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Abstract

Hyperuricemia, particularly gout, and the immune inflammatory response

are highly integrated. Both, long standing hyperuricemia and

monosodium urate (MSU) crystal deposition can challenge tendon

homeostasis because of their potential to cause inflammation to the host.

Knowledge is emerging from clinical imaging research depicting where

MSU crystals deposit, including patellar tendon, triceps and quadriceps

tendons. Remarkably, subclinical tendon inflammation and damage are

also present in asymptomatic hyperuricemia. Monosodium urate crystals

act as danger activating molecular patterns (DAMPs), activating the

inflammasome and inducing the secretion of IL-1beta, a key mediator of

the inflammatory response. The crucial role of IL-1beta in driving the

inflammatory events during gout attacks is supported by the clinical

efficacy of IL-1beta blockade. Some data implicating IL-1beta as an

initiator of tendinopathy exist, but the link between hyperuricemia and

the development of tendinopathy remains to be validated. Further knowl-

edge about the interactions of uric acid with both innate immune and

tendon cells, and their consequences may help to determine if there is a

subclass of hyperuricemic-tendinopathy.
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Introduction

People with hyperuricemia related tendinopathy

represent the intersection between two prevalent

entities: millions with hyperuricemia and the

millions of people who suffer tendinopathy. The

rising frequency of both, hyperuricemia and

tendinopathy, is associated to a combination of

factors including increased longevity, and shifts

in diet and lifestyle.

Hyperuricemia is the gateway for gout, an old

disease that concerns almost all civilizations over

the ages. The increasing prevalence of

hyperuricemia, along with the doubling of the

rate of gout in the past decades [56], and its

association with important comorbidities such

as cardiovascular disease, metabolic syndrome

or diabetes among others is creating a heavy

burden by driving up medical expenditures.

Gout describes an inflammatory arthritis

resulting from monosodium urate (MSU) crystal

deposition in specific anatomical sites including

joints, and tendons. Currently, medical English

has retained old Greek and Latin names such as

podagra (from podos, foot and agreos attack), to

describe acute gout attacks, more specifically

MSU crystal deposition in the first metatarso-

phalangeal joint. Tophus, (from the Latin tofus
meaning porous stone), depicts nodular masses

of MSU crystals, most commonly occurring at

the base of the great toe and fingers.

Hyperuricemia is defined as a serum urate

level higher than 6.8 mg/dL (0.40 μmol/L).

Remarkably, patients who overproduce uric

acid represent fewer than 20 % of those with

gout [11]. As described below, not only gout

and associated inflammation, but hyperuricemia

can be an intrinsic element that directs immune

activities, favoring the development and progres-

sion of tendinopathy. Indeed, hyperuricemia can

induce cellular and/or metabolic distress [1],

thereafter tendon extracellular matrix degenera-

tion as well as sub-clinical inflammation.

In this chapter, we first summarize the main

characteristics of hyperuricemia/gout and

tendinopathy. Then, we discuss clinical and

biological information that can mean an associa-

tion between both pathologies, and can help us in

substantiating a more precise medicine by

explaining different subclasses of tendinopathies

driven by new diagnostic.

Hyperuricemia and Tendinopathy?

The hypothesis that hyperuricemia can have a

role in the development of tendinopathy is

based on recent advances of crystal biology and

the pathophysiology of tendinopathy.
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Hyperuricemia/Gout

Uric acid, (a heterocyclic purine derivative

7,9-dihydro-1H-purine-2, 6, 8 (3H)-trione), is

the degradation product of purine metabolism

after xanthine oxidase oxidizes purines

(Fig. 11.1). In mammals, other than humans and

primates, uricase (urate oxidase) forms soluble

allantoin, thereby lowering uric acid levels

below 2 mg/dL. Instead, human subjects lack

uricase, thus reference range of serum urate is

higher, i.e. 3.4–7.2 mg/dL for men and

2.4–6.1 mg/dL for women.

Two important physiological mechanisms

decide the levels of uric acid in body fluids.

On one hand, purine metabolism in the liver,

i.e. 2/3 of uric acid is formed naturally and

purines in the diet produce 1/3. Thus, excessive

intake of food rich in purines can induce over-

production of uric acid, and acute hyperurice-

mia. On the other hand, renal function is

involved in the systemic adjustments of urate

levels, i.e. glomerular filtration, tubular reab-

sorption, secretion and post-secretory reabsorp-

tion. Alterations in these mechanisms can cause

chronic hyperuricemia.

The fact that native levels of serum urate are

very close to saturation point (7.0 mg/dL)

suggests that this molecule has important roles

in maintaining tissue homeostasis. Indeed,

serum urate is a reducing agent that accounts

for almost half of the antioxidant potential of

blood, influences redox potential and protects

against oxidative damage. Uric acid prevents

the toxicity by reactive oxygen and nitrogen

species with negative influence on critical cell

functions. Recent data show that uric acid is

protective against Alzheimer, Parkinson,

amyotrophic lateral sclerosis, and multiple scle-

rosis [27, 49]. Instead, the crystalline form that

develops after chronic (longstanding) hyperuri-

cemia is well-known because of its inflamma-

tory properties.

Hyperuricemia is the most important risk fac-

tor for inflammatory gout, but peculiarly many

people with hyperuricemia do not follow crystal

deposition and gout attacks. To add complexity,

sometimes serum urate concentration is within

the normal range during acute gout attacks

[36]. In one cohort study with a follow up of

5 years, gout developed in only 22 % of patients

with urate levels above 9 mg/dL (535 umol/L)

[11]. Figure 11.2a depicts the clinical stages from

hyperuricemia to chronic gout.

Vulnerability to gout is also attributed to

genetic influences. The kidneys reabsorb about

90 % of the daily load of filtered urate, and

specific anion transporters mediate the process.

Actually, genome wide studies have identified

polymorphisms, associated with serum urate

levels, in various loci codifying glucose and

urate protein transporters in the kidney, including

Fig. 11.1 Purine degradation and formation of uric
acid
Uric acid is a normal intracellular constituent, generated

as part of the normal turnover of nucleic acids following

purine degradation in the cell cytosol. Purines, adenine

and guanine, are essential components of DNA and RNA
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GLUT9 (SLC2A9), and ABCG2 [35, 52,

58]. However, data derived from rheumatologic

studies in identical twins show a concordance

rate of 53 % in monozygotic and 24 % in dizy-

gotic twin pairs, indicating that the genetic sus-

ceptibility requires other concomitant factors

[25]. Despite increasing knowledge, the factors

controlling formation and deposition of MSU

crystals are not fully understood.

Inflammatory Cell Reactions to MSU
Crystals
Broadly speaking two processes occur after MSU

deposition, first cell detection of the crystals, and

secondly activation of the inflammatory response

driven by chemokines and cytokines (please also

see Chap. 20).

Both immune cells and local cells can detect

MSU crystals (Fig. 11.3). As described later,

patients with hyperuricemia have elevated levels

of circulating MCP-1, a chemokine that

mobilizes monocyte/macrophages [21]. Mono-

cyte/macrophages can phagocytose crystals that

interact with the inflammasome, of which

NLRP3 (NOD-like receptor protein-3) is the

best characterized. This interaction triggers acti-

vation of caspase 1 in the cytosol, followed by

cleavage of pro-IL-1beta into mature IL-1beta.

Secreted IL-1beta binds to the IL-1R, present in

the membrane of different cell phenotypes. In

doing so, IL-1beta activates an inflammatory

cascade by promoting the expression and secre-

tion of additional inflammatory molecules,

mainly cytokines and chemokines. Other

reported inflammatory pathways involve the

engagement of TLR2 and TLR4 receptors [31,

32, 53, 54].

The crucial role of IL-1beta in initiating the

inflammatory cascade during gout attacks is

supported by the efficacy of IL-1beta blockade

Fig. 11.2 Clinical outcome of hyperuricemia/gout (a),
and tendinopathy (b)
(a) Asymptomatic stages, without or with urate deposition,

are followed by acute intermittent painful flares that occur

most often in lower extremities. Inter-critical periods become

shorter as disease progresses. People with advanced chronic

gout can have tophi, usually in distal areas of the body.

(b) Tendinopathy, initially characterized by temporary

irritation and molecular inflammation, is considered a

degenerative disease with changes in extracellular matrix

composition and loss of tissue architecture. Ensuing det-

rimental mechanical properties can result in partial tears

or total rupture [42]
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therapy in patients with gout initiating urate-

lowering therapy [40]. In fact, several anti-IL-

1beta therapies have been tested to prevent gout

flares after the sudden urate decline (at the

beginning of urate lowering treatment) which

induces the release of MSU crystals from

tophus.

Supporting the innate immune response to

gout, MSU crystals induced cultured monocytes

to express the chemokine IL-8, a potent neutro-

phil chemoattractant [21]. Actually, neutrophil

infiltration is a feature of crystal-induced

inflammation.

MSU deposition affects not only innate

immune cells but also tendon cells. Indeed, the

presence of MSU crystals induced a reduction of

tendon cell viability and reduced the expression

of ECM proteins, specifically type 1 collagen.

Besides, MSU crystals up-regulate MMP-2, �3,

�13, ADAMTS1, ADAMTS4 and ADAMTS5

[14] (Chhana 2014). Despite up-regulation of

ECM detrimental enzymes, tendon rupture in

gout is less frequent than cartilage damage and

bone erosions. The latter are frequent in gout, as

well as decreased viability and function of osteo-

blast [13]. Of note, altered bone functions may

have implication at the enthesis.

Both, MSU and hyperuricemia, are inflamma-

tory adjuvants triggering an adaptive immune

response (i.e. antigen-specific response mediated

by T, and B cells). Remarkably, it is believed that

MSU induced sterile inflammation is different

from uric acid mediated adjuvancity, [34] but

our understanding of the immunological

mechanisms underlying adjuvanticity is still

incomplete.

Tendinopathy

The etiology of tendinopathy is multifactorial

often triggered by vulnerability factors. Since

the myth of the Greek hero Achilles of the Trojan

War, telling how vulnerable a tendon is, much

has been learned, and current research has pro-

duced several biological hypothesis based on

histopathological, biochemical and clinical

findings that show cell apoptosis,

angiofibroblastic features or abnormal biochemi-

cal adaptations. These findings suggest that a

failed healing response underlies the

condition [4].

Here we focus on two mechanisms underlying

the loss of tendon homeostasis, i.e. inflammation

IL-6, IL-8

IL-6, IL-8, MCP-1,
GRO-a, MMP-2,-3,-13
ADAMTS-1,-4,-5

TENDON cell activation

IMMUNE cell activation

MSU crystals

?
TNF-a, PGE25

1

1

4

5

4

ILR1

ILR1Caspase-1

Active IL-1b

IL-1b

NLRP3
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Fig. 11.3 Cartoon showing a tentative model that
links hyperuricemia with tendinopathy, mainly
through activation an inflammatory cascade driven
by IL-1beta on immune and tendon cells
MSU crystal detected and phagocyted by macrophages

(1), interact with the inflammasome (2) inducing the

activation of caspase 1. Ensuing cleavage of pro-IL-1b

by caspase 1 (3), generation and secretion of active

IL-1beta switch on the inflammatory cascade. IL-1beta

binds to IL-1R in macrophages (4) and tendon cells

(4) and set in motion gene transcription and production

of inflammatory molecules
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and cell death, because they are particularly rele-

vant to provide a tentative relationship between

hyperuricemia and tendinopathy.

Inflammation
Classical signs of active inflammation, such as

histological evidence of leukocyte infiltrates, are

scarce in degenerative tendinopathy [3]. For

example, the presence of mast cells shows in

the patellar tendon of patients with pain and

swelling [53] and, in calcaneal overuse

tendinopathy [46]. Instead, in acute reactive ten-

dinitis, such as De Quervain disease, inflamma-

tory components, including neutrophil elastase,

cyclooxygenase, as well as macrophage infiltra-

tion affecting collagen structure is evident [26].

The presence of an inflammatory molecular

milieu in degenerative tendinopathy is more

obvious, as local tendon cells can synthesize

inflammatory molecules in response to tissue

stress. This consideration differs from the classi-

cal view of inflammation, embodied by the pres-

ence of inflammatory cells. Essentially, the

biochemical adaptation of prolonged repetitive

mechanical loading produces cytokines such as

IL-1beta, IL-6, IL-8 and TNF-alpha,

prostaglandins such as PGE2, and neuropeptides

such as substance P [17, 18, 29, 38]. Some harm-

ful effects of inflammatory cytokines include

up-regulated VEGF production along with

enhanced production of metalloproteinases,

such as MMP-1 MMP-3 and MMP-13 [57] that

cause matrix destruction.

In accordance with the concept of intrinsic

tendon healing deficits and the weak response

to injury, during acute early healing Achilles,

tendons did not display detectable levels of

pro-inflammatory molecules. Merely, pleiotropic

cytokines including IL-6 and IL-8 were

elevated [2].

Cell Death and Local Hyperuricemia
Another histopathological feature that emerges

in tendinopathy is cell death, suggesting that the

problem is the loss of homeostasis, and failed

healing response that creates a vicious circle

between cell death and progressive matrix dis-

ruption leading to chronic degeneration. At least

one study has shown many apoptotic cells in

ruptured supraspinatus tendon [59], and other

studies showed excessive apoptosis in patellar

tendinopathic specimens in athletes [30], and

noninsertional Achilles tendinopathy [43].

Cell death is associated with sterile inflamma-

tion induced by intracellular alarmins released to

the extracellular space [39]. Alarmins are danger

activating molecular pattern (DAMP), because

they can alert the host by mobilizing innate

immune cells, and ensuing inflammatory

response through Toll-like receptors (TLR).

Uric acid is one of these alarmins. Cells produce

even more uric acid when they die and DNA and

RNA are metabolized. Actually, large-scale cell

death induces robust MSU precipitation caused

by intracellular urate released to the extracellular

space, creating a supersaturated solution in the

high sodium extracellular environment [55].

In what circumstances monosodium urate pre-

cipitate, nucleate and form inflammatory crystals

have been the focus of recent experimental

research. Indeed, the molecular composition of

the milieu may influence both the amount and

size of crystals, and their inflammatory

properties. Besides, crystallization depends on

hydration, and extracellular pH, and often occurs

in areas of compromised vascularity where the

ability to regulate temperature is hampered. Ani-

mal studies have proposed that immunoglobulins

may be part of a positive feedback loop promot-

ing uric acid crystallization and

immunogenicity [23].

Activated tendon cells drive immune cell

infiltration [7], the duration and intensity of

inflammation; they also control the switch from

acute to chronic inflammation. In this context, we

have explored whether tendon cells can sense

hyperuricemia in their biological milieu, and

whether hyperuricemic PRP can incite tendon

cells to switch to an inflammatory phenotype.

Actually, tenocytes express the main receptors

involved in sterile inflammation, TLR2 and

TLR4 [16], but it is not clear in what

circumstances these receptors are functional.

Because serum amyloid protein primed synovial

fibroblasts to produce active IL-1beta and

IL-1alpha when exposed to high uric acid and

128 I. Andia and M. Abate



MSU crystals, we hypothesized that

hyperuricemic PRP with native levels of amyloid

protein could trigger a molecular inflammatory

response by tendon cells. But, we found that

hyperuricemia is a minor stressor for tendon

cells as it mitigates the modest inflammatory

effect induced by PRP reducing the expression

and synthesis of IL-6 and IL8 [5, 6].

Instead, the presence of MSU crystals induce

the reduction of tendon cell viability and reduce

expression of ECM proteins, specifically type

1 collagen and in parallel up-regulates catabolic

ECM proteins [14]. Interestingly, MSU crystals

were identified next to and invading the tendon,

and at the enthesis [14].

Clinical Observations

The hypothesis that uric acid may play a role in

the development, and progression of

tendinopathy is predicated on the presence of

low-grade inflammation in hyperuricemic

patients, and recent findings on tendon imaging.

Low-Grade Inflammation

One potential explanation for how longstanding

hyperuricemia can modify tendon homeostasis is

the presence of low-grade systemic inflamma-

tion. For instance, elevated levels of MCP-1/

CCL2, a chemokine involved in leukocyte traf-

ficking, are displayed in patients with acute gout

and hyperuricemia [21]. Moreover, in these

patients MCP-1/CCL2 concentrations in serum

correlates with the increased number of

circulating CD14þ monocytes, and the adhesion

molecule CD11b. In asymptomatic subjects,

there is an association between serum levels of

uric acid with inflammatory markers including

CRP, IL-6, IL-18 and TNF-a [51].

These findings are consistent with human

studies showing enhanced levels of circulating

CD14þ monocytes, not only in patients with

gout, but also in asymptomatic hyperuricemia

compared to normouricemic patients.

Besides, neutrophils from gout patients are

primed for enhanced MSU crystal induced super-

oxide production. Moreover, this neutrophil

function persists in asymptomatic

hyperuricemic, and the inflammatory environ-

ment likely contributes to higher IL-8 production

and neutrophil survival in the absence of direct

crystal stimulation [33].

Tendon Imaging

Advances of imaging science permits taking a

closer look at soft tissues [12]. A recent ultra-

sound study has identified not only cartilage, but

also tendons as tissues with high frequency depo-

sition of MSU crystals. In particular, the patellar

tendon, triceps and quadriceps tendons are often

affected [19, 41].

Besides, tophi causing flexor tenosynovitis

along with dactylitis is often seen in patients with

gout [8, 10]. Gouty tophi causing ruptures of

tendons and ligaments are more unusual. Even so,

anecdotic tophaceous depositions have shown in

the anterior cruciate ligament [37], and distal quad-

riceps tendon [9].Moreover, peculiar acute podagra

happened in the Achilles tendon of a young long

distance runner with normouricemia [22].

Interestingly, subclinical tendon inflammation

and subclinical structural damage have been

reported in people with asymptomatic hyperurice-

mia [45, 47]. For example, enthesopathy in the

patellar tendon was found in 12 % of

hyperuricemic patients and 2 % of normouricemic.

Accordingly, Achilles tendon enthesopathy was

present in 15 % of hyperuricemic contrasting

with 1.9 % of normouricemic subjects.

Corroborating these data, Achilles tendon ruptures,

characterized as acute trauma of chronically

degenerated tendons, occur more often in asymp-

tomatic patientswith hyperuricemia than in asymp-

tomatic normouricaemic subjects [45].

Imaging continues to yield information rele-

vant to tendinopathy, and in the past years ultra-

sound is routinely used by sports physician as a

tool for the diagnosis of tendon pathology. When

treating tendinopathic symptoms, we shall keep

in mind the odds of gouty tophus within patellar
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tendon [15, 20, 50]. Experience in visualizing the

ultrasonographic features of MSU crystals or

gouty tophus may accelerate the diagnosis and

treatment modality depending on clinical stage.

In the same way, DECT (dual energy

computerized tomography) provides correct

views in patients with tophaceous gout and has

shown MSU deposition affecting the Achilles

tendon and peroneal tendons [15, 24, 28, 48].

Conclusions

Hyperuricemia is an increasingly important met-

abolic condition. However, its clinical

repercussions in tendons are often

underestimated, and not clearly understood.

While little evidence is available to implicate

hyperuricemia in the pathogenesis of

tendinopathy, it is more obvious that crystal

deposition in and around tendons during gout

attacks can trigger cell death, as a consequence

of the loss of homeostatic collagen tension owing

to microscopic collagen breakdown. Indeed, ten-

don cells lacking appropriate ECM attachment

are rapidly eliminated.

But, not only mechanical interference of

crystals with the extracellular matrix, also

inflammatory reactions of monocytes/

macrophages and tendon cells, ensuing from

crystal deposition and IL-1beta induced inflam-

mation, can favor the progression of

tendinopathy.

Nevertheless, while the biological

mechanisms underlying MSU activation of

inflammation are understood, there is little infor-

mation about hyperuricemia-mediated

adjuvancity in tendinopathy. Knowledge about

the interactions of urate with both innate immune

and local cells, may help the research community

to determine if there is a subclass of

hyperuricemic-tendinopathy, and set the grounds

for clarifying the biology and mechanism behind

hyperuricemia linked tendinopathy.

There is, however, much to investigate

because most concepts exposed here are still

speculative, and future research has to focus on

how hyperuricemia-mediated adjuvancity works

in tendon inflammation, cell death and extracel-

lular matrix deterioration.

A two-stage approach, firstly urate-lowering

therapy designed to dissolve MSU crystals and,

secondly keeping uric acid below saturation

point for long-life has been recommended

[44]. Imaging can be used to evaluate outcomes

until MSU crystals are dissolved.

Rheumatologists often prescribe prophylactic

treatments such as colchicine to minimize

inflammatory flares during the initial stages of

urate lowering therapy. Investigational prophy-

lactic treatments based on anti-IL-1b blockade

are promising in patients who have contrain-

dications for colchicine and NSAIDs [40] and

may be beneficial for tendons.

Contrasting with current trends of precision

medicine, tendinopathy management is unspe-

cific and merely palliative. Patient heterogeneity

hinders advances in novel treatments and clinical

trial design claims subpopulations are more

clearly understood. Exploring potential

connections between tendinopathy and hyperuri-

cemia, and determining whether or not there is a

subtype of tendinopathy induced by hyperurice-

mia may help to tackle part of this important

problem. Should the growing evidence that the

high urate level is a risk factor for tendinopathy

become accepted would have a major impact on

the diagnostic and treatment of tendinopathy.
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