
Chapter 23
On Reservoir Computing:
From Mathematical Foundations
to Unconventional Applications

Zoran Konkoli

Abstract In a typical unconventional computation setup the goal is to exploit a given
dynamical system, which cannot be easily adjusted or programmed, for information
processing applications. While one has some intuition of how to use the system, it
is often the case that it is not entirely clear how to achieve this in practice. Reservoir
computing represents a set of approaches that could be useful in such situations. As a
paradigm, reservoir computing harbours enormous technological potential which can
be naturally released in the context of unconventional computation. In this chapter
several key concepts of reservoir computing are reviewed, re-interpreted, and synthe-
sized to aid in realizing the unconventional computation agenda, and to illustratewhat
unconventional computationmight be. Some philosophical approaches are discussed
too, e.g. the strongly related implementation problem. The focus is on understanding
reservoir computing in the classical setup, where a single fixed dynamical system is
used: To this end, mathematical foundations of reservoir computing are presented, in
particular the Stone-Weierstrass approximation theorem, with a mixture of rigor, and
intuitive explanations. To make the synthesis it was crucial to thoroughly analyze
both the differences and similarities between Liquid State Machines and Echo State
Networks, and find a common context insensitive base. The result of the synthesis
is the suggested Reservoir Machine model. The model could be used to analyze
how to build unconventional information processing devices and to understand their
computing capacity.

23.1 Introduction

In a typical information processing setup a reservoir computing device implements
a mapping F from the space of time series input data � to the space of time series
output data �′,

Z. Konkoli (B)
Department of Microtechnology and Nanoscience - MC2,
Chalmers University of Technology, SE-412 Gothenburg, Sweden
e-mail: zorank@chalmers.se

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
DOI 10.1007/978-3-319-33924-5_23

573

574 Z. Konkoli

F : � → �′ (23.1)

The computation is performed in the on-line mode: At each time instance the pre-
viously “seen” time series is “inspected” by the device and an output is assigned.
In signal engineering such an object is referred to as a filter. As the time instance
moves, an input data series is converted into the output data series.

The term “reservoir computing” describes a related set of ideas for performing
computation with non-linear dynamical systems as filters. Surprisingly, despite the
fact that the idea originates from a solid mathematical background, the theory of
reservoir computing is still phenomenological in many ways. There are essentially
two perspectives that emphasize the use of either a class of systems or a single system.
These perspectives are strongly related, and in the literature are often treated as one
concept. This can cause a great deal of confusion since implicit context dependent
assumptions are frequently made. For example, when envisioning applications, one
often assumes the one-system perspective and, yet, when discussing the expressive
power of the same system the other perspective is assumed (without rigorous jus-
tification). This is one of the reasons why the theory of reservoir computing is still
phenomenological.

In the following, the distinction between the two perspectives will be kept explicit.
The one-system setup will be referred as the classical setup of reservoir computing,
since this perspective is often (implicitly) assumed in the literature when applications
are discussed:

A reservoir computer consists of a dynamical system, a reservoir, and an
interface that extracts the information stored in the internal states of the system,
a readout layer. If the configuration space of the system is complex enough,
various inputs to the system can drive the system to different regions of the con-
figuration space, which represents computation. The result of the computation
is extracted by the readout layer.

As a paradigm, reservoir computing addresses the natural question whether and
under which conditions an arbitrary system can be used for advanced information
processing applications. The outcome depends on which choices are available, e.g.
whether it is possible to choose among many systems or, if only one system is avail-
able and how adjustable it actually is. The key foundation of the reservoir computing
field is an insight that this indeed can be done, regardless of the perspective assumed.
If the following conditions are met the reservoir computer could be used to compute
in principle anything1:

1While such machines are expected to be able to implement a broad class of information processing
tasks, they are not Turing universal. There is no obvious way of establishing that such machines
have infinite expressive power, at least not in the strict sense of the word. For example, one would
have to provide a construct to realize a universal Turing machine using reservoir computing. The
abstract concepts such as “the tape” or “the reading head” are not easily realized in this context.

23 On Reservoir Computing: From Mathematical Foundations … 575

The properties that guarantee that the system can be used for reservoir
computing are usually referred to as (i) the separability, (ii) the echo state, and
(iii) the fadingmemory property. Such systemare referred to asgood reservoirs.
Further, the readout layer should possess the (iv) the approximation property.

The goal will be to re-interpret the above requirements by adopting a practical
point of view assuming that the aim is to actually construct a reservoir device from
a given dynamical system. This classical scenario is ubiquitous in unconventional
computation.

The Promise of Reservoir Computing

As a paradigm, reservoir computing might have an enormous technological poten-
tial. Property (iv), the approximation property, might be hard to realize for readout
layer implementations that are not done in-silico. However, properties (i-iii) appear
generic. Many systems might exhibit such behaviors.2 Should this be really true, the
idea of reservoir computing could have enormous practical implications for a range
of information processing technologies.

It is possible that there are many systems that can be used for advanced
information processing in the reservoir computing context, but are simply over-
looked since they have never been studied that way.

However, it is not yet clear whether the field of reservoir computing can live up to
its technological promise. There are two pertaining issues. First, to verify rigorously
whether the system of interest (a reservoir) has properties (i–iii) is a highly non-
trivial task. This is a serious obstacle towards understanding which systems might
be used for reservoir computing. Second, the theory of reservoir computing has not
been developed enough.

The requirements (i–iii) cannot be expressed in clear engineering terms
since they are a direct translation of the related mathematical formulations
which are simply impractical for engineering applications. This is another
reason why the theory of reservoir computing appears phenomenological. It
is necessary to understand and re-interpret the existing reservoir computing
mathematical background to bridge towards the engineering side.

A brute-force strategy for finding suitable reservoir systems is to simply start
checking for every conceivable system whether the properties exist. Eventually, by

2For example, systems with the dynamics that is (a) chaotic-like or input sensitive (to ensure the
separation property), or (b) with some sort of friction or energy dissipation (to ensure the echo state
or equivalently the fading memory property).

576 Z. Konkoli

studying many such systems one should be able to generalize and gain an under-
standing of which systems might have such properties. The main problem with the
strategy is that it is in general very hard to judge whether an arbitrary system has
indeed the required properties. There are several reasons for that. From the strict
mathematical point it is possible to rigorously define when the system possess the
separation property. However, despite the presence of the mathematical rigor, the
validity check is not straight forward since there is simply no universal procedure
for performing the check in practice. Further, when engineering reservoir comput-
ing systems, one can ask: how much should the system separate inputs? Is there a
tolerance range (a resolution) which is acceptable? In general, the issues related to
accuracy, tolerance to damage or noise, have not been extensively addressed in the
reservoir computing literature.

The goal of this chapter is to provide the necessary overview of key mathematical
concepts, and take them as a starting point to develop a suitable theory and the
related strategies for building reservoir computing systems, which could provide
some generic guidance for the related engineering efforts. Several practical principles
will be discussed throughout the text. The text is organized as follows.

• A brief history of reservoir computing is presented in Sect. 23.2, together with
some key mathematical concepts. The section contains a discussion about the two
most common up to date implementations of the idea: Liquid State Machines and
Echo State Networks.

• Section23.3 contains the definition of the Reservoir Machine concept. The defin-
ition is a mathematical formalisation of what reservoir computing in the classical
setup is. The relatedmathematical concepts serve as the foundation for the analysis
in the sections that follow.

• The technological promise of reservoir computing is discussed in two subsequent
Sects. 23.4 and 23.5, each inspired by two different perspectives:

– Section23.4 contains a discussion on the relationship between reservoir com-
puting and philosophy of computation, and in particular the implementation
problem.

– Section23.5 analyzes the mathematical foundation of reservoir computing, the
Stone-Weierstrass approximation theorem. This section contains a formal math-
ematical background that is necessary for understanding reservoir computing
on one hand, and understanding how to build reservoir computers on the other.
The section also contains some examples of how the theorem can be used.

• Section23.6 contains a discussion of how the technological potential of reservoir
computing could be realized in practice. It contains a set of practical guidelines
that, if adhered to, could enable us to build powerful reservoir computers.

• The concluding Sect. 23.7 contains a brief discussion of several key theoretical
concepts that one should learn to command (understanding, implementation, and
exploitation). If we are able to do that, the “prophecy” of reservoir computing
might be fulfilled.

23 On Reservoir Computing: From Mathematical Foundations … 577

23.2 A Brief History of Reservoir Computing

Reservoir computing was independently suggested in [1, 2] and [3–5]: These studies
introduced the concepts of Liquid State Machines (LSMs) and Echo State Networks
(ESNs) respectively. Both focused on explaining some specific features of neural
network dynamics. TheLSMandESNconceptswere further developed and exploited
thereafter, e.g. as discussed in the reviews [6, 7].

After being initially suggested, the concept has been exploited in a range of appli-
cations. The web-site [8] dedicated to reservoir computing contains an excessive list
of references. Since this book chapter is not a review paper the reader is directed
to these sources for additional information. To illustrate the flexibility of the con-
cept, a few more recent examples that exploit different reservoirs can be mentioned:
reservoirs made of memristor networks have been considered in for pattern recogni-
tion [9, 10] or harmonics generation [11], photonic systems as reservoirs have been
discussed in [12–14], etc. For a more detailed discussion on various reservoirs that
have been considered please see [15] and references therein. The field seems to be
exploding and reviewing all possibilities that have been investigated in the literature
is out of the scope of this book chapter.

Surprisingly, since the original publications, three are very few studies that address
the fundamental (conceptual) side of the problem. For example, one might wonder,
what are the limits of reservoir computing? or what is the computing capacity of such
devices? and ultimately, how to increase it? A few examples of such studies can be
found in [12, 16–20] but there seems to be a gap in the literature, as this fundamental
side of the problem is not attracting extensive attention. In particular, there seem to
be a lack of interest in themathematical foundations of reservoir computing, which is
strange given that these play a prominent role in formulating the concept. One of the
goals of this book chapter is to remedy this situation by re-visiting the mathematical
foundations of reservoir computing.

For historical reasons, in the literature, the reservoir computing concept is assumed
to be synonymous with Liquid State Machines and Echo State Networks. Despite
being related, these two models emphasize slightly different perspectives. The LSM
model is formulated for a class of systems, while the ESNmodel emphasizes the clas-
sical (one system) perspective. Both approaches assume a strict separation between
the dynamical system (the reservoir) and the readout layer (the interface), where the
reservoir carries the full burden of computation.

Liquid State Machine(s)

Liquid State Machine is a model of computation with, in principle, the expressive
power of the Turing machine. The expressive power follows directly from the use
of the Stone-Weierstrass approximation theorem and the assumption that there is
whole class of devices (machines) to choose from that implement the assumptions of
the theorem. The Stone-Weierstrass approximation theorem strongly emphasizes the
concept of the algebra of functions. In some sense, the LSMmodel is the most direct
implementation of the Stone-Weierstrass approximation theorem in the context of

578 Z. Konkoli

time series information processing. This is exactly the reason why one assumes the
existence of a class of machines (the base filters) that realize an algebra of continuous
filters.

Echo State Network(s)

The echo state network approach strongly adopts the classical perspective of reservoir
computing with a focus on a chosen dynamical system. The concept was suggested
to be able to explain the observation that random networks can be made to perform
computation by using a somewhat “lighter” training procedure. This insight is a result
of numerous numerical investigations of recurrent neural networks. The background
to the echo state network idea is the realization that it is not necessary to train the full
network, but only a smaller part consisting of the outer (interface) layer of neurons.
To train the interface part it is sufficient to use very simple methods, e.g. the linear
regression or similar.

Are These Two Approaches Similar?

In the literature no formal distinction is made between the two approaches, which
might seem rather confusing: Strictly speaking the two perspectives are not identical.
However, there is a deep connection between the two perspectives due to the fact that
a single complex dynamical system can harbor many smaller subsystems. If these
small subsystems are coupled, their dynamics will be also complex. In this way
a single complex system can implicitly represent a class of smaller “mini/micro-
reservoirs”. A typical example is an artificial neural network with many neurons or
groups of neurons.

23.3 One-System Reservoir Computing: Reservoir
Machine

The classical reservoir computing setup, where the goal is exploit a single dynamical
system for computation, can bemathematically formalized as follows. The dynamical
system is normally referred to as a reservoir R. The reservoir needs to be equipped
with a readout layerψ, which is used to probe the states of the reservoir. The reservoir
and the readout layer define a reservoir device.

To be able to describe information processing features in exactmathematical terms
the phrase reservoir (computing) machine will be used to indicate that a reservoir
has been assigned a readout layer (possibly optimized for a specific information
processing task). Mathematically, a reservoir machine M is an ordered pair that
consists of the reservoir and a readout layer

M = (R,ψ) (23.2)

23 On Reservoir Computing: From Mathematical Foundations … 579

In this construction the only variable (adjustable) part of the machine is the readout
layer ψ. From the engineering perspective a key challenge is to actually construct a
suitable readout layer ψ and train (adjust) it. If the readout layer is simple in some
sense, it should be easily trainable.3

23.3.1 Reservoir R

A reservoirR is a dynamical system that evolves in time and can respond to external
inputs. The input is assumed to exert a direct influence on the internal (microscopic,
mesoscopic, or macroscopic) degrees of freedom of the reservoir. For theoretical
modeling, the time variable t can be both discrete, t ∈ Z, or continuous, t ∈ R,
depending on which type of dynamics seems more appropriate.

The input consists of time data series. Formally, a data series u is a mapping

u : R → U or u : Z → U

that assigns to each time instance t a value taken from a set U. Typically, the set
U is taken to be a bounded subset of R

n , e.g. a point in the set is given by u ≡
(u1, u2, . . . , un) where each ui ∈ [umin, umax] is taken from an interval on the real
line; umin, umax ∈ R. The time variable can be used to “index” all values in the series
by evaluating u(t). Further, let

x ∈ S

denote an internal degree of freedom (a state) of the reservoir, where S denotes
the space of all possible states of the system. The variable x could be treated as an
observable: It does not necessarily have to represent amicroscopic degree of freedom,
like a position of a molecule. It could be also a variable like the temperature, or the
concentration profile.

The dynamics of the system is governed by an evolution operator that describes
how the internal state of the system x(t) changes in time under the influence of the
external input u(t). A typical continuous model is stated as

dx(t)

dt
= H(x(t), u(t)) ; t ∈ R (23.3)

and a typical discrete model is given by

xt = H(xt−1, ut) ; t ∈ Z (23.4)

3Naturally, this cannot be taken for granted as the computational simplicity does not necessarily
imply that the system is easily adjusted in engineering terms.

580 Z. Konkoli

where H(x, u) denotes a multi-variable function that governs the dynamics of the
system. To make the notation simpler the same symbol H has been used in both
equations.

Note the difference in notation for the continuous and the discrete time dynam-
ics, e.g. u(t) versus ut , and x(t) versus xt . In the following the symbols q(t) with
q ∈ {x, u} will be used when discussing both continuous and discrete systems. The
symbols qt with q ∈ {x, u} will be used exclusively for discrete systems.

The machine performs computation by changing its internal state under the influ-
ence of the input. The internal state of the system at each time instance depends on
the whole history of previous inputs. In signal engineering, such a system is referred
to as a filter. It maps input time series u(t) into another times series x(t). Thus the
reservoir can be seen as an implementation of the filter

u → x = R(u) (23.5)

where the individual sequence values can be inspected as x(t) = R(u)(t).4 The same
symbol is used to denote the physical reservoir and themapping (the filter) it realizes.

23.3.2 Readout-Layer ψ

Every reservoir is expected to be equipped with a readout layer ψ. The readout layer
should not process information in any substantial way. It should be only used to
assess the information stored in the dynamical system.

What is the complexity ofψ thatwe can allow and still be able to claim thatψ is not
doing any substantial computation? This is of course a complicatedmathematical and
philosophical problem. Please see [21] for a possible answer to this question. In the
reservoir computing context it is naturally resolved by claiming that the computation
should be done instantaneously. The readout function should not be a filter in the
strict engineering sense. The function per se should not accumulate any memory. It
should only “see” history through x .5 Mathematically, these principles are expressed
as follows. The readout layer is used to extract the output of computation o(t), i.e.
by “inspecting” the value of x(t) at each time instance t :

o(t) = ψ(x(t)) (23.6)

The symbol ψ(x) denotes a multi-variable function that provides a mathematical
description of the readout layer.

4Note that it would be wrong to use R(u(t)).
5For complex systems, x(t) is expected to contain a very long list of values and, in principle, a lot
of history could be stored in x .

23 On Reservoir Computing: From Mathematical Foundations … 581

23.3.3 Reservoir Machine as a Model of Computation

The Filter Implemented by the Machine M

Taken together, each machineM realizes the related function (filter) F that maps an
input sequence u into the output sequence o:

u → o = F(u) (23.7)

The values of these sequences can be inspected at each time instance t as o(t) =
F(u)(t) ≡ ψ(R(u)(t)).6 In what follows no formal distinction will be made between
the machine and the filter it implements, andM will be used in place of F except in
situations when a confusion might arise.

Configurability of the Readout Layer Generates a Class of Machines

It will be useful to considers a collection of all machines that are obtained from a
fixed but otherwise arbitrary reservoir R and all possible readout layers:

M = {M ≡ (R, ψ) : ψ ∈ �} (23.8)

The collection of machines M is generated by the reservoir and will be referred
to as a programmable reservoir machine. Once a particular readout layer has been
chosen (engineered) it will be referred to as a programmed reservoir machine, or
just a reservoir machine. Thus Reservoir Machine can be viewed as a model of
computation. It is clearly not a universal model of computation. Its computing power
comesmostly from the reservoir, which is “frozen”: In the LSM construct it is always
allowed to choose among different reservoirs. In the ESN model, this is sometimes
allowed, and sometimes forbidden. In the Reservoir Machine model it is always
forbidden.

23.4 The Technological Potential of Reservoir Computing:
Lessons from Philosophy of Computation

Hilary Putnam suggested a construction of how to use any object to implement
any finite state automaton [22]. The statement is a paradox: even a rock should
be able to compute anything. The recent advances in understanding the relatively
novel approach to information processing, the reservoir computing paradigm, seem
to indicate that this seemingly absurd idea is not without merits.

6Note that here we do not use ψ(R(u))(t). That would be incorrect, given the assumption that the
readout layer ψ should not accumulate any information from the past. The notation �(x) implies
that � acts as a filter, which is clearly not the case according to the definition.

582 Z. Konkoli

23.4.1 Putnam’s Construction

Understandingwhich dynamic properties guarantee information processing ability is
a highly complex problem.As an example, to appreciate the difficulties associatewith
the problem, consider the following example. Can a rock compute? An engineer’s
answer would very likely be “no”, which is also the common intuitive expectation.
Interestingly, a philosopher’s answer is “yes”. This begs a question: Which one is
correct? Probably both.

One of the key issues that the philosophy of mind tries to address is whether
the human brain implements an automaton. If yes, then different states of mind are
just different states of the automaton, e.g. as summarized in [23]. As a response
to this thesis Hilary Putnam [22] provided a construction through which it can be
shown that even a simple object as a rock can be made to implement any finite
state automaton. This rather absurd conclusion was the very reason why Putnam
considered the construction. He used it to show that the notion of computation needs
to be restrained when discussing philosophy of mind. Clearly, just the ability to
compute cannot be used to define what a mind is. In this context, the notion of
computation is simply too broad, as any object seems to be able of performing it.
Nevertheless, the statement is a paradox that illustrates an important principle, and
a way of thinking about computation, and especially unconventional computation.

23.4.2 A Thought Experiment

Putnam’s construction and the reservoir computing idea are strongly related. What
would happen if Putnam’s idea were taken out of context and applied in the context
of reservoir computing? Assume that the goal is to use the rock as a reservoir. Note
that Putnam’s rock is taken grossly out of context, but such a possibility can be
envisioned, and servers the purpose of illustrating an important point.

The Rock can Compute but an Auxiliary Interface must be Used

Putnam’s construction has been criticized from many angles (cf. [24–26] and ref-
erences therein). The most common argument against the construction states that
to implement a complex automaton on a rock, large auxiliary equipment would be
needed. At the end, the actual computing would be done by the auxiliary equipment
and not by the rock. This is certainly a valid argument and extremely useful for
understanding the reservoir computing idea.

Rock can be used for computation in principle, but this is hard to achieve in
practice. This particular line of criticism against Putnam’s construction indicates
that when discussing computing ability of a dynamical system, it is very important
to distinguish between the system per se and the interface that the system might be
equipped with to achieve information processing.

23 On Reservoir Computing: From Mathematical Foundations … 583

The Interface is Equally Important as the Reservoir

This further implies that it is very important to understand how to interface the system
properly, and how to mathematically describe the interface and gauge its computing
power versus the computing power of the system. This line of reasoning has been
explored in [21] which contains an example of how these ideas can be formalized.
Interpreted in this vein, the thesis of reservoir computing states implicitly that the
interface cannot be too complex. This is exactly the reasonwhy either a simpler linear
readout algorithm or an easily trained perceptron networks is used as the interface in
the context of reservoir computing. Clearly, by using an auxiliary equipment the rock
could be turned into the system that has the desired properties, but this equipment,
very likely, will never be classified as a “simple readout layer”.

How to Judge Whether a Given System has the Key Properties?

The properties seem so generic that it seems reasonable to assume that many physical
systems can perform computation, even the systems which were not specifically
designed by humans for that purpose. In that sense the original construction by
Putnam has some practical relevance. This connection between Putnam’s paradox
and the idea of reservoir computing has been already pointed out in [27]. The rock
is certainly not one of these systems. From the reservoir computing perspective, a
rock cannot compute, as it lacks these key properties.7

23.5 The Technological Potential of Reservoir Computing:
Lessons from Mathematics

The problem of a suitable approximation is probably as old as mathematics itself. In
the particular case that deals with the problem of approximating an arbitrary function
with a fixed class of functions, the approximation problem has a solution with a
surprisingly elegant formulation. The theorem is one of the foundations of reservoir
computing, and the structure of the theorem will be discussed in the following.
An attempt will be made to present a deeply mathematical subject by emphasizing
intuitive reasoning.

The theorem is normally referred to as the Stone-Weierstrass approximation
(SWA) theorem (SWAT). Behind the simple formulation of the theorem hides an
enormous application potential. The theorem has been used frequently in both math-
ematics and engineering to analyse approximation properties (the computing capac-
ity) for plethora of systems. It is somewhat surprising that is has not been used
excessively in unconventional computation too.

7Note that this statement might be an oversimplification. For example, imagine that there is simple
readout layer that can access the internal states of the rock. Then the rockmight still have the desired
properties.

584 Z. Konkoli

First, the theorem will be stated in its most general abstract form. The initial
abstract formulation is useful when proving the theorem and, most importantly, it is
useful for analysing unconventional computation applications, as will be illustrated
in the following sections. Perhaps one of the reasons why the theorem has not found
its way into unconventional computation is that it is very likely incomprehensible
to somebody not versed in advanced analysis. Accordingly, the abstract formulation
will be augmented by discussing the key components of the theorem to provide
more intuitive formulations and facilitate its use in the unconventional computation
context. Second, a version of the theorem will be provided as used by engineers.
Third, while being an extremely useful tool, the theorem has its limitations, which
will be discussed too.

A note on notation: In this section various metric spaces are discussed. Naturally,
the most important “metric” space of interest is the space of input sequences�.8 The
elements of this space should be labeled by the symbol u. However, in this section
a temporary change of notation is made, to make the connection with the existing
mathematical literature more explicit: It is a custom to label elements of a metric
space by using the symbol x .9

23.5.1 A Rigorous Mathematical Formulation
of the Theorem

Theorem 1 (Stone-Weierstrass—the first version) Let A be an algebra of continu-
ous functions that map from a compact metric space � to the set of real numbers R.
Let elements ofA separate points, and let there be a constant function in the algebra.
Let C(�, R) denote the set of all continuous functions that map from � to R. Then,
A is dense in C(�, R).

Some of the concepts used in the above formulation of the theorem are explained
below. The explanations that follow are not provided solely to educate the reader
regarding the theorem per se, but they are essential for understanding the reservoir
computing idea, and for practical applications of the theorem. In particular, from the
discussions that follow it should be clear which mathematical properties a physical
system must possess that would render it useful for computation. Later on, these
abstract mathematical properties will be discussed from a practical point of view
(e.g. when building such devices). Several examples will be provided that illustrate
how these mathematical concepts might manifest themselves in applications.

Definition 1 When does the set of functions form an algebra? Formally, this is
stated as follows. Let A and � be as in the theorem above. The set of functions

8Here the quotation marks are used since � is not a metric space for any norm. To turn it into a
metric space a special norm has to be used, as discussed later.
9The reader can substitute u in place of x whenever in doubt regarding howmathematical statements
discussed in this section relate to the discussion on reservoir computing contained in other sections.

23 On Reservoir Computing: From Mathematical Foundations … 585

A = {a|a : � → R} forms an algebra when for any pair of elements a, b ∈ A, the
combinations a + b, ab, and wa with w ∈ R are also in A, where (a + b)(x) ≡
a(x) + b(x), (wa)(x) ≡ wa(x), and (ab)(x) ≡ a(x)b(x) for every x ∈ �.

An algebra of functions is a slight extension of the concept of the vector space of
functions. In addition to the usual vector operations (the addition and multiplication
by a constant), to form an algebra, the set of functions needs to be closed with regard
to the pairwise multiplication operation as well.10 Further, it is somewhat surprising
that the presence of a constant function is explicitly required. An example will be
provided later on to illustrate why this property is important.

This closure property is an important property of an algebra that makes
it useful for analysing expressive power of the algebra (e.g. it approximation
power, in the mathematical sense of the word), and for analysing unconven-
tional computing devices (e.g. their computing capacity).

Definition 2 What does it mean for an algebra to separate points? Let A and � be
as in the theorem above. Algebra of functions A separates points if for every two
elements x1, x2 ∈ � that are different, x1 �= x2, an element in the algebra g can be
found such that g(x1) �= g(x2).

This is another important property of the algebra that is necessary for approximation
purposes. Note the particular form of the requirement. For example, it is not required
that two distinct elements from the algebra are found such that g1(x1) �= g2(x2), or
such that g1(x1) �= g2(x1) and g1(x2) �= g2(x2). The condition used in the definition
is a rather mild in the sense that it is not too restrictive on the algebra.

The separation property should be checked for a given pair of points, one
at a time. Once the pair has been fixed, the user of the theorem needs only to
find an element in the algebra that will satisfy the condition. In principle, if
different pairs of points require different elements is of no concern. However,
there must be enough elements in the algebra: The real difficulty is in checking
that this can be done for every pair of points. Later on, it will be shown that
this transforms into an important engineering requirement.

Definition 3 What does it mean thatA is dense inC(�, R)? By definition, it means
that Ā = C(�, R), where the symbol Ā denotes the closure of the algebra A. The
closure of A is defined as the smallest closed set that contains A.

For someone without a background in point-set topology this statement might not
make much sense. Thus alternative more intuitive definition will be provided.

10Note that we do not require that the set is closed with respect to the composition operation a ◦ b
with (a ◦ b)(x) = a(b(x)). In here, ab does not refer to a ◦ b.

586 Z. Konkoli

Definition 4 Intuitively, one should think of Ā as the set of all functions that can
be approximated by elements in A. Now it becomes clear that the statement Ā =
C(�, R) implies that under the assumed conditions the algebra can approximate any
function.

Thus there are two definitions of the closure, as the smallest closed set containing
A and as a set of functions that can be approximated by elements in A. To see that
they are equivalent requires a bit of work.

First, it is necessary to assume thatA forms a metric space. For any two elements
a and b in A one must be able to compute the distance between these two elements
ρ(a, b). Any algebra of continuous functions supports the natural sup norm metric,

ρ(a, b) ≡ sup
x∈�

|a(x) − b(x)| (23.9)

This is a very sensitive measure of similarity, as the difference is checked at every
point. With the ability to measure the distance between any two elements one
can define what a convergence is by using the standard arguments: A sequence
a1, a2, a3, . . . , an, · · · of elements in A converges to a∗ if for every ε > 0, an index
n(ε) exists such that n > n(ε) guarantees that ρ(a∗, an) < ε.

Second, ifA is a metric space, its closure Ā can be defined as the set of all possible
limits that can be obtained by considering all converging sequences made by using
elements from A,

Ā ≡ {a∗| lim
n→∞ an = a∗, an ∈ A} (23.10)

This is a rigorous theorem in mathematics. It is not obvious, and it requires some
thinking to show that this is true (regardless of the fact that the proof consists of few
lines [28]). The statement above implies that if a function f is in Ā, then for every
ε > 0 there is an element a in A such that

|a(x) − f (x)| < ε (23.11)

The approximation is uniform, it holds for every x ∈ �. Equation (23.11) follows
from the definition of convergence and (23.10). For any f ∈ Ā a convergent sequence
{an}n=0,∞ can be constructed. Take the first element in the sequence for which
ρ(an, f) < ε. This element defines the a in the equation above.

The above formulation of the SWA theorem does not feature the interface (the
readout layer). However, the interface that is used to read internal states is an impor-
tant part of the device. Alternatively, to emphasize the presence of the interface the
following formulation of the theorem might be more useful.

Theorem 2 (Stone-Weierstrass—the second version) Let B be an algebra of con-
tinuous functions that map from a compact metric space � to the set of real numbers
R. Let elements of B separate points. Let P denote the algebra of multivariate poly-
nomials with d variables. Let C(�, R) denote the set of all continuous functions that
map from� toR. Then, for every accuracy requirement ε > 0, and every continuous

23 On Reservoir Computing: From Mathematical Foundations … 587

function f ∈ C(�, R) elements b1, b2, . . . , bd ∈ B and the polynomial p ∈ P can
be found such that | f (x) − p(b1, b2, . . . , bd)(x)| < ε for every x ∈ �.11

This formulation is the one that is often used in the context of reservoir computing,
since in some situations this formulation is more practical. Note that in the above
statement of the theorem there are less restrictions on the algebra since only separation
property is required, no constants are needed. The constants are, of course, included
in the algebra of polynomial functions.

Further, the two versions of the theorem point to the issue that was discussed pre-
viously. How to balance the computing power of the reservoir, versus the computing
power of the interface? For example, one might focus on linear interfaces instead,
then the question is whether a linear combination of d elements in A can be found
in place of a in Eq. (23.11), e.g. a(x) = ∑d

i=1 wiai (x). As ε is made smaller the
number of elements d that have to be taken in the weighted sum are expected to
increase.

In brief, the Stone-Weierstrass approximation theorem states that if an alge-
bra of continuous functions that maps from a compact metric space � to real
numbers separates points and contains constant element 1, then it can approx-
imate any continuous function on � uniformly.

Proof The proof of the SWA theorem is a constructive proof, and can be found
in many textbooks, e.g. cf. [29]. It usually extends over several pages of text (if all
concepts are defined from scratch). The proof will not be presented in here. However,
a few interesting steps, from the reservoir computing perspective, will be commented
upon. These will be returned to later in the text, but from a more engineering-like
perspective.

The proof of the theorem outlines a procedure (an algorithm essentially) of how
to approximate an arbitrary continuous function using the elements in the algebra.
As one goes through the procedure it is important to check that every step in the
algorithm is valid, which is ensured by the assumed conditions in the theorem. More
specifically, the recipeworks by showing that any f ∈ C(�, R) can be approximated
at two arbitrary points, and exploiting this fact to show than a uniform approximation
can be found everywhere. For this procedure to work, the following requirements
must be met:

• The two point approximation procedure discussed above: This is the reason why
the presence of the constant function in the algebra is important. It is needed to
show that any continuous function can be approximated at any two points by the
elements from the algebra by exploiting a linear-like interpolation and requiring
thatw11(x) + w2g(x) = f (x) at x = x1, x2 where 1 denotes the constant function.

• All functions of the algebra must map from a compact domain. This is used to
claim that various parts of the domain can be covered by a finite number of open

11Here naturally, the expression p(b1, b2, . . . , bd)(x) is interpreted as p(b1(x), b2(x), . . . , bd (x)).

588 Z. Konkoli

sets. This step is necessary to be able to cover all � space by patches where the
pairwise approximations work well.

• The algebra property, in particular the closure with regard to multiplications, is
used to show that Ā forms a lattice (in the mathematical sense of the word), i.e.
that min and max operations are possible on functions. These are used to switch
to different functions when the patches are changed to stay ε-close to the target
function.
�

23.5.2 A Few Application Examples of the Theorem

To illustrate the power of the theorem several applications of the first version of the
theorem will be illustrated. Each example was chosen to illustrate a particular aspect
of the theorem.

The use of the theorem can appear at odds with its formulation, in the
sense that it is hard to build an intuition of what is going on behind the scenes
when the conditions of the theorem are being checked. The examples below
illustrate the fact that the procedure of checking for the separation property lies
completely outside of the theorem, and is a challenging problem on its own.

Example: All Polynomials on a Finite Interval� = [0, 1]
Consider all continuous functions on a finite interval � = [0, 1], and an algebra of
polynomials on that interval. The goal is to see whether it is possible to approximate
any continuous function on the interval by using polynomials. It is a well-known
result that this is possible (the Weierstrass approximation theorem). It is straight
forward to show this using the SWA theorem. The set of all polynomials clearly
forms an algebra. The algebra contains a constant element (in fact infinitely many
such elements). The algebra also separates points, since any linear polynomial, e.g.
p(x) = x , works for every pair of points.

Example: The First Ten Legendre Polynomials (Defined on� = [−1, 1]
This set does not form an algebra. For example, the product of the tenth polynomial
with itself is not in the algebra. This algebra cannot approximate all functions since
it is not closed with respect to the multiplication operation.

Example: Polynomials without Constant Term on a Finite Interval� = [0, 1]
Note that every such polynomial vanishes at x = 0. It can be shown that such poly-
nomials can approximate all continuous functions on � that vanish at the origin.

23 On Reservoir Computing: From Mathematical Foundations … 589

However, such polynomials cannot approximate all continuous functions on �. This
example illustrates why the presence of the constant function 1 in the algebra is
important.

Example: An Algebra of Predicate Based Functions on the Interval� = [0, 1]
Assume that all functions in the algebra are defined by using logical predicates.
Every predicate is a Boolean formula that features x and some constants. For
example, a predicate function could be the Boolean expressions π1(x) = x > 1,
π2(x) = sin2(x) + cos(x) == 0, or π3 = π1(x) ∧ π2(x). Let the elements in the
algebra a be defined by considering all possible predicate functions. Each predicate
function defines the algebra element as a(x) = 0 (1) when π(x) = F (T) where F
and T stand for false and true logical values. Can this algebra be used to approximate
all continuous functions on the interval? Unfortunately, the theorem cannot be used
since this algebra of functions is not continuous. Clearly, in the present form, the
theorem has its limitations.

Example: Polynomials on� = (−∞, t] with t ∈ R

In this case the domain is not compact. The theorem cannot be used. It does notmatter
which algebra of functions is considered. We shall return later on to this example
when the fading memory property will be discussed.

23.6 Realizing the Technological Potential:
From Mathematical Concepts to Practical
(Engineering) Guidelines

How to build reservoir computers with powerful information processing abilities?
The elegance of the LSM formalism is an illustration of how the SWA theorem can
be used to understand the expressive power of a class of machines. How can one do
the same in the classical reservoir computing setup? when only one system can be
used to build a reservoir computer.

Motivated by the LSM and ESN setups it is tempting to consider two options: (i)
build a class of dynamical systems that can be combined, or (ii) use a sufficiently
complex single dynamical system.12 Both approaches have its merits. The success
of the CMOS technology is strong evidence in favor of the first approach. The key
technological feature of the CMOS paradigm is that one can exercise full control
of the construction process, down to the tiniest component that contributes to the
overall information processing ability of the system. However, this control cannot
be often exercised in the context of unconventional (natural) computation, where
one can only control some selected parts of the system but not all its components.

12Used in this way, the LSM and ESN concepts are taken slightly out of context. They were
introduced as models of computation, a tools to study specific features of neural network dynamics.

590 Z. Konkoli

For example, in molecular computing it is very challenging to control individual
molecules. For unconventional computing applications the secondoption seemsmore
relevant. Accordingly, the following text emphasizes the classical (one-) reservoir
computing paradigm.

This section discusses how to bridge from the abstract mathematical context of
the SWA theorem towards a more engineering like setup when the goal is to build
an actual device, a reservoir machine. This is done by carefully analyzing how the
conditions of the SWA theorem can be met for an arbitrary reservoir machine, and
how these conditions can be engineered in practice. This section is not meant to be
a historical overview of the reservoir computing method (though a part of the text
follows the historical development of the field), but rather aims to provide a synthesis
of it from a practical point of view.

If one were to interpret the Stone-Weierstrass theorem in a broader, more
engineering like context, it would appear that the following reasoning and the
resulting hypothesis seem feasible: If a physical system can realize an algebra
of functions that separate points, then it should be possible to use the system
to compute in principle anything. It is possible that both requirements are
naturally realized by physical systems at microscopic level, and for complex
systems at even higher levels (meso-, macro-scales). The hypothesis is that
the technological potential of reservoir computing can be indeed “released”:
Provided there are readout layers that can resolve such microstates, there are
no a priori reasons why powerful reservoir computing devices could not be
realized.

The possibility that the hypothesis is actually true is too important to be ignored.
It might change the way we think about information processing and have profound
impact on information processing engineering. It is important to understand whether
this agenda can be realized in practice, and if not, where the limitations are. This
section is an interpretation of the SWA theorem in the technological context of
reservoir computing in the classical setup. The goal is to provide a set of broad
guidelines of how reservoir computers could be engineered and which requirements
should be met in order to turn them into powerful information processing devices.
Some open problems are pointed out too.

23.6.1 Existence of the Filter

The first and the most important question is whether any dynamical system realizes
a filter. This cannot be taken for granted since the system has to be started from an
initial state, and decidingwhether the initial state matters or not is a highly non-trivial
issue. The echo state property and the fading memory property have been suggested
specifically to address this issue.

23 On Reservoir Computing: From Mathematical Foundations … 591

23.6.1.1 The Fading Memory Requirement

To be able to use a system as a filter, in the on-line computation context, the present
state of the system should be weakly dependent on distant inputs. Many dynamical
systems found in nature often equilibrate, and have the potential to act as filters.
But there are also systems that do not equilibrate easily, e.g. chaotic systems. It is
important to be able to distinguish these two classes of systems. There are several
ways of formalizing mathematically the condition that the dynamics is insensitive to
the initial condition. The most common definition is as follows.

Definition 5 (Fading memory) For reservoirs with the fading memory property, the
dynamics of the reservoir should not be influenced by a too distant past. Two input
time series that differ in the distant past should lead to roughly the same output:
For every u and ε > 0, there exist a δ(u, ε) > 0 and an interval [t0 − T, t0] such
that |(Fu)(t0) − (Fv)(t0)| < ε for every input v that is δ-close to u on that interval;
|u(t) − v(t)| < δ for t ∈ [t0 − T, t0].
Note that this resembles the definition of continuity at a point (not uniform continu-
ity). It was shown that the systems with fading memory have unique steady states
(that lock-onto the input, for a proof see section X I I I , Theorem 6, in [30]).

Fading Memory Leads to a Special form of Continuity

Interestingly, the fading memory property ensures some useful mathematical proper-
ties of the filter realized by the system. Since� is the space of infinite time series it is
not automatically compact. The Arzelà-Ascoli theorem states that to make the space
of functions compact, one would have to, at least, limit the time frame by considering
only a finite time window t ∈ [t0 − τ, t0]. However, there are two immediate prob-
lems, what should one choose for the reference (computation) time t0 (the reference
issue) and the interval length τ (the length issue)?

The compactness problem can be solved as follows. If the distance between two
time series is defined by using the weighting functions construct, which tend to favor
more recent values in time,

ρ(t)(u, v) ≡ sup
k≤t

w(t − k)|u(k) − v(k)| (23.12)

where w(k) → 0 with k → ∞, then the space � with this metric is compact.
Interestingly, once the compactness is in place, the fading memory ensures that

the mapping realized by the filter is continuous. Any filter with fading memory is
continuous in the metric ρ(t):

ρ(t)(u, v) < δ ⇒ |(Fu)(t) − (Fv)(t)| < ε (23.13)

592 Z. Konkoli

This result was stated as a theorem in [31].13 This has been also used as an alternative
definition of fading memory (e.g., see section I I I , the definition 3.1 in [30]).

23.6.1.2 The Echo State Property

The echo state property is a result of a direct attempt to deal with the filter existence
issue. In echo state networks the present state of the network is an “echo” of the input
history. The initial state of the system can be forgotten if the system has been exposed
to the input for a sufficiently long time. The rest is a mathematical formulation of
the idea.

Historically, it has been realized that the echo state property is crucial if the
network can be trained by adjusting its output weights only. Quoting from [32]:

For the supervised learning algorithmswhich are usedwith Echo StateNetworks (Edit: citing
the original technical report [4], and a later review [7]) it is crucial that the current network
state xk is uniquely determined by any left-infinite input sequence u−∞, . . . , uk−1, uk .

Such behavior guarantees that the on-line computation is possible, i.e. that the dynam-
ics of the system does not depend on the initial state of the device. The original
definition of the echo state property is as follows [5].

Definition 6 (Echo state, discrete dynamics) Assume a fixed time instance t . Let
q[−∞ : t] ≡ (. . . , qt−2, qt−1, qt) denote a left infinite sequence obtained by trun-
cating (. . . , qt−1, qt , qt+1, · · ·) at t . For any input u[−∞ : t] that has been used to
drive the system (for an infinitely distant past until the time t), and for any two tra-
jectories x[−∞ : t] and x ′[−∞ : t] that are consistent with the dynamic mapping
(23.4),14 it must be that xt = x ′

t .

Figure23.1 is a graphical illustration of this property. The echo state property is
equivalent to stating that there exists an input echo function E such that if the system
has been exposed to the infinite input sequence, its current state is given by

xt = E(. . . , ut−2, ut−1, ut) (23.14)

This notation is somewhat uncomfortable since it involves a function with an infinite
list of arguments. However, the statement implied by Eq. (23.14) is useful from
an engineering perspective, this particular definition emphasizes the existence of a
filter. The original Definition 6 is more suitable for mathematical analysis, e.g. for

13Note that the key property is the fading memory. The particular definition of the metric is “for
free” (it can be always made). There is a nice alignment with the assumptions of the SWA theorem:
the domain of the mapping implemented by the filter� should be compact, and the mapping should
be continuous. Then the filter realized by the reservoir maps from a compact metric space and is
continuous. These properties are useful for establishing the expressive power of the filter.
14The consistency is expressed as requiring that for a given sequence x it is true that xk =
H(xk−1, uk) for every k. The same must hold for the other sequence, i.e. x ′

k = H(x ′
k−1, uk) for

every k.

23 On Reservoir Computing: From Mathematical Foundations … 593

The input depicted is arbitrary but fixed otherwise.

This is situation is not allowed to occur for systems with echo state property.
If an input is found, and this situation occurs, the system does not have the
echo state property.

This situation must hold if the system has the echo state property.
The depicted situation is the one stated (required) by the definition.

An example of the situation not required by the definition, though this can happen
accidentally. It is not required that the two trajectories that are compatible with the
input are identical. This can happen, but this is not required by the definition.

(a)

(b)

(c)

(d)

Fig. 23.1 An illustration of the echo state property (backward-oriented perspective). Panel a
Depicts a fixed but otherwise arbitrary input. For a given input, panels b–d depict various situ-
ations. The definition of the echo state specifies exactly which situation is allowed or forbidden. A
much more intuitive, the forward-oriented definition, is illustrated in Fig. 23.2

identifying whether the system has such a property. An alternative (and equivalent)
definition is listed in the appendix that might be even better suited to that end.

There are systems for which the echo state function E does not exist, and a few
examples will be provided (assuming the discrete dynamics). The examples are
chosen to illustrate that instead of (23.14) the following expression should be used

594 Z. Konkoli

xt = E(. . . , ut−2, ut−1, ut |x) (23.15)

where x denotes the initial state of the system in the infinite past. The initial state can
exert an influence on the dynamics for an infinitely long time. Several systems that
behave like that are listed below:

Example 1

As the first negative example, consider the system with the discrete dynamics that
strongly depends on the initial condition:

H1(x, u) = x (23.16)

The system “remembers” the initial condition forever. In fact it is insensitive to the
input which is a rather special case. This system does not exhibit the echo state
property since it is possible that two separate trajectories exist for a given input u.15

Example 2

The following example exhibits a less trivial dynamics, where the system can be
influenced by the input:

H2(x, u) = x + λ tanh u (23.17)

This mapping resembles a discrete version of the random walk where the spatial
increment at each time step depends on the input received by the walker. The input
is wrapped by the tanh function just to limit the size of individual steps, which is
controlled by λ. Note that for any choice of λ the initial state in the infinite past
influences the dynamics.

Example 3

As the last example, consider any system that has at least two quasi16 stable states
with two (or more) basins of attraction. The key feature of the dynamics is that for
“weak” inputs the system never crosses the basins of attraction. Transitions from
one basin of attraction to the other can only happen under the influence of “strong”
inputs. For strong inputs it is not true that (A) for two sequences of states x and x ′
that are consistent with the dynamics it follows that (B) xt = x ′

t . Note that the echo
state Definition 6 requires A ⇒ B. It is possible to find trajectories where A is true
but B is false leading to A � B.17 Thus the system under consideration does not
exhibit the echo state property.

15Note that such a pair of trajectories can be found for any input. For example, consider two
trajectories that started from x0 and x ′

0 with x0 �= x ′
0 in the infinite past.

16Here the term “quasi” indicates that the states are easily “disturbed” by the external input.
17It is sufficient to consider two initial conditions that start from different basins of attraction.

23 On Reservoir Computing: From Mathematical Foundations … 595

23.6.1.3 Summary of the Existence Issue

It is clear that the fading memory and echo state properties are strongly related.
It has been proved that if a system has the echo state property then it also has the
fading memory property [5]. A version of the (likely18) proof that the fading memory
implies echo state can be found in [30] (Sect. 8.2, Theorem 6). However, despite
being strongly related, both concepts do emphasize slightly different aspects of the
problem. For example, the fading memory definition emphasizes the possibility to
perform on-line computation, while the echo state property emphasizes the existence
of the time invariant filter.

The main problem with both definitions is that it is hard to check whether a given
system has either of these. There are some results regarding the existence of the echo
state property for a particular class of dynamic functions H(x, u) [3–5]. Clearly,
from the above discussion one can see that it is very hard to make generic statements
regarding the systems which exhibit these properties. Such analysis has to be done
for every system of interest.

23.6.2 The Expressive Power of Reservoir Machine

The notion of the expressive power of the reservoir is important for realizing the
advocated technological goals. While it is clear that the echo state mapping exists,
provided the specific requirements are met, it is less clear what one can actually do
with such devices. If we knew which features of the device influence it expressive
power, we would have a theory for building powerful reservoir computers, and we
would also understand the limits of the approach.

For discrete reservoirswith the echo state property the input echo function involves
an infinite list of arguments. If the system has natural relaxation time (or past for-
getting time) τ∗ then this limits the number of arguments: Instead of (23.14) the
following description of the filter might be closer to the truth,

x(t) ≈ E∗(ut−τ∗ , . . . , ut−2, ut−1, ut) (23.18)

For such systems, how do we realize filters with very short or very long list of
arguments? Both situations are problematic. For example, assume that the goal is
to realize a filter that takes only the two immediate inputs, o(t) = (Fu)(t), that
should be trained to return the sum (Fu)(t) = u(t − 1) + u(t). It is not at all clear
how to get rid of the dependence on the remaining inputs further away in the past.
Filtering longer signals is equally problematic since it is not clear where the distant

18 “Likely” is emphasized due to the following. First, the proof assumes continuous dynamics. Can
it be generalized to discrete dynamics? Second, the proof does not lead straightly to Definition 5,
but to a continuous formulation of the echo state that is possibly equivalent to the original echo
state definition.

596 Z. Konkoli

information should be stored. To realize both scenarios would likely require more
powerful reservoirs, but there is only one reservoir to choose from.

In the following a brief summary of what is known about the expressive power of
liquid state machines and echo state networks is discussed. The expressive power of
Reservoir Machine is discussed after that.

23.6.2.1 Lessons from the Past: The Expressive Power of LSM and ESN

A lot of research effort has been spent to understand which dynamic properties of
the system can guarantee the echo state property. Much less effort has been spend
on understanding how to exploit such a property if it exists. This is still an open
problem.

LSM is indeed Turing universal (in the fading memory sense), but only provided
that a whole class of machines is considered (the base filters). Not surprisingly, this
class should have exactly the same properties as the ones stated in the second version
of the SWA theorem. In fact, the LSM model originated from a direct application of
the second version of the SWA theorem on filters.

In contrast to LSM, in the literature there seems to be a lack of precision in
stating the expressive power of ESN, and possibly some misconceptions. This very
likely results from using the work by Maass et al. on LSM in imprecise way without
specifying the context properly (e.g. one system, or a class of systems). For example,
consider the following quote from [33]:

Universal computation and approximation properties. ESNs can realize every nonlinear filter
with bounded memory arbitrary well. This line of theoretical research has been started and
advanced in the file of LSM (Edit: quoting the LSM work by Maass et al. [1] and [34])

In the quote, there are several important assumptions that are implicit. Consider a
few examples of what might go wrong if such a claim were made without specifying
a proper context.

For example, the first implicit assumption is that one should consider a class of
networks, and not a single system (network). The second implicit assumption is that
this class should have the properties required by the SWA theorem, be an algebra
and separate points (which sould be proven, however). These implicit assumptions
are very fragile since their validity is context sensitive. Let us discuss each in turn.

The ESN idea, by construction, emphasizes the use of a fixed network, and in
this classical setup the quote is most certainly incorrect (as will be explained later
on). But, if the network is complex, then it might implicitly harbor a class of smaller
subsystems (see Sect. 3.1 in [5] for an illustrative neural network example). In that
sense, the assumption that possibly a large class of echo state mappings is available
for a single system is justified. However, while these subsystems might exhibit the
echo state property (i.e. realize a set of filters), do these subsystems form an algebra?
In fact, they very likely do not form an algebra since the number of elements is finite.
But should one worry about it, i.e. is it necessary to require that they do? e.g. as in the

23 On Reservoir Computing: From Mathematical Foundations … 597

LSM model. Subsystems might exhibit some separation features, but most certainly
not the exact separation property.

Another strongly related misconception regards the issue of the expressive power
of the classical reservoir computer (since it is often associatedwith the ESN concept).
It is implicitly assumed that RC has an infinite computing power, e.g. as in the
following quote from [7]:

Modeling capacity. RC is computationally universal for continuous-time, continuous-value
real-time systems modeled with bounded resources (including time and value resolution
(Edit: quoting the work by Maass et al. [35] and [36])

This is simply not true a priori for the same reasons as discussed above. If one-system
is used as a reservoir, a great caution should be exercised in making such a claim.
The main motivation behind suggesting the Reservoir Machine model was to make
these issues explicit so that they can be rigorously addressed. Understanding the
expressive power of the model is a highly non-trivial and still an open problem, as
discussed below.

The SWA theorem states clearly which properties a collection of filters must
possess if used in the information processing context: realize an algebrawith constant
element that separate points, the algebramust realizemappings fromacompact space.
In the following, each of the requirements of this generic theorem will be revisited
an interpreted in practical (engineering) terms.

23.6.2.2 The Burden of Realizing an Algebra Can Be Taken
by the Readout Layer

The key lesson from the SWAT is that machines M should form an algebra in some
sense. Do they, and can we engineer them in such a way in the context of unconven-
tional computation?

At this stage the mathematical concept of an algebra needs to be converted into
an engineering one. The requirement that the collection of machines described by
Reservoir Machine forms an algebra implies that they can be combined in some way,
or adjusted, to obtain new, hopefullymore powerful, machines. Any twomachinesM
andM′ might be combined into a largermachineM�M′ to compute another function
(filter). Here the symbol � denotes an engineering operation on the machines. The
filter being realized this way should be exactly the one that is obtained by applying
the algebraic operations on the respective output values o(t) and o′(t), as o(t)o′(t).

The above considerations put some constraints on how the engineering operation
should be implemented

u(t) → (M�M′)(u)(t) = ψ(R(u)(t))ψ ′(R(u)(t)) (23.19)

Note that the reservoir is not changing. Only the readout function is allowed to
change. Conceptually, the only freedom we have when designing new machines is
to combine their readout layers. Mathematically, the engineering challenge can be

598 Z. Konkoli

represented as
M�M′ ≡ (R, ψ)�(R, ψ ′) = (R, ψ �ψ ′) (23.20)

A direct comparison between (23.19) and (23.20) shows that if we can design
a new readout layer ψ ′′ such that ψ ′′(x) = ψ(x)ψ ′(x) for every x ∈ S then it is
possible to engineer an algebra of machines. In the similar way it can be shown that
engineering the vector space operations, multiplication by scalar w�M or addition
M + M′, can be transferred to the readout layer.

23.6.2.3 Engineering the Readout Layer ψ

The preceding discussion shows that the first technological requirement towards
building a reservoir machine is to ensure that the set of readout layers � forms an
algebra that can be realized. Of course, for in-silico implementations that is not an
issue, but in any other setup it has to be addressed explicitly.

The readout layer, or the interface, is one of the key concepts of the reservoir com-
puting. Intuitively, since the goal is to use the system as is, any auxiliary equipment
that has to be added onto the system to turn it into an information processing unit
should be as simple as possible. Typically, when performing mathematical analysis
the readout function ψ is assumed to be a multivariate polynomial or even a simple
linear polynomial. How complex the readout layer should be?

Again, this is an instance where the SWA theorem needs to be reinterpreted
in an engineering context. The second version of the SWA theorem indicates that
any class of functions which have the universal approximation property will do.19

However, this might be an unnecessarily strong requirement. In the literature, several
implementations of the readout layer have been suggested ranging from a simple
linear readout towards a more complicated simple perceptron network. An extensive
list of various readout layers can be found in [7] (in Sect. 8).

The question is why should one engineer more complex readout layers if
simpler ones will do? and what is the simplest readout layer that can be used?
To answer these questions is an extremely challenging problem that has been
grossly overlooked in the literature.

Since the reservoir is frozen, and all the burden of the algebraic properties rests
on the readout layer, it is clear that the required complexity of the readout layer is
conditioned on the complexity of the dynamics of the reservoir. It is hard to make
generic statements without knowing what the reservoir looks like in a bit more detail.
Understanding this interplay is still an open problem. There is simply no available
theory that could be used to address the issue.

19Multivariate polynomials have this universal approximation property. Any function that behaves
in the same way can be used instead.

23 On Reservoir Computing: From Mathematical Foundations … 599

From the practical point of view, it is implicit in the construction that such readout
needs to be constructed, and it should be kept be kept as simple as possible. The
computing that can be done by the reservoir should not be done by the readout layer.
To understand how much of the burden needs to be put on the readout layer one
should really start from basics, i.e. the first (abstract) version of the SWA theorem,
as discussed below.

23.6.2.4 Separating Points with One Reservoir Is Problematic
but Still Possible

The algebra of machines does not automatically satisfy the requirements of SWAT
for one obvious reason. There is only one reservoir to choose from. However, it is
possible that complex reservoirs can be used to implement such an algebra.

A Problem

Let us see whether the algebra of reservoir machines separates points. For every pair
of time series u and v we must find a reservoir machine M such that M(u)(t) �=
M(v)(t) where t stands for the observation (reference) time. This is the place where
the construct with a single reservoir breaks: in contrast to the LSM model, there are
simply no reservoirs to choose from, only one is available. What choices can one
actually make? In principle, there are two. First, while a single system cannot exhibit
infinite “separation” power, it might exhibit some if it is complex enough, i.e. if it
contains many components that are “addressable”. Second, by assumption, there is
a class of readout layers to choose from. However, by construction, these cannot
contribute to realizing the separation property. Thus, strictly speaking, there is only
one choice to be made, one has to “dig” into the system.

A Possibility

If complex enough, the reservoir could be divided into smaller parts: A truly complex
reservoir with many components realizes many filters, where the number of filters is
equal to the number of microscopic components N :

x ≡ (x1, x2, . . . , xi , . . . , xN) (23.21)

where each component realizes one filter

u → xi (u) (23.22)

This possibility has been already pointed out in [5] (Sect. 3.1). For example, for a
discrete system it implies that input echo functions (filters) exist, such that

600 Z. Konkoli

x (1)
t = E(1)(. . . , ut−2, ut−1, ut)

x (2)
t = E(2)(. . . , ut−2, ut−1, ut)

· · ·
x (i)
t = E(i)(. . . , ut−2, ut−1, ut) (23.23)

· · ·
x (N)
t = E(N)(. . . , ut−2, ut−1, ut)

Thus, possibly, there is a very large class of mappings to choose from.

The filters realized by such sub-systemsmight or might not form an algebra.
However, this feature is not an engineering requirement: The readout layer
carries the burden of realizing an algebra! What is important is that all these
filters separate points: In some sense all these filters should be “different”.

The output of the computation is given by

o(t) = ψ(x1(u)(t), x2(u)(t), . . . , xi (u)(t), . . . , xN (u)(t)) (23.24)

At this stage it is important to formalize what a sub-system might be, i.e. what the
variables xi actually represent. In this context, the concept of observable in statistical
physics is extremely useful, and in particular the observables that are relevant for
information processing as discussed in [21]. Such observables could be referred
to as “information processing observables”. While formalizing (23.24) in terms of
information processing observables would make the discussion more complete it
would also make it a bit more technical. We just leave it at claiming, as in the
reservoir dynamics Sect. 23.3.1, that xi does not necessarily describe microscopic
degrees of freedom but can also refer to features on larger scales.

In practice, it might be hard to access all subsystems (even if they are not micro-
scopic). From the engineering point of view, a more reasonable assumption is that
the readout layer will have only access to a limited number of components. Thus the
equation for the output should read instead

o(t) = ψ(xi1(u)(t), xi2(u)(t), . . . , xid (u)(t)) (23.25)

where it has been assumed that the readout layer can only access d components.
The multiple (i1, i2, . . . , id) denotes a particular choice of component filters being
indexed. In practice the number of accessible filters will be such that d � N .

23 On Reservoir Computing: From Mathematical Foundations … 601

One Should Resist the Temptation to Divide into too Many Parts

It is tempting to increase N by considering smaller and smaller systems. This would
make the collection of the filters generated by the subsystems very large and increase
the resolution of the algebra. Note that this is somewhat equivalent to the assumption
that x describes microscopic states. It also strongly parallels Putnam’s construction
(the assumption that everymicro-state is accessible). However, there is a fundamental
problem with realizing such an agenda. The dynamics becomes noisy.

For observables that refer to very small sub-systems the dynamic laws expressed in
(23.3) and (23.4) do not longer apply. For such systems a noise term should be added
in the equations of motion. For example, it is a well-known fact that the dynamics
of a single molecule in the sea of solvent molecules kept at a finite temperature
should be modelled by using a stochastic differential equation. For observables that
are microscopic in nature one would have to assume the following dynamical law

dx(t)

dt
= H̃(x(t), u(t)) + η(t) (23.26)

where η is a stochastic variable with a given mean and a finite variance and H̃
indicates that H needs to be modified for the effects of friction. For example, the
form of the noise that describes experiments that involve diffusion is 〈η(t)〉 = 0
and 〈η(t)η(t ′)〉 = γ δ(t − t ′) where δ(t) denotes the Dirac delta function and γ is a
temperature dependent parameter.

The Expressive Power of a Reservoir Machine is Limited

Without knowing more details about the component filters xi (t); i = 1, 2, . . . , N , it
is impossible to make further progress. This is exactly the reason why one-reservoir
construct is hard to analyze. However, it is clear that if the component filters separate
inputs, and if the readout functions can approximate sufficiently well, then it should
be possible to tune the reservoir machine towards arbitrary information processing
task, but there are clearly limits to what can be computed. The expressive power of
a programmable reservoir machine is not infinite.

23.7 Conclusions

Perhaps it is fair to say that reservoir computing is more an insight about computing
than an approach to computing. The insight is about the possibility to use an arbi-
trary dynamical system for computation without elaborate re-configuring (training)
procedures. In this chapter the existing problems with realizing this classical setup
were discussed, together with what could be done to address these problems, and
what could be gained by doing so. The three big questions that were addressed were:

602 Z. Konkoli

Which features of the construct are hard to engineer? How to engineer such features
in principle? What is the expected technological impact of such devices?

In this classical setup, reservoir computing is also a “call” to studydynamical
systems, and in particular unconventional computation, in a new way. The
Reservoir Machine concept was suggested to make this point of view explicit.

In the literature Echo State Networks and Liquid State Machines are often treated
as one concept. Admittedly, they are strongly related but they are not identical.
Any interpretation of these concepts is strongly context dependent, as illustrated in
the text. This lack of clarity might obscure further progress, and the goal was to,
first, point out the key differences between the concepts and then, second, provide
a synthesis of the ideas they represent. This was done in the context of the classical
setup of reservoir computing. The Reservoir Machine concept is the result of the
attempted synthesis.

Reservoir Machine has been introduced to emphasize the fact that, ulti-
mately, in the worst case scenario, one is facing the problem of using a fixed
dynamical system for computation with a very little freedom of tuning the
system. This worst case scenario is ubiquitous in situations when in-silico
solutions are not possible, and in particular in the context of unconventional
computation.

The explicit formulation of Reservoir Machine established a clear starting point
for the analysis of several aspects of the problem: The mathematical foundation of
reservoir computing, the SWA theorem, has been re-interpreted to provide strate-
gic guidelines for building powerful unconventional reservoir machines and to aid
in understanding their computing power. The most important observations are as
follows.

1. There is a strong connection between Putnam’s construction and the reservoir
computing idea in the classical setup. Putnam’s construction addresses nearly the
same problem.20 The notion of the microscopic degree of freedom and the ability
to access such states is crucial to establish the connection. This line of thinking
puts a clear emphasis on the need to understand how to build good readout layers.
This aspect of the problem should be given a serious consideration. While being
extremely “passive” in mathematical terms, in the engineering sense the readout
layer is as important as the reservoir.

2. It has been shown that, in the Reservoir Machine setup, the readout layer takes the
burden of realizing the algebra, while the reservoir takes the burden of separating

20It is tempting to argue that the separation property being emphasized in reservoir computing is, in
some sense, related to Putnam’s requirement of non-periodic behavior and the idea of the internal
dial [24].

23 On Reservoir Computing: From Mathematical Foundations … 603

points. This is in contrast with Liquid State Machines where base filters realize
an algebra and the readout layer plays a somewhat passive role. The interplay
between the formal requirement to realize an algebra and the requirement that the
algebra separates points should be understood better.21

3. Given that one can build powerful readout layers, it is important to be aware of the
fact that making the sub-systems too small results in noisy dynamics. It is possible
that for some applications the presence of noise is not an issue, and might even
be desirable, but in majority of cases noise is probably a nuisance. In general, the
effects of noise in the reservoir computing setup still need to be understood.

4. There seems to be no theory of reservoir computing that might be directly rele-
vant for engineering applications. The Reservoir Machine construct provides an
illustration of how to approach the problem of constructing such a theory.22

Perhaps the suggested reservoir machine model could be taken as a starting point
for constructing a theory that is relevant from a practical point of view, as it clearly
points out the relevant set of issues. There are several options for constructing a better
theory of reservoir computing.

1. The SWA theorem might not be particularly useful in the engineering context,
after all. The theorem is simply an existence statement. It states that an approxi-
mation can be found under given conditions. It does not address the accuracy or
tolerance issues, or gives any bounds. One might try to constructs and prove a
completely different version of the SWA theorem, in a form that is more useful
for engineers.

2. The second option is to re-work some ingredients of the existing theorem towards
a more engineering like setup. For example, the separation property seems to be
crucial. The separation property is a mathematical formulation of an intuitive
understanding that the system must have some “resolution power” (of inputs).
It could be useful to re-phrase the separation criterion in less absolute terms
by, e.g., requiring not strict separation of inputs, but separation up to a certain
accuracy (resolution).23

21Intuitively, one expects that the expressive power of the algebra is strongly related to the “richness”
of the algebra, provided such a concept can be defined, e.g. by using the number of sub-filters as a
measure. The readout layer is not the source of that richness and, yet, takes the burden of realizing
the algebra. This is a result of the systematic analysis that has been undertaken, and should be taken
as such.
22A lot has been achieved since the reservoir computing concept has been originally suggested.
However, there are many issues that are still open, as pointed out throughout the text. For example,
in the classical setup, reservoir computing does not have the universal computing power, not even
in the fading memory (on-line computation) sense. There is still no sufficient understanding of the
expressive power of reservoir computing in the classical (reservoir machine) setup. The understand-
ing provided by the use of SWA theorem is an important first step (e.g. LSM and ESN studies) but
to understand the computing capacity of a reservoir machine we clearly need a much better theory
of reservoir computing.
23To a mathematician, an interesting question, perhaps, might be: given that a class of functions
forms an algebra and separates inputs up to a certain accuracy, is there any way to characterize a
class of functions that can be represented that way? Which types of theorems could be proven?

604 Z. Konkoli

3. The third option is to further explore and refine the fading memory and the echo
state concepts, despite the fact that, perhaps, they are the part of the reservoir
computing theory that has been mostly developed and investigated. For one
thing, the equivalence between the two concepts has been proven, but under very
specific conditions. It should be clear from the presented discussion that these
concepts are strongly related. Accordingly, it is surprising that the equivalence
has not been proven under more generic conditions.

To conclude, as a technological platform, the single reservoir perspective featured
in Reservoir Machine should be less restrictive when it comes to practical implemen-
tations. Admittedly, it is also less expressive, but might have a larger technological
impact. It seems that the envisioned reservoir machine technology might solve com-
plicated unconventional information processing problems. As an illustration of how
the Reservoir Machine concept can be applied in the context of material compu-
tation (e.g. for building material machines) see [15]. Reservoir Machine might be
suitable as a platform for improving the existing, and realizing new unconventional
computing scenarios. It is perfectly possible that important information processing
applications can be realized by using relatively simple reservoirs, since not all rele-
vant information processing tasks are complicated.24 For example, one can envision
plethora of applications of reservoir computing in situations where in-silico realiza-
tion is not feasible, e.g. in medical sensing applications when bio-compatibility is
an issue rather than the computing capacity. This suggests that while reservoir com-
puting machines might be used for high-performance computing, their natural zone
of application is very likely elsewhere. Such machines could be used for the infor-
mation processing tasks that require deep integration of the information processing
equipment and biological systems.

Acknowledgments This work was supported by Chalmers University of Technology and by the
EuropeanCommission under the contracts FP7-FET-318597 SYMONE andHORIZON-2020-FET-
664786 RECORD-IT.

Appendix

An Alternative Echo State Property Definition

Intuitively, the following definition of the echo state property might be easier to
understand. [5] The following notation is useful to rephrase the original definition
in the ambience of this chapter. Let xt = R(u|xn)(t) denote the configuration of

24For example, consider the problem of on-line time series data analysis and pattern recognition.
This is typical example where the separation property is not a strong requirement. What is needed is
that only particular input patterns drive the system to a different regions of the configuration space
when compared to the background input. It is possible that relatively simple reservoir machines
could handle such tasks.

23 On Reservoir Computing: From Mathematical Foundations … 605

Fig. 23.2 An illustration of the state contracting property. Any pair of trajectories start aligning if
one waits long enough. For example, for a fixed pair of initial conditions the trajectories after time
h can be both “covered” with the black box by moving it vertically. Note that the height of the box
δh is fixed beforehand and depends only on h. Likewise, if one waits a bit longer, until t = n + h′
with h′ > h then the size of the box becomes smaller. Note that the gray box is smaller than the
black box. There is always a tendency for each pair of curves to start aligning. The more one waits
the more aligned they become. a The desired behaviour for any pair of trajectories. b The behavior
must hold for any input

the system that was at time n in state xn and that has been exposed to the input
u after that, during the time interval [n : t] ≡ (n, n + 1, n + 2, . . . , t − 2, t − 1, t).
To emphasize that the system has been exposed to the input during h time steps we
write R(u|xn)(n + h). Further, let ‖xt − x ′

t‖S denote the distance between any two
elements xt and x ′

t in S for arbitrary t .25

Definition 7 (state contracting) The network is uniformly state contracting iff there
exists a null sequence26 of bounds δh with h = 0, 1, 2, . . . ,∞ such that for every
input sequence u and every pair of initial conditions xn, x ′

n ∈ S the chosen pair of
trajectories approach each other, i.e. ‖R(u|xn)(n + h) − R(u|x ′

n)(n + h)‖S < δh .

25The notation is implicitly suggesting that S is a vector space but this need not be the case. This
form is used to make such expressions more readable.
26A null sequence is a sequence of positive numbers that converges to zero.

606 Z. Konkoli

Note that, in contrast toDefinition 6, this definition does not feature anyknowledge
of an infinite past. For example, there is no need to know what the input looked
like in the interval (−∞ : n) ≡ (. . . , n − 3, n − 2, n − 1). Accordingly, the above
definition is easier to understand since it is “forward oriented” and more aligned
with the human intuition of how dynamic systems behave. Figure23.2 is a graphical
representation of this property. It describes a system that equilibrates in some sense,
i.e. by “locking” onto the input.

The fact that the definition above is equivalent to Definition 6 was proven rig-
orously in the original publication by Jaeger from 2001 [4]. Note that Figs. 23.1
and 23.2 are different. They depict a priori genuinely different behaviors. Thus a
mathematical proof that these two behaviors are equivalent was indeed necessary.
The above definition might be more useful if one wants to check whether a given
physical system has the echo state property.

References

1. Maass,Wolfgang, Natschläger, Thomas,Markram,Henry: Real-time computingwithout stable
states: a new framework for neural computation based on perturbations.NeuralComput. 14(11),
2531–2560 (2002)

2. Markram, H., Natschlger, T., Maass, W.: The “liquid computer”: A novel strategy for real-
time computing on time series (special issue on foundations of information processing).
TELEMATIK, 8, 39–43 (2002)

3. Jaeger, Herbert, Haas, Harald: Harnessing nonlinearity: predicting chaotic systems and saving
energy in wireless communication. Science 304(5667), 78–80 (2004)

4. Jaeger., H.: The “echo state” approach to analysing and training recurrent neural networks.
Technical Report GDM Report 148 (contains errors), German national research center for
information technology (2001)

5. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks -
with an erratum note. Technical Report erratum to GDMReport 148, German national research
center for information technology (2010)

6. Jaeger, H., Lukoöevicius, M., Schrauwen, B.: Reservoir computing trends. KI - Konstliche
Intelligenz, 26, 365–371 (2012)

7. Lukoöevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network
training. Comput. Sci. Rev. 3, 127–149 (2009)

8. ORGANIC-EU-FP7. Reservoir Computing: Shaping Dynamics into Information (2009)
9. Kulkarni, M.S., Teuscher, C.: Memristor-based reservoir computing. In: 2012 IEEE/ACM

International Symposium on Nanoscale Architectures (NANOARCH), pp. 226–232 (2012)
10. Carbajal, J.P., Dambre, J., Hermans, M., Schrauwen, B.: Memristor models for machine learn-

ing. Neural Comput. 27, 725–747 (2015)
11. Zoran, Konkoli, Goran, Wendin: On information processing with networks of nano-scale

switching elements. Int. J. Unconv. Comput. 10(5–6), 405–428 (2014)
12. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J.,

Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical
node as complex system. Nat. Commun. 2, 468 (2011)

13. Larger, L., Soriano, M.C., Brunner, D., Appeltant, L., Gutierrez, J.M., Pesquera, L., Mirasso,
C.R., Fischer, I.: Photonic information processing beyond turing: an optoelectronic implemen-
tation of reservoir computing. Opt. Express 20(3), 3241–3249 (2012)

23 On Reservoir Computing: From Mathematical Foundations … 607

14. Mesaritakis, C., Bogris, A., Kapsalis, A., Syvridis, D.: High-speed all-optical pattern recogni-
tion of dispersive fourier images through a photonic reservoir computing subsystem. Opt. Lett.
40, 3416–3419 (2015)

15. Konkoli, Z., Stepney, S., Dale,M.,Nichele, S.: Reservoir computingwith computationalmatter.
In: Amos, M., Rasmussen, S., Stepney, S. (eds.) Computational Matter. Springer, Heidelberg
(2016)

16. Dambre, J., Verstraeten, D., Schrauwen, B., Massar, S.: Information processing capacity of
dynamical systems. Sci. Rep. 2, 514 (2012)

17. Massar, M., Massar, S.: Mean-field theory of echo state networks. Phys. Rev. E 87 (2013)
18. Goudarzi, A., Stefanovic, D.: Towards a calculus of echo state networks. Procedia Comput.

Sci. 41, 176–181 (2014)
19. Soriano,M.C., Brunner, D., Escalona-Moran,M.,Mirasso, C.R., Fischer, I.: Minimal approach

to neuro-inspired information processing. Front. Comput. Neurosci. 9, 68 (2015)
20. Bennett, C., Jesorka, A., Wendin, G., Konkoli, Z.: On the inverse pattern recognition problem

in the context of the time-series data processing with memristor networks. In: Adamatzky, A.
(ed.) Advances in Unconventional Computation. Springer, Heidelberg (2016)

21. Zoran, K.: A perspective on Putnam’s realizability theorem in the context of unconventional
computation. Int. J. Unconv. Comput. 11, 83–102 (2015)

22. Putnam, H.: Representation and Reality. MIT Press, Cambridge (1988)
23. Chalmers, D.J.: A computational foundation for the study of cognition. J. Cogn. Sci. 12, 325–

359 (2011)
24. Chalmers, D.J.: Does a rock implement every finite-state automaton? Synthese 108, 309–333

(1996)
25. Scheutz, M.: When physical systems realize functions. Minds Mach. 9, 161–196 (1999)
26. Joslin,D.: Real realization:Dennett’s real patterns versus Putnam’s ubiquitous automata.Minds

Mach. 16, 29–41 (2006)
27. Kirby, K.: Nacap 2009 Extended Abstract: Putnamizing the Liquid State (2009)
28. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill (1976)
29. Dieudonne, J.: Foundations of Modern Analysis. Read Books (2008)
30. Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear operators

with Volterra series. IEEE Trans. Circuits Syst. 32, 1150–1161 (1985)
31. Maass,W.,Markram,H.:On the computational power of circuits of spiking neurons. J. Comput.

Syst. Sci. 69, 593–616 (2004)
32. Yildiz, I.B., Jaeger, H., Kiebel, S.J.: Re-visiting the echo state property. Neural Netw. 35, 1–9

(2012)
33. Jaeger, H.: Echo state network. Scholarpedia 2, 2330 (2007)
34. Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural circuits. Plos

Comput. Biol. 3, 15–34 (2007)
35. Maass, W., Natschlger, T., Markram, H.: A model for real-time computation in generic neural

microcircuits. In: Becker, S., Thrun, S.., Obermayer, K. (eds.) NIPS (Advances in Neural
Information Processing Systems 15), pp. 229–236. MIT Press, Cambridge (2003)

36. Maass, W., Joshi, P., Sontag, E.D.: Principles of real-time computing with feedback applied to
cortical microcircuit models. In: Weiss, Y., Schölkopf, B., Platt, J.C. (eds.) NIPS (Advances in
Neural Information Processing Systems 18), pp. 835–842. MIT Press, Cambridge (2006)

	23 On Reservoir Computing: From Mathematical Foundations to Unconventional Applications
	23.1 Introduction
	23.2 A Brief History of Reservoir Computing
	23.3 One-System Reservoir Computing: Reservoir Machine
	23.3.1 Reservoir calR
	23.3.2 Readout-Layer
	23.3.3 Reservoir Machine as a Model of Computation

	23.4 The Technological Potential of Reservoir Computing: Lessons from Philosophy of Computation
	23.4.1 Putnam's Construction
	23.4.2 A Thought Experiment

	23.5 The Technological Potential of Reservoir Computing: Lessons from Mathematics
	23.5.1 A Rigorous Mathematical Formulation of the Theorem
	23.5.2 A Few Application Examples of the Theorem

	23.6 Realizing the Technological Potential: From Mathematical Concepts to Practical (Engineering) Guidelines
	23.6.1 Existence of the Filter
	23.6.2 The Expressive Power of Reservoir Machine

	23.7 Conclusions
	References

