
Chapter 3
The Ideal Energy of Classical Lattice
Dynamics

Norman Margolus

Abstract We define, as local quantities, the least energy and momentum allowed by
quantum mechanics and special relativity for physical realizations of some classical
lattice dynamics. These definitions depend on local rates of finite-state change. In two
example dynamics, we see that these rates evolve like classical mechanical energy
and momentum.

3.1 Introduction

Despite appearances to the contrary, we live in a finite-resolution world. A finite-
sized physical system with finite energy has only a finite amount of distinct detail,
and this detail changes at only a finite rate [1–3]. Conversely, given a physical sys-
tem’s finite rates of distinct change in time and space, general principles of quantum
mechanics define its minimum possible average energy and momentum. We apply
these definitions to classical finite-state lattice dynamics.

3.1.1 Ideal Energy

It was finiteness of distinct state, first observed in thermodynamic systems, that neces-
sitated the introduction of Planck’s constant h into physics [4]. Quantum mechanics
manages to express this finiteness using the same continuous coordinates that are
natural to the macroscopic world. Describing reality as superpositions of waves in
space and time, finite momentum and energy correspond to effectively finite band-
width; hence finite distinctness. For example [3], the average rate ν at which an
isolated physical system can traverse a long sequence of distinct states is bounded
by the average (classical) energy E :
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ν ≤ 2 E/h , (3.1)

taking the minimum possible energy to be zero. Here E/h is the average frequency
of the state, which defines a half-width for the energy frequency distribution. If we
compare (3.1) in two frames, we can bound the average rate μ of changes not visible
in the rest frame, and hence attributable to overall motion:

μ ≤ 2 pv/h . (3.2)

Here p is the magnitude of a system’s average (classical) momentum, which is also
a half-width for a (spatial) frequency distribution; v is the system’s speed.

These kinds of constraints are sometimes referred to as uncertainty bounds, but
they in no way preclude precise finite-state evolution. Given rates of change, these
bounds define ideal (minimum achievable) average energy and momentum for finite
state systems, emulated as efficiently as possible (with no wasted motion or state)
by perfectly-tailored quantum hamiltonians [3, 5].

Clearly there can never be more overall spatial change μ than total change ν in
a physical evolution: this is reflected in pv/E = (v/c)2. From this and (3.2),

E ≥ (hμ/2)/(v/c)2 . (3.3)

Thus for a given rate μ of overall motional change, E can only attain its minimum
possible value if the motion is at the speed of light; then no energy is invested in rest-
frame dynamics (rest energy). In a finite-state dynamics with several geometrically
related signal speeds, to minimize all energies (3.3) the fastest signals must move at
the speed of light. If we then want to realize the dynamics running faster, we must
put the pieces of the system closer together: we can increase p in (3.2), but not v. Of
course in finite-state models of particular physical systems, realistic constraints on
speeds and separations may require higher energies.

These bounds can be used to define ideal local energies and momenta for some
invertible lattice dynamics, determined by rates of distinct change.

3.1.2 Local Change

We restrict our attention to finite-state lattice dynamics that emulate the locality,
uniformity and microscopic invertibility of physical law: invertible cellular automata
(CA). We assume the dynamics is defined as a regular arrangement of invertible
interactions (logic gates), repeated in space and time, each of which independently
transforms a localized set of state variables.

This kind of CA format, where the state variables are always updated in indepen-
dent groups, has sometimes been called partitioning CA, and encompasses a variety
of lattice formats that have been used to model physical dynamics [6–13]. It is inter-
esting that all globally invertible CA can be recast in this physically realistic format,
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as a composition of independent invertible interactions, even if the CA was originally
defined as a composition of non-invertible operations on overlapping neighborhoods
[14–16]. Historically, CA originated as physics-like dynamics without invertibility
[17–19].

Now, in the energy bounds above, only rates of change matter, not the amount of
state updated in a single operation. This is unrealistic. We can define a large-scale
synchronous dynamics, where the global rate of state change is independent of the
size of the system. Physically, total energy must be bounded by the total rate of local
changes, since each independent local update also obeys an energy bound. We resolve
this conflict by allowing synchronous definition, but counting the global average rate
of distinct change as if local updates were non-synchronous—which would in fact
be true in most relativistic frames.

There is also an issue of what not to count. For a dynamics defined by a set of
gate operations, it might seem natural to include, in the minimum, energy required
to construct the gates and to turn them on and off. This is the energy needed to
construct a perfectly-tailored hamiltonian. Here we ignore this construction energy,
and discuss the ideal case where the hamiltonian is given for free (as part of nature),
and we only need to account for energy required by state change within the dynamics.

3.1.3 Two Examples

In the remainder of this paper, we introduce and discuss two 2×2 block partitioning
CA (cf. [20]). These dynamics are isomorphic to classical mechanical systems, and
are simple enough that it is easy to compare energetic quantities, defined by local
rates of state change, with classical ones.

The first example is a scalable CA version of the Soft Sphere Model [21], which is
similar to Fredkin’s classical mechanical Billiard Ball Model [22]. This digital system
emulates the integer time behavior of an idealized classical mechanical system of
elastically colliding balls, and is computation universal. The CA is scalable in that
square blocks of ones (balls) of any size can be collided to simulate a billiard ball
computation. This model has not been published before.

The second example is a CA model of an elastic string that exhibits simple-
harmonic motion and exactly emulates the continuum wave equation at integer times,
averaged over pairs of adjacent sites. This model has been discussed before [7, 23–
25], but the analysis of overall translational motion, ideal energy, and their relativistic
interpretation, have not been previously published.

3.2 Scalable Soft Sphere CA

Many CA dynamics can be interpreted as the integer-time behavior of a continu-
ous classical mechanical system, started from an exactly specified initial state. This
is true, for example, for lattice gas models of fluids. Such stroboscopic classical
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mechanical CA inherit, from their continuous counterparts, conserved quantities
such as energy and momentum that we can compare to ideal quantities determined
by local rates of state change. Of course the continuum models we have in mind
would be numerically unstable if actually run as continuous dynamics, but this issue
is not inherited by the finite-state CA [26].

A famous stroboscopic dynamics of this sort is Fredkin’s billiard ball model of
computation, in which hard spheres moving in a plane, each with four possible
initial velocities, are restricted to a square lattice of initial positions. At each integer
time, the system is again in such a configuration. To guarantee this property without
additional restrictions on initial states, we let billiard balls pass through each other
in some kinds of collisions, without interacting.

Figure 3.1 shows a variant of this model in which the balls are much more com-
pressible, so collisions deflect paths inward rather than outward. This variant has the
advantage that it is more directly related to a simple partitioning CA (cf. [6]). In the
collision illustrated in Fig. 3.1a balls enter from the left with a horizontal component
of velocity of one column per time unit, so consecutive moments of the history of a
collision occur in consecutive columns.

The collision shown is energy and momentum conserving, and compression and
rebound take exactly the time needed to displace the colliding balls from their original
paths onto the paths labeled AB. If a ball had come in only at A with no ball at B,
it would have left along the path labeled AB̄: the collision acts as a universal logic
gate.

Figure 3.1b shows a realization of the collision as a simple partitioning dynam-
ics. Each time step in (a) corresponds to two in (b), and again particles are shown
at each integer time—drawn dark at even times and light at odd. The rule (c) is
inferred from (b), interpreting that diagram as showing the positions of two streams
of colliding particles at one moment (dark), and their positions at the next moment

AB

AB

AB

AB
A

B

(a) (b) (c) (d)

Fig. 3.1 Scalable Soft Sphere dynamics. a Stroboscopic view of continuous classical collision,
one time step per column. b Finite state collision, with particles drawn lighter at odd time-steps. c
2D partitioning rule. Only these cases (and their rotations) interact. Otherwise, all particles move
diagonally, unchanged. d 1D version of the rule
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(light). All particles move diagonally across a block, unchanged, in the cases not
defined explicitly in (c). If this rule is applied to just the dark particles in each of the
dark-bordered 2 × 2 blocks in (b), ignoring the light particles, it moves them to the
light positions; applied to just the light particles in each of the light-bordered blocks,
it moves them to the dark positions. The dynamics alternately applies the rule to these
two partitions. To also allow collisions like (b) for streams of balls arriving from the
right, top, or bottom, we define the rule (c) to have discrete rotational symmetry: in
each of the cases shown in (c), each of the four 90◦ rotations of the pattern on the
left turns into the corresponding rotation of the pattern on the right.

Note that (b) can also be interpreted as showing a time history of a collision of two
particles in a one-dimensional partitioning dynamics (the center of mass dynamics).
Then we get the rule (d), with the cases not explicitly shown interchanging the two
cell values. Three dimensional versions of the dynamics can be constructed as in [21].

It is not surprising that a time-independent continuous dynamics turns into a time-
dependent discrete partitioning. In the continuous model, balls approach a locus of
possible collision, interact independently of the rest of the system, and then move
away toward a new set of loci. The partitions in the continuous case are just imaginary
boxes we can draw around places within which what happens next doesn’t depend
on anything outside, for some period of time. Thus it is also not surprising that we
can assign a conserved energy to partitioning dynamics.

3.2.1 Ideal Energy and Momentum

For a physical realization of the SSS dynamics, let τ be the time needed for gate
operations to update all blocks of one partition, and let v0 be the average speed
at which the physical representation of a fastest-moving particle travels within the
physical realization of the CA lattice (assuming discrete isotropy).

Equations (3.2) and (3.3) define an ideal (minimum) momentum and energy for
a block in which there is a distinct overall spatial change and direction of motion.
Clearly these ideal quantities are conserved overall in collisions, since freely moving
particles move diagonally at v0 before and after. Are they also conserved in detail
during collisions?

When two freely moving particles enter a single block in the collision of Fig. 3.1b,
the number of block changes is reduced: one instead of two. The ideal magnitude of
momentum for each freely moving particle before the collision is p1 = (h/2τ)/v0.
For two colliding particles moving horizontally within a block the ideal is p2 =
(h/2τ)/(v0/

√
2) = 2p1/

√
2, which is the same as the net horizontal momentum

before the collision. Ideal energy is similarly conserved.
Note, however, that the separate horizontal motions of the + and − particles

during the next step of the collision of Fig. 3.1b imply an increase in the minimum
energy and momentum for that step. This effect becomes negligible as we enlarge
the scale of the objects colliding.
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3.2.2 Rescaling the Collision

If two columns of k particles are collided in the SSS dynamics, then the resulting
collision just shifts the output paths by k positions along the axis of the collision. This
is illustrated in Fig. 3.2a for k = 3. Thus k × k blocks of particles collide exactly as
in the classical collision of Fig. 3.1a: the SSS CA can perform logic with diagonally-
moving square “balls” of any size. When two balls of equal size meet “squarely,”
moving together along a horizontal axis, each pair of columns evolves independently
of the rest; colliding along a vertical axis, pairs of rows evolve independently. Square
balls can participate in both kinds of collisions.

During such a collision, from the blocks that change we can infer a net momentum
and hence a velocity for the motion of each colliding ball: Fig. 3.2b illustrates this for
k = 100, with the time unit being the time for a freely moving k × k ball to travel its
length (and width). Looking at just the changes in the top half of (a), we determine
the magnitude and direction of minimum average momentum for each block that
changes using (3.2), and hence determine a total momentum. Half of the conserved
total energy is associated with each ball, so v/v0 = vEball/v0Eball = p/p0 gives the
magnitude of velocity of a ball as a function of time, as number and type of changes
evolve. This is plotted in (b).

The fraction 1/γ of the total energy E that is mass energy depends on (v/c)2 =
(v/v0)

2(v0/c)2. Thus given (b), it depends on an assumption about the value of v0/c.
The fraction 1/γ , as a function of time in the k = 100 collision, is plotted in Fig. 3.2c
under different assumptions. The bottom case, v0 = c, has the greatest range but the
smallest value at all times. The top case is v0 = .2c. As expected, the faster the speed
of the fastest signals, the less the energy tied up in mass, hence the smaller the total
energy. Ideally, v0 = c.

(a) (b) (c)

Fig. 3.2 Multiple collisions in the SSS dynamics. a Colliding columns of particles are displaced
horizontally by the height of the column. b Each column is slowed down by the collision. c The
fraction of energy that is mass during a collision decreases with increasing initial particle speed v0
(from top, 20 % of c, 40 %, 60 %, 80 %, 100 %)
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3.3 Elastic String CA

In this second example we discuss a classical finite state model of wave motion in
an elastic string. This stroboscopic classical mechanical model exactly reproduces
the behavior of the time-independent one-dimensional wave equation sampled at
integer-times and locations. As in the SSS example, a continuous model is turned
into a finite state one by restricting the initial state (in this case the initial wave
shape) to a perfect discrete set of possible initial configurations, and this constraint
reappears at each integer time. In the continuum limit the discrete constraint on the
wave shape disappears; the exactness of the wave dynamics itself (at discrete times)
is independent of this limit.

The elastic string CA uses partitioning, but in a different way than the SSS CA:
here the partitioning actually constrains the continuous classical dynamics used to
define the CA, but in a way that never affects the classical energy. In the SSS case,
the time dependence associated with the partitioning completely disappears in the
continuous classical-mechanical version of the dynamics.

3.3.1 Discrete Wave Model

Consider an ideal continuous string for which transverse displacements exactly obey
the wave equation. Figure 3.3a shows an initial configuration with the string stretched
between equally spaced vertical bars. The set of initial configurations we’re allowing
are periodic, so the two endpoints must be at the same height.1 Any configuration is
allowed as long as each segment running between vertical bars is straight and lies at
an angle of ±45◦ to the horizontal.

Initially the string is attached at a fixed position wherever it crosses a vertical bar.
We start the dynamics by releasing the attachment constraint at all of the gray bars.
The attachment to the black bars remains fixed. In Fig. 3.3b the segments that are
about to move are shown with dotted lines: the straight segments have no tendency
to move. Under continuum wave dynamics, the dotted segments all invert after some
time interval τ . This will be our unit of time for the discrete dynamics. The new
configuration at the end of this interval is shown in Fig. 3.3c, with segments that have
just moved dotted. At this instant in time all points of the string are again at rest and
we are again in an allowed initial configuration. Now we interchange the roles of the
black and gray bars and allow the segments between adjacent gray bars to move for a
time interval τ . The dynamics proceeds like this, interchanging the roles of the black
and gray bars after each interval of length τ . Since attachments are always changed
at instants when all energy is potential and the string is not moving, the explicit time
dependence of the system doesn’t affect classical energy conservation.

1Unless the right and left edges of the space itself are joined with a vertical offset.
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(a) (b) (c)

Fig. 3.3 Discrete wave dynamics. Elastic string is held fixed where it crosses black bars

1 1
0 0 1 1

0 0

else, no change

(a) (b) (c)

Fig. 3.4 Discrete wave dynamics. a A wave configuration. Possible wave paths are indicated by
dotted lines. b Horizontal and vertical lines indicate one of two partitions used for discrete update
rule. A 1D array summarizing wave gradients is shown below (not part of the 2D dynamics). c
Top, dynamical rule for 2D wave. Presence of wave-path segments is indicated by 1’s. Bottom,
equivalent 1D dynamical rule for gradients

We express this dynamics as a purely digital rule in Fig. 3.4. In Fig. 3.4a we show
a wave with the black bars marking the attachments for the next step. To simplify the
figure we have suppressed the gray bars—they are always situated midway between
the black bars and so don’t need to be shown. We have also added a grid of 45◦
dotted lines that shows all of the segments that the string could possibly follow. In
Fig. 3.4b we add in horizontal black bars, in order to partition the space into a set of
2 × 2 blocks that can be updated independently. Note that in all cases the segments
that are allowed to change during this update step, as well as the cells that they will
occupy after the update, are enclosed in a single block. The long box below Fig. 3.4b
contains just the slope information from the string. This array of gradients is clearly
sufficient to recreate the wave pattern if the height at one position is known. This is
not part of the 2D dynamics: it will be discussed as a related 1D dynamics.

Figure 3.4c shows the dynamical rule for a block. Since the dotted lines indicate the
direction in which segments must run if they appear in any cell, the state information
for each segment is only whether it is there or not: this is indicated with a 1 or a 0.
The only segments that change are peaks /\ or valleys \/, and these are represented
by two 1’s at the top of a block or at the bottom of a block respectively. The rule is
that peaks and valleys turn into each other, and nothing else changes. We apply the
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rule alternately to the blocks shown, and to a complementary partition shifted half a
block horizontally and vertically.

3.3.2 Exact Wave Behavior

At the bottom of Fig. 3.4c we’ve presented a dynamics for the gradients of the wave.
The full 2D dynamics just turns peaks into valleys and vice versa, leaving straight
segments unchanged: we can do that equally well on the array of gradients. As the
2D dynamics interchanges which blocking to use, the dynamics on the gradients also
alternates which pairs of gradients to update together. In all cases, the dynamics on
the gradients duplicates what happens on the string: if the two dynamics are both
performed in parallel, the gradient listed below a column will always match the slope
of the string in that column.

The dynamics on the gradients has an interesting property. Turning a peak into a
valley and vice versa is exactly the same as swapping the left and right elements of a
block. Leaving a // or \\ unchanged is also exactly the same as swapping the left and
right elements of a block. In all cases, the dynamics on the gradients is equivalent to
a swap.

This means that the left element of a block will get swapped into the right position,
and at the next update it will be the left element of a new block and will again get
swapped into the right position, and so on. Thus all of the gradients that start off in
the left side of a block will travel uniformly to the right, and all that start in the right
side of a block will travel uniformly to the left.

This shows that the system obeys a discrete version of the wave equation. Half
of the gradients constitute a right-going wave, and half constitute a left-going wave.
At any step of the dynamics, the 2D wave in the original dynamics is just the sum of
the two waves: it is reproduced by laying gradients end to end.

If we refine the lattice, using more and more cells to represent a wave of given
width, smoother and smoother waves can be represented. Of course even without
going to a large-scale limit, the CA dynamics is already exactly equivalent to a con-
tinuous wave equation with constrained initial wave shapes, sampled at integer times:
simply stretch the rightgoing and leftgoing waves constructed out of gradients to the
full width of the lattice. This just amounts to drawing the wave shape corresponding
to each block of the current partition a little differently.

3.3.3 Overall Transverse Motion

Assume the string carrying a discrete wave wraps around the space. We’ve discussed
the horizontal motion of waves along such a string, but the string itself can move
vertically. For example, a pattern such as \/\/\/ . . . \/ all the way around the space
reproduces itself after two partition update steps, but shifted vertically by two lattice
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units. This is clearly the maximum rate of travel for a string: one position vertically
per update step. Call this v0.

We can express the net velocity of the string in terms of the populations of right-
going and leftgoing gradient segments. Let R+ be the number of rightgoing segments
with slope +1 (rightgoing /’s), and similarly for R−, L+ and L−. If the width of the
space is B blocks, then there are B = R+ + R− segments forming the rightgoing
wave, and B = L+ + L− forming the leftgoing one.

For the rightgoing or leftgoing wave, periodically repeating its sequence of gra-
dients corresponds to an unbounded wave with the same average slope. When both
waves have shifted horizontally the width of one period (after 2B partition update
steps), the net vertical shift is the sum of the slopes of the leftgoing gradients, minus
the sum for the rightgoing ones: (L+ − L−) − (R+ − R−). We can compute this by
summing the differences for each pair of slopes grouped together in the columns of
one partition. Only columns containing \/ or /\ contribute a non-zero difference,
and so we only need to count the numbers of blocks B\/ and B/\ that are about to
change, to compute the constant velocity

v

v0
= (L+ − L−) − (R+ − R−)

2B
= B\/ − B/\

B
. (3.4)

3.3.4 Ideal Energy and Momentum

Only blocks that change have overall motion, and with τ the time taken to update
one partition, the frequencies of positive and negative motion are B\//τ and B/\/τ .
Thus from (3.2), attributing a momentum to each changing block, the total ideal
momentum up is hB\//2τv0, and down is hB/\/2τv0, so the net ideal momentum
p = (h/2τv0)(B\/ − B/\). From (3.4), the corresponding relativistic energy is E =
c2 p/v = (hB/2τ)/(v0/c)2. Letting v0 → c to minimize energy, and choosing units
with h = 2 and c = 1 and τ = 1, this becomes

E = B and p = B\/ − B/\ . (3.5)

Energy is the constant width (in blocks) of the string, and momentum is the constant
net number of blocks moving up.

There is an interesting subtlety involved in letting v0 → c in the 2D dynamics. We
interpret all gradient segments as always moving, swapping in pairs in each update
in order to recover the wave equation—even though some paired segments are in
different blocks when they “swap” identical values. If all block motion forward or
backward is at the speed c, each segment must be interpreted as traveling at the speed
c
√

2 as it swaps diagonally. If instead we interpret segments as moving up and down
(or not moving), none travel faster than light, but the interaction is non-local at the
scale of an individual block.
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3.3.5 Rest Frame Energy

For the transverse motion of the string to approach the maximum speed, almost
all of the block updates must contribute to overall motion, and almost none to just
internally changing the string. This slowdown of internal dynamics is a kind of time
dilation, which is reflected in the rest frame energy

√
E2 − p2. From (3.5),

Er =
√
B2 − (B\/ − B/\)2 . (3.6)

The energy Er available for rest-frame state-change decreases as more blocks move
in the same direction. In this model total energy E is independent of v, hence rest
energy Er = E/γ must approach 0 as 1/γ → 0. This contrasts with a normal
relativistic system that can never attain the speed of light, which has a constant rest
energy Er and a total energy E that changes with v.

The analysis up to here applies equally well to both the 1D and 2D versions of the
dynamics of Fig. 3.4. In 2D, however, there is an additional constraint: there must be
an equal number B of positive and negative slopes, so that the string meets itself at
the periodic boundary. Since there are also an equal number B of right and left going
gradients, R+ = L− and R− = L+. Thus from (3.4) and (3.6),

Er = 2
√
R+L+ . (3.7)

If R+/B were the probability for a walker to take a step to the right, and L+/B
the probability to the left, then (3.7) would be the standard deviation for a 2B-step
random walk. Related models of diffusive behavior that make contact with relativity
are discussed in [24, 27, 28]. None of these define relativistic objects that have an
internal dynamics, however.

3.4 Discussion

Given the definition of a finite-state dynamics, we could try to assign intrinsic prop-
erties to it based on the best possible implementation. For example, programming it
on an ordinary computer, a basic property is the minimum time needed, on average,
to simulate a step of the dynamics. It would be hard, though, to be sure we’ve found
the most efficient mapping onto the computer’s architecture, and the minimum time
would change if we used a different computer, or built custom hardware using var-
ious technologies. The true minimum time would correspond to the fastest possible
implementation allowed by nature! Such a definition seems vacuous, though, since
we don’t know the ultimate laws of nature, and even if we did, how would we find
the best possible way to use them?
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Surprisingly, a fundamental-physics based definition of intrinsic properties is not
in fact vacuous, if we base it on general principles. Assuming the universe is funda-
mentally quantum mechanical, we couldn’t do better than to simply define a hamil-
tonian that exactly implements the classical finite-state dynamics desired at discrete
times, with no extra distinct states or distinct state change. This ideal hamiltonian
identifies the fastest implementation that ismathematically possible, with given aver-
age energy.

This procedure assigns to every invertible finite-state dynamics an ideal energy
that depends only on the average rate of distinct state change. This is generally not
much like a physical energy, though, since we haven’t yet included any realistic
constraints on the dynamics. For example, each state change might correspond to a
complete update of an entire spatial lattice, as in the synchronous definition of a CA.
Then the energy would be independent of the size of the system. We can fix this by
constraining the finite-state dynamics to be local and not require synchrony: defining
it in terms of gates that are applied independently.

We expect the ideal energy, and distinct portions of it, to become more realistic
with additional realistic constraints. For this reason, we studied invertible lattice
dynamics derived from the integer-time behavior of idealized classical mechanical
systems. In the examples we looked at, ideal energies and momenta defined by local
rates of state change evolve like classical relativistic quantities.

It seems interesting and novel to introduce intrinsic definitions of energy and other
physical quantities into classical finite-state systems, and to use these definitions in
constructing and analyzing finite-state models of physical dynamics. Since all finite-
energy systems in the classical world actually have finite state, and since classical
mechanics doesn’t, this may be a productive line of inquiry for better modeling
and understanding that world. Moreover, inasmuch as all physical dynamics can be
regarded as finite-dimensional quantum computation, finite-state models of classical
mechanics may play the role of ordinary computation in understanding the more
general quantum case.

Acknowledgments I thank Micah Brodsky and Gerald Sussman for helpful discussions.
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