of ERTMS Train to Trackside Protocols 63

implemented systems might add a check of the RBC ID, the protocol specifi-
cation does not specify that the train explicitly checks it, or what to do if it is
incorrect. Second, we see that it is possible for an attacker the change the SaF
used in the communication as, again, this is not properly checked. We discuss
the relevance of these findings in the section below.

Ability to Insert Attacker Messages. We use the event DataSent‘i’(m)
to mean that message m was the i-th message sent by the train, and the event
DataSent‘i’(m) to mean that message m was the i-th message received by the
RBC. We can check if an attacker can insert a message into the communication
phase of the protocol by checking that all message m received by the RBC where
send by the train either as its first, second or third message:

ev:DataReceived1(m) ==>
(ev:DataSent1(s2, m) | ev:DataSent2(s2, m) | ev:DataSent3(s2, m))

ev:DataReceived2(m) ==>
(ev:DataSent1(s2, m) | ev:DataSent2(s2, m) | ev:DataSent3(s2, m))

ev:DataReceived3(m) ==>
(ev:DataSent1(s2, m) | ev:DataSent2(s2, m) | ev:DataSent3(s2, m))

This holds, showing that the attacker cannot insert their own messages.

Ability to Replay Messages. The above correspondence assertions show that
an attacker cannot insert their own messages, but they may still be able to replay
an old message, tricking the receiver into thinking it is fresh. We test for replay
attacks with a similar correspondence assertion, but this time we require the
correspondence to be injective, i.e., for each receive event there must exist a
single, unique send event:

evinj:DataReceived1(m) ==>
(evinj:DataSent1(s,m)|evinj:DataSent2(s,m)|evinj:DataSent3(s,m))

evinj:DataReceived2(m) ==>
(evinj:DataSent1(s,m)|evinj:DataSent2(s,m)|evinj:DataSent3(s,m))

evinj:DataReceived3(m) ==>
(evinj:DataSent1(s,m)|evinj:DataSent2(s,m)|evinj:DataSent3(s,m))

These correspondence all hold showing that the attacker cannot replay
messages.

Ability to Reorder Messages. Another way in which an attacker could inter-
fere with the communication would be to reorder the message, for instance caus-
ing disruption by swapping the order of a go and stop message. As this would
not require additional messages, or replaying a message, it would not be detected
by the two correspondence assertions above.

The MessagesReceived3(m1, m2, m3) event indicates that the messages
m1, m2, m3 were received in that order. We check reordering using this event,

64 J. de Ruiter et al.

and an injective correspondence assertion on the order of the three messages
sent by the train:

evinj:MessagesReceived3(m1, m2, m3) ==>

(evinj:DataSent1(s,m1)&evinj:DataSent2(s,m2)&evinj:DataSent3(s,m3))

We find that this correspondence assertion holds. In our model the attacker
may also block messages, therefore even though this correspondence assertion
holds it may still be possible for an attacker to block one message and reorder
the other two (so meaning that the MessagesReceived3(m1, m2, m3) event is
never reached. Therefore, we also check the possible reordering of two messages:

evinj:MessagesReceived2(m1, m2) ==>
((evinj:DataSent1(s, m1) & evinj:DataSent2(s, m2)) |
(evinj:DataSent1(s, m1) & evinj:DataSent3(s, m2)) |
(evinj:DataSent2(s, m1) & evinj:DataSent3(s, m2)))

This correspondence assertion also holds showing that reordering is not
possible.

Ability to Delete Messages Without the Receiver Knowing. While the
attacker can stop any message from being delivered we would like the protocol to
allow this to be detected. For example, the receiver should not accept a message
if the message sent before it did not arrive. We can check this with the following
correspondence assertions:

evinj:DataReceived1(m) ==> evinj:DataSent1(s, m)
evinj:DataReceived2(m) ==> evinj:DataSent2(s, m)
evinj:DataReceived3(m) ==> evinj:DataSent3(s, m)

These correspondence assertions checks to see if deletion or reordering is
possible, but as we have already shown that reordering is not possible this cor-
respondence assertion will only hold if deletion is impossible and only fail if
messages can be deleted.

We find that these correspondence assertions fail to hold, in particular, as
the counter-style timestamp can be any value greater than the previous message.
There is no simple method for the receiver to detect the absence of a message,
however, this can be partly mitigated by acknowledgements messages and time-
outs, as we discuss in the next section.

Analysis of Emergency Messages. As described earlier, the application level
protocol does not use MACs to verify the emergency stop messages. To see what
effect this has, we run each of the test described above on our second model,
which includes the sending of messages with no accompanying MAC. We find
that, as before, the secrecy of keys and authentication and agreement on the key
hold. However, message insertion, deletion, reordering and replay fail to hold.
This means that the attacker still cannot pretend to be a train or a RBC, and

A Formal Security Analysis of ERTMS Train to Trackside Protocols 65

it is still only possible to set up a communication between a genuine train and
RBC. However, once such a session has been set up it is possible for the attacker
to insert a stop message, which will be accepted by the train. We discuss the
relevance of this finding below.

5 Discussion and Recommendations

In this section, we present recommendations regarding the different issues that
were discovered in our analysis.

5.1 Inserting High-Priority Messages

Our analysis showed it is possible to insert messages with high-priority as there is
no protection provided over these messages. Therefore, anyone with access to the
EuroRadio communication layer can insert emergency stop messages and trigger
a train to brake. Though this might not directly lead to incidents with trains
colliding, it can cause serious disruptions, for example, due to displaced crew
and rolling stock. These disruptions can have a higher impact on the network if
the emergency stop is carefully timed. For example, this happens when a train
is in a GSM-R radio hole with no reception. In this case, the RBC will not know
what has happened as it will not be able to communicate with the train and
therefore will not be able to cancel the emergency stop. The driver of the train
will need to follow special procedures until GSM-R coverage is available again.
It would then take even longer than usual to recover from the emergency stop,
which could seriously affect other traffic in the system as well.

To prevent unauthorised emergency stop messages from taking effect, high-
priority messages should be authenticated using MACs as is the case with regular
priority messages. They can still be given priority over the other messages when
checking the MAC. A concern might be that keys could become corrupted, in
which case it should still be possible to fall back to voice communication (as is
used in most current systems). The application of a MAC to the high-priority
message would prevent misuse by an external actor by stopping them from being
able to successfully inject messages in the communication between a train and
RBC. Although, of course, an attacker could still cause disruption by other
means, such as jamming signals.

5.2 Deletion of Messages

The EuroRadio protocol does not protect against deletion of messages. This
needs to be taken care of by the application layer. The timestamps that are added
by the application layer do not protect against this. The sender of a message
can request an acknowledgement for the message from the recipient. This is not
the default though and needs to be done explicitly. Moreover, recipients have no
way to determine whether it had not successfully received messages. In the worst
case, an attacker could prevent reception (i.e. delete) emergency stop messages,

66 J. de Ruiter et al.

after which a train might enter a danger point, a stretch of track, where the
safety of the train may be compromised.

Though it is hard to prevent deletion of messages as an attacker could jam
all communication between two parties, it is possible to detect the deletion of
single messages. A simple way to do this is by adding a counter to all messages. If
this counter skips between two messages, you know a message was missed. This
would require changes to the current specifications to change both the message
format and add procedures what to do in case a missed message is detected.

The specification already has a measure that can help in the case of a jamming
attack. It is possible to let a train make an emergency stop if no messages are
received within a specific timeout period. This timeout and the action to be taken
if it expires are set using nationally set parameters, respectively T NVCONTACT
and M NVCONTACT. The possible actions to take are to trigger the normal brakes,
trip the onboard systems, including an immediate application of the emergency
brakes or perform no action. The default value, as set out in SUBSET-026 of the
ERTMS specifications are set to ‘no reaction’ with an infinite amount of time
specified, i.e. there is no timeout, for safe messages to be received. Using this
measure might result in problems with GSM-R black spots, i.e. if a train spends
too much time within a black spot the brakes would be automatically triggered.
However, the standard provides ways to inform the train of GSM-R black spots
and therefore this should not be a problem.

5.3 Disagreement over RBC Identity and Safety Feature

One issue identified that is not specifically covered in the EuroRadio specifica-
tions is that of ensuring that when a train commences a EuroRadio session, the
RBC that it establishes the session with is not only genuine, but also the correct
one to handle the train. When a train tries to set up a session it doesn’t always
know the identity of the RBC it will be talking to. In this case the traffic could
be redirected to another RBC. At the ‘start of mission’, the train may invalidate
the RBC ID and phone number, for example, if it is recovered, in the case of the
train breaking down, or it loses state following a system reboot. The specifica-
tions [9] allow the last RBC ID and number to be reused, however they allow
the use of the EIRENE shortcode to use location-based addressing to contact
the most appropriate RBC for the area the train is connected to via GSM-R.
Finally, the driver may alternatively enter the number manually. The latter two
options allow the connection to an RBC which is not directly in the area that
the train should connect to.

When the train does know the identity of the RBC it wants to communicate
with, the standard does not specify what needs to be done if the expected identity
is different than the one received during the authentication protocol. It is not
even specified whether this should be checked. To make things less ambiguous,
we recommend to explicitly include in the protocol description that the RBC
identity needs to be checked, if known, and the connection should be aborted if
this check fails.

A Formal Security Analysis of ERTMS Train to Trackside Protocols 67

A similar issue involves the safety feature that is used to indicate which
MAC algorithm is to be used. The initiator of the protocol chooses a safety
feature and sends it to the recipient in the first message, after which the recipient
returns it in the second message. The standard does not specify what to do if the
safety features do not match. In the official specification, only one safety feature
is currently supported, but for future versions, where different safety features
might be supported, it is crucial to add this. It should be enforced that the
selected safety feature is either equal to or more secure than what was sent by
the initiator.

6 Conclusions

We have presented a security analysis of ERTMS’s EuroRadio protocol and parts
of the application layer protocol. To do this, we developed a novel representation
of counter-style timestamps, and new correspondence assertions to test for mes-
sage insertion, deletion, reordering and replay. We found that EuroRadio defends
the security of its key and authenticates the parties involved against an active
Dolev-Yao attacker. However, it failed in some of the additional properties we
would liked to have seen, such as message deletion and insertion of emergency
messages. We discussed the relevance of these findings in the previous section.
Our results on messages are tested for the train sending three messages to the
RBC, as future work we would like to find a way of testing these results for
an arbitrary number of messages sent in either direction, and any interleaving
of normal and high-priority messages. While our analyses finds that the pro-
tocols do not protect from the insertion of high-priority emergency messages,
inserting packets into a GSM-R data stream may be difficult and merits further
investigation. Our analysis also makes the assumption that the cryptographic
primitives used in ERTMS are secure, as future work we would like to examine
these primitives and test this belief.

Acknowledgements. We would like to thank Maria Vigliotti and Florent Pepin from
the UK’s Rail Safety and Standards Board (RSSB) for helpful discussion regarding the
security of ERTMS. Funding for this paper was provided by the UK’s Centre for the
Protection of National Infrastructure (CPNI) and Engineering and Physical Sciences
Research Council (EPSRC) via the SCEPTICS: A SystematiC Evaluation Process for
Threats to Industrial Control Systems project.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Symposium on Principles of Programming Languages (POPL) (2001)

2. Ansaldo STS Group. Product portfolio and ERTMS/RTCS projects of Ansaldo
Segnalamento Ferroviario (2008). http://old.fel.zcu.cz/Data/documents/sem de
2008/AnsaldoSTS 08.pdf

http://old.fel.zcu.cz/Data/documents/sem_de_2008/AnsaldoSTS_08.pdf
http://old.fel.zcu.cz/Data/documents/sem_de_2008/AnsaldoSTS_08.pdf

68 J. de Ruiter et al.

3. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proceedings of the 23rd IEEE Com-
puter Security Foundations Symposium, CSF 2010, pp. 107–121 (2010)

4. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Computer Security Foundations Workshop (CSFW), pp. 82–96. IEEE (2001)

5. Blanchet, B., Smyth, B., Cheval, V.: ProVerif 1.88: Automatic cryptographic pro-
tocol verifier, user manual and tutorial (2013)

6. Bloomfield, R., Bloomfield, R., Gashi, I., Stroud, R.: How secure Is ERTMS? In:
Ortmeier, F., Daniel, P. (eds.) SAFECOMP Workshops 2012. LNCS, vol. 7613,
pp. 247–258. Springer, Heidelberg (2012)

7. Cheval, V., Cortier, V.: Timing attacks in security protocols: symbolic framework
and proof techniques. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol.
9036, pp. 280–299. Springer, Heidelberg (2015)

8. Chothia, T., Garcia, F.D., de Ruiter, J., van den Breekel, J., Thompson, M.: Relay
cost bounding for contactless EMV payments. In: Böhme, R., Okamoto, T. (eds.)
FC 2015. LNCS, vol. 8975, pp. 189–206. Springer, Heidelberg (2015)

9. ERA: SUBSET-026: System requirements specification, version 3.5.0. Technical
report (2015)

10. Esposito, R., Lazzaro, A., Marmo, P., Sanseviero, A.: Formal verification of ERTMS
EuroRadio safety critical protocol. In: Proceedings 4th Symposium on Formal
Methods for Railway Operation and Control Systems (FORMS 2003) (2003)

11. Franekova, M., Rastocny, K., Janota, A., Chrtiansky, P.: Safety analysis of cryp-
tography mechanisms used in GSM for railway. Int. J. Eng. 11(1), 207–212 (2011).
http://annals.fih.upt.ro/pdf-full/2011/ANNALS-2011-1-34.pdf

12. GSM-R Functional Group: EIRENE Functional Requirements Specification, ver-
sion 7.4.0. Technical report (2014)

13. GSM-R Functional Group: EIRENE System Requirements Specification, version
15.4.0. Technical report (2014)

14. Hongjie, L., Lijie, C., Bin, N.: Petrinet based analysis of the safety communication
protocol. TELKOMNIKA Indonesian J. Electr. Eng. 11(10), 6034–6041 (2013)

15. Li, L., Sun, J., Liu, Y., Sun, M., Dong, J.S.: A formal specification and verification
framework for timed security protocols. TSE (2015, in submission)

16. RSSB: GSM-R User Procedures, issue 7.1. Technical report (2015)
17. UNISIG: SUBSET-037 - EuroRadio FIS, version 3.2.0. Technical report (2015)
18. Zhang, Y., Tang, T., Li, K., Mera, J.M., Zhu, L., Zhao, L., Xu, T.: Formal verifi-

cation of safety protocol in train control system. Sci. China Technol. Sci. 54(11),
3078–3090 (2011)

http://annals.fih.upt.ro/pdf-full/2011/ANNALS-2011-1-34.pdf

Operational Security – A Coming Evolution of Railway
Operational Procedures Under the IT Security Threat

Po-Chi Huang(✉) and Birgit Milius

Institute of Railway Systems Engineering and Traffic Safety (IfEV),
Technische Universität Braunschweig, Braunschweig, Germany
{po-chi.huang,b.milius}@tu-braunschweig.de

Abstract. The railway system has benefited from the rapid technology revolu‐
tion since the 1990s. The mechanical and manpower intensive railway system has
gradually evolved into a centralize- and digital-controlled, information- and
communication-based system. IT security was not considered during the system
(re)design. This paper begins with discussing the need and absence of procedures
to sustain operations when an IT security breach has occurred or is suspected.

Then operational security is introduced. It is a new research field which
focuses on operational procedures taking into account the effects of safety as well
as security-related changes in the system e.g. due to failures or threats. The scope
of operational security and general requirements on operational procedures will
then be discussed. Lastly, we give an outline of a proposed project with its planned
work packages.

Keywords: Operational security · Functional safety · IT security · Railway
operation · Degraded operation · Operational procedures · Railway safety

1 IT Security – Evolutional Challenge to Railway Operation

The railway system has hugely benefited from the rapid development of Information
and Communication Technology (ICT or commonly IT) since the 1990s and begins its
own journey of evolution. The old-fashioned mechanical and manpower intensive
railway system has gradually evolved into a centrally and digitally controlled, informa‐
tion- and communication-based system. Today, IT is widely used in railways. The
achievements of technical systems and operation modes like European Train Control
System (ETCS), Automatic Train Operation (ATO) and Operation Control Center
(OCC) all took place with benefits of the IT development.

The issue of IT security is not a new topic in IT industry, it accompanies the devel‐
opment of IT since the beginning. But for the railway sector, IT security was not consid‐
ered as a serious issue in the past as the railway system conventionally used proprietary,
that are hard to hack, systems. The situation changed when the economic efficiency,
privatization, modernization and the liberalization of railway systems became a require‐
ment for the railway sector. The increasing use of commercial off-the-shelf (COTS)
products makes the modern railway system affordable and flexible, but also more
vulnerable.

© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 69–78, 2016.
DOI: 10.1007/978-3-319-33951-1_5

Considering the potential vulnerabilities and threats which come with using COTS
products, the issue of IT security has received further attentions in the railway sector,
especially for safety related technical systems. Railways is considered as a critical infra‐
structure, which means that it needs to retain its operation even in abnormal situations
[1]. Safety is the core value of the railway system. However, shutting the railway system
down when an IT security breech is suspected might be the safe option, but is not feasible
and not acceptable. To fulfill the requirement of continued safe operations when facing
IT security threats, a holistic view of the operational procedures taking into account
safety- and security issues is necessary.

2 Operational Continuity – A Deficiency in Work of IT Security

As mentioned previously, the issue of IT security has received some attention in the
railway sector during the last few years. Not only researchers, but also public authorities
and standard committees have realized the possible severity of IT security threats on the
railway system and the urgent need of countermeasures. For example, with the funding
of European Union (EU) projects with international cooperation like SECRET1, which
focuses on the security of railways against electromagnetic attacks; SECUR-ED2, a
project to enhance the security of urban public transportation with work packages
focused on IT security, have been carried out. Also the European Union Agency for
Network and Information Security (ENISA) concentrates on developing IT security
measures for the railway sector [2]. The International Union of Railways (UIC) has also
started a project ARGUS with international cooperation on designing a security analysis
approach for railway signaling system [3].

In Germany, the Law of IT Security3 has come into effect in July 2015, which forces
critical infrastructures like the railway system, whose unavailability or failure of the
system could cause significant impact on the safety and living of the society, to imple‐
ment adequate organizational and technical measures to avoid the complete failure or
breakdown of the system. The law requires the critical infrastructure to use state of the
art methods to protect the availability, integrity, authenticity and confidentiality of its
IT systems [1]. Besides, in the German Commission for Electrical, Electronic & Infor‐
mation Technologies of DIN and VDE (DKE) two pre-standards were set up for consid‐
ering the IT security threats in railway signaling: VDE V 0831-102 focuses on defining
the protection profile for technical functions and VDE V 0831-104 offers an IT security
guideline based on IEC 62443 for electric signaling systems in railway [4, 5].

However, all the current work in IT security, from researchers, railway undertakings,
infrastructure managers to the public authorities and standard committees focusses
mainly on the technical side of the railway system. The purpose of those current works
is to find the vulnerabilities of today’s technical system; to set up standards for technical
system design; to integrate IT security management systems with the safety related

1
Security of Railways against Electromagnetic Attacks, http://www.secret-project.eu.

2
Secured Urban Transportation – European Demonstration, http://www.secur-ed.eu.

3
Original in German: IT-Sicherheitsgesetz.

70 P.-C. Huang and B. Milius

http://www.secret-project.eu
http://www.secur-ed.eu

electronic systems, etc. However, even with all those technical measures in place, rail‐
ways cannot be completely secure indefinitely. Therefore, concerns from the operational
side should be considered when discussing how to deal with IT security threats, e.g.:

• What happens if the technical system fails to identify an attack?
• What happens if the technical system fails to defend against an attack?
• When and how should the operational personnel be informed about attacks?
• How can the operation be kept running safely and efficiently when the system state

after a potential attack is not clear?
• How and when can operations go back to normal state, if the reasons and consequence

of the attack are not completely understood?

Those questions can be summarized as: What happens when the technical measures
against IT security breaches fail? Today’s railway system has already shown that even
technical systems with a high reliability do fail. Degraded operations are still part of
operations in the daily praxis. Hence, those questions from the operational side are
rational and should be seriously considered.

Network Rail has described in their IT security strategy: “We will operate in an
assumed state of compromise, that is there will not be a presumption that our network
boundaries, internal and external, are invulnerable” [6]. The French Network and infor‐
mation Security Agency (ANSSI) has considered the lack of Business Continuity Plan
as a vulnerability of the industrial control system in IT security, and points out that the
operation teams rarely know how to act in such IT security event [7]. In the urban
transportation sector, the American Public Transportation Association (APTA) has also
noticed this issue and introduces five kinds of plans that are needed for continuation of
operation under the IT security threat. These plans are Incident Response Plan, Business
Continuity Plan, Continuity of Operations Plan, Crisis Communications Plan and
Disaster Recovery Plan [8].

3 Process of Operational Continuity

3.1 A Generic Bow-Tie Model of Operational Continuity

In Europe, the railway system has been recognized as the safest transportation mode in
surface transport [9]. This achievement is built mainly on the high reliability of the
system. This high reliability could not be reached without adequate operational proce‐
dures and qualified and reliable personnel. However, a system with very high reliability
does not mean that no faults and no errors would occur during the system operation. As
a critical infrastructure, measures and rules, both from technical and operational side,
have been established in the past to achieve its high availability. Depending on the
situations, measures and rules would be combined to set up procedure for the system to
enable the continuation of operation.

As shown in Fig. 1, the procedures to continue railway operations can be displayed
as a generic bow-tie process [10]. The process has been divided into technical and
operational side, with technical on the upper side and operational on the lower side. The
process begins in normal operation. With the monitoring program from one or both sides,

Operational Security – A Coming Evolution 71

it leads the system from normal into degraded operation. During the degraded operation,
the operational side focuses on the degraded mode management to keep the operation
running; the technical side supports the operational side with the failure mode manage‐
ment to identify and rectify the abnormal situation. After the abnormal situation has be
rectified and controlled, the transition from degraded to normal operation begins within
the restoration program.

Degraded Mode Management
Normal

Operation Normal
Degraded Operation Degraded Operation

Degraded
Normal Operation

Determining Conduting

Coordinating

Normal
Operation

TECHNICAL

OPERATIONAL

Controlling

Identifying

Rectifying

Failure Mode Management

Fig. 1. General system procedure to continuation of operation in railway operation [10]

This generic bow-tie process was derived from the conventional railway procedures.
The framework was set up before the issue of IT security had been considered. The
question is therefore: Could this process be used when IT security has to be considered?

3.2 A Short Comparison of Safety Hazards and IT Security Threats

To decide if the model for safety can be used for IT security, a detailed analysis of the
processes, relationships and dependabilities for both aspects needs to be done. As we
will focus on operations, the criteria of comparison will be taken from the effects that
hazards and threats might have on railway operations. The short comparison is done in
Table 1. Due to page restrictions, only some chosen criteria are shown.

The comparison clearly shows that regarding its effect on operations, major differ‐
ences between safety hazards and IT security threats exist. The characteristics and
consequences of IT security threats are in general less well known. This means that
procedures for operations in degraded mode after IT security attacks have to cover a
wider set of scenarios. Therefore, we have to conclude that the procedures from today’s
operational rulebooks cannot be used directly to sustain operational continuity after
security attack. However, we can still use them as a starting point for further research,
aiming at adapting and further developing existing procedures. Based on the results
shown in Table 1, we assume that today’s procedures for degraded operation are a subset
of the needed procedures for degraded operation in the future. Thus, the bow-tie process

72 P.-C. Huang and B. Milius

today will still be the core framework of future degraded operation and can be adapted
and developed further when IT security has to be considered (Fig. 2).

IT system

Technical system

Total railway system

Enviroment

Software fault | error | failure

fault | error | failure

fault | error | failure | hazard

fault | error | failure | hazard | mishap |
misuse | threat

fault | error | failure | hazard | mishap |
misuse | threat

Security scenarios for safety

Safety scenarios for safety

Fig. 2. Wider scenario considerations of security, adapted [11]

Table 1. Comparison of safety hazard and IT security threats in railway operation

↱ Safety hazards IT security threats
1. Frequency • Controllable

 – System reliability
 – Preventive maintenance

• Might NOT be controllable
 – Willingness of attacker
 – Purpose of attacker

2. Cause • Foreseeable
 – Operation conditions
 – Product lifespan

• Might NOT be foreseeable
 – System status
 – Capability of attacker

3. Effect • Predictable
 – System failure behavior

• Might NOT be predictable
 – Unexpected behavior

4. Extent of effect • Calculable
 – Controlled multiple-faults
 – Reliable system

• Might NOT be calculable
 – Network-wide attack

5. Duration of effect • Could be estimated
 – Failure cause foreseeable
 – Long-time experience

• Might NOT be estimated
 – System behavior unknown
 – Merely no experience

6. Involved persons • Could be estimated • Might NOT be estimated
 – Extent, consequence and duration

unknown
7. Detection measures • Well developed and integrated

 – Reliable system monitoring
 – Operational procedures

• Less known
 – Huge technical deficiency
 – No operational procedures

8. Time to detection • Foreseeable
 – Reliable system reactions
 – Routine maintenance

• Might NOT be foreseeable
 – Unknown system behavior
 – Manipulation

Operational Security – A Coming Evolution 73

4 Introducing Operational Security

4.1 Scope

As previously mentioned, a modern railway system needs IT security to ensure its func‐
tional safety. This statement is correct indeed, but all the current work is only concen‐
trated on the technical side in the railway sector. However, even though railway auto‐
mation has been in process for several decades, the role of human stays indispensable
in the railway operation. Therefore, a holistic view of railway operations needs to take
the human into account and the effects of safety and security issues on them need to be
addressed. For example, the operational personnel needs to know:

• how to identify and get aware of an attack, which was not detected with the technical
measures,

• how to act during or after a successful attack,
• how the communication between operational personnel will work, e.g. regarding

priorities and responsibilities and
• how to keep the operation running safely and efficiently when the status of the system

is not clear.

Those requirements above are merely part of the complex set of requirements to be
applied to the future railway operational procedures. Owing to the complexity and
diversity of the railway operation, new approaches need to be developed to enable a
systematic process to solve the problems. A new research field, which will be known as
Operational Security [12], is now researching this topic intensively.

As discussed before, we assume that safety issues can be dealt with more easily
because of a limited set of expected scenarios. We will include the assessment of today’s
rules for degraded mode in our research. Our aim is to develop a complete set of proce‐
dures to deal with safety and IT security issues. This is also necessary as we have to
assume that often when an operational problem arises it cannot be decided quickly and
surely if the reason for it lies in safety or security.

4.2 Essential Requirements

Before developing or adapting operational procedures, strict requirements need to be
set against which the new procedures have to be proven. Identifying all requirements is
still part of research, but four essential ones can already be presented as examples:

• Operational procedures need to be safe
As safety is the core value of the railway system, all operational procedures need to
be safe. Showing how safe is safe enough is a difficult topic.

• Operational procedures need to be efficient
The operational procedures today were developed for a system with superior relia‐
bility and availability. The frequency and the duration of failures and therefore the
necessity of operating in degraded mode was on a low and acceptable level. Thus,
the efficiency of the procedures and the service level of the system in degraded oper‐
ation was adequate to the status quo. However, the situation is changing as the

74 P.-C. Huang and B. Milius

frequency, duration and also the consequences of attacks on IT can hardly be fore‐
seen. Efficiency becomes a primary requirements for the degraded operation to keep
the service level of the system acceptable as it is expected that e.g. degraded operation
due to security breaches is longer in place than after typical technical failures.

• Operational procedures need to be secure
The operational procedures should be secured against IT attacks. Operational proce‐
dures must not become vulnerabilities in the system. Otherwise, the attacker could
force the technical system into failure mode. Since the operational side needs to take
over, less secure operational procedures in the degraded operation could be exploited
by the attacker. Today’s operational procedures (for degraded operation) are safe but
not necessarily secure, since its framework and core concept were developed in a
time without the issue IT security.

• Operational procedures need to be modular
Since efficiency is an essential requirement for the procedures, a modularity of
procedures could be the essential point to achieve it. The operational procedures
should be divided into secure procedure modules with more flexibility for interchange
so that depending on the system state the modules can be chosen so that always the
highest level of efficiency is possible.

4.3 Work Packages

The work of operational security can be divided into four main work packages according
to the process shown in Fig. 3: Monitoring Program (WP-1), Degraded Mode Manage‐
ment (WP-2), Restoration Program (WP-3) and Interface Management (WP-4). Addi‐
tionally, two further work packages are need. One will look at the state of the art in
degraded operation and will derive a full set of requirements (WP-5). Another one will
deal with the basic ontology to represent the intended meaning and relations of terms
which to be used in operational security. (WP-6). The work packages are described
below to give a first overview about the expected research efforts.

• WP-1: Monitoring Program
The operational monitoring program begins with defining specific events which the
operational personnel should be aware of in the running operation. Measures of how
to detect and reveal those events will be integrated into procedures of normal oper‐
ation. Criteria to evaluate the threat level of the detected events will then be set up
to help the operational personnel to make decisions and to assess the potential conse‐
quences swiftly in the running operation. Regardless of whether the detected events
could be instantly classified as threat or not, the events should be reported to the
responsible person or unit in a defined process for further assessment. It will be
defined which information of the given operational situation will be used as bench‐
marks for choosing the appropriate degraded mode operation and where to get those
information from.

• WP-2: Degraded Mode Management
The degraded mode management can be considered as a set of systematically defined
procedures, which should be put into action immediately to ensure the operational

Operational Security – A Coming Evolution 75

continuity after the detected event has been reported. Responsible persons for coor‐
dinating, determining and conducting the degraded mode operations will be defined.
The communication process between operational personnel, criteria for determining
proper countermeasures and priority of procedures will be established.

• WP-3: Restoration Program
The restoration program focuses on procedures to bring the system from degraded
operation back to the normal operation. After the detected event has been rectified
and controlled from the technical side, the system status need to be concurred between
technical and operational personnel before return to the normal operational proce‐
dures. Detailed processes and responsibilities are needed.

• WP-4: Interface Management
There are interfaces between the phases of operations as well as between operational
personnel and technical management. These interfaces will be clearly defined and
the necessary information at interfaces are identified. It will furthermore be discussed
how inaccuracies or missing information will invalidate the processes. It must be the
aim of the whole setup to be stable and not lead to wrong conclusions when minor
inaccuracies exist.

• WP-5: Requirements
New operational rules have to take into account the requirements put on them by
legal documents. Further requirements come from operations itself. Additionally, as

[WP 1]

[WP 5] Requirements

[WP 6] Onthology

[WP 3]

[WP 2] [WP 4]

Monitoring
Programm

Restoration
Programm

Degraded
Mode

Management

Interface
Management

Fig. 3. Work package set-up

76 P.-C. Huang and B. Milius

railways are very complex and difficult to change, they should be based on today’s
rules as these are known and accepted. The aim of this work package is to derive a
complete set of requirements which the new rules have to adhere to. This will allow
to check if and which existing rules will still work, but it can also be used as a
benchmark to check if a new set of rules is feasible.

• WP-6: Definitions
As security is a rather new topic, today’s definitions are not completely usable in the
context of operational security. An ontology is needed to merge, define and connect
definitions and relationships which were established for safety with the ones used for
security.

5 Conclusions and Further Works

This paper has shown the importance of operational continuity in railway operations
under IT security threats. It was revealed that in the current work regarding IT security
in the railway sector this aspect is not taken care of. A new research field named Opera‐
tional Security has been introduced. Operational security aims at systematically devel‐
oping a closed set of operational rules for dealing with suspected or actual IT security
breaches. It was argued using some examples that today’s rules for operations in
degraded operation are not completely suitable as they were developed mainly for safety
issues. On the other hand, we have to take into account that distinguishing between safety
and security irregularities will not always be possible. It is an aim for operational security
that the developed rules are applicable to safety as well as security issues. In the paper,
we suggest a plan for researching operational security and discuss the main work pack‐
ages and give an overview of what to focus on in each.

References

1. Gesetz zur Erhöhung der Sicherheit informationstechnischer Systeme (IT-Sicherheitsgesetz).
Bundesgesetzblatt Jahrgang 2015 Teil I Nr. 31, Bonn (2015)

2. Lèvy, C.-B.: Cyber security for railway signalling (presentation). In: Workshop on “How to
Protect Signalling System Against Cybercrime,” Paris (2015)

3. Antoni, M.: ARGUS – Security & safety analysis for electric and computerized signalling
systems (presentation). In: DKE Meeting 2014, Frankfurt (2014)

4. DIN VDE V 0831-102 Electric signalling systems for railways - part 102: protection profile
for technical functions in railway signalling (2013)

5. DIN VDE V 0831-104 Electric signalling systems for railways - part 104: IT Security
Guideline based on IEC 62443. (2015)

6. Cyber Security Strategy. Network Rail, London (2013)
7. Cybersecurity for Industrial Control Systems – Detailed Measures. The French Network and

Security Agency (ANSSI), Paris (2014)
8. APTA: Cybersecurity Considerations for Public Transit. APTA (American Public

Transportation Association), USA (2014)
9. Railway safety performance in the European Union 2014. European Railway Agency,

Valenciennes (2014)

Operational Security – A Coming Evolution 77

10. Huang, P.-C., Milius, B.: IT-Security für einen sicheren Bahnbetrieb. Deine Bahn. 2/2016,
13–16 (2016)

11. Raspotnig, C., Opdahl, A.: Comparing risk identification techniques for safety and security
requirements. J. Syst. Softw. 86, 1124–1151 (2013)

12. Huang, P.-C., Milius, B.: Why do we need operational security? (presentation). In: 8th
Workshop on “Safety in Transportation,” Braunschweig (2015)

78 P.-C. Huang and B. Milius

Risk Assessment of the 3Des in ERTMS

Florent Pépin and Maria Grazia Vigliotti(B)

RSSB, 1 South Place, London EC2M, UK
{Florent.Pepin,Maria.Vigliotti}@RSSB.CO.UK

http://www.rssb.co.uk

Abstract. The three-key Triple Data Encryption Algorithm (Triple
Data Encryption Algorithm is also known in the literature as Triple-Des,
or Triple DEA or TDEA) (3Des) is a symmetric encryption algorithm
currently used in the European Traffic Management System (ERTMS)
for integrity and authentication purposes. In a recent publication [1],
3Des has been withdrawn in favour of Advanced Encryption Standard
(AES) [2] (The National Institute for Science and Technology (NIST)
standard [1] allows to both algorithms can be used for specific pur-
poses until 2030 with the intention of gradually phasing out 3Des towards
AES). In this paper, we have investigated, from a practical point of
view, known attacks to 3Des and proved that, in order to carry out such
attacks, a disproportionate amount of hardware and money would be
necessary. In practical terms this means that these attacks do not repre-
sent a realistic risk.

In our work we assume that basic security measures have been taken
in the implementation such as: 3Des does not leak any information and
a cryptographically secure random number generator for production of
the keys is used.

Keywords: 3Des · ERTMS · Railway systems · Performance analysis ·
Key management · Key distribution

1 Introduction

European Rail Traffic Management System (ERTMS) is a major industrial
project that aims at improving cross-border interoperability, replacing national
rail infrastructure by a standardised system at European level. ERTMS
comprises of the European Train Control System and GSM-R. The ETCS spec-
ification targets the signalling equipment, which will be replaced through cen-
tralisation of information and data transfer; movement authorities will be auto-
matically transmitted from trackside equipment, Radio Block Centre (RBC) to
the train via radio communication1.

To guarantee the integrity and the authenticity of the data transmitted
between the onboard equipment on the train and the RBC, 3Des encryption
1 Movement authorities are automatically negotiated at ETCS Level 2 and ETCS

Level 3.

c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 79–92, 2016.
DOI: 10.1007/978-3-319-33951-1 6

80 F. Pépin and M.G. Vigliotti

algorithm is used. 3Des is a symmetric-block-cypher encryption algorithm. The
adjective “symmetric” indicates that the same key is used for both encryption
and decryption. 3Des extends by three-folds the key size of the original Data
Encryption Algorithm (Des) [3], which was known to be subject to the brute-
force attack [4]. Des ’ key length is 64-bit long, but eight of these bits are used
to check parity, hence the effective key length is 56 bits. Therefore, 3Des ’ key
length is 192-bit long, and effective length is 168 bits.

3Deswas designed with two main goals:

1. Keep the algorithm compatible with single Des .
2. Increase the key length of the Des to protect against brute force attacks with-

out redesigning a new block cypher.

To encrypt data, 3Des requires three keys, which should ideally be independently
generated. The algorithm will use the three keys to encrypt the data. An attacker
who would want to recover the key to decrypt data, could use a divide and
conquer technique: learn each key individually.

In 1999 the American National Institute for Standards and Technology
(NIST) accepted 3Des as a standard cryptographic algorithm [3]. Since then,
it has been subject to security analysis with the goal of finding flows in the
design that would allow an attacker to recover the secret key(s). In the academic
literature two main key-recovery attacks can be found:

1. The Related-Key Attack [5]. This attack aims at recovering the first key,
followed by a Meet-in-The-Middle attack (MTM) attack against 2Des [6] to
recover the two other keys. For consistency with previous works, this sequence
of attacks will be simply called Related-Key Attack (RKA). We have focussed
our work on this attack.

2. The Meet-in-The-Middle attack (MTM) against 3Des . This attack is unre-
alistic due to the required computational power. Therefore, the rest of this
paper will not cover this type of attack.

The RKA uses a dependency between two keys (introduced during key dis-
tribution or key generation) to make the first of the three Des encryption inde-
pendent from the two other ones. After recovering the first key, an MTM attack
against 2Des follows: the last two encryption functions are treated separately,
and every possible key is tested until the result of the first function is equal to
the result of the inverse of the second function.

To the best of the authors’ knowledge, there has been no attempt to imple-
ment the two attacks described above, and the feasibility of these attacks in
practice remains an open question in both the academic and the railway com-
munity. In 2005, 3Deswas withdrawn from the NIST making the open question
on the feasibility of these attacks in practice even more important given the
current advances in hardware technology.

The work presented in this paper carried out in conjunction with the UK
railway industry addresses the question of the feasibility of the RKA attack.
Our work shows that the RKA remains confined to the theoretical domain, and
at this point in time, it does not represent an imminent risk.

Risk Assessment of the 3Des in ERTMS 81

Pioneering security analysis on ERTMS can be found in [7–9]. These three
pieces of research consider, in a general setting, possible attacks and risks asso-
ciated to the design of the ERTMS. Bloomfield et al. have assessed the safety
and security of ERTMS in [7]. They have emphasised that it would be difficult
for an attacker to cause damage as the general philosophy is to stop the train
if any anomaly is detected. However, they have mentioned that attackers can
cause passengers discomfort or panic by forcing the train to stop in strategic
places (e.g. a tunnel). Baldoni et al. [9] have stated that communication is left
unencrypted and that an attacker could learn sensitive information by doing a
Man-In-The-Middle attack (MITM).

None of them performs an in-depth cryptographic analysis as we do in this
work.

1.1 Research Contributions

The main research question that this paper addresses is: Is there a feasible attack
to the 3Des that would allow an attacker to recover a key? To answer this question
we make the following contributions:

1. We introduce a new theoretical Related-Key Attack against 3Des .
2. We compare the performance of a full attack, that would recover all three

keys, on desktop computers and custom hardware Field-Programmable Gate
Array (FPGAs).

3. We quantify the proposed attack in terms of costs and hardware resources and
we show that the full attacks for the recovery of the three keys is not feasible in
practice as the costs are exceptionally high. The assumption for this scenario
is that basic security measures have been taken such that 3Des does not leak
any information, and a cryptographically secure random number generator
for production of the keys is used, and the keys are independently generated.

4. We quantify the cost of a possible attack in case of the basic measures on
the generation of keys is violated and a dependency between two keys is
introduced.

The rest of the paper is organised as follows: in Sect. 2 ERTMS architecture is
described; Sect. 3 introduces our variation of the RKA; in Sect. 4, possible angle
of attacks against ERTMS are shown; in Sect. 5 a cost analysis of implementing
an attack is provided; and Sect. 6 concludes.

2 ERTMS

ERTMS specification includes the European Train Control System (ETCS),
which incorporates an Automatic Train Protection system, and GSM-R, a radio
system based on GSM using rail specific frequencies and functionality. The ini-
tiative includes four different levels functionality: Level 0, Level 1, Level 2, and
Level 3. The attack presented in this paper could refer to the functionality at
Level 2 or at Level 3.

82 F. Pépin and M.G. Vigliotti

In ERTMS, integrity and authenticity of messages exchanged between
the train and the RBC are ensured with a Message Authentication Code
(MAC). Specifically, the European specification requires a CBC-MACwith a post-
processing phase [10], computed with a 192-bit session key Ks. This session key
is the same for both the RBC and the train, and to compute it, a 3Des key, called
KMAC , had been previously securely distributed to both the train and the RBC.
To ensure the freshness of the session, nonces, in this case two random numbers,
are generated by both the train and the RBC. We use the notation Rtrain and
Rrbc for the two random numbers generated by the train and the RBC, and the
notation RX as a variable to indicate either the nonce generated by the train or
the one generated by the RBC.

To compute the 192-bit session key Ks = (Ks1 | Ks2 | Ks3) 3Des is applied
as described below:

Ks1 = DESK3(DES
−1
K2

(DESK1(R
L
train | RL

rbc)))
Ks2 = DESK3(DES

−1
K2

(DESK1(R
R
train | RR

rbc)))
Ks3 = DESK1(DES−1

K2(DESK3(RL
train | RL

rbc)))
(1)

where RR
X,RL

X are the right-half and the left-half of the random number RX.
KMAC is created by the Key Management Centre, and each country in the EU
is free to implement the Key Management Centre as they see it fit [11]. The Key
Management Centre distributes to all entities (trains and RBCs) the KMAC .
For security reasons the KMAC is encrypted with 3Des algorithm (in ECB mode
[12]) with 192-bit key Ktrans2 . To ensure the authenticity of the key KMAC ,
CBC-MAC is applied using another 192-bit key called Ktrans1 [13]. The same
process is applied for distributing KMAC between two Key Management Centres
though a special key K-KMC is used instead of Ktrans .

The keys Ktrans and K-KMC can be considered master keys. They are distrib-
uted to every entity unencrypted, and off-line with a physical device. Operational
procedures ensures the security of this distribution.

Figure 1 summarises in a graphical way how keys are used and exchanged.

3 Presentation of a New RKA

The RKA first takes advantage of the inverted function used in 3Des , as well
as a dependency between two keys introduced during key distribution or key
generation, to recover one out of the three keys. The problem is then reduced to
2Des , and an MTM attack can be mounted. The two encryption functions are
treated separately, and every possible key is tested until the result of the first
function is equal to the result of the inverse of the second function.

Kelsey et al. [5] describe the first known RKA, where the adversary needs to
know one pair (P,C)k, and to be able to mount a Related-Key Adaptive Chosen
Ciphertext query (RK-ACC) to get another pair (P ′, C)k′ , with k and k′ two
related keys whose relation Δ is known to him.

We consider our variation of this attack, where the adversary needs to know
one pair (P,C)k, and to be able to mount a Related-Key Adaptive Chosen

Risk Assessment of the 3Des in ERTMS 83

KMC1 KMC2

Train RBC

Compute
Ks from
KMAC

1

3Des K−KMC 2(KMAC),
CBC-MACK−KMC 1 CKMAC)

2
3Des Ktrans2 (KMAC),

CBC-MACKtrans1 (CKMAC) 2
3Des Ktrans2 (KMAC),

CBC-MACKtrans1 (CKMAC)

3 3

4

Message,
CBC-MACKs (Message)

Fig. 1. Key distribution steps

Plaintext query (RK-ACP) to get another pair (P,C ′)k′ , with k and k′ two
related keys whose relation Δ is known to him. The relation between the keys is:

k = (k1, k2, k3)
k′ = (k1, k2, k3 ⊕ Δ)

The specific relation allows the adversary to compute:

C ′ = DESk3⊕Δ(DES−1
k2

(DESk1(P)))
= DESk3⊕Δ(DES−1

k2
(DESk1(DES

−1
k1

(DESk2(DES
−1
k3

(C))))))
since P = DES−1

k1
(DESk2(DES

−1
k3

(C)))
= DESk3⊕Δ(DES−1

k3
(C))

Because the adversary knows C ′, C and Δ, this equation allows him/her to
recover k3 by exhaustive search, i.e. trying all 256 possible values. The problem
can therefore be reduced to 2Des , by computing

C ′′ = DES−1
k3

(C)
= DES−1

k3
(DESk3(DES

−1
k2

(DESk1(P))))
= DES−1

k2
(DESk1(P))

Finally, the adversary can recover k1 and k2 by doing a Meet-in-The-Middle
attack on 2DES [6]. Rather than trying all possible keys for both encryptions,
which would result in a time complexity of 2112, the attacker proceeds as follows:

1. Computes the subcipher DESk2(C
′′) under every possible keys k2 (256 possi-

bilities), and stores it in a lookup table.
2. Computes DESk1(P) for every possible k1, until an entry in the table such

that DESk2(C
′′) = DESk1(P) is found. This match implies that k1 and k2 are

candidate keys.
3. The attacker only needs another pair to verify that these are the actual keys [14].

84 F. Pépin and M.G. Vigliotti

The complexity to recover the first part of the key k3 requires 257 sin-
gle Des encryptions, but only 256 on average. A basic MTM attack on double
Des requires 257 encryptions, hence the total time complexity is O(257). The
MTM attack also requires to store 256 pairs of (ciphertext, key), so the memory
complexity is O(256). Finally, the attack requires one known-plaintext pair, and
one related-key adaptive chosen plaintext.

However, this complexity in memory makes this attack very unrealistic.
Therefore, a trade-off emerged in order to decrease memory complexity to the
detriment of computational complexity. The time and memory product is con-
stant though, and stays 2113.

The key difference between these two RKA lies in the adversary’s knowledge.
Instead of being able to mount an RK-ACC, the attacker has to mount an RK-
ACP. The next section shows that the former is not implementable whereas the
latter is.

4 ERTMS Security Analysis

In this section we perform a security analysis of ERTMS infrastructure to identify
how the attacks described earlier can be mounted. We clarify the attacker’s
capabilities that are assumed.

If the goal of an attacker is to interfere with the running of the train, or to
let it go faster to derail it, one way to achieve this would be to impersonate the
Radio Block Centre. The role of the MAC as described in Sect. 2 is to prevent
this from happening by ensuring integrity and authenticity of the communication
between the train and the RBC. However, if the attacker recovers the session
key used to compute the MAC, then it would be possible to impersonate the
RBC. The architecture described in Fig. 1 indicates that KMAC can be attacked
at two points:

Case 1. During the transportation of KMAC to the ETCS entities or between
two KMCs – see points 1, 2 in Fig. 1. However, we show later that this setting
is not vulnerable to Related-Key Attacks.

Case 2. When deriving Ks – see Eq. 1 and point 3 in Fig. 1.

To mount the RKA discussed in Sect. 3 the attacker needs to intercept only
two 192-bit long pairs in both Case 1 and 2.

Case 1: The attacker’s goal is to recover the transport key Ktrans .
As explained in Sect. 3, the attacker has to know two 64-bit pairs of plaintext-
ciphertext encrypted under the same key, in addition to one 64-bit pair under a
related key.

As 3Des is applied in ECB mode to a 192-bit plaintext (KMAC), if the attacker
gets one pair (KMAC ,CKMAC)Ktrans2 (i.e. one authentication key KMAC=
(K1,K2,K3) and its encryption) and possesses three pairs of 64-bit plaintext-
ciphertext. Indeed, if we have Ktrans2 = (Kt21 | Kt22 | Kt23), KMAC = (K1 |
K2 | K3), and its encryption CKMAC = (CK1 | CK2 | CK3), the relation
between these is:

Risk Assessment of the 3Des in ERTMS 85

CK1 = DESKt23(DES
−1
Kt22

(DESKt21(K1)))
CK2 = DESKt23(DES

−1
Kt22

(DESKt21(K2)))
CK3 = DESKt23(DES

−1
Kt22

(DESKt21(K3)))

This clearly gives the attacker three pairs of plaintext-ciphertext encrypted under
the same key. The attacker needs only pairs of plaintext-ciphertext under the
same key, and another pair encrypted under a related key.

Therefore, the attacker’s goal is to obtain two pairs (KMAC ,CKMAC)Ktrans2
to recover Ktrans2 by mounting a RKA.

Case 2: The attacker’s goal of is to recover KMAC . Because of Ks’s deriva-
tion procedure (see Eq. 1), one 192-bit pair of plaintext-ciphertext gives the
attacker two 64-bit pairs under the same key.

KMAC is used twice in the same setting to compute Ks1 and Ks2. Hence,
if the attacker knows the two random numbers Rtrain and Rrbc (the plaintext)
– which can be intercepted – and one session key Ks = (Ks1 | Ks2 | Ks3) (the
ciphertext), the attacker knows two 64-bit pairs of plaintext-ciphertext encrypted
under the same key.

Thus, his goal is to obtain two pairs (Rx,Ks)KMAC to get two 64-bit pairs
encrypted under the same key, in addition to one 64-bit pair under a related key.
Note that it is the same requirement as in Case 1.

4.1 Attacker’s Capabilities and Knowledge

In this section we make different assumptions to allow an attacker to achieve the
requirement described in the previous paragraphs in order to mount a RKA.

One known related-key plaintext (Case 2 dismissed). This assumption
is not reasonable in Case 2, hence the possibility of a RKA in this setting is
dismissed, and we will only cover Case 1 in the rest of the paper.

In order to perform a RKA, the two pairs the attacker needs to obtain should
be related under two related keys whose relation is also known to him/her.
Specifically, if he has a pair (P , C) under ka = (k1 | k2 | k3), he needs another
pair (P,C ′) under kb = (k1 | k2 | k3 ⊕ Δ), or a pair (P ′, C) under kc = (k1 ⊕ Δ |
k2 | k3).

The latter possibility is discarded for both cases. In Case 1, making this
assumption would imply the attacker sees twice the same ciphertext resulting
from the encryption of two different KMACunder two different but related key
Ktrans . The probability of this happening is 1

264 , which is very small. In Case 2,
the same analysis apply. This implies ERTMS is not vulnerable to Kelsey’s RKA.

The former possibility might happen in Case 1, if the plaintext (KMAC) does
not change, but the transportation key does, being related to the previous one.
Another way to have the required relation is if K-KMC is related to Ktrans , and
KMAC is sent encrypted under the former to a KMC, then under the latter to
ETCS entities, the attacker can obtain two different ciphertexts derived from
the same plaintext (KMAC) under two related keys.

86 F. Pépin and M.G. Vigliotti

In Case 2, the attacker would need to send twice the same random number
at communication establishment. Assuming the random number generator is
correct, the probability of this event is 1

232 � 10−10. Even if the attacker manages
to force the train to choose a random number every second, e.g. by aborting the
connection set-up every time a number different from the one sought is generated,
it would still take about 136 years to obtain the same number. This implies that
3Des encryption in Case 2 is not vulnerable to any Related-Key Attack.

Two Known Expired Keys. The attacker is able to obtain two expired keys
that were encrypted under two different but related keys.

In Case 1, knowing two expired authentication keys (KMAC) that were
encrypted under two related K-KMC or Ktrans , the attacker can use the cor-
responding encryption CKMAC , which gives him all the required knowledge to
mount a RKA.

He can obtain these two keys if the KMC, onboard system or RBC archive
old keys in a non-secure manner and he finds a way to break into one of them.
He could also use social engineering; it might be easy to convince a careless
employee to give away a file of expired key, by bribing and arguing it is not
useful any more, or by pretending a security analysis of the system.

It should be noted that with this assumption, every attack requiring more
than two pairs is dismissed, which includes all RKA tradeoffs requiring 232 such
pairs. It seems very unlikely the attacker can gather 232 pairs (about 4 billions).
To give an order of idea, even if KMAC is changed every minute, it would still
take around 8000 years to get this number of pairs.

At Most 250 bytes of memory available. This assumption forces the adver-
sary to use a tradeoff for the MTM attack part of the RKA. Attacks requiring
more than 250 bytes, which represents 1.13 Petabytes, are not considered. To
give an order of idea, according to Facebook engineers, the company has a 300
PB computer system [15], and the Utah Data Centre is believed to have a storage
capacity greater than one Exabyte [16].

4.2 Assumptions on Keys

We assume the keys are strong. However, the key generation is assumed to
introduce a relation between two keys, i.e. the random number generator is weak.

Moreover, the attacker only needs to break one valid Ktrans to corrupt the
system’s integrity. However, it takes much time to perform the attack and if
Ktrans changes, the attacker would need to start over the key search. Hence, the
time allowed to perform the attack is actually bounded by Ktrans ’s validity time.

As written in Offline Key Management FIS [11], specific key management
solutions are left to national implementation. This implies there is no standard
validity time for the authentication key. It will be assumed for the remaining
of this paper that the attacker disposes of 5 years to perform the attack, before
Ktrans is updated, which is the maximum cryptoperiod the NIST recommends in
SP 800-57 [17] for Data Encryption Keys and Symmetric Authentication Keys.

Risk Assessment of the 3Des in ERTMS 87

5 Cost Analysis

In this section, we estimate the cost of implementing the attack described in
the previous section. As explained in Sect. 3, the computational complexity is a
function of the number of Des encryptions to perform. As this complexity is very
high, any small improvement on the time to execute a single Des encryption can
result in a substantial time saving. We are therefore seeking the most efficient
implementation, hence we ran a performance analysis of Des encryptions on cus-
tom hardware as well as desktop computers, and we tried different cryptographic
libraries.

Based on the results, it is possible to provide an estimate of the attack’s cost.
However, it should be noted that we did not implement the attack as it is too
expensive given the hardware we had access to.

There are two ways to perform Des encryptions. The first one is using desktop
computers, which is quite fast to implement, and the second one is using custom
hardware (FPGAs). The latter requires to spend more time on implementation,
but is more efficient when executed.

5.1 Performance Analysis of DesEncryptions on Desktop Computers

Method. The experiments have been driven on an HP elite Desk 800 G1 Tower
running Ubuntu 14.04 with Linux kernel v3.13. The machine contains eight
processors Intel i7-4770 @ 3.40 GHz, each of them possessing four cores. The
computer has 15 GB of RAM, and a 4 GB swap partition.

In order to monitor hardware utilisation, Linux perf software is used, and
allows to retrieve useful information such as the number of CPU cycles required
to finish the program, or the average clock frequency during the program run.

Three different cryptographic libraries of three different programming lan-
guages are compared: javax.crypto (Java), PyCrypto (Python), and OpenSSL (C).
A parallel program with eight threads handling its share of encryptions is written.

The maximum number of encryptions considered is 228. Beyond that point,
the program fills all the available memory, including the swap, resulting in an
intervention from the Linux Out-Of-Memory (OOM) killer, which killed the
process. Nevertheless, it has been verified that the programs continue to run if
there is more RAM available.

Results. The execution of the C program is found to be the fastest, which can
be explained by the fact that C code is directly compiled into machine code.
Moreover, the Java Virtual Machine (JVM) ensures that a Java program can be
run on every architecture, but adds some complexity; this is why it is slower.
Python is even slower due to its interpreted characteristic. Therefore, the cost
analysis will only be based on the results found with the C program.

The average clock frequency found is around 3.74 GHz, whereas the clock
speed in the vendor specification is said to be 3.4 GHz. This is because Intel
processors enter in turbo mode when computations are heavy, which allows them

88 F. Pépin and M.G. Vigliotti

to run slightly faster. In fact, the processor’s specification shows that a maximum
of 3.90 GHz can be achieved.

These results cannot be used to estimate the performance on another proces-
sor model. Even if clock frequency is a good point of comparison, it does not
take into account the memory management or other improvements that ven-
dors made on different versions of processors. However, it is possible to compare
with processors from the same family. An Intel i7-4770 with a maximum speed of
3.90 GHz has been used for this experiment. It can be compared to the i7-4790K,
which is from the family i7-47xx as well. The i7-4790K can run at 4.40 GHz in
turbo mode. With a simple rule of three, the average frequency can be approx-
imated to 4.13 GHz. Moreover, the number of CPU cycles found to encrypt 228

64-bit plaintexts is 6.01 × 1011, and 7.77 CPUs appear to be used. We can now
calculate the encryption rate and find 9.19 × 108 bits/sec.

Distributed Program. In order to parallelise even more the key search, it is
desirable to distribute the programs across multiple computers. Doing this will
inflate the attack’s cost, but also make it more realistic.

5.2 Performance Analysis of DesEncryptions on FPGAs

An FPGA is an integrated circuit to be customised by the user. It consists of
programmable logic cells organised in rows and columns that can be intercon-
nected at will, and perform simple operations such as logic gates (e.g. XOR and
AND gates) or more complex functions.

One way to make the most of the iterative nature of Deswith FPGAs is to
build a pipeline. Several works have implemented this sort of version of Des
[18–20]. Pipelining is a technique that allows one to overlap the processing of
atomic tasks. In the case of Des , as it consists of 16 identical encryption rounds, a
16-stage pipeline is suited for this purpose. Therefore, the 16 blocks can be handled
simultaneously, resulting in a throughput increase.

We further consider that the Des algorithm cannot be processed at a clock fre-
quency greater than 300 MHz because even though pipelining increases through-
put, it also increases the delay.

Therefore, producing one 64-bit encryption per clock cycle at a clock fre-
quency of 300 MHz gives an encryption rate of 1.92 × 1010 bits/sec, which repre-
sents a considerably better efficiency compared to desktop computers.

It is also possible to use several programmable cards in parallel to try more
keys per clock cycles. With this technique, the execution time is divided by the
number of devices.

5.3 Memory Bandwidth Evaluation

As the memory complexity is also very high, it is necessary to explore which
hardware has the greatest transfer rate, i.e. the number of bits that can be read
from or written into memory per second.

Risk Assessment of the 3Des in ERTMS 89

Today, the most efficient bus that connects host bus adapters to mass storage
devices is Serial ATA 3.2 (SATA 3.2), which can achieve a bit rate of 1,969 MB/s,
when used with Solid State Drives.

Nevertheless, when implementing the attack on FPGAs, one should think
about memory management exhaustively. Due to the massive amount of data
being transferred between external drive and programmable card, the attack
could trash the computing units, i.e. overwhelmed them by making them process
more data transfer than actual computations, resulting in a poor computational
efficiency.

5.4 Cost Analysis

The cost is a function of the number of machines n owned by the attacker used
to parallelise the key search. The cost analysis is realised on desktop computers
and FPGAs, having respectively an encryption rate of 9.19 × 108 bits/sec and
1.92×1010 bits/sec according to Sects. 5.2 and 5.1. The amount of time to perform
the attack is assumed to be 2 years. Finally, the cost analysis done for 56-bit keys,
but also 7-bit ASCII keys, in order to appreciate how important it is to generate
random sequences of bits to make the keys rather than choosing it within a given
restricted set.

Based on [21], it can be shown that for an attacker running in 2 years, hav-
ing 250 bytes of memory available and n machines, the probability to recover
3Des keys is the solution of the following optimisation problem, where ER
denotes the encryption rate, ct and cm the time and the memory complexity:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−min
ct,cm

(

− 2×365×24×3600

64× 2ct
n×ER+256× 2cm

1.97×109
×

(
1

1+2−16

))

ct + cm = 113
ct ≥ 57

cm ≥ 0
cm ≤ 46
ct ≤ 113

(2)

Cost Analysis on Desktop Computers. With desktop computers, the
encryption rate is ER = 9.19×108. Figure 2 shows the evolution of the probabil-
ity to recover 3Des keys depending on the value of n. For 56-bit keys, the adver-
sary has average luck to recover 3Des keys when n = 88, 000. When n = 200, 000,
the attacker has full probability of recovering the key (Fig. 3).

The price of one desktop computer capable of this encryption rate is esti-
mated at $525, which raises the cost of this attack to $46,200,000 in terms of
computing power. Finally, one 1TB SSD disk is available at the price of $500,
hence the total cost for 250 bytes capacity is around $500,000, raising the total
cost of the attack at around 47 million dollars.

90 F. Pépin and M.G. Vigliotti

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

P
ro

ba
bi

lit
y

Number of desktop computers

(a) 56-bit keys

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 2 4 6 8 10 12

P
ro

ba
bi

lit
y

Number of desktop computers

(b) 7-bit Ascii keys

Fig. 2. Advantage depending on n desktop computers

(a) 56-bit keys (b) 7-bit Ascii keys

Fig. 3. Advantage depending on n FPGAs

For 7-bit ASCII keys, probability of 0.5 is reached for n = 6. Hence, com-
puting power cost is $3,150. Adding the memory cost raises the total cost to
$503,150.

Cost Analysis on FPGAs. In the case of FPGAs, the same reasoning applies,
but the encryption rate is ER = 1.92 × 1010. For 56-bit keys, the adversary has
average luck to recover the keys when n = 4, 200. When n = 9, 200, the attacker
has full probability of recovering the key.

The price of one FPGA with this type of requirements (e.g. a Xilinx Virtex-
6) is around $1500. Hence, the total cost of the attack, adding the $500,000 of
memory cost, is 7 million dollars.

For 7-bit ASCII keys, only 1 FPGAs is needed to break the algorithm in
2 years, which implies a total cost of $501,500.

5.5 Summary of the Costs to Break 3Des

A summary of the costs is provided in Table 1.
This table allows us to conclude that if keys are chosen from a given restricted

set (such as 7-bit ASCII), the security of the system is weakened substantially.
However, if the keys are really chosen at random with a Cryptographically Secure
Pseudo-Random Number Generator, there is not any RKA possible.

Risk Assessment of the 3Des in ERTMS 91

Table 1. Cost of breaking 3Des in dollars

RKA

56-bit keys ASCII-128 keys

FPGAs $7m $501,500

Desktop computers $47m $503,150

6 Conclusion

We have presented an in-depth security assessment of ERTMS from a crypto-
graphic point of view, and we have proved that the system is secure as long as
basic security measures are implemented, such that the secrecy and dependency
of the cryptographic keys are maintained.

We also have introduced a new Related-Key Attack that could be carried
out against the system if such security measures are not taken. Albeit ERTMS
is not susceptible to cryptographic attacks known in the literature, the railway
should consider new generations of cryptographic algorithms such as AES to
secure ERTMS and future signalling systems, as computing power is increasing
exponentially.

References

1. National Institute of Standards and Technology (NIST): Recommendation for the
triple data encryption algorithm (TDEA) block cipher. Technical report (2012)

2. National Institute of Standards and Technology (NIST): Announcing the advanced
encryption standard (AES) (2001)

3. National Institute of Standards and Technology (NIST): Data encryption standard
(des) (1999)

4. SciEngines: Break Des in less than a single day (2009). http://www.sciengines.
com/company/news-a-events/74-des-in-1-day.html

5. Kelsey, J., Schneier, B., Wagner, D.: Key-schedule cryptanalysis of IDEA, G-DES,
GOST, SAFER, and triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 237–251. Springer, Heidelberg (1996)

6. Merkle, R.C., Hellman, M.E.: On the security of multiple encryption. Commun.
ACM 24(7), 465–467 (1981)

7. Bloomfield, R., Bloomfield, R., Gashi, I., Stroud, R.: How secure is ERTMS? In:
Ortmeier, F., Daniel, P. (eds.) SAFECOMP Workshops 2012. LNCS, vol. 7613,
pp. 247–258. Springer, Heidelberg (2012)

8. Capra, G.S.: Protecting critical rail infrastructure. Technical report (2006)
9. Baldoni, R. et al.: Critical infrastructure protection: threats, attacks, and counter-

measures. Technical report (2014)
10. European Railway Agency: Unisig subset-037, euroradio fis. Technical report

(2014)
11. European Railway Agency: Unisig subset-038, offline key management fis. Techni-

cal report (2015)

http://www.sciengines.com/company/news-a-events/74-des-in-1-day.html
http://www.sciengines.com/company/news-a-events/74-des-in-1-day.html

92 F. Pépin and M.G. Vigliotti

12. National Institute of Standards and Technology (NIST): Recommendation for
block cipher modes of operation (2001)

13. European Railway Agency: Subset-114, kmc-etcs entity off-line km fis. Technical
report (2015)

14. Menezes, A., Van Oorschot, P.C., Vanstone, S.: Handbook of Applied Cryptogra-
phy. CRC Press, Boca Raton (1996)

15. Traverso, M.: Presto: interacting with petabytes of data at facebook (2013)
16. Hill, K.: Blueprints of nsa’s ridiculously expensive data center in utah suggest it

holds less info than thought. Forbes (2013)
17. National Institute of Standards and Technology (NIST): Recommendation for key

management - part 1: general (revision 3) (2012)
18. Taherkhani, S., Ever, E., Gemikonakli, O.: Implementation of non-pipelined and

pipelined data encryption standard (des) using xilinx virtex-6 fpga technology.
In: IEEE 10th International Conference on Computer and Information Technol-
ogy (CIT 2010), pp. 1257–62, Los Alamitos, CA, USA, Engineering Information
Science, Middlesex University, London, United Kingdom. IEEE Computer Society
(2010)

19. McLoone, M., McCanny, J.V.: A high performance fpga implementation of des.
In: IEEE Workshop on Signal Processing Systems Design and Implementation,
SiPS 2000, pp. 374–83, Piscataway, NJ, USA, School of Electrical and Electronics
Engineering, Queen’s University Belfast, Belfast, UK. IEEE (2000)

20. Teo, P.C., Yusoff, Z.M., Sha’ameri, A.Z.: Implementation of pipelined data encryp-
tion standard (des) using altera cpld. In: Intelligent Systems and Technologies for
the New Millennium, TENCON Proceedings, vol. 3, pp. 17–21, Piscataway, NJ,
USA, Faculty of Electrical Engineering, University of Teknologi Malaysia, Johor
Bahru, Malaysia. IEEE (2000)

21. Pépin, F.: A probabilistic framework for 3des to assess railway systems cyber
threats (2015)

Systems

Failure Analysis of Chinese Train Control
System Level 3 Based on Model Checking

Xiao Han1(B), Tao Tang1, Jidong Lv2, and Haifeng Wang2

1 State Key Laboratory of Rail Traffic Control and Safety,
Beijing Jiaotong University, Beijing 100044, China

{hanxiao,ttang,jdlv,hfwang}@bjtu.edu.cn
2 National Engineering Research Centre of Rail Transportation Operation
and Control System, Beijing Jiaotong University, Beijing 100044, China

Abstract. The complexity of railway control system makes some
requirement deficiencies hard to find, which results in system failures. It
is essential to locate those deficiencies using logs recorded during failure
events. In this paper, a model checking based failure analysis approach
was proposed and applied to a case of abnormal emergency brake. First,
a system model describing the system requirement and an event model
depicting the logs were constructed. Next the compositional model was
verified through model checking in UPPAAL which then produced a
counterexample trace that describes the system behaviour in the failure
event. By analysing this trace, an inadequacy was found in the require-
ment and a modification strategy was brought up which was formally
verified to be effective.

1 Introduction

Chinese Train Control System level 3 (CTCS-3) is a safety-critical distributed
computer control system, the failure of which may cause catastrophic accidents.
Lots of reasons can lead a CTCS-3 to fail, including hardware faults, soft-
ware errors, interface malfunctions, or environment factors like EMI etc. Soft-
ware errors can originate from flawed designs, wrong implementations, improper
deployments, or what were concerned in this paper, deficient requirements.
Errors or inadequacies in requirements are normally unfolded through V&V
process. Validation approaches like review, simulation, or testing is widely
adopted in industrial practice for their simplicity and are proved to be effec-
tive in some degree. The problem with those validation approaches roots in the
complexity of systems where human mind is overwhelmed and completeness is
unable to achieve. Verification is mainly about formal verification. Applying for-
mal verification into railway has been studied in [11,13]. The problem with formal
verification is a conflict between model size and computational complexity. With
the modelling and verification techniques available for now, it is very hard to
verify a whole CTCS-3 for its huge scale and complexity. So implemented from a
requirement with deficiencies, CTCS-3 may encounter system failures, or worse,
contribute to an accident which can’t be prevented through reliability measures.
c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 95–105, 2016.
DOI: 10.1007/978-3-319-33951-1 7

96 X. Han et al.

It is then vital to find the requirement deficiencies of CTCS-3 through failure
analysis, before a same failure would cause an accident.

There are generally two approaches applicable to software failure analysis,
one is software hazard analysis, and another is model checking. Software hazard
analysis techniques can be categorized into 3 types. One is structural hazard
analysis techniques, such as Software Fault Tree Analysis [9]. One is failure logic
modelling methods, such as FPTN [8]. One is fault-injection techniques, such
as FSAP/NuSMV-SA platform in [4]. Model checking is a formal verification
technique which verifies whether a formal model satisfies certain properties such
as safety or liveness. When the property is unsatisfied, a counterexample trace
that indicates how the property is violated can be generated automatically. Let
system will not fail be the property to be verified, then the counterexample trace
generated, if any, would indicate how the system can fail. Thus model checking
can be used to analyse failure causal reasons or locate faults in software as in [10].

In model checking, a refutation means there are modelling and formulation
mistakes or the undesired sequence of events could indeed happen in reality [6].
Furthermore, several traces that lead to a same property violation could exist at
the same time, yet only one of them is generated. Thus a counterexample trace
generated by model checking could represent (1) an impossible story in reality,
(2) a possible sequence of events that didn’t happen, or (3) the process of system
failure that we want to understand. So failure analysis by checking the system
model alone may not necessarily produce the trace that represents the actual
sequence of events leading to the failure. The reason behind this, we believe, is
neglect of information collected during failure process such as system logs. In
this paper, we propose a novel failure analysis method based on model checking
which utilizes both system model and system logs.

The rest of the paper is organized as follows: Sect. 2 gives a simple introduc-
tion to CTCS-3 and a short review of how CTCS-3 can fail. Section 3 presents
the rationale of the method. Section 4 gives a case study of applying this method
to a real CTCS-3 failure case. Section 5 concludes this paper with a discussion
about this method and a plan for our future work.

2 CTCS-3 and Failure Causes

CTCS-3 is a safety-critical control system dedicated to ensure safe operation of
trains in most operation scenarios. In the requirement specification of CTCS-3,
14 operation scenarios in total are given. Equipments in CTCS-3 can be cate-
gorized into on-board subsystem and track-side subsystem. The on-board sub-
system includes equipments that are installed on a train, like Vital Computer,
Track Circuit Receiver, Driver Machine Interface, Juridical Record Unit, etc.
It provides a driver necessary information for safe operation while carrying out
speed/distance supervision. The safe running of a train in CTCS-3 is controlled
by a MA that describes how far and how fast the train can go safely. The
on-board subsystem on that train can decide if a MA is violated or not, and
if so, some intervention measures, such as an emergency brake, may be initi-
ated. The generation of MA is the main function of track-side subsystem which

Failure Analysis of Chinese Train Control System Level 3 97

includes Radio Block Centre (RBC), Balise, Train Control Centre (TCC), Track
Circuit (TC) etc.1 The on-board subsystem and track-side subsystem commu-
nicates with each other through a dedicated wireless network called GSM-R.

For the safety-critical nature, failures of CTCS-3 could lead to catastrophic
accidents. While CTCS-3 is a very complex system with multiple kinds of equip-
ments and various communications, the complexity extends the scope of failure
sources. Many reasons could lead a CTCS-3 to fail, including functional failures
of each equipment, and dysfunctional interactions between them. According to
[7], faults leading to failures can be categorized into systematic faults and ran-
dom faults. Systematic faults are caused by human errors in various stages of
the system life-cycle, while random faults, particularly random hardware faults,
are the results of finite reliability of hardware components. In the perspective of
where faults are located, faults can be divided into software errors and hardware
faults. Software errors are systematic faults, which are caused by human errors
in requirements elicitation and specification, software design, implementation, or
deployment. This paper is dedicated to analyse software errors originated from
requirement deficiencies.

3 Failure Analysis Based on Model Checking

3.1 System Failure Analysis

When a system fails, it is essential to find the reason for this failure besides
bringing system back into normal operation, so the same software error or hard-
ware fault won’t result in another system failure, which in certain circumstances
will bring about a catastrophic accident. Same system failure may be caused by
various reasons, as shown in the fault tree in Fig. 1. Yet there is always only
one of those reasons that happened in the real system failure. The objective of
system failure analysis is to find this particular reason that happened in deed,
in other words, to identify the real propagation path from root reason to sys-
tem failure (such as the path denoted by solid line in the fault tree in Fig. 1)
out of all possible paths. Several intermediate events my exist in the path from
root event(s) to top event. Different paths may go through different intermediate
events. Thus it is possible to distinguish each root event by intermediate events.2

In computer systems, logs give clues of which intermediate events happened. So
it is possible to identify the real reason by extracting information from logs.
Figure 1 describes this methodology. The problems with this methodology are
twofold. First, a complete fault tree for a complex system, especially for software
is hard to construct. Second, drawing useful information from a mass of raw log
files is not easy. Researches are focused on the second problem, as in [5,12], to
extract failure-related information from a big load of log files automatically.

1 Interlocking (IL) is a widely used signalling system which works together with CTCS-3
to ensure safety, while not included in it.

2 It is only possible when each root event has different intermediate event directly
connected to it. We will make it an assumption in this paper.

98 X. Han et al.

Cause
1

Intermediate
event 1

Cause
2

Cause
3

Cause
4

System
failure

Cause
5

Intermediate
event 2

Fault Tree

Root event

Event

Or gate

Intermediate
event 3

Characteristics

E
xt

ra
ct

Featureing

System logs

Fig. 1. Failure analysis using FTA.

E

System model Event model

Model
checking

E

IO

IO

IO

IO

Environment

Output

E

IOSystem

Input
Consistent System

behavior

Record

State

Initial state

End state

Transition

Input/Output

System logs

Counterexample trace

Abstract Abstract Explain

Fig. 2. Failure analysis using model checking.

In this paper, a different methodology was adopted in which we focused on
how the behaviour of system evolves into a failure rather than event chains, so
log extracting is no more necessary. This methodology is presented in Fig. 2: The
system model which is an abstraction of the real system depicts system behav-
iours, including normal behaviours and abnormal behaviours. The event model is
constructed based on logs which record system input/output information. Model
checking the product of system model and event model will give a counterex-
ample trace, which indicates how the system can fail while reserves what was
recorded in the logs. By explaining this trace, we can obtain the behaviour of
the system and understand why the system failed.

CTCS-3 is a real-time system, which means the correctness of the system
behaviour depends not only on the logical results of its outputs, but also on the
physical time when these results are produced. It is then imperative to describe
temporal properties of CTCS-3 in the model. We chose timed automata as the

Failure Analysis of Chinese Train Control System Level 3 99

modelling language, definition of which can be found in [1]. The model checking
tool used in this paper to verify timed automata is UPPAAL [2] released by
Aalborg University and Uppsala University in 1995. Definitions and theorems
related to model checking of timed automata can be found in [3], and with no
further citations in the rest of this paper.

3.2 Problem Definition and Solution

In this section, we will explain the problem of failure analysis in terms of timed
automata, and give a solution to the problem.

Definition 1. For a timed trace Δ = δ1δ2...δi... ∈ L, where δi = (ti, ai) is a
timed action meaning event ai takes place at time ti, and L is timed language,
if there is a function S ∈ L �→ L, S(Δ) = Δ′, Δ′ = δs1δs2 ...δsn

, satisfying
∀δsj

,∃δi ∈ Δ, s.t. δsj
= δi , and ∀δsj

∈ Δ′ ∧ j �= n → sj < sj+1, then we call
this function S a timed trace sampling function over Δ.

The purpose of failure analysis then can be described as identifying a timed
trace Δf , which satisfies:

Property 1. Let A denotes the timed automata model of system, and ψ the
system property indicating the system won’t fail, then Δf ∈ L(A)∩L(¬ψ), and

Property 2. There exists a timed trace sampling function S, that S(Δf) = Δ′,
where Δ′ represents failure records.

Property 1 indicates that Δf should be a behaviour of what system model
describes while violating the system property, that is, leading to failure. Timed
traces satisfying Property 1 can easily be generated by model checking A against
ψ. Property 2 indicates that Δf should describe what actually happened in the
system failure. To get a timed trace complying with Property 2, we define a
special timed automaton:

Definition 2. For a timed trace Δ, and a timed automaton A, if ∀Δ′ ∈ L(A),
there exists a timed trace sampling function S over Δ′ that S(Δ′) = Δ, then we
call A the event model of Δ, denoted as AΔ.

Theorem 1. Denote the system model as As, system property as ψ, the timed
trace describing failure records as Δ′, then timed trace Δ ∈ L(As) ∩ L(¬ψ) ∩
L(AΔ′) satisfies Properties 1 and 2.

Proof. As Δ ∈ L(As) ∩ L(¬ψ) ∩ L(AΔ′), we can easily get Δ ∈ L(As) ∩ L(¬ψ),
which indicates the satisfaction of Property 1. According to Definition 2,
Δ ∈ L(AΔ′) indicates that there exists a timed trace sampling function S, that
S(Δ) = Δ′, then Property 2 is satisfied.
�

Theorem 1 gives us a solution to the problem of identifying a timed trace sat-
isfying Properties 1 and 2, by model checking the compositional model A × AΔ′

against ψ, and the counterexample trace generated, if exists, is the result.

100 X. Han et al.

3.3 Failure Event Model

One key problem in failure analysis according to the approach proposed above is
the construction of event model defined in Definition 2. In this section ,we will
present a template of event model, based on which one can construct an event
model given a timed trace Δ′ representing the failure records.

If Δ′ = δ′
1δ

′
2...δ

′
i...δ

′
n, where δ′

i = (ti, ai), then we construct a timed automaton
A as:

l0
x=x1,a1,x:=0−−−−−−−−−→ l1...

x=ti−ti−1,ai,x:=0−−−−−−−−−−−−→ li...
x=tn−tn−1,an,x:=0−−−−−−−−−−−−−→ ln

where only ln is accepted by A, then A is the event model of A.

Proof. From the construction of A, we can see that once A is in ln, only time
elapse is possible. That is, ∀Δ ∈ L(A),Δ = δ1δ2...,∃m, s.t. ∀j ≥ m, δj = 〈ln, u〉,
where u is any clock assignment. Any run of A can be expressed as follows:

〈l0, 0〉 d0
1−→ 〈l0, d01〉

d0
2−→ 〈l0, d01 + d02〉... a1−→

〈l1, 0〉 d1
1−→ 〈l1, d11〉

d1
2−→ 〈l1, d11 + d12〉... a2−→

. . .

〈ln, 0〉 dn
1−→ 〈ln, dn

1 〉 dn
2−→ 〈ln, dn

1 + dn
2 〉...

where
∑

dj
i = tt+1 − ti, i < n, t0 = 0.

It is obvious that the state before transition ak−→, where k ≤ n, in the run of A
is 〈lk−1, tk − tk−1〉. Then we can infer that ∀Δ ∈ L(A),∀k ≤ n, there is a timed
action (

∑k
j=1 tj − tj−1, ak) in Δ. Then we can define a timed trace sampling

function S over Δ, that:

S(Δ) = (
1∑

j=1

tj − tj−1, a1)...(
n∑

j=1

tj − tj−1, an)

As
∑k

j=1 tj − tj−1 = tk − t0 = tk, then we get:

S(Δ) = (t1, a1)(t2, a2)...(tn, an) = Δ′

which means A is the event model of Δ′.
�
With log files exported from failure-involved equipments, we can translate

each selected record (t,msg, args), where t is the time when communication
took place, msg stands for the message transferred during the communication,
and args includes arguments for this message, into a timed action (t′, a′), where
t′ is the relative time in model corresponding to t, and a′ is the action composed
of a synchronization representing msg and several guarding conditions made
according to args. Concatenating those timed actions translated from selected
records in time order, a timed trace Δ′ representing the failure records is then
obtained. Then the failure event model can be constructed according to the
proposed template as depicted above.

Failure Analysis of Chinese Train Control System Level 3 101

1850

RBC handover boundary

476103810781

CHANG ZHOU

SII

G7002 G7126

S
H
A
N
G

H
A
I

N
A
N

J
I
N IL1

RBC1

TCC1

IL2

RBC2

TCC2 TCC3 TCC4

Fig. 3. A Snapshot before failure.

4 Case Study

4.1 Failure Event Description

In 2012, a high-speed passenger-rail train G7126 on a trip from Shanghai to Nan-
jin initiated an emergency brake which should never happened. Figure 3 shows a
snapshot of G7126, its preceding G7002, and other related equipments before this
failure happened. Several equipments including RBCs, TCCs, ILs, and on-board
subsystems were involved, and scenarios like RBC handover, moving authority
were covered in this failure. The flow of track information is shown in Fig. 3 as
arrows. The state of a track that whether there is a train occupying it is detected
by a TC installed along this track. A TCC connected with the TC receives track
state and passes it to IL directly or through other TCCs. The TC is informed
with the states of all the tracks in its area, and sends Signal Authority (SA)
which is the state variation of certain track in essence to the RBC connected to
it. The RBC then calculates a MA based the SA received from IL. The RBC
inside a RBC handover boundary like RBC2 in Fig. 3 must know the states of
some tracks that are outside of the boundary, to determine if it is possible to
extend the MA to certain point outside of the boundary, so that the train can
pass the boundary without a stop or deceleration. The state of tracks outside of
the boundary are transferred from the IL outside to the IL inside3. Communica-
tions between RBCs and trains are also shown in Fig. 3, where a RBC sends MA
it calculates to the train in its region and the train sends MA acknowledgement
and its position detected by on-board sensors back to the RBC.

4.2 Modelling

To understand why G7126 initiated an emergency brake, system model should be
constructed first. Objects or equipments considered in our system model include
two trains G7126 and G7002, IL1 inside of the boundary, IL2 and RBC2 outside
of the boundary, tracks, and TCCs modelled as communication components.
3 Other solutions are possible, like the one suggested in CTCS-3 technical scheme that

track state information is transferred though RBCs.

102 X. Han et al.

Table 1. Failure records and its mappings to system model

Time Message Arguments Synchronization Assignments Duration

07:55:43 SA-TR 1850 receive-SA? received-SA.Type=TR
and received-SA.section=3

1

07:55:44 SA-USED 1870 receive-SA? received-SA.Type=USED
and received-SA.section=4

13

07:55:57 SMA 1850 send-MA! sent-MA.Type=SMA and
sent-MA.End=3

2

07:55:59 SA-USED 1674 receive-SA? received-SA.Type=USED
and received-SA.section=1

1

07:56:00 UEM - send-MA! sent-MA.Type=UEM -

We defined 6 sections in our model numbered from 0 to 5. The RBC handover
boundary is located between Sects. 3 and 4. G7002 is in Sect. 3 and G7126 is in
section 0 initially.

Interlocking models: Two ILs are included in our model, namely IL1 and
IL2. IL1 is modelled as an automaton receiving variations in state of tracks
outside of RBC handover boundary and sending them to IL2. IL2 is modelled as
3 automata which are similar with IL1 in that they receive track state variations
and send SA. The differences are that they send SA to RBC2 and two of them
receive variations in state of tracks that are inside of handover boundary caused
by G7002 and G7126 respectively, while the last one communicates with IL1 and
receives information from it.

Train models: Two trains are modelled: the failed train G7126 and its preced-
ing G7002. G7126 is modelled by two automata. One describes the moving of
G7126 and sends track state variations to ILs, and the other describes the com-
munication between the on-board subsystem on G7126 with RBC2. For 7002,
only the moving part is modelled.

RBC model: From the information flow in Fig. 3, we can see that RBC1
couldn’t influence the behaviour of G7126 in any sense, so only RBC2 needs
to be modelled. RBC2 is modelled as an automaton which has functions as fol-
lows: receiving and updating the position of trains, receiving SA and calculating
MA based on the position of trains and SA, and then sending MA to trains, and
receiving MA acknowledgement.

Communication models: All the communications involved are modelled as
communication components automata as implementations of a communication
template. The main purpose of communication models are to capture communi-
cation delays which may have big influences on the behaviour of CTCS-3.

Event model: For simplicity, we selected several crucial records from the raw
log files from RBC2 manually and mapped those records to the system model as
shown in Table 1. An event model P , as shown in Fig. 4 was constructed based
on mappings of those records.

Failure Analysis of Chinese Train Control System Level 3 103

Fig. 4. Event model.

4.3 Failure Cause Analysis

Model checking the compositional model against property A[] not P.End in
UPPAAL gave us a counterexample trace displayed in the simulator. By
analysing this timed trace, we managed to understand what happened that
caused G7126 to initiate an abnormal emergency brake:

– At 07:55:38, the rear end of G7002 passed RBC handover boundary.
– At 07:55:43, clearance of section 1830→1850 was received by RBC2. At that

moment, RBC2 had not received occupation of section 1850→1870 by G7002
as the long communication delay, so it thought section 1830→1850 was clear
and sent to G7126 an EMA extending MA to some place after 1870.

– 07:55:44, RBC2 finally received the occupation of 1850→1870. In the MA
generation algorithm, RBC2 was supposed to wait for 13 seconds before cal-
culating MA as section 1850→1870 was the first section outside of boundary.

– 07:55:57, RBC2 sent a SMA which commanded G7126 to stop before 1850
after expiration of 13 s.

– 07:55:59, RBC2 received the occupation of section SII→1674 by G7126.
Because of communication delay, the latest position of G7126 that RBC2
received was still before SII, so RBC2 was supposed to send a CEM4 to G7126,
and G7126 was supposed to ignore it. But instead, RBC2 sent an UEM to
G7126 because the acknowledgement of the last SMA it sent had not been
received and together with a possible CEM to send made RBC2 thought there
could be some problems.

4.4 Modification

From the scenario analysed above, we can see that the reason for this failure event
is that, RBC2 thought the section 1850→1870 was clear which was not the case
during 07:55:43 and 07:55:44 and extended MA. False cognition of state of tracks
by RBC2 is caused by communication delays, which were not considered in the
requirement of CTCS-3 in detail. To prevent this requirement inadequacy from
4 When a train receives a CEM, it will first check if it has already passed the end of

this CEM, then initiate an emergency brake if not, or ignore this CEM otherwise.

104 X. Han et al.

resulting in another system failure, a modification was brought up. The RBC
was added a function called delayed clearance, that is, after a RBC receives a
section-clear message, it should wait for some time before it calculates a new MA
according to it. The modified model was verified against the property A[] not
Train2.EMBrake which means G7126 should never initiate an emergency brake
in UPPAAL, and passed.

5 Conclusion

In this paper, a failure analysis approach using failure records based on model
checking was proposed and applied to a case study of CTCS-3. We found that
with a well constructed system model and carefully selected failure records, it is
possible to reproduce the system behaviour leading the analysed failure which
can then be used to find requirement deficiencies. Furthermore, compared with
conventional model checking, our method focused our modelling effort on certain
part of the system instead of the whole system, leading to a relatively smaller and
more verifiable model. Yet a distance between the scalability of this method and
industrial practice still remains. Another problem we realized with this method
concerns the selection of failure records. The records selected actually represents
what would be considered in failure analysis, so the more records selected, the
more accurate analysis result would be. But more records means more modelling
effort and computation burden. The trade-off between accuracy and cost is more
art than accurate science.

Our next job is to explore the depth and scope of this approach that can be
applied. As the assumption we made in the fault tree based approach that all
root events have different intermediate events connected to them is not always
the case, some failure causes may not be distinguishable based solely on failure
records. Then a formal description of the characteristics that the system model
has as far as identifying failure is concerned should be defined, as the basis of
our further discussion. Still, a more realistic and complex case study should be
carried out to explore the limitations of this approach.

Acknowledgement. The work has been supported mainly by the Nation Natural Sci-
ence Foundation of China (Grant No. 61304185, U1434209), and the National Program
on Key Basic Research Project (973 Program) (Grant No. 2014CB340700).

References

1. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

2. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL a tool
suite for automatic verification of real-time systems. In: Alur, R., Sontag, E.D.,
Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996)

Failure Analysis of Chinese Train Control System Level 3 105

3. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

4. Bozzano, M., Villafiorita, A.: The fsap/nusmv-sa safety analysis platform. Int. J.
Softw. Tools Technol. Transf. 9(1), 5–24 (2007)

5. Chuah, E., Kuo, S.h., Hiew, P., Tjhi, W.C., Lee, G., Hammond, J., Michalewicz,
M.T., Hung, T., Browne, J.C.: Diagnosing the root-causes of failures from clus-
ter log files. In: 2010 International Conference on High Performance Computing
(HiPC), pp. 1–10. IEEE (2010)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

7. En, N.C.: 50129: Railway application-communications, signaling and processing
systems-safety related electronic systems for signaling. British Standards (2003)

8. Fenelon, P., McDermid, J.A.: New directions in software safety: Causal modelling
as an aid to integration. In: Workshop on Safety Case Construction, York, March
1994. Citeseer (1992)

9. Leveson, N.G., Harvey, P.R.: Software fault tree analysis. J. Syst. Softw. 3(2),
173–181 (1983)

10. Ming, L.: Fault Location Research Based on Model Checking. Master’s thesis,
Central China Normal University (2010)

11. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal
verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 246–265. Springer, Heidelberg (2009)

12. Stearley, J.: Towards informatic analysis of syslogs. In: 2004 IEEE International
Conference on Cluster Computing, pp. 309–318. IEEE (2004)

13. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying
chinese train control system under a combined scenario by theorem proving. In:
Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280.
Springer, Heidelberg (2014)

Correct Formalization of Requirement
Specifications: A V-Model for Building

Formal Models

Marco Filax(B), Tim Gonschorek, and Frank Ortmeier

Chair of Software Engineering, Otto-von-Guericke Universität Magdeburg,
Magdeburg, Germany

{marco.filax,tim.gonschorek,frank.ortmeier}@ovgu.de

Abstract. In recent years, formal methods have become an important
approach to ensure the correct function of complex hardware and soft-
ware systems. Many standards for safety critical systems recommend
or even require the use of formal methods. However, building a formal
model for a given specification is challenging. This is, because verifica-
tion results must be considered with respect to the validity of the model.

This leads to the question: “Did I build the right model?”. For sys-
tem development the analogous question “Did I build the right system?”.
This is often answered with requirements traceability through the whole
development cycle. For formal verification this question often remains
unanswered.

The standard model, which is used in development of safety criti-
cal applications is the V-model. The core idea is to define tests for each
phase during system development. In this paper, we propose an approach
- analogously to the V-model for development - which ensures correct-
ness of the formal model with respect to requirements. We will illustrate
the approach on a small example from the railways domain.

Keywords: Formal modelling process · Requirements traceability ·
System verification · Railway system verification

1 Introduction

Reliability, Availability, Maintainability and Safety are important aspects of the
development of railway transportation systems. But, the more complex the sys-
tem gets the harder it becomes to verify, often by hand, whether a system meets
its given specification. Since modern systems are too complex to get verified
and validated by hand, especially for the safety critical parts, formal verifica-
tion comes into the focus. Moreover, formal verification techniques are highly
recommended in standards, like the EN 50129 [7]. However, developing a formal
model which is a sufficient representation of the real system, is a quite challeng-
ing task. It is not only to build the model, but to ensure that the formal models
meets all requirements, i.e., is a representative projection of the system-to-build
– especially in front of some governmental certification authority.
c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 106–122, 2016.
DOI: 10.1007/978-3-319-33951-1 8

Correct Formalization of Requirement Specifications 107

The goal of this paper is to propose a development approach that simplifies
the application of formal methods in the development of safety critical systems
in general, but in special in the development of railway systems. The whole
process had been determined in cooperation with the German Federal Railway
Authority1 and an independent and certified appraiser for the rail domain.

To overcome the difficulty of building the correct formal model, we focus on
the traceability of all requirements to their formal realization, i.e., as for the real
system, it shall be possible to trace each formal model element to its original
requirement. Moreover, we derive additional acceptance and system tests from
the different development phases and present how they can be verified with the
help of model checking [11] techniques. In the scope of this paper, we concentrate
on the verification of system safety requirements. However, with the help of the
formal model, other reliability and availability measures, e.g., Fault Tree Analysis
or Failure Mode Effects Analysis, can be executed.

Unfortunately, domain experts are often unfamiliar with formal verification
languages and techniques. Therefore, we use our Verification Environment for
Critical Systems (VECS2) [17], aiming to simplify the application of formal
methods, which implements an import interface to the more popular Unified
Modeling Language (UML). For the life-cycle pattern, we propose a process
inspired by the established V-model. Project specific variations of the V-model
have already been applied successfully in a range of different software projects
and they all share the prominent V-shape. In 1984 Boehm introduced the char-
acteristic V-shape [1]. However, it still symbolizes a linear project progression. It
is divided into two branches: the left branch symbolizes exploratory and design
tasks whereas the right branch represents verification and validation tasks. The
methodology does not require a specific (formal) implementation language. It
rather specifies what a product describes and recommends methods for the pro-
duction [3] and thus can be used to develop a formal model. Further, it helps to
ensure the traceability throughout the whole process.

The paper is structured as follows: Sect. 2 gives a short overview of related
works from other authors. In Sect. 3 we present the proposed approach ensuring
the correct formalization of large requirement sets while preserving traceability.
Section 4 reports our experiences made with the proposed process while verifying
a real world spot transmission based train breaking system. In the end, we
conclude our paper in Sect. 5.

2 Related Work

A lot of work has been done for formalizing a set of requirements using UML as
an intermediate language. Typically, these approaches cover the extraction and
formalization of a semi-formal given architecture [2,4,16,19]. Some approaches
consider the extraction of behavior, denoted as state machines, in order to gener-
ate a formal model from UML [12,20–22,24,27]. However, the execution seman-
tics of state machines in UML is ambiguous [14]. Snook and Butler proposed an
1 http://www.eba.bund.de.
2 http://cse.cs.ovgu.de/vecs.

http://www.eba.bund.de
http://cse.cs.ovgu.de/vecs

108 M. Filax et al.

approach to translate architectural and behavioral UML entities into B [24]. The
authors propose to develop a formal model from classes and their relation. Fur-
ther, they require a complete behavioral description in UML. Utilizing classes
requires the definition of a detailed architecture derived only from the set of
requirements. Defining a system in this degree of detail requires a lot of insight
in the developed system inappropriate for requirement analysis. The authors
also propose to translate contents of a package into a single formal component,
which we think is unsuitable for larger requirement specifications.

Brill et al. use the V-model in order to generate a formal model, but developed
as state charts, in particular statemate [3]. In contrast to our approach, they
propose to use live sequence charts derived in earlier and refined in later phases
in order to “aid in debugging” the formal model. Although not proposed, their
approach can be extended to be similar to ours. This is, because the methodology
to use commonly known behavior descriptions in order to proof the feasibility
of the formal model is shared. In contrast to our approach they utilize send
and receive events in order to express interfaces between components. Thus,
their approach does not feature parameters for operations - vital in almost every
state-of-the-art programming language. This means, that their approach cannot
be used to validate whether the architecture of the model is feasible.

Other approaches verify the feasibility of scenarios described in a SRS [25].
The authors propose to refine scenarios, manually extracted from the require-
ments, with sequences. Every sequence shall then be translated into a temporal
logic formula. A model checker can compute whether the specification holds for
a specific model. The authors do not convincingly demonstrate how architecture
and behavior of the formal model are developed nor emphasize the traceability
between model and requirements in their approach. Further, the computation
of witnesses in order to support reviews through domain experts is not covered.
However, we think such witnesses are important for the proposed approach as
the formal model can be erroneous and witnesses can serve as provable example
paths in the models state space, emphasizing the requirement coherence.

Carnevali et al. proposed a methodology to integrate preemptive time petri
nets into a given software development cycle [5]. They utilized a V-model issued
by the German Federal Administration for software development, maintenance
and modification. However, they did not describe the integration in a semi-formal
description language, such that the traceability of requirements through the hole
process life cycle is not emphasized. As a result, a reviewing process of domain
experts which are typically not familiar with timed petri nets is required.

3 A Process for Building Formal Models “right”

Building a formal model is a challenging task. It typically takes numerous iter-
ations until one is satisfied with the model. In each iteration some unwanted
behavior is removed, extra functionality is added and/or inconsistencies are elim-
inated. In contrast to unstructured modeling, we propose a structured process,
inspired by the V-model, which ensures the coherence of the formal model and

Correct Formalization of Requirement Specifications 109

Fig. 1. The adapted V-model for developing a traceable, complete, consistent and
correct formal model.

its informal SRS by preserving the traceability between elements in the formal
model and their origin. The core idea is – like in the system development model
– to define different phases of the modeling process and use state as well as
sequence acceptance criteria, test properties or hierarchically analysis questions
for validating the model (cf. Sects. 3.5, 3.6 and 3.7).

Figure 1 illustrates the proposed process. All in all, the proposed process
consists of seven consecutive phases (Phase A - Phase G). As starting point, we
assume some informal specifications to be given, mainly written system require-
ments or additional documents, e.g., some sketched system architecture, speci-
fications of subcomponents, failure mode specifications or other safety relevant
documents.

In the following, we give a more detailed description of the different phases.
For a better understanding, we illustrate each phase with a small example from
a real world case study, issued by the Federal Railway Authority of Germany.
This is a standard protection system in German railroads: the “Punktförmige
Zugbeeinflussung” (PZB3) – a spot transmission based train braking system.
The informal specification consists of a 46 paged document, containing text,
graphics and tables. Altogether, this results in 777 requirements and a formal
model with a state space of approx. 5, 8 ∗ 1024 states4.

3.1 Phase A: Requirement Categorization

The goal of this phase is to prepare the informal text such that it can be better
processed by the following phases. Therefore, the SRS is divided into a set of
atomic and indexable text fragments. Further, the atomic fragments are catego-
rized to determine their semantics for the following process phases. For example,
a requirement categorized as architecture fragment is proposed to be used in con-
nection with the architecture modeling (cf. Sect. 3.2). According to the projects
3 https://cse.cs.ovgu.de/vecs/index.php/techniques/examples/17-casestudies/25-pzb-

achievements.
4 Worst case approximation by multiplying all possible state variable values.

https://cse.cs.ovgu.de/vecs/index.php/techniques/examples/17-casestudies/25-pzb-achievements
https://cse.cs.ovgu.de/vecs/index.php/techniques/examples/17-casestudies/25-pzb-achievements

110 M. Filax et al.

needs one can choose different requirement patterns. In our developed case stud-
ies, we found an adoption of the pattern [15] originally defined by Cimatti
et al. [8] most applicable for our process. This pattern defines eight different
categories for functional requirement fragments. Every category is defined by a
condition rule (shown in Table 1) supporting the mapping of fragment and cate-
gory. Unfortunately, this categorization has to be done manually. This is the case,
because processing informal requirements, written without given rules, is, even
for humans, a challenging task. Especially, since the mapping of the fragments
is not unique. Of course, it is possible that one fragment can be responsible for
the architecture (e.g. defining a required method) as well as for some system
state behavior (the method sets a specific value). However, the benefit of having
ordered requirements, that can be mapped to the different design stages, make
it easier to get an overview of the set of requirements. This preponderates the
effort of categorizing each requirement fragment by hand.

Table 1. Functional requirement categories adopted from Cimatti et al. [8].

Category Condition

Glossary requirement Does the text fragment define a specific concept of
the domain?

Architecture requirement Does the requirement introduce some system’s
modules and describe how they interact?

State requirement Does the requirement describe the steps a particu-
lar module performs or the states where a module
might be in?

Communication requirement Does the requirement describe messages modules
exchange?

Property requirement Does the requirement describe expected properties
of the domain or constraints of the system-to-be?

User requirement Does the requirement describe actions or con-
straints which have to be considered, satisfied or
performed by the user?

Safety requirement Does the requirement describe necessary safety
constraints?

Annotation Is the text fragment a note that does not add any
information about the ontology or the behavior of
the specified system?

We illustrate this phase with a subset of requirements taken from the PZB
(Table 2). Requirement PZB1 does not provide any new information and thus
is an annotation. PZB2 and PZB3 introduce two different modules, thus they
are architecture fragments. PZB4 defines a message being issued by the system’s
modules and is a communication requirement. PZB5 gives further information
on the methods issued in PZB4. PZB6 describes interaction with a surrounding

Correct Formalization of Requirement Specifications 111

Table 2. Excerpt of requirements taken from the case study.

ID Requirement Category

PZB1 The PZB is a train protection system devel-
oped in Germany.

Annotation

PZB2 The system relies on onboard transmitter
coils with different frequiencies.

Architecture requirement

PZB3 On the trackside different passive tuned
inductors are installed.

Architecture requirement

PZB4 If a trackside inductor is passed the active
onboard transmitter coil induces a voltage.

Communication requirement

PZB5 Three frequencies, which can be induced
by the magnets, have to be distinguished:
1000Hz, 500Hz, 2000 Hz.

Property requirement

PZB6 Trackside inductors can be deactivated or
activated depending on the signal.

User requirement

PZB7 If the frequencies match, an oscillation is
generated in the trackside inductor result-
ing in an onboard voltage drop indicating
an overrun.

State requirement

PZB8 Depending on the transited inductor’s fre-
quency different actions have to be issued.

Safety requirement

PZB9 2. The Indusi Glossary requirement

system: the signal. Here, we consider the signal as an external actor and thus
consider it as an user interaction. PZB7 describes the steps a trackside inductor
has to perform and thus is a state requirement. PZB8 states that specific actions
have to be triggered – relevant for the overall systems safety – meaning an
overrun should not be missed and thus, is a safety requirement. PZB9, a section
heading, introduces a concept of the domain and therefore is categorized as a
glossary fragment.

3.2 Phase B: Architecture Extraction

Typically, functional requirements contain information about system modules
and surrounding systems. Their direct formalization, however, is error-prone,
as natural language is ambiguous. Thus, we propose to translate informal text
into an intermediate language: UML [23]. This is, because UML, as a de facto
standard, has a broad audience ensuring that domain experts not familiar with
formal verification methods are able to understand basic architecture and in
later phases intended behavior (cf. Sect. 3.3) of the formal model. Further, it
offers the possibility to derive the architecture of the actual implementation.

In order to represent an architecture, UML offers a variety of elements. We
restrict ourselves to components, ports and interfaces in order to define the

112 M. Filax et al.

high-level architecture. This is, because elaborate elements like classes are
designed to reflect implementational aspects. Formal models typically behave
differently. Hence, to be able to define a proper transformation from UML into a
more formal representation, we need to define the used subset of UML elements.

Definition 1 (Component). Components in UML describe hierarchically
ordered units within a system or subsystem [23]. C is the set of a all compo-
nents defined by the given requirements. A single component ci ∈ C is a tuple
ci = 〈ni, Pi, CSubi〉 with an identifier ni, a set of ports Pi and a set of subcom-
ponents CSubi .

Further, we define that ci /∈ CSubi . In order support the interaction of different
components, we need to define interfaces. I is the set of all interfaces defined
by the requirement specification in specific: also derived from architectural
requirements.

Definition 2 (Interface). An interface ij ∈ I is a declaration of a set of coher-
ent public features and obligations [23]. It is a tuple ij = 〈nj , Aj , Oj〉 with an
identifier nj, a set of attributes Aj ∈ A where an attribute ak = 〈nk, tk〉 is a
tuple with an identifier nk, a type tk and a set of operations Oj ∈ O. An oper-
ation is a tuple ol = 〈nl, tl, PARl〉 with an identifier nl, a type tl and a set of
parameters PARl where every parameter parl is a tuple parm = 〈nm, tm〉 with
an identifier nm and a type tm.

Components can either provide or require an interfaces, which is exposed through
a port.

Definition 3 (Port). A port pl ∈ P is a tuple p = 〈n, i, type〉 with an identifier
n, an interface i and the type ∈ {provides, requires}.
Further, we define a function provides : P → (I ∪⊥) mapping a port to exactly
one interface:

〈n, i, type〉 	→
{
i iff type = provides

⊥ iff type = requires
. (1)

Analogously, requires : P → (I ∪ ⊥) is defined as

〈n, i, type〉 	→
{
i iff type = requires

⊥ iff type = provides
. (2)

Multiple components shall be assembled using their shared boundary: the inter-
face exposed through a port.

Definition 4 (Assembly). An assembly is a tuple assembly = 〈P, P 〉 where

(p1, p2) ∈ assembly =⇒ requires(p1) = provides(p2)∧
provides(p1) = requires(p2) = ⊥. (3)

Correct Formalization of Requirement Specifications 113

All UML elements must be manually derived from the requirements. The
categorization of requirements (cf. Phase A) allows to define components much
more systematically. Components are typically derived from architecture or glos-
sary requirements. Interfaces and methods shall be extracted from property
requirements. We illustrate the proposed approach with the running example.
The architecture in Fig. 2 has been derived from the requirements in Table 2.
The three different components are derived from the glossary and architecture
requirements PZB2, PZB3 and PZB9 namely trackside inductors (ti), onboard
transmitter coils (otc) and indusi. PZB5 was used to derive the interfaces mag-
net and transit. Further, ports needed to be specified, i.e. inductors requiring
magnet and coils providing magnet. Both components ti and otc interchange
information, thus an assembly connector is denoted to visualize this information.
Analogously, the information has been modeled for otc and indusi. In order to
ensure traceability all requirements had been linked to their UML element as
shown in Fig. 2.

Fig. 2. Example architecture derived from the requirements of the real world case
study defined in Table 2.

During this phase, we also refine the requirements that are important for
the system testing phase. Safety requirements shall be used in context with the
architecture. In order to refine the requirements we propose to use a formal
specification language, e.g. linear temporal logic [13]. But the actual formaliza-
tion depends on the used model checker. An example from the running example,
namely for requirement PZB8, is given in Sect. 3.6.

3.3 Phase C: Behavior Extraction

In this step, the intended system behavior is modeled. This is, of course, done
with respect to the architecture modeled in the previous step. Often the behavior

114 M. Filax et al.

in the SRS is not specified completely, i.e., some parts are free to be designed
by the modeler in the way that no requirements are not violated. We propose to
translate communication requirements into sequences, as a sequence is intended
to represent some excerpt of the complete behavior.

Definition 5 (Sequence). A sequence is a tuple seqm = 〈nm, Cm,Mm〉 where
nm is its identifier, Cm ∈ C a finite set of components and a finite set of mes-
sages Mm ∈ M .

Each sequence describes some communication between different modules speci-
fied as messages [23].

Definition 6 (Message). A message m = 〈source, target, o, val, v, index〉 is a
tuple with a source ∈ Cm and a target ∈ Cm representing the origin and desti-
nation component of the message m. Further, the tuple consists of a operation
o. Each operation o must be discrete, meaning each parameter paro ∈ o shall
be valued. This is expressed through the function val : PARo → V , which labels
every parameter with a concrete value with respect to its type. v is the return
value of the operation and index sorts all messages of a sequence seq.

An example sequence is given in Fig. 3, it depicts the behavior described in
PZB4. Three actors are imported from the architecture: ti, otc and indusi. indusi
checks whether a 2000 Hz magnet has been overrun (cf. magnetTransited(2000))

Fig. 3. An example sequence derived from the requirement PZB4: If a trackside induc-
tor is passed the active onboard transmitter coil induces a voltage.

Correct Formalization of Requirement Specifications 115

or not. Every time a voltage is inducted from ti into otc an overrun shall be
symbolized. The exchanged messages utilize operation defined in the architecture
shown in Fig. 2.

3.4 Phase D: Formal Implementation

During this phase the formal model is implemented. In order to ensure traceabil-
ity, we propose to generate a formal skeleton from the UML model which had
been build from the requirements. Thereby, we retain the option to later use spec-
ifications, automatically generated from the corresponding UML sequences, to
build integration tests (see Sect. 3.5). Further, it is possible to provide traceabil-
ity links from the formal implementation tool to the corresponding requirement.
However, the modeler has to complete the formal model manually by defining
the complete behavior, i.e., modeling all necessary state variables and transition
rules.

Definition 7 (Formal Model). We define a formal model fm as a tuple fm =
〈FC, SPEC〉 of a finite set of formal components FC and a finite set of formal
specifications SPEC.

Definition 8 (Formal Component). A formal component fc ∈ FC is tuple
fc = 〈n, V, T, F, FCSub〉 where n is the name, V is a finite set of state variables
and a set of transition rules T . FCSubp is the set of subcomponents in fcp where
∀fcp ∈ FC : fcp /∈ FCSubp . F is a set of formulae, whereas a formula f =
〈n, t, prop〉 is a tuple with an identifier n, a type t and a proposition prop. Thus, a
formula is a stateless, parameter-free, typed and named expression that commonly
is an abbreviation for conditions.

Using formal components and formulae, we are able to define a translation
from the previous defined UML subset (cf. Sect. 3.2) into a formal model fm. In
order to translate the architecture, every component c ∈ C has to be transformed
into a formal component fc. We define a translation function transComp : C →
FC with

〈n, P,CSub〉 	→ 〈n,⊥,⊥,⊥, {transC(CSub) ∪ transP (P)}〉. (4)

It generates for every component c ∈ C a formal component fc with the same
identifier. Further, it recursively invokes the translation of every subcomponent
in CSub. Note that state variables and transition cannot be generated as the
architecture does not contain a behavioral definition.

Every port in c has to be translated using transP : P → FC with

〈n, i, t〉 	→ 〈n,⊥,⊥, transI(i),⊥〉. (5)

This generates a new formal component for each port with the same identifier.
Further, it invokes the translation transI (cf. Eq. 6) for the interface. It returns
the formalization of an interface provided or required by the port. The function
transI : I 	→ F translates an interface into a set of formulae where

116 M. Filax et al.

〈n,A,O〉 	→ {transA(A) ∪ transO(O)}. (6)

The formalization of an attribute is specified by transA : A → F , whereas

〈n, t〉 	→ 〈n, t,⊥〉. (7)

It transforms an attribute with name and type into a formula with the same
name and type. The proposition is empty, because its value is not defined by the
attribute.

A given operation is translated into a set of formulae with transO : O → F .
With the ‘.’ operator, we access an attribute of the object, e.g., pari.type access
the type of parameter pari.

〈n, t, PAR〉 	→ {〈ncall, bool,⊥〉, 〈npari , pari.type,⊥〉, ...,
〈nparj , parj .type,⊥〉, 〈nreturn, t,⊥〉}. (8)

Every operation is translated into a formula representing the method call, a
formulae for every parameter and a formula representing the return. Note that
the propositions cannot be generated as the complete intended behavior is not
defined in UML. Thus, the propositions have to be denoted manually.

Applying these translation rules to the UML model generates a formal model
with multiple components and formulae. Until now, assemblies have not been
considered. It can be done automatically by linking the call, parameter and
return formulae in the code of the formal model. An interface provided by a
port exposes methods to other components. Its methods must react on external
input and provide feasible return values, determined through the formal imple-
mentation of the modeler. Hence, call and parameter formulae are determined
through the requiring port. Methods not defined by an interface can not be
“invoked”. This increases the quality of the formal model as the modeler has
to use provided interfaces to “invoke” necessary behavior. In the formal model
return values have to be computed with respect to the method call and parame-
ter formulae.

An example is given in Listing 1.1. The example is denoted in the System
Analysis Modeling Language (SAML) [18]. A SAML model describes a set of
finite state automata. These are executed in a synchronous parallel fashion. An
automaton is described as a component that can contain state variables which
are updated according to a set of transition rules. An example is shown in line
1. As we described before, the formal skeleton does not contain any states or
transition rules, thus they are not shown here. Only formulae can be generated.
An example formulae is shown in line 4, typically it is used as an abbreviation for
typed expressions. Valid types are bool, integer, floats, and previously specified
enumerations. In addition to components and formulae, traceability links are
generated. These links are added as structured comments (cf. lines 1, 2 and 8).
They are used by the VECS-IDE, to provide one-click tool support, for tracing
formal elements to their original requirement (in the requirement specification
IDE). Note that we use the abbreviations ti and otc for the components trackside
inductors and onboard transmitter coils. Further, we abbreviate inductPower and
magnetTransited with iP and mT.

Correct Formalization of Requirement Specifications 117

Listing 1.1. Formal skeleton generated from the architecture given in Fig. 2.

1 component t i //<<t race>> PZB3
2 //<<t race>> PZB5
3 component i nduc to r s
4 formula bool i P c a l l := nu l l ;
5 formula int i P f r e q := nu l l ;
6 endcomponent
7 endcomponent
8 component i ndu s i //<<t race>> PZB9
9 //<<t race>> PZB5

10 component bus
11 formula bool mT call := nu l l ;
12 formula int mT freq := nu l l ;
13 formula bool mT return := otc . bus . mT return ;
14 endcomponent
15 endcomponent
16 component otc //<<t race>> PZB2
17 //<<t race>> PZB5
18 component bus
19 formula bool mT call := indu s i . bus . mT call ;
20 formula int mT freq := indu s i . bus . mT freq ;
21 formula bool mT return := nu l l ;
22 endcomponent
23 //<<t race>> PZB5
24 component c o i l s
25 formula bool i P c a l l := t i . i nduc to r s . i P c a l l ;
26 formula int i P f r e q := t i . i nduc to r s . i P f r e q ;
27 endcomponent
28 endcomponent

Having the formal skeleton generated, the model needs to be manually com-
pleted by the modeler. The modeler has to systematically formalize all state
requirements manually. If completed, the correct formal implementation shall
be validated. Utilizing control data, a formal modeler is able to test single for-
mal components through its behavioral triggers. Depending on overall project
structure, the specification of the control data is either indirectly defined through
requirements (e.g. it can be inherited from state requirements) or it can be gener-
ated through state-of-the-art algorithms (e.g. [3]). The corresponding assertions,
representing the test checks, have to be formalized as temporal logic specifica-
tions and executed using a model checker.

3.5 Phase E: Integration Testing

The correct integration of every single formal unit is validated during this phase.
Having the correct behavioral integration formally validated can help finding
requirement specification errors by proving mathematically that the given behav-
ior is underspecified or inconsistent. The modeler can identify erroneous behavior

118 M. Filax et al.

and trace the corresponding transitions rules through the UML to their origin
in the SRS with counterexamples calculated by the model checker.

In order to efficiently ensure the correct behavioral requirement formaliza-
tion, we utilize the UML behavior descriptions. We defined sequences to rely on
the architecture, thus, every message of a sequence is well-defined and invoked
from one component to another. This is, because a message symbolizes a method
call and/or return with a parameter configuration and a return value.

Under these assumptions, we can automatically formalize every sequence. We
propose to generate a specification for every sequence such that it evaluates to
true if the correct method call/return with the specific parameters is invoked
in the correct order. Applying these semantics to the running example we can
generate the branching-time logic specification shown in Listing 1.2.

Listing 1.2. Formal specification generated from Fig. 3.

1 SPEC EF(i ndu s i . bus . mT call = true & indus i . bus . mT freq = 2000
↪→ & EF(otc . bus . mT return = fa l se & EF(t i . i nduc to r s . i P c a l l
↪→ = true & t i . i nduc to r s . i P f r e q = 2000 & EF(i ndu s i . bus .

↪→ mT call = true & indus i . bus . mT freq = 2000 & EF (otc . bus

↪→ . mT return = true))))) ;

However, this specification does not generate a witness – a proof that the
specified path exists in the state space. Thus, we propose to translate every
specification into an acceptor automaton [26]. A witness can then be calculated
by constructing a specification such that it evaluates to true if there is globally
no path to the final valuation of the acceptor. The model checker then computes
a counterexample providing a path such that the sequence is fulfilled which can
be used during a safety assessment in order to argue about the feasibility of the
formal model.

3.6 Phase F: System Testing

The goal of the system testing phase is to ensure that the formal implementa-
tion is tested for compliance. To do so, we utilize the safety requirements defined
in the SRS. Safety requirements typically state unwanted hazardous behavior or
states of system components or the whole system. With the help of the described
architecture these requirements can be translated into temporal logic specifica-
tions. Further, state-of-the-art model checkers can be used to evaluate these
specifications and objectify the assessment.

We use PZB8 to demonstrate the manual extraction of a safety specification
from the running example. PZB8 states that a magnet transit triggers different
safety relevant action, e.g. an emergency stop of the train. Thus, an overrun shall
not be missed. Utilizing the architecture defined in phase B the following linear
time logic formula was developed:

G((iPcall = true ∧ iPfreq = 2000) ⇒
(mTcall = true ∧ mTfreq = 2000 ∧ mTreturn = true)) .

(9)

Correct Formalization of Requirement Specifications 119

With respect to the formal architecture depicted in Listing 1.1 the formula
can be translated into the specific formal language as follows:

Afterwards, a state-of-the-art model checker computes whether the specifi-
cation holds or not. If so, the formalization of the requirements is correct. If
not, the model checker generates a counterexample indicating where an error is
stated. Then, the modeler has to manually locate the error and conclude dif-
ferent solutions. The manual translation of state requirements can be erroneous
which has to be resolved. If the formal behavior is correct, the UML model can
be faulty. Further, the SRS can be under specified or erroneous. Thus, the pro-
posed approach can either be used to validate if a formal model violates the
SRS, the UML model is not consistent or if the SRS is erroneous.

Listing 1.3. Final formal specification generated from Eq. 9.

1 //<<trace>> PZB8

2 SPEC G((t i . i nduc to r s . i P c a l l = true & t i . i nduc to r s . i P f r e q =
↪→ 2000) => (i ndu s i . bus . mT call = true & indus i . bus . mT freq

↪→ = 2000 & otc . bus . mT return = true))

3.7 Phase G: Acceptance Testing

Acceptance testing aims to validate if the system meets its user requirements.
Cimperman defines user acceptance tests as the validation if the system works
for the user [10].

In phase A user requirements have been identified and have been modeled in
UML as use cases. In order to objectify the test a use case is refined with multiple
sequences. This is necessary, because a use case does not specify behavior in
terms of the architecture. Using sequences refines a use case with the underlying
architecture. Thus, we can use the same mechanism as described phase E (cf.
Sect. 3.5) to verify the validity: acceptor automata. This eliminates a manual
review of use cases.

4 Using the V-Model to Formalize the PZB

We demonstrate the proposed approach on a real world example from the rail-
ways domain: the “Punktförmige Zugbeeinflussung”. The PZB is a train protec-
tion system which uses three different kind of trackside and onboard magnets
to detect speed limitations and signals in order to ensure the safety of the train
with automatically breaking actions if speed limits or signals are ignored. The
German Federal Railway Authority issued a SRS with over 770 text fragments.
These fragments were indexed, inter-linked and categorized resulting in over 500
functional requirements. A domain expert identified 18 use cases from four user
requirements refined through 13 sequence diagrams.

An UML model with ten components, 19 ports and eleven interfaces has been
derived from 45 glossary and 35 architecture requirements. Further, we identi-
fied 62 methods with 17 parameters where 32 were non-void from 129 property
requirements. 23 sequences have been exemplary derived from 38 communication
requirements.

120 M. Filax et al.

We developed elaborate tool support integrated in the verification environ-
ment VECS [17]. We generated a formal skeleton in SAML [18] with 29 formal
components with 226 different formulae. 73 state requirements have been for-
malized into 76 state variables and 164 transition rules. Further we added 129
components, 228 formulae for readability purposes. In order to test the behavior
of single formal units, a variety of individual tests have been developed.

Further, 23 acceptor automata have been generated with 23 state variables
and 1037 update rules. Using the IC3 approach [28] of NuXMV [6] a variety of
errors have been found. Typical errors found were incorrect value assignments
across different components. With the proposed approach these mistakes have
been found systematically. At the end of the integration testing phase, each
acceptor automaton provided a witness for its corresponding sequence. These
witnesses were used to demonstrate feasibility of the formal model and as a
proof for the correctness of the process method.

Further, 30 safety specifications have been checked with the k-liveness app-
roach [9] of NuXMV. Especially underspecified behavior in the SRS has been
found during this phase. For example, stopping the train directly on an trackside
inductor has not been mentioned in the SRS. Using the proposed approach, a
counterexample has been generated describing the unintended behavior in detail.
With the help of the requirement links the intended behavior was traced to the
SRS, where the requirements had been extended to cover this behavior. After-
wards, the faulty behavior definition has been fixed in the formal model.

In order to validate if the developed formal model does fulfill all user stories,
the refined use cases have been formalized into additional acceptor automata.
Through their formalization and executing using the IC3 approach, we proved
the correct implementation of all required use cases.

Following the proposed approach for building a “correct” formal model
improved the quality and feasibility of the PZB model. Architecture and behav-
ior for the model had been specified more systematically. Further, traceability
of requirements had be achieved by automatically adding structured comments
as requirements links. These links helped identifying faulty behavior and getting
deeper insight the formal model. Generating automated tests cases also improves
the quality of the model. This is, because erroneous behavior had be found much
more systematically.

5 Conclusion and Further Work

In this paper, we proposed a process in order to formalize even large system
requirement specifications while preserving traceability through all stages. We
apply the well known V-model to ensure the correct transformation of require-
ments. Doing so, we ensure that a formal model is developed which is mathe-
matically proven consistent to a set of requirements.

This was done by categorizing requirement fragments and transforming them
into UML. It ensures that domain experts, not familiar with formal verification
techniques but with a set of UML artifacts, can review the generated formal ver-
ification results and trace them to their origins. Further, we proposed a method

Correct Formalization of Requirement Specifications 121

to transform an architecture into a formal representation without the need of
generating state variables. We showed how to transform partial UML behavior
to ensure a correct a formal model. By utilizing state-of-the-art model check-
ers manual reviewing of correct formal behavior specification was eliminated.
Further, we have shown how to validate mathematically that the formal model
fulfills every use case specified in the requirements.

Finally, we successfully applied the proposed process on a real world system
requirement specification from the railway domain. We were capable of finding
and correcting specification errors in all three formalization stages: we found
inconsistencies in the informal requirements, manual transformation errors in
UML artifacts and faulty behavior in the formal model.

We plan to apply and extend the proposed methodology in an even larger
case study: In cooperation with the German Federal Railway Authority, we will
formalize a subset of the European Train Control System requirement specifi-
cation in order to prove its functional safety. We will develop new mechanisms
to support a broader subset of UML artifacts like combined fragments, activity
diagrams and state charts. Further, we will extend the process in order to work
in cooperation with state-of-the-art code generators and develop new method-
ologies to ensure the consistency of the generated code and the developed formal
model.

Acknowledgment. The work presented in this paper is funded by the German Min-
istry of Education and Science (BMBF) in the VIP-MoBaSA project (project-Nr.
16V0360).

References

1. Boehm, B.W.: Verifying and validating software requirements and design specifi-
cations. IEEE Softw. 1, 75–88 (1984)

2. Bose, P.: Automated translation of UML models of architectures for verification
and simulation using spin. In: ASE, pp. 102–109. IEEE (1999)

3. Brill, M., Buschermöhle, R., Damm, W., Klose, J., Westphal, B., Wittke, H.: For-
mal verification of LSCs in the development process. In: Ehrig, H., Damm, W.,
Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) INT
2004. LNCS, vol. 3147, pp. 494–516. Springer, Heidelberg (2004)

4. Burmester, S., Giese, H., Hirsch, M., Schilling, D.: Incremental design and formal
verification with UML/RT in the FUJABA real-time tool suite. In: SVERTS, pp.
1–20. Citeseer (2004)

5. Carnevali, L., Grassi, L., Vicario, E.: A tailored V-model exploiting the theory of
preemptive time petri nets. In: Kordon, F., Vardanega, T. (eds.) Ada-Europe 2008.
LNCS, vol. 5026, pp. 87–100. Springer, Heidelberg (2008)

6. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg (2014)

7. CENELEC: 50129. Railway Applications: Safety Related Electronic Systems for
Signalling (1998)

8. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: From informal requirements to
property-driven formal validation. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008.
LNCS, vol. 5596, pp. 166–181. Springer, Heidelberg (2009)

122 M. Filax et al.

9. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012)

10. Cimperman, R.: UAT Defined: A Guide to Practical User Acceptance Testing.
Addison-Wesley Professional, Upper Saddle River (2006)

11. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

12. David, A., Möller, M.O., Yi, W.: Formal verification of UML statecharts with real-
time extensions. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 218–232. Springer, Heidelberg (2002)

13. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: on branching
versus linear time temporal logic. J. ACM 33, 151–178 (1986)

14. Fecher, H., Schönborn, J., Kyas, M., de Roever, W.-P.: 29 new unclarities in the
semantics of UML 2.0 state machines. In: Lau, K.-K., Banach, R. (eds.) ICFEM
2005. LNCS, vol. 3785, pp. 52–65. Springer, Heidelberg (2005)

15. Filax, M., Gonschorek, T., Lipaczewski, M., Ortmeier, F.: On traceability of infor-
mal specifications for model-based verification. In: IMBSA 2014: Short & Tutorial
Proceedings, pp. 11–18 (2014)

16. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the composi-
tional verification of real-time UML designs. In: ESEC/FSE, pp. 38–47 (2003)

17. Gonschorek, T., Filax, M., Lipaczewski, M., Ortmeier, F.: VECS - verification
enviroment for critical systems - tool supported formal modeling an verification.
In: IMBSA 2014: Short & Tutorial Proceedings, pp. 63–64 (2014)

18. Güdemann, M.: Qualitative and quantitative formal model-based safety analysis.
Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg (2011)

19. Lano, K., Clark, D., Androutsopoulos, K.: UML to B: formal verification of object-
oriented models. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS,
vol. 2999, pp. 187–206. Springer, Heidelberg (2004)

20. Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural subset
of UML statechart diagrams using the spin model-checker. FAC 11, 637–664 (1999)

21. Lilius, J., Paltor, I.P.: Formalising UML state machines for model checking. In:
France, R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 430–444. Springer, Heidelberg
(1999)

22. Lilius, J., Paltor, I.P.: vUML: A tool for verifying UML models. In: ASE, pp.
255–258. IEEE (1999)

23. OMG: OMG Unified Modeling Language (OMG UML), Superstructure. Object
Management Group (2011)

24. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML.
TOSEM 15, 92–122 (2006)

25. Tang, W., Ning, B., Xu, T., Zhao, L.H.: Scenario-based modeling and verifica-
tion of system requirement specification for the european train control system. In:
Computers in Railways XII, pp. 759–770 (2010)

26. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS, pp. 322–331. IEEE (1986)

27. Varró, A.: A formal semantics of UML statecharts by model transition systems. In:
Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS,
vol. 2505, pp. 378–392. Springer, Heidelberg (2002)

28. Vizel, Y., Grumberg, O., Shoham, S.: Lazy abstraction and sat-based reachability
in hardware model checking. In: FMCAD, pp. 173–181. IEEE (2012)

Static Verification of Railway Schema
and Interlocking Design Data

Alexei Iliasov(B), Paulius Stankaitis, and David Adjepon-Yamoah

Newcastle University, Newcastle upon Tyne, UK
alexei.iliasov@ncl.ac.uk

Abstract. The paper presents an experience of verifying a large scale,
real-life dataset describing various aspects of railway station design. We
discuss how a number of assorted digital artefacts were pooled together
and converted into a set-theoretic model over which a type inference
procedure is run. The typed model is then used to confirm or contradict
logical conjectures over data elements. We employ a number of state-of-
the-art SMT solvers as a verification back-end. The project is ongoing but
has already identified a number of issues in topology definition and sig-
nalling data that were missed by other automated tests and not revealed
by simulation tools.

1 Introduction

The SafeCap project has been working on railway modelling and formal ver-
ification for nearly five years. The original view consisted in fitting a railway
description into a formal setting through the means of a formal domain spe-
cific language [4]. Such a language enables formal and automatic verification of
integrity of a schema and its signalling as well as operational safety. True to
the well respected practice in computing science, a strict top-down approach
was used where a formal model spanning abstraction levels of increasing fidelity
covered concepts of safety (e.g., something bad should not happen), principles
of safety (e.g., route-based signalling) and implementation of safety principles
(ladder logic diagrams for interlocking) [1]. However, the reality turned out to
be far more fragmented and fluid to insist on a strict top-down view.

Collaboration with Siemens Rail Automation UK led to the realisation that
railway models, i.e., a description of a station, are rarely available in their entirety
while the scale of a project and the pace of changes make it unrealistic to under-
take an unhurried top-down validation. The variety of ways employed in the
industry to capture the same artefact both at conceptual and syntactic levels
(say a schema rendered as a track topology or node/edge model and persisted
in XML or LDL format) makes it much harder to come up with a universal ver-
ification pipeline. And at the signalling implementation level one finds a medley
of proprietary technology, notations and tools.

It is increasingly evident that safe and efficient exploitation of a railway net-
work depends on detailed and up to date knowledge of network characteristic

c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 123–133, 2016.
DOI: 10.1007/978-3-319-33951-1 9

124 A. Iliasov et al.

spanning from macroscopic details of station and line capacity to precise char-
acterisation of track side equipment positioning, capabilities and state. Given
the scale and importance of such data, a modern railway operation critically
depends on data acquisition and storage that are suitably supported by higher
level activities of modelling, analysis and planning.

At the purely technological level, storage and distribution of large amount of
data is no longer a challenging problem. The issues of scaling, querying, replica-
tion and persistence are well researched by the data science community.

A far harder problem, however, is to make sure that collected and stored
data makes sense, especially in the presence of incremental updates and non-
trivial semantic overlaps in data originating from differing companies. A data
collection exercise carried out as merely a dutiful recording and redistribution
of incoming data is bound to result in a situation where same information is
duplicated and triplicated with slight changes and ever accumulating number of
inconsistencies making data interpretation increasingly difficult and the data less
valuable overall. What we endeavour to achieve in SafeCap is a way to ‘interpret’
data without human involvement and through this validate and normalise it to
deter ‘data rot’ while enabling much more semantically involved data querying
and processing.

One solution is defining a set of mechanisable validation rules that apply
automatically every time a new piece of data is added to a storage. At the
simplest level a rule is a piece of code (say, a stored routine for a database
engine) which role is to go through entries and check for known signs of mismatch.
This will undeniably save a great amount of time. However, given the scale of
the challenge - real-life examples contain hundreds of distinct concepts - a new
challenge arises almost immediately. Since the responsibility is now delegated to
validation code, such code has to be developed, verified and maintained to the
highest standard. This is a difficult task and, to start with, the formal verification
of a piece of code requires a formal model of its intended behaviour to check
against. What SafeCap offers is having just a formal model of data semantics
and a technique to match it, automatically, against a piece of data.

The technique comprises two stages: container agnostic extraction of a formal
model describing source data and model validation. To avoid a dependency on
certain syntax and container, the information necessary for validation comes in
the form of typed relations. We use a certain mathematical framework for rep-
resenting and classifying relations and their typing constraints. Any structured
data may be rendered as a collection of relations and, if it meets minimal con-
sistency requirements, relation types may be inferred. This process is completely
automatic and does not require any knowledge about structure or purpose of data
source. It applies equally to structured textual formats and relational databases.

2 Formal Model

We build a simple conceptual model of a railway operation. The basic premise is
that railway track is a contended resource and there is a number of actors that

Static Verification of Railway Schema and Interlocking Design Data 125

affect each other by consuming and freeing track resources. The basic unit of
consumption is a block. We do not define how small or large a block is in terms
of physical track; the block concept may be used for route-based and moving
block (ERTMS) signalling.

A pre-existing model of data semantics would speak about mathematical
relations as well; specifically the kind of relations that are permitted and consid-
ered well-formed. But these would generally be different from extracted relations
and with differing types. However, in such a formal setting it is not necessary to
translate source data into a new format: a potentially dangerous exercise that
may alter source data semantics. In its stead, one defines a formal link model
that semantically links extracted data model with the verification model. The
link does not need to be total: some elements of source may be uninterpreted
while some concepts of semantics might have no direct counterpart. Unlike a
software translator tool, such link model is generally not executable as we don’t
need actual translation of data to perform verification. At the same time it is
terse and white-box and can be easily evolved with the changes in source data
formats.

Once these three models - source data, link and semantics - are put together
we have a model that is consistent, when all model parts are in an agreement,
or not. The check is performed via automated theorem proving using a range
of state-of-the-art automatic verification tools. If the check fails, the reason can
often be narrowed down to a specific source data structure and semantic model
constraint.

Railway Track Topology. The first step is to define constraints on track topol-
ogy, that is a graph of blocks. For instance, track graph must have nodes of only
degree one (boundary), two (normal), three (point) and four (diamond crossing).
There should be no cycles, self-loops and disjointed sections. Points and diamond
crossings should not appear as boundary nodes.

Definition 1 (Track topology assumptions).

finite(BLOCK) (1)
next ⊆ BLOCK × BLOCK (2)

BLOCK = ran(next) ∪ dom(next) (3)
next ∩ (BLOCK � id) = ∅ (4)

next closure ⊆ BLOCK × BLOCK (5)
next closure;next = next closure (6)

next closure; (BLOCK � id) = next closure (7)
first = dom(next) \ ran(next) (8)
last = ran(next) \ dom(next) (9)

points ⊆ BLOCK (10)
. . . (11)

126 A. Iliasov et al.

Signalling Model. At the most abstract level we observe blocks being con-
sumed and freed. This is a high-level metaphor for train movement and
point/route locking. The following diagram shows three blocks consumed at
some point of time.

The model of behavior is given in a formal notation called Event-B. The first
model is extremely simple and defines one variable consumed ⊆ BLOCK (the
set of consumed blocks) and two events (actions) to consume and free blocks.

Definition 2 (Abstract model).
consume �
any b where

b ∈ BLOCK \ consumed
then

consumed := consumed ∪ {b}
end

free � any b where b ∈ consumed then consumed := consumed \ {b} end

Refinements. The abstract consume/free model is gradually refined to capture
route-based signalling based on a control table. We introduce the notion of actors
and keep track of which actor consumes which block. There are two main actor
kinds: the control actor that consumes only points and diamond crossing; and a
train actor that may consume any block kind. The following depicts a situation
where three blocks are consumed by three different actors (red, green and black
- colours differentiate into block reservation and train occupation).

We make model realistic by requiring that train actors consume contiguous
blocks and also keep track of train orientation. A train actor may only appear
and disappear (that is, consume its first block) on a boundary block; it may also
reverse its direction when its head is on a buffer stop block. At this stage, trains
travel through a point or crossing in any direction (even when point topology
would not allow this). The following diagram shows occupation and reservation
for directed trains (a triangle in block depicts train head):

The subsequent refinements introduce the notion of train path through a
schema; point and diamond crossing states, and the concept of block locking.
Now a block may only be consumed once it is locked for a given actor (a slanted

Static Verification of Railway Schema and Interlocking Design Data 127

stripe in the diagram below). For a control, the consumed state corresponds to
the switching time of points and crossings. A train may only lock a point or
crossing block if the block is in the right state for the train path. Hence, we
might observe the following sequence of actions of train B to travel through
some point block X after train A travelling over a conflicting route.

– free block X for train A
– lock block X for control
– consume block X for control
– free block X for control
– lock block X for train B
– consume block X for train B

The final stage is to introduce the notion of a route as a sequence of blocks.
Once the individual blocks of a route are locked, an actor may lock the route
made of the locked blocks. Train head movement has a dedicated action for
switching between two routes.

While a train actor is forced to inspect a route locking state, it is also directly
inspecting the state of blocks in front. To make the behaviour localised we intro-
duce conditions defining when a locked route may show one of proceed aspects.
It is then formally proven that inspecting route state alone is sufficient to ensure
train safety.

Definition 3 (Move train head onto a next route). Localised version.
move head new route �
any h, i , j ,nr , t where

t ∈ dom (train seq)
h = train seq (t) (train seq head (t))

j = line (train line (t))−1 (h)

i = line routes (train line (t))−1 (train head route (t))
i + 1 ∈ dom (line routes (train line (t)))
nr = line routes (train line (t)) (i + 1)
route aspect (nr) ≥ PROCEED

then
train seq head (t) := train seq head (t) + 1
train seq (t) := train seq (t) ∪ {(train seq head (t) + 1) �→ line (train line (t)) (j + 1)}
locking := {line (train line (t)) (j)} �− locking
train head route (t) := nr
route locking := {train head route (t)} �− route locking
route aspect (nr) := STOP

end

The diagram below shows blocks numbered with route indices. In reality, the
same block may be attributed to several routes.

128 A. Iliasov et al.

5

1 2

3

41 1 2

2 3

4 4

5 5

The model is still fairly abstract but covers all the essential aspects of safety
principles: we prove freedom of collision and derailment. We have not considered
many advanced properties such as absence of deadlocks, provision and treat-
ment of overlaps, flank protection and etc. These may be introduced in next
refinements of increasing fidelity.

3 Reading Station Dataset

The testing ground for the technique is a simulation data set provided by Siemens
Rail Automation UK. The data is made of roughly 12MB of XML and structured
text files describing topology and signalling of Reading station with signalling
split into three overlapping interlocking areas. The diagram in Fig. 1 provides an
indication of the scale of the studied data. The diagram was rendered directly
from a subset of the data which include the visual layout for tracks.

One immediate issue was that a part of the data is not XML but a propri-
etary text-based format called LDL (originating at Invensys Rail). The SafeCap
Platform has an import facility for LDL files but this silently ignores unknown
data fields. We thus developed a new, more basic import tool that treats XML-
based and LDL-based data on the same footing of an abstract relation-based
data representation.

There is a considerable overlap between various parts of this data set. Many
of them are not trivial to spot and for historic reason same elements are some-
times known under differing names. In addition, no provision for distinguishing
between sets of elements and a sequence of elements. A strict interpretation
would require regarding any multiplicity as a sequence or a tuple rather than a
set. This is inefficient from the verification viewpoint. To counter this, we allow
a user to manually demote sequence and tuples types into set types. For the case
of tuples, a unified type (which might not exist for incompatible types) is used.

Fig. 1. Rendering of Reading Station track layout data as a track schema from a subset
of the dataset (produced by SafeCap Platform). Black and orange (light gray) circles
are signal and fixed speed limit positions; triangles denote train stopping points.

Static Verification of Railway Schema and Interlocking Design Data 129

3.1 Reading Station Verification

The formal model presented above is used to validate Reading St. data. There is
no simple correspondence between the data structures used in our formal abstrac-
tion and the real-life data characterizing Reading St. Yet some correspondence
is bound to exist since both define, in their own way, a railway schema and
route-based signalling.

Our verification technique consists in matching a data set against the assump-
tions of formal behaviour model (such as, for instance, given in Definition 1. This
means there is no danger of state explosion and verification is comprehensive and
conclusion, when it can be reached, is definite.

In the source dataset, there is a significant amount of duplication. Some cases
are not trivial to spot and for various reasons same elements may, at times,
be known under differing names. At the structural level there is no indication
whether a collection of elements is a sequence or a set. A strict interpretation
necessitates sequences at all times but this make it harder to write and check
verification conditions. When data is imported, all such cases are treated as
sequences and user can do one of two things: manually demote type to set, or
request that there should be a separate, set based view of the same data. Thus,
for instance, relation r ∈ A → seq(B) can be replaced by some r′ ∈ A → pow(B)
or r and r′ may be present at the same time together with an axiom statement
r′ = r; (λt. ran(t)).

The process of verification consists in positing a conjecture and checking it
by combing with the data model to see if a contradiction arises. For instance, to
check no two train detection circuits overlap we can state the following:

P1 := [∀ t, s, a, x, y, b, i, j .
t : TrackSection and s : TrackSection and t �= s and
a 	→ x 	→ y : ran(“TRACK CIRCUIT.M SECTION”(t)) and
b 	→ i 	→ j : ran(“TRACK CIRCUIT.M SECTION”(s)) and
a = b

⇒x > j or y < i]

Here “INTERLOCKING.M SECTION” is a function name defined in a data
source (detailed station topology). It is taken intoquotes to escape characters clash-
ing with operator syntax. Expression ran(“TRACK CIRCUIT.M SECTION”(t))
defines all pieces of a graph defining the sub-graph of a train detection circuit. This
gives a set of tracknames.Thecondition checks thatany twodistinct traindetection
circuit t and s do not physically overlap.

The statement is conjoined with the mathematical model of source data H
to form conjecture H � P1. The conjecture undergoes a conservative filtering
to remove parts of data model H irrelevant to P1 and form a less constrained
model Hf where H ⊆ Hf . The typing information is removed and all the literal
values are encoded as integers. The un-typing and coding process has fairly
modest impact on proof success per se but without it some tools cannot ingest
and parse otherwise typically a very large input file. Every condition is checked
twice - once in the positive (i.e., as given) form and once in the negative form.

130 A. Iliasov et al.

Both cases must have a definite answer (that is, unknown result for either case
renders the whole condition false) so that a conjecture is assumed to hold only
when its positive is truth and the negative is false. The double check addresses
potential well-definedness problems such as applying a relation outside of its
domain or having self-contradictory data model.

When a conjecture of the form ∀x.P (x) is found to be false it is, at times,
possible to obtain a witness for ∃x.¬P (x) from the verification back-end. And for
certain types of expressions (sequences and sets and single elements of signals,
routes, tracks, points, etc.) a counter-example may be visualised on a track
diagram.

3.2 Verification Results

We went through all the conditions (47 total) of track topology assumptions
from Definition 1. In the process we have found that one condition does not
hold:

Condition (18) of Definition 1 states that edge (sink) blocks may not be
points or diamond crossings. However, we found a counter-example: track
UpReaWestC.

The majority of verification load is concerned with routes and signalling
rules. The data set does not define possible train paths but defines routes. The
analysis revealed a fair number of broken conditions but nearly all of these turned
out to be due to cutting of signalling data across interlocking area boundaries.
A simple aggregation of data leads to basic well-formedness problems, i.e., same
entity is defined twice. But throwing out overlapping data seems to produce a
number of validation errors. For instance

Mappings between track circuit and a sub-route must agree in both direc-
tions:

∀r.r ∈ “ILTrackSectionControlTables.SubRoutes”⇒
r ∈ “ILSubRouteControlTables.TrackSection”−1

There is a number of counter-examples.

and also

In a control table, track circuits locked that must be locked for a point
must be among the required track sections of a route. It is an essential
safety conditions and is rendered as the following property.

id(dom(“ILRouteControlTables.NormalPoints”)) ⊆
(“ILRouteControlTables.NormalPoints”;

“ILPointsControlTables.NormalLockingTrackSections”;

“ILRouteControlTables.TrackSections”−1)

Static Verification of Railway Schema and Interlocking Design Data 131

It does not hold for a number of cases when a route goes across interlocking
boundary.

There are six more issues that seems to arise due to basic data completeness
and consistency issues. This will need further investigation.

All in all, we have checked the data against 72 verification conditions and
the vast majority of the conditions were discharged. All the conditions were han-
dled completely automatically by a collection of theorem provers and constraint
solvers. It takes less than 2 min to go through all the conditions for the whole
station.

The majority of unsatisfied conditions exhibit the same pattern of incomplete
definitions and seem to be stemming from the issue of splitting and then re-
assembling signalling data for the three interlocking areas.

4 Discussion

Perhaps the most prevalent validation technique in the railway industry is simu-
lation. Simulation engines range from coarse-grained time stepping of a national
railway network to a detailed model of various aspects of mechanical perfor-
mance of specific rolling stock over certain track. Validation concerns span from
the analysis of digital communication protocols connecting trains and regional
control to stressing of tunnels and bridges by passing trains. Simulation is widely
applied for time table optimisation and interactive 3D simulation is sometimes
used for driver training. RailSys [12] and OpenTrack [10] are two of the more well-
known simulation suites applied in time table optimisation and general analysis
of signalling performance.

The main attraction of simulation is that it does not require deep under-
standing of railway functioning. Simulation tools present many aspects of rail-
way performance in an intuitive, visual manner helping to quickly obtain the
big picture of overall layout and signalling performance. There is, however, no
guarantee of safety as simulation can only ever consider a tiny proportion of all
scenarios.

The safety challenge of railways and the fact that collision and derail-
ment properties may be dealt with within the setting of discrete, inertia-less
train movement makes railway safety verification especially appealing for formal
method practitioners. The principal idea of railway model checking is quite sim-
ple: a model of train movement laws is combined with the definitions of track
topology and signalling rules. A model checking tool attempts to go through
all or many execution scenarios to confirm that unsafe scenarios are ruled out.
The list of modelling notations used in this setting is practically endless. Notable
examples include Coloured Petri nets [2], process algebra CSP [5], a continuation
work based on the model-based notation ASM [6], an algebraic language Maude
[3] and the B Method together with ProB model checking tool [9]. The latter can
also be used in the capacity of a property verifier for assertions written against
B or Event-B contexts. In this form ProB has been used for the validation of

132 A. Iliasov et al.

railway datasets [8] and this led to the development of a commercial toolset [11].
Our approach differs by the kind of properties we try to prove (safety principles
of signalling) and the provenance of verification constraints (an Event-B model
of signalling).

Model checking imposes limitations on the model size and performs best
with a relatively limited logical language. Theorem proving overcomes these
limitations and offers potentially unlimited opportunities for verifying safety
with the utmost level of rigour. Theorem proving is not necessarily an all-manual
process: there is a large and successful community developing automated theorem
provers [13]. At the moment, automated prove support is best in the domain of
first order logic and set theory; an attempt at reasoning about continuous train
dynamics is likely to require an intervention by a highly skilled verification expert
- the kind of people mostly found in academia.

Theorem proving, even with excellent tool support, requires a high level of
expertise in formal verification and mathematical modelling. The semantic gap
between logic and railway concepts is formidable. This leads to generally low
productivity (but we should notice efforts like the BART tool for automatic
refinement of B models [7]), difficulties in interpreting tool feedback, and posing
verification statements in a manner convincing to a non-expert reviewer.

References

1. Iliasov, A., Lopatkin, I., Romanovsky, A.: Practical formal methods in railways
- the SafeCap approach. In: George, L., Vardanega, T. (eds.) Ada-Europe 2014.
LNCS, vol. 8454, pp. 177–192. Springer, Heidelberg (2014)

2. Janczura, C.W.: Modelling and Analysis of Railway Network Control Logic using
Coloured Petri Nets. PhD thesis, School of Mathematics and Institute for Telecom-
munications Research, University of South Australia (1998)

3. Hagalisletto, A.M., Bjørk, J., Chieh Yu, I., Enger, P.: Constructing and refin-
ing large-scale railway models represented by Petri Nets. IEEE Trans. Syst. Man
Cybern. Part C 37, 444–460 (2007)

4. Iliasov, A., Romanovsky, A.: SafeCap domain language for reasoning about safety
and capacity. In: Pacific-Rim Dependable Computing Conference (PRDC 2012),
Niigata, Japan. IEEE CS, November 2012

5. Winter, K.: Model checking railway interlocking systems. In: Proceeding of the
25th Australian Computer Science Conference (ACSC 2002) (2002)

6. Winter, K., Robinson, N.: Modelling large railway interlockings and model checking
small ones. In: Proceeding of the Australian Cumputer Science Conference (ACSC
2003) (2003)

7. Burdy, L.: Automatic refinement. In: Proceedings of BUGM at FM 1999 (1999)
8. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the

railways. CoRR, abs/1210.6815 (2012)
9. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

10. OpenTrack simulator. http://www.opentrack.ch/

http://www.opentrack.ch/

Static Verification of Railway Schema and Interlocking Design Data 133

11. Abo, R., Voisin, L.: Formal implementation of data validation for railway safety-
related systems with OVADO. In: Counsell, S., Núñez, M. (eds.) SEFM 2013.
LNCS, vol. 8368, pp. 221–236. Springer, Heidelberg (2014)

12. RailSys simulation platform. http://www.rmcon.de
13. TPTP. Thousands of Problems for Theorem Provers. www.tptp.org/

http://www.rmcon.de
www.tptp.org/

Verification of Railway Interlocking -
Compositional Approach with OCRA

Christophe Limbrée1(B), Quentin Cappart1, Charles Pecheur1,
and Stefano Tonetta2

1 Université catholique de Louvain, Louvain-la-Neuve, Belgium
{christophe.limbree,quentin.cappart,charles.pecheur}@uclouvain.be

2 Fondazione Bruno Kessler, Trento, Italy
tonettas@fbk.eu

Abstract. In the railway domain, an electronic interlocking is a com-
puterised system that controls the railway signalling components (e.g.
switches or signals) in order to allow a safe operation of the train traffic.
Interlockings are controlled by a software logic that relies on a generic
software and a set of application data particular to the station under
control. The verification of the application data is time consuming and
error prone as it is mostly performed by human testers.

In the first stage of our research [3], we built a model of a small
Belgian railway station and we performed the verification of the appli-
cation data with the nusmv model checker. However, the verification of
larger stations fails due to the state space explosion problem. The intu-
ition is that large stations can be split into smaller components that can
be verified separately. This concept is known as compositional verifica-
tion. This article explains how we used the ocra tool in order to model
a medium size station and how we verified safety properties by mean of
contracts. We also took advantage of new algorithms (k-liveness and ic3)
recently implemented in nuxmv in order to verify LTL properties on our
model.

1 Introduction

In the railway domain, an interlocking is a signalling subsystem that controls the
routes, the switches and the signals before allowing a train through a station.
Computer-based interlockings are configured based on a set of application data
particular to each station. The safety of the train traffic relies on the correctness
of the application data. Usually, the application data are prepared manually
and are thus subject to human errors. For example, some prerequisites to the
clearance (e.g. green light) of the origin signal of a route can be missing. This
kind of error can easily be discovered by a code review or by testing on a simu-
lator. However, errors caused by concurrent actions (e.g. route commands) are
much harder to find. In this case, the combination of possible concurrent actions
explodes quickly and testing all possible combinations manually is impractica-
ble. The goal of our research is to develop a method based on model checking in
c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 134–149, 2016.
DOI: 10.1007/978-3-319-33951-1 10

Verification of Railway Interlocking - Compositional Approach with OCRA 135

order to verify the application data. Especially, our approach must scale-up and
allow the verification of real size interlocking areas.

In a previous work [3], we built a model of a small Belgian railway station
and we performed the verification of the application data with the nusmv model
checker. However the verification of larger stations fails due to the state space
explosion problem: the models are too big so that the model checker does not
give a result in reasonable time. In this paper, we therefore tackle the problem
with a compositional approach. The intuition is that large stations can be split
into smaller components that can be verified separately. We report on the usage
of the ocra tool in order to model a medium size station and on how we verified
safety properties by mean of contracts. We also took advantage of new algo-
rithms (k-liveness and ic3) recently implemented in nuxmv in order to verify
LTL properties on our model.

Outline. The paper is structured as follows. In Sect. 2, we give a brief overview
of the formal techniques that have been used in the case study. In the Sect. 3, we
describe our model and the new features that we have added compared to our
first model. In Sect. 4, we explain our verification strategy for larger stations. In
Sect. 5, we discuss the performance of our verification approach and show how
counter examples are produced when we insert errors in the application data.
References to related work are provided in Sect. 7.

2 Contract Based Verification

2.1 Symbolic Model Checking

Model checking [15] is a method to formally verify that a system is correct.
In symbolic model checking [20], a system M is described by a finite set V of
variables, the initial states are represented by a formula I over V , while the
transitions by a formula T over the variables V and V ′, where V ′ represent the
value of V after a transition. In the scope of this paper, we consider finite-state
systems. Thus, without loss of generality, we can consider V as Boolean variables
and formulas in propositional logic.

A state is an assignment to the variables in V . An initial state is a state that
satisfies I. A transition is a pair of states that satisfy T . A path is a sequence
σ = s0, s1, s2, . . . of states such that s0 is an initial state (s0 |= I) and, for every
i ≥ 0, si, si+1 is a transition (si, si+1 |= T). A state s is reachable if there is a
path s0, s1, s2, . . . such that s = si for some i ≥ 0.

In this paper, we specify transition systems in SMV [20], the input language
of different model checkers such as nusmv [8] and nuxmv [5]. Safety properties
have been formalized by invariants, i.e. formulas over V that must be satisfied
by all reachable states. Temporal properties have been formalized into LTL [21],
which uses temporal operators to specify the temporal evolution of the transition
system. The typical LTL formula we consider is in the form G (φ1 → Fφ2), where
φ1 and φ2 are state formulas over V . It means that whenever φ1 is true along
an execution, φ2 is true in a state that follows along the trace.

136 C. Limbrée et al.

2.2 nuXmv: Verification of Components with K-Liveness and IC3

In the case study we use nuxmv to prove invariants and LTL properties. In par-
ticular, we use the IC3 algorithm to prove invariants and the k-liveness algorithm
for LTL properties.

IC3 [2] is a SAT-based algorithm for the verification of invariant properties of
transition systems. Very briefly, the idea of IC3 is to build iteratively a sequence
of formulas F0, F1, . . . , Fk such that (i) F0 = I, (ii) for all i > 0, Fi is a set of
clauses, (iii) Fi |= Fi+1, iv) Fi(V) ∧ T (V, V ′) |= Fi+1(V ′), and v) for all i < k,
Fi |= P where P is the property that we want to verify. The formulas Fi are
therefore over-approximations of the state space reachable in up to i transitions.
They are iteratively strengthened and extended by generalizing clauses while
disproving candidate counterexamples. The procedure terminates when either a
counterexample is found or when Fi = Fi+1 for some i so that Fi is an inductive
invariant that proves P .

In [7], IC3 has been integrated with predicate abstraction (PA) [18]. The app-
roach leverages Implicit Abstraction (IA) [23], which allows to express abstract
transitions without computing explicitly the abstract system, and is fully incre-
mental with respect to the addition of new predicates.

k-liveness [13] reduces liveness to a sequence of invariant checking. It uses a
standard approach to reduce LTL verification for proving that a certain signal
f is eventually never visited (F G ¬f). The key insight of k-liveness is that,
for finite-state systems, this is equivalent to find a K such that f is visited at
most K times, which in turn can be reduced to invariant checking. k-liveness is
therefore a simple loop that increases K at every iteration and calls a subroutine
safe to check the invariant. In particular, the implementation in [13] uses IC3
as safe and exploits the incrementality of IC3 to solve the sequence of invariant
problems in an efficient way.

2.3 OCRA: Contract-Based Compositional Approach

In this paper, we adopt a compositional contract-based approach and we use the
framework supported by the ocra tool [10]. In particular, we specify component
interfaces in terms of Boolean data ports and LTL contracts.

The ocra input language is a component-based description of the system
architecture where every component is associated with one or more contracts.
Each contract consists of an assumption and a guarantee specified as LTL for-
mulas. The assumption represents a requirement on the environment of the com-
ponent. The guarantee represents a requirements for the component implemen-
tation to be satisfied when the assumption holds.

When a component S is decomposed into subcomponents, the contract refine-
ment ensures that the guarantee of S is not weakened by the contracts of the
subcomponents while its assumption is not strengthened. This is checked inde-
pendently from the actual implementation of the components and is verified by
means of a set of proof obligations in LTL, which are discharged with model
checking techniques [12].

Verification of Railway Interlocking - Compositional Approach with OCRA 137

ocra allows to associate to a component a behavioral model representing
its implementation. The language used for the behavioral model is SMV. ocra
checks if the SMV model is a correct implementation of the specified component
simply calling NuSMV to verify if the SMV model satisfies the implication A →
G for every contract 〈A,G〉 of the component.

3 System and Model Description

In this section, we describe the station, the model, and two new features of our
model that are the directional locking and the sequential release.

3.1 The Station

Braine l’Alleud station, shown in Fig. 1, is a medium size Belgian railway sta-
tion comprising 32 routes, 12 switches, 12 signals, and 4 platforms (101-104).
A platform is a section of pathway, alongside rail tracks at a railway station,
metro station or tram stop, at which passengers may board. A route is a line of
railway track between two signals on a rail system (e.g. route R CC 102 from
signal CC to track 102 - signal JC). The station can be decomposed into two
separate nearly symmetrical parts comprising 16 routes each: M1 and M2.

091

092

011

012

T_02BCT_01AC

T_01BC

T_
04

C

T_11BC

T_10C

T_07BC

T_07AC T_08BC

T_09C

A B
BSI

DX-C

E-C I-C

C-C

CG-C

CX-C

J-C KX-C

K-CJX-CDC

F-C

101

102

103

104

M1 M2

Fig. 1. Track layout of Braine station

3.2 Composite System

The two parts of the station (i.e. M1 and M2) are not totally independent but
have interfaces. These interfaces materialize a mutual exclusion mechanism pre-
venting two trains to head for a platform in opposite direction at the same time
(e.g. routes CC 101 and KC 101). Such routes are called conflicting routes. The
exercise then consists in defining the system and its components, the interaction
among the components, and try to prove some global properties on the system
by making assumptions on the environment of each component.

The cuts (i.e. M1 and M2) are chosen so-that: (1) the number of interface
variables is minimum, and (2) it sticks to the principle of distribution between
interlockings applied in larger stations. The same principle will be applied to two

138 C. Limbrée et al.

interlockings sharing a section. As shown in Fig. 2, the system is made of three
components: M1, M2, and C1. Partial Listing 1.1 shows how the components,
and the interfaces are defined in ocra. The components: M1, M2, and C1 are
implemented in SMV language.

1 COMPONENT BraineLL system
2
3 REFINEMENT
4
5 SUB Bra ineLe f t : M1;
6 SUB BraineRight : M2;
7 SUB Cont r o l l e r : C1 ;
8
9 CONNECTION Bra ineLe f t . BSIB 101 := BraineRight . BSIB 101 ;

10 . . .
11
12 COMPONENT M1
13
14 INTERFACE −− From Environment
15 INPUT PORT BSIB 101 : boolean ;
16 . . .
17
18 COMPONENT M2
19
20 INTERFACE −− From Environment
21 OUTPUT PORT BSIB 101 : boolean ;
22 . . .

Listing 1.1. System definition in ocra

The components are defined by means of the SUB keyword. The interfaces
are defined as INPUT or OUTPUT (e.g. BSIB 101 is an output for M1 and
an input for M2). The INPUT and OUTPUT are connected by mean of the
CONNECTION keyword.

Figure 2 shows how the components are connected by interfaces. The L CS
OUTPUT variable (=TRUE) is an output of the system and states that the
route is set and the origin signal at proceed aspect (e.g. the route R CC 102 is
set and signal CC is green). The Controller outputs the cmdR variable stating
that the controller has issued a route command. The Rongo{1,2} INPUT vari-
able provides an acknowledgement that the route command has been properly
processed by the interlocking. The two M1 and M2 interlocking components
exchange the state of the platform track-circuits and the state of the BSI. A
track-circuit is an electrical circuit that detects the presence of train in a block
of track. The four track-circuits at the platform can be occupied by a train
running in either M1, or M2. The BSI variable allows for mutual exclusion of
conflicting routes leading to the same platform. The principle of functioning of
the BSI is explained in Sect. 3.4.

Verification of Railway Interlocking - Compositional Approach with OCRA 139

BraineLeft BraineRight

System

T_10[1-4]_1

T_10[1-4]_2

BSIA_10[1-4]

BSIB_10[1-4]

L_CS forall routesL_CS forall routes

Rongo1 cmdR forall routes Rongo2

Controller

Fig. 2. Architecture of the composite system

3.3 M1 and M2 Models

Figure 3 depicts the internal architecture of the M{1,2} component. Each com-
ponent is implemented in an SMV model. All the modules represent a function
achieved by the interlocking except for the train module. In fact the train module
allows to simulate the interact of the interlocking with its environment.

Track
components

Trains
2 3

M2 cmdR

T_10[1-4]

BSIX_10[1-4] Input

Output

Interlocking 1

SMV
mod.

Fig. 3. Architecture of the SMV interlocking model

The interlocking module is directly translated from the application data by
mean of a translator tool described in [3] and models the routes and the locking
logic of the switches. Upon a route request, the interlocking (1) verifies that
the route can be set and then controls the track components accordingly. A
proceed aspect (e.g. green) is sent to the origin signal of the route when the
switches are locked in correct position and the track-circuits are clear (i.e. no
other train is present on the route). Finally the interlocking detects the trains
movement, releases the route and unlocks the resources used by the route. The
track components (2) record the status of the track-side objects. For example:

140 C. Limbrée et al.

for a switch upon a command, the instance verifies that it is not locked before
allowing the transition from one position to the other (e.g. left to right). The train
modules (3) rely on the track layout of the station. When a signal is at proceed
aspect, it simulates a train movement by actuation of the track components.
This module is built independently of the application data by mean of a DSL
(Domain Specific Language). The train module is local to M{1,2} as it is built
based on the track layout of its component.

3.4 BSI Interface Explained

In order to prevent head to head train collisions, the interlocking use a locking
mechanism (i.e. BSI - Blocage du sens intermittent in French) that prevent two
train to head for the same platform in opposite direction. Figure 4 illustrates
how the BSI variables are actuated upon a route command.

For each platform, two locking variables are used (e.g. BSIA 102 and
BSIB 102 for platform 2). When no route is set towards platform 102, the
two variables have a permissive value (Free). Upon a route command (e.g.
R CC 102), the BSIA 102 variable is set in a restrictive state (Locked). The
routes in opposite direction (e.g. KC 102) are thereby blocked and the signal
KC can never be commanded to a proceed aspect (e.g. green). The BSIA 102
variable regains its permissive value when the train has reached platform 102.

BSIA 102 f

BSIB 102 f

BSIA 102 l

BSIB 102 f

BSIA 102 f

BSIB 102 l

R CC 102 cmd

R KC 102 cmd

Train has reached platform 102

Train has reached platform 102

Fig. 4. Directional locking for platform 102

3.5 Sequential Release

When the interlocking grants access to a route, it locks all the resources that will
be run through by the train: typically all the switches and the track-circuits. This
prevents different routes that share those resources to be set at the same time.
Such routes are called conflicting routes. Normally those resources are unlocked
when the train has completely run through the route. They then become available

Verification of Railway Interlocking - Compositional Approach with OCRA 141

for other routes. In large stations, it might be interesting to unlock the resources
sequentially allowing them to be used by other routes before the train has totally
run through. This contributes to improve the train traffic.

The principle of sequential release is illustrated in Fig. 5: the first route
R DXC 091 is set and prevents the second route R DXC 092 to be set. The
following switches are locked: P1A: left, P2B: right, and P3: right. According to
the sequential release principle, the second route is set when the train T2 is on
the track-circuit T 01AC and when the track-circuit T 02BC is free.

CX-C

C-C

091

092
T_01BC

T_02BCT_01AC
102

101

1) R_DXC_091
2) R_DXC_092

T2

P1A

P1B P2A

P2B

P3

T1DX-C

D-C

Fig. 5. Sequential release example

4 Verification

The decomposition of one interlocking into several components allows to perform
the verification on smaller models (one for each component) and thus limits the
so-called state space explosion problem. Therefore we have used two different
methods to verify the application data of Braine station: the first takes advantage
of the ocra compositional verification tool and the second uses the nuxmv tool
to verify local properties.

The compositional verification applies to the safety properties that imply
an interaction between the two components. Those properties are expressed by
mean of contracts. An example of contract is given in Listing 1.2.

A second set of properties are verified straight on each component (i.e. M1
and M2) with nuxmv. Several instances of nuxmv can be started at the same
time in order to reduce the computation time of the verification.

4.1 Compositional Verification

Conflicting Routes Controlled by Two Different Components. The
routes R CC 101 and R KC 101 are conflicting because they share the same

142 C. Limbrée et al.

platform as a destination and the corresponding safety property is expressed by
the formula: P = G!(R CC 101 LCS & R KC 101 LCS) - routesTowards 101
in Listing 1.2. Equation (4.1) shows how this property is verified by composi-
tion of the M1 and M2 modules. The first premise states that when the route
R CC 101 is set and origin signal is clear (i.e. R CC 101 LCS is true), the mutual
exclusion property (!BSIA 101 & BSIB 101) is true. The second premise states
the same property (P2) for the route R KC 101. P1 and P2 are respectively
CC 101 OK and KC 101 OK in Listing 1.2. ocra performs the verification of
these two properties with nuxmv. The third premise states that the first two
premises entail the global property P . Finally when all three premises are true,
the composition of the components M1 and M2 verifies the global property P .

In other words, if each component (i.e. M1 and M2) properly blocks the
access to a shared platform when it controls a route, then the other component
will not be able to control a conflicting route for the same platform.

(Premise 1) M1 |= P1

(Premise 2) M2 |= P2

(Premise 3) P1 ∧ P2 |= P

M1‖M2 |= P

Equation 4.1: Compositional verification of conflicting routes property involving
the M1 and M2 components

1 CONTRACT routesTowards 101
2 assume : always TRUE;
3 guarantee : always (R KC 101 LCS −> ! R CC 101 LCS) ;
4
5 CONTRACT routesTowards 101
6 REFINEDBY M1. CC 101 OK , M2. KC 101 OK ;
7
8 CONTRACT CC 101 OK
9 assume : TRUE;

10 guarantee : always (R CC 101 LCS −> (! BSIA 101 &
BSIB 101)) ;

11 CONTRACT KC 101 OK
12 assume : TRUE;
13 guarantee : always (R KC 101 LCS −> (! BSIB 101 &

BSIA 101)) ;

Listing 1.2. Contract definition for conflicting routes towards platform 101 involving
the M1 and M2 components

Listing 1.2 illustrates how the conflicting routes contract for the routes
R KC 101 and R CC 101 is specified. First a top level contract (routesTo-
wards 101) specifies that the two routes cannot be set at the same time. The
top level contract is then refined by two contracts that apply on M1 and M2:
KC 101 OK and CC 101 OK respectively. These two contracts allow to verify

Verification of Railway Interlocking - Compositional Approach with OCRA 143

that the M1 and M2 components handle the BSI locking mechanism properly.
The syntax of the language is given in [11].

4.2 Local Safety Properties

The term Local Properties designates the properties that are not influenced by
the environment of the component on which they are verified. Those properties
are verified on each component SMV model with nuxmv. Due to the space
limitation, those properties will not be explained in detail but examples are
provided in Listing 1.3. They are expressed in two different ways:

– By mean of invariants (lines 1 to 5)
– By mean of LTL formulas and especially by using the ic3 algorithm (lines 6

and 7)

1 check invar −p ” ! (M1. t1 . f r on t = de r a i l e d) ”
2 check invar −p ” ! (M1. t1 . f r on t = M1. t2 . f r on t) ”
3 check invar −p ” ! ((M1. T 01AC . s t = o) & M1. P 01AC . willMove) ”
4 check invar −p ” (M1. R CXC 103 . L CS −> !M1. R EC 091 . L CS) ”
5 check invar −p ” (M1. f 1 .U CXC 13C . s t=l −> (M1. f 1 . U 13C 15C .

s t = l xor M1. f 1 .U 13C DXC . s t = l)) ”
6 c h e c k l t l s p e c k l i v e −p ”G (M1. U IR 01AC . s t = l −> ((M1.

P 01AC . pos i = cdr −> X M1. P 01AC . pos i = cdr) & (M1.
P 01AC . pos i = cdn −> X M1. P 01AC . pos i = cdn))) ”

7 c h e c k l t l s p e c k l i v e −p ”G((M1. T 01AC . s t = o & M1.TRP CC. krc
= s) −> X (!M1. R CC 101 . L CS & !M1. R CC 102 . L CS & !M1.

R CC 103 . L CS & !M1. R CC 104 . L CS)) ”

Listing 1.3. Local properties

Explanation of the properties:

– Line 1: the train never derails. A derailment happens when a train takes a
trailing point in reverse direction.

– Line 2: two trains never collide. This is done by verifying that their front never
reaches the same track segment at the same time.

– Line 3: a point never move when its home track-circuit is occupied.
– Line 4: conflicting routes are not set at the same time. This formula verifies

the same property as the contracts defined in ocra.
– Line 5: the sub-routes are released in the correct sequence.
– Line 6: a point never moves when its latching variable is in restrictive state.

These formulas are checked by mean of k-liveness (see [14])
– Line 7: signal replacement. The origin signal of a route is immediately com-

manded to red (replaced) when the train occupies the first track-circuit of
the route and has triggered the first passage sensor. This prevents a second
train to use the same authorization (i.e. signal green).

144 C. Limbrée et al.

5 Results and Performance

In this section, we discuss the performance of our verification approach based on
composition and local verification. We also illustrate how we validate the model
and the properties by error seeding.

5.1 Performance

The tests were performed on 2.3 GHz i7 MacBookPro with 4 GB of RAM running
under OS 10.11. Tables 1, 2, and 3 illustrate the results (in terms of computation
time), which we achieve using different methods and different models. “BDD”
refers to the fix-point algorithm using BDDs (see [15]); “SAT(ic3)” refers to the
ic3 algorithm using a SAT solver as backend (see [2]); “SMT(ic3)” refers to the
ic3 algorithm integrated predicate abstraction using an SMT solver as back-end
(see [7]).

Table 1. Performance of the verification of invariants on monolithic models

Model Tool Method Properties Duration

1 Monolithic model NuSMV BDD Invariants > 1 day

2 Partial monolithic model NuSMV BDD Invariants > 1 day

3 Monolithic model NuXMV SAT(ic3) 10 × Invariants 123 s

4 Monolithic model NuXMV SMT(ic3) 10 × Invariants 80 s

Table 1 reports the performance of the verification of the application data for
the station described in Sect. 3. Line 1 shows that nusmv could not terminate in
one day. After reducing the size the state space by allowing only 16 routes to be
commanded, nusmv could build the reachable state space in 6 days and verify
invariants (line 2). One of the features of ocra is to allow to rebuild a monolithic
(32 routes) model based on the definition of the system. The verification of
invariants is therefore possible. The results clearly show that ic3 with predicate
abstraction performs better than plain ic3, and that both outperform the BDD-
based algorithm on this case study.

Table 2. Performance of the verification of the contracts by ocra

Model Tool Method Properties Duration

5 Contract refinement ocra - 4 × Contracts 7,34 s

6 Implementation M1 ocra ic3 4 × Contracts 5,6 s

7 Implementation M2 ocra ic3 4 × Contracts 14,94 s

8 Composite monolithic ocra ic3 4 × Contracts 1242 s

Table 2 illustrates the performance of the verification of the contracts and
their implementation. Line 5 corresponds to the verification of the premise 3 of

Verification of Railway Interlocking - Compositional Approach with OCRA 145

Eq. (4.1) (P1∧P2 |= P). Lines 6 and 7 are respectively related to the verification
of the premisses 1 and 2 (M1 |= P1 and M2 |= P2). The sum of the duration of
these 3 tasks gives the time needed by ocra to check the coherence between the
contracts and their implementation in the SMV models (i.e. ≤ 28 s). This time
is to be compared with the 1242 s needed by ocra to verify the same contracts
and implementations on a monolithic model.

Table 3. Performance of the verification of the local properties

Model Tool Method Properties Duration

9 M1 NuXMV BDD 197 × Invariants 123 s

10 M2 NuXMV BDD 199 × Invariants 424 s

11 M1 NuXMV SAT(ic3) 12 × LTL 960 s

12 M1 NuXMV SMT(ic3) 12 × LTL 20 s

13 M2 NuXMV SAT(ic3) 12 × LTL 1036 s

14 M2 NuXMV SMT(ic3) 12 × LTL 740 s

Finally Table 3 illustrates the verification of the local safety properties on the
M1 and M2 components. Two approaches are used: first some invariants are
verified with nuxmv and the standard BDD and second 12 LTL properties are
verified with the ic3 algorithm. An order file based on [26] is used to optimize the
BDD structure. ic3 with abstraction and the SMT MathSAT solver outperforms
ic3 with MiniSAT in this context in an order of magnitude close to 50.

5.2 Error Seeding

In order to gain confidence in our model and properties, we have seeded errors
in the model by removing some safety conditions in the route proving condi-
tions1. As expected, ocra could not prove the safety property and produced a
counterexample. Listing 1.4 shows that the property is false (line 1) because the
route R KXC 101 is set (line 30) whereas the BSIB 101 is TRUE (line 5).

1 LTL spec G (R KXC 101 LCS
−> (! BSIB 101 &
BSIA 101)) i s f a l s e

2 Trace Desc r ip t i on : IC3
counterexample

3 −> State : 2 . 1 <−
4 . . .
5 BSIB 101 . s t = TRUE
6 . . .
7 −> Input : 2 . 2 <−
8 cmdR = R KXC 101

9 −> State : 2 . 2 <−
10 R KXC 101 . cmd = TRUE
11 . . .
12 −> Input : 2 . 3 <−
13 cmdR = R KXC 103
14 −> State : 2 . 3 <−
15 R KXC 101 . s t = s
16 . . .
17 −> State : 2 . 4 <−
18 U IR 09C . s t = l
19 U IR 07BC . s t = l

1 Conditions to give a proceed aspect on origin signal of the route.

146 C. Limbrée et al.

20 BSIA 101 = TRUE
21 U IR 07AC . s t = l
22 U 16C JXC . s t = l
23 U 18C 16C . s t = l
24 U KXC 18C . s t = l
25 . . .
26 −> State : 2 . 5 <−
27 R KXC 101 . s t = rsu

28 T 101 . s t = c
29 T 101 1 = FALSE
30 R KXC 101 LCS = TRUE

(Route i s s e t)
31 KXCopen = TRUE

Listing 1.4. Error trace generated after
error seeding in the model

6 Related Work

Many works applied model checking to interlocking systems. One of the first
work dates back to 1998 and is described in [6]. However, as also concluded
in [17], although small scale interlocking systems can be addressed by model
checking, interlockings that control medium or large railway needs to tackle the
state-space explosion problem. As shown also in [9], a single approach is often
not sufficient to prove all properties and sometimes a combination of approach
may dramatically improve the performance.

Compositional approach is one method to reduce the complexity of the ver-
ification but is not the only one. For instance, Cappart et al. [4] introduced a
method based on discrete event simulations. The idea is to do not verify all
the states but to limit the verification to a set of likely scenarios. However this
method does not provide enough confidence that all the errors in the application
data will be detected.

In [19,25], Winter shows how to compute optimized variable and transition
orderings in order to speed-up the symbolic model checking of railway interlock-
ings with NuSMV. She also reported on her findings on how to set the threshold
for cluster.

In [26], Winter et al. modelled the interlocking by means of the formal nota-
tion ASM that are more readable. The formal model is translated in NuSMV
code and the Safety requirements are expressed in CTL.

In [16], Peter Duggan (Siemens Rail Automation, UK) and Arne Borälv
(Prover Technology AB, Sweden) have demonstrated that the Prover2 tools were
successfully used to generate and test the configuration data of a realistic size
UK station.

In [24], Haxthausen et al. detailed how they modelled an ETCS level 2 com-
patible Danish interlocking with the RT-Tester. The state space, the transi-
tion relation and the safety properties are efficiently evaluated by the SMT
solvers that support bit vector and integer arithmetic. The model also include
the sequential release feature.

In [27], Xu et al. verifies hybrid safety properties of Automatic Collision
Avoidance System (ACAS) in the European Train Control System (ETCS). They
verify those properties using Compositional Verification rules based on weakly
monotonic time extension.

2 http://www.prover.com.

http://www.prover.com

Verification of Railway Interlocking - Compositional Approach with OCRA 147

In [1], Antoni et al. have developed a SIL4 interlocking that uses the Petri
Nets as application data. In [22], Dutilleul et al. have also used the Petri Nets
in order to define a model pattern of railway interlocking.

7 Conclusions and Future Work

Conclusions. The verification of medium and large interlocking data is still a
challenge due to the state space explosion problem affecting the model checking
process. Our main contribution was to achieve the verification of the application
data of a medium size railway interlocking by mean of compositional verification.
In order to do that, we modelled our case study interlocking as a composite of
smaller interlocking components in ocra and SMV language. The verification
of the safety properties (expressed as contracts) was performed with ocra and
nuxmv tools.

We have also added the sequential release functionality into our interlock-
ing model. This functionality allows to increase the throughput of the railway
network by releasing the route components earlier.

Finally, we have achieved the verification of LTL properties in efficient time
thanks to the usage of the new ic3 algorithm implemented into nuxmv. The ver-
ification of the local components can be paralleled by running several instances
of nuxmv at the same time.

Future work. In our future work, we will continue to refine the structure of
the interlocking composite into adequate components (e.g. train). Our goal is
to be able to verify safety properties on a network of interlockings by mean of
compositional verification.

We will continue to develop the automatic translator tool in order to convert
the application data of a network of interlockings into ocra language.

Another goal is to develop a model of an IL/ETCS installation in order to
verify safety properties related to the train dynamic characteristics (i.e. speed
and position). In order to do that we will extend our train module in order to
make it continuous.

References

1. Antoni, M., Ammad, N.: Formal Validation Method and Tools for French Com-
putorized Railway Interlocking Systems, pp. 1–10, June 2008

2. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

3. Busard, S., Cappart, Q., Limbrée, C., Pecheur, C., Schaus, P.: Verification of rail-
way interlocking systems. In: Proceedings 4th International Workshop on Engi-
neering Safety and Security Systems, ESSS 2015, Oslo, Norway, June 22, 2015, pp.
19–31 (2015). http://dx.doi.org/10.4204/EPTCS.184.2

4. Cappart, Q., Limbrée, C., Schaus, P., Legay, A.: Verification by discrete simulation
of interlocking systems. In: Proceedings of the 29th Annual European Simulation
and Modelling Conference, EUROSIS, October 2015

http://dx.doi.org/10.4204/EPTCS.184.2

148 C. Limbrée et al.

5. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg (2014)

6. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.:
Formal verification of a railway interlocking system using model checking. Formal
Aspects Comput. 10, 361–380 (1998). doi:10.1007/s001650050022

7. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via
implicit predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014
(ETAPS). LNCS, vol. 8413, pp. 46–61. Springer, Heidelberg (2014)

8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

9. Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M.,
Sanseviero, A., Tchaltsev, A.: Formal verification and validation of ERTMS indus-
trial railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012)

10. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A tool for checking the refinement
of temporal contracts. In: ASE, pp. 702–705 (2013)

11. Cimatti, A., Dorigatti, M., Tonetta, S.: Ocra: Othello Contracts Refinement Analy-
sis Versions 1,3. FBK (2015)

12. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Sci. Comput. Program. 97, 333–348 (2015)

13. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In:
FMCAD, pp. 52–59. IEEE (2012)

14. Claessen, K., Sorensson, N.: A liveness checking algorithm that counts. In: For-
mal Methods in Computer-Aided Design, FMCAD 2012, Cambridge, UK,
October 22–25, 2012, pp. 52–59 (2012). http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=6462555

15. Clarke, J.E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

16. Duggan, P., Borälv, A.: Mathematical proof in an automated environment for rail-
way interlockings. IRSE News Issue 217, Institution of Railway Signal Engineers,
2–6 December 2015. www.irse.org

17. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: FORMS/FORMAT, pp. 107–115 (2010)

18. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

19. Johnston, W., Winter, K., van den Berg, L., Strooper, P., Robinson, P.: Model-
based variable and transition orderings for efficient symbolic model checking. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 524–540.
Springer, Heidelberg (2006)

20. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell
(1993)

21. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
22. Sun, P., Collart-Dutilleul, S., Bon, P.: A model pattern of railway interlocking

system by Petri nets. In: 2015 International Conference on Models and Technologies
for Intelligent Transportation Systems (MT-ITS), pp. 442–449, June 2015

23. Tonetta, S.: Abstract model checking without computing the abstraction. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 89–105. Springer,
Heidelberg (2009)

http://dx.doi.org/10.1007/s001650050022
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462555
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462555
www.irse.org

Verification of Railway Interlocking - Compositional Approach with OCRA 149

24. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of
interlocking systems featuring sequential release. In: Artho, C., Ölveczky, P.C.
(eds.) FTSCS 2014. CCIS, vol. 476, pp. 223–238. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-17581-2 15

25. Winter, K.: Optimising ordering strategies for symbolic model check-
ing of railway interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part II. LNCS, vol. 7610, pp. 246–260. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-34032-1 24

26. Winter, K., Robinson, N.J.: Modelling large railway interlockings and model check-
ing small ones. In: Oudshoorn, M. (ed.) Twenty-Fifth Australasian Computer Sci-
ence Conference (ACSC 2003), pp. 309–316 (2003)

27. Xu, T., Tang, T., Gao, C., Cai, B.: Logic verification of collision avoidance system
in train control systems. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 918–
923, June 2009

http://dx.doi.org/10.1007/978-3-319-17581-2_15
http://dx.doi.org/10.1007/978-3-642-34032-1_24

Safety Verification of Heterogeneous
Railway Networks

Paulius Stankaitis(B) and Alexei Iliasov

Centre for Software Reliability, Newcastle University,
Newcastle upon Tyne, UK

{paulius.stankaitis,alexei.iliasov}@ncl.ac.uk

Abstract. Formal verification of safety-critical systems is crucial for
demonstrating their safety to the certification bodies. In particular, the
railway network validation requires rigorous analyses and the use of for-
mal methods to meet railway standards. This student paper outlines
objectives and the current progress of the work on verification of com-
plex railway networks consisting of the areas with different signalling and
interlocking.

1 Introduction

1.1 Background and Motivation

The modernisation of railway systems is concerned with many improvement
aspects like capacity, energy or interoperability, however, one requirement has
to be preserved for any kind of development - safety. Railway certification stan-
dards require applying semi-formal or formal methods for description of the
system and even correctness validation [1]. The most popular formal description
languages used in the railway industry for modelling and requirement specifica-
tion are UML, B-Method and Petri Nets, whereas in the academic community
Communicating Sequential Processes (CSP) and Event-B have been used more
widely for railway modelling. The industry has been successfully applying these
formal techniques for safety reasoning for some time now with many application
examples currently in operation. Perhaps the finest example was the use of the
B-method in major railway projects including a Paris metro line and a more
complex New York Canarsie line [2].

In spite of formal methods success in the railway domain simulation tech-
niques are still extensively used by railway industry to ensure that safety stan-
dards are met within the system [3]. The simplicity of the simulation method
is the main driving force for its use, therefore, simulation tools like OpenTrack
[4] or RailSys [5] are widely used in the industry to design and analyse railway
systems. Even though, simulation tools are becoming more powerful nowadays
and even capable of mixed-signalling simulation the main drawback of this tech-
nique is a small state-space coverage. On the contrary the formal safety veri-
fication of railway networks is a complicated process, which requires expertise
in the mathematical modelling, however, it provides techniques to guarantee
c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 150–159, 2016.
DOI: 10.1007/978-3-319-33951-1 11

Safety Verification of Heterogeneous Railway Networks 151

safety for a complete state-space. A significant effort has been made by an aca-
demic research projects like SafeCap [6] to hide mathematical complexity and
allow railway engineers to use formal methods. In this particular project, formal
methods are being applied together with capacity, energy optimisation tech-
niques to improve railway networks. Despite of formal methods complexity, the
approach is increasingly receiving more attention from the industry. One of the
best examples is a company [7], which developed a formal methodology for the
railway network safety verification that has been applied in real projects.

European Union’s initiative to unify railway signalling systems and therefore
enhance interoperability aims to reduce the complexity of networks in the future.
However, replacing current systems will be done gradually due to financial and
time constraints, therefore, creating tangled railway networks with heterogeneous
signalling systems. The Crossrail Project [8] is just one of the examples, where
high capacity requirements will need to be met in a complex multi-signalling
network consisting of three different signalling types.

On the other hand, as it was demonstrated by Koning [9] specific layouts
or sections of the network are more suited with a particular signalling system,
therefore, railway networks can also benefit from the mixed-signalling in terms
of increased capacity.

Because of the high importance and close relation to our research in the next
subsection we provide an additional information about the academic project,
SafeCap, which aims to address many of optimisation, modelling and verification
issues in the railway domain.

1.2 SafeCap Project

The SafeCap project was started with the objective to overcome railway capacity
problems without weakening safety constraints. The key outcome of the first
stage of the project was a SafeCap tooling environment, which not only allowed
railway engineers to design and analyse railway junctions/stations, but also to
formally and automatically verify safety. The SafeCap platform was designed
to be easily configurable and extensible, so it could be used in various railway
optimisation and capacity assessment exercises.

At the core of the SafeCap framework is a compact and simple domain-
specific language, which was designed to enable railway engineers to use formal
techniques by hiding complexity of formal methods. The SafeCap domain-specific
language is used to define topological and logical properties for reasoning about
operational safety. A huge advantage of this language is the compatibility with
various automatic verification tools like a model-checker ProB or SMT constraint
solvers. The SafeCap project, also has strong industrial links and closely collab-
orates with industrial partners like Siemens Rail Automation to improve tooling
environment to fulfil industry needs.

152 P. Stankaitis and A. Iliasov

2 Research Aim and Technical Objectives

The aim of this PhD study is to a create a methodology and tool support for
modelling and verification of heterogeneous railway networks. In order to success-
fully achieve our aim we will need to make following advances: extend theoretical
foundations, improve verification and simulation techniques.

Theoretical foundations are needed for modelling complex heterogeneous rail-
way networks. Significant progress was achieved by Iliasov et al. [10], where a
domain-specific language was developed to demonstrate multi-agent system’s
operational safety. The objective of this work package is to build on this domain-
specific language and extend it to enable reasoning about heterogeneous rail-
way networks safety. The main challenge is discovering additional functionality
requirements for the extension of the domain-specific language.

The safety verification of complex models like mixed-signalling railway net-
works is a grand challenge and requires the state-of-the-art tool support. Railway
industry has been using simulation techniques to demonstrate that safety stan-
dards are preserved, however, these techniques cannot ensure safety for complete
state-space. The objective of this work package is to develop a verification tool,
which exploits modern automated reasoning techniques and would allows us to
demonstrate that even for railway networks with mixed-signalling we can verify
safety conditions for a complete state-space.

Last technical objective is to design a new flexible and expressive simulation
suite, which one could use to design existing or exotic signalling systems. Since,
the aim of the research is to enable us modelling a multi-signalling systems a
signalling library is vital. Therefore, a developed simulation tool will be used
to create a signalling library with multiple existing train control systems. Fur-
thermore, the development process of the signalling library will also help us to
identify additional features, which are needed for extending theoretical founda-
tions.

We aim to evaluate our research by demonstrating multiple examples of the
complete cycle of modelling and verification of artificial and real-world hetero-
geneous railway networks using data received from our industrial partners. In
particularly, we are interested in applying our methodology and tools to major
railway projects like the Crossrail or Thameslink.

All technical research outcomes will be integrated into the SafeCap platform,
which after the modifications will have a framework to support the design, analy-
sis and verification of heterogeneous railway systems. The SafeCap platform also
allows capacity and energy assessments, which could further support our motive
to investigate complex heterogeneous systems and their benefits.

3 Research Plan

In this section we provide a detailed research plan, which is visually represented
in the diagram below. Figure 1 illustrates connections and possible parallelism
between technical objectives we set in the previous section as well as particular

Safety Verification of Heterogeneous Railway Networks 153

development tasks we need to complete. In the diagram we highlighted two
essential design tasks in this research, which are discussed in greater detailed
and results are presented in this publication.

3.1 Theoretical Foundations: Unified Train Driving Policy

In the previous section we established a necessity to extend the current railway
modelling language, called Unified Train Driving Policy. Contrary to other gen-
eral modelling languages like [11,12] the UTDP language was developed with
a objective to target specifically railway engineers. Therefore, the syntax of the
formalism is easily readable and can be interpreted by railway engineers with-
out prior knowledge of formal methods. However, the current version of the
language is not capable of capturing complex heterogeneous railway network
models, hence, a significant effort will be put to modify the language, and also,
to prove the soundness and correctness of the new extended formal language.

From Fig. 1 we can see that work on extending this modelling language
depends on results from the simulation part. Throughout, the design of mul-
tiple train control systems we hope to identify additional formalism features.

3.2 Verification Techniques: Concept of the Tool

Heterogeneous railway network safety verification will require a cutting edge
tool support to validate these complicated models. In the introduction we dis-
cussed a problem of inadequate railway safety verification in the industry using
simulation techniques. In Sect. 2 we set an objective to address this problem
by developing a new tool, which uses modern state-of-the-art theorem proving
techniques to tackle the issue. Below we describe the concept of the plug-in and
the implementation plan.

Considering, a huge effort put and progress achieved in automated theo-
rem proving area by companies like Microsoft Research [13] and universities like
Manchester University [14], it was decided to tackle this complexity and scala-
bility problem by utilising leading theorem provers. Currently, there exists more

Fig. 1. Visual representation of the research plan

154 P. Stankaitis and A. Iliasov

than a dozen of different theorem provers, which are different in many aspects
e.g. input notation, performance. Although, this can be seen as advantage as
hosting a collection of them would increase the range of problems and success
rate of proving a safety condition, creating a link to each of them could be a
challenging task. Therefore, the foremost task is to address this problem and
create a tangible link between SafeCap platform and multiple theorem provers.

We decided to use a popular tool, called Why3 [15], which has been used fairly
widely in automated reasoning community to exploit multiple theorem provers
by providing a common interface. It has a straightforward input notation as well
as an additional library to support SMT-LIB solvers. An important feature of
the tool is the capability to import additional libraries, hence, allowing defining
other not built-in types or functions. We will use this tool property to define
new set-theoretic operators, which are used in the SafeCap platform modelling
language.

Theorem proving is a computationally intensive exercises, where success of
discharging a condition highly correlates with machines capabilities. Therefore,
we intend to support our verification tool with a cloud technology, which allows
computationally intensive tasks to be done remotely. Because of, cloud paral-
lelism capabilities this could yield significant improvements in terms of verifica-
tion time, also increase the number of discharged verification conditions.

Visual concept of the complete system is shown in Fig. 2, where we combine
the theorem proving and cloud technologies to enhance our verification capa-
bilities. The verification process is as follows: the SafeCap platforms generated
safety conditions in internal set-theoretic modelling language are translated to
Why3 input notation using our plug-in. The translated goals are then parsed to
the multiple theorem provers and results are collected, and transferred back to
the SafeCap platform.

The essential part of the tool development will be defining new set-theoretic
operators and axiomatizing them in Why3 language, we conjecture that it has
the most significant effect on discharging a safety conditions. The ongoing work
and results regarding this challenge are described in Sect. 4.1.

Fig. 2. Visual concept of the verification plug-in

Safety Verification of Heterogeneous Railway Networks 155

3.3 Simulation Techniques: Simulator and Signalling Library Design

The important and challenging technical objective of this research is the devel-
opment of the expressive railway simulator, which would provide a framework
for developing train control systems. Technical advances in this work will include
the development of expressive simulation tool and a signalling library.

First of all, existing rigid event-based SafeCap simulator, which currently
only supports a single route-based train control system needs to be replaced by
more flexible and expressive time-slicing simulator. The purpose of the new sim-
ulator is to enable us designing different types of signalling systems in order to
create heterogeneous railway networks. Expressiveness of the tool will provide
us with a framework to develop not only existing signalling systems like ETCS
or CBTC, but also some more exotic and unconventional interlocking systems.
The multiple developed signalling systems will form a SafeCap signalling library,
which we will be used model and experiment with multi-signalling railway sys-
tems.

3.4 Research Evaluation

Methodology and tool evaluation will be the final step in our research, where
we intend to use a combination of artificial and existing heterogeneous railway
networks to assess our developed tools and methodology. Nonetheless, before the
evaluation we need to assert a set of aspects under which we will be evaluating
our research. To easy research evaluation, we can divide the procedure into three
main parts with respect to technical objectives.

An extended theoretical semantics must be able to capture railway networks
with the mixed-signalling and also must be proved to be sound, and correct. To
validate this we can experiment with a variety of signalling system combinations
as well as real-world heterogeneous networks like Crossrail or Thameslink to
deduce if theoretical basis is adequate to create formal system models.

The evaluation of verification tool support will be completed by proving
multiple heterogeneous models with a developed verification plug-in and com-
paring results with already existing SafeCap verification tool set. Even though,
many can argue that a complete automation of verification process in particu-
larly of complex models is hardly achievable, we conjecture that with the modern
state-of-the-art provers we can achieve complete automation for at least the rail-
way domain. Furthermore, during the verification tool evaluation we can detect
missing operator axiomatisation properties and improve tool by including new
premises.

Finally, we will evaluate the simulation technique part of the research on the
basis of expressiveness and stability of the new simulator during the development
of signalling systems.

4 Ongoing Work and Results

In this section we present and discuss current progress and some of the results
with particular focus on the SafeCap modelling language operator axiomatisation

156 P. Stankaitis and A. Iliasov

and a moving-block train control system development. We choose to exclude
discussion and results of programming tasks like development of verification and
simulation tools as they have little relevance to this conference.

4.1 Verification Techniques: Set-Theoretic Operator Axiomatisation

Significant research effort was concentrated on defining set-theoretic operators
of the SafeCap platforms modelling language in the Why3 notation. The verifi-
cation tool will use these definitions to reason about safety conditions, therefore,
it is essential to have a sound and sufficient library of definitions. However, we
recognise that is arguably achievable to have a complete set of definitions, hence,
we leave the library open for further extensions in the future.

In order to demonstrate the importance and the function of axiomatisation
in a verification process, lets consider an example below. In Eq. 1, we define a
typical railway model topological constraint, which states that a route must be
non-empty [3]. A condition below contains an operator card, which represents a
cardinality operator. A cardinality, or else set size is a function, which takes a
set and returns the number of elements in that set.

∀r · r ∈ R → card(fst(r)) = card(lst(r)) = 1 (1)

In order to satisfy this condition we need to have a set of definitions about
cardinality operator in our library. In the example below, we show a fragment of
our operator library, which describes a set size function. To define an operator
one needs to specify parameters like input/output type, function name. Then,
using axioms define its properties, i.e. output of cardinality is greater or equal
to zero if the set is finite.

function card (set ’a) : int

axiom card_def0:
forall s: set ’a. finite s -> card s >= 0

We successfully defined all set-theoretic operators from the internal modelling
language, which resulted in a library with in total 78 functions and predicates.
To further define those operators in more detail we wrote 78 axioms and 115
lemmas.

The verification tool is already at the state, where it can translate safety con-
ditions generated by the SafeCap tool to the Why3 input notation and discharge
a significant number of verification conditions.

4.2 Simulation Techniques: Moving-Block Signalling Development

In this subsection we report on progress achieved in developing and experiment-
ing with signalling systems with particular focus on designing a moving-block
train control system using newly developed time-slicing simulator.

Safety Verification of Heterogeneous Railway Networks 157

The biggest effort in the development of a moving-block control system was
the design of the abstract algorithm. We applied a top-down approach and in
the initial step the algorithm was divided into two main parts: analysis and
operation. Analysis part of the algorithm was responsible for examining the static
information i.e. the layout topology, train parameters, timetable. Furthermore, it
was responsible for scheduling trains over shared resources like, points. Operation
stage of the algorithm used information generated in the analysis part together
with dynamic information like train speed, position, direction of points to control
the actors of the system (e.g. train speed, point direction). In order to use a
new simulator an abstract algorithm had be to translated into programming
language, which can be interpreted by the new simulator. At the moment, the
new time-slicing simulator only supports Java input.

To demonstrate the current implementation of the algorithm we use a small
single-line bridge scenario, where a fragment of the network is shown in Fig. 3. At
this development stage we are mostly concerned with testing algorithms analysis
part and refinement of the train speed control. In the current version of the
algorithm a train speed is adjusted to satisfy following condition:

– to maintain a safe train separation distance
– to cross points at allowed speed and in the scheduled order

Fig. 3. A fragment of single-line bridge layout with a moving-block signalling

In this experiment we introduced a small disturbance to test re-activeness of
the system, which made a one of the trains to slow down for a period of time.
We expected other trains to respond to this disturbance and respectively reduce
the speed in order to satisfy established conditions above. In Fig. 4 we project
the speed profiles of this experiment. As one can see from the figure below, the
chain reaction of the reducing speeds starts after the first trains starts to slow
down at around 80s. The second important point to take from this figure is
deceleration of trains before entering the points. It is important to note that
we currently at initial stage of the moving-block signalling development and
we testing the very basic properties. Nonetheless, we will gradually refine the
algorithm and implementation to represent a more realistic, and optimal train
control mechanism.

158 P. Stankaitis and A. Iliasov

Fig. 4. Speed profiles of trains under developed control system

4.3 Future Work

In our future work we will mostly concentrate on developing multiple railway
signalling systems and extending our theoretical foundations. On the short-term,
the foremost objective is completing design of a moving-block train control sys-
tem. A collection of developed signalling systems will enables us to identify
required additional theoretical functionality, thus, we will proceed our work on
extending theoretical foundations after we gained sufficient information from
signalling system development.

5 Conclusion

In the introduction authors discussed the initiative and issues of the process
to gradually unify signalling systems across Europe, and thus, create complex
heterogeneous railway networks. Furthermore, we raised an issue of insufficient
verification methods such as simulation technique used by the railway industry
to demonstrate systems safety to certification bodies.

In this research we set the aim to address these problems by developing
a methodology and tool support for modelling and formal verification of these
multi-signalling railway systems. We established three main technical advances in
theoretical, verification and simulation areas we need make in order to complete
the study goal and provided a detailed technical description of how we plan to
achieve this.

Safety Verification of Heterogeneous Railway Networks 159

Finally, the paper presented current results on axiomatisation of set-theoretic
operators and the progress on the development of a moving-block train con-
trol system. Authors decided not to include and discuss some of the technical
advances related to the tool development due to little relevance to the topic of
the conference.

Acknowledgements. This work is supported by the RSSB SafeCap+ project. We
are grateful to our colleagues from Siemens Rail Automation for invaluable feedback.

References

1. Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M.,
Sanseviero, A., Tchaltsev, A.: Formal verification and validation of ERTMS indus-
trial railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012)

2. Essamé, D., Dollé, D.: B in large-scale projects: the canarsie line CBTC experience.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254.
Springer, Heidelberg (2006)

3. Iliasov, A., Romanovsky, A.: SafeCap domain language for reasoning about safety
and capacity. In: Workshop on Dependable Transportation Systems at the Pacific-
Rim Dependable Computing Conference, Niigata, Japan (2012)

4. OpenTrack simulator. http://www.opentrack.ch/
5. RailSys simulation platform. http://www.rmcon.de
6. SafeCap Project. http://www.safecap.co.uk
7. Prover Company. http://www.prover.com/
8. Crossrail Project. http://www.crossrail.co.uk/
9. Koning, J.A.: Comparing the performance of ERTMS level 2 fixed block and

ERTMS level 3 moving block signalling systems using simulation techniques. In:
Proceedings of Eighth International Conference on Computers in Railways, pp.
43–52 (2002)

10. Iliasov, A., Lopatkin, I., Romanovsky, A.: Unified train driving policy. In: Formal-
Methods Applied to Complex Systems, pp. 447–473 (2014)

11. Abrial, J.-R.: Modelling in Event-B. Cambridge University Press, Cambridge
(2010)

12. Bjørner, D., Jones, C.B.: The Vienna Development Method: The Meta-Language.
LNCS, vol. 61. Springer, Heidelberg (1978)

13. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

14. Riazanov, A., Voronkov, A.: Vampire. In: Ganzinger, H. (ed.) CADE 1999. LNCS
(LNAI), vol. 1632, pp. 292–296. Springer, Heidelberg (1999)

15. Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: shepherd your herd of provers.
In: Boogie : First International Workshop on Intermediate Verification Languages,
pp. 53–64 (2011)

http://www.opentrack.ch/
http://www.rmcon.de
http://www.safecap.co.uk
http://www.prover.com/
http://www.crossrail.co.uk/

Comparing Formal Verification Approaches
of Interlocking Systems

Anne Elisabeth Haxthausen1, Hoang Nga Nguyen2,
and Markus Roggenbach3(B)

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
2 Centre for Mobility and Transport, Coventry University, Coventry, UK
3 Swansea Railway Verification Group, Swansea University, Wales, UK

M.Roggenbach@Swansea.ac.uk

Abstract. The verification of railway interlocking systems is a chal-
lenging task, and therefore several research groups have suggested to
improve this task by using formal methods, but they use different mod-
elling and verification approaches. To advance this research, there is a
need to compare these approaches. As a first step towards this, in this
paper we suggest a way to compare different formal approaches for veri-
fying designs of route-based interlocking systems and we demonstrate it
on modelling and verification approaches developed within the research
groups at DTU/Bremen and at Surrey/Swansea. The focus is on designs
that are specified by so-called control tables. The paper can serve as a
starting point for further comparative studies.

1 Introduction

An interlocking system is responsible for guiding trains safely through a given
railway network. It is a vital part of any railway signalling system and has the
highest safety integrity level (SIL4) according to the CENELEC 50128 stan-
dard [3].

Conventionally, the development and verification process of interlocking sys-
tems is informal and mostly manual.

Adding Automated Verification. The left-hand picture in Fig. 1 provides some
detail as to how a conventional design process of interlocking systems is typi-
cally realised. Concretely it shows the process as implemented by our industrial
partner Siemens Rail Automation, UK, in the form of a UML activity diagram.
The client provides a CAD plan of the track plan and routes. Independently, the
regulator provides a set of design rules. Based on these, the routes are signalled,
i.e., various tables are developed. This scheme plan (i.e., track plan plus various
tables, e.g., control tables) undergoes thorough manual checks before the tables
are used to implement an interlocking. These checks are part of quality con-
trol: motivated on the one hand to detect mistakes early, already in the design
phase, on the other hand to adhere to development standards required by the
authorities as part of a certification process.
c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 160–177, 2016.
DOI: 10.1007/978-3-319-33951-1 12

Comparing Formal Verification Approaches of Interlocking Systems 161

As the manual checks are time-consuming, costly, and error-prone, automated
verification of interlocking systems is an active research topic. The right-hand
picture in Fig. 1 shows a lightweight integration of automated verification (AV)
into the traditional work-flow. It includes an automated check of the scheme
plan for safety conditions. Only if a scheme plan has been proven to be safe, the
costly manual checks are performed. Here, we deliberately refrain from replacing
the manual checks. One reason is that safety covers only part of them. Further-
more, academic tools often have not been certified to the tool qualification levels
required in safety cases. Finally, the railway domain is conservative: replacing
traditional checks by different methods would require additional arguments in
safety cases.

Automated Verification of Interlocking Designs. It is still an open research ques-
tion as how to perform safety checks on interlocking designs. The challenge is
how to cope with the complexity of the problem: the state space grows expo-
nentially in the size of the scheme plan to be verified. Several research groups,
see e.g. [1,2,4,6–13,15,16,20,23,27–29], have been addressing this challenge and
have developed a number of different modelling and verification approaches.

The modelling part of such approaches usually consists of “transformations”
of how to derive a (formal) model from informal rail descriptions as used in
rail industry such as a track plan (e.g., as a CAD drawing) enriched by various
tables (e.g., a control table). Similarly, the verification part usually states a
safety condition (e.g., no train collision) and expresses this as a (formal) property
(e.g., as a logical formula). Finally, an (automated) verification tool is utilised
to provide an answer if the property holds in the model.

Different groups apply different design rules for signalling, country specific
rail standards, utilising various modelling languages, employing different verifi-
cation tools. This leads to the natural, however, fundamental question: how can
these many modelling and verification approaches be related with each other?
This question comes in at least three, interconnected forms: (i) how to relate the
input of these modelling approaches? (ii) how to relate the formal models? (iii)
how to relate the verification results?

Relating Automated Verification Approaches. In this paper we suggest a general
way of how to compare different formal verification approaches for interlocking
systems and demonstrate it on modelling and verification approaches developed
within our respective research groups at DTU/Bremen and at Surrey/Swansea.
We see this comparison as pioneering work, to which we hope – in the long run –
other groups will contribute as well by running their verification approaches
through the very same exercises, i.e., this paper can serve as a start for a bench-
mark for railway verification.

While the focus of our comparison is on verification, to a certain extent we
also address the other two questions posed above. Concerning input, we define
a common core – see Sect. 2 – and discuss group specific extensions. Concerning
the models, for a start we attempt to present the modelling approaches in a uni-
form way – see Sect. 3. The development of a general questionnaire on models

162 A.E. Haxthausen et al.

Fig. 1. Incorporating automated verification (AV) in a design & check cycle for a
scheme plan SP.

will require more experience, including analysing work by further groups. Con-
cerning relating verification, we are confident to propose a practicable and useful
approach.

To the best of our knowledge, we are the first to address the question of how
different verification approaches for interlocking systems relate. This question
is important for various reasons: to advance the field, it will be necessary to
better understand work from other groups and to learn from each other; from a
company’s point of view it is important to be able to evaluate different techniques
when choosing one to be included in an interlocking design cycle.

Our comparison focuses on the safety claims that different approaches make.
Rather than directly comparing models or properties, we look into the ability
of verification approaches to detect errors in the design tables of an interlocking
system. Starting with a correct rail design, we inject an error (e.g., by altering the
entry of a table), and see if – under a given modelling and verification approach
– the injected error is caught. As rail designs can be fault tolerant, here it is
necessary to work with “minimal” designs, i.e., such designs, where an injected
error actually can be caught. When comparing now two verification approaches,
we say that an approach has more distinguishing power than another one, if the
first flags the same errors as the second and possibly more.

Our comparison draws on ideas from testing theory. Yu and Lau prove a
number of theorems on the error detecting capabilities of various coverage criteria
for testing logical decisions [30]. Their set-up consists of several elements: the

Comparing Formal Verification Approaches of Interlocking Systems 163

logical decision to be tested needs to be in a normal form – corresponding to
our minimal designs, see Sect. 2; they define a number of syntactic errors (e.g.,
adding or forgetting a negation, confusing a logical and with a logical or) – we
will define a number of error types, see Sect. 4; they establish theorems that
characterise the kind of errors that will be detected via testing provided a test
suite has been constructed to minimally fulfil a certain coverage criterion – we
will compare two verification approaches by defining and performing a number
of experiments, see Sect. 5.

Organisation of the Paper. First, in Sect. 2, we introduce basic notions of the rail-
way domain, including the notions of scheme plan, track plan, and control table.
Then, in Sect. 3, we provide a descriptive comparison between the two different
modelling and verification approaches by DTU/Bremen and Surrey/Swansea,
where both approaches are described using a similar scheme. In Sect. 4 we iden-
tify a number of error types that might happen during the design of a control
table. Finally, in Sect. 5, we report on experimental results demonstrating that
all these errors can be detected by both formal methods, the one from DTU/
Bremen as well as the one from Surrey/Swansea.

2 Railway Scheme Plans

A railway scheme plan consists of a track plan and various tables, e.g., control
tables.

Track Plans. A railway network consists of a number of track-side elements of
different types, for instance linear sections, points, and either marker boards
(for ETCS level 2 systems) or physical signals (for legacy systems). The track
plan in Fig. 2 shows an example layout of a railway network having six linear
sections (b20, t20, b10, t10, t13, b13, t23, b23), two points (t11, t12), and eight
marker boards (mb10, . . . , mb30). A linear section is a section with up to two
neighbours. A point can have up to three neighbours: one at the stem, one at
the plus end, and one at the minus end, e.g., point t12 in Fig. 2 has t11, t13,
and t30 as neighbours at its stem, plus, and minus ends, respectively. Linear
sections and points are collectively called detection sections, as they are used
by interlocking systems to detect the presence of trains in a railway network. A
point can be switched between two positions: PLUS and MINUS. When it is in
the PLUS (MINUS) position, traffic can run from its stem to its plus (minus)
end and vice versa. A marker board is installed along a section, and it is used
as reference location for an intended travel direction that it is facing, e.g. mb20
in Fig. 2 is installed along section b20, and it is intended for travel direction
towards t20. Contrary to legacy systems, in ETCS Level 2, there are no physical
signals, but virtual signals associated with marker boards. A virtual signal can
be OPEN or CLOSED, respectively, allowing or disallowing traffic to pass the
associated marker board. For simplicity, the terms virtual signals, signals, and
marker boards are used interchangeably throughout this paper. Our approach

164 A.E. Haxthausen et al.

Fig. 2. Scheme plan “Twist”.

can be used for both, systems using marker boards and classical systems having
physical signals.

Control Tables. An interlocking system monitors constantly the status of track-
side elements, and sets them to appropriate states in order to allow trains travel-
ling safely through the given railway network. A control table specifies the routes
in the given network layout and the conditions for setting these routes. A route
is a path from a source signal to a destination signal.

In railway signalling terminology, setting a route denotes the process of allo-
cating the resources – i.e. sections, points, signals – for the route, and then
locking it exclusively for only one train when the resources are allocated. The
specification of a route and conditions for setting and releasing it includes the
following information – c.f. the control table shown in Fig. 2: the name of the
route (e.g. r1), at which marker board it starts (e.g. mb10) and ends (e.g., mb12),
a list of the detection sections in the route’s path (e.g. t10;t11;t12;t13) and the
required positions of points used by the route (e.g. t11:p;t12:p). Here p and m
stands for PLUS and MINUS, respectively.

Note that – for the sake of comparison – we restrict the control table format
as illustrated in Fig. 2 to those parts common to both modelling and verifica-
tion approaches to be discussed in this paper. In general, the DTU/Bremen
approach utilises an extended control table discussed in Sect. 3.2. In contrast,
the Surrey/Swansea approach includes release tables which will be described

Comparing Formal Verification Approaches of Interlocking Systems 165

in Sect. 3.3. In Sect. 5 on error injection we will discuss how the two different
approaches deal with errors injected in the common part. Additionally we will
also demonstrate the effect of errors in the extended control tables and in release
tables within the DTU/Bremen approach and the Surrey/Swansea approach,
respectively.

In order to prevent collision and derailment of trains, route-based interlocking
systems employ a basic principle: a route is locked exclusively for use of one train
at a time.

In this setting, we consider three safety properties:

1. collision-freedom excludes two trains occupying the same track;
2. run-through-freedom says that whenever a train enters a point, the point

is set to cater for this; e.g., when a train travels from track t20 to track t11,
point t11 is set so that it connects t20 and t12 (and not t10 and t12);

3. no-derailment says that whenever a train occupies a point, the point does
not move.

The correct design for the control table is safety-critical: mistakes can lead to a
violation of any of the three safety properties and thus lead to death or serious
injury to people, or loss or severe damage to equipment.

3 A Descriptive Comparison Between the Modelling
and Verification Approaches of DTU/Bremen
and Surrey/Swansea

3.1 Commonalities of both Approaches

The DTU/Bremen and the Surrey/Swansea approach share as common starting
points:

Assumption. We assume track equipment (signals, points, track circuits) to
function without mistake, i.e., both our modelling and verification approaches
target normal operation.

Narrative. As reference point for our modelling we take standard literature on
railway signalling such as the book by Kerr and Rowbothan [18], interact with
industry, and discuss our models with railway engineers. Communication with
practitioners is essential, as the literature is written in jargon and not always
as concise as one would wish for as the following quote might illustrate: “When
a valid route is received, the interlocking first checks the availability of each set
of points in the route and overlap. Points are deemed to be available if they are
already lying the correct way, or are not locked the other way.” [18].

3.2 DTU/Bremen Specialities

This section gives an overview of the verification framework developed by
DTU/Bremen as part of the RobustRailS research project1. For details of this
framework, see [5,25–27].
1 http://www.imm.dtu.dk/∼aeha/RobustRailS/index/.

http://www.imm.dtu.dk/~aeha/RobustRailS/index/

166 A.E. Haxthausen et al.

Overall objectives. The framework provides support for an automated 3 step
verification and testing approach: (1) First a static check is performed on the
input scheme plan, (2) then a formal, behavioural system model is automat-
ically generated and model checked, (3) and finally model based testing of the
implemented system is done using test cases, test oracles etc. automatically
generated from the formal model. The static check is able to catch errors in
scheme plans and in particular in the control tables. The model checking is
used to check that the system model is safe and can be used to catch errors in
the designed control algorithms as well as to catch errors in the control table
if these have not already been found by the static checker. The reason for
having the extra static check is to catch as many errors as possible before the
more time consuming model checking. The testing is used to catch errors in
the implemented system. Below we will provide some more details of the two
first steps, but not on the testing as that is outside the scope of this paper.

DSL specification of scheme plans. The CAD plan and the control table
are represented in a DSL. The DTU/Bremen DSL, called Interlocking Con-
figuration Language (ICL), has been formally specified in RSL, and an XML
representation has been implemented. An ICL representation can be created
manually, or exported from computer-aided design tools supporting the XML
format. Alternatively, the user can use the graphical user interface [5] to spec-
ify the scheme plan by drawing the track plan and type in the control table
via an editor implemented as an Eclipse plug-in. The editor can then export
the specification to the XML format. As an option the user may not explicitly
provide a control table, but only a track plan and then get a complete control
table created automatically from the track plan.

Static check of scheme plans. A static checker validates that the track plan
and control tables are well-formed, and in case there are errors, it suggests
what might be wrong and in some cases also how this can be fixed. The
checker validates for instance that any route path in the control table is a
connected path in the track plan and that required point positions are correct.
It is out of the scope of this paper to list all kinds of checks as there are about
55 of them.

Specification of generic system models. For each product family of inter-
locking systems, a second input is needed: a formal, generic system model.
This is given in Interlocking Dynamic Language (IDL), which is another DSL,
specially designed for the DTU/Bremen framework. Specifications in this lan-
guage are similar to RSL-SAL transition system specifications (Kripke model
representations consisting of variable declarations and state transition rules)
with some additional built-in types and operators. State transition rules for
different kind of entities, e.g. the interlocking system controller and track side
elements, are placed in different modules and combined by non-deterministic
choice (possibly including a prioritization of the transition rules) at the top
level.

Automated creation of instantiated system models. A system model is
automatically created by instantiating the generic IDL system model with
data from the ICL scheme plan. Hence, an instantiated model does not include

Comparing Formal Verification Approaches of Interlocking Systems 167

a scheme plan. The resulting instantiated IDL system model is automatically
converted to the internal model representation of the RT-Tester tool [21,24].
Here is an example of an IDL transition rule expressing that when the actual
state of a virtual signal s differs from its commanded state, the actual aspect
of the signal is updated to the commanded aspect:

s.ACT �= s.CMD −→ s.ACT ’ = s.CMD

Verification properties. The verification properties are automatically created
by instantiating a description of generic properties with data from the ICL
scheme plan. The resulting verification properties are expressed in RT-Tester
as invariants in propositional logic over the state variables of the system
model.
Example: For the specific model we used for the experiments reported in
this paper, there were no explicit train objects. Instead, train behaviour was
implicitly modelled via the occupancy status of track detection sections. This
was chosen as it captures behaviours corresponding to all possible numbers
of trains, each train having an arbitrary length. The train occupancy of a
linear track section t is captured by two integer variables t.D2U and t.U2D,
one for each of the two travel directions (called down-to-up and up-to-down)
through the section. If no train is driving on t in direction down-to-up/up-to-
down t.D2U/t.U2D is zero. Hence, there is no head-to-head collision on t, if
at least one of the two variables is zero, and this can therefore be expressed
as the following invariant:

t.D2U * t.U2D = 0

Verification in step 2

Verification task (what): It is verified that the invariants hold in all
reachable system states of the system model instance.

Verification technique (how): Model checking, more specifically by k-
induction using bounded model checking. If the system model does not
satisfy the invariants, counter-examples will be generated. An interface
for visualising the counter-examples at the DSL (ICL) level is integrated
into the editor in Eclipse, see [5].

Verification tool: The bounded model checker of the RT-Tester tool.

3.3 Surrey/Swansea Specialities

This section gives an overview of the verification framework developed by Sur-
rey/Swansea as part of their SafeCap and Ditto research projects2. For details
of this framework, see [14,15].

Overall objective is to verify if a control table is safe w.r.t. a track plan.

2 http://www.cs.swan.ac.uk/∼csmarkus/ProcessesAndData/ditto.

http://www.cs.swan.ac.uk/~csmarkus/ProcessesAndData/ditto

168 A.E. Haxthausen et al.

Architecture. All verification shall be performed by a model checker. This
means that also checks that could be performed by some static analyser are
encoded as model checking problems. These checks concern conditions on
well-formedness of the tables. These lead to two further safety properties,
additionally to the three properties listed in Sect. 2, namely:
– “no train on a route with a green signal” – this encodes the check that

the route path of the clear table covers all detection sections between two
marker boards; and

– “no deviation from the designated route” – this encodes the check that all
points on a route path are in the right position to guide the train from the
start marker board to the end marker board of a route.

Specification Language for the system model is CSP||B [22], a combination
of the process algebra CSP and the B specification language that allows for
a combination of event-based and state-based modelling.
We use event-based modelling to capture state changes, e.g., a train moves
from one track to the other is represented as move.A.B; we use state-based
modelling to represent the rules that guide the behaviour of the interlocking,
e.g., the conditions under which a route can be set or cancelled.

Modelling – DSL. The CAD plan and the tables are first represented in a
Domain Specific Language (DSL) before being encoded in CSP||B. This inter-
mediate step allows to implement the whole modelling process as a model
transformation in our tool OnTrack [17].

Modelling – Track-plan, tables are represented in dedicated data types in
CSP||B.

Modelling – Entities. A speciality of the Surrey/Swansea modelling approach
is that it directly represents railway entities as part of the specification, i.e.,
there is a controller, there is an interlocking, there are trains. This allows to
observe these identities in simulations, i.e., one can directly see how the train
moves, how the state of the interlocking changes, which route requests come
from the controller. Besides being helpful in the validation of the modelling
approach, this helps to reflect about the model: Surrey/Swansea have proven
a number of theorems on their modelling approach, see e.g. [13].

Modelling – System dynamics. Active entities, i.e., entities which are able
to initiate a system change, are modelled as CSP processes. These are the
controller (who can request or cancel route) and the trains (which can move
along the track or remain). The interlocking as a passive component, i.e., it
reacts to train movements or controller requests, is modelled in B.
For each event that the controller or the trains initiate, the interlocking
updates its status and the track equipment according to the dynamic rules
as stated in [18]. E.g., a route can be released provided the entry signal of
this route is green, all locks of the route are still there, and there is no train
in front of the entry signal.

Encoding of the safety conditions. The verification properties are encoded
as invariants in the specification language B, see the below code representing
when there is a collision between two trains on a detection section t.

Collision(t) == #(t1,t2).(t1 : TRAIN & t2 : TRAIN

Comparing Formal Verification Approaches of Interlocking Systems 169

& t1 /= t2 & t1:dom(pos) & t2:dom(pos)
& (dom({pos(t1)}) = {t}) & (dom({pos(t2)}) = {t}));

Verification Technology. Model checking with the ProB tool [19]; the tool
checks that the invariant holds in all system states.

4 Error Injection

Interlocking applications are developed according to the CENELEC standard
EN50128 [3] and to processes prescribed by Railway Authorities. For the UK,
Network Rail’s Governance for Railway Investment Projects (GRIP) provides
such a process. The first four GRIP phases define the track plan and routes
of the railway to be constructed, while phase five – the detailed design – is
contracted to a signalling company such as Siemens Rail Automation, UK, which
chooses appropriate track equipment, adds control tables to the track plan, and
implements the interlocking. Thus, in such a process the track plan is developed
first. Only in a second step signalling engineers enrich the track plan with a
control table. It is for exactly this second step, namely for the design of a control
table that our paper discusses support in terms of formal methods. As track plan
and routes come from earlier phases, actually the control table is the element
that needs verification.

Track plans can have a considerable size, comprising of hundreds of track-side
elements such as linear sections, points, marker boards. This makes control tables
complex due to their sheer size measured in numbers of entries needed in the var-
ious columns. The control table of Langley – a station which signalling engineers
consider to be a small one – has about 160 entries, c.f. [13]. To guarantee safety,
every single entry in the control table needs to be correct, none can be forgotten or
wrong. To manually check all these entries is a challenging task with a high error
probability. It is for that reason, that at Siemens Rail Automation, UK, there are
at least three different people who independently perform these checks.

Signalling engineers are well trained to apply various sets of design rules to
systematically develop control tables. Thus, one can assume that they have the
correct design in mind, however, that due to the sheer number of entries to be
produced it is likely that they make a mistake due to an oversight. Consequently,
in this paper we inject errors of “syntactic type” into an originally correct control
table, i.e., a control table which we have proven to be safe w.r.t. a given track
plan. More precisely we start with a correct control table and apply one of the
following error types (ET) to it:

ET1 – leave out one of the track ids in the route path column.
ET2 – exchange one “p” with an “m” or vice verse in the point positions column.
ET3 – delete one point entry in the point positions column.

Then we check if this altered control table still is safe.
Adding elements to the table would not effect safety: as we presume the

original control table to be safe anyway, an added element would only further

170 A.E. Haxthausen et al.

constrain the possible train behaviour – as the original set of train behaviours
was already safe, there won’t be any safety violations to be found in the reduced
set of behaviours.

In the next section on error detection, we will consider various scenarios: we
will systematically explore the effects of errors on a number of scheme plans.

5 Error Detection

Both, the DTU/Bremen and the Surrey/Swansea approach, verify safety for the
given table of “Twist” as shown in Fig. 2 – and for the tables of two more scheme
plans “Mini” and “Cross” shown in Figs. 3 and 4 in Sect. 5.4. Thus, starting with
a proven to be correct control table, we can perform experiments where errors
are injected into the control table.

5.1 Injecting a Single Error into “Twist”

As the network is double symmetric, i.e., all eight routes are built in the same
way, we decided to inject errors only into the row concerning route r1:

Route name From To Route path Point positions

r1 mb10 mb12 t10;t11;t12;t13 t11:p;t12:p

For route r1 this results in total into eight different errors:

ET1 Four errors e1, . . . e4, each by forgetting one track section in the route path.
ET2 Two errors e5, e6, each by requiring one point to be in the wrong position.
ET3 Two errors e7, e8, each by forgetting a point position.

DTU/Bremen Approach. For error e1 – forgetting t10 in the route path
column – the static checker provides the error message: In route r1, two
consecutive segments, b10 and t11, are not connected. Similar outputs
are produced for e2 and e3. For error e4 – forgetting the last section, t13, in
the route path column such that the route does not end at the exit signal – the
error message is: The exit signal is not placed at the end of the last
section of route r1. For error e5 – set t11 in wrong position (m rather than
p) – the static checker provides the error message: For route r1, point t11
is set to MINUS, but it should have been set to PLUS. Similarly for e6.

For error e7 – forgetting to set point t11 – the static checker provides the
following error message: For route r1, point t11 is not given a point
position. Similarly for e8.

All eight errors have been detected. Note that all errors have been detected
by static checking, including a suggestion on what the error might be.

Comparing Formal Verification Approaches of Interlocking Systems 171

Surrey/Swansea Approach. For error e1 – forgetting t10 in the route path
column – the ProB tool finds an invariant violation and provides a counter
example trace leading to the violating state:

request.r1.yes, move.albert.offUnit.b10, nextSignal.albert.b10.green,

move.albert.b10.t10, request.r1.yes, release.r1.yes, request.r4.yes,

move.albert.t10.nullUnit, run-through

I.e., in step 6 it is possible to release route r1 although train albert is currently
on track t10; this allows it to set route r4, which moves point t11 to minus; thus,
in step 7, train albert moves onto a point set in the wrong direction. The tool
detects a run-through. Similar counter example traces are found for e2, e3, e4, –
where a collision is detected.

For error e5 – set t11 in wrong position (m rather than p) – the ProB tool
finds an invariant violation and provides as last step of the counter example
trace the event move.albert.t10.nullUnit, indicating that train albert enters
point t11 at the plus end while t11 is connecting the minus end. Also, for error
e6 – set t12 in wrong position (m rather than p) – the ProB tool finds an
invariant violation and provides as last two steps of the counter example trace
the events move.bertie.offUnit.b30; move.albert.t30.b30 – i.e., the two
trains bertie and albert collide on section b30.

Similarly, for e7 – forgetting to set point t11 – ProB comes up with a counter
example trace where train albert enters the point t11 at the plus end while t11
is connecting the minus end. For e8 – forgetting to set point t12 – ProB comes
up with a counter example trace ending with a collision section b30.

All eight errors have been detected. Note that all errors have been uncovered
by model checking where the counter example trace provides an insight into the
nature of the first fault detected. Note that further faults might be possible – the
tool provides just the first counter example trace found during state exploration.

5.2 Injecting Multiple Errors in “Twist”

Naturally, it is also possible to inject several errors into one table. Therefore, as
in good testing practice, we experiment with at least one scenario including two
mistakes at the same time, namely

ET2 – e6 – set t12 in wrong position (m) and
ET3 – e7 – forget to set point t11.

In the DTU/Bremen approach the static checker find both errors:

For route r1, point t11 is not given a point position.
For route r1, point t12 is set to MINUS, but it should have been
set to PLUS.

In the Surrey/Swansea approach the model checker provides a counter exam-
ple trace classifying the safety violation as a run-through.

172 A.E. Haxthausen et al.

5.3 Further Errors in the Parts Different in both Modellings

As discussed earlier, the control table used above is common to both approaches.
However, thanks to national differences and also different suppliers, they both
have a richer input format. In the following we experiment with errors outside
of the shared input.

DTU/Bremen Approach. The DTU/Bremen approach has an extended con-
trol table that also includes a list of conflicting routes. In case one forgets to
include route r2 in the list of conflicting routes for route r1, the static checker
highlights this with the message:

Routes r1 and r2 are in conflict, but route r2 is not listed in
the conflicts of route r1. Reasons to be in conflict:
Non-concatenated routes with shared elements: t10, t11, t12.

Yet another column consists of protecting signals that must be closed when
setting a route. When one forgets mb11 (on track t10) in the list of protecting
signals for route r1, the static checker flags this with the message:

For route r1, signal mb11 at section t10 should have been listed
as a protecting signal.

Another type of error is to forget to set a point that should provide flank
protection for the route. Such errors will be caught by the static checker and
suggestions for fixing that will be presented. However, this type of error can’t
be illustrated for the twist network as there are no such cases.

Surrey/Swansea Approach. The Surrey/Swansea approach has as a further
input a collection of so-called release tables. These tables determine when the
locks on points can be released.

One interesting case is when one releases point t11 too early and forgets
to include t11 into the route path. Here, the model checker finds the following
counter example trace:

move.bertie.offUnit.b10, request.r1.yes nextSignal.bertie.b10.green,

move.bertie.b10.t10, move.albert.offUnit.b10, move.bertie.t10.t11,

request.r1,yes, nextSignal.albert.b10.green, move.albert.b10.t10,

move.albert.t10.t11, collide

The trains albert and bertie collide on point t11. This happens as route r1 is
wrongly set in step 7: as t11 is not in the route path, the interlocking does not
check if this track is free; as t11 is released early, there is also no lock on the
point t11.

5.4 Error Injection in Further Scheme Plans

In this section we consider error injections in the tables of the two scheme plans
shown in Figs. 3 and 4.

Comparing Formal Verification Approaches of Interlocking Systems 173

Fig. 3. Scheme plan for “Mini”

Mini. For symmetry reasons it is enough to consider route r1b (an entry route)
with five errors:

– three of type ET1 (forget t10, t11, and t12, respectively)
– one of type ET2 (set point t11 in wrong position)
– one of type ET3 (forget to set point t11)

and route r4 (an exit route) with four errors:

– two of type ET1 (forget t13 and t14, respectively)
– one of type ET2 (set point t13 in wrong position)
– one of type ET3 (forget to set point t13)

Cross. For symmetry reasons it is enough to consider routes r1b with five errors:

– three of type ET1 (forget t10, t11, and t12, respectively)
– one of type ET2 (set point t11 in wrong position)
– one of type ET3 (forget to set point t11)

and route r2 with eight errors:

– four of type ET1 (forget t10, t11, t21 and t22, respectively)
– two of type ET2 (set points t11 and t21 in wrong position, respectively)
– two of type ET3 (forget to set points t11 and t21, respectively)

and route r4b with five errors

– three of type ET1 (forget t20, t21, and t22, respectively)
– one of type ET2 (set point t21 in wrong position)
– one of type ET3 (forget to set point t21)

174 A.E. Haxthausen et al.

Fig. 4. Scheme plan for “Cross”

Results. Both verification approaches find all errors, in case of the DTU/
Bremen approach the static checker provides error messages as illustrated above,
in case of the Surrey/Swansea approach the ProB model checker finds counter
example traces.

6 Summary

This paper presented a first systematic comparison of rail modelling and verifica-
tion approaches developed by different research groups, in our case the research
groups at DTU/Bremen and at Surrey/Swansea.

In order to relate the input of these modelling approaches we defined a com-
mon core and discussed differences. In order to relate the formal models, we
attempted to present the modelling approaches in a uniform way. In order to
relate the verification results we proposed a practicable and useful approach in
the form of a testing equivalence: though input and output of both approaches
are different, however, both approaches catch the same errors.

For the research community we see this comparison as pioneering work, to
which we hope – in the long run – other groups will contribute as well by running
their verification approaches through the very same exercises, i.e., this paper can
serve as a starting point for a benchmark for railway verification.

In future work we would like

– to consolidate the common input core by including work from further group.
– extend the benchmark with further and larger scheme plans. However, note

that in general safety properties of scheme plans are local. This has been

Comparing Formal Verification Approaches of Interlocking Systems 175

exploited by several authors, e.g., for testing and for compositional reasoning
[13]. Therefore, one would not expect that considering larger scheme plans
would provide new insights into the error detection capabilities of verification
approaches.

– to develop a systematic questionnaire for comparing modelling and verification
approaches

– to compare actual models by (1) highlighting the different assumptions made
for the formal model, i.e., what are the chosen abstractions (e.g., with respect
to train length, speed, behaviour of trains, and whether shunting is considered
etc.) and (2) highlighting differences in the approaches to route allocation and
release (e.g., whether sequential release is used)

– to cover performance aspects such as (1) their scalability, i.e., the limits for
the size of track plans and control tables that the approaches can deal with
and (2) verification speed, i.e., how long time does it take to verify? For such a
comparison to be fair, it needs to be measured for models of the same system,
but such data is not currently available.

Acknowledgements. The DTU/Bremen research has been funded by the Robus-
tRailS project granted by Innovation Fund Denmark. The Surrey/Swansea research
has been funded by the SafeCap and the DITTO research projects granted by EPSRC
and RSSB. The authors would like to thank Linh Hong Vu for providing the benchmark
of scheme plans and the drawings of the track plans.

References

1. Banci, M., Fantechi, A., Gnesi, S.: Some experiences on formal specification of rail-
way interlocking systems using statecharts. In: TRain Workshop at SEFM (Soft-
ware Engineering and Formal Methods) (2005)

2. Cao, Y., Xu, T., Tang, T., Wang, H., Zhao, L.: Automatic generation and verifica-
tion of interlocking tables based on domain specific language for computer based
interlocking systems. In: CSAE, pp. 511–515. IEEE (2011)

3. C. European Committee for Electrotechnical Standardization: EN 50128:2011 –
railway applications – communications, signalling and processing systems – soft-
ware for railway control andprotection systems (2011)

4. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT. Springer,
Heidelberg (2010)

5. Foldager, A.: A graphical domain-specific language for railway interlocking sys-
tems. Master’s thesis, Technical University of Denmark, DTU Compute (2015)

6. Haxthausen, A.E.: Towards a framework for modelling and verification of relay
interlocking systems. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop
2010. LNCS, vol. 6662, pp. 176–192. Springer, Heidelberg (2011)

7. Haxthausen, A.E.: Automated generation of formal safety conditions from railway
interlocking tables. Int. J. Softw. Tools Technol. Transf. (STTT) 16(6), 713–726
(2014). Special Issue on Formal Methods for Railway Control Systems

8. Haxthausen, A.E., Le Bliguet, M., Kjær, A.A.: Modelling and verification of relay
interlocking systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008.
LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010)

176 A.E. Haxthausen et al.

9. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construc-
tion and verification of railway control systems. Formal Aspects Comput. 23(2),
191–219 (2011). Special issue in Honour of Dines Bjørner and Zhou Chaochen on
Occasion of their 70th Birthdays

10. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for
interlocking system designs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS,
vol. 8368, pp. 205–220. Springer, Heidelberg (2014)

11. Iliasov, A., Lopatkin, I., Romanovsky, A.: Practical formal methods in railways
- the safecap approach. In: George, L., Vardanega, T. (eds.) Ada-Europe 2014.
LNCS, vol. 8454, pp. 177–192. Springer, Heidelberg (2014)

12. James, P., Lawrence, A., Roggenbach, M., Seisenberger, M.: Towards safety analy-
sis of ERTMS/ETCS level 2 in real-time maude. In: Artho, C., Ölveczky, P.C.
(eds.) Formal Techniques for Safety-Critical Systems. Springer, New York (2016)

13. James, P., Moller, F., Nga, N.H., Roggenbach, M., Schneider, S.A., Treharne, H.:
Techniques for modelling and verifying railway interlockings. STTT 16(6), 685–711
(2014)

14. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
Decomposing scheme plans to manage verification complexity. FORMS/FORMAT
(2014)

15. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S.A., Treharne,
H.: On modelling and verifying railway interlockings: tracking train lengths. Sci.
Comput. Program 96, 315–336 (2014)

16. James, P., Roggenbach, M.: Encapsulating formal methods within domain specific
languages: a solution for verifying railway scheme plans. Math. Comput. Sci. 8(1),
11–38 (2014)

17. James, P., Trumble, M., Treharne, H., Roggenbach, M., Schneider, S.: Ontrack: an
open tooling environment for railway verification. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 435–440. Springer, Heidelberg (2013)

18. Kerr, D., Rowbothan, T.: Introduction to Railway Signalling. Institution of Rail-
way Signal Engineers, London (2001)

19. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From Animation
to Data Validation: The ProB Constraint Solver 10 Years On, pp. 427–446. Wiley,
Hoboken (2014)

20. Mirabadi, A., Yazdi, M.B.: Automatic generation and verification of railway inter-
locking control tables using fsm and nusmv. Transp. Prob. 4(1), 103–110 (2009)

21. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) Proceedings 8th Workshop
on Model-Based Testing, Rome, Italy, Electronic Proceedings in Theoretical Com-
puter Science, vol. 111, pp. 3–28. Open Publishing Association (2013)

22. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal
Aspects Comput. 17(4), 390–422 (2005)

23. Tombs, D., Robinson, N., Nikandros, G.: Signalling control table generation
and verification. In: Proceedings of Cost Efficient Railways through Engineering
(CORE), pp. 415–425. Railway Technical Society of Australasia (2002)

24. Verified Systems International GmbH: RT-Tester Model-Based Test Case and Test
Data Generator - RTT-MBT - User Manual (2013)

25. Vu, L.H.: Formal development and verification of railway control systems - in the
context of ERTMS/ETCS Level 2. Ph.D. thesis (2015)

Comparing Formal Verification Approaches of Interlocking Systems 177

26. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for railway
interlocking systems. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2014–
10th Symposium on Formal Methods for Automation and Safety in Railway and
Automotive Systems, pp. 200–209. Got best-paper-award, Institute for Traffic
Safety and Automation Engineering, Technische Universität Braunschweig (2014)

27. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of inter-
locking systems featuring sequential release. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 223–238. Springer, Heidelberg (2015)

28. Winter, K.: Optimising ordering strategies for symbolic model checking of railway
interlockings. In: Steffen, B., Margaria, T. (eds.) ISoLA 2012, Part II. LNCS, vol.
7610, pp. 246–260. Springer, Heidelberg (2012)

29. Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool
support for checking railway interlocking designs. In: Proceedings of the 10th
Australian Workshop on Safety Critical Systems and Software, SCS 2005, vol.
55, pp. 101–107. Australian Computer Society Inc., Darlinghurst (2006)

30. Yu, Y.T., Lau, M.F.: A comparison of MC/DC, MUMCUT and several other cov-
erage criteria for logical decisions. J. Syst. Softw. 79(5), 577–590 (2006). Quality
Software

Predictive Reasoning and Machine Learning
for the Enhancement of Reliability

in Railway Systems

Luke J.W. Martin(&)

Centre for Software Reliability, Newcastle University,
Newcastle upon Tyne, UK

luke.burton@newcastle.ac.uk

Abstract. The real-time prediction of train movements in time and space is
required for ensuring the reliability in operational management and in the
information that is relayed to passengers. In practice, however, accurate pre-
dictions of train arrival times are very difficult to achieve, given the nature of
uncertainty and unpredictability in train movements. This is often due to truly
random delay causes that results in a constantly changing probability distribution
in delay events as the effects of those causes. The overall consequence is less
reliable estimates in train arrival times being made, which can potentially reduce
the ability of traffic controllers to effectively plan and respond to disruptions. This
paper presents a series of methods that are currently being applied for developing
a preliminary working prototype of a future rail advisory system, which is the
main objective of an ongoing PhD research project. The system prototype is
expected to be capable of relaying advice to a traffic controller with the goal of
minimising the effects of a disruption as much as possible and to potentially avoid
future disruptions, for which accurate train movement and delay predictions
using methods in predictive reasoning and machine learning are vital.

Keywords: Predictive reasoning � Artificial intelligence � Machine learning �
Reliable systems � Railway traffic � Data analytics � Train describer

1 Introduction

The quality and dependability of a reliable rail service depends heavily on accurate
predictions of future train movements and delays that may occur, since it is important for
ensuring proactive and anticipative real-time control of railway traffic [1]. These are also
highly beneficial in ensuring that traffic operations may be controlled effectively by
taking actions that can either prevent or considerably minimise the impact of delays. In
practice, however, predictions of train arrival times are performed according to the
experience and intuition of a dispatcher based on last known delays that were recorded
and with limited computational support. According to several studies [1–8], this method
is inadequate since these predictions do not account for partial recovery from a delay or
extended delays due to conflicts. Although more precise predictions can be achieved
through a microscopic analysis, the complexity and computational requirements for this
do not allow for predictions to be produced on demand, particularly for large and dense

© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 178–188, 2016.
DOI: 10.1007/978-3-319-33951-1_13

network areas [6]. Part of this complexity is largely attributed to the uncertainty and
unpredictability of delays and train process times. In the literature, stochastic models
that have been developed for real-time prediction of train movements have placed
considerable emphasis in addressing this complexity, particularly with respect to train
rescheduling and delay handling [4]. Although these approaches have been successful in
solving complex instances in real-time, they have done so under assumptions that
perfect deterministic knowledge of the traffic state exists [3] and that the probability
distributions, required for realising uncertainty, of train process times are fixed [8].
These are considerable limitations as complete knowledge of the current state is not
possible since traffic controllers are only aware of the state of a network within a small
geographical area. Delayed trains that enter this area may have an impact, which is
unknown, or a train within the area may become suddenly delayed due to earlier dis-
ruptions. Some studies [1, 3, 4, 7] attribute these phenomena to an evolving nature of
delays, in which the probability distribution changes continuously and therefore the
uncertainty of delay events are difficult to realise completely.

The approach that this study considers is one that aims to utilise readily available
data streams for describing the current state in two ways: the first is to collect a sufficient
amount of historical data that would be analysed to develop various data models that
describe train delays in terms of causes and effects. This is to be used to create and train a
Bayesian Network. The second, is to analyse data online as a continuous stream and to
make predictions of this data using the trained Bayesian Network to forecast a potential
future state, where domain specific knowledge, such as train movement behaviour, can
also be incorporated in an effort to improve the accuracy of the predictions. This
essentially serves to enhance reliability in the sense that traffic operators can develop
better situational awareness through complex computational support, which can aide in
providing better planning and preventive procedures.

This paper therefore presents a series of techniques and methods that are currently
being investigated as part of an ongoing PhD research project, which aims to develop a
working prototype of a rail advisory system that may be used as a future tool in rail
operations. The paper is structured as follows: Sect. 2 details a brief, high-level
overview of the current proposal for the design of the rail advisory system and how it is
expected to operate. Section 3 discusses the data mining processes of the current state
of the rail network in terms of the source where data will be extracted from and how
this will be used in generating a historic data base. Section 4 briefly details some of the
main methods that are being investigated in modelling the data as a stochastic process
and justifies the use of Bayesian Networks for real-time predictions. Section 5 will
provide a brief summary of how impact of a delay can be modelled and assessed.
Finally, Sect. 6 concludes the paper through a summary of current work and planned
directions of study.

2 Design of Real-Time Rail Advisory System

The rail advisory system project is the current focus of an ongoing sponsored PhD,
which is supported by Siemens Rail Automation, The Engineering and Physical Sci-
ences Research Council (EPSRC) and Newcastle University. The goal of the system is

Predictive Reasoning and Machine Learning 179

to provide advice concerning traffic movements to a rail network operator, where
improved degrees of operational reliability and network dependability and resilience
can be achieved. A detailed description of the high-level concept of the advisory
system is explained in Martin et al. [7], however, this section provides a very brief
summary of the system design and its expected functionality. Figure 1 illustrates a
high-level architectural design of the proposed advisory system, which is expected to
work as an extension to existing traffic control systems, such as the European Train
Control System (ETCS):

From this design, the system extracts data via a continuous data stream, which is
assumed to exist as part of the ETCS as it retrieves data from the interlocking at a
constant rate to display the current state of the network to the network operator. For the
purposes of this study, the data is provided through open data policies that are detailed
in Sect. 3. This data is processed using a data analytics tool, such as SparkXD, to
provide the parameters necessary for producing a prediction, such as current train speed
profiles, train positions, source and destination points, the current schedule, etc. The
parameters are passed into the prediction algorithm which is to determine if there are
any ongoing disruptions or there is a likely risk of a disruption taking place based on
the evidence of delay causes that may have been reported. If the prediction computes a
positive result, the rescheduling algorithm is queried to identify a possible solution,
where it aims to identify a route for each train in an affected area that has the lowest
cost of impact, which is briefly explained in more detail in Sect. 5.

It is expected that the final advice would produce details of ongoing disruptions and
the effects of these; warnings of potential disruptions – based on last known delays and
reported causes - and the effects of these and finally a proposed rescheduling solution to
(partially) minimise the impact and/or prevent an anticipated delay. The scope of this

Fig. 1. High-level design of the rail advisory system

180 L.J.W. Martin

paper is mostly concerned with the preliminaries of developing a solution for a pre-
diction algorithm that is capable of applying reasoning techniques, such as Bayesian
inference, to identify the following: if a delay is ongoing and to predict the possible
effects; if events that are known to result in delays have been reported and predict the
possibility of delays from this; if there is a risk that current train movements may
impede on the movements of other trains (i.e. conflicts) and finally to determine if
trains within the network area are likely to reach a station on time based on its current
movement patterns and with respect to the previous points. The prediction algorithm
therefore represents a critical part of the advisory system since it provides the pre-
dictions that are used to generate a significant part of the advice.

3 Data Mining

Data mining is applied in this study to extract data that describes actual train move-
ments within a specified area of the railway network. As a case study, a very small
section of the Great Western Rail line have been considered and are currently being
monitored. This area is of particular interested as it is one of the UK’s largest and oldest
railway lines that has recently undergone substantial modernisation, where there is now
much diversity in the density of the lines, the types of traffic and modes of signalling.

Typically, extracting data of current train movements is achieved through a train
describer system, which exists to provide live data feeds of train positions in discrete
steps over its route, based on train numbers and messages that are received from the
interlocking [5]. In the UK, train describer data is available through various sources,
where this study refers to the Network Rail data feed, which is provisioned and
maintained for public use by Network Rail [12]. The system has six data feeds that a
user may subscribe to, which is summarised in Table 1. The feeds are accessible
through one of two channels: the first being a real-time (RT) channel that publishes
data as JSON messages on ActiveMQ topics that are extracted via a Stomp client; and
the second is a semi-static (SS) channel, which publishes large data batches daily into
Amazon S3 buckets and extracted through authenticated HTTP GET requests [12].

The ActiveMQ topics are listed by all signalling areas that divide the British
railway network, where messages are received over the Stomp protocol. To date, it has
been possible to extract, filter, store and interpret data from these feeds, which has
enabled a preliminary set of results to be generated that are presented in Sect. 6.
However, since this work is currently ongoing, it has not yet been possible to accu-
mulate a final set of results given the time period that is to be covered. The current
focus, therefore, is to continue with data collection and interpretation over a longer
period, where it may then be fully analysed for the purpose of generating stochastic
models that provide detailed descriptions of the evolution of delays and the effect that
statistically significant factors have in triggering this.

In particular, some works refer to the application of multiple variable regression
analysis for understanding factors in which punctuality is dependent, where it is noted
in [11] that the length of carriage, distance previously covered, track layout and driver
behaviour are often cited as statistically significant factors in this. Thus, based on
significant characteristics of the train, which influence its runtime performance, it is

Predictive Reasoning and Machine Learning 181

possible to develop a train behaviour patterns and probability distributions of a train
arriving at each control point, which is central to the idea of describing a train run as a
stochastic process [2], which allows analytical probability models of delay propagation
to be established by describing delays based on its effect in train movement.

A point of caution is that the data is not expected to provide complete information of
many of the statistically significant factors that dispatchers would be aware of, since the
data is generally limited to capturing train movements and operational activities that take
place within the track. The Delay Attribution Guide, which is provided to dispatchers, is
a document that provides an extensive summary of the known significant causes of
delays both internally and externally of the track. It includes instances such as changes
in weather patterns, behaviour of passengers, incidents involving death or serious injury,
various blockages on the track and so on. This shortcoming in the data can be remedied
through the establishment of regular behavioural patterns of train movements, where
sudden and unexpected changes within these patterns would trigger a diagnosis of a
potential problem, given the information that is available both from confirmed statis-
tically significant factors from the analysed data and from the Delay Attribution Guide.
For example, suppose a train suddenly slowed down to a stop while travelling on a high
speed line and was not approaching a signal or a station. The logical conclusion, based
on the evidence available, would be an obstruction on the line, where trains that are
approaching this same area are at considerably high risk of also being delayed due to the
obstruction and the stopped train. In other words, the advisory system doesn’t need to be
aware of the probabilities of all the likely causes of the delays, since this would result in
noisy, practically useless advice resulting in potentially inaccurate predictions, but once
a cause has resulted in an immediate effect, the continuing effects should be predicted
given evidence that a likely cause has occurred. The evidence is thus accumulated
through sudden and unexpected changes in known train behaviour patterns.

Table 1. Data feeds available through the Network Rail Open Rail Data system. Source: http://
nrodwiki.rockshore.net/index.php/About_the_feeds

Data feed Description Channel
type

Train
movements

The train movements feed provides train positioning and
movement event data including incident and delay
reporting messages

RT

TD The Train Describer (TD) feed provides train positioning
data at signal berth level

RT

VSTP The Very Short Time Planning (VSTP) feed provides
schedule records via the VSTP process

RT

RTPPM Real-time Public Performance Measure (RTPPM) show the
performance of trains against the timetable, measured as
the percentage of trains arriving at destination

RT

TSR Temporary Speed Restrictions (TSR) data as published in
Weekly Operation Notice

Low-volume

SCHEDULE The Schedule feed is an extract of train schedules from the
Integration Train Planning System (ITPS)

SS

182 L.J.W. Martin

http://nrodwiki.rockshore.net/index.php/About_the_feeds
http://nrodwiki.rockshore.net/index.php/About_the_feeds

4 Stochastic Prediction of Train Delays in Real-Time Using
Bayesian Reasoning

This section has largely been inspired by the works of Kecman [4, 5], in which it was
proposed that given a stochastic model of a train run, it would be possible to determine
the probable likeliness of a train arriving at the next control point on its route on time,
and the resulting effect this would have on other trains that would soon approach the
same point later in time. The approach taken in this study is somewhat similar in that
train runs are to be described as an independent stochastic process. Although such an
approach neglects the fact that multiple train runs are often interdependent as they use
the same infrastructure or have scheduled passenger transfers and so on, the modelling
of these interdependencies is a considerably complex task since it requires detailed
knowledge of train routes and departure orders which are often not available in the
data [10]. Therefore, not enough information is available to build the detailed models
that were dominant in previous approaches for delay prediction [4] and hence the
reason why a stochastic approach that models the uncertainty of train event times is
more favourable. Likewise with Kecman, this study presents a train run as a dynamic
sequence of discrete arrival and departure events, where these events are connected by
the corresponding running and dwell processes [5]. The number of events corresponds
to the number of scheduled arrivals and departures. A through event can be separated
into the arrival and departure events that occur simultaneously. The events occur in a
fixed sequence j → k, where k = j + 1, j = 1, 2, …, n − 1, and n is the total number
of events in the train run. This way a train run can be modelled by knowing only the
events scheduled by the timetable. The variable of the system is a train delay that may
change at every event. As delays are random in nature, it is assumed that no inter-
mediate information is available, resulting in the final system being event-driven.

With these definitions, a train run can be defined using a Bayesian Network.
A Bayesian Network is a directed acyclic graph model, G = (V:E), that represents, as
its vertices, a set of random variables, V = {X1, …, Xn}, and, as its edges, the condi-
tional dependencies of each random variable [3]. It is a model used for reasoning about
the likeliness of events occurring under uncertainty. The direction of the edge reflects
the causality relationship between two vertices, where the event that is represented
by the child vertex can only occur on the condition that the event represented by the
parent vertex has occurred. This property is defined in joint probability distribution,
P(X1, …, Xn) of the network which is informally given by [3]:

PðX1; . . .;XnÞ ¼
Yn
i¼1

PðXijparentsðXiÞÞ

In the instance of a train run, a train t, is described as either arriving at a control
point or departing from one, where a and d respectively denote arrival and departure
events. The probability of a train arriving at a control point on time is given by P(ta)
and departure is given by P(td | ta). For multiple trains 1 and 2, the following network
would be constructed:

Predictive Reasoning and Machine Learning 183

Pðta1ÞPðtd1 jta1ÞPðta2 jta1 ; td1ÞPðtd2 jtd1 ; ta2Þ

This network is based on common reasoning as well as initial results of some
preliminary data that identifies a train coming into the station at a specific platform,
would do so under the condition that a previous train had both arrived and left. Thus,
the probability that the train would arrive on time, would depend on the probability that
the previous train had left on time. However, this isn’t necessarily the complete picture
as factors that may have delayed arrival other than the activities of a previous train
would also need to be taken into account, which can be achieved when constructing a
network that includes various causes and sub-causes of delays as nodes and computing
the conditional probability distributions for each node. These probabilities can be
inferred directly from evidence in the data through either a diagnostic or causal
inference. In the event that causes are inferred based on observed effects of a known
impact, it then becomes theoretically possible to predict the possible impact of further
effects that are likely to occur and also the likeliness of such effects occurring, where
such deductions are needed to determine the costs of a route to enable rescheduling
decisions to be made to ensure that a train chooses a route with the lowest possible cost,
which is briefly detailed in the next section.

5 Measuring Potential Impact

As discussed, the main purpose of the prediction algorithm is to identify if a delay is
ongoing and to determine the likely effects of this within a given time period, as well as
to infer the likeliness of delays based on observed activities that could be identified as
potential causes. This section essentially describes the types of output that may be
deduced based on the results of the prediction, which is then expected to provide a
series of key parameters used in developing a solution for a rescheduling algorithm that
aims to find the route with the lowest cost for each train. When describing cost, it is
defined in this study in terms of time spent to travel between two points and energy
consumed in travelling, where the most desirable route is the optimal value of one of
these based on some preference. We therefore provide a highly simplified definition of
cost accordingly:

c ¼ a � tþ b � e

where t is time, e is energy and a and b are preference constants. For simplicity, it is
assumed that the value of a and b can assume one of two binary values: 0 to denote that it
is not preferred and 1 for preferred. As the study develops, so the definition for preference
will be subject to improvement. It is argued that such constants are needed as optimal
travel time and optimal energy savings are typically regarded as tradeoffs [2, 7]. To
determine cost with respect to a deadline, we refer to the following definition [9]:

cðtÞ ¼ aðt dÞ2

184 L.J.W. Martin

where a cost function, c, can be defined as the time of arrival, t, relative to a deadline,
d with respect to some preference a. This definition can be applied to construct a
formula for an overall expected cost in time when travelling from a start point, i, to
a single end point, j, with respect to a fixed distance between the two points, f, and a
random duration required to cover that distance, x. The expected cost definition of
arriving from one point to another, is thus defined as follows [9]:

ECðtÞ ¼
Z 1

0
fijðxÞ � cðaðt dÞÞdx

This is further expanded to account for the total approximate time it would take to
complete a journey, where a traveler must continuously reach each point within its
route until it reaches its final destination. The new function for the expected cost in
time, ECp(t), is thereby derived by determining the overall probability of duration
between two points for every point in the route, against the total observed duration [9]:

ECpðtÞ ¼
Z 1

0

Yr
i¼1

fijðxÞ � c aðtþ
Xr
i¼1

xiÞ
 !

. . .dxi

With delays, travel time is increased to a large variance, where it is not possible to
predict precisely how long a journey may take, leading to an overall lack of reliability
and subsequently, lack of confidence from passengers, which in itself carries economic
consequences [3]. One such consequence is the increasing difficulty to optimise energy
consumption in which delays can particularly have an impact on train driving styles as
drivers are more likely to adopt higher speeds in an attempt to make some recovery.
Such reactions are noted to result in inefficient energy consumption, especially in dense
networks, as sharper or earlier braking is required to decelerate back to the speed limit
when approaching junctions. Optimising the overall cost of energy consumption is
more complex to define, since driver behaviour would need to be considered, which is
an area that will be briefly touched upon later in the research project, however, it is
currently beyond the scope of this work. Currently, we refer to a more general defi-
nition of energy consumption in an effort to define some cost of energy:

EðtÞ ¼
Z tf

0
ðTðvÞ BðvÞÞ � vðtÞdt

where T(v) is tractive effort, B(v) is the braking force, v is velocity and tf is the
travelling time [2]. It is planned that a final formula will be developed to provide a
robust and accurate description of cost in these terms in the developing phases of this
work, however, what has been described provides a brief outline for the overall
strategy.

Predictive Reasoning and Machine Learning 185

6 Ongoing and Future Work

There are several topics that are currently being investigated throughout the second
year of study, which focus on improving the current level of understanding in the types
of techniques and methods that may be applied in developing working modules of the
advisory system. As detailed in Sect. 3, the primary focus is in ensuring the successful
collection of train movement, scheduling and performance data from the live Network
Rail data feed. As noted, this is a cornerstone achievement as the development of the
data processing and delay prediction components depend heavily on the completion of
this task. After a sufficient historic sample has been collected, with the current target at
approximately 4 months, the data will be analysed using well established statistical
methods and techniques, such multiple regression analysis, modelling of uncertainty
and identification of probability distribution of arrival/departure times. This is neces-
sary for progressing into stochastic analysis, which will focus on describing train
delays and train movement patterns as stochastic processes, namely using a Markov
chain, which can then be applied to the design of a Bayesian Network – the basis of the
prediction algorithm – and can also be used in training the Network.

In terms of the data processing component, many frameworks and tools for data
stream processing and analysis currently exist, namely those that have been developed
by Apache, such as Samza, SparkXD and Hive. While these provide powerful solutions
in real-time data processing online using remote cloud servers, there is a concern about
the suitability of these working on a localhost and the feasibility of this when con-
sidering the development of a potential industrial tool intended for existing systems,
which is currently under investigation.

6.1 Preliminary Results

The preliminary results that have been accumulated detail consecutive delays that occur
in a train’s arrival and departure times. The data has been considerably detailed in the
sense that various codes are attributed to certain actions, but limited in the sense that
the times are not in a standard date/time format and are instead expressed as times-
tamps. This is problematic as it is difficult to attribute delays that occurred with the
same time frame (i.e. within an hour) or on the same day, which limits abilities in
tracing through and analyzing delays quite considerably. This prevents queries for
collecting departures that occur within particular times of the day, such as off-peak
times or comparing the delays of consecutive trains. This has somewhat been remedied
by extracting information from additional sources, such as trains.im, which do display
exact arrival and departure times of each train in a correct format, where data from the
feed provide additional levels of detail as the train and station IDs (which is available in
both sets of data) can easily be used to map the two sets and clearly identify the trains
that arrived at a particular station at a particular time. This is then used to trace the
causes and effects of the delay from both data sets and the timings that were involved.

At this stage of the analysis, it has been identified, from Fig. 2, that times and days
of the week have an influence on the likeliness of delays occurring and can therefore be
considered as statistically significant factors. It has been noted, from Fig. 3, that

186 L.J.W. Martin

conditional probabilities for an on time arrival, change as a train arrives at each con-
secutive station and as a previous train departs from that station, where we can easily
conclude that longer journeys are more likely to result in a higher likeliness of delays
and that if a train is late departing from a station, this will immediately affect the next
train due to arrive, with a higher likeliness of effected every other train arriving at that
station thereafter. This simply confirms various findings that have been discussed in
previous works, such as [1, 2, 6], but are nevertheless useful in developing predictive
methods.

6.2 Future Work

Currently, there are several areas for developing this work further in the short-term
which include: continue to develop a working stream data processing solution that is
able to utilise real-time, simulation and historic data sets that provide essential
heuristics for the machine learning algorithm for producing predictions in real-time; to
finalise an approach in determining the risk of delays in relation to probability distri-
butions and expected impact, so as to provide a core mechanism for an advisory
process and to incorporate both the machine learning algorithm and risk assessment
mechanism to develop a preliminary model for an advisory system that can later be
further enhanced and developed during the third year of study.

Acknowledgements. This work is sponsored by EPSRC and Siemens Rail Automation within
the industrial conversation CASE project on developing train advisory systems of the future. The
author would also like to thank Dr. William Blewitt for his advice and feedback and to Newcastle
University for their support.

Fig. 2. Correlation between delays in differ-
ent stations of the same journey

Fig. 3. Distribution of delays of days of the
week

Predictive Reasoning and Machine Learning 187

References

1. Berger, A., Gebhardt, A., Müller-Hannemann, M., Ostrowski, M.: Stochastic delay
prediction in large train newtorks. In: 11th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization and Systems, pp. 100–111 (2011)

2. Bergström, A., Krüger, N.: Modelling Passenger Train Delay Distributions – Evidence and
Implications. Karlstad University Working Paper in Economics, Karlstad University (2013)

3. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29,
131–163 (1997)

4. Kecman, P., Corman, F., Meng, L.: Train delay evolution as a stochastic process. In: 6th
International Conference on Railway Operations Modelling and Analysis, Springer,
New York (2015)

5. Kecman, P., Goverde, R.M.P.: An online railway traffic prediction model. In: 5th
International Seminar on Railway Operations Modelling and Analysis. Springer, Berlin
(2013)

6. Keyhani, M.H., Schnee, M., Weihe, K., Zorn, H.P.: Reliability and delay distributions of
train connections. In: 12th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization and Systems, pp. 35–46 (2012)

7. Martin, L., Romanovsky, A., Blewitt, W.: Design and development of train advisory systems
for the future. In: 13th International Railway Engineering Conference (2015)

8. Peng, Z., Lyu, Y., Miller, A., Johnson, C., Zhao, T.: Risk assessment of railway
transportation systems using timed fault trees. Qual. Reliab. Eng. Int. (2014)

9. van Hinsbergen, C.P.I.J., Hegyi, A., van Lint, J.W.C., van Zuylen, H.J.: Bayesian neural
networks for the prediction of stochastic travel times in urban networks. IET Intel. Transport
Syst. 5(4), 259–265 (2011). doi:10.1049/iet-its.2009.0114

10. Yaghini, M., Khoshraftar, M.M., Seyedabadi, M.: Railway passenger train delay prediction
via neural network model. J. Adv. Transp. 47(3) (2013). doi:10.1002/atr.193

11. Yuan, J.: Stochastic Modelling of Train Delays and Delay Propagation in Stations. Doctoral
thesis, Delft University of Technology, Eburon Academic Publishers (2006)

12. Network Rail Data Feeds Developer Pack, V2.0, Published by Network Rail. https://odmcr.
files.wordpress.com/2012/06/developer-pack-for-network-rail-data-feeds.pdf

13. Network Rail Strategic Business Plan. Schedule 8. http://www.networkrail.co.uk/browse%
20documents/strategicbusinessplan/cp5/supporting%20documents/financing%20and%
20funding/schedule%208.pdf

14. Kang, M.O.: A GA based algorithm for creating energy-optimum train speed trajectory.
J. Int. Counc. Electr. Eng. 1(2), 123–128 (2011). doi:10.5370/JICEE.2011.1.2.123

188 L.J.W. Martin

http://dx.doi.org/10.1049/iet-its.2009.0114
http://dx.doi.org/10.1002/atr.193
https://odmcr.files.wordpress.com/2012/06/developer-pack-for-network-rail-data-feeds.pdf
https://odmcr.files.wordpress.com/2012/06/developer-pack-for-network-rail-data-feeds.pdf
http://www.networkrail.co.uk/browse%2520documents/strategicbusinessplan/cp5/supporting%2520documents/financing%2520and%2520funding/schedule%25208.pdf
http://www.networkrail.co.uk/browse%2520documents/strategicbusinessplan/cp5/supporting%2520documents/financing%2520and%2520funding/schedule%25208.pdf
http://www.networkrail.co.uk/browse%2520documents/strategicbusinessplan/cp5/supporting%2520documents/financing%2520and%2520funding/schedule%25208.pdf
http://dx.doi.org/10.5370/JICEE.2011.1.2.123

Verification and Validation

Applying Abstract Interpretation to Verify
EN-50128 Software Safety Requirements

Daniel Kästner(B) and Christian Ferdinand

AbsInt GmbH, Science Park 1, 66123 Saarbrücken, Germany
{kaestner,ferdinand}@absint.com

Abstract. Like other contemporary safety standards EN-50128 requires
to identify potential functional and non-functional hazards and to
demonstrate that the software does not violate the relevant safety goals.
Examples of safety-relevant non-functional hazards are violations of
resource bounds, especially stack overflows and deadline violations, as
well as run-time errors and data races. They can cause erroneous and
erratic program behavior, invalidate separation mechanisms in mixed-
criticality software, and even trigger software crashes. Classical software
verification methods like code review and testing with measurements
cannot really guarantee the absence of errors. Abstract interpretation
is a formal method for static program analysis which supports formal
soundness proofs (it can be proven that no error is missed) and which
scales. This article gives an overview of abstract interpretation and its
application to compute safe worst-case execution time and stack bounds,
and to find all potential run-time errors, and data races. We discuss the
tool qualification of abstract interpretation-based static analyzers and
describe their contribution with respect to EN-50128 compliant verifi-
cation processes. We also illustrate their integration in the development
process and report on practical experience.

1 Introduction

A failure of a safety-critical system may cause high costs or even endanger human
beings. With the unbroken trend towards growing software size in embedded sys-
tems more and more safety-critical functionality is implemented in software.
Preventing software-induced system failures becomes an increasingly impor-
tant task.

Contemporary safety norms – including DO-178B, DO-178C, IEC-61508,
ISO-26262, and EN-50128 – require to identify potential functional and non-
functional hazards and to demonstrate that the software does not violate the rel-
evant safety goals. Functional program properties can be addressed by automatic
and model-based testing, or by model checking and theorem proving. Examples
of safety-relevant non-functional software requirements are adherence to resource
bounds, especially worst-case execution time bounds and stack size, as well as
freedom of run-time errors (e.g. division by zero, invalid pointer accesses, arith-
metic overflows) and data races (concurrent accesses by two threads to the same
c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 191–202, 2016.
DOI: 10.1007/978-3-319-33951-1_14

192 D. Kästner and C. Ferdinand

memory location without proper mutex locking). Violations of resource bounds,
run-time errors, and data races can corrupt memory, cause erroneous and erratic
program behavior, invalidate separation mechanisms in mixed-criticality soft-
ware, and even trigger software crashes. The term ‘non-functional’ is tradition-
ally used but misleading: in fact, satisfying non-functional requirements is an
essential part of functional safety. The explosion of the Ariane 5 [15] and the
unintended acceleration of the 2005 Toyota Camry [2,24] illustrate potential
consequences of such errors.

The non-functional program properties cannot be directly mapped to test
cases, e.g. a test case for stimulating the worst-case stack usage typically is not
known. Identifying a safe end-of-test criterion is a hard problem since failures
usually occur in corner cases and full test coverage – which for these properties
would require full control and data coverage – typically cannot be achieved on
industry-size applications. In consequence the required test effort is high and the
results are not complete.

Abstract interpretation is a formal methodology for static program analysis
which is well suited to analyze non-functional software properties. It supports
formal soundness proofs (it can be proven that no error is missed) and scales
to real-life industry applications. Abstract interpretation-based static analyzers
provide full control and data coverage and allow conclusions to be drawn that are
valid for all program runs with all inputs. Such conclusions may be that no timing
or space constraints are violated, or that run-time errors or data races are absent:
the absence of these errors can be guaranteed. Nowadays, abstract interpretation-
based static analyzers that can detect stack overflows and violations of timing
constraints [23] and that can prove the absence of run-time errors [6], are widely
used in industry. From a methodological point of view, abstract interpretation-
based static analyses can be seen as equivalent to testing with full data and
control coverage. They do not require access to the physical target hardware,
can be easily integrated in continuous verification frameworks and model-based
development environments, and they allow developers to detect run-time errors
as well as timing and space bugs in early product stages. For validating non-
functional program properties they define the state-of-the-art technology.

In the following we will give an overview of the CENELEC EN-50128 with
a focus on the requirements for non-functional software properties and verifica-
tion methodology. Then we will give a brief overview of the theory of abstract
interpretation and present three exemplary tools: aiT for worst-case execution
time analysis, StackAnalyzer for stack usage analysis and Astrée for finding run-
time errors and data races. Industrial experience is summarized in Sects. 5 and
6 concludes.

2 CENELEC EN-50128

The European norm CENELEC EN-50128 is based on the norm IEC-61508;
its latest revision dates from 2011 [4]. It specifies the requirements with which
the development, deployment and maintenance of any safety-related software
intended for railway control and protection applications shall comply.

Applying Abstract Interpretation to Verify EN-50128 193

The non-functional software properties are listed among the software require-
ments to be specified and verified throughout all development stages. Timing
constraints are listed among the properties that have to be specified for the
system in which the software is embedded (clause 4.1). Resource bounds in gen-
eral are addressed by clause 7.2.4.2 which considers capacity and response time
performance to be necessary functional requirements. Like IEC-61508 and ISO-
26262, also EN-50128 states that the entire software is subject to the highest
safety integrity level used unless freedom of interference (“evidence of indepen-
dence”) can be demonstrated between the components of different integrity levels
(clause 7.3.4.9). Sources of interference can be memory corruption like stack over-
flows, run-time errors and data races, and timing effects. Clause 7.3.4.19 explic-
itly demands that time constraints and memory bounds have to be addressed by
the software interface description. Also the existence of synchronization mecha-
nisms between functions and the definition of allowed and forbidden value ranges
for data from and to the interfaces are demanded. In the testing and verification
stage this implies demonstrating, e.g., that the synchronization is effective, i.e.
that no data races can occur, that the feasible value ranges are respected, and
that the resource constraints are met. In the integration stage one objective is
to demonstrate that “software and hardware interact correctly to perform their
intended functions” (7.6.1.2) which, again, includes meeting resource constraints
and avoiding memory corruption.

The verification and testing methods are summarized in Table A.5 of EN-
50128. In general, formal proof is recommended for SIL1/SIL2 and highly rec-
ommended for SIL3/SIL4. Static analysis in general is highly recommended for
SIL1-SIL4. Performance testing addresses response time and memory constraints
and is highly recommended for all safety integrity levels. Table A.21 addresses
test coverage for code. Here path coverage is recommended for SIL1/SIL2 and
even strongly recommended for SIL3/SIL4. Path coverage typically cannot be
achieved by testing for industry-size code, but is always achieved by abstract
interpretation based static analyzers.

The EN-50128 categorizes software tools in three classes T1, T2, T3. All tools
discussed in this article belong to the class T2 which covers tools supporting the
“test or verification of the design or executable code, where errors in the tool can
fail to reveal defects but cannot directly create errors in the executable software”
(cf. clause 3.1.43).

3 Abstract Interpretation

The theory of abstract interpretation [5] is a mathematically rigorous formal-
ism providing a semantics-based methodology for static program analysis. The
semantics of a programming language is a formal description of the behavior
of programs. The most precise semantics is the so-called concrete semantics,
describing closely the actual execution of the program. Yet in general, the con-
crete semantics is not computable. Even under the assumption that the program
terminates, it is too detailed to allow for efficient computations. The solution

194 D. Kästner and C. Ferdinand

is to introduce an abstract semantics that approximates the concrete semantics
of the program and is efficiently computable. This abstract semantics can be
chosen as the basis for a static analysis. Compared to an analysis of the concrete
semantics, the analysis result may be less precise but the computation may be
significantly faster.

A static analyzer is called sound if the computed results hold for any possible
program execution. Abstract interpretation supports formal correctness proofs:
it can be proved that an analysis will terminate and that it is sound, i.e., that
it computes an over-approximation of the concrete semantics. Imprecision can
occur, but it can be shown that they will always occur on the safe side. In
runtime error analysis, soundness means that the analyzer never omits to signal
an error that can appear in some execution environment. If no potential error is
signaled, definitely no runtime error can occur: there are no false negatives. If a
potential error is reported, the analyzer cannot exclude that there is a concrete
program execution triggering the error. If there is no such execution, this is a false
alarm (false positive). This imprecision is on the safe side: it can never happen
that there is a runtime error which is not reported. In WCET and stack usage
analysis soundness means that the computed WCET/stack bound holds for any
possible program execution. The only imprecision occurring is overestimation:
the WCET and the maximal stack height will never be underestimated.

Abstract Interpretation, like model checking and theorem proving, is recog-
nized as a formal verification method and recommended by the DO-178C and
other safety standards (cf. Formal Methods Supplement [21] to DO-178C [22]).

3.1 Stack Usage Analysis

In embedded systems, the run-time stack (often just called “the stack”) typically
is the only dynamically allocated memory area. It is used during program execu-
tion to keep track of the currently active procedures and facilitate the evaluation
of expressions.

Precisely determining the maximum stack usage before deploying the sys-
tem is important for economical reasons and for system safety. Overestimating
the maximum stack usage means wasting memory resources. Underestimation
leads to stack overflows: memory cells from the stacks of different tasks or other
memory areas are overwritten. This can cause crashes due to memory protec-
tion violations and can trigger arbitrary erroneous program behavior, if return
addresses or other parts of the execution state are modified. In consequence stack
overflows are typically hard to diagnose and hard to reproduce, but they are a
potential cause of catastrophic failure. The accidents caused by the unintended
acceleration of the 2005 Toyota Camry illustrate the potential consequences of
stack overflows: the expert witness’ report commissioned by the Oklahoma court
in 2013 identifies a stack overflow as probable failure cause [2,24].

StackAnalyzer. The tool StackAnalyzer [14] employs a global abstract
interpretation-based static program analysis to compute safe upper bounds on

Applying Abstract Interpretation to Verify EN-50128 195

the maximal stack usage of tasks. The main input of StackAnalyzer is the binary
executable. The analysis does not require any code modification and does not
rely on debug information. The results are independent from flaws in the debug
output and refer to exactly the same code as in the shipped system. First, the
control-flow graph (CFG) is reconstructed from the input file, the binary exe-
cutable. Then a static value analysis computes value ranges for registers and
address ranges for instructions accessing memory. By concentrating on the value
of the stack pointer during value analysis, StackAnalyzer computes how the stack
increases and decreases along the various control-flow paths. This information
can be used to derive the maximum stack usage of the entire task. StackAn-
alyzer takes the entire application into account and interprocedurally analyzes
each call site with its precise stack height. The results of StackAnalyzer are pre-
sented as annotations in a combined call graph and control-flow graph. It shows
the critical path, i.e., the path on which the maximum stack usage is reached
which gives important feedback for optimizing the stack usage of the application
under analysis.

3.2 Worst-Case Execution Time Analysis

Demonstrating timing correctness requires showing that all real-time tasks meet
their deadlines, or that deadline violations do not compromise the safety of
the system. To demonstrate deadline adherence the worst-case response times
(WCRT) of the real-time tasks in the system have to be determined. The WCRT
of a task is based on its worst-case execution time (WCET) and takes additional
overhead caused, e.g., by task preemptions and task blocking into account.

Due to the characteristics of modern hardware and software architectures
determining the WCET of a task has become a challenge. Embedded control
software tends to be large and complex. At the hardware level modern micro-
processors use hardware features like caches, pipelines, branch prediction, and
prefetching which cause the execution behavior of the instructions to depend on
the execution history. Small changes in the program code or program input may
lead to significant changes in the timing behavior [26].

The widely used classical methods of predicting execution times are not gen-
erally applicable. Software monitoring, trace-based measurements, and dual-loop
benchmarks modify the code, which in turn changes the cache behavior. Hard-
ware simulation, emulation, or direct measurement with logic analyzers can only
determine the execution time for some fixed inputs. They cannot be used to infer
the execution times for all possible inputs in general.

In contrast, abstract interpretation can be used to efficiently compute a safe
approximation for all possible cache and pipeline states that can occur at a
program point in any program run with any input. These results can be combined
with ILP (Integer Linear Programming) techniques to safely predict the worst-
case execution time and a corresponding worst-case execution path. A survey of
methods for WCET analysis and of WCET tools is given in [25].

196 D. Kästner and C. Ferdinand

aiT WCET Analyzer. The timing verifier aiT [7,20] computes a safe upper
bound for the WCET of a task. The main input of aiT is the binary executable.
Like StackAnalyzer the analysis does not require any code modification and
does not rely on debug information. aiT determines the WCET of a program
task in several phases, which makes it possible to use different methods tailored
to each subtask. First, the control-flow graph (CFG) is reconstructed from the
input file, the binary executable. Then value analysis computes value ranges for
registers and address ranges for instructions accessing memory; a loop bound
analysis determines upper bounds for the number of iterations of simple loops.
Subsequently, a cache analysis classifies memory references as cache misses or
hits and a pipeline analysis predicts the behavior of the program on the processor
pipeline. Finally the path analysis determines a worst-case execution path of the
program. To validate the underlying hardware model automatic trace validation
can be applied which allows a cycle-accurate validation of the model down to
the level of individual pipeline events and bus signals, based on the automatic
processing of trace files created on the real hardware [11].

The results of aiT are reported as annotations in call graphs and control-flow
graphs, and as report files in text format and XML format. The overall WCET
bounds for sequential code pieces can also be communicated to the system-
level analyzer SymTA/S [8], which computes worst-case response times from the
sequential WCETs, taking into account interrupts and task preemptions.

aiT is available for a wide range of 16-bit and 32-bit microcontrollers. In gen-
eral, the availability of safe worst-case execution time bounds depends on the
predictability of the execution platform. Especially multi-core architectures may
exhibit poor predictability because of essentially non-deterministic interferences
on shared resources which can cause high variations in execution time. Refer-
ence [13] gives a more detailed overview and suggests example configurations for
available multi-cores to support static timing analysis.

3.3 Run-Time Errors and Data Races

Run-time errors are errors that occur during run-time of the software. In this
section we will mainly focus on run-time errors which correspond to undefined or
unspecified behavior with respect to the semantics of the programming language.
This class of errors is of particular interest for the programming language C since
it includes many common problems which cannot be detected by the compiler or
prevented during run-time. Examples are arithmetic exceptions (e.g. divide by
zero), overflows, and validity of addresses for pointers or array bound errors. The
C99 standard provides a list of unspecified and undefined behaviors in Section J
of ISO/IEC 9899:1999 (E). In addition, errors induced by concurrent execution
can be considered run-time errors, most notably data races and thread synchro-
nization errors. A data race is caused by concurrent accesses from two threads
to the same memory location without appropriate protection (e.g. mutex lock-
ing). Values subject to a data race depend on the timing or process sequencing,
resulting in erratic behavior and sporadic crashes.

Applying Abstract Interpretation to Verify EN-50128 197

Depending on their effects run-time errors can be grouped in two categories.
The first category of run-time errors is related to conditions in which the source
semantics is undefined. After such a run-time error the actual execution will
do something unknown. Examples are invalid array or pointer accesses which
might corrupt memory and destroy the data integrity of the program. It can
even happen that the program code is dynamically modified resulting in erratic
behavior, or that the program crashes with segmentation faults or bus errors.
Further examples of errors from that class are integer division by zero, floating-
point overflows and invalid operations without mathematical meaning which
might cause the program to be stopped by an interrupt.

The second category of run-time errors is due to unspecified but
implementation-defined behavior; here it is predictable what will happen after
the error has occurred. Examples are integer overflows or invalid shifts for which
the actual computations are quite different from the expected mathematical
meaning.

Astrée. Astrée [3,14] is an abstract interpretation-based sound static analyzer
which reports program defects caused by unspecified and undefined behaviors
according to the C99 standard, program defects caused by invalid concurrent
behavior, and violations of user-specified programming guidelines. Supported
error categories include invalid pointer accesses and manipulations, arithmetic
overflows, division by zero, out-of-bounds array accesses, etc. Astrée also per-
mits users to specify their own functional properties to be checked with an
assertion mechanism (similar to C’s assert command), and will report any vio-
lation. Finally, Astrée includes a rule checker that supports MISRA C:2004 and
MISRA C:2012 and can be extended for customer-specific rule sets.

Astrée uses abstractions to represent and manipulate efficiently over-
approximations of program states. As no single abstraction is sufficient to obtain
sufficiently precise results, Astrée is actually built by combining a large set of
efficient abstractions, e.g., the octagon domain [16]. Some of them, such as
abstractions of digital filters [9], have been developed specifically to analyze
control-command software as these constitute an important share of safety-
critical embedded software. In addition to numeric properties, Astrée contains
abstractions to reason about pointers, pointer arithmetic, structures, and arrays.
Finally, to ensure precision, Astrée keeps a precise representation of the control
flow, by performing a fully context-sensitive, flow-sensitive (and even partially
path-sensitive) inter-procedural analysis.

Astrée enables its users to fine-tune the precision of the analyzer to the
software under analysis by inserting formal analysis directives to focus precision
on specific program parts and specific variables. Also assumptions about the
environment such as input value ranges can be specified by Astrée directives.
The formal language AAL [1] makes it possible to locate them in the abstract
syntax tree without modifying the source code — a prerequisite for analyzing
automatically generated code. To deal with evolving software Astrée provides a
mechanism to detect whether AAL annotations are still placed at the intended
location after structural code changes [12].

198 D. Kästner and C. Ferdinand

Handling Concurrency. Whereas previous Astrée versions have been limited to
sequential C software, Astrée has been extended by a novel low-level concur-
rent semantics [17] which provides a scalable abstraction covering all possible
thread interleaving. The interleaving semantics enables Astrée, in addition to
the classes of run-time errors found in sequential programs, to report data races
and lock/unlock problems, i.e., inconsistent synchronization. In addition to the
range of each variable at each program point, Astrée reports the set of shared
variables it discovers, together with the set of threads accessing these variables,
the kinds of operations performed (reads or writes), and their range of values.

In the simplest case the software runs directly on the hardware, in which case
the environment is limited to a set of volatile variables, i.e., program variables
that can be modified by the environment concurrently, and for which a range
can be provided to Astrée by formal directives as described above. More often,
the program is run on top of an operating system, which it can access through
function calls to a system library. When analyzing a program using a library, one
possible solution is to include the source code of the library with the program.
This is not always convenient (if the library is complex), nor possible, if the
library source is not available, or not fully written in C, or ultimately relies on
kernel services (e.g., for system libraries). An alternative is to provide a stub
implementation, i.e., to write, for each library function, a specification of its
possible effect on the program. Astrée provides stub libraries for the ARINC
653 standard, the OSEK/AUTOSAR standards, and for POSIX threads. More
details on these models are available in [18]. They make it possible to perform a
completely automatic OS aware whole-program analysis [19].

4 Tool Qualification

To provide high confidence in the correct functioning of a tool it is necessary
to demonstrate that the tool works correctly in the operational context of its
users. This is a common requirement of most current safety standards. The cor-
rect functioning of a tool might be affected by the OS version, system libraries
installed, software patch levels, etc. Moreover, depending on the user’s devel-
opment process structure and tool landscape the probability for detecting tool
errors may vary. Therefore taking into account the operational context of tool
usage is essential for tool qualification. From the perspective of a tool user, qual-
ifying a software tool causes considerable effort. The functional requirements of
the tool have to be specified, a test plan has to be developed, tests have to be
executed and documented. Moreover the qualification effort has to be repeated
for each development project to be certified. This makes it very desirable to
do automate the tool qualification process. Such an automatic tool qualification
can be done by dedicated Qualification Support Kits (QSKs) as shipped as a
part of a software tool. Qualification kits are available for aiT, StackAnalyzer,
and Astrée. They consist of a report package and a test package. The report
package lists all functional requirements (tool operational requirements report)
and contains a verification test plan describing one or more test cases to check

Applying Abstract Interpretation to Verify EN-50128 199

each functional requirement. The test package contains an extensible set of test
cases and a scripting system to automatically execute all test cases and evaluate
the results. Along with the tool operational requirements report and the verifi-
cation test plan the generated result report can be submitted to the certification
authority as part of the certification package. In particular, all requirements of
the EN-50128 regarding tool validation are met (cf. clause 6.7.4.5).

5 Practical Experience

In recent years tools based on static analysis have proved their usability in indus-
trial practice and, in consequence, have increasingly been used by avionics, auto-
motive and health care industries. In the following we report some experiences
gained with aiT WCET Analyzer, StackAnalyzer and Astrée. All of them have
been successfully used for certification according to various safety standards.

StackAnalyzer results are usually precise for any given program path. State-
ments about the precision of aiT are hard to obtain since the real WCET is
usually unknown for typical real-life applications. For an avionics application
running on MPC 755, Airbus has noted that aiT’s WCET for a task typically is
about 25 % higher than some measured execution times for the same task, the
real but non-calculable WCET being in between [23]. Trace-based measurements
at AbsInt have indicated overestimations ranging from 0 % (cycle-exact predic-
tion) till 15 % on LEON2, MPC565, MPC5566, M32C, TMS320C33, TriCore
TC1197/TC1797/1796, MPC6474F, and C166/ST10 [10,11].

In the following we briefly summarize some experimental results with Astrée
for industry applications of different domains. Column Model describes the exe-
cution model: sync stands for a cyclic executive with fully static schedule, async
denotes a concurrent execution model under control of an operating system com-
pliant to ARINC-653, OSEK, or AUTOSAR. Column LOC is the number of lines
of preprocessed code without empty lines and without comments, Alarms gives
the number of code locations with alarms about potential runtime errors, Data
Races gives the number of variables subject to a potential data race. Column
Memory indicates the amount of main memory used for the analysis.

Domain Model LOC Alarms Data races Time RAM [GB]

Railway sync 79.163 39 – 8min 0.5

Avionics 1 sync 755.197 0 – 6 h 6

Avionics 2 async 225.093 377 119 32min 2.4

Automotive 1 async 177.574 774 6 30min 2.6

Automotive 2 async 2.574.481 702 1481 1d 8h 28.4

In all projects investigated the alarm rate is very low, demonstrating high analy-
sis precision. In the Avionics 1 project no alarms were raised at all so the absence
of run-time errors could be proven completely automatically. The six data races

200 D. Kästner and C. Ferdinand

reported for project Automotive 1 were all confirmed to be true data races, i.e.,
there was no false alarm regarding data races in this example. In the project
Automotive 2 1481 data races are reported which are not all true data races;
some of them are false alarms. The main reason for the high number of data
races in that project is that two concepts are not fully supported in Astrée yet:
task chaining and the Priority Ceiling Protocol (PCP). Since the PCP can cause
task priorities to change, priorities are currently ignored in OSEK/AUTOSAR
code by Astrée to get conservative results. Furthermore the scheduling ensures
that initialization tasks are not interrupted by regular cyclic tasks. Astrée cur-
rently assumes that all tasks run at the same time, which causes spurious data
race alarms. Still it is interesting to note that there are only 702 alarms about
potential run-time errors: if, e.g., a data race leads to an arithmetic overflow this
overflow is reported as a regular run-time error alarm. So in spite of the high
number of data races there are only very few actual run-time errors caused by
them, which can be explained by the fact that most of them are due to spuri-
ous interferences with initialization tasks as explained above. In the upcoming
Astrée release both limitations, i.e., regarding PCP and task chaining will be
removed, which will further reduce the number of spurious data races.

In general the results show that even software projects consisting of millions
of line of code can be analyzed by Astrée in short time with very low alarm rates.
To our knowledge there is no other tool available which can detect all potential
data races in software projects of comparable sizes.

6 Summary

The quality assurance process for safety-critical embedded software is of crucial
importance. The cost for system validation grows with increasing criticality level
to constitute a large fraction of the overall development cost. The problem is
twofold: system safety must be ensured, yet this must be accomplishable with
reasonable effort.

Contemporary safety standards require to identify potential functional and
non-functional hazards and to demonstrate that the software does not violate the
relevant safety goals. Tools based on abstract interpretation can perform static
program analysis of embedded applications. Their results are determined without
the need to change the code and hold for all program runs with arbitrary inputs.
Especially for non-functional program properties they are highly attractive, since
they provide full data and control coverage and can be seamlessly integrated
in the development process. We have presented three exemplary tools in this
article: aiT allows inspecting the timing behavior of program tasks. It takes into
account the combination of all the different hardware characteristics while still
obtaining tight upper bounds for the WCET of a given program in reasonable
time. StackAnalyzer calculates safe upper bounds on the maximum stack usage
of tasks and can prove the absence of stack overflows. Astrée can be used to
prove the absence of runtime errors and data races in C programs. Industrial
synchronous real-time software from the avionics industry could be successfully
analyzed by Astrée with zero false alarms.

Applying Abstract Interpretation to Verify EN-50128 201

aiT, StackAnalyzer and Astrée can be used as analysis tools for the certi-
fication according to safety standards like EN-50128, or DO-178B/C. The tool
qualification process can be automatized to a large extend by dedicated Quali-
fication Support Kits.

Acknowledgement. The work presented in this paper has been supported by the
European FP7 project INTERESTED, and is supported by the European ITEA3
project ASSUME and the German BMBF (FORTISSIMO project).

References

1. AbsInt. The Static Analyzer Astrée – User Documentation for AAL Annotations
(2015)

2. Barr, M.: Bookout v. Toyota, 2005 Camry software Analysis by Michael Barr
(2013). http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.
pdf

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI 2003), pp. 196–207, San Diego, California, USA, 7–14 June 2003.
ACM Press (2003)

4. CENELEC EN 50128. Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems (2011)

5. Cousot, P., Cousot, R., Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th POPL,
pp. 238–252. ACM Press, Los Angeles (1977)

6. Delmas, D., Souyris, J.: Astrée: from research to industry. In: Riis Nielson, H., Filé,
G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 437–451. Springer, Heidelberg (2007)

7. Ferdinand, C., Heckmann, R.: Worst-case execution time - a tool provider’s per-
spective. In: Proceedings of the International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC), pp. 340–345. IEEE Computer Society,
Orlando, May 2008

8. Ferdinand, C., Heckmann, R., Jersak, M., Martin, F., Richter, K.: Integrating
system-level and code-level timing analysis for dependable system development. In:
4th European Congress ERTS Embedded Real Time Software, Toulouse, France,
January 2008

9. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

10. Gebhard, G.: Static Timing Analysis Tool Validation in the Presence of Timing
Anomalies. PhD thesis, Saarland University (2013)

11. Kästner, D., Pister, M., Gebhard, G., Schlickling, M., Ferdinand, C.: Confidence
in Timing. Safecomp 2013 Workshop: Next Generation of System Assurance
Approaches for Safety-Critical Systems (SASSUR), September 2013

12. Kästner, D., Pohland, J.: Program analysis on evolving software. In: Roy, M.
(ed.) CARS 2015 - Critical Automotiveapplications: Robustness & Safety, Paris,
September 2015

13. Kästner, D., Schlickling, M., Pister, M., Cullmann, C., Gebhard, G., Heckmann,
R., Ferdinand, C.: Meeting real-time requirements with multi-core processors.
Safecomp 2012 Workshop: Next Generation of System Assurance Approaches for
Safety-Critical Systems (SASSUR), September 2012

http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf
http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

202 D. Kästner and C. Ferdinand

14. Kästner, D., Wilhelm, S., Nenova, S., Cousot, P., Cousot, R., Feret, J., Mauborgne,
L., Miné, A., Rival, X.: Astrée: Proving the Absence of Runtime Errors. Embedded
Real Time Software and Systems Congress ERTS2 (2010)

15. Lions, J., et al.: ARIANE 5, Flight 501 Failure. Report by the Inquiry Board (1996)
16. Miné, A.: The octagon abstract domain. Higher-Order Symbolic Comput. 19(1),

31–100 (2006)
17. Miné, A.: Static analysis of run-time errors in embedded real-time parallel C pro-

grams. Logical Methods Comput. Sci. (LMCS) 8(26), 63 (2012)
18. Miné, A., Delmas, D.: Towards an industrial use of sound static analysis for the veri-

fication of concurrent embedded avionics software. In: Proceeding of the 15th Inter-
national Conference on Embedded Software (EMSOFT 2015), pp. 65–74. IEEE CS
Press, October 2015

19. Miné, A., Mauborgne, L., Rival, X., Feret, J., Cousot, P., Kästner, D., Wilhelm,
S., Ferdinand, C.: Taking Static Analysis to the Next Level: Proving the Absence
ofRun-Time Errors and Data Races with Astrée. Embedded Real Time Software
and Systems Congress ERTS2 (2016)

20. NASA Engineering and Safety Center. Technical Support to the National Highway
Traffic Safety Administration (NHTSA) on the Reported Toyota Motor Corpora-
tion (TMC) Unintended Acceleration (UA) Investigation (2011)

21. Radio Technical Commission for Aeronautics. Formal Methods Supplement to DO-
178C and DO-278A (2011)

22. Radio Technical Commission for Aeronautics. RTCA DO-178C. Software Consid-
erations in Airborne Systems and Equipment Certification (2011)

23. Souyris, J., Pavec, E.L., Himbert, G., Jégu, V., Borios, G., Heckmann, R.: Comput-
ing the worst case execution time of an avionics program by abstract interpretation.
In: Proceedings of the 5th International Workshop on Worst-case Execution Time
(WCET 2005), Mallorca, pp. 21–24 (2005)

24. Transcript of Morning Trial Proceedings had on the 14th day of October 2013
Before the Honorable Patricia G. Parrish, District Judge, Case No.CJ-2008-7969,
October 2013. http://www.safetyresearch.net/Library/Bookout_v_Toyota_Barr_
REDACTED.pdf

25. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley,
D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut,
I., Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time
problem–overview of methods and survey of tools. ACM Trans. Embedded Com-
put. Syst. 7(3), 1–53 (2008)

26. Wilhelm, R., Grund, D., Reineke, J., Pister, M., Schlickling, M., Ferdinand, C.:
Memory hierarchies, pipelines, and buses for future time-critical embedded archi-
tectures. IEEE TCAD 28(7), 966–978 (2009)

http://www.safetyresearch.net/Library/Bookout_v_Toyota_Barr_REDACTED.pdf
http://www.safetyresearch.net/Library/Bookout_v_Toyota_Barr_REDACTED.pdf

The PERF Approach for Formal Verification

Nazim Benaissa, David Bonvoisin, Abderrahmane Feliachi(B),
and Julien Ordioni

RATP, ING/STF/QS, 54 rue Roger Salengro, 94724 Fontenay-sous-Bois, France
{Nazim.Benaissa,David.Bonvoisin,Abderrahmane.Feliachi,

Julien.Ordioni}@ratp.fr

Abstract. In order to analyse extensively the safety of the deployed
railway software systems, RATP rely on rigorous verification method-
ologies based on formal methods. During the past few years, RATP has
developed a new formal verification method called PERF, supported by
a rich proof tool-chain. The main purpose of this method is to perform
a non-intrusive verification on the implemented software. Unlike many
formal methodologies, it does not require any intervention in the early
stages of the software development.

In this paper, we present the PERF methodology as well as the
different part of its supporting tool-chain with some feedback on the its
application in some real projects. We also present the ongoing and future
work around the PERF tool-chain.

Keywords: Formal methods · Verification tool-chain · Railway safety ·
PERF

1 Introduction

In order to analyse extensively the safety of the deployed railway software sys-
tems and to manage the increasing complexity of railway software, RATP rely
on rigorous verification methodologies based on formal methods. The advantage
of formal verification, compared to other verification methods such as testing
for example, is the exhaustive coverage of the implementation domain of the
targeted systems. Formal verification ensures that a software or more generally
a system satisfies a given specification. This specification can be described as
properties or requirements that the system must satisfy. These properties are
divided into two groups: safety properties and liveness properties. Safety prop-
erties generally describe undesired events that the system must avoid; e.g. “Two
trains should not collide”. The liveness property describe the normal behavior
the system must follow; e.g. “A train can not remain indefinitely in a station”.

Thanks to its exhaustive nature, formal verification can replace classical testing
in the classicalV-shaped software development cycle. In addition to the verification
of systems, formalmethods also allow for abetter understandingof the systemspec-
ification and its different properties because of their unambiguous formalization.
Formal proof often requires to explicit a number of constraints on the environment
c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 203–214, 2016.
DOI: 10.1007/978-3-319-33951-1 15

204 N. Benaissa et al.

of the system, describing what is called an environment model. This model allows
the environment to constrain the verification only to realistic conditions. This also
helps to better understand the environment in which the system evolves.

Formal methods include all specification and verification languages and tools
defined on mathematical bases. In recent years, a plethora of languages and
formal tools were developed for the specification and verification of different
types of systems. The formal verification process is built around automatic or
assisted provers (proof engines). In addition to the provers, other formal tools are
used to assist the verification and the analysis of proof results. Among these tools
we note the different editors, static analyzers and counter-examples simulators.

In the past 25 years, RATP has used numerous formal methods for the ver-
ification of the critical software of railway systems. This commitment is mostly
due to the growing confidence of RATP in these techniques after their success-
ful application in various projects. In the meanwhile, the expertise of RATP in
the industrial application of formal methods has been continuously increasing,
resulting in the development of an innovative verification methodology (PERF)
supported by a rich tool-chain. This paper reports the different applications of
formal methods by RATP and gives a picture on the current and future develop-
ments around the PERF verification methodology and its supporting tool-chain.

This paper is organized as follows. Section 2 draws an overview on the use of
formal methods at RATP. The PERF methodology is explained in Sect. 3 and its
application in industrial projects is given in Sect. 4. Finally, Sect. 5 enumerates
the ongoing and future developments around the PERF tool-chain.

2 RATP, 25 years of Formal Verification

RATP, with the suppliers Matra/Siemens, Ansaldo and Alstom, has promoted
the use of formal proof since the beginning of the 1990s. Today a strong railway
community is built not only with these suppliers and Thales, but also with
major contributors like Clearsy, Systerel, SafeRiver, Prover Technology and Ikos
for providing formal tools and expertise.

Besides railway, other industrial sectors have applied this approach for a
long time, such as energy, semiconductors or IT systems security industries. The
aeronautics sector, which was held back for a long time by its standards that
did not recognize the use of formal proof, should also take the leap, since the
publication of version C of the D0178 standard [2]. Nowadays formal proof is
widely used. In 2010 for instance, the Japanese Ministry of Industry published
a decree encouraging the use of formal proof in all sectors of industry. There
is an increasing number of examples around us, and in the rail industry most
European manufacturers now offer products developed or verified using formal
methods. The current trend is clearly to take more and more into account formal
methods for the industrial development or verification processes.

At RATP, everything started more than 25 years ago with the development
of the new automatic train protection system SACEM (RER A) in 1989. The use
of formal methods revealed 10 safety bugs that had not been detected using test-
ing. This experience initiated a confidence at RATP in the importance of formal

The PERF Approach for Formal Verification 205

methods in the verification process. As a consequence, RATP required the appli-
cation of formal methods in the development and verification of its systems by
any supplier. This led to the development of the first automatic driver-less metro
line in Paris (Line 14) in the METEOR project operating since 1998. The devel-
opment of this system, realized by an external supplier, was entirely based on
the formal B method. This means that the refinement proof allowed the supplier
to avoid all the unit tests and be sure nevertheless to deliver a safe system. This
safety was confirmed during the complementary testing phases (validation tests,
integration tests, etc.) since no bugs were found on this system. In addition to
the safety assurance, this method was cost effective which is a very important
advantage comparing to the classical methodology.

Since the 2000s, the CENELEC standard EN 50128 [6] and RATP highly
recommend the suppliers to use formal methods to develop or verify railway
critical software. Despite this recommendation, the suppliers are free to use the
methods they want to build their safety cases. Consequently, RATP wanted to
provide means to perform the formal verification, a posteriori, of a product that
was not developed using a proof based process.

According to its internal safety policy and in order to assess the safety of soft-
ware systems independently of the contracted supplier, RATP developed and
procured a Formal Proof tool-chain based on a tried-and-tested proof engine
combining Model Checking and inductive proof techniques. With this configura-
tion, the formal verification, with all its benefits, can be applied independently of
the system development method. This proof tool-chain only impacted the rising
part of the V-shaped software development cycle, after the design and coding
stages. This technique, designated as an “ex post facto” proof, was the starting
point of the PERF methodology [5].

By the end of year 2010, several CBIs (Computer-Based Interlocking) had
been developed and validated by their manufacturer for RATP. The formal meth-
ods with Prover Certifier was the cornerstone of the verification process. In 2011,
a transfer of competence was organized and RATP became capable to deploy the
CBI “product” on its own and independently of any contracted supplier (specific
application, safety validation and safety assessment). This transfer of competence
was a success and enabled RATP to deploy the CBIs in complete safety and to
maintain and increase its knowledge of formal methods. Using all this knowledge
in this domain, RATP worked on a feasibility study on the OCTYS L5 on-bord
critical software to assess it regardless the supplier. The success of this study
encouraged RATP to continue this way; the PERF methodology was born. It
has been, since then, applied to several systems in internal and external projects.

3 The PERF Methodology

PERF (Proof Executed over a Retro-engineered Formal model) is a formal proof
methodology performed after the development of a system [5]. Unlike formal
development techniques (such as the B method for instance) where the proof
drives the different development and refinement phases of the system, the PERF

206 N. Benaissa et al.

verification technique is only applied at the ascending phase of the V-shaped
development cycle, all by achieving the same safety requirements as the first
method. This technique allows for the application of formal verification even if
it was not planned in the early stages of system development. In addition to the
independence regarding to the development phase, PERF shares, from a safety
point of view, the following strong features with formal development methods:

– The exhaustiveness brought to the verification of considered properties,
– The validation of requirements themselves by means of a formal modeling that

reveals any ambiguity or lack of accuracy.

RATP has developed, around the PERF methodology, a complete tool-chain
built around a proof engine combining Model-Checking and induction poof tech-
niques. The tool-chain is based on a formal language used to describe, in syn-
chronous languages style, a formal model of the system to be checked. Having
fully appreciated the existing potential of using this formal proof tool-chain,
RATP decided to widen its scope of application and fully take advantage of its
potentialities. This approach presents two major advantages.

First, this tool-chain could prove properties on a software that had already
been developed, whether or not it had already been tested; consequently:

– It was possible to produce formal proof of a model, even if the developer had
not planned for such formal proof.

– Thanks to the exhaustiveness of the verification of properties by formal proof,
this type of verification guaranteed on its own the compliance of properties
through the formal model (or the software). This leads to a potentially signif-
icant productivity gain during engineering phases of the product.

– Formal proof when performed independently from the development cycle, it
could take place concurrently with software test phases.

Additionally, the PERF tool-chain comprises several “elementary building
blocks” that can be organized in different ways to address a particular issue.
This multi-purpose tool can be used for different types of verification. So the
same tool can be used for different project by adapting its use. This means one
can capitalize on expertise using a single tool.

Technically, PERF is based on a formal declarative, synchronous, data flow
language in the tradition of LUSTRE [10]. Models are defined by a set of streams
that can be composed using either temporal or data operators. Temporal opera-
tors can be used to describe clock-dependent expressions. The data operators are
used to manipulate streams values e.g. arithmetic, logical and array operators.
The declarative nature of the language makes it suitable for the definition of
formal models as well as safety properties.

The PERF workflow is organized into different steps. First, the source soft-
ware is translated into a formal model understandable by the proof engine. All or
part of the specification is expressed in the same formal language as properties
representing safety requirements. The formal model together with the formal
properties form a proof setup. This setup might be enriched with constraints

The PERF Approach for Formal Verification 207

or assumptions describing a model of the environment. This environment model
can be very useful for eliminating impossible cases and for a better guidance of
the proof process. All three models (software, specification and the environment)
are input to the proof engine that check if the properties are valid or not. In the
case of properly proven properties, the proof engine also provides a certifiable
proof log to trace the proof steps that was used to validate the properties. In the
case of invalid properties, the proof engine provides counter-examples in which
these properties are falsified.

The PERF verification workflow is explained in figure Fig. 1. First, the soft-
ware is translated to a formal execution model that can be manipulated by the
PERF workshop. Environmental constraints and safety requirement are intro-
duced directly in the formal language of PERF. Using all these inputs, the PERF
workshop provides either a proof certificate if the properties hold or counter-
examples in the other case.

Fig. 1. The PERF verification workflow

208 N. Benaissa et al.

4 Feedback and Case Studies

RATP has used or uses formal methods through PERF or other techniques to
achieve an independent assessment of critical software for internal or external
projects and purposes. The present section gives an overview of some major
projects where formal methods were applied. Throughout the projects, different
proof workshops were used for the verification activity. This can be seen as a
time-line describing the genesis of the PERF approach in order to achieve safety
assessment activities, from the coupling of some existing proof workshops.

4.1 For Internal Purposes

The application of formal verification methods for internal RATP projects is
summarized in the following table.

Line System Dev. method Proof workshop Date Use case

Line 8 CBI (67 routes) Petri nets Prover Certifier 2011 Safety
Demonstration

Line 12 CBIs (27 &57
routes)

Petri nets Prover Certifier 2012 Safety
Demonstration

Line 4 CBI (38 routes) Petri nets Prover Certifier 2013 Safety
Demonstration

Line 1 CBIs (52 &76
routes)

Petri nets Prover Certifier 2013 Safety
Demonstration

Line 5 CBTC on-board
equipment
(100k loc)

Scade 5 PERF since 2013 Safety Assessment

Line 9 CBTC on-board
equipment
(100k loc)

Scade 5 PERF since 2014 Safety Assessment

Line 13 CBTC equipments
(6M loc)

Scade 6 PERF since 2014 Safety Assessment

4.2 For Its External Clients

Formal verification was also applied by RATP for other clients as shown in the
following table.

4.3 PERF Feedback

RATP’s use of the formal proof workshop (PERF tool-chain) has spotlighted
and finally enhanced several strengths:

The PERF Approach for Formal Verification 209

Client System Development Proof Use case

method workshop

SL (Stockholm -
Sweden)

CBI Synchronous
Formal Model
(PiSpec)

Prover
Certifier

Evaluation of the
process and proof
tools used for
safety
demonstrations

USA CBI Ladder logic Prover iLock Independent safety
assessment

RFF (LGV Est -
France)

RBC
(ERTMS)

Classical process
(manually
produced Ada)

PERF Expert opinion on
critical software

– The formal language used by the PERF tool-chain is simple. It can be learnt
and mastered quickly by new users. Thus RATP can easily mutualise and
capitalize knowledge through the team and the different projects.

– The cost of implementing PERF is, for the first shot, equivalent to conven-
tional methodologies based on validation test campaigns. This initial cost
is largely due to the necessary adaptation of the tools to the development
methodology used by the supplier and the establishment of a suitable process.
However, the cost of formal proof falls sharply when dealing with changes (non
regression and impact assessments), which makes PERF more advantageous
over the lifetime of the project, for example:
• RATP noticed that the use of PERF instead of validation tests reduced

the overall validation workload by roughly 25 % while at the same time
significantly improving the confidence level with regards to the safety of
software based systems.

• PERF performed on the SCADE model of on-board equipment revealed
a safety-threatening bug 15 days before its deployment. The supplier then
proposed a patch that corrects this bug. Thanks to the use of PERF, RATP
was able to convince itself of the effectiveness of this patch and the absence
of regression caused by this patch in much less time than the supplier needed
to replay the subsets of its tests, and the date of deployment was maintained.

• The abstraction principle [5] allows RATP to assess relatively quickly big
and complex components where classical analysis methods would be time
consuming and sensitive to human errors.

– When a property is not proven by the tool-chain, the latter exhibits a counter
example. This eases the understanding of the scenario that led to the violation
of this property. For instance, on a recent major project, not less than 200
potentially unsafe bugs have been revealed this way, enabling their correction
before commissioning.

– The formal verification of some properties requires to constrain the environ-
ment model of the system under assessment to behave in the expected way,
that is, to behave as in real scenarios. This means to formally model some
assumptions about the behavior of the environment of the system under assess-
ment. It leads, in fine, to an explicit list of assumptions made to establish the

210 N. Benaissa et al.

safety demonstration of the system, i.e. to an explicit list of safe use conditions
of the system.

This methodology nevertheless has certain limits: it does not apply to software
developed in object languages (C++, Java) if they make use of inheritance or
dynamic object creation (which is, in any event, not allowed under standard EN
50128). Lastly, the PERF methodology is easier to implement on software whose
development is based on formal methods.

5 The Future of PERF

The successful application of formal verification techniques in the safety assess-
ment of railway software increases the confidence in their usefulness. In order to
take more advantage of formal methods, additional extensions and applications
are currently developed. In this section, we introduce some of the current and
future developments of the PERF tool-chain. This development is organized in
two axes which are PERF core extensions and additional applications. In the
following, we will give an overview on the currently developed extensions and
applications. We will expose at the end of this section our vision for the future
of PERF and its applications.

5.1 PERF Extensions

Presently, two kinds of extensions are being developed, covering additional source
language support and new proof engine integrations. The goal of the first type
of extensions is to make the PERF approach applicable to other new source
languages. This should widen the scope of application of PERF to other sys-
tems and thus to other users. For instance, an ongoing work is to support B
formal models as possible inputs of PERF. The second kind of extensions aims
at adding a set of different proof engines in order to have a more complete proof
environment. It is well known that no proof engine is perfect for all problems,
combining different proof strategies should allow PERF to deal with a variety of
systems in the most efficient way. For example, symbolic proof techniques can
be used to simplify the addressed proof goals for the SAT or SMT based provers.

5.2 Proof Coverage Application

In addition to the extensions that are intended to enrich the verification tools,
new applications are also developed around the PERF tool-chain. The first appli-
cation consists of the computation of some proof coverage metrics.

The formal verification ensures that the model has been exhaustively covered
regarding the proven properties. However, nothing indicates which parts of the
source software or model were involved in the proof of these properties. This
concept of coverage can be important to determine which parts of the code are
covered by which properties and vice versa. The coverage computation offers the
following advantages:

The PERF Approach for Formal Verification 211

– It highlights the parts of the code that guarantee the respect of a given prop-
erty or requirement. This draws a clear connection between the specification
and the code and helps the detection of overly strong assumptions or unspec-
ified behaviors.

– The opposite coverage link between properties and their implementing code
parts allows the detection of dead code.

– The coverage metrics can replace test coverage metrics and thus unit testing
can be definitely replaced by formal proof.

– The coverage results may be used as support for other tasks, by making the
relationship between properties and code entities explicit.

– Finally, the relationships between properties and code entities may help for
a more efficient proof rerun by reducing the system, in the proof of a given
property, to the parts that are covered by this property.

Inspired from some existing works in the electronics field such as [7–9], an
advanced prototype of a proof coverage computation and visualization tool has
been developed. The basic coverage criteria considered in this solution is the
coverage of stream definitions (variable assignments) by properties and its dual
i.e. the coverage of properties by definitions. Using this coverage metrics, number
of other coverage criteria can be addressed e.g. modules (components) coverage.

5.3 Non-regression Application

A second application, is the assisted impact analysis and automatic non-
regression verification. The goal of this ongoing work is to store additional infor-
mation from the first verification campaign in order to make explicit causality
relations between the software components and the specification properties. The
impact of an evolution of the software on the verified properties can then be
easily determined and, thus, the non-regression study becomes straightforward.

5.4 GRAAL Application

Another currently studied application is the generalization of software-level prop-
erties to system-level properties in the verification process. In the classical V-
shaped software life cycle, the descendant phase consists of successive refinement
and decomposition steps, starting from a high-level specification and ending with
a fine grained software. The goal of GRAAL (The Grail obtained by Reverse-
modeling/Ascendant Abstraction Level) is to cover the whole ascendant phase
of the cycle with abstraction and generalization proofs. This can be compared to
integration and validation testing starting from unit testing in the life cycle bot-
tom. The ultimate goal of this tool is to perform a complete formal verification
(and validation) of the entire descendant phase of the life cycle of one subsystem
(e.g. on-board or wayside equipment) or the whole system (on-board and way-
side) with an integration proof. Technical problems like asynchronous systems
or interfaces between emerging models will have to be solved to reach this grail.
This means that all the testing process could be replaced with GRAAL.

212 N. Benaissa et al.

5.5 Towards an IDE for PERF

In the recent years, some formal proof environments have been developed fol-
lowing, more or less, the trend of integrated development environments (IDE).
Integrated platforms (such as Eclipse for example) are widely used nowadays and
have demonstrated their usefulness for several activities like modeling, develop-
ment and testing. The success of these IDEs led the formal methods community
to develop similar integrated environment for formal methods and proof engines.
Some examples of formal proof environments are Isabelle PIDE [12], Atelier B
[1] Rodin [4], FoCaLiZe [11] and Coq PIDE [13].

We are convinced that the idea of an integrated environment for formal
verification can be very beneficial in many ways. First, having an integrated
extensible environment makes the different formal verification activities easier
for the users and thus reduces time and effort. A considerable amount of time can
also be reduced by factoring the common tasks of the different involved tools.
The environment enforces the harmony of the team work and the capitalization
of the overall experience. Finally, it allows for the integration of the different
tools and extensions in smooth and transparent way.

A first attempt for developing a proof IDE was made by RATP in the OVADO
tool [3] for the validation of critical software data. OVADO is not considered as
a part of PERF even though they are complementary. PERF covers the dynamic
aspects of a parametrized system when OVADO covers the static data and para-
meters verification. OVADO offers, in addition to the formal verification compo-
nent, number of additional tools (e.g. rich editing, quick evaluation, reporting)
that ease its usage and make the verification process very productive. The same
idea is now under study for the formal verification of software systems using
the PERF tool-chain. The overall architecture of the desired IDE is given in
Fig. 2. The different components are split in two groups, business components
i.e. proof related applications and support components i.e. user assistance appli-
cations. Each component might be composed of different applications and must
be extensible to support any new tools. For examples, the languages support

Fig. 2. The PERF IDE architecture

The PERF Approach for Formal Verification 213

extensions should be included in the translators component and the new proof
engines integrated in the provers component. In the debuggers, one can find for
example counter example analyzers and simulators.

6 Conclusion

The application of formal proof is increasingly advocated for the verification
of critical systems and particularly in railway. Nevertheless, its application in
big industrial projects is still limited despite all the potential benefits it offers.
This limitation is due, inter alia, to the absence of mechanized solutions that are
comprehensive and robust enough to support the formal verification of industrial
size systems. Considerable efforts have been employed by RATP to develop a
methodology for formal verification. This have led to the PERF formal proof
methodology and its supporting tool-chain which has allowed for the application
of formal proof in several projects for the verification of safety requirements.
With its arsenal of translators, proof engines and counter-example analyzers,
the PERF tool-chain is a good environment for formal verification activities.

The applications of formal verification techniques (and more recently PERF
in particular) by RATP gave birth to several success stories. Since 2011, the veri-
fication of more than 7 internal projects and 3 external ones was conducted using
formal methods. The verification revealed at least as many errors as detected
in unit testing with higher confidence and more effectiveness. This confirmed
the confidence of RATP in formal methods, which led to the development of
the PERF tool-chain. The ambition for the present and future of PERF is to
enhance and extend the tool-chain with more extensions and applications. This
should make it possible to apply the formal verification in other different projects.
Finally, the ultimate goal is to build a substantial community of experts and
industrial actors in order to build a strong formal environment that can be used
by each and every one.

References

1. Atelier, B.: version 3.2, manuel de référence du langage B. GEC Alsthom Transport
and Steria Méditerrannée and SNCF and INRETS and RATP (1997)

2. DO-178C, software considerations in airborne systems and equipment certification.
Special Committee 205 of RTCA (2011)

3. Abo, R., Voisin, L.: Formal implementation of data validation for railway safety-
related systems with OVADO. In: Counsell, S., Núñez, M. (eds.) SEFM 2013.
LNCS, vol. 8368, pp. 221–236. Springer, Heidelberg (2014)

4. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in event-B. Int. J. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

5. Bonvoisin, D., Benaissa, N.: Utilisation de la méthode de preuve formelle PERF
de la RATP sur le projet PEEE. Revue Générale des Chemins de Fer 250 (2015)

6. CENELEC EN-50128: Railway applications - Communication, signalling and
processing systems - software for railway control and protection systems (2011)

214 N. Benaissa et al.

7. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for formal verification.
In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 111–125.
Springer, Heidelberg (2003)

8. Claessen, K.: A coverage analysis for safety property lists. In: Formal Methods in
Computer Aided Design, November 2007

9. Das, S., Basu, P., Banerjee, A., Dasgupta, P., Chakrabarti, P., Mohan, C., Fix,
L., Armoni, R.: Formal verification coverage: computing the coverage gap between
temporal specifications. In: ICCAD, pp. 198–203, November 2004

10. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

11. Pessaux, F.: FoCaLiZe: Inside an F-IDE. arXiv preprint arXiv:1404.6607 (2014)
12. Wenzel, M.: Isabelle/jedit – a prover IDE within the PIDE framework. CoRR

abs/1207.3441 (2012)
13. Wenzel, M.: PIDE as front-end technology for Coq. CoRR abs/1304.6626 (2013)

http://arxiv.org/abs/1404.6607
http://arXiv.org/abs/1404.6607

Abstract Software Specifications and Automatic
Proof of Refinement

Claire Dross and Yannick Moy(B)

AdaCore, 46 Rue d’Amsterdam, 75009 Paris, France
{dross,moy}@adacore.com

Abstract. It is common practice in critical software development, and
compulsory in railway software developed according to EN 50128 stan-
dard, to separate software specification from software implementation.
Verification activities should be performed to ensure that the latter is a
correct refinement of the former. When the specification is formalized,
for example in B method, the refinement relation can even be formally
proved. In this article, we present how a similar proof of refinement can
be performed at the level of the programming language used for imple-
mentation, using the SPARK technology. We describe two techniques to
specify abstractly the behavior of a software component in terms of math-
ematical structures (sequences, sets and maps) and a methodology based
on the SPARK tools to prove automatically that an efficient imperative
implementation is a correct refinement of the abstract specification.

Keywords: Formal methods · Verification and validation · Certifica-
tion · Dependability · EN 50128

1 Introduction

The railway standard EN 50128 [1] has been the first one in 2001 to recommend
formal methods for the development of critical software, an example later fol-
lowed by other domains such as avionics [17]. In EN 50128, formal methods are
recommended at levels SIL 1 and SIL2, and highly recommended at levels SIL3
and SIL4, both for software requirements (table A.2 of EN 50128) and for design
and implementation (table A.4 of EN 50128). Among formal methods, formal
proof is similarly (highly) recommended at the same levels for verification and
testing (table A.5 of EN 50128). Formal proof based on contracts is a particularly
good fit to the principles of high integrity software development enumerated at
the start of EN 50128 document, as it allows modular verification of individual
components with a clear description of dependences between components given
by their contract.

Work partly supported by the Joint Laboratory ProofInUse (ANR-13-LAB3-0007,
http://www.spark-2014.org/proofinuse) and project VECOLIB (ANR-14-CE28-
0018) of the French national research organization.

c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 215–230, 2016.
DOI: 10.1007/978-3-319-33951-1 16

http://www.spark-2014.org/proofinuse

216 C. Dross and Y. Moy

Subprogram contracts were popularized in the Design-by-Contract app-
roach [20] as a means to separate responsibilities in software between a caller and
a callee. The callee’s precondition states the responsibility of its caller, while the
callee’s postcondition states the responsibility of the callee itself. For example,
the following (incomplete) contract for procedure Swap specifies that it should
be called with index parameters within the range of the array parameter, and
that Swap will ensure on return that the corresponding values in the array have
been swapped. Attribute Old in the postcondition is used to refer to values on
entry to the subprogram.
procedure Swap (A : in out Arr; X, Y : Idx) with

Pre => X in A’Range and Y in A’Range,
Post => A(X) = A(Y)’Old and A(Y) = A(X)’Old;

The procedure declaration above is written in SPARK, a subset of the Ada
programming language targeted at safety- and security-critical applications.
SPARK builds on the strengths of Ada for creating highly reliable and long-
lived software. SPARK restrictions ensure that the behavior of a SPARK pro-
gram is unambiguously defined, and simple enough that formal verification tools
can perform an automatic diagnosis of conformance between a program spec-
ification and its implementation. The SPARK language and toolset for formal
verification has been applied over many years to on-board aircraft systems, con-
trol systems, cryptographic systems, and rail systems [5,21]. The latest version,
SPARK 2014 [12,19], builds on the new specification features added in Ada
2012 [4], so formal specifications are now understood by the usual development
tools and can be executed. SPARK toolset was qualified as a verification tool
(tool class T2) in a railway certification project subject to EN 50128 standard.

Compared to previous versions, the latest version of SPARK is used indus-
trially to prove automatically both absence of run-time errors and properties of
programs expressed as contracts. Contracts are mostly used to express low-level
specifications, close to the actual implementation, like the one on Swap above
(although they can be much more complex). In comparison, the B method [2]
used in railway industry allows expressing specifications abstractly in terms of
mathematical sequences, sets and maps (the abstract machine), while the imple-
mentation uses a restricted subset of B called B0 that provides a thin layer over
concrete arrays and machine integers/floats (the concrete machine) in order to
allow generation of efficient machine code. The proof that the concrete machine
refines the abstract machine gives the confidence that the code indeed imple-
ments an abstract specification more easily understood by humans and shared
among stakeholders. In this article, we show how a similar expression of abstract
specifications is possible in SPARK, and that the proof of refinement can be per-
formed automatically.

1.1 SPARK Verification Environment

Key Language Features. The most useful feature in SPARK is the ability to
specify a contract on subprograms, given by a precondition and a postcondition

Abstract Software Specifications and Automatic Proof of Refinement 217

as presented on Swap. Attribute Result in the postcondition of a function is
used to refer to the value returned by the function.

Instead of preconditions and postconditions, or in addition to them, sub-
program contracts may be specified by a set of disjoint and complete cases. For
example, the following contract for procedure Swap states separate sub-contracts
for the cases where the elements at indexes X and Y are equal or different. The
first case specifies that, if A(X) equals A(Y) on entry, then A should not be mod-
ified by the call. The second case specifies that, if A(X) is different from A(Y)
on entry, then A should be modified by the call.
procedure Swap (A : in out Arr; X, Y : Idx) with

Contract_Cases =>
(A(X) = A(Y) => A = A’Old ,
A(X) /= A(Y) => A /= A’Old);

Specific kinds of expressions make it easier to express contracts. If-expressions
and case-expressions are the expression forms which correspond to the usual if-
statements and case-statements. Note that an if-expression without an else-part
(if A then B) expresses a logical implication of B by A. Quantified expres-
sions (for all X in A => P) and (for some X in A => P) correspond to
the mathematical universal and existential quantifications, only on a bounded
domain. Expression functions define a function using a single expression, like in
functional programming languages. As expression functions can be part of the
specification of programs (contrary to regular function bodies) in SPARK, they
provide a powerful way to abstract complex parts of contracts.

The second most useful feature in SPARK (after contracts) is the ability to
specify properties of loops. A loop invariant expresses the cumulated effect of
the loop up to that point. For example, the following loop invariant expresses
that the array A has been zeroed-out up to the current loop index J, and that
the rest of the array has not been modified. Attribute Loop Entry is used to
refer to values on entry to the loop.
pragma Loop_Invariant

(for al l K in A’Range =>
(i f K <= J then A(K) = 0 else A(K) = A’Loop_Entry(K)));

To show loop termination, one can use a loop variant to express that a
quantity varies monotonically at each iteration of the loop. For example, the
following loop variant expresses that scalar variable J increases at each loop
iteration.
pragma Loop_Variant (Increases => J);

For-loops in SPARK are bounded by construction, so this is only needed for
while-loops and plain-loops.

Benefits of Executable Contracts. Traditionally, contracts have been interpreted
quite differently depending on whether they were used for run-time assertion
checking or for formal program verification. For run-time assertion checking,
contracts have been interpreted as assertions on entry and exit of subprograms.
For formal program verification, assertions have typically been interpreted as
formulas in classical first-order logic. This was the situation with SPARK prior

218 C. Dross and Y. Moy

to SPARK 2014. Practitioners have struggled with this interpretation, which was
not consistent with the run-time assertion checking semantics [8].

SPARK reconciles the logic semantics and executable semantics of contracts,
so users can now execute contracts, debug them like code, and test them when
formal verification is too difficult to achieve. Furthermore, by keeping the anno-
tation language the same as the programming language, users don’t have to learn
another language.

All the previously presented contracts and assertion pragmas lead to run-
time assertions. If a property is not satisfied at run time, an exception is raised
with a message indicating the failing property, for example on procedure Swap:

failed precondition from swap.ads:4

Another key benefit of executable contracts is that they can be used by other
tools working at the level of code. For example, the CodePeer1 static analysis
tool uses contracts and assertion pragmas to issue more precise messages. Most
notably, this also allows SPARK users to combine the results of formal verifica-
tion and testing, when only part of a program is formally analyzed [10].

Key Tool Features. GNATprove is the formal verification tool that analyzes
SPARK code. It performs two different analyses: (i) flow analysis of the program
and (ii) proof of program properties.

Flow analysis checks correct access to data in the program: correct access to
global variables and correct access to initialized data. It is a fast static analysis
(analysis time typically comparable with compilation time).

Proof is used to demonstrate that the program is free from run-time errors,
and that the specified contracts are correctly implemented. It internally gener-
ates mathematical formulas for each property, that are given to the automatic
provers Alt-Ergo, CVC4 and Z3. If one of the automatic provers manages to
prove the formula in the given time, then the property is known to hold. Oth-
erwise, more work is required from the user to understand why the property is
not proved.

As proof requires interactions between the user and the tool until the speci-
fication can be proved automatically, the efficiency and the granularity at which
the tool can be applied are critical. For efficiency, GNATprove uses a compilation-
like model where only those parts that are impacted by a change need to be rean-
alyzed, and a fast generation of formulas. For convenient interaction, GNATprove
allows users to focus on a single unit, a single subprogram inside a unit, or even
a single line inside a subprogram.

A very useful feature of GNATprove to investigate unproved properties is its
ability to display counterexamples along paths that lead to unproved properties.
The counterexample and the path can be displayed in GPS2 or in Eclipse3, the
two Integrated Development Environments which support SPARK. The user can
1 http://www.adacore.com/codepeer.
2 http://www.adacore.com/gnatpro/toolsuite/gps/.
3 http://www.adacore.com/gnatpro/toolsuite/gnatbench/.

http://www.adacore.com/codepeer
http://www.adacore.com/gnatpro/toolsuite/gps/
http://www.adacore.com/gnatpro/toolsuite/gnatbench/

Abstract Software Specifications and Automatic Proof of Refinement 219

also change the parameters of the tool to perform more precise proofs, at the
expense of longer analysis time.

Finally, modular verification based on contracts can very easily exploit multi-
core architectures, as the generation of Verification Conditions (VCs) for different
units, or the proof of different VCs, can both be run in parallel. Typically,
projects contain hundreds of units, and lead to the generation of thousands of
VCs, which can be run by GNATprove on as many cores as are available. Note
also that GNATprove uses file timestamps to avoid re-generating VCs for units
which have not been updated, and file hashes to avoid re-proving VCs that have
already been proved. This is crucial when developing either the code or the
associated annotations, to avoid unnecessary rework.

1.2 Ghost Code in SPARK

Sometimes the variables and functions that are useful for the implementation
are not sufficient to specify a property in contracts. One approach is to introduce
additional variables and functions, which will then only be used for the purpose
of verification. But in a certification context such as EN 50128, the additional
code will need to be verified at the same level as the application. This means
performing structural coverage analysis, showing traceability to requirements,
and demonstrating absence of interference between this verification-related code
and the rest of the program if the verification code is to be deactivated in the
final executable. A better solution is to use so-called ghost code.

Ghost code is identified through an aspect named Ghost that can be attached
to variables, types, subprograms and packages to indicate that these entities are
only used in verification code. The compiler checks that such code indeed only
appears in contracts, assertions, and the definition of other ghost entities. As a
benefit, any unintended interference between verification-related and application
code is caught automatically, and the verification code can be removed when the
final executable is built (hence the name ghost code).

Various kinds of ghost code are useful in different situations:

– Ghost functions can express properties used in contracts.
– Global ghost variables can keep track of the current state of a program, or

maintain a log of past events. This information can then be referenced in
contracts.

– Ghost types are types that are only used for defining ghost variables.

In a SPARK context, the GNATprove tool will check additionally that ghost
code cannot have any effect on the behavior of the program. For an overview of
the possible uses of ghost code in SPARK, see the SPARK User’s Guide4 and
for the detailed rules defining ghost code, see the SPARK Reference Manual5.

4 http://docs.adacore.com/spark2014-docs/html/ug/spark 2014.html#ghost-code.
5 http://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#

ghost-entities.

http://docs.adacore.com/spark2014-docs/html/ug/spark_2014.html#ghost-code
http://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#ghost-entities
http://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#ghost-entities

220 C. Dross and Y. Moy

1.3 SPARK Library of Containers

Functional containers are part of the newly redesigned library of standard con-
tainers in SPARK. They consist in sequences, sets and maps. Functional contain-
ers are specified through a simple API with contracts, based on a few essential
functions. For example, the API of functional sets is defined over its effects on
the Mem function for membership. Here is the contract of function Inc that tests
inclusion of set S1 in set S2:

function Inc (S1, S2 : Set) return Boolean with
Post => Inc ’Result = (for al l E in S1 => Mem (S2, E));

Quantification over a container content is achieved by means of a generic
mechanism in SPARK, which allows users to describe the functions used to
iterate over a given datatype. Similarly, the API of functional sequences is defined
over its effects on the functions Length and Get, and the API of functional maps
is defined over its effects on the functions Mem and Get.

SPARK also comes with a library of imperative containers (lists, vectors, sets
and maps). In the newly redesigned library, imperative containers are specified
through an API with contracts based on functional containers. The benefit of
this approach is that there is no need for a dedicated support for containers in
the SPARK tools or provers, as they are specified through contracts like any
other piece of code.

Naturally, client code that uses imperative containers can be specified using
functional containers, and GNATprove can be used to prove that the code imple-
ments its specification. In this article, we aim at showing that functional contain-
ers can be used to express abstract specifications even when the implementation
does not use imperative containers, and that the refinement proof can nonethe-
less be made automatically with GNATprove. Thus, we are using only functional
containers in the rest of this article, in a way that is reminiscent of their use in
the contracts of imperative containers.

2 Extracting a Model from the Implementation

As initial example, we consider a simple (inefficient) memory allocator that main-
tains an array of boolean flags to indicate whether the nth resource is allocated
or not. For the purpose of better explaining how a given way of writing specifi-
cations is adapted to specific situations, we will present first the implementation
and only then the specification. In actual software development, the order would
be reversed.

2.1 A Simple Memory Allocator

In fact, in SPARK we can use an enumeration Status instead of a boolean,
and an array Data over a precise range Valid Resource with values in this
enumeration as follows:

Abstract Software Specifications and Automatic Proof of Refinement 221

Capacity : constant := 10_000;
type Resource i s new Integer range 0 .. Capacity;
subtype Valid_Resource i s Resource range 1 .. Capacity;
No_Resource : constant Resource := 0;

type Status i s (Available , Allocated);
type A i s array (Valid_Resource) of Status;

Data : A := (others => Available);

Deallocating a resource consists in setting the corresponding status flag to
Available when previously allocated:

procedure Free (Res : Resource) i s
begin

i f Res /= No_Resource and then Data (Res) = Allocated then
Data (Res) := Available;

end i f ;
end Free;

Allocating a resource consists in searching for the first available resource if any,
and then setting the corresponding status flag to Allocated before returning
the resource position:

procedure Alloc (Res : out Resource) i s
begin

for R in Valid_Resource loop
i f Data (R) = Available then

Data (R) := Allocated;
Res := R;
return;

end i f ;
end loop;
Res := No_Resource;

end Alloc;

2.2 Model as a Ghost Function

In the simple memory allocator, we define a model of the allocator as a ghost
function which will be used in the contracts of Free and Alloc. The model of
the allocator data consists in two sets of resources: a set of resources available
and a set of resources allocated.

package S i s new Functional_Sets (Element_Type => Resource ,
No_Element => No_Resource);

type T i s record
Available : S.Set;
Allocated : S.Set;

end record;

Ghost function Model returns a value of this type, which additionally verifies
additional properties relating the abstract model to the concrete data, expressed
in function Is Valid:

function Is_Valid (M : T) return Boolean;
function Model return T with Post => Is_Valid (Model ’Result);

Ghost function Is Valid expresses that sets Available and Allocated define
a partition of the range of resources Valid Resource:

222 C. Dross and Y. Moy

function I s Va l i d (M : T) return Boolean i s

((for a l l E in M. Ava i l ab l e => E in Val id Resource)

and then

(for a l l E in M. Al located => E in Val id Resource)

and then

(for a l l R in Val id Resource =>

(case Data (R) i s

when Ava i lab l e => Mem (M. Avai lable , R) and not Mem (M. Al located , R) ,

when Al located => not Mem (M. Avai lable , R) and Mem (M. Al located , R)))) ;

All the specification code presented so far in this section could be marked explic-
itly as ghost code. A better way of achieving the same result is to gather this
code in a local package marked ghost as follows:

package M with Ghost i s
package S i s ...
type T i s ...
function Is_Valid ...
function Model ...

end M;

With this model, is straightforward to express the functional contract of Alloc
and Free as contract cases, using the function Is Add from the functional set
library, which expresses that a Result set is the addition of an element to an
input set. The same property could be expressed by using Add and equality on
sets, but using Is Add results in fewer quantifiers being used, which facilitates
automatic verification. The notation Result => Arg uses the named parameter
passing mechanism instead of the positional one to clarify which call argument
corresponds to parameter Result.

procedure Alloc (Res : out Resource) with
Contract_Cases =>

−− When no resource is avai lable , return the special value No Resource
−− with the al locator unmodified .

(Is_Empty (Model.Available) =>
Res = No_Resource

and then
Model = Model ’Old ,

−− Otherwise , return an avai lab le resource which becomes al located

others =>
Is_Add (Model.Available , Res , Result => Model.Available ’Old)

and then
Is_Add (Model.Allocated ’Old , Res , Result => Model.Allocated));

procedure Free (Res : Resource) with
Contract_Cases =>

−− When the resource is al located , make i t avai lab le

(Mem (Model.Allocated , Res) =>
Is_Add (Model.Available ’Old , Res , Result => Model.Available)

and then
Is_Add (Model.Allocated , Res , Result => Model.Allocated ’Old),

−− Otherwise , do nothing

others =>
Model = Model ’Old);

Abstract Software Specifications and Automatic Proof of Refinement 223

Function Model is implemented as a simple loop that creates the two sets
Available and Allocated by iterating over the content of the array Data.

2.3 Automatic Proof of Refinement

GNATprove can be used to prove automatically that the code of the simple
memory allocator presented in Sect. 2.1 is free of run-time errors and implements
the specification presented in Sect. 2.2. The loop-free implementation of Free is
proved easily with the default minimal proof settings (only one prover called with
a timeout of one second per proof). Indeed, setting Data(Res) to Available
directly maps at model level with removing Res from set Model.Allocated and
adding it to set Model.Available. The implementation of Alloc contains a loop
searching for the first resource available in Data, which requires the user to write
a loop invariant summarizing the effect of the loop on variables modified in the
loop (here Data is not modified while looping) and accumulating the information
gathered across iterations on all variables (here that no available resource has
been encountered yet):

pragma Loop_Invariant
(Data = Data ’Loop_Entry
and then (for al l RR in 1 .. R => Data (RR) = Allocated));

Once the first available resource R has been reached, setting Data(R)
to Allocated directly maps at model level with removing Res from set
Model.Available and adding it to set Model.Allocated. Then, the implemen-
tation of Alloc is proved easily at proof level 2 (all three provers called with a
timeout of 10 s per proof).

The proof of function Model also requires a simple loop invariant expressing
that the property Is Valid (from its postcondition) has been respected up to
the value of resource for the current iteration of the loop. With this loop invari-
ant, the implementation of Model is proved easily with the default minimal proof
settings. Overall, the automatic proof of refinement of the simple memory allo-
cator takes 12 s on a laptop with 2.7 GHz Intel Core i7 and 16 GB RAM (using
a single core).

3 Maintaining a Model Within the Implementation

As a more involved example, we consider a more realistic memory allocator
based on a free list. As before, we present first the implementation and then the
specification, to facilitate exposure and understanding, in reverse order compared
to the actual software development.

3.1 A Free List Memory Allocator

Compared to the simple memory allocator presented in Sect. 2.1, the free list
memory allocator uses an array Data of cells consisting of a status (available
or allocated) and a pointers to the next resource in a linked list. A variable

224 C. Dross and Y. Moy

First Available points to the head of the linked list of available resources
(a.k.a. the free list).

Capacity : constant := 10_000;
type Resource i s new Integer range 0 .. Capacity;
subtype Valid_Resource i s Resource range 1 .. Capacity;
No_Resource : constant Resource := 0;

type Status i s (Available , Allocated);
type Cell i s record

Stat : Status;
Next : Resource;

end record;
type A i s array (Valid_Resource) of Cell;

Data : A := (others => Cell ’(Stat => Available , Next => No_Resource));
First_Available : Resource := 1;

Allocating a resource consists in extracting and returning the free list head:
procedure Alloc (Res : out Resource) i s

Next_Avail : Resource;
begin

i f First_Available /= No_Resource then
Res := First_Available;
Next_Avail := Data (First_Available). Next;
Data (Res) := Cell ’(Stat => Allocated , Next => No_Resource);
First_Available := Next_Avail;

else
Res := No_Resource;

end i f ;
end Alloc;

Deallocation is done by adding the deallocated resource to the free list head.

3.2 Model as a Ghost Variable

In the free list memory allocator, unlike the simple memory allocator, not every
configuration is a valid configuration of the software, thus we cannot represent
the model as a function. For example, the initial value of Data as seen in Sect. 3.1
does not define a valid free list. What is needed is to add the following code to
the startup code of the compilation unit (the package elaboration code in Ada
parlance):

for R in Valid_Resource loop
i f R < Capacity then Data (R).Next := R + 1; end i f ;

end loop;

Thus, it is necessary to define what configurations are valid, and to prove both
that the configuration is valid at startup and that operations Alloc and Free
maintain the validity of the configuration. This is expressed with a boolean ghost
function Is Valid:

function Is_Valid return Boolean;

Although it would be possible to express the specification of the free list
memory allocator based on a ghost function as seen in Sect. 2.2, this would
make it very difficult to prove automatically the refinement property. Indeed,
the relation between the abstract model and the concrete data would rely on
the reachability of resources in a linked list, thus making it necessary to reason

Abstract Software Specifications and Automatic Proof of Refinement 225

by induction, something automatic provers are not good at. Instead, we define
a model of the allocator as a ghost variable which will be used in the contracts
of Free and Alloc. The model of the allocator data consists in a sequence of
resources available and a set of resources allocated.

package S1 i s new Functional_Sequences (Element_Type => Resource);
package S2 i s new Functional_Sets (Element_Type => Resource ,

No_Element => No_Resource);
type T i s record

Available : S1.Sequence;
Allocated : S2.Set;

end record;

Ghost variable Model holds a value of this type:
Model : T;

The validity of the abstract model w.r.t. the concrete data at any given time
is expressed by ghost function Is Valid:

function Is_Valid return Boolean i s
((i f First_Available /= No_Resource then

Length (Model.Available) > 0 and then
Get (Model.Available , 1) = First_Available

else
Length (Model.Available) = 0)
and then

(for al l J in 1 .. Length (Model.Available) =>
Get (Model.Available , J) in Valid_Resource

and then
Data (Get (Model.Available , J)). Next =

(i f J < Length (Model.Available) then
Get (Model.Available , J + 1) else No_Resource)

and then
(for al l K in 1 .. J - 1 =>

Get (Model.Available , J) /= Get (Model.Available , K)))
and then

(for al l E in Model.Allocated => E in Valid_Resource)
and then

(for al l R in Valid_Resource =>
(case Data (R).Stat i s

when Available =>
Mem (Model.Available , R) and not Mem (Model.Allocated , R),

when Allocated =>
not Mem (Model.Available , R) and Mem (Model.Allocated , R))));

This somewhat impressive (at least at first sight) function consists in a conjunc-
tion of four properties:

1. First Available is the first available resource.
2. Sequence Available is an accurate image of the free list.
3. Set Allocated only contains valid resources.
4. Sequence Available and set Allocated define a partition of the range of

resources Valid Resource.

Like previously, all the specification code presented so far in this section is gath-
ered in a local package marked ghost as follows:

package M with Ghost i s
package S i s ...
type T i s ...
Model : T;
function Is_Valid ...

end M;

226 C. Dross and Y. Moy

With this model, it is straightforward to express the functional contracts of
Alloc and Free as contract cases, using the function Is Prepend from the func-
tional sequence library, which expresses that a Result sequence is obtained by
prepending an element to an input sequence. The main difference with the con-
tracts of the simple memory allocator is that property Is Valid is required in
precondition and in postcondition:

procedure Alloc (Res : out Resource) with
Pre => Is_Valid ,
Post => Is_Valid ,
Contract_Cases =>

−− When no resource is avai lable , return the special value No Resource
−− with the al locator unmodified .

(Length (Model.Available) = 0 =>
Res = No_Resource

and then
Model = Model ’Old ,

−− Otherwise , return an avai lab le resource which becomes al located

others =>
Is_Prepend (Model.Available , Res , Result => Model.Available ’Old)

and then
Is_Add (Model.Allocated ’Old , Res , Result => Model.Allocated));

procedure Free (Res : Resource) with
Pre => Is_Valid ,
Post => Is_Valid ,
Contract_Cases =>

−− When the resource is al located , make i t avai lab le

(Mem (Model.Allocated , Res) =>
Is_Prepend (Model.Available ’Old , Res , Result => Model.Available)

and then
Is_Add (Model.Allocated , Res , Result => Model.Allocated ’Old),

−− Otherwise , do nothing

others =>
Model = Model ’Old);

Besides requesting that Alloc and Free maintain the validity of the configu-
ration, we should also express that the configuration should be valid at startup
with an initial condition on the package List Allocator enclosing all the code
of the free list memory allocator:

package List_Allocator with
Initial_Condition => All_Available and Is_Valid

i s
...

This initial condition expresses both that all resources should be available at
startup and that the initial configuration should be valid.

3.3 Automatic Proof of Refinement

GNATprove can be used to prove automatically that the code of the free list
memory allocator presented in Sect. 3.1 is free of run-time errors and implements

Abstract Software Specifications and Automatic Proof of Refinement 227

the specification presented in Sect. 3.2. First, the implementation of Alloc and
Free must be augmented to express how the ghost variable Model is modified in
relation to modifications on concrete data. This is a difference with the simple
memory allocator where this was not needed, as Model in that case was a func-
tion. In procedure Alloc, this consists in adding two ghost assignments (in the
case where allocation succeeds) to components of ghost variable Model express-
ing that the sequence of available resources is stripped from its first element,
while the set of allocated resources is augmented with that same element:

Model.Available := Remove_At (Model.Available , 1);
Model.Allocated := Add (Model.Allocated , Res);

In procedure Free, this consists in adding two ghost assignments (in the case
where deallocation succeeds) to components of ghost variable Model expressing
that the set of allocated resources is stripped from the element passed in argu-
ment to Free, while the sequence of available resources is prepended with that
same element:

Model.Allocated := Remove (Model.Allocated , Res);
Model.Available := Prepend (Model.Available , Res);

Package List Allocator contains elaboration code to set the initial value
of array Data. Similarly, local ghost package M needs to set the initial value of
the ghost variable Model in its elaboration code. This initial value needs to be
expressed in M’s initial condition so that it can be used to prove List Allocator’s
initial condition presented in Sect. 3.2. The code and contracts are not shown
here for lack of space but can be found in a public repository (see reference in
conclusion).

Despite the complexity of the Is Valid function relating the abstract model
to the concrete data, automatic proof is achieved as easily as for the simple
memory allocator at proof level 2 (with an additional switch to prevent use of
prover steps limit). Overall, the automatic proof of refinement of the free list
memory allocator takes 18 s on a laptop with 2.7 GHz Intel Core i7 and 16 GB
RAM (using a single core).

4 Related Work

B Method [2] has been used extensively in the railway industry over the past
20 years to prove that an implementation is a correct refinement of a specifica-
tion [6]. While interactive proof was originally the main means to achieve proof,
automation of proofs has steadily increased until now [3,11], as well as auto-
matic refinement of abstract specifications [7]. The Isabelle Refinement Frame-
work pursues a similar goal of facilitating the proof of a stepwise refinement in
Isabelle/HOL from an abstract functional specification to an imperative imple-
mentation [16]. Our work aims at the same goal in the context of a programming
language, with all the associated benefits in terms of strong typing, expressiv-
ity and tool support. Prior experiments in that directions have been performed
in the context of the Eiffel programming language [22]. Our work achieves this

228 C. Dross and Y. Moy

goal in the context of a mature and industrially supported formal verification
environment.

Automatic proof that code implements a specification expressed as a con-
tract (precondition and postcondition) is the subject of active research, based
on advances in the underlying proof technology and the intermediate verifica-
tion languages, as visible from the activity in relevant workshops (in particular
the SMT workshop and Boogie workshop) and tool competitions (in particular
VerifyThis [14]).

Recent works [13,18] show how an abstract specification about mathemat-
ical quantities (real or integers) can be implemented efficiently in code (with
floating-point numbers or bitvectors), and the refinement relation be proved
automatically in Why3 or SPARK.

Automatic proof of refinement with more complex data has lead to the intro-
duction of many concepts, some of which are used in this paper: ghost code,
model code, alias management policies (such as ownership, permissions, sepa-
ration logic) [9,23]. The difference in our approach is that the user can write
contracts and intermediate assertions (like loop invariants which are needed in
all these techniques) in the same programming language as the implementa-
tion. In particular, all contracts and assertions in SPARK can be executed and
debugged, which greatly facilitates formal development. This was very useful
during the development of the memory allocator examples presented in this
paper, to catch bugs early on, before attempting automatic proof.

A recent work [15] examines which programming language features are useful
in proofs of refinement, some of which could be included in future versions of
the SPARK programming language.

5 Conclusion

This article presents two techniques to specify abstractly the behavior of a soft-
ware component in terms of mathematical structures (sequences, sets and maps)
and a methodology based on the SPARK tools to prove automatically that an
efficient imperative implementation is a correct refinement of the abstract specifi-
cation. The proposed methodology is illustrated with challenging concrete exam-
ples of memory allocators.6 To the best of our knowledge, this is the first time
such refinement proof is done automatically with both the specification and the
implementation expressed in the same (executable) programming language.

In this article, we define two different abstract specifications for respectively
the simple memory allocator and the free list memory allocator: the simpler
specification based on sets is implemented by the simple memory allocator while
the more involved specification based on sets and sequences is implemented by
the free list memory allocator. One could object that, as both allocators deliver
6 The results presented in this article can be reproduced with SPARK GPL 2016, which

will be available in June 2016 at http://libre.adacore.com. The source code of the
examples is available in the SPARK public repository at https://forge.open-do.org/
anonscm/git/spark2014/spark2014.git, under testsuite/gnatprove/tests/allocators.

http://libre.adacore.com
https://forge.open-do.org/anonscm/git/spark2014/spark2014.git
https://forge.open-do.org/anonscm/git/spark2014/spark2014.git
http://www.testsuite/gnatprove/tests/allocators

Abstract Software Specifications and Automatic Proof of Refinement 229

the same overall service (ignoring efficiency here), they could be refinements of
the same specification. Indeed, it would be interesting to prove that the simple
memory allocator is a refinement of the specification given in Sect. 3.2 and to
prove that the free list memory allocator is a refinement of the specification given
in Sect. 2.2. The latter would not be feasible in SPARK as it would require a
notion of package invariant to hide property Is Valid (although a sibling notion
of type invariant will be supported in future versions of SPARK). The former
should be already possible in SPARK.

Although we do not present it in this article, this abstraction also allows
proving the correct use of the two allocators in client code, which would oth-
erwise require to expose implementation details to the client. Effects of calling
(de)allocation procedures on the concrete data and ghost model are visible from
client code, and can be either left implicit (for the tool to generate) or explicitly
stated. Note that if multiple allocators are needed in a project, the specification
and code presented can be shared by making the package generic, in which case
the automatic proof will be repeated for each instantiation of the generic.

Acknowledgements. We would like to thank Claude Marché, David Mentré, Piotr
Trojanek as well as the anonymous reviewers for their useful comments.

References

1. EN 50128:2011 railway applications - communication, signalling and processing
systems - software for railway control and protection systems (2011)

2. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

3. Abrial, J.-R.: Formal methods in industry: achievements, problems, future. In:
Proceedings of the 28th International Conference on Software Engineering, ICSE
2006, pp. 761–768. ACM, New York (2006)

4. Barnes, J.: Ada 2012 Rationale (2012)
5. Barnes, J.: SPARK: The Proven Approach to High Integrity Software. Altran

Praxis (2012)
6. Boulanger, J.-L. (ed.): Formal Methods Applied to Industrial Complex Systems:

Implementation of the B Method. Wiley, New York (2014)
7. Burdy, L., Meynadier, J.-M.: Automatic refinement. In: FM 1999 Workshop -

Applying B in an Industrial Context: Tools, Lessons and Techniques (1999)
8. Chalin, P.: Engineering a sound assertion semantics for the verifying compiler.

IEEE Trans. Softw. Eng. 36(2), 275–287 (2010)
9. Clarke, D., Noble, J., Wrigstad, T. (eds.): Aliasing in Object-Oriented Program-

ming: Types, Analysis, and Verification. Springer, Heidelberg (2013)
10. Comar, C., Kanig, J., Moy, Y.: Integrating formal program verification with testing.

In: Proceedings of ERTS (2012)
11. Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The BWare project: building a

proof platform for the automated verification of B proof obligations. In: Ait Ameur,
Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 290–293. Springer,
Heidelberg (2014)

12. Dross, C., Efstathopoulos, P., Lesens, D., Mentré, D., Moy, Y.: Rail, space, security:
three case studies for SPARK 2014. In: Proceedings of ERTS (2014)

230 C. Dross and Y. Moy

13. Dross, C., Fumex, C., Gerlach, J., Marché, C.: High-level functional properties of
bit-level programs: formal specifications and automated proofs. Research Report
8821, Inria, December 2015

14. Huisman, M., Klebanov, V., Monahan, R. (eds.): Int. J. Softw. Tools Technol.
Transf., special issue, VerifyThis 2012, vol. 17 (2015)

15. Koenig, J., Leino, K.R.M.: Programming language features for refinement. Sub-
mitted to EPTCS (2015)

16. Lammich, P.: Refinement based verification of imperative data structures. In: Pro-
ceedings of the Conference on Certified Programs and Proofs (2016)

17. Ledinot, E., Blanquart, J.-P., Astruc, J.-M., Baufreton, P., Boulanger, J.-L.,
Comar, C., Delseny, H., Gassino, J., Leeman, M., Quéré, P., Ricque, B.: Joint
use of static and dynamic software verification techniques: a cross-domain view in
safety critical system industries. In: Proceedings of the 7th European Congress on
Embedded Real Time Software and Systems (ERTS2 2014), Toulouse, France, 5–7
February, 2014

18. Marché, C.: Verification of the functional behavior of a floating-point program: an
industrial case study. Sci. Comput. Program. 96(3), 279–296 (2014)

19. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press, Cambridge (2015)

20. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall Inc.,
Upper Saddle River (1988)

21. O’Neill, I.: SPARK - a language and tool-set for high-integrity software develop-
ment. In: Industrial Use of Formal Methods: Formal Verification. Wiley (2012)

22. Ostroff, J., wei Wang, C., Kerfoot, E., Torshizi, F.A.: ES-verify: a tool for auto-
mated model-based verification of object-oriented code. In: Formal Methods 2006.
Poster (2006)

23. Tafat, A., Boulmé, S., Marché, C.: A refinement methodology for object-oriented
programs. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp.
153–167. Springer, Heidelberg (2011)

S3: Proving the Safety of Critical Systems

Nicolas Breton(B) and Yoann Fonteneau

Systerel, Aix-en-Provence, France
{nbr,yfn}@systerel.fr
http://www.systerel.fr

Abstract. Systerel Smart Solver (S3) is a formal verification toolset
built around a synchronous modeling language (HLL), and a SAT-based
symbolic Model Checker developed by Systerel. It allows building effi-
cient formal verification solutions specially fitted for a given mission in
a given development process, with a built-in focus on trustworthiness.
The architecture of such a solution is described, and its application to
the proof of high-level properties unambiguously implying the safety of
large industrial railway control systems is reported.

1 Introduction

The ever-rising use of software-based systems to fulfill safety-critical missions
calls for methods to ensure the adequacy of these systems to their missions.
Most industrial sectors have brought an answer in the form of standards such as
EN-50128 for railways, DO-178C for aviation, ISO-26262 for automotive, or more
generally IEC-61508 for critical systems. All these standards have in common
the central role given to test-based validation techniques. However, alternate
and usually complementary techniques, grouped under the banner of “Formal
Methods”, are gaining increasing attention for the development and validation
of these systems. In particular, the “Model Checking” [1] technique has seen the
multiplication of its application fields in the last decade. This renewed interest
for a technique dating back to the 80 s has three major explanations:

– The emergence of efficient symbolic state space exploration techniques, par-
ticularly those based on solving the Boolean Satisfiability (SAT), and more
recently the Satisfiability Modulo Theory (SMT) problems. The adoption of
these techniques leads to a continuous increase in the power of model checking
engines, enabling to tackle problems of increasing size and complexity.

– The largely automatic and a posteriori nature of the analyses, enabling a light-
weight integration in existing development processes, and its relative ease of use.

– The multiplicity of missions than can be performed using these techniques:
proof of safety properties, equivalence proof between various artifacts of a
system, bug chasing, undefined code behaviors detection (division by zero,

Many thanks to the anonymous reviewers and to our colleagues Joël Allred and
Laurent Voisin for their invaluable help in correcting and clarifying this article.

c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 231–242, 2016.
DOI: 10.1007/978-3-319-33951-1 17

232 N. Breton and Y. Fonteneau

overflow, use of uninitialized variable, out of bond array access, etc.), dead code
detection, automatic test case generation, but also the resolution of routing,
optimization, or planning problems.

To address its customers needs, Systerel has developed a formal verification
solution, Systerel Smart Solver (S3), able to perform an a posteriori verification
of the safety of critical systems. This solution, combining a specialized mod-
eling language (HLL) with a SAT-based symbolic model checker, has shown
to be particularly efficient in handling industrial-size critical systems coming
from various domains such as railways or avionics. This article begins (Sect. 2)
with an overly simplified introduction to formal verification concepts. Section 3
presents the generic S3 formal safety verification solution and the techniques
used to make it trustworthy. Finally, Sect. 4 reports on its application to prove
the safety of large industrial railway control systems, using a set of high-level
properties unambiguously implying this safety.

2 Brief Introduction to Formal Verification

This section briefly presents some specific concepts of formal verification. To
limit its size, the adopted point of view has been intentionally twisted toward
that of SAT-based symbolic model checking, at the expense of generality.

Formal Verification: the act of mathematically proving that a system respects
some properties under a number of hypotheses. When a property is proved to
hold, it means that it is impossible to find an input scenario satisfying the
hypotheses, in which the system would falsify this property (exhaustivity).

Safety Specification: this formalized specification contains both the set of
safety properties that the system shall respect, and a set of hypotheses made on
the environment, in a form suitable for mathematical reasoning.

Model Checking: a popular approach to formal verification, in which a model
of the system, created manually or by an automatic translation of a design or
software, is used to verify that some given properties hold. S3 falls into the
category of SAT-based symbolic model checkers for a restriction of LTL to prop-
erties stating that some condition always holds, for every possible execution of
the system model. These system traces are explored by translating the model to
a number of combinational boolean problems, and using specialized algorithms
to solve the problem of determining their satisfiability or unsatisfiability (i.e.
the SAT problem). The S3 model-checker contains its own state of the art SAT-
solver, but can also be used with other external SAT solvers.

Bounded Model Checking (BMC): a strategy searching for potential falsifi-
cations of the safety properties on traces of increasing length [2]. The outcome of
this exploration is either an input scenario leading to the violation of the safety
property (a counter-example), or the insurance that there exists no violating

S3: Proving the Safety of Critical Systems 233

trace of length less than a given constant. With its ability to exhibit problem-
atic scenarios, the BMC strategy is mainly used for debugging the system and
the safety specification, or generating test-cases.

Unbounded Model Checking: a strategy able to prove that a safety property
holds for any infinite trace. Several methods exist, but the most straightforward
is induction over time. This is a two-phase procedure: in the base, the model
checker verifies that the property holds initially, and in the step, it verifies that,
for every state of the system in which the property holds, the property also holds
in all of its successor states reachable in one transition of the system. If both
the base and the step hold, it can be concluded, applying the induction princi-
ple, that the property always holds. Unfortunately, induction alone is sometimes
insufficient for proving a property: it is not a complete proof method. Several
solutions exist to overcome this problem, mainly exhibiting induction strength-
ening lemmas of some sort, either manually of automatically. Once proved by
the model checker, these additional properties can be used to help prove the
safety properties.

3 Systerel Smart Solver Workflow

3.1 Modeling Language

When designing a formal verification solution targeted at industrial users, it is
important to offer a simple and clear language to express safety specifications.
However, it is also important to have a rich and expressive language simplifying
the task of developing specialized translators from system designs or code coming
from various domains. The High Level Language (HLL) was created to answer
both of these needs and keeps evolving to address new challenging problems.

HLL is a data-flow, synchronous, declarative language with formally defined
syntax and semantics. It manipulates stream objects which are typed variables
valued over an infinite sequence representing discrete time. It is similar to Lustre
or Scade R© but with a slightly richer type system (standard scalar and struc-
tured types, functions, predicates, hierarchical enumerations, etc.), a broad set of
operators on these types (including the basic next and previous temporal oper-
ators), and specific constructs targeted at expressing generic safety specifications
(quantifications over finite sets, constraints, proof obligations, etc.).

3.2 Typical Development Workflows

Even though this article focuses on software-based safety-critical systems, and
specifically on the functional code of these systems, S3 solutions may also be
applied to other kinds of systems, implemented using electro-mechanical devices
such as relays, or IEC-61131 logic to be run on a PLC, or even implemented as
a specific FPGA. This section describes idealized development processes of such
systems, not meant to be representative, with only the level of detail needed to
describe the interactions between the S3 tools and these processes.

234 N. Breton and Y. Fonteneau

Every process starts with some kind of informal specification, requirement,
or even design document, most commonly in natural language. The development
team creates a design of the system in a formally defined language. From this
formal design, the code of the system is obtained either by a manual develop-
ment, or by automatic code generation. Alternatively, the code can be directly
developed from the informal specification. Sometimes diversified versions of the
code are produced for safety, availability, and/or certification purposes.

The first alternative will be used in the following sections to illustrate the use
of the S3 workflow. The usages for the other workflows are mere adaptations.

3.3 Safety Specification

In a typical S3 solution, the safety specification is expressed in HLL, bring-
ing simplicity, clarity, and overall readability in the formalization of both the
safety properties, expressed as proof obligations, and the environment hypothe-
ses expressed as constraints. Additional insulation definitions can also be used to
protect the safety specification against naming conventions changes in the system
model, and helper definitions to define intermediate domain-specific “concepts”.

Different “levels” of safety specifications exist. At the lowest level, loosely
related to safety, the specification can be automatically generated based on the
code structure and semantics. Such a specification allows to perform analyses
ensuring the absence of undefined behaviors in the code or detecting dead code.
At an intermediate level, the safety specification can be derived from the func-
tional specification to show conformance of the code. However, such a safety
specification does not give any insight on the correctness of the functional spec-
ification, nor on its ability to ensure the overall safety or mission of the system.

When applicable, better results are usually achieved by taking a safety-
related point of view. A hazard analysis enables to identify the safety hazards
leading to an accident. Refining these safety hazards enables to develop a set of
safety properties which, when achieved by the system, ensures its safety. Being
obtained using a method different from that used to develop the system, such
properties are able to detect problems in the code, but also potential safety flaws
in the specification. Once the code has been proved to respect such a safety spec-
ification, it may be used as a convincing argument in the demonstration of the
overall safety of the system.

Depending on the level of refinement of the safety hazards, several levels of
safety properties may be expressed. As a general rule, the closer to the safety
hazards, the easier the modeling of the safety properties, and the more convinc-
ing that they imply the overall safety of the system. However, using high-level
properties also complexifies the environment model, and makes these safety prop-
erties harder to prove.

Finally, for systems developed in a normative environment, or for which trust-
worthiness of the safety verification is required, the assessment of the correctness
and completeness of the safety specification is usually achieved by reviews per-
formed by an independent team. In this sense, having a clear and readable safety
specification, unambiguously implying the safety of the system at the highest

S3: Proving the Safety of Critical Systems 235

possible level, is clearly a plus. A drawback lies in the complexity of the envi-
ronment model whose constraints have to be thoroughly checked for correctness.
In particular, it shall be verified that this modeling does not over-constrain the
input scenarios (i.e. the constraints are fulfilled by the real environment).

3.4 Uncertified S3 Workflow

When designing an S3 safety verification workflow, the first task is to build
the part of the workflow needed to perform the analyses, without considering
trustworthiness or certification. This workflow will be used to develop, debug,
and mature both the generic safety specification and the system design. A typical
uncertified S3 workflow synoptic is given in Fig. 1.

Fig. 1. Uncertified S3 workflow synoptic

Using a specialized translator from the design formal language to HLL, the
solution creates a formal model of the system design preserving its execution
semantic. This model is concatenated to the safety specification, giving an HLL
file ready for analysis.

The S3 model checker does not work directly at the HLL level, and a further
model transformation is needed: a translation, called expansion, from HLL to the
Low Level Language (LLL), a restricted subset of the HLL language contain-
ing only boolean streams and a very limited number of core boolean operators
(negation, implication, and equivalence), similar in essence to the AIGER format
(see http://fmv.jku.at/aiger). An expander is used to inline HLL blocks, flatten
structured types, expand quantifiers, bit-blast arithmetic, until the HLL model
is transformed into a semantically equivalent LLL model.

This LLL model can then be handed over to S3 for analysis. When S3 reports
that a property has been proved (using induction), nothing remains to be done.

http://fmv.jku.at/aiger

236 N. Breton and Y. Fonteneau

However, when it reports a falsification it also generates a counter-example on
the LLL model. After being translated back from the LLL world to the HLL one,
counter-examples can be translated to scenarios to be run inside a simulator of
the system. Another alternative is to use the why tool which loads a counter-
example and guides the user from the violated safety property down to the root
of the problem, displaying the values of the traversed HLL expressions, using
powerful heuristics to choose what part of an expression shall be followed.

3.5 Certifiable S3 Workflow

The uncertified solution described in the previous section is used iteratively to
correct the potential bugs in the safety specification and in the system, until all
safety properties are proved. At this point, the problem of the confidence that
can be granted to the formal safety verification solution shall be addressed. In
particular, this is mandated by most certification standards when using such a
solution in a verification process.

Starting from the uncertified workflow in the previous section, a hazard analy-
sis is performed to build the comprehensive list of the different weaknesses in
which a bug of a tool might lead to the erroneous proof of a non-valid safety
property. Each of these potential weaknesses is addressed by applying specific
and adapted protection techniques.

Protecting the Analyses: the first identified weakness is of course that of the
model checker incorrectly reporting some property to be proved. Ensuring the
correctness of a complete model checker using a standard mix of peer-reviews
and tests is a very difficult task. A more pragmatic approach is to use an a
posteriori technique called proof logging/proof checking for every run of the
model checker. In this technique, S3 is enhanced with the capability, when it
finds the proof of a property, to log this proof in a file which, starting from a
reformulation of the analyzed LLL file, derives the proof as a deduction tree in a
formally specified resolution-based proof system. After the S3 run, a specialized
tool, the proof-checker checks that the reformulation corresponds to the LLL
file given to S3, that the proofs are made of correct deductions, and that all
properties have been proved. In SAT-based model checking, finding a proof is
a complex task relying on error-prone algorithms, optimizations, and heuristics.
However, checking a proof is fairly simple and can be done with a high degree
of confidence.

Protecting the Translation Workflow: the next identified weakness is in the
translation of the system design. An error in this translation could easily lead to
an erroneous proof because the properties are analyzed on an incorrect model.
Figure 2 gives a synoptic view of the protections used against this weakness.

The translation is protected using diversification. The translation is done
twice, by diversified tools, developed by independent teams, using different pro-
gramming languages and paradigms. When possible, and to increase confidence,
the sources are also diversified by considering, on the one hand the transla-
tion of the system design, and on the other the translation of the system code.

S3: Proving the Safety of Critical Systems 237

Fig. 2. Protecting the translation workflow

The obtained HLL models are then both expanded to LLL. The expansion is a
complex model transformation in which an error could also lead to an incorrect
model (i.e. when the semantic is not preserved between the HLL and the LLL
models), and thus to an erroneous proof. To protect this transformation, the
expansion is also diversified using two independent expanders. For each model
transformation, a precise logical foundation document, describing the syntax and
semantics of the involved languages together with the transformation princi-
ples, is used to specify this transformation, prove its correctness and soundness,
and develop test-suites. This document is extensively reviewed by independent
experts.

A second technique, called sequential equivalence checking, is used to com-
pare the resulting LLL models. A tool, the equivalence-constructor takes the pair
of LLL models and creates a third one, that encodes the fact that the two mod-
els, fed with the same input sequences, produce the same outputs. The resulting
equivalence model is given to the S3 model checker to prove, using induction,
that the equivalence holds. To make the equivalence system inductive, and sim-
plify the model checker task, it is mandatory to provide a list of “suggested”
intermediate equivalent points that will be proved and used to help proving the
overall equivalence. When the equivalence holds, confidence is gained that the
various model transformations (i.e. translations and expansions) have been cor-
rectly performed. There is indeed very little chance that a bug in one translator
or expander is “matched” by another bug in the other tool chain.

Finally, sometimes an analysis of the produced LLL model of the code is
also necessary to ensure some aspects of the correctness of the code modeling
and translation. Some languages do not have a fully defined semantic and the
modeling adds automatic proof obligations to the resulting model to verify that
none of these undefined behaviors are triggered by the code. The modeling is

238 N. Breton and Y. Fonteneau

thus considered correct, with respect to these undefined behaviors, if and only
if these proof obligations hold.

Incidentally, the proof that the code is equivalent to the design is an inter-
esting result in itself. First, it shows that the code generator, or compiler, has
produced a correct code and thus enables to remove the verification activities
usually performed to assess this correctness. This is not to be taken as a gen-
eral correctness result of the code generator, but rather that, on this particular
system, the code generation has been correct. Secondly, it shows that the safety
properties that have been shown to hold on the design also hold on the code.

Protecting the Safety Verification Workflow: the last identified weakness
is in the expansion of the overall system composed of the safety specification and
the system model. The expansion of this element corresponds to the connection
of the two parts, and the model transformation to LLL. Once again, an error in
this transformation can lead to an incorrect model and thus an incorrect proof.
As previously, this transformation is protected by expanding the system twice
with independent expanders, and proving that the obtained pair of LLL models
are equivalent. Finally one of the models is analyzed to prove that the safety
specification holds on the system design.

Overall Solution: the various tools of the S3 toolset have been developed using
a process involving a complete set of specification, design, and validation docu-
mentation, together with the necessary quality and verification activities. This
process, associated to the described protection mechanisms enables an S3 for-
mal verification solution to be used as a “verification tool”. For example, it has
already been successfully used as an EN-50128:2011 T2-class tool.

The expanders, equivalence-constructor, and the S3 model checker are generic
tools proven in use on industrial-size systems. Generic translators also exist for
Scade R©, C, and Ada. These translators produce a bit-precise, exact HLL model
of the system. For other languages, custom translators are developed.

4 Application to Interlocking Systems

An interlocking is a system commanding and controlling the signals and switches
of a railway track layout, ensuring safe train operations. The S3 model checking
solutions have been shown to be particularly efficient in proving the safety of
Computer Based Interlocking (CBI) systems.

4.1 Interlocking Development Workflows

The vital code of CBIs is typically obtained through a process known as instan-
tiation. In such a process, the signaling principles are captured by the engineers
to produce the generic design in some suitable language. This design contains
a set of generic code snippets that an interlocking system shall execute for each
object of a given category, such as signals, switches, routes, etc. Each of these
generic snippets is given in a parametrized form allowing to specialize it for the

S3: Proving the Safety of Critical Systems 239

object to which it applies. For example, the generic code for a route will most
probably be parametrized with the list of switches contained in the route. The
generic design is thus specific to a set of signaling principles, but independent of
a particular track layout.

To instantiate the interlocking system for a particular track layout, the geo-
graphical data representing this particular station topology is first processed by a
data-preparation tool and gathered in some sort of database. This database con-
tains the population of objects of the given station (e.g. signals, routes, switches,
etc.) and the relations between these elements (e.g. starting signal of a route,
switches contained in a route, etc.). An instantiation tool is then used to create
“copies” of the elements of the generic design, called instances, for each object
of the given station. Each instance is specialized by receiving the specific para-
meters values for the object to which it applies. The instantiated system is not
necessarily produced as “code” in the common sense (a software in some known
programming language), it can take many forms: boolean equations, ladder dia-
grams, automatons, or even mere data-tables. Such an instantiated system can
then be interpreted by a generic software engine, or used as a design to generate
the actual code.

In any case, when building an S3 solution to verify the safety of such a
system, a translator (or a pair of diversified translators, see Sect. 3.5) is developed
that will create a (usually) bit-precise HLL model of this instantiated system,
preserving its execution semantic.

4.2 Generic Safety Specification

As an introductory remark, it is important to understand that, as the system
is instantiated for a given station track layout, the formal safety verification
performed on this system will only address the safety on this particular track
layout. It is not a generic proof that the design is safe for every station track
layout. In particular, the proof will have to be conducted each time a system is
instantiated with a new track layout.

Having to prove every instance is however not a problem because for generic
systems instantiated by data, such as an interlocking instantiated for a specific
station track layout, the safety specification is also generic, and can be instan-
tiated using the same data. Developing the generic safety specification is thus
done only once, and proving that an instance on a specific station track layout
verifies the generic safety specification instantiated on this same track layout is
completely automated in the S3 solution.

Genericity is supported by three central elements of the HLL language: sorts,
a set of types representing a hierarchical enumerated population, used to rep-
resent objects; predicates on sorts, used to represent relations between these
objects; quantifications (universal and existential) used to “apply” an expression
on every object instance of the sort over which it ranges. Sorts and predicates
are first declared and used to express generically the safety properties and envi-
ronment constraints. Later, when analyzing a specific track layout, the sorts are

240 N. Breton and Y. Fonteneau

populated with the actual object instances on the track, and the predicates ini-
tialized with the corresponding relations. The generic safety specification applied
to this description of the track layout becomes instantiated for this specific lay-
out, and can thus be checked on the specific CBI vital code. As an example,
an overly simple generic property (rather a lemma in fact), stating that two
incompatible signals shall not be simultaneously opened could be written as:

ALL s1:SIGNAL,s2:SIGNAL (incompatible(s1,s2) -> ~(open(s1) & open(s2)))

where, for a specific track layout, the sort SIGNAL is populated with all the sig-
nals, the incompatible helper predicate is initialized, or defined using other
lower-level predicates, and the open integration predicate is linked to the sig-
nals command outputs in the model of the code (~ is the negation and -> the
implication operators).

As explained in Sect. 3.3, several levels of generic safety specification exist,
and Systerel advocates the use of the highest possible level to unambiguously
imply the overall safety of the system. This leads to the definition of three main
safety properties (additional properties are also needed to ensure safety in the
connection with other systems, but they are usually far simpler):

1. Absence of Collision: given two trains positioned on the track layout, no zone
of the track is simultaneously reachable by both trains.

2. Absence of Derailment : given a train positioned on the track layout, no badly
positioned switch is reachable by this train.

3. Absence of Over-speed : given a train positioned on the track layout that has
been granted full-speed, no reduced-speed zone is reachable by this train.

A model of the environment is also needed to describe how a train can move,
when it can cross a signal, when a switch can move, etc. This is done incre-
mentally by analyzing the counter-examples, under the control of the safety
engineers.

4.3 Analyzing Interlocking Systems

The S3 solution has been applied to an interlocking system obtained from a major
railway company (undisclosed for confidentiality reasons). The specific applica-
tion has been developed using the signaling principles used in an ongoing metro
project instantiated on a test station designed to be representative of all the pos-
sible topological specificities to be found in the stations of the given line. This
station is large from a metro standpoint, with 249 routes, 520 track segments, 69
switches, and 199 signals of all sorts. The instantiated code is given in an in-house
format representing boolean equations and timers executed sequentially to com-
pute the output actuators from the values of the input sensors. The code for this
particular station contains 10 801 boolean equations, and 712 timers.

A custom translator was developed. Taking as inputs an application code con-
taining the boolean equations and an XML file containing the description of the

S3: Proving the Safety of Critical Systems 241

track layout, it outputs an HLL model of the code together with the representa-
tion of the track layout encoded as sort populations and predicates. An abstraction
of the code timers have been applied stating that a timer can elapse at any time
provided that it has been armed. The precise timer values are discarded, and the
safety is thus proved under the hypotheses that these timers have been correctly
dimensioned. Otherwise, the model is bit-precise. The concatenation of these mod-
els with a generic safety specification containing the safety properties described
in the previous section is then given to S3 for analysis.

Four iterations were necessary to correct bugs in the application (it was
handed over to S3 prior to validation), to express generic induction strengthen-
ing lemmas, and to adjust the environment model before reaching the proof of
the safety of the CBI, totaling around four man·months of work including the
development of the specific S3 solution. As all the generic parts have already
been developed, subsequent runs on specific stations shall be largely automatic.

On this system, the analysis time on an Intel Core i5-4670 CPU is around
1 min for proving all the safety properties using induction, and around 2 h when
searching for safety violations using a BMC up to 10 execution cycles of the
system’s logic. Both of these runs consumed less than a gigabyte of memory.

S3 has also been applied on two other families of interlockings of similar
sizes, developed using different flavors of automaton-based languages with similar
performances.

5 Related Work, Conclusions and Perspectives

Railway safety critical systems have always been a fruitful application field for
formal methods. In recent years, the use of SAT or SMT based model checking
to verify the safety of interlocking systems has drawn interest from a number of
research teams and major signaling companies. The S3 approach to formal ver-
ification of interlocking systems is similar to the approaches described in [3–5].
A key point in these approaches is, starting from the design or the code of an
interlocking system, to construct a “good” model of the system, its environment,
and the safety specification. This is not only a matter of this model being sound,
or easily capturing the generic safety specification in a clear formalism, but also
of being well conditioned for the underlying model checker. In particular, it is
important to ensure that the modeling doesn’t introduce unnecessary additional
complexity beyond that of the system itself. In this perspective, the use of a
specific language to express this model together with a toolset controlling every
translation-steps down to an in-house model checker powered with its own state
of the art SAT-solver, is clearly a plus. Domain-specific knowledge in both rail-
way critical systems and formal methods is also an important ingredient for
building a successful formal verification solution.

S3 is the result of a successful technology transfer from state of the art
research to an efficient industrially supported toolset. It is not to be seen as
an off-the-shelf integrated solution, but rather as a collection of generic tools

242 N. Breton and Y. Fonteneau

together with protection methodologies to ensure trustworthiness and certifiabil-
ity. This toolset enables the engineering of custom and efficient formal safety veri-
fication solutions targeted at specific missions and system development processes.
These solutions aim at automating the safety verification process and eliminat-
ing as much as possible the repetitive, time-consuming, expensive, incomplete,
and error-prone human verification activities usually devoted to this task.

S3 solutions are routinely used to prove the safety of large industrial inter-
locking systems. Applying this technology to other safety-critical systems in
the railway industry, or in other domains like avionics, is an ongoing challenge.
Encouraging preliminary results have been obtained both on the support of
floating-point arithmetic and in the handling of asynchrony and latencies when
several interconnected systems are considered (e.g. multiple IXL, CBTC, etc.).

References

1. Clarke, E., Sistla, A.P.: Automatic verification of finite-state concurrent systems
using temporal logic specifications. TOPLAS 8, 244–263 (1986)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. Adv. Comput. 58, 117–148 (2003)

3. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of inter-
locking systems featuring sequential release. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 223–238. Springer, Heidelberg (2015)

4. Bonacchi, A., Fantechi, A.: On the validation of an interlocking system by model-
checking. In: Flammini, F., Lang, F. (eds.) FMICS 2014. LNCS, vol. 8718,
pp. 94–108. Springer, Heidelberg (2014)

5. James, P., Lawrence, A., Moller, F., Roggenbach, M., Seisenberger, M., Setzer,
A., Kanso, K., Chadwick, S.: Verification of solid state interlocking programs.
In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 253–268.
Springer, Heidelberg (2014)

Increasing Proofs Automation Rate
of Atelier-B Thanks to Alt-Ergo

Sylvain Conchon1,2 and Mohamed Iguernlala1,3(B)

1 LRI, Université Paris-Sud, 91405 Orsay, France
mohamed.iguernlala@ocamlpro.com

2 Toccata, INRIA Saclay Ile-de-France, 91893 Orsay, France
3 OCamlPro SAS, 91190 Gif-sur-Yvette, France

Abstract. In this paper, we report on our recent improvements in the
Alt-Ergo SMT solver to make it effective in discharging proof obliga-
tions (POs) translated from the Atelier-B framework. In particular, we
made important modifications in its internal data structures to boost
performances of its core decision procedures, we improved quantifiers
instantiation heuristics, and enhanced the interaction between the SAT
solver and the decision procedures. We also introduced a new plugin
architecture to facilitate experiments with different SAT engines, and
implemented a profiling plugin to track and identify “bottlenecks” when
a formula requires a long time to be discharged, or makes the solver time-
out. Experiments made with more than 10,000 POs generated from real
industrial B projects show significant improvements compared to both
previous versions of Alt-Ergo and Atelier-B’s automatic main prover.

Keywords: SMT solvers · B proof obligations · B method

1 Introduction

The use of formal techniques to assess that software components conform to given
requirements is gaining an increasing interest in the industrial world during the
last decades. Indeed, when software are deployed in critical safety domains such
as aeronautics, medical fields, and transportation, a high level of confidence is
required because a bug may cause very costly damage.

Among formal frameworks, Atelier-B [4] is an industrial software develop-
ment tool that implements the B method, a method based on abstract machines
and refinement techniques. Roughly speaking, a developer starts a B project
by designing an initial and most abstract version of a program, called abstract
machine, that includes the formal specifications of the design’s goal. Then, at
each refinement step, the machine is turned into a more concrete one by adding
more details about data structures or algorithms. At the end, a C/C++ or Ada
code is produced. Each refinement step generates a set of mathematical formulas,
called proof obligations (POs), that includes all the properties of the abstract
machine and of the refinement process. These POs have to be proven coherent.
c© Springer International Publishing Switzerland 2016
T. Lecomte et al. (Eds.): RSSRail 2016, LNCS 9707, pp. 243–253, 2016.
DOI: 10.1007/978-3-319-33951-1 18

244 S. Conchon and M. Iguernlala

An industrial B project usually generates thousands of POs. Each PO is itself
a big first-order formula that requires complex reasoning, such as Set theory and
arithmetic, to be proved. In practice, proving manually the POs is a long and
boring exercise. Therefore, the success and financial profitability of a B project
strongly rests on the ability of proving resulting POs automatically.

Since its earlier versions, Atelier-B integrates a home-made automatic prover,
which is mainly dedicated to B’s Set theory [1] with some limited support for
linear arithmetic. When a PO is not proved automatically, the user can either
try to guide the proof interactively, or add some proof rules to the context of the
solver, and prove the soundness of these rules later on. Consequently, to reduce
the price of B software, a solution would be to increase proofs automation rate
and to lower the number (cost) of manual proofs.

In order to increase proof automation, several research projects have started
the integration of SMT (Satisfiability Modulo Theories) solvers. SMT solvers
are recent and efficient automatic theorem provers built on top of a satisfiability
(SAT) solver and a combination of decision algorithms for first-order theories
of interest such as the free theory of equality and linear arithmetic over inte-
gers and rationals. In some application domains, these tools are extended with
instantiation techniques to handle universally quantified formulas.

In recent years, we worked on the improvement of our SMT solver, called
Alt-Ergo [3], in the context of the BWare ANR project [10]. BWare aims, among
other things, at integrating SMT solvers as back-ends of Atelier-B. This relies
on the Why3 [8] platform. Its main idea consists in translating Atelier-B proof
obligations into Why3’s logical language, combining them with a model of the
B Set theory (also written in Why3’s logical language) and feeding the result of
the combination into different external solvers, among of which Alt-Ergo.

This paper presents our recent developments in Alt-Ergo that significantly
improved its effectiveness in discharging POs coming from Atelier-B. Our
enhancements include (1) new efficient data structures that boost performances
of Alt-Ergo’s core, (2) better heuristics for instantiating polymorphic quantified
formulas coming from B model, and (3) a better interaction between the SAT
solver and the decision procedures components. We also introduced a new plugin
architecture to facilitate experiments with different SAT engines and provided
a new experimental CDCL-based SAT solver. In addition, to be able to track
and identify “bottlenecks” in our prover, we implemented a profiling plugin that
allows us to observe the behavior of internal components of Alt-Ergo when a
formula requires a long time to be discharged, or makes the solver timeouts.

We evaluated our improvements on a benchmark of more than 10,000 POs
generated from four industrial B projects. The results are very promising and
show a significant progression of current versions of Alt-Ergo compared to both
previous releases of our solver and to Atelier-B’s automatic main prover.

In Sect. 2, we present Alt-Ergo and its applications. Section 3 explains how B
POs are enriched with a Set theory model and translated into Alt-Ergo. Section 4
details our benchmarks’ characteristics and compares them with our existing
test-suite. Section 5 describes some of our developments to improve Alt-Ergo for
B POs, and Sect. 6 presents an experimental evaluation of these improvements.
In Sect. 7, we conclude and discuss related and future works.

Increasing Proofs Automation Rate of Atelier-B Thanks to Alt-Ergo 245

2 The Alt-Ergo SMT Solver

Alt-Ergo is an automatic solver of mathematical formulas designed for program
verification. It is based on Satisfiability Modulo Theories (SMT). Solvers of this
family have made impressive advances and became very popular during the last
decade. They are now used in various domains such as hardware design, software
verification and formal testing.

Alt-Ergo is used as a back-end of different tools and in various settings, in
particular via the Why3 platform. For instance, the Frama-C suite relies on it
to prove POs generated from C code, and the SPARK toolset uses it to check
POs produced from Ada programs. Alt-Ergo is also used to prove POs issued
from cryptography protocols verification and from the Cubicle model-checker.
Recently, we started to use it to discharge POs coming from Atelier-B.

The simplified architecture of Alt-Ergo is shown in Fig. 2. The SAT solver
interacts with the decision procedures to look for a model for the ground part of
the input formula. If a fix-point is reached and unsatisfiability is not deduced,
it asks the “Axioms Instances” part for some ground consequences of quantified
formulas (axioms). Generated instances are added to the SAT’s context and the
interaction with the “Decision Procedures” part continues. The latter compo-
nent provides a combination of decision algorithms for a collection of built-in
theories including the free theory of equality with uninterpreted symbols, linear
arithmetic over integers and rationals, fragments of non-linear arithmetic, and
enumerated and records datatypes.

Alt-Ergo’s native input language is a polymorphic first-order logic à la ML
modulo theories, a very suitable language for expressing formulas generated in
the context of program verification. For instance, the toy example shown in
Fig. 1 declares an abstract polymorphic type ’a set, some function and constant
symbols (add, mem, a, b and s), one axiom (mem add) that specifies the meaning
of membership over add, and a formula to be discharged (a goal) that involves
arithmetic and uninterpreted function symbols.

Fig. 1. An example in Alt-Ergo’s syntax Fig. 2. Alt-Ergo’s simplified architecture

246 S. Conchon and M. Iguernlala

3 From B Proof Obligations to Alt-Ergo

One of the objectives of BWare is to connect additional automatic provers to
Atelier-B to increase its proofs automation rate and to lower the cost of manual
proofs. This goal is achieved via the translation scheme given in Fig. 3:

Fig. 3. Translating B proof obligations to Alt-Ergo’s native input language

1. First, the POs produced by Atelier-B are translated into Why3’s logic using
bpo2why [9]. The latter tool has been extended during the project to cover a
larger part of B constructs. A small PO and its corresponding Why3 transla-
tion are given in [9] (Figs. 2 and 4 respectively).

2. Datatypes and function symbols declarations, as well as the axioms of the
B Set theory, do not appear in the original POs because they are built-in
for Atelier-B’s main prover. To make them explicit for Why3, a prelude that
contains these information is written and appended to every translated PO.
An overview of the content of this file is given in [9] (Fig. 7).

3. At this point, Why3 can be used to produce POs for a wide range of solvers
in different formats (TPTP, SMT2, Alt-Ergo’s native input language, . . .).

Note that, a new proof obligations generator that is able to directly output
POs in Why3’s logic has been developed in Atelier-B during the project.

4 Benchmarks Characteristics

Quite at the beginning of the BWare project, we had a test-suite1 of 12,831 POs
obtained from four industrial B projects. The POs were previously discharged
automatically or interactively in Atelier-B. They were translated to Why3 using
bpo2why. Two benchmarks (called RCS3 and DAB) were provided by Mitsubishi
Electric R&D Centre Europe. They are generated from B implementations of
an automated teller machine and a software that controls a railway level cross-
ing system, respectively. Two additional benchmarks (called p4 and p9) were
provided by ClearSy, and were obfuscated.

Every PO is composed of three parts: the first one is a large set of declarations
and axioms (universally quantified formulas). It results from the translation of
1 A first release is available here: http://bware.lri.fr/index.php/Benchmarks.

http://bware.lri.fr/index.php/Benchmarks

Increasing Proofs Automation Rate of Atelier-B Thanks to Alt-Ergo 247

the B Set theory prelude to Alt-Ergo’s syntax. The second part is made of huge
(in size) predicate definitions describing parts of the B state machines. It is part
of the original B formula. The last part is the “goal” we would like to prove. It is
a ground formula involving the predicates of the second part. The concatenation
of the two first parts will be called “the context” of the PO.

A quick inspection of the POs shows that they are made of equalities over
uninterpreted function symbols and atoms involving enumerated data types. A
small portion of atoms contains arithmetic and records. Compared to our older
benchmarks, the average number of axioms, as well as the size of the POs are
much larger in this new test-suite, as summarized below:

VSTTE Why3 Hi-Lite RCS3 DAB p4 p9

Number of POs 125 4490 15993 2259 860 9342 371

avg. # of axioms 32 57 115 395 303 304 332

avg. size (KB) 8 12 36 907 252 258 420

At the beginning of the project, we ran state-of-the-art SMT solvers that can
handle the POs of our test-suite. Those solvers have been running without any
particular options or configurations. We used a 64-bit machine with a quad-core
Intel Xeon processor at 3.2 GHz and 24 GB of memory. Time (resp. memory)
limit was set to 60 s (resp. 2 GB) per PO. The results are shown in the table
below, as well as the automation success rate of Atelier-B’s main prover (denoted
B-PR) for these projects. Note that, for the sake of equity, B proof obligations
were first split to obtain one goal per file, before they were given to main prover.

prover version RCS3 DAB p4 p9

Alt-Ergo 0.95.2 2226 (98.7 %) 822 (95.6 %) 8402 (89.9 %) 213 (57.4 %)

Z3 4.3.1 2191 (97.1 %) 716 (83.3 %) 7974 (85.4 %) 162 (43.7 %)

CVC3 2.4.1 2203 (97.6 %) 684 (79.5 %) 7981 (85.4 %) 108 (29.1 %)

B-PR 4.2 (90.1 %) (95.7 %) (83.0 %) (96.2 %)

The evaluation shows that it is not immediate to obtain a substantial gain of
performances by using SMT solvers to discharge B proof obligations. Without
a specific tuning for B, SMT solvers compete equally with Atelier-B’s prover on
the test-suite. We describe in the next section the main improvements we made
in Alt-Ergo to increase its success rate on these benchmarks.

5 Tuning Alt-Ergo for B Proof Obligations

We now provide a non-exhaustive list of modifications we made in Alt-Ergo to
augment its proofs success rate on BWare POs. But, we will start by describing
our profiling plugin that allowed us to quickly localize sources of inefficiency.

248 S. Conchon and M. Iguernlala

5.1 Spying the Solver

During our investigations to improve Alt-Ergo, we had to instrument several parts
of its code to print some information and understand what is happening inside
it. We ended by writing a profiling plugin that records relevant data and prints
them in an appropriate way, with a negligible overhead when it is deactivated.
Currently, information are printed in “text mode” and refreshed periodically.

When profiling, the user can switch between four views. The first view shows
the progression of some global counters such as the current decision and instan-
tiation levels, the total number of decisions and instantiations, the number of
generated instances, the number of Boolean (resp. theories) simplifications and
conflicts, the number of case-splits, etc.

The second one is a “matrix view” where the lines contain around twenty of
the most used (time consuming) functions and the columns are labeled with the
most important modules of Alt-Ergo. In every cell, the accumulated time spent
in each function of every module is shown. This view allowed us to realize that,
contrary to what we thought at the beginning of the project, arithmetic reasoning
is very costly for some p4 proof obligations. In fact, arithmetic modules take more
than 80 % of the solver’s time on these POs. An enhancement of corresponding
algorithms increased both the success rate and the execution time of Alt-Ergo.

The third view prints the stack of currently activated modules and functions.
To differentiate successive calls to the same function, we associate a fresh stamp
to every new call. This allows us to detect when a function is slow or looping
thanks to the repetition of the same stamp ID after two successive prints.

Finally, the fourth view is dedicated to axioms instantiation. For every axiom,
this view shows: the number of generated, kept and ignored instances, the num-
ber of instances that participated in a conflict, and the number of “consumed”
and “produced” ground terms by the instances. Actually, an axiom that produces
a huge number instances or terms may have a bad (i.e. too permissive) trigger,
so choosing another trigger or completely disabling the axiom may alleviate the
solver’s context and permit to do the proof.

5.2 Improving Internal Data-Structures

During our first investigations to improve Alt-Ergo, we noticed that the represen-
tation of literals and formulas were not optimal, and that some normalizations
were missing. This prevents the solver from making some straightforward sim-
plifications, from getting the best from hash-consing techniques, and from doing
some operations in constant time without allocating (e.g. computing the negation
of a formula). To fix these issues, we reimplemented the internal data-structures
for literals and formulas. In addition, we hash-consed internal data-structures
of the decision procedures. This enabled the use of hash-consed based compar-
ison to build sets and maps over these structures and induced an important
speedup.

Increasing Proofs Automation Rate of Atelier-B Thanks to Alt-Ergo 249

5.3 Improving the SAT Solver

In general, SAT reasoning is cheaper than theories reasoning. So, to improve the
interaction between the SAT and the theories, we made some modifications to
delay calls to decision procedures as much as possible and to make all possible
deductions at SAT level first. This is done when assuming unit facts, deciding
a literal, or when performing Boolean constraints propagation modulo theories.
A similar distinction is also made inside decision procedures: reasoning with
equalities is, in general, much faster than processing inequalities.

In addition, we modified Alt-Ergo’s architecture to enable the use of different
SAT solvers provided as plugins, implemented a new CDCL-based solver, and
enriched the default SAT solver with some modern decision heuristics.

5.4 Better Axioms Instantiation Heuristics

During our investigations, we ran Alt-Ergo with profiling support on our POs and
noticed a large number of axioms instantiation, a high activity of the decision
procedures, and an important workload for the SAT engine. A further investi-
gation revealed that this is due to the hundreds of axioms and the huge context
that implies thousands of generated instances, as shown in Fig. 4.

Fig. 4. Interaction of different components of Alt-Ergo on B proof obligations

In order to limit the number of generated instances at each matching round,
we modified Alt-Ergo to only consider terms that appear in the current active
branch (model) of the SAT engine when instantiating. We also added some
normalizations to detect and eliminate redundant (equivalent) instances.

Another improvement is related to E-matching technique: in SMT solvers,
matching process is performed modulo the set of known equalities. For instance,
if x is a variable, f(g(x)), f(g(a)), g(b) are terms, and g(a) = g(b) is a known
equality by the decision procedures, then E-matching a trigger2 f(g(x)) against
f(g(a)) will produce two solutions σ1 = {x �→ a} and σ2 = {x �→ b}, while simple
syntactic matching would only generate σ1. Actually, the number of solutions for
the matching problem is directly related to the number of generated instances.
Consequently, we added the ability to disable the generation of new instances
modulo known ground equalities via a new option, called -no-Ematching. This
choice is justified by the fact that, while E-matching is not really mandatory to
discharge more POs for BWare benchmarks, disabling this feature makes Alt-Ergo
regress on our older benchmarks coming from Why3 and SPARK.
2 Triggers are terms with variables that prevent the instantiation of quantified formulas

unless they “match” some ground terms present in the decision procedures.

250 S. Conchon and M. Iguernlala

5.5 Save (Replay with) the Context Used for a Proof

Another important feature we added in Alt-Ergo is the ability to identify and
save, for a discharged PO, a reasonably small over-approximation of the names of
axioms that are useful to do the proof. The overhead due to the activation of this
feature (via option -save-used-context) is, in general, small compared to the
benefits: saved information can be used to quickly replay the proofs (with Alt-
Ergo via option -replay-used-context, or with another prover), as we demon-
strate it in the next section.

6 Experimental Evaluation

In order to measure the impact of our improvements on BWare’s test-suite, we
considered two evaluation axes. For the first axis, we varied the time given to
the solver for each PO: we used small timeouts that are adequate for an online
integration (2 and 10 s per PO), and bigger timeouts, suitable for an offline
integration (60 and 600 s per PO). For the second axis, we varied solver’s options
and resolution strategies:

1. the first strategy uses Alt-Ergo without particular options,
2. the second one uses the solver with the restricted options “-no-Ematching

-nb-triggers 1”: picking one trigger per axiom (default value is two) and
disabling matching modulo equality will restrict the number of generated
instances,

3. the third one is a portfolio approach that uses a dozen of configurations on
a PO as long as it is not proved. This strategy is rather intended to be used
offline, as timeout is set per configuration. Used configurations are listed in
the figure below:

Basically, we restrict (e.g. -nb-triggers 1) or modify (e.g. -no-Ematching,
-nb-triggers 10) some solver’s capabilities, or use alternative implementa-
tions of some components (e.g. -sat-plugin satML-plugin.cmxs) to hopefully
discharge a PO. Option -greedy enables the use of all the terms of the SAT
solver when instantiating instead of those appearing in the current model
only, option -no-tcp disables the simplification of disjunctions in the SAT
modulo theories, while -no-theory completely disables theory reasoning.

Increasing Proofs Automation Rate of Atelier-B Thanks to Alt-Ergo 251

For our experiments, we used the latest private release of Alt-Ergo (v. 1.10).
The results are reported in the tables below (D = default strategy, R = restricted
strategy, P = portfolio strategy, B = results of Atelier-B’s main prover, and O =
results of Alt-Ergo v. 0.95.2).

We can draw many conclusions from these results:

– even with a time limit of 2 s, the default strategy of Alt-Ergo 1.10 solves more
POs than version 0.95.2 (which was ran in default mode with a time limit of
60 s),

– the restricted strategy is, in general, faster and solves more POs than the
default one (except for RCS3, and for DAB with a time limit of 600 s),

– whatever the chosen timeout for Alt-Ergo, the portfolio strategy is always the
fastest, and has the best resolution rate. This is as expected since the first
and the second strategies are just particular configurations of the third one
(in which timeout was set per configuration),

– more generally, we made substantial progress for both resolution time and
the number of discharged POs compared to Alt-Ergo 0.95.2, in particular for
projects p4 and p9,

– Atelier-B’s main prover is still better on p9 even if we compare it to portfolio
approach. The reason is that, contrary to p4 project that involves a lot of
arithmetic reasoning, a substantial part of p9 POs necessitates lemmas super-
position to be proven quickly. Unfortunately, E-matching is not suitable for
that, and superposition calculus is currently lacking in Alt-Ergo.

We also notice for DAB project that increasing timeout of the portfolio app-
roach does not allow to discharge more POs. This may be due to two reasons:
either the triggers computed for the remaining formulas are not suitable to do
the proofs, or the proofs require superposition calculus.

252 S. Conchon and M. Iguernlala

We made a second experiment to measure the impact of saving the “names of
axioms” that have been used to discharge a PO, and of replaying the proof with
the pruned context. For that, we used the default configuration of Alt-Ergo 1.10
and a time limit of 600 s. The results are reported in the table below. We notice
that we have a small overhead when option -save-used-context is activated,
compared to the results we got with the default strategy, and that around twenty
POs are not proved anymore. However, thanks to the information saved when
this option is activated, all proofs replay succeeded quite faster.

7 Conclusion and Future Works

This paper describes our improvements in the Alt-Ergo SMT solver to increase
its proofs success rate on formulas coming from the Atelier-B framework. Our
experimental results show a substantial progression of Alt-Ergo 1.10 compared
to older versions and to Atelier-B’s main prover. It turns out that B proof obliga-
tions have some specificities that should be taken into account to obtain a good
success rate. Note that, the integration of SMT solvers in the Rodin [11] platform
to discharge proof obligations coming from Event-B [1] has already been inves-
tigated [7]. However, the translation scheme that has been employed is quite
different from BWare’s (static expansion of Set theory constructs before gener-
ating a PO for an SMT solver). It would be interesting to investigate the use of
BWare’s translation technique within Rodin. This could be achieved by adapting
the investigations of [2] to use BWare axiomatization.

In the near future, we plan to investigate the integration of built-in support
for a fragment of the B Set theory in Alt-Ergo via the extension of our rewriting-
based frameworks AC(X) [5] and CC(X) [6]. This would improve resolution time
and offer some nice completeness properties on this fragment. The extension
of Alt-Ergo with superposition calculus would also increase proofs success rate.
In addition, we identified some components of our solver that necessitate fur-
ther improvements (e.g. triggers inference module). Other possible lines of work
include the use of benchmarks coming directly from Atelier-B’s new POs genera-
tor, and the extension of the B Set theory prelude3. Yet, a new project containing
60,000 POs has been recently translated to Why3’s logic. It constitutes another
interesting challenge for Alt-Ergo.

Last, but not least, a previous release of Alt-Ergo (version 0.94) has already
been qualified for a usage in avionic area (DO-178B). It would be worth consid-
ering the ability to qualify a new version for a usage in the railway domain.

3 The prelude is still under development, and some axioms may be missing to discharge
a PO, or may be written in an “unsuitable” way for the solvers.

Increasing Proofs Automation Rate of Atelier-B Thanks to Alt-Ergo 253

References

1. Abrial, J.-R.: The B-book - Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (2005)

2. Adjepon-Yamoah, D., Romanovsky, A., Iliasov, A.: A reactive architecture for
cloud-based system engineering. In: Proceedings of the 2015 International Confer-
ence on Software and System Process, ICSSP 2015, pp. 77–81. ACM, New York,
NY, USA (2015)

3. Bobot, F., Conchon, S., Contejean, E., Iguernlala, M., Lescuyer, S., Mebsout, A.:
Alt-Ergo version 0.99.1. CNRS, Inria, Université Paris-Sud 11, and OCamlPro,
Dec 2014. http://alt-ergo.lri.fr/, http://alt-ergo.ocamlpro.com/

4. ClearSy System Engineering. Atelier B User Manual, version 4.0. http://tools.
clearsy.com/wp-content/uploads/sites/8/resources/User uk.pdf

5. Conchon, S., Contejean, E., Iguernelala, M.: Canonized rewriting and groundAC
completion modulo Shostak theories: design and implementation. Logical Methods
Comput. Sci. 8(3), 653–683 (2012)

6. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: CC(X): semantic combination
of congruence closure with solvable theories. Electron. Notes Theor. Comput. Sci.
198(2), 51–69 (2008)

7. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in rodin.
Sci. Comput. Program. 94, 130–143 (2014)

8. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013)

9. Mentré, D., Marché, C., Filliâtre, J.-C., Asuka, M.: Discharging proof obligations
from atelier B using multiple automated provers. In: Derrick, J., Fitzgerald, J.,
Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012.
LNCS, vol. 7316, pp. 238–251. Springer, Heidelberg (2012)

10. The BWare Project (2012). http://bware.lri.fr/
11. Voisin, L., Abrial, J.-R.: The Rodin platform has turned ten. In: Ait Ameur, Y.,

Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 1–8. Springer, Heidelberg
(2014)

http://alt-ergo.lri.fr/
http://alt-ergo.ocamlpro.com/
http://tools.clearsy.com/wp-content/uploads/sites/8/resources/User_uk.pdf
http://tools.clearsy.com/wp-content/uploads/sites/8/resources/User_uk.pdf
http://bware.lri.fr/

Author Index

Adjepon-Yamoah, David 123

Benaissa, Nazim 203
Bendele, Marcus 3
Bishop, Peter 3
Bloomfield, Robin 3
Bonvoisin, David 203
Breton, Nicolas 231

Cappart, Quentin 134
Chothia, Tom 53
Conchon, Sylvain 243

de Ruiter, Joeri 53
Dross, Claire 215

Feliachi, Abderrahmane 203
Ferdinand, Christian 191
Filax, Marco 106
Fonteneau, Yoann 231

Gonschorek, Tim 106

Han, Xiao 95
Haxthausen, Anne Elisabeth 160
Huang, Po-Chi 69
Huang, Wen-ling 32
Hübner, Felix 32

Iguernlala, Mohamed 243
Iliasov, Alexei 123, 150

Kästner, Daniel 191

Limbrée, Christophe 134
Lv, Jidong 95

Martin, Luke J.W. 178
Milius, Birgit 69
Moy, Yannick 215

Nguyen, Hoang Nga 160

Ordioni, Julien 203
Ortmeier, Frank 106

Pecheur, Charles 134
Peleska, Jan 32
Pépin, Florent 79

Roggenbach, Markus 160

Sabatier, Denis 20
Stankaitis, Paulius 123, 150
Stroud, Robert 3

Tang, Tao 95
Thomas, Richard J. 53
Tonetta, Stefano 134
Tonks, Simon 3

Vigliotti, Maria Grazia 79

Wang, Haifeng 95

	Preface
	Organization
	Contents
	Keynote Talks
	The Risk Assessment of ERTMS-Based Railway Systems from a Cyber Security Perspective: Methodology and Lessons Learned
	1 Introduction
	2 Railway Security Requirements
	3 Security Analysis of ERTMS Specifications
	3.1 Methodology

	4 Risk Assessment of a National Implementation of ERTMS
	4.1 Approach
	4.2 System Context
	4.3 Scope of Assessment
	4.4 Impact Assessment
	4.5 Risk Analysis

	5 Cyber Security Risk Assessments of ETCS On-board Systems
	5.1 Security-Informed Hazop Methodology
	5.2 Security Testing
	5.3 Recommendations

	6 Discussion/Lessons Learned
	6.1 Context
	6.2 Strategy
	6.3 Where Next?

	7 Conclusions
	References

	Using Formal Proof and B Method at System Level for Industrial Projects
	1 Introduction
	2 Role and Benefits
	3 Projects
	4 Functional or Safety Properties
	5 Methodology
	5.1 Overview and Experiences
	5.2 The Natural Language Proof
	5.3 The Formal Phase

	6 Results and Their Usage
	6.1 Where to Stop
	6.2 Output Documents
	6.3 Safety Cases and Standards

	7 A Sample Case Study: The Route Cancellation Example
	8 Conclusion
	References

	A Novel Approach to HW/SW Integration Testing of Route-Based Interlocking System Controllers
	1 Introduction
	2 Route-Based Interlocking Systems
	2.1 Railway Networks, Routes, and Interlocking Systems
	2.2 Route Controllers

	3 Case Studies
	3.1 First Route Controller Sub-component
	3.2 Second Route Controller Component

	4 Model-Based Equivalence Class Partition Testing
	4.1 Semantic Domain
	4.2 Construction of Input Equivalence Classes
	4.3 Complete Testing Theories for RIOSTS
	4.4 W-method and Wp-method
	4.5 Discussion of Fault Hypotheses
	4.6 Randomisation
	4.7 Boundary Value Tests
	4.8 Compositional Reasoning
	4.9 Resulting Test Strategies

	5 Experiments and Evaluation
	5.1 Experiment Setup
	5.2 Experimental Results

	6 Conclusion
	References

	Security
	A Formal Security Analysis of ERTMS Train to Trackside Protocols
	1 Introduction
	2 ERTMS Communication
	3 Formal Modelling in ProVerif
	4 Analysis of ERTMS Protocols
	5 Discussion and Recommendations
	5.1 Inserting High-Priority Messages
	5.2 Deletion of Messages
	5.3 Disagreement over RBC Identity and Safety Feature

	6 Conclusions
	References

	Operational Security – A Coming Evolution of Railway Operational Procedures Under the IT Security Threat
	1 IT Security – Evolutional Challenge to Railway Operation
	2 Operational Continuity – A Deficiency in Work of IT Security
	3 Process of Operational Continuity
	3.1 A Generic Bow-Tie Model of Operational Continuity
	3.2 A Short Comparison of Safety Hazards and IT Security Threats

	4 Introducing Operational Security
	4.1 Scope
	4.2 Essential Requirements
	4.3 Work Packages

	5 Conclusions and Further Works
	References

	Risk Assessment of the 3Desin ERTMS
	1 Introduction
	1.1 Research Contributions

	2 ERTMS
	3 Presentation of a New RKA
	4 ERTMS Security Analysis
	4.1 Attacker's Capabilities and Knowledge
	4.2 Assumptions on Keys

	5 Cost Analysis
	5.1 Performance Analysis of DesEncryptions on Desktop Computers
	5.2 Performance Analysis of DesEncryptions on FPGAs
	5.3 Memory Bandwidth Evaluation
	5.4 Cost Analysis
	5.5 Summary of the Costs to Break 3Des

	6 Conclusion
	References

	Systems
	Failure Analysis of Chinese Train Control System Level 3 Based on Model Checking
	1 Introduction
	2 CTCS-3 and Failure Causes
	3 Failure Analysis Based on Model Checking
	3.1 System Failure Analysis
	3.2 Problem Definition and Solution
	3.3 Failure Event Model

	4 Case Study
	4.1 Failure Event Description
	4.2 Modelling
	4.3 Failure Cause Analysis
	4.4 Modification

	5 Conclusion
	References

	Correct Formalization of Requirement Specifications: A V-Model for Building Formal Models
	1 Introduction
	2 Related Work
	3 A Process for Building Formal Models ``right''
	3.1 Phase A: Requirement Categorization
	3.2 Phase B: Architecture Extraction
	3.3 Phase C: Behavior Extraction
	3.4 Phase D: Formal Implementation
	3.5 Phase E: Integration Testing
	3.6 Phase F: System Testing
	3.7 Phase G: Acceptance Testing

	4 Using the V-Model to Formalize the PZB
	5 Conclusion and Further Work
	References

	Static Verification of Railway Schema and Interlocking Design Data
	1 Introduction
	2 Formal Model
	3 Reading Station Dataset
	3.1 Reading Station Verification
	3.2 Verification Results

	4 Discussion
	References

	Verification of Railway Interlocking - Compositional Approach with OCRA
	1 Introduction
	2 Contract Based Verification
	2.1 Symbolic Model Checking
	2.2 nuXmv: Verification of Components with K-Liveness and IC3
	2.3 OCRA: Contract-Based Compositional Approach

	3 System and Model Description
	3.1 The Station
	3.2 Composite System
	3.3 M1 and M2 Models
	3.4 BSI Interface Explained
	3.5 Sequential Release

	4 Verification
	4.1 Compositional Verification
	4.2 Local Safety Properties

	5 Results and Performance
	5.1 Performance
	5.2 Error Seeding

	6 Related Work
	7 Conclusions and Future Work
	References

	Safety Verification of Heterogeneous Railway Networks
	1 Introduction
	1.1 Background and Motivation
	1.2 SafeCap Project

	2 Research Aim and Technical Objectives
	3 Research Plan
	3.1 Theoretical Foundations: Unified Train Driving Policy
	3.2 Verification Techniques: Concept of the Tool
	3.3 Simulation Techniques: Simulator and Signalling Library Design
	3.4 Research Evaluation

	4 Ongoing Work and Results
	4.1 Verification Techniques: Set-Theoretic Operator Axiomatisation
	4.2 Simulation Techniques: Moving-Block Signalling Development
	4.3 Future Work

	5 Conclusion
	References

	Comparing Formal Verification Approaches of Interlocking Systems
	1 Introduction
	2 Railway Scheme Plans
	3 A Descriptive Comparison Between the Modelling and Verification Approaches of DTU/Bremen and Surrey/Swansea
	3.1 Commonalities of both Approaches
	3.2 DTU/Bremen Specialities
	3.3 Surrey/Swansea Specialities

	4 Error Injection
	5 Error Detection
	5.1 Injecting a Single Error into ``Twist''
	5.2 Injecting Multiple Errors in ``Twist''
	5.3 Further Errors in the Parts Different in both Modellings
	5.4 Error Injection in Further Scheme Plans

	6 Summary
	References

	Predictive Reasoning and Machine Learning for the Enhancement of Reliability in Railway Systems
	1 Introduction
	2 Design of Real-Time Rail Advisory System
	3 Data Mining
	4 Stochastic Prediction of Train Delays in Real-Time Using Bayesian Reasoning
	5 Measuring Potential Impact
	6 Ongoing and Future Work
	6.1 Preliminary Results
	6.2 Future Work

	References

	Verification and Validation
	Applying Abstract Interpretation to Verify EN-50128 Software Safety Requirements
	1 Introduction
	2 CENELEC EN-50128
	3 Abstract Interpretation
	3.1 Stack Usage Analysis
	3.2 Worst-Case Execution Time Analysis
	3.3 Run-Time Errors and Data Races

	4 Tool Qualification
	5 Practical Experience
	6 Summary
	References

	The PERF Approach for Formal Verification
	1 Introduction
	2 RATP, 25years of Formal Verification
	3 The PERF Methodology
	4 Feedback and Case Studies
	4.1 For Internal Purposes
	4.2 For Its External Clients
	4.3 PERF Feedback

	5 The Future of PERF
	5.1 PERF Extensions
	5.2 Proof Coverage Application
	5.3 Non-regression Application
	5.4 GRAAL Application
	5.5 Towards an IDE for PERF

	6 Conclusion
	References

	Abstract Software Specifications and Automatic Proof of Refinement
	1 Introduction
	1.1 SPARK Verification Environment
	1.2 Ghost Code in SPARK
	1.3 SPARK Library of Containers

	2 Extracting a Model from the Implementation
	2.1 A Simple Memory Allocator
	2.2 Model as a Ghost Function
	2.3 Automatic Proof of Refinement

	3 Maintaining a Model Within the Implementation
	3.1 A Free List Memory Allocator
	3.2 Model as a Ghost Variable
	3.3 Automatic Proof of Refinement

	4 Related Work
	5 Conclusion
	References

	S3: Proving the Safety of Critical Systems
	1 Introduction
	2 Brief Introduction to Formal Verification
	3 Systerel Smart Solver Workflow
	3.1 Modeling Language
	3.2 Typical Development Workflows
	3.3 Safety Specification
	3.4 Uncertified S3 Workflow
	3.5 Certifiable S3 Workflow

	4 Application to Interlocking Systems
	4.1 Interlocking Development Workflows
	4.2 Generic Safety Specification
	4.3 Analyzing Interlocking Systems

	5 Related Work, Conclusions and Perspectives
	References

	Increasing Proofs Automation Rate of Atelier-B Thanks to Alt-Ergo
	1 Introduction
	2 The Alt-Ergo SMT Solver
	3 From B Proof Obligations to Alt-Ergo
	4 Benchmarks Characteristics
	5 Tuning Alt-Ergo for B Proof Obligations
	5.1 Spying the Solver
	5.2 Improving Internal Data-Structures
	5.3 Improving the SAT Solver
	5.4 Better Axioms Instantiation Heuristics
	5.5 Save (Replay with) the Context Used for a Proof

	6 Experimental Evaluation
	7 Conclusion and Future Works
	References

	Author Index

