
Chapter 5
Physical and Formal Aspects
of Computation: Exploiting Physics
for Computation and Exploiting
Computation for Physical Purposes

Bruce J. MacLennan

Abstract Achieving greater speeds and densities in the post-Moore’s Law era will
require computation to be more like the physical processes by which it is realized.
Therefore we explore the essence of computation, that is, what distinguishes com-
putational processes from other physical processes. We consider such issues as the
topology of information processing, programmability, and universality. We sum-
marize general characteristics of analog computation, quantum computation, and
field computation, in which data is spatially continuous. Computation is convention-
ally used for information processing, but since the computation governs physical
processes, it can also be used as a way of moving matter and energy on a micro-
scopic scale. This provides an approach to programmable matter and programmed
assembly of physical structures. We discuss artificial morphogenesis, which uses
the formal structure of embryological development to coordinate the behavior of a
large number of agents to assemble complex hierarchical structures. We explain that
this close correspondence between computational and physical processes is charac-
teristic of embodied computation, in which computation directly exploits physical
processes for computation, or for which the physical consequences of computation
are the purpose of the computation.

5.1 Introduction

“Unconventional computation” is, of course, a negative term, and is defined by ref-
erence to “conventional computation,” which is quite specific. Characteristics of
conventional computation include digital (in fact binary) data and program rep-
resentation, von Neumann architecture, (primarily) sequential program execution,

B.J. MacLennan (B)
Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, TN, USA
e-mail: maclennan@utk.edu

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
DOI 10.1007/978-3-319-33924-5_5

117

118 B.J. MacLennan

addressable random-access memory, information processing implemented through
sequential electronic binary logic, irreversible operations, classical (non-quantum)
operation, etc. Unconventional computation may be defined, then, as computation
that differs in one or more of these characteristics.

Given the success of conventional computation, it is reasonable to ask the reasons
for studying unconventional computation. One motive is purely scientific: we would
like to understand the full range of computational processes, in natural systems aswell
as in computers. Information processing is widespread in nature, but for themost part
natural computation does not have the characteristics of conventional computation,
and therefore we need to understand computation in a broader sense.

5.1.1 Post-Moore’s Law Computation

The secondmotive for studying unconventional computation is technological, for it is
apparent that Moore’s Lawmust come to an end. First, the atomic structure of matter
places limits on the smallness of electronic components and the density with which
they can be assembled.Moreover, it is likely that economics will defeatMoore’s Law
even before it reaches these physical limits [60]. Therefore, in the post-Moore’s Law
world, progress in computation will depend on processing information in new ways,
that is, on unconventional computation. The end of Moore’s Law is on the horizon,
and so it is important that we develop post-Moore’s Law technologies to the point
of practicality before the end is reached.

What might be the characteristics of post-Moore’s Law computation? Conven-
tional computer technology has benefitted from clearly separated hierarchical lev-
els. Programming abstractions, such as data structures, are implemented in terms
of primitive data elements, such as floating-point numbers and pointers, which are
implemented in terms of many bits, each of which is represented by many electrons.
Similarly, conceptually primitive operations, such as floating-point division, may be
implemented by iterative algorithms, themselves implemented in sequential logic. In
particular, the Boolean logic level is largely independent from those above and below
it. That is, on one hand, Boolean logic can be used to implement various computer
architectures, and on the other, Boolean logic can be implemented in many different
technologies (e.g., relay, vacuum tube, transistor, VLSI).

Computing abstractions are implemented in terms of lower-level abstractions, and
ultimately in the laws of physics, but post-Moore’s Law computing technologies can-
not afford these multiple hierarchical levels. To permit greater densities and speeds,
computing abstractions and physical laws will need to be brought closer together,
but we cannot change the laws of physics, so this assimilation of computation and
physics will have to be accomplished by developing computing paradigms that are
more like the laws of physics. Therefore post-Moore’s Law computing will have
more of the characteristics of the underlying physical processes.

5 Physical and Formal Aspects of Computation: Exploiting Physics … 119

For example, the laws of physics are fundamentally concurrent; individual par-
ticles respond in parallel to fields, forces, and other particles. Therefore, we expect
parallel computation to be the norm in the post-Moore’s Law era.

The laws of physics are expressed in differential equations (or partial differential
equations), which describe continuous change in continuous quantities. Therefore,
analog computation can be expected to increase in importance. Often operations
can be implemented in a few analog components, which would require many digital
components (see Sect. 5.3.2 below). Therefore analog representations are preferable
for achieving higher densities.

It might be objected that quantum mechanics applies at the smallest scales, and
therefore that digital computation is better matched to the physics at these scales. It is
true that at very small scales certain quantities, such as charge, spin, and energy, are
quantized. On the other hand, quantum wave functions are continuous functions of
space and time, and the Schrödinger equation is a differential equation. Even qubits
are continuous linear combinations of the basis states.

Conventional computation takes place indiscreteor sequential time (seeSect. 5.2.3
below), in which operations take place in sequence at discrete times. (Parallel com-
putation does not contradict the essentially sequential execution of digital compu-
tation.) At both the classical and the quantum levels, however, the laws of physics
are expressed by differential equations. Therefore, as our computational processes
become more like physical processes, we expect continuous-time processes to play
an increasing role in post-Moore’s Law computation.

As we approach very small scales, noise, uncertainty, defects, imperfections, and
faults all become more likely, and ultimately unavoidable. Therefore, in the post-
Moore’s Law era we will have to abandon the idea that we are striving for systems
that approximate evermore closely an ideal,which is perfect, noiseless, fault-free, etc.
Rather,wewill take these phenomena as a given, and design systems that exploit them
rather than trying to avoid or mitigate them. Natural computation, which we find in
living systems, has much to teach us about exploiting physical phenomena for robust
and efficient information processing. For example, “noise” can be reconceptualized
as a source of free variability, which can be used for escaping from local optima and
for many other purposes [31, 37].

5.2 The Essence of Computation

Given a growing assimilation of computation to physics, one might wonder what dis-
tinguishes computational processes from other physical processes. Is every physical
process a computation? What common properties distinguish information process-
ing, computation, and control from other physical processes [40]?

All of these computational processes use physical arrangements (physical form)
to represent something else, and use physical rearrangement (transformation) to rep-
resent some abstract process. What distinguishes a computation from other physical
processes is that in principle the goals of the process could be achieved by any phys-

120 B.J. MacLennan

ical system that realized the same abstract transformation (a property calledmultiple
realizability) [29, 35]. That is, while computationmust be physically realized, it does
not depend essentially on a particular physical realization.

5.2.1 The Four Whys of Computation

The preceding observation raises several issues, which are addressed best in terms of
Aristotle’s “fourwhys” (commonly knownas his “four causes”) (Aris.,Phys. II 194b–
195a, Met. 983a–b, 1013a–1014a). These are four sorts of answers to the question
of why an object or process is what it is. In general, none of the four is sufficient
on its own, and they differ in explanatory value depending on the subject matter and
motivation of the question. His taxonomy is useful for classifying explanations not
only in biological systems but also in artifacts, and therefore it can be applied to both
natural and artificial information processing and control [40].

One of the whys answers the question: What is this? Traditionally it is called the
formal cause because it accounts for an object or process in terms of its form or
pattern: the formula that describes it. The second why answers: From what is this
made? It is known traditionally as thematerial cause, since its explanation is in terms
of the unformed stuff which gains its specific properties through the formal cause.
These two whys are central to our topic, since information is realized by material
forms, and information processing by physical rearrangement of these forms [24].
Although computation requires some material realization of its formal processes, it
is independent (qua computation) of its particular material realization. Moreover,
form and matter are relative terms, and the formed matter at one level of organization
can provide the unformed matter for a higher level. For example, in conventional
computers the addressable bytes and basic operations are the medium that software
formally organizes, but the bytes and operations are themselves organized structures
of lower-level objects and processes (logic gates).

The thirdwhy answers:Bywhat is this object or process created and sustained? It is
the familiar efficient cause. Computation must be powered, either by an initial supply
of energy or by a continuing supply. Without its efficient cause, the computation is
a potentiality that is not actualized.

The last why answers the question: For the sake of what does this object exist or
this process take place? Traditionally it is called the final cause since it addresses the
end, goal, or purpose of something. Artifacts, such as manufactured computers, are
designed for somepurpose, but biological systems also have functions that they fulfill.
The heart circulates the blood, the immune system fights infections, the nervous
system coordinates behavior and cognition, and so on.

The final cause is essential to the definition of computation, for what distinguishes
computational and information processing systems from other physical systems is
that their goal or function can be performed by any system with the same formal
structure, independent of its material realization [31, 38, 40]. That is, their func-
tion is information processing as opposed to some other physical process. One test

5 Physical and Formal Aspects of Computation: Exploiting Physics … 121

of whether a system is computational is to ask whether it could be replaced with
another systemwith the same formal structure and still achieve its ends (i.e., whether
it is multiply realizable). Of course, many natural systems serve multiple functions
(e.g., circulation of the blood distributes oxygen, but also hormones, which transmit
information), and so they might not be purely computational [40]. From this per-
spective, it is remarkable the extent to which the function of the nervous system is
pure computation and control.

The relationship between a computational or information processing system and
its physical realization can be expressed by the realization homomorphism [31],
which says that a physical system realizes an abstract computation if there is a
homomorphism from the physical system to the abstract system. The significance of
the homomorphism is that it preserves some of the algebraic structure of the physical
system, but not all of it. This captures our intuition that the physical system can have
many properties that are irrelevant to its realization of the abstract system. However,
we must also recognize that many realizations are only approximate. For example,
the abstract computation might involve real numbers that are only approximately
realized by floating-point numbers in a physical computer.

5.2.2 The Topology of Information

Rolf Landauer reminded us that information is physical; it must be represented in
some physical medium [24]. But its essence—what makes it this information versus
that information—lies in its form. Therefore differences of information are differ-
ences of abstract form, which can be described by topology, the science of abstract
form and similarity.

The realization homomorphismH is a surjectionmapping the physical state space
S onto the abstract state space �, that is, H : S � �. In the physical state space
we distinguish the information-bearing degrees of freedom (IBDF) from the non-
information-bearing degrees of freedom (NIBDF) [4]. For example, the IBDF may
be macrostates representing, for example, the bits 0 and 1, while the NIBDF may
include the positions, momenta, etc. of individual particles, which do not represent
information and which manifest as heat, noise, etc. The IBDF are managed by the
computational process in order to realize the computation, but the NIBDF are not
managed or are managed only in aggregate to keep them from interfering with the
computation. Let E ⊂ S ××× S be the equivalence relation between physical states that
are equivalent in their IBDF, and define the quotient spaceQ = S/E, which represents
the IBDF. Then the realization homomorphism can be factored H = A ◦ I , where
I : S � Q is a surjection from the physical state space onto the IBDF, andA : Q ↔ �

is a bijection between the IBDF and the abstract state space.
Conventional computation is digital; it uses discrete representations of informa-

tion. Formal models of digital computation, such as finite-state machines and Turing
machines, use finite, discrete alphabets of symbols or states, in which each element
is identical to itself and completely different from every other element. This is a

122 B.J. MacLennan

discrete topology (�, δ), in which the metric is defined δ(x, x) = 0 for x ∈ � and
δ(x, y) = 1 for all y �= x. There are only two possible distances in a discrete metric
space. A finite discrete space with 2n elements is homeomorphic to the space {0, 1}n
with the ∞-product metric1; this is of course the basis of binary representations on
digital computers. Other, less trivial, topologies can be defined over these discrete
spaces for the purposes of computation. For example, the discrete space {0, 1}n can
represent the integers {0, 1, . . . , 2n − 1} with their usual metric.

Traditionally, analog computers have operated on bounded real numbers repre-
sented by a physical quantity, but they are also capable of operating on other contin-
uous quantities, such as complex numbers (represented, for example, by the phase
and amplitude of a periodic signal). Moreover, quantum computers operate on com-
plex linear superpositions of basis states (e.g., z|0〉 + z′|1〉, with z, z′ ∈ C). Further,
analog field computers can operate on fields [33], that is, spatially continuous dis-
tributions of continuous quantity (see Sect. 5.3.4). Images and continuous signals
are examples of fields. All of these information spaces are continua, which may be
defined formally as connected second-countable metric spaces. Second-countability
means that they have a countable dense subset (as, for example, the rationals are a
countable dense subset of the reals).

More generally, unconventional computers may be hybrid, that is, capable of
operating on both discrete and continuous information spaces. These are products
of spaces that are individually discrete or continuous spaces. The U-machine model
encompasses both digital and analog computing (Sect. 5.3.5).

5.2.3 The Topology of Information Processing

Computation takes place in time. In conventional digital computation, operations are
performed at discrete points in time. This is properly described as sequential-time
computation since there is no implication that the operations be performed at regular
time intervals, as in discrete-time computation [66].More generally computationmay
be described by a partial order defining how later computations depend on earlier
ones, thus permitting operations to be performed concurrently.

Analog computation can also be defined over either discrete or sequential time,
as in the BSS model of computation over the reals [5]. Most artificial neural network
models are sequential-time analog computations, since the neural operations do not
happen at specific times, but require only that their inputs be available. Even most
recurrent neural networks operate in sequential time, since the sequence of their
outputs depends only on the sequence of their inputs. Neural networks can of course
operate in discrete time, but only if the neural computations are clocked.

Traditionally, however, analog computers have operated in continuous time, inte-
grating differential equations, which serve as programs. But there is also a continuous

1The ∞-product metric on the Cartesian product of two spaces (X, δ1), (Y , δ2) is defined
δ∞[(x, y), (x′, y′)] = max[δ1(x, x′), δ2(y, y′)].

5 Physical and Formal Aspects of Computation: Exploiting Physics … 123

version of sequential computation, in which the computation is defined over a set of
“instants” homeomorphic to a closed or half-open interval of the real numbers. That
is, sequence is defined, but not duration or rate. More generally, both discrete and
continuous concurrent computation can be defined by a partial order that defines the
dependence of later computations on earlier ones. Operations are permitted to take
place sequentially or concurrently, so long as this partial order is respected.

5.2.4 Programmability

Programmability is an important property of many computation systems. A system
is programmable if it is capable of performing a wide range of functions depending
on some finite systematic external specification (a program). Programmable systems
are valuable because they can be used for many different purposes and their behavior
can be adapted to changing circumstances, simply by changing the program.

Computational programs are usually described textually; for example sequential-
time computations (digital or analog) are described by programs in programming
languages, and continuous-time computations are described by ordinary or partial
differential equations. Programs can also be described by diagrams, such as flow-
charts for sequential-time computations and block diagrams for continuous-time
processes.

The preceding are examples of discrete programs, but continuous programs are
also possible. For example, some analog computers permit functions to be described
by continuous graphs (Sect. 5.3.2.1). Moreover, many useful computations can be
defined as relaxation processes in which the state descends a potential surface to
approach an attractor, which is the solution to the problem (Sect. 5.3.2.3). Such
processes may be continuous-, discrete-, or sequential-time depending on how the
state changes as the system computes. In these cases the program, which governs the
computation, is defined by the potential surface, which therefore defines a continuous
program, which wemight call a guiding image [29, 31]. The metaphors are different:
instead of writing a program, we could say we are drawing or sculpting a guiding
image. While it is certainly possible to create such a continuous program manually,
more likely it will emerge from an adaptive or training process, as happens in artificial
neural networks.

5.2.5 Universality

Programmability raises the issue of universality: Is a computer capable of computing
anything, given an appropriate program? For example, we know theUniversal Turing
Machine (UTM) is capable of computing any Turing-computable function. That is,
for any Turing machine there is a UTM plus program combination that is equivalent

124 B.J. MacLennan

(computes the same function). However, we must be careful applying these familiar
ideas to unconventional computation.

When comparing the power of different models of computation, it is important
to remember that all models are idealizations of the things they are modeling, and
these idealizations are intended to make the model more tractable than the original
system for some purpose. Therefore, each model exists in a (usually implicit) frame
of relevance, which delimits the sort of questions it is suited to answer [31, 35]. A
model cannot be expected to give useful answers when applied outside of its frame of
relevance; indeed, the answers are often misleading, more a reflection of the model
than the system under investigation.

Therefore, while it is very tempting to compare various models of unconventional
computation to the Church-Turing model, we must be cautious doing so. This model
was developed to address questions of effective calculability in the foundations of
mathematics, and they delimit its primary frame of relevance. It makes many idealiz-
ing assumptions, such as that tokens are discrete and can be perfectly discriminated
from their background and classified as to type, etc. [31]. Two machines or programs
are considered equivalent in power if they compute the same input–output function.
Efficiency in analyzed in terms of asymptotic complexity, which ignores constant
scale factors. And so forth.

While the conventional theory of Church-Turing computation has proved enor-
mously fruitful, there are many important issues that are outside of its frame of
relevance. For example, an important question in natural computation is how brains
are able to process complex, noisy sensorimotor information in real time using rela-
tively slow, low-precision computing devices (neurons). The conventional theory of
computation is not equipped to deal with issues in real-time control. Further, asymp-
totic analysis is not very useful because (1) the constantsmatter, and (2) the size of the
input is usually bounded. Therefore, inmany of the contexts in which unconventional
computation is relevant, such as natural computation and post-Moore’s Law compu-
tation, the idealizing assumptions of Church-Turing computation are inappropriate,
and different models, which make different assumptions, are more useful [31]. In
these contexts, it is not usually appropriate to consider two computations equivalent
solely because they compute the same function, and therefore it is not very useful
to measure the power of a model of computation in terms of the class of functions
it computes. This is only one of the criteria by which models of computation can be
compared. In the context of unconventional computing there are many dimensions
for comparing the capability of computational models.

5.3 Computation for Formal Ends

In order to understand the full range of unconventional computation, it is useful to
explore the relation between the computational processes and their physical realiza-
tions. In this section we address computation in its usual sense, wherein the principal
goal is an abstract information process, and the realization is a means to this end.

5 Physical and Formal Aspects of Computation: Exploiting Physics … 125

That is, the material processes are serving formal purposes. In Sect. 5.4 we consider
the opposite situation, which is less familiar.

5.3.1 General Considerations

What are the requirements for unconventional realizations of abstract information and
control processes or computations? In general, any reasonably controllable, mathe-
matically describable physical process can be used for computation, including living
systems, such as slime molds and bacterial mats [1]. We can outline some more
specific considerations [35]. First we need a physical process that has at least the
algebraic structure of the desired computation, so that the realization homomorphism
holds. Therefore, we need to have sufficient control over the physical arrangements
to implement the required structure. For general-purpose computation, we will want
some flexibility in making these arrangements, so that any computation in a useful
class can be implemented. In this case, we also may consider programmability, that
is, whether there is some systematic way to set up the physical process in accord
with an abstract description (the program).

Of course, the applicationmay place additional restrictions on the class of admissi-
ble realizations. For example, some physical processes might be too slow or consume
too much energy for the application. On the other hand, many potential applications
do not require high speed, and a slower physical process, which is better matched to
the application requirements, may have other advantages, such as energy efficiency,
power source, stability, robustness, programmability, or precision. Moreover, many
applications do not require high precision or faultless operation, and computation and
control in nature provide many examples of how to tolerate and even exploit noise,
errors, faults, imprecision, defects, indeterminacy, etc. For example, they can be used
as sources of free variability for escaping from local optima, breaking deadlocks,
driving exploration, etc. [41].

Useful computations require transduction, that is, the transfer of information from
the environment into the computation, and the transfer of information and control
from the computation back out into the environment [31, 35]. Both computation and
transduction involve the formal and material aspects of physical processes. Com-
putation, as we’ve seen, is generically realizable; that is, it can be realized by any
physical process with the required formal structure. On the other hand, transduc-
tion provides the interface between the computational medium and specific physical
systems (e.g., a photoreceptor or temperature sensor for input, an LED display or
servomotor for output). In principle, a pure input transducer transfers the form from
one material (the input medium) to another material (the computational medium),
and a pure output transducer transfers the form from the computational medium to
the output medium. In practice, pure transducers are rare, for there is usually some
(intended or unintended) change in the form in addition to the intended material
change; for example, the input might be filtered, digitized, limited, etc. Thus most

126 B.J. MacLennan

transducers combine some information processing or computation with the change
of medium.

5.3.2 Analog Computation

Analog computation is an important unconventional computing paradigm. Since
the laws of physics are continuous, it is likely to become more important in the
post-Moore’s Law era, because it can be more directly realized [44]. In principle,
any continuous physical quantities can be used as a medium for analog computing.
Electronic analog computing, in which real numbers are represented typically by
current, voltage, or charge, is most familiar, but there are many other possibilities.
For example, mechanical analog computers have represented numbers by angular
or linear displacement. Concentrations of substances that are continuous or approx-
imately continuous can be used (as in reaction-diffusion computation [2]). Light is
an attractive medium [3].

In choosing an analog computation medium, we must also consider the physical
realization of the abstract operations required by the computation (e.g., addition,
subtraction, multiplication, integration, filtering, various transcendental functions).
The virtue of analog computation is that common, useful operations often have simple
realizations. For example, addition can be performed by simply combining currents,
charges, or light intensities; integration can be performed by charging a capacitor or
by accumulation of a chemical reaction product.

One critical question in any analog computing technology is precision, which
refers to the quality of a representation. Precision has two major components: reso-
lution, which refers to the fineness of the representation, and stability, which refers
to its ability to maintain its value over the duration of the computation. Precision
can be expressed as a fraction of full-scale variation of a variable (the difference of
its maximum and minimum values). Doubling the precision of an analog represen-
tation or computation can be very expensive compared to doubling digital precision
(add one more bit), since it requires higher quality devices [32]. Fortunately, high
precision is not required for many applications and for some approaches to analog
computing, such as neural networks. In general, natural computation provides many
examples of the utility of low-precision analog computing.

5.3.2.1 Programming Techniques

Certain basic operations are simple to implement in many analog computing tech-
nologies.Asmentioned, direct combination of physical quantities can often be used to
implement analog addition, u(t) = v(t) + w(t). Some physical quantities are signed
(e.g., voltage, current, charge) and can be used directly to represent signed quanti-
ties, others are not (e.g., intensities, concentrations of chemicals). In the latter case,
signed quantities can be represented as differences of positive quantities. That is,

5 Physical and Formal Aspects of Computation: Exploiting Physics … 127

instead of one signed variable v(t), we use two non-negative variables, v+(t) and
v−(t), that implicitly represent v(t) = v+(t) − v−(t). The analog algorithm must be
re-expressed in terms of the differential quantities. Given a signed representation,
subtraction [u(t) = v(t) − w(t)] and negation [u(t) = −v(t)] are easy to implement.

Positive constant multiplication, u(t) = cv(t) for c > 0, can be implemented by
passive attenuation or active amplification. Signed constant multiplication can be
implemented directly or in terms of the signed operations. The assumption here is
that the scale factor c must be programmed, either externally (e.g., by adjusting a
potentiometer) or internally (e.g., by programming a floating-gate transistor), and
that this is a relatively slow process, which might not be under analog program
control. Therefore, we contrast it with full variable multiplication, u(t) = v(t) ×
w(t), in which both factors can be the result of ongoing analog computation. Direct
analog implementation can be more difficult than constant multiplication, but it
can be accomplished. For example, a squaring operation can be used to implement
multiplication by [56, p. 92]:

v × w = 0.25[(v + w)2 − (v − w)2].

Squaring can be implemented directly without multiplication [56, chap. 3]. This
illustrates an important principle of analog computing: we cannot transfer our dig-
ital intuitions about what is simple into the analog domain. In the analog domain,
apparently complicated operations, such as square, square-root, logarithm, and expo-
nential, can have more direct implementations than apparently simpler operations,
such as multiplication. Certain nonlinear and transcendental functions can be built
into an analog computer as basic operations.

Division, u(t) = v(t)/w(t), has to be handled carefully, since a small divisor can
saturate the quotient register. Similarly, although analog implementation of differ-
entiation, u(t) = v̇(t), is generally simple, the operation is problematic since it is
sensitive to high-frequency noise, which it amplifies. One solution is to apply a low-
pass filter to the differentiator’s input. Alternatively, analog computations involving
differentiation can be recast as integrations.

Integration usually has a straightforward implementation as the accumulation of
some quantity:

u(t) = u0 +
∫ t

0
v(τ)dτ.

The integrator is initialized to the constant of integration u0 at the beginning of the
computation. This implements a differential equation u̇(t) = v(t)with an initial value
u(0) = u0.

For some applications (such as real-time control programs) the integration will be
with respect to real time. In others, time in the analog computer will be independent
of time in the abstract computation; it might integrate slower or faster. To ensure
accurate results, the rate of analog integration has to be considered, since if it is
too fast it may exceed the high-frequency response of the integrator, and if it is too
slow, quantities will drift. Therefore analog integration often involves time scaling,

128 B.J. MacLennan

in which time t in the computer is related to time τ in the abstract computation
by t = bτ for some b > 0. To integrate the abstract differential equation u̇(τ) =
v(τ), that is, u(τ) = ∫ τ

0 v(τ ′)dτ ′, the analog computer uses the scaled integration
u(t) = b−1

∫ t
0 v(t

′)dt′. In electronic analog computers this can be accomplished by
decreasing the integrator input gain by a factor of b.

Since analog computing represents abstract quantities directly by physical quanti-
ties,magnitude scaling is another important consideration.Avariable x in the abstract
computation, with a certain range of values, must be mapped into a physical quantity
v, with a dynamic range and precision limited by the physical device. Exceeding the
device’s operating range can lead to inaccuracy through distortion. Magnitude scal-
ing is accomplished by choosing a scale factor, v = ax, which is small enough to stay
within the device’s dynamic range, but not so small that important differences are
less than the device’s resolution. Therefore, the variables in the abstract computations
have to be scaled, and differential equations (or integrations) need to be adjusted to
incorporate the scale factors. Moreover, in addition to the explicit variables, there
are implicit variables corresponding, for example, with derivatives ẋ, ẍ, etc. These
too need to be scaled with the equations adjusted accordingly.

Some analog computers provide tunable band-pass filters, which can be used to
performadiscrete Fourier transformon a signal.Others provide analogmatrix–vector
multiplication inwhich the elements of thematrices and vectors are continuous quan-
tities, and the multiplications and additions are implemented by analog computation.
That is, u(t) = Mv(t), where uj(t) = ∑n

k=1 Mjkvk(t). This operation can be used
to implement linear operators, such as filters. Another useful operation is a noise
generator, which produces Gaussian white noise, which can be adjusted and filtered
to have desired characteristics. Randomness is useful in some analog algorithms.
Simple decision making can be implemented by sigmoid functions:

σ(s) = 1

1 + e−βs
.

Then a differential equations such as ẋ = σ(s − θ)F(x, y, . . .) + σ(θ − s)
G(x, y, . . .) will be governed by F(x, y, . . .) if s is above the threshold, s > θ , and
by G(x, y, . . .) if s < θ , with β controlling the sharpness of the transition.

Some analog computers provide means for computing arbitrary functions by
means of a continuous version of table lookup. This mechanism allows the computa-
tion of functions for which there is no known closed-form description, or that would
be too complicated to compute from their closed forms. To implement such a func-
tion, its graph {(x, f (x))|x ∈ [xlwb, xupb]} is represented in a suitable two-dimensional
medium.When this medium is loaded in the computer, it can compute u(t) = f [v(t)].
Similarly, an arbitrary binary function g can be computed by representing its graph
(x, y, g(x, y)) in a suitable three-dimensionalmedium. These are examples of guiding
images, i.e., continuous representations of analog algorithms (Sect. 5.2.4 above).

5 Physical and Formal Aspects of Computation: Exploiting Physics … 129

5.3.2.2 General-Purpose and Universal Computation

Universality is an important question for any computing paradigm, for it tells us what
are the minimal requirements for performing any computation in a large class of
possible computations. Claude Shannon proved fundamental universality theorems
for the differential analyzer, whichwere completed, corrected, and extended by Pour-
El, Lipshitz, and Rubel [25, 57, 62, 63].

A related question is the power of analog computing relative to Turing computabil-
ity, but it presents an immediate paradox. On the one hand, it is easy to show that the
ability to operate on arbitrary real numbers confers super-Turing power (e.g., there
is a real constant whose bits encode the solutions to the Halting Problem). On the
other hand, analog computers are routinely simulated on ordinary digital comput-
ers, suggesting that analog computers have no more than Turing power. There are
a variety of theorems in the literature, proving sub-Turing, Turing, or super-Turing
power depending on the premises (representative citations can be found elsewhere
[44]). The resolution of these apparently contradictory conclusions is that analog
computation is not in the frame of relevance of Church-Turing computation (recall
Sect. 5.2.5), and therefore the results are more a reflection of the idealizing assump-
tions of the various models than of the computational systems being modeled (more
details are provided elsewhere [35]).

There are a number of ways to program analog computers. Sequential analog
computations can be described in programming languages similar to those for digi-
tal computers, the principal difference being that the primitive operations are analog
rather than digital. However, some caution is necessary. For example, exact equality
and inequality tests, which are unproblematic in digital computation, may be infea-
sible in the analog domain, where infinite precision would be required. In the context
of analog computing, it is more reasonable to test if the difference of two numbers
is less than some ε.

Continuous-time analog computations are most often described by differential
equations. They are also represented by block diagrams in which the differential
equations are recast as explicit integrations (e.g., Fig. 5.1).

In principle, analog programs can contain constants that are not rational or even
Turing-computable. Such constants cannot be represented finitely in discrete sym-
bols, but they can be represented directly as continuous quantities. In a practical
sense, however, due the limited precision of analog computing, constants can be rep-
resented digitally to the accuracy required. Nevertheless, it is important to broaden
the notion of a program to include representations that are not textual, such as guiding
images (Sect. 5.2.4 above).

5.3.2.3 Dynamical Systems

Dynamical systems are an attractive approach to analog computation; the system is
defined so that the point attractors are solutions to the problem. Examples include
analog solutions to traditional digital problems, such as sorting [8] and Boolean sat-

130 B.J. MacLennan

++

A

+
+

B

Cmi

-Cmi

si

am

-1

-1

1-k

0

output

Fig. 5.1 Example analog algorithm implementing a dynamical system Boolean satisfiability [12].
The block enclosed in dotted lines is repeated for m = 1, . . . ,M and i = 1, . . . ,N

isfiability [17, 48]. In the latter case, to solve a k-SAT Boolean satisfiability problem
withM clauses andN variables, Ercsey-Ravasz and her colleagues define a dynamical
system by the differential equations:

ṡi(t) = −si(t) + Af [si(t)] +
M∑

m=1

cmig[am(t)],

ȧm(t) = −am(t) + Bg[am(t)] −
N∑
i=1

cmif [si(t)] + 1 − k.

A particular problem instance is defined by the cmi matrix elements: cmi = +1 if
variable i is positive in clause m, cmi = −1 if variable i is negative in clause m, and
cmi = 0 if variable i is not in clause m. The f and g activation functions are linear

5 Physical and Formal Aspects of Computation: Exploiting Physics … 131

squashing functions that map the s and a values into [−1, 1] and [0, 1], respectively.
The si converge on a solution to the problem, if one exists.

Figure5.1 displays an analog algorithm for implementing this dynamical system
[12]. The overall structure is a cross-bar between theM integrators for the am and the
N integrators for the si; thusM + N integrators are required. A particular instance is
programmed by setting the cmi and−cmi connections as required for the problem. The
integrators are initialized to small values to start the computation; non-zero offset or
noise in the hardware integrators might have the same effect.

5.3.3 Quantum Computation

Quantum computation is another promising approach to post-Moore’s Law com-
puting. Because the units of information representation are qubits (quantum bits),
it is often supposed that quantum computation is a species of digital computation,
but in fact it is hybrid analog–digital computation. Quantum computation gets its
power from being able to operate simultaneously on superpositions (complex linear
combinations) of digital basis states. Quantum operations are unitary operators that
operate on the continuous complex coefficients of the basis states. Fundamentally,
“binary” quantum computation is computation over finite-dimensional complex vec-
tor spaces. One of the remarkable properties of quantum computation, which gives
it an advantage over classical analog computation, is that it is possible to do error
correction to eliminate noise in the complex coefficients [52, Sect. 10.6.4]. Some
quantum computation takes place in continuous time, such as adiabatic quantum
computing and quantum annealing [13, 61]. Continuous-value quantum computa-
tion is another approach to analog quantum computation [26].

5.3.4 Field Computation

While ordinary differential equations (ODEs) are adequate for describing some
systems, spatially extended systems normally require partial differential equations
(PDEs). Although most historical analog computers processed ODEs, already in the
nineteenth century there were developments such as the “field analogy method” [33,
44]. Sometimes the state was represented in a continuous medium, such as a rubber
sheet or an electrolytic tank; in other cases a sufficiently dense array of discrete
components was used. Therefore, we may define a field as either a spatially contin-
uous distribution of continuous quantity, or a discrete distribution that is sufficiently
dense to be treated as continuous. (Physicists similarly distinguish physical fields,
which are literally continuous, such as electromagnetic fields, from phenomenolog-
ical fields, which can be treated as though continuous, such as fluids.) Thus we can
have real- or complex-valued scalar fields or vector fields (more generally, fields over
any continuous algebraic field).

132 B.J. MacLennan

Field computation, then, may be defined as computation in which the state is
represented by one or more fields [27, 33]. It is also a natural way of describing
image processing or other computation with spatially extended data, and field com-
puters have operations, such as convolution, that operate in parallel on entire fields.
The original motivation for the theory of field computation was to describe neural
information processing in regions of cortex large enough to be considered fields
(typically 0.1 mm2 or larger) and in neurocomputers with comparable numbers of
spatially organized neurons [27].

Mathematically, fields are treated as continuous functions over some spatial
domain 	. More precisely, they are elements of a Hilbert space of square-integrable
functions on	, whichwe denote
(). Itsmetric is determined by the inner product;
for φ,ψ ∈
(),

〈φ | ψ〉 =
∫

	

φ(u)ψ(u)du,

where φ(u) denotes the complex conjugate (in case the fields are complex-valued).
Field transformations are functions (linear or nonlinear) that map fields into fields;
that is, they are operators on Hilbert spaces. One especially useful field transforma-
tion is the field product φ ∈
(′), for ∈
(′ ×××) and φ ∈
(), which
is defined by the Hilbert–Schmidt integral, (φ)(u) = ∫

	
(u, v)φ(v)dv, for all

u ∈ 	′. It is the field analog of a matrix–vector product. The outer product also has
a field analogue: if φ ∈
() and ψ ∈
(′), then φ ∧ ψ ∈
(××× 	′) is defined
(φ ∧ ψ)(u, v) = φ(u)ψ(v). Other useful operations include the gradient, Laplacian,
convolution, cross-correlation, and point-wise arithmetic operations between fields.

Two questions immediately arise: Are there universal field computers? And (more
practically), what operations should be provided by a general-purpose field com-
puter? These questions can be answered in the context of approximation theory for
operators on Hilbert spaces. For example, there is a sort of field-polynomial approx-
imation based on an analogue of Taylor’s theorem for functional derivatives [27, 28,
30, 33]. Also, since a field can be considered a continuum of (infinitesimal) neurons,
many neural network approximation theorems can be adapted to field computation
[20, pp. 166–168, 219–220, 236–239, 323–326]. For example, one universal set of
operations is the field product (Hilbert–Schmidt integral), pointwise addition, and
scalar multiplication [33, 44].

5.3.5 The U-Machine

We commonly classify computation as digital or analog, or as “hybrid” if it combines
both, but does digital (computation on discrete spaces) and analog (computation on
continua) exhaust the possibilities of computation? What other topologies might
there be for information and computation?

We have explored computation on second-countable metric spaces because they
include both discrete spaces and continua, and have developed a corresponding

5 Physical and Formal Aspects of Computation: Exploiting Physics … 133

machine model, theU-machine [38]. It gets its name fromUrysohn’s theorem, which
states that any second-countablemetric space is homeomorphic (topologically equiv-
alent) to a subset of a Hilbert space [51, pp. 324–326]. Therefore, computations in
second-countable spaces have realizations in Hilbert spaces, that is, they can be
implemented by field computations. Indeed, the details of the Urysohn embedding
imply that they can be approximated by computations over finite-dimensional vector
spaces (and, in particular, neural networks).

Because the Urysohn embedding is a homeomorphism, any continuous computa-
tional process in a second-countable metric space has a continuous image in the sub-
set of the Hilbert space. Further, for any continuous function on a second-countable
space, there is a corresponding continuous function on the Hilbert space. Therefore,
computations in second-countable spaces can implemented by computations in these
Hilbert spaces, which can be implemented via the various universal approximation
theorems on Hilbert spaces (Sect. 5.3.4). These provide the basic operations required
for general-purposes computation on the U-machine.

Other sorts of physical media can be used to realize computational processes, for
example, molecular computation. Next, however, I will address a different aspect
of unconventional computation: how computation can be used directly to control
physical processes.

5.4 Computation for Material Ends

In computation we have a relationship between a physical system and a formal
system in which the formal system is a (typically incomplete) description of the
physical system; this is the import of the realization homomorphism (Sect. 5.2.1). In
conventional computation, as well as in the unconventional computation discussed
in Sect. 5.3, the end (goal) is the abstract formal process, and the physical process
is a means to that end. Furthermore, in a programmable computer, the program
controls the physical processes so that they realize the abstract process described
by the program. In particular, in the process of computation, matter and energy is
reorganized in the computer, and this reorganization is under control of the program.
Thereforewe can look at the formal-material relationship from a different perspective
in which the end is the physical process and the computation is the means to this
end; that is, we have formal processes serving material purposes.

The tradeoffs are different. When the material processes are serving formal pur-
poses, we usually try to minimize the energy andmatter reorganized by computation,
in order to decrease size, power requirements, and computation time. In contrast,
when formal purposes are used to serve material ends, we might want to rearrange
more matter or energy.

Computation formaterial purposes is different froma traditional control system, in
which information processes (realized physically) govern a separate physical system
via transducers. Here, we are describing a situation in which the physical realization
of the computation is the physical process that is the goal. In particular, there are

134 B.J. MacLennan

no transducers because there is no distinction between the information system and
the controlled system; they are simply the formal and material aspects of the same
process.

A simple example is provided by chemical reaction-diffusion (RD) systems [2].
On the one hand, an RD system can be viewed as a formal process and analyzed
mathematically, as Turing did [65]. On the other hand, RD systems can be realized
chemically so that the chemical reaction and diffusion processes are essential to both
the computation and the physical patterns it creates. Such processes underlie patterns
in animal skin colors and hair coats [46]. Algorithmic assembly by DNA is another
example in which the molecules realize a process that computes a desired physical
structure [58, 59, 64].

In general, programs are hierarchical structures that, when executed, generate
complex dynamics, which is capable of generating complex structures. That is, com-
plex hierarchical temporal patterns can generate complex hierarchical spatial pat-
terns. When we look at the physical realization of a computation, we realize that
these intricate data structures are realized in correspondingly intricate arrangements
of matter and energy.

5.4.1 Programmable Materials

The value of this inverted perspective on computations and their realizations is that
it is an approach to programmable matter, that is, to controlling systematically the
properties and behavior of physical systems on a small scale [19, 45].

A step in this direction is provided by what can be called programmable materi-
als, that is, materials whose physical properties vary widely and can be controlled
systematically (i.e., programmed) [45]. Some of the many properties we might like
to control are hardness, elasticity, flexibility, density, relative resistance, permittivity,
photoconductivity, opacity, and refractive index.Moreover,wewould like a combina-
torially rich code for determining these physical properties; by analogy with biology,
we may call the code the genotype, and the physical substance the phenotype.

Itmight seemunlikely that such aversatilematerial could exist, but nature provides
an example: proteins. Proteins are coded by the four nucleotide bases of DNA and so,
effectively, by strings over the alphabet {A, C, T, G}, a simple, but combinatorially
rich code. Nevertheless, proteins, which are the primary elements of living things,
have an enormous range of physical properties and have both active and passive
functions. Proteins are the constituents of keratin (the material of horns, nails, and
feathers), connective tissue (collagen and elastin), cellular skeletons (microtubules),
enzymes, ion channels, signaling molecules, receptor and sensor molecules (such
as rhodopsin), transporter and motor proteins, and so forth. The DNA code defines
long sequences of a few different building blocks (amino acids), but the resulting
polymers fold into complex three-dimensional shapes that give them a wide variety
of physical properties. Some allosteric protein molecules even make simple deci-
sions, responding to various combinations of regulators [7, pp. 63–65, 78–79]. One

5 Physical and Formal Aspects of Computation: Exploiting Physics … 135

approach to programmable materials builds on proteins (natural and artificial), but
once we understand the principle by which a simple, but combinatorially rich code
can create structures with diverse physical properties, we can design new program-
mable materials based on different substrates.

5.4.1.1 Artificial Morphogenesis

Programmable materials may be very valuable, but much of the behavioral rich-
ness of living things comes from their complex hierarchical structure: from cells
up to tissues, organs, and organisms, and from cells down to vesicles, membranes,
andmolecules (including proteins). There are many applications for which wewould
like to be able to build complex systems hierarchically structured from themicroscale
up to the macroscale. For example, we would like to be able to build robots with
artificial nervous systems of comparable complexity and density to mammalian ner-
vous systems, with similarly complex sensors and effectors to permit fluent, real-time
behavior [42].

This raises the question of how to coordinate the self-assembly of vast numbers
(millions or billions) of microscopic components into macroscopic complex sys-
tems. The problem might seem hopeless, but once again nature proves that it can
be done. A human body has trillions of cells, yet during embryological develop-
ment the cells self-organize into tissues, organs, and other structures. This suggests
that embryological morphogenesis—the creation of physical form—can provide a
model for the self-assembly of complex systems [6, 14, 15, 18, 23, 49, 50, 64]. Arti-
ficial systems may be very different from biological systems, but we can abstract the
formal computation and control processes of morphogenesis from their biological
realizations and apply them in artificial systems.

Our own approach to artificial morphogenesis is directed to the development of
self-assembly processes that scale up to very large numbers of components (hundreds
of thousands to millions or more) [34, 36, 37, 39, 41–43, 45]. To reach this goal,
we describe morphogenetic processes by partial differential equations, effectively
treating tissues as continuous media, and we use the mathematics of continuum
mechanics. This is a reasonable approximation if the number of cells or agents is
large, and is in fact commonly used in embryology and developmental biology.
Using PDEs effects a useful separation of scales. The algorithms are developed
and operate in terms of the dimensions of the object under assembly; this is the
basis for determining parameters such as diffusion rates and agent velocities. These
morphogenetic processes are independent of the scale of the “particles” (cells, agents,
microrobots, etc.) constituting the medium, so long as it can be approximated as a
continuum. Therefore, the algorithms do not depend on the size or number of agents;
they scale.

To facilitate the expression of morphogenetic programs, we have developed a
PDE-based programming language, which can be realized by computer simulation

136 B.J. MacLennan

or, in principle, by microscopic physical agents [34]. The notation is designed to
be interpretable in discrete or continuous time in order to facilitate a variety of
realizations in simulation and physical agents.

5.5 Embodied Computation

Artificial morphogenesis is an example of embodied computation, which may be
defined as “computation in which the physical realization of the computation or the
physical effects of the computation are essential to the computation” [41]. The term
is inspired by the theories of embodied cognition and embodied artificial intelli-
gence, which call attention to the role that the body plays in control and information
processing in humans and other animals [9–11, 16, 21, 22, 47, 53–55]. Formal struc-
tures emerge from the possibilities of physical interaction between a body and its
environment, and these physical processes can substitute for information processes,
thus decreasing the computational load on the nervous system.

In embodied computation, the formal and material aspects are not so separable
as they are in conventional computation. On the one hand, information processing
and control may depend for its correctness and effectiveness on realization in a spe-
cific kind of physical system. However, the specifics of the physical systems also
limit the purpose of the computation, that is, the final cause, since the computation
is not required to operate in other situations. The specifics may also provide mater-
ial realizations of the computation that are available for the specific computational
systems, but not necessarily for others. That is, a specific embodiment restricts the
final, material, and efficient causes (e.g., possible energy sources), but these same
restrictions may afford a wider range of formal causes (i.e., information and control
processes) to accomplish its purpose. To take an example from nature, the specific
embodiment ofE. coli and the properties of its environment facilitate its use of chemi-
cal gradients to control its metabolically-powered movement toward more favorable
locations. Indeed, all living systems use embodied computation, and they suggest
ways of designing artificial embodied computation systems.

5.6 Conclusions

Computation is physical, but conventional computing technology has been built on
a hierarchy of abstractions. In the post-Moore’s Law era, computational processes
will need to be more like the physical processes by which they are realized, which
implies a greater role for analog, parallel, and stochastic models of computation.
The increasing assimilation of computation to physics raises the question: What
distinguishes computational processes from other physical processes? The answer
is that the purpose of the system could be accomplished as well by other physical
realizations with the same formal structure but different material realizations (mul-

5 Physical and Formal Aspects of Computation: Exploiting Physics … 137

tiple realizability). Therefore, any formal process can be considered computation
(information processing, control), and it is apparent that there is a wide variety of
possible unconventional computing paradigms. The computational state space can
be discrete or continuous, and information processing can proceed in continuous,
discrete, or sequential time, either serially or concurrently. As we journey out from
the familiar domain of conventional computation, we must leave behind familiar
notions of programming and universality, whose assumptions may be misleading
outside of their frame of relevance. Promising unconventional computing paradigms
include analog computation, quantum computation, field computation, and compu-
tation over second-countable metric spaces (which subsumes both analog and digital
computation).

Traditionally, the purpose of a computation is a certain formal process, and the
accompanying physical processes are merely a means to that end. However, we may
turn the tables, and use computation for the sake of these physical processes, using
the formal power and flexibility of computation to control the assembly and behavior
of physical objects. This approach provides a path towards programmable matter and
artificial morphogenesis. More generally, embodied computation takes advantage of
a closer assimilation of computation to physics by exploiting physical processesmore
directly for computation, and by using computational techniques to govern physical
processes.

References

1. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific Series
on Nonlinear Science Series A, vol. 74. World Scientific, Singapore (2010)

2. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers. Elsevier, Ams-
terdam (2005)

3. Ambs, P.: Optical computing: A 60-year adventure. Adv. Opt. Technol. 2010, Article ID
372,652 (2010). doi:10.1155/2010/372652

4. Bennett, C.H.: Notes on Landauer’s principle, reversible computation, and Maxwell’s demon.
Stud. Hist. Philos. Mod. Phys. 34, 501–510 (2003)

5. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Berlin
(1998)

6. Bourgine, P., Lesne, A. (eds.):Morphogenesis: Origins of Patterns and Shapes. Springer, Berlin
(2011)

7. Bray, D.:Wetware: AComputer in Every LivingCell. YaleUniversity Press, NewHaven (2009)
8. Brockett, R.: Dynamical systems that sort lists, diagonalize matrices and solve linear pro-

gramming problems. In: Proceedings of the 27th IEEE Conference Decision and Control, pp.
799–803. Austin, TX (1988)

9. Brooks, R.: Intelligence without representation. Artif. Intell. 47, 139–159 (1991)
10. Clark, A.: Being There: PuttingBrain, Body, andWorld TogetherAgain.MITPress, Cambridge

(1997)
11. Clark, A., Chalmers, D.J.: The extended mind. Analysis 58(7), 10–23 (1998)
12. Connor, R.J., Holleman, J., MacLennan, B.J., Smith, J.M.: Simulation of analog solution of

Boolean satisfiability. Technical Report UT-EECS-15-735, University of Tennessee, Depart-
ment of Electrical Engineering and Computer Science, Knoxville (2015)

http://dx.doi.org/10.1155/2010/372652

138 B.J. MacLennan

13. Das, A., Chakrabarti, B.K.: Colloquium : quantum annealing and analog quantum computation.
Rev.Mod. Phys. 80, 1061–1081 (2008). http://link.aps.org/doi/10.1103/RevModPhys.80.1061

14. Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by
embryomorphic engineering. In: Würtz, R.P. (ed.) Organic Computing, pp. 167–200. Springer,
Heidelberg (2008)

15. Doursat, R., Sayama, H., Michel, O. (eds.): Morphogenetic Engineering: Toward Program-
mable Complex Systems. Springer, Heidelberg (2012)

16. Dreyfus, H.L.: What Computers Still Can’t Do. MIT Press, New York (1992)
17. Ercsey-Ravasz, M., Toroczkai, Z.: Optimization hardness as transient chaos in an analog

approach to constraint satisfaction. Nature Phys. 7, 966–970 (2011)
18. Giavitto, J., Spicher, A.: Computer morphogenesis. In: Bourgine, P., Lesne, A. (eds.) Morpho-

genesis: Origins of Patterns and Shapes, pp. 315–340. Springer, Berlin (2011)
19. Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter. Computer 38(6), 99–101

(2005)
20. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, New York

(2008)
21. Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y.: Embodied Artificial Intelligence. Springer, Berlin

(2004)
22. Johnson, M., Rohrer, T.: We are live creatures: Embodiment, American pragmatism, and the

cognitive organism. In: Zlatev, J., Ziemke, T., Frank, R., Dirven, R. (eds.) Body, Language,
and Mind, vol. 1, pp. 17–54. Mouton de Gruyter, Berlin (2007)

23. Kitano, H.: Morphogenesis for evolvable systems. In: Sanchez, E., Tomassini, M. (eds.)
Towards Evolvable Hardware: The Evolutionary Engineering Approach, pp. 99–117. Springer,
Berlin (1996)

24. Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188 (1996)
25. Lipshitz, L., Rubel, L.A.: A differentially algebraic replacment theorem. Proc. Am. Math. Soc.

99(2), 367–372 (1987)
26. Lloyd, S., Braunstein, S.L.: Quantum computation over continuous variables. Phys. Rev. Lett.

82, 1784–1787 (1999). http://link.aps.org/doi/10.1103/PhysRevLett.82.1784
27. MacLennan, B.J.: Technology-independent design of neurocomputers: the universal field com-

puter. In: Caudill, M., Butler, C. (eds.) In: Proceedings of the IEEE First International Confer-
ence on Neural Networks, vol. 3, pp. 39–49. IEEE Press (1987)

28. MacLennan, B.J.: Field computation in the brain. In: Pribram, K. (ed.) Rethinking Neural
Networks: Quantum Fields and Biological Data, pp. 199–232. Lawrence Erlbaum, Hillsdale
(1993). http://web.eecs.utk.edu/~mclennan

29. MacLennan, B.J.: Continuous formal systems: A unifying model in language and cognition.
In: Proceedings of the IEEE Workshop on Architectures for Semiotic Modeling and Situation
Analysis in Large Complex Systems, pp. 161–172. Monterey, CA (1995). http://web.eecs.utk.
edu/+mclennan and http://cogprints.org/541

30. MacLennan, B.J.: Field computation in natural and artificial intelligence. Inf. Sci. 119, 73–89
(1999). http://web.eecs.utk.edu/~mclennan

31. MacLennan,B.J.:Natural computation and non-Turingmodels of computation. Theor.Comput.
Sci. 317, 115–145 (2004)

32. MacLennan, B.J.: Analog computation (chap. 1, entry 19). In: Meyers, R. et al. (ed.) Encyclo-
pedia of Complexity and System Science, pp. 271—294. Springer, Heidelberg (2009). doi:10.
1007/978-0-387-30440-3_19. Reprinted in Computational Complexity: Theory, Techniques,
and Applications, ed. by Meyers, R.A. et al., Springer, 2012, pp. 161–184

33. MacLennan, B.J.: Field computation in natural and artificial intelligence (chap. 6, entry 199).
In: Meyers, R. et al. (ed.) Encyclopedia of Complexity and System Science, pp. 3334–3360.
Springer, Heidelberg (2009). doi:10.1007/978-0-387-30440-3_199

34. MacLennan, B.J.: Preliminary development of a formalism for embodied computation and
morphogenesis. Technical Report UT-CS-09-644, Department of Electrical Engineering and
Computer Science, University of Tennessee, Knoxville, TN (2009)

http://link.aps.org/doi/10.1103/RevModPhys.80.1061
http://link.aps.org/doi/10.1103/PhysRevLett.82.1784
http://web.eecs.utk.edu/~mclennan
http://web.eecs.utk.edu/+mclennan
http://web.eecs.utk.edu/+mclennan
http://cogprints.org/541
http://web.eecs.utk.edu/~mclennan
http://dx.doi.org/10.1007/978-0-387-30440-3_19
http://dx.doi.org/10.1007/978-0-387-30440-3_19
http://dx.doi.org/10.1007/978-0-387-30440-3_199

5 Physical and Formal Aspects of Computation: Exploiting Physics … 139

35. MacLennan, B.J.: Super-Turing or non-Turing? Extending the concept of computation. Int. J.
Unconv. Comput. 5(3–4), 369–387 (2009)

36. MacLennan,B.J.:Models andmechanisms for artificialmorphogenesis. In: Peper, F.,Umeo,H.,
Matsui, N., Isokawa, T. (eds.) Natural Computing, Springer series, Proceedings in Information
and Communications Technology (PICT) vol. 2, pp. 23–33. Springer, Tokyo (2010)

37. MacLennan, B.J.: Morphogenesis as a model for nano communication. Nano Commun. Netw.
1(3), 199–208 (2010). doi:10.1016/j.nancom.2010.09.007

38. MacLennan,B.J.: TheU-machine: amodel of generalized computation. Int. J.Unconv.Comput.
6(3–4), 265–283 (2010)

39. MacLennan, B.J.: Artificial morphogenesis as an example of embodied computation. Int. J.
Unconv. Comput. 7(1–2), 3–23 (2011)

40. MacLennan, B.J.: Bodies – both informed and transformed: Embodied computation and infor-
mation processing. In: Dodig-Crnkovic, G., Burgin, M. (eds.) Information and Computation.
World Scientific Series in Information Studies, vol. 2, pp. 225–253.World Scientific, Singapore
(2011)

41. MacLennan, B.J.: Embodied computation: applying the physics of computation to artificial
morphogenesis. Parallel Process. Lett. 22(3) (2012)

42. MacLennan, B.J.:Molecular coordination of hierarchical self-assembly. Nano Commun. Netw.
3(2), 116–128 (2012)

43. MacLennan, B.J.: Coordinating massive robot swarms. Int. J. Robot. Appl. Technol. 2(2), 1–19
(2014). doi:10.4018/IJRAT.2014070101

44. MacLennan, B.J.: The promise of analog computation. Int. J. Gen.Syst. 43(7), 682–696 (2014).
doi:10.1080/03081079.2014.920997

45. MacLennan, B.J.: The morphogenetic path to programmable matter. Proc. IEEE 103(7), 1226–
1232 (2015)

46. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)
47. Menary, R. (ed.): The Extended Mind. MIT Press, Cambridge (2010)
48. Molnár, B., Ercsey-Ravasz, M.: Asymmetric continuous-time neural networks without local

traps for solving constraint satisfaction problems. PLoS ONE 8(9), e73,400 (2013). doi:10.
1371/journal.pone.0073400

49. Murata, S., Kurokawa, H.: Self-reconfigurable robots: shape-changing cellular robots can
exceed conventional robot flexibility. IEEE Robot. Autom. Mag. pp. 71–78 (2007)

50. Nagpal, R., Kondacs, A., Chang, C.: Programming methodology for biologically-inspired self-
assembling systems. In: AAAI Spring Symposium on Computational Synthesis: From Basic
Building Blocks to High Level Functionality (2003). http://www.eecs.harvard.edu/ssr/papers/
aaaiSS03-nagpal.pdf

51. Nemytskii, V.V., Stepanov, V.V.: Qualitative Differential Equations, Reprint of 1960 Princeton
Univ, Press edn. Dover, New York, NY (1989)

52. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th anniver-
sary edn. Cambridge University Press, Cambridge (2010)

53. Pfeifer, R., Bongard, J.: How theBody Shapes theWayWeThink –ANewViewof Intelligence.
MIT Press, Cambridge (2007)

54. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired
robotics. Science 318, 1088–93 (2007)

55. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)
56. Popa, C.R.: Synthesis of Computational Structures for Analog Signal Processing. Springer,

New York (2011)
57. Pour-El, M.: Abstract computability and its relation to the general purpose analog computer

(some connections between logic, differential equations and analog computers). Trans. Am.
Math. Soc. 199, 1–29 (1974)

58. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski
triangles. PLoS Biol. 2(12), 2041–2053 (2004)

59. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares. In: Sym-
posium on Theory of Computing (STOC), pp. 459–68. Association for Computing Machinery,
New York (2000)

http://dx.doi.org/10.1016/j.nancom.2010.09.007
http://dx.doi.org/10.4018/IJRAT.2014070101
http://dx.doi.org/10.1080/03081079.2014.920997
http://dx.doi.org/10.1371/journal.pone.0073400
http://dx.doi.org/10.1371/journal.pone.0073400
http://www.eecs.harvard.edu/ssr/papers/aaaiSS03-nagpal.pdf
http://www.eecs.harvard.edu/ssr/papers/aaaiSS03-nagpal.pdf

140 B.J. MacLennan

60. Rupp, K., Selberherr, S.: The economic limit to Moore’s law. IEEE Trans. Semicond. Manuf.
24(1), 1–4 (2011). doi:10.1109/TSM.2010.2089811

61. Santoro, G.E., Tosatti, E.: Optimization using quantummechanics: quantum annealing through
adiabatic evolution. J. Phys. A: Math. Gen. 39(36), R393 (2006). http://stacks.iop.org/0305-
4470/39/i=36/a=R01

62. Shannon, C.E.: Mathematical theory of the differential analyzer. J. Math. Phys. Mass. Institute
Technol. 20, 337–354 (1941)

63. Shannon, C.E.: Mathematical theory of the differential analyzer. In: Sloane, N.J.A., Wyner,
A.D. (eds.) Claude Elwood Shannon: Collected Papers, pp. 496–513. IEEE Press, New York
(1993)

64. Spicher, A., Michel, O., Giavitto, J.: Algorithmic self-assembly by accretion and by carving
in MGS. In: Proceedings of the 7th International Conference on Artificial Evolution (EA ‘05),
no. 3871 in Lecture Notes in Computer Science, pp. 189–200. Springer, Berlin (2005)

65. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952)
66. van Gelder, T.: Dynamics and cognition (chap. 16). In: Haugeland, J. (ed.) Mind Design II:

Philosophy, Psychology and Artificial Intelligence, revised & enlarged edn., pp. 421–450. MIT
Press, Cambridge (1997)

http://dx.doi.org/10.1109/TSM.2010.2089811
http://stacks.iop.org/0305-4470/39/i=36/a=R01
http://stacks.iop.org/0305-4470/39/i=36/a=R01

	5 Physical and Formal Aspects of Computation: Exploiting Physics for Computation and Exploiting Computation for Physical Purposes
	5.1 Introduction
	5.1.1 Post-Moore's Law Computation

	5.2 The Essence of Computation
	5.2.1 The Four Whys of Computation
	5.2.2 The Topology of Information
	5.2.3 The Topology of Information Processing
	5.2.4 Programmability
	5.2.5 Universality

	5.3 Computation for Formal Ends
	5.3.1 General Considerations
	5.3.2 Analog Computation
	5.3.3 Quantum Computation
	5.3.4 Field Computation
	5.3.5 The U-Machine

	5.4 Computation for Material Ends
	5.4.1 Programmable Materials

	5.5 Embodied Computation
	5.6 Conclusions
	References

