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Abstract
Turbidity currents in the submarine seascape are what river flows are in terrestrial
landscapes. While rivers transport sediment from the mountains through valleys towards
the sea, turbidity currents transport sediment from the shallow marine realms through
canyons towards the deeper abyssal plains. The large scale architecture of both systems is
remarkably similar. Yet, there are some fundamental differences between rivers and
turbidity currents, the most fundamental one being their density difference; the density of
river water is thousand times denser than its surrounding air, while the density of a turbidity
current can never be more than twice as dense as its ambient water. In addition, rivers do
not depend on their sediment load to flow, while turbidity (density) currents do need the
sediment derived excess density to flow. These physical differences change their
morphodynamics on the bedform scale. Present day high-resolution seafloor observations
show that turbidity current path ways are covered with bedforms that are fundamentally
different from those that occur in river channels. In this chapter we point out these
differences and present a 3D bedform stability diagram for turbidites.
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6.1 Turbidity Current Bedforms

Compared with the well-studied range of bedforms occur-
ring in river systems, very little is known about the equiv-
alent range of bedforms that are observed in turbidity current
systems. Most of our present day knowledge of turbidity
current bedforms is derived from seafloor surveys (e.g.
Normark et al. 1980; Migeon et al. 2001; Zhong et al. 2015)
and from studies of bedforms preserved in the geological
record through outcrop studies (e.g. Walker 1967; Skipper
1971; Mutti 1992; Postma et al. 2014; Ventra et al. 2015).

Recent years have seen an advance in bedform knowledge
due to upcoming high-resolution seafloor surveys with
Autonomous Underwater Vehicles (i.e. Paull et al. 2011) and
detailed short-period-repeat mapping of turbidity current
systems (i.e. Hughes Clarke et al. 2012). These studies have
shown that turbidity current bedforms are typically long and
characterized by low stoss- and leeside inclinations, while
their crests migrate against the flow direction. Their dynamic
morphology is thus in great contrast to river bedforms, such
as dunes, which have steep lee-sides and typically migrate
down-current. Given that the seafloor sediments are similar
to those in river beds, any of these differences must be
related to physical differences between river and turbidity
currents associated with their dynamic interaction with the
bed.

The main physical difference between river flow and a
turbidity current is centred on their difference in relative
density. The excess density of turbidity currents, in relation
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to the ambient sea water, is formed by the amount of sedi-
ment that it is carrying, which limits the density of the flow
to a maximum of twice that of its surrounding water. This is
in contrast with the excess density of river water, which is
around a thousand times heavier than the surrounding air and
thereby relatively insensitive to the extra weight of sus-
pended sediment.

The low relative density of turbidity currents impact their
morphodynamics in two ways. Firstly, waves propagating on
the top of the flow are slowed down, as these are driven by
gravity which in turbidity current is strongly reduced due to
buoyancy forces. Early experimental bedform work of Guy
et al. (1966) has shown that currents with velocities below the
surface wave propagation velocity results in a range of
down-current migrating bedforms, like ripples and dunes. In
contrast, currents with flow velocities (Uflow) that exceed the
wave propagation velocity (Uwave) lead to up-current migra-
tion bedforms, such as antidunes and cyclic steps (Taki and
Parker 2005). The ratio of flow velocity over wave propaga-
tion velocity is expressed by the densimetric Froude number

(Fr
0 ¼ Uflow=Uwave ¼ Uflow=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qflow � qw
� �

gH=qflow
q

), where

qflow; qw are the densities of the flow and the water, respec-
tively, g the acceleration of gravity and H is the flow depth.
Supercritical flows have a flow velocity that exceeds the wave
propagation velocity (Fr

0
[ 1) while for subcritical flows the

opposite holds. Prevailing supercritical conditions in turbidity
currents are confirmed by: (1) direct measurements of tur-
bidity currents (Xu 2010), (2) experimental and numerical
modelling (Middleton 1966; Hand 1974; Kostic and Parker
2006), (3) monitoring up-current migrating bedforms
(Migeon et al. 2001; Smith et al. 2005; Hughes Clarke et al.
2012), and (4) observations of supercritical-flow bedforms in
successions of turbidity current deposits in the rock record
(Walker 1967; Skipper 1971; Postma et al. 2014; Ventra et al.
2015).

Secondly, the direct connection between the
sediment-based relative density and the flow velocity make
turbidity currents far more unstable than river flows. If tur-
bidity currents entrain more sediment, their driving force
goes up, which in turn speeds up the flow and further
enhances sediment entrainment (so called auto-ignition,
Parker et al. 1986). Running the same cycle in the opposite
direction (waning flow) leads to positively enforced loops of
deceleration and sediment fall-out. In such waning flow
conditions sediment collects in high concentrations at the
base of the flow before slowly coming to a complete
standstill (Postma et al. 1988; Sohn 1997; Cartigny et al.
2013; Sumner and Paull 2014). Such dense basal layers will
have their own densimetric Froude numbers, as waves are
often seen to form on the top interface of dense basal layers
(Cartigny et al. 2013; Sumner and Paull 2014). This has led

to the idea that dense basal layers will have their own bed-
form dynamics that is largely independent of the main flow
(Postma et al. 2009; Postma and Cartigny 2014). Such dense
basal layer bedforms are only thought to form under
supercritical-flow conditions, as all subcritical bedform are
dependent on turbulence, which is severely suppressed in
dense basal layers. Dense basal layers flowing subcritically
are thought to form long stretches of virtually flat basin floor
(Postma and Cartigny 2014). In the rock record these
deposits are characterized by centimetre-thick planar lami-
nations of spaced and crude laminations (Hiscott 1994;
Talling et al. 2012), which are thought to reflect the high
basal sediment concentrations (Cartigny et al. 2013).

6.2 Bedform Stability Diagram for Turbidity
Currents

The tendencies of turbidity currents to be supercritical and to
form dense basal layers are now taken into account and
introduced in a bedform stability diagram originally devel-
oped for river flows (Cartigny et al. 2014). Five examples of
turbidity currents with increasing basal sediment concen-
trations, will now be discussed in more detail.

In panel I of Fig. 6.1b the bedform stability diagram is
drawn for a dilute, 10 m thick turbidity current without a dense
basal layer. The vertical concentration profile and turbulence
characteristics are indicated for each panel in Fig. 6.1a. On the
horizontal axes there is a dimensionless grain size, called par-

ticle parameter, D� ¼ D qs � qwð Þg= qwm
2ð Þ½ �1=3, where D is

the particle diameter, qs is the density of the sediment and m is
the viscosity of the water. On the vertical axes there is a
dimensionless shear stress, called mobility parameter,

h
0 ¼ qwU

2= qs � qwð ÞC02D½ �), where C0 is the Chezy param-
eter (C

0 ¼ 18log 1:25H=Dð Þ), see Cartigny et al. (2014) for
more details on these parameters. The vertical position on this
panel and thereby the type of bedform that will develop is
determined by the bed shear stress, which is dominantly
controlled by the flow velocity. If the mobility parameter
drops below the Shields curve, then the bed shear stresses are
no longer sufficient to transport sediment and bedforms will
not develop (Shields 1936). The critical densimetric Froude
line separates the subcritical bedforms such as ripples and
dunes (Guy et al. 1966) from supercritical bedforms such as
antidunes and cyclic steps (Cartigny et al. 2014). The indi-
cated length scale of the antidunes is calculated using the work
of Hand (1974) and that of the cyclic step is based on
numerical simulations of Kostic (2011), Cartigny et al. (2011).

Panel II in Fig. 6.1b shows the case for a slightly higher
basal sediment concentration, as indicated on the third axes
of the bedform stability diagram, but still lacks a clear basal
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density stratification. The stability diagram is very similar to
that of case I, but the Fr

0 ¼ 1 line has shifted upwards as a
result of the increased sediment concentration.

Panel III is similar to case II, but now bedform formation
is governed by a thin dense basal layer (0.1 m) at the base of
the flow, which buffers the bed from the dilute overriding
flow. Its limited thickness makes it prone to supercritical
flow and causes the downward expansion of the supercritical
flow domain in the diagram. Furthermore, the high sediment
concentrations near the base of the flow are now thought to
suppress the turbulence and thereby preventing the forma-
tion of any ripples and dunes.

Panel IV is characterized by a thicker (0.5 m) dense basal
layer, as in case III, its thickness making it less prone to
supercritical flow, thereby shifting the supercritical flow
domain back up again in the diagram.

Panel V shows a very thick (2 m), dense basal layer,
which again shifts the supercritical flow field further
upwards.

6.3 Discussion

As only a few experimental and numerical studies have been
done on turbidity current bedforms (Hand 1974; Kostic and
Parker 2006; Spinewine et al. 2009; Sequeiros et al. 2010), it is
emphasised that the bedform stability diagram presented here
is based on many assumptions, and should be seen as a first
attempt to estimate the impact of differences in flow dynamics
of rivers and turbidity currents on bedform formation.

Although the existence of denser basal layers in turbidity
currents is now becoming more widely accepted after they
were directly observed from a submersible caught in a tur-
bidity current (Sumner and Paull 2014), the morphody-
namics of these basal layers still remains virtually unstudied.
Here we assume that a dense basal layer is able to form
supercritical bedforms such as antidunes and cyclic steps, as
flow instabilities and their associated processes, like standing
waves and hydraulic jumps, do not require a specific tur-
bulence structure (Karcz and Kersey 1980; Weirich 1988).
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Fig. 6.1 a Five 10-m thick turbidity currents with different concentration profiles and resulting dense basal layers; b bedform stability diagrams
associated with the five flow stratification types depicted in a (modified from Cartigny 2012)
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Furthermore, turbidity currents are also likely to carry
considerable amounts of clay in suspension, which have a
profound effect on their morphodynamics, as demonstrated
by experimental studies (Wan et al. 1994; Baas and Best
2008; Baas et al. 2009). These studies suggested that any
bedform stability diagram for turbidity currents should also
have a fourth dimension, in particular if the amount of
transported clay is more than 6 % (see Baas et al. 2009).

The last limitation mentioned here is that the diagram as
presented here is only intended for flows that are 10 m thick.
Smaller or larger flow depth will have an impact on the
position of the line representing critical densimetric Froude
numbers, and hence for larger flows the supercritical-flow
bedforms will move up in the diagram, while the opposite
holds for thinner flows.
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