
Chapter 15
A Computation in a Cellular Automaton
Collider Rule 110

Genaro J. Martínez, Andrew Adamatzky and Harold V. McIntosh

Abstract A cellular automaton collider is a finite state machine build of rings of
one-dimensional cellular automata. We show how a computation can be performed on
the collider by exploiting interactions between gliders (particles, localisations). The
constructions proposed are based on universality of elementary cellular automaton
rule 110, cyclic tag systems, supercolliders, and computing on rings.

15.1 Introduction: Rule 110

Elementary cellular automaton (CA) rule 110 is the binary cell state automaton with
a local transition function ϕ of a one-dimensional (1D) CA order (k = 2, r = 1) in
Wolfram’s nomenclature [57], where k is the number of cell states and r the number
of neighbours of a cell. We consider periodic boundaries, i.e. first and last cells of
a 1D array are neighbours. The local transition function for rule 110 is defined in
Table 15.1, the string 01101110 is the number 110 in decimal notation:

G.J. Martínez (B) · A. Adamatzky
Unconventional Computing Centre, University of the West of England,
Coldharbour Lane, Bristol BS16 1QY, UK
e-mail: genaro.martinez@uwe.ac.uk

A. Adamatzky
e-mail: andrew.adamatzky@uwe.ac.uk

H.V. McIntosh
Departamento de Aplicación de Microcomputadoras,
Universidad Autónoma de Puebla, 49 Poniente 1102, 72000 Puebla, Mexico
e-mail: mcintosh@unam.mx

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
DOI 10.1007/978-3-319-33924-5_15

391



392 G. Martínez et al.

Fig. 15.1 An example of CA rule 110 evolving for 384 time steps from a random configuration,
where each cell assigned state ‘1’ with uniformly distributed probability 0.5. The particles are
filtered. Time goes down

ϕ(1, 1, 1) → 0 ϕ(0, 1, 1) → 1

ϕ(1, 1, 0) → 1 ϕ(0, 1, 0) → 1

ϕ(1, 0, 1) → 1 ϕ(0, 0, 1) → 1 (15.1)

ϕ(1, 0, 0) → 0 ϕ(0, 0, 0) → 0

A cell in state ‘0’ takes state ‘1’ if both its neighbours are in state ‘1’ or left
neighbour is ‘0’ and right neighbour is ‘1’; otherwise, the call remains in the state
‘0’. A cell in state ‘1’ takes state ‘0’ if both its neighbours are in state ‘1’, or both
its neighbours are in state ‘0’ or it left neighbour is ‘1’ and its right neighbour is
‘0’. Figure 15.1 shows an evolution of rule 110 from a random initial condition.
We can see there travelling localisation: particles or gliders, and some stationary
localisations: breathers, oscillators or stationary structures.

15.1.1 System of Particles

A detailed description of particles/gliders discovered in evolutions of CA rule 110
is provided in [32, 36].1 Further, we refers to a train of n copies of particle A as An.

Figure 15.2 shows all known particles, and generators of particles, or glider guns.
Each particle has its unique features, e.g. slopes, velocities, periods, contact points,
collisions, and phases [33, 35, 37]. A set of particles in rule 110 is defined as:

1See also, http://uncomp.uwe.ac.uk/genaro/rule110/glidersRule110.html.

http://uncomp.uwe.ac.uk/genaro/rule110/glidersRule110.html


15 A Computation in a Cellular Automaton Collider Rule 110 393

Fig. 15.2 Types of particles discovered in rule 110



394 G. Martínez et al.

Table 15.1 Properties of particles in rule 110

Structure Margins Velocity Lineal
volume

Left – Right

ems oms ems oms

er – 1 – 1 2/3 ≈
0.666666

14

el 1 – 1 – –1/2 = –0.5 14

A – 1 – 1 2/3 ≈
0.666666

6

B 1 – 1 – –2/4 = –0.5 8

B̄n 3 – 3 – –6/12 =
–0.5

22

B̂n 3 – 3 – –6/12 =
–0.5

39

C1 1 1 1 1 0/7 = 0 9–23

C2 1 1 1 1 0/7 = 0 17

C3 1 1 1 1 0/7 = 0 11

D1 1 2 1 2 2/10 = 0.2 11–25

D2 1 2 1 2 2/10 = 0.2 19

En 3 1 3 1 –4/15 ≈
–0.266666

19

Ē 6 2 6 2 –8/30 ≈
–0.266666

21

F 6 4 6 4 –4/36 ≈
–0.111111

15–29

Gn 9 2 9 2 –14/42 ≈
–0.333333

24–38

H 17 8 17 8 –18/92 ≈
–0.195652

39–53

Glider gun 15 5 15 5 –20/77 ≈
–0.259740

27–55

G = {A,B, B̄n, B̂n,C1,C2,C3,D1,D2,E
n, Ē,F,Gn,H, gunn}.

where n means that a structure of the particle can be extendible infinitely, the rest of
symbols denote types of particles as shown in Fig. 15.2. Table 15.1 summarizes key
features of the particles: column structure gives the name of each particle including
two more structures: er and el which represent the slopes of ether pattern (periodic
background). The next four columns labeledmargins indicate the number of periodic
margins in each particle: they are useful to recognize contact points for collisions.
The margins are partitioned in two types with even values ems and odd values oms



15 A Computation in a Cellular Automaton Collider Rule 110 395

which are distributed also in two groups: left and right margins. Column vg indicates
a velocity of a particle g, where g belongs to a particle of the set of particles G. A
relative velocity is calculated during the particle’s displacement on d cells during
period p. We indicate three types of a particle propagation via sign of its velocity.
A particle travelling to the right has positive velocity, a particle travelling to the left
has negative velocity. Stationary particle has zero velocity. Different velocities of
particles allow us to control distances between the particle to obtained programmable
reactions between the particles. Typically, larger particles has lower velocity values.
No particle can move faster than ver or vel . Column lineal volume shows the minimum
and maximum number of necessary cells occupied by the particle.

15.1.2 Particles as Regular Expressions

We represent CA particles as strings. These strings can be calculated using de Bruin
diagrams [31, 32, 34, 37, 55] or with the tiles theory [16, 33, 35, 37].2

A regular language LR110 is based on a set of regular expressions �R110 uniquely
describing every particle of G. A subset of the set of regular expressions

�R110 =
p⋃

i=1

wi,g ∀ (wi ∈ �∗ ∧ g ∈ G) (15.2)

where p ≥ 3 is a period, determines the language

LR110 = {w|w = wiwj ∨ wi + wj ∨ w∗
i and wi,wj ∈ �R110}. (15.3)

From these set of strings we can code initial configurations to program collisions
between particles [27, 36, 39].

To deriver the regular expressions we use the de Bruijn diagrams [31, 34, 55] as
follows. Assume the particle A moves two cells to the right in three time steps (see
Table 15.1). The corresponding extended de Bruijn diagram (2-shift, 3-gen) is shown
in Fig. 15.3. Cycles in the diagram are periodic sequences uniquely representing each
phase of the particle. Diagram in Fig. 15.3 has two cycles: a cycle formed by just
a vertex 0 and another large cycle of 26 vertices composed by other nine internal
cycles. The sequences or regular expressions determining the phases of the particle
A are obtained by following paths through the edges of the diagram. There regular
expressions and corresponding paths in Bruijn diagram are shown below.

I. The expression (1110)*: vertices 29, 59, 55, 46 determining An particles.

II. The expression (111110)*: vertices 61, 59, 55, 47, 31, 62 defining nA particles with a T3
tile among each particle.

2See a complete set of regular expressions for every particle in rule 110 in http://uncomp.uwe.ac.
uk/genaro/rule110/listPhasesR110.txt.

http://uncomp.uwe.ac.uk/genaro/rule110/listPhasesR110.txt
http://uncomp.uwe.ac.uk/genaro/rule110/listPhasesR110.txt


396 G. Martínez et al.

Fig. 15.3 De Bruijn diagram calculating A particles (left) and space-time configuration of automa-
ton showing locations of periodic sequences produced (right)

Table 15.2 Four sets of
phases Phi in rule 110

Phases level one (Ph1) → {f1_1, f2_1, f3_1, f4_1}
Phases level two (Ph2) → {f1_2, f2_2, f3_2, f4_2}
Phases level three (Ph3)→ {f1_3, f2_3, f3_3, f4_3}
Phases level four (Ph4) → {f1_4, f2_4, f3_4, f4_4}

III. The expression (11111000100110)*: vertices 13, 27, 55, 47, 31, 62, 60, 56, 49, 34, 4, 9,
19, 38 describing the periodic background configurations in a specific phase.

Cycle with period 1 (vertex 0) yields a homogeneous evolution in state 0. The
evolution space in Fig. 15.3 shows different trains of A particles. The initial condition
is constructed following some of the seven possible cycles of the de Bruijn diagram
or a combination of them. In this way, the number of particles A or the number of
intermediate tiles T3 can be selected by moving from one cycle to another.

The alignment of the fi_1 phases is analysed to determine the whole set of strings
for every particle. We describe the form and limits of each particle by tiles. Then
a phase is fixed (in our case the phase fi_1) and a horizontal line is placed in the
evolution space bounded by two aligned T3 tiles. The sequence between both tiles
aligned in each of the four levels determines a periodic sequence representing a
particular structure in the evolution space of rule 110. All periodic sequences in a
specific phase are calculated, enumerating the phases for each particle or non-periodic
structure.

Table 15.2 represents disjoint subset of phases, each level contains four phases.
Variable fi indicates the phase of a particle, and the subscript j (in the notation fi_j)
indicates the selected set Phj of regular expressions. Finally, we use the next notation
to codify initial conditions by phases as follows:

#1(#2, fi_1) (15.4)

where #1 represents a particle according to Cook’s classification (Table 15.1) and #2

is a phase of the particle with period greater than four.



15 A Computation in a Cellular Automaton Collider Rule 110 397

15.2 Universal elementary CA

A concept of universality and self-reproduction in CA was proposed by von Neumann
in [54] in his design of a universal constructor in a 2D CA with 29 cell-states.
Architectures of universal CA have been simplified by Codd in 1968 [10], Banks in
1971 [7], Smith in 1971 [51], Conway in 1982 [8], Lindgren and Nordahl in 1990
[22], and Cook in 1998 [11].3 Cook simulated a cyclic tag system, equivalent to
a minimal Turing machine, in CA rule 110. In general, computation capacities are
explores in complex CA and chaotic CA [40].

15.3 Cyclic Tag Systems

Cyclic tag systems are used by Cook in [11] as a tool to implement computations in
rule 110. Cyclic tag systems are modified from tag systems by allowing the system
to have the same action of reading a tape in the front and adding characters at its end:

1. Cyclic tag systems have at least two letters in their alphabet (μ > 1).

2. Only the first character is deleted (ν = 1) and its respective sequence is added.

3. In all cases if the machine reads a character zero then the production rule is always null
(0 → ε, where ε represents the empty word).

4. There are k sequences from μ∗ which are periodically accessed to specify the current
production rule when a nonzero character is taken by the system. Therefore the period
of each cycle is determinate by k.

Such cycle determines a partial computation over the tape, although a halt con-
dition is not specified. Let us see some samples of a cyclic tag system working with
μ = 2, k = 3 and the following production rules: 1 → 11, 1 → 10 and 1 → ε. To
avoid writing a chain when there is no need to add characters, the 
k relation is just
indicated. For example, the 00001 
1
2
3
1
2 10 represents the relations 00001

1 0001 
2 001 
3 01 
1 1 
2 10. Each relation indicates which exactly sequence
μ is selected.

Cyclic tag systems tend to growth quickly which makes it difficult to analyse
their behaviour. Morita in [43, 44] demonstrated how to implement a particular halt
condition in cyclic tag systems given an output string when the system is halting, and
how a partitioned CA can simulate any cyclic tag system, consequently computing
all the recursive functions.

Similar to Post’s developments with tag systems, Cook determined that for a
cyclic tag system with μ = 2, k = 2, the productions 1 → 11 and 1 → 10, and
starting evolution with the state 1 on the tape, it is impossible to decide if the process
is terminal.

3A range of universal CA is listed here http://uncomp.uwe.ac.uk/genaro/Complex_CA_repository.
html.

http://uncomp.uwe.ac.uk/genaro/Complex_CA_repository.html
http://uncomp.uwe.ac.uk/genaro/Complex_CA_repository.html


398 G. Martínez et al.

15.4 Cyclic Tag System Working in Rule 110

Let us see how a cyclic tag system operates in rule 110 [58]. We use a cyclic tag system
with μ = 2, k = 2 and the productions 1 → 11 and 1 → 10, starting its evolution
in state 1 on the tape. A fragments of the systems’ behaviour is shown below:

1 
1 11 
2 110 
1 1011 
2 01110 
1
2 11010 
1 101011 
2 0101110 
1
2 0111010

1
2 1101010 
1 10101011 
2 010101110 
1
2 010111010 
1
2 011101010 
1
2
110101010 
1 1010101011 
2 01010101110 
1
2 01010111010 
1
2 01011101010

1
2 01110101010 
1
2 11010101010 
1 101010101011 
2 0101010101110 
1
2
0101010111010 
1
2 01010111010 10 
1
2 0101110101010 
1
2 0111010101010 
1
2
1101010101010 
1 10101010101011 
2 010101010101110 
1
2 010101010111010 
1
2
01010 1011101010 
1
2 010101110101010 
1
2 010111010101010 . . .

We start with the expression 1(10)*. The cyclic tag systems moves (from the right
to the left) and adds a pair of bits. As soon as the expression 1(10)* appears again,
a number of relations selected in each interval in such a manner that the expressions
grow lineally in order of f1 = 2(n + 1).

If we take consecutive copies of 1(10)* with their respective intervals determined
by the number of j productions (represented as 
j

i), we obtain the following sequence:
1 
2

i 110 
4
i 11010 
6

i 1101010 
8
i 1101010 
10

i 110101010 
12
i 11010101010 
14

i
1101010101010 
16

i . . .. There are no states where to ‘0’ appear together.
Further, we show how to interpret particles and their collisions to emulate a cyclic

tag system in rule 110. We must use trains of particles to represent data and operators,
their reactions, transform and deletion of data on the tape. A schematic diagram,
where trains of particles are represented by lines, is shown in Fig. 15.4. The diagram
is explained with details in the next sections.

15.4.1 Components Based on Sets of Particles

A construction of the cyclic tag system in rule 110 can be subdivided into three parts
(Fig. 15.4). First part is the left periodic part controlled by trains of 4_A4 particles.
This part is static. It controls the production of 0’s and 1’s. The second part is the
center determining the initial value on the tape. The third part is the right, cyclic, part
which contains the data to process. It adds or removes data on the tape.

Set of particles 4_A4

The four trains of A4 particles are static but their phases change periodically. A
key point is to implement these components by defining both distances and phases,
because some choices of phases or distances might induce an undesirable reactions
between the trains of particles.

Packages defined by particles A4 have three different phases: f1_1, f2_1 and f3_1.
To construct the first train 4_A4 we must establish the phase of each A4. Let us assign



15 A Computation in a Cellular Automaton Collider Rule 110 399

3A4_4A 1Ele_C20Ele_C2 1BloP_Eb 1BloS_Eb0Blo_EbSepInit_EEb

Fig. 15.4 Schematic diagram of a cyclic tag system working in rule 110

Fig. 15.5 Set of particles 4_A4

phases as follows:

A4(f3_1)-27e-A4(f2_1)-23e-A4(f1_1)-25e-A4(f3_1),

see Fig. 15.5. Spaces between each train 4_A4 are fixed but the phases change. The
soliton-like collisions between the particles Ē occur:

{649e-A4(f2_1)-27e-A4(f1_1)-23e-A4(f3_1)-25e-A4(f2_1)-649e-A4(f1_1)-
27e-A4(f3_1)-23e-A4(f2_1)-25e-A4(f1_1)]-649e-A4(f3_1)-27e-A4(f2_1)-23e-
A4(f1_1)-25e-A4(f3_1)}*



400 G. Martínez et al.

9T3 5T3 7T39T3 9T3 7T3

Fig. 15.6 Set of particles 1Ele_C2 (left) and 0Ele_C2 (right)

If for every 4_A4 we take a phase representing the complete train, we can rename it
as:

{649e − 4_A4(F2) − 649e − 4_A4(F1) − 649e − 4_A4(F3)}∗

this phase change is important to preserve good reactions coming to the left side of
the system.

Set of particles 1Ele_C2 and 0Ele_C2

The central part is made of the state ‘1’ written on the tape represented by a train
of four C2 particles. A set of particles 1Ele_C2 represents ‘1’ and a set of particles
0Ele_C2 represents ‘0’ on the tape.

The left configurations in Fig. 15.6 shows the set of particles 1Ele_C2. We should
reproduce each set of particles by the phases fi_1. The phases are coded as follows:
C2(A,f1_1)-2e-C2(A,f1_1)-2e-C2(A,f1_1)-e-C2(B,f2_1). The first three particles C2

are in phase (A,f1_1) and the fourth particle C2 is in phase (B,f2_1). The distances
between the particles are 9T3-9T3-7T3. To determine the distances, we count the
number of tiles T3 between particles. Similarly, we obtain the distances 9T3-5T3-7T3

for the particles 0Ele_C2.

Set of particles 0Blo_Ē

The left part stores blocks of data without transformations in trains of E and the
particles Ē.

The set of particles 0Blo_Ē is formed by 12Ē particles as we can see in Fig. 15.7.
There must be an exact phase and distance between each one of the particles, other-
wise the whole system will be disturbed.

Set of particles 1BloP_Ē and 1BloS_Ē

To write ‘1’s we must use two set of particles—primary and standard.



15 A Computation in a Cellular Automaton Collider Rule 110 401

10 1 2 8 8 8 10 1 2 8 8

Fig. 15.7 Set of particles 0Blo_Ē

4 6 2 8 8 2 10 1 2 8 8

10 1 2 8 8 2 10 1 2 8 8

Fig. 15.8 Set of particles 1BloP_Ē (up) and 1BloS_Ē (down)

They are differences in distance between first two particles Ē, as shown in
Fig. 15.8. Both blocks produce the same set of particles 1Add_Ē. The main rea-
son to use both set of particles is because the CA rule 110 evolves asymmetrically
and therefore we need a double set of particles to produce values 1 correctly.

Set of particles SepInit_EĒ



402 G. Martínez et al.

4 14 6,7 6 9 2 8

Fig. 15.9 Set of particles SepInit_EĒ

A leader component renamed as the set of particles SepInit_EĒ (see Fig. 15.9) is
essential to separate trains of data and to determine the incorporation of the data on the
tape. Its has a small but detailed code determining which data without transformation
would be added or erased from the tape, depending on the value that is coming.

Set of particles 1Add_Ē and 0Add_Ē

Figure 15.10 illustrates the set of particles 1Add_Ē and 0Add_Ē produced by two
previous different trains of data. A set of particles 1Add_Ē must be generated by the
set of particles 1BloP_Ē or 1BloS_Ē. This way, both set of particles can produce the
same element.

On the other hand, a set of particles 0Add_Ē is generated by a set of particles
0Blo_Ē. Nevertheless, we could produce Ē particles modifying their first two dis-
tances and preserving them without changing others particles to get a reliable reac-
tion. This is possible if we want to experiment with other combinations of blocks of
data.

If a leader set of particles SepInit_EĒ reaches a set of particles 1Ele_Ē, it erases
this value from the tape and adds a new data that shall be transformed. In other case,
if it finds a set of particles 0Ele_Ē, then it erases this set of particles from the tape
and also erases a set of unchanged data which comes from the right until finding a
new leader set of particles. This operation represents the addition of new values from
periodic trains of particles coming from the right. Thus a set of particles 1Add_Ē
is transformed into 1Ele_Ē colliding against a train of 4_A4 particles representing
a value 1 in the tape, and the set of particles 0Add_Ē is transformed into 0Ele_Ē
colliding against a train of 4_A4 particles representing a value 0 in the tape.

Table 15.3 shows all distances (in numbers of T3 tiles) for every. We can code the
construction of this cyclic tag system across phase representations in three main big
sub systems:

left: …-217e-4_A4(F2)-649e-4_A4(F1)-649e-4_A4(F3)-649e-4_A4(F2)-



15 A Computation in a Cellular Automaton Collider Rule 110 403

27 21 27

27 27 27

Fig. 15.10 Set of particles 1Add_Eb (up) and 0Add_Ē (down)

Table 15.3 Distances
between sets of particles

Set of particles Distance

1Ele_C2 9-9-7

0Ele_C2 9-5-7

1BloP_Ē 4-6-2-8-8-2-10-1-2-8-8

1BloS_Ē 10-1-2-8-8-2-10-1-2-8-8

0Blo_Ē 10-1-2-8-8-8-10-1-2-8-8

SepInit_EĒ 4-14-(6 or 7)-6-9-2-8

1Add_Ē 27-21-27

0Add_Ē 27-27-27

649e-4_A4(F1)-649e-4_A4(F3)-216e-

center: 1Ele_C2(A,f1_1)-e-A3(f1_1)-

right: SepInit_EĒ(C,f3_1)-1BloP_Ē(C,f4_1)-SepInit_EĒ(C,f3_1)-
1BloP_Ē(C,f4_1)-0Blo_Ē(C,f4_1)-1BloS_Ē(A,f4_1)-
SepInit_EĒ(A,f2_1)(2)-1BloP_Ē(F,f1_1)-SepInit_EĒ(A,f3_1)(2)-
1BloP_Ē(F,f1_1)-0Blo_Ē(E,f4_1)-1BloS_Ē(C,f4_1)-e-
SepInit_EĒ(B,f1_1)(2)-1BloP_Ē(F,f3_1)-e-
SepInit_EĒ(B,f1_1)(2)-217e-….



404 G. Martínez et al.

The initial conditions in rule 110 are able to generate the serial sequence of bits
1110111 and a separator at the end with two particles. A desired construction is
achieved in 57,400 generations and an initial configuration of 56,240 cells. The
whole evolution space is 3,228,176,000 cells. See details [38].

15.4.2 Simulating a Cyclic Tag System in Rule 110

The cyclic tag system starts with the value ‘1’ on the tape, see Fig. 15.4. We show a
selection of snapshots of the machine working in rule 110 (see details in [38, 47]).
We show different sets of particles with coloured labels on the snapshot below.

Figure 15.11 shows the initial stage of the cyclic tag system with the state ‘1’ in
the tape. This data is represented by the set of particles 1Ele_C2. The snapshot shows
a central part of the machine and a train of A3 particles. We can see the first leader
in the set of particles SepInit_EĒ coming from the right periodic side.

The first reaction in Fig. 15.11 deletes the state ‘1’ on the tape. The set of particles
1Ele_C2) and the particles’ separator are prepared for next data to be aggregated. If
a set of particles 0Ele_C2 is encountered on the tape then data is not added to the
tape until another separator appears. The particles Ē left after the first production
are invisible to the system, they do not affect any operations because they cross as
solitons, without state modifications, the subsequent set of particles 4_A4.

In Fig. 15.12 we see a set of particles 1Ele_C2 constructed from a train of particles
4_A4. These particles have a very short life because quickly a separator set of particles
arrives. This separator erases the particles and prepares new data that would be
aggregated to the tape.

Figure 15.13 presents the construction of a set of particles 1Ele_C2. In this stage
of the evolution, we can see how data is aggregated, based on their values, before they
cross the tape. Similar reactions can be observed with the set of particles 0Ele_C2.

Figure 15.14 shows a set of particles 0Ele_C2 and its roles in the system. At
the top, a set of particles 1Add_Ē, previously produced by a standard component
1BloS_Ē, crosses a set of particles 0Ele_C2. A leader set of the particles deletes ‘0’
from the tape and all the subsequent incoming data. There are 1BloP_Ē, 0Blo_Ē and
1BloS_Ē set of particles in the illustrated sequence. The tile T14 is generated in the
process. This differences in distances between the particles determine a change of
phases which will lead to erasure of particles Ē, instead of production of particles C.
The reaction A3 → Ē is used to delete the particles.

Production rules in cyclic tag system specify that for the state ‘0’ the first element
of the chain must be erased and the other elements are conserved and no data are
written on the tape. If the state is ‘1’ the first element of the chain is deleted and 10
or 11 are aggregated depending of the k value. This behaviour is particularly visible
when a separator finds 0 or 1 and deletes it from the tape. If the deleted data is ‘0’,
a separator does not allow the production of new data. If the deleted data is ‘1’ the
separator aggregates new elements 11 or 10, which are modified at later stages of the



15 A Computation in a Cellular Automaton Collider Rule 110 405

Fig. 15.11 Initial stage of cyclic tag system in rule 110

system’s development. Using this procedure, we can calculate up to the sixth ‘1’ of
the sequence 011<1>0 produced by the cyclic tag system.

In terms of periodic phases, this cyclic tag system working in rule 110 can be
simplified as follows:

left: {649e-4_A4(F_i)}*, for 1 ≤ i ≤ 3 in sequential order



406 G. Martínez et al.

Fig. 15.12 Constructing an element 1Ele_C2

center: 246e-1Ele_C2(A,f1_1)-e-A3(f1_1)

right: {SepInit_EĒ(#,fi_1)-1BloP_Ē(#,fi_1)-SepInit_EĒ(#,fi_1)-
1BloP_Ē(#,fi_1)-0Blo_Ē(#,fi_1)-1BloS_Ē(#,fi_1)}* (where
1 ≤ i ≤ 4 and # represents a particular phase).



15 A Computation in a Cellular Automaton Collider Rule 110 407

Fig. 15.13 Transformed data crossing the tape of values

These periodic coding will be very useful to design and synchronise three inter-
linked rings of 1D CA (cyclotrons) to make a ‘supercollider’.



408 G. Martínez et al.

Fig. 15.14 Deleting a set of particles 0Ele_C2

15.5 Cellular Automata Supercollider

In the late 1970s Fredkin and Toffoli proposed a concept of computation based on
ballistic interactions between quanta of information that are represented by abstract
particles [53]. The Boolean states of logical variables are represented by balls or



15 A Computation in a Cellular Automaton Collider Rule 110 409

u v

f

(a)
u0 v0

v1 u1

f

(b)
u v

uv

(c)
u v

u v

(d)

Fig. 15.15 Schemes of ballistic collision between localizations representing logical values of the
Boolean variables u and v

(a) (b) (c)

p

p

+ p
_

_
p

_

f

p+
f

s

p+
s

Fig. 15.16 Representation of abstract particles in a 1D CA ring

atoms, which preserve their identity when they collide with each other. Fredkin,
Toffoli and Margolus developed a billiard-ball model of computation, with under-
pinning mechanics of elastically colliding balls and mirrors reflecting the balls’ tra-
jectories. Margolus proposed a special class of CA which implements the billiard-ball
model [24]. Margolus’ partitioned CA exhibited computational universality because
they simulated Fredkin gates via collision of soft spheres [25, 26]. Also, we consider
previous results about circular machines designed by Arbib, Kudlek, and Rogozhin
in [5, 20, 21]. Initial reports about CA collider were published in [28–30].

The following functions with two input arguments u and v can be realised in
collisions between two localizations:

• f (u, v) = c, fusion (Fig. 15.15a)
• f (u, v) = u + v, interaction and subsequent change of state (Fig. 15.15b)
• fi(u, v) �→ (u, v) identity, solitonic collision (Fig. 15.15c);
• fr(u, v) �→ (v, u) reflection, elastic collision (Fig. 15.15d);

To represent Toffoli’s supercollider [53] in 1D CA we use the notion of an idealised
particle p ∈ G (without energy and potential). The particle p is represented by a binary
string of cell states.

Figure 15.16 shows two typical scenarios where particles pf and ps travel in a CA
cyclotron. The first scenario (Fig. 15.16a) shows two particles travelling in opposite
directions; these particles collide one with another. Their collision site (contact point)
is shown by a dark circle in Fig. 15.16a. The second scenario demonstrates a beam
routing where a fast particle pf eventually catches up with a slow particle ps at a
collision site (Fig. 15.16b). If the particles collide like solitons, then the faster particle
pf simply overtakes the slower particle ps and continues its motion (Fig. 15.16c).



410 G. Martínez et al.

Fig. 15.17 Particle collision in rule 110. Particle p−
B̄

collides with particle p−
G giving rise to three

new particles—p−
F , p+

D2
, and p+

A3 , and preserving the p−
B̄

particle—that are generated as a result of
the collision

Typically, we can find all types of particles in complex CA, including particles
with positive p+, negative p−, and neutral p0 displacements, and composite particles
assembled from elementary localizations. A sample coding and colliding particles is
shown in Fig. 15.17, which displays a typical collision between two particles in rule
110. As a result of the collision one particle is split into three different particles (for
full details please see [35]). The previous collision positions of particles determines
the outcomes of the collision. Particles are represented now with orientation and
name of the particle in rule 110 as follows: p+,−,0

G .
To represent particles on a given beam routing scheme (see Fig. 15.16), we do

not consider the periodic background configuration in rule 110 because essentially
this does not affect on collisions. Figure 15.18 displays a 1D configuration where two
particles collide repeatedly and interact as solitons so that the identities of the particles
are preserved in the collisions. A negative particle p−

F collides with and overtakes a
neutral particle p−

C1
. First cyclotron (Fig. 15.18a) presents a whole set of cells in state

1 (dark points) evolving with the periodic background. By applying a filter we can
see better these interactions (Fig. 15.18b).4 Typical space-time configurations of a
CA exhibiting a collision between p−

F and p−
C1

particles are shown in Fig. 15.18c.

4Cyclotron evolution was simulated with DDLab software, available at http://www.ddlab.org.

http://www.ddlab.org


15 A Computation in a Cellular Automaton Collider Rule 110 411

Fig. 15.18 A soliton-type interaction between particles in rule 110: a, b two steps of beam routing,
c exact configuration at the time of collision

p
_
f

p
_
s

p+
f

p+
f

Fig. 15.19 Transition between two beam routing synchronising multiple reactions. When the first
set of collisions is done a new beam routing is defined with other set of particles, so that when the
second set of collisions is done then first beam returns to its original state

15.6 Beam Routings and Computations

We examine beam routing based on particle-collisions. We will show how the beam
routing can be used in designs of computing based-collisions connecting cyclotrons.
Figure 15.19 shows a beam routing design, connecting two of beams and then cre-
ating a new beam routing diagram where edges represent a change of particles and
collisions. In such a transition, new particles emerge and collide to return to the first
beam. The particles oscillate between these two beam routing indefinitely.

To understand how dynamics of a double beam differs from a conventional 1D
evolution space we provide Fig. 15.20. There we can see multiple collisions between
particles from first beam routing and trains particles. Exactly, we have that

p+
A , p+

A ↔ p−
B̄
, p−

B , p−
B

changes to the set of particles derived in the second beam routing:

p+
A4 ↔ p+

E , p+
Ē
.

This oscillation determines two beam routing connected by a transition of colli-
sions as:



412 G. Martínez et al.

Fig. 15.20 Synchronisation of multiple collisions in rule 110 on a ring of 1,060 cells in 1,027
generations, starting with 50 particles from its initial condition

(p+
A , p+

A ↔ p−
B̄
, p−

B , p−
B ) → (p+

A4 ↔ p+
E , p+

Ē
), and

(p+
A4 ↔ p+

E , p+
Ē
) → (p+

A , p+
A ↔ p−

B̄
, p−

B , p−
B ).

We can see that a beam routing representation allows for a design of collisions
in cyclotrons. We employ the beam routing to implement the cyclic tag system in
the CA rings. A construction of the cyclic tag system in rule 110 consists of three
components (as was discussed in Sect. 15.4.2):

• The left periodic part, controlled by trains of 4_A4 particles. This part is static. It
controls the production of 0’s and 1’s.

• The centre, determining the initial value in the tape.
• The right periodic part, which has the data to process, adding a leader component

which determines if data will be added or erased in the tape.

Left periodic part is defined by four trains of A4 (Fig. 15.21c), trains of A4 have
three phases. The key point is to implement these components defining both distances
and phases, because a distinct phase or a distance induces an undesirable reaction.



15 A Computation in a Cellular Automaton Collider Rule 110 413

(a) (b) (c)

(d) (e) (f) (g)

(h) (i)

Fig. 15.21 The whole set of beam routing codification representing train of particles, to simulate
a cyclic tag system. Each global state represents every component (set of particles) described in
Sect. 15.4.1

The central part is represented by one value ‘1’ on the tape across a train of four
C2 particles. The component 1Ele_C2 (Fig. 15.21b) represents ‘1’ and the component
0Ele_C2 (Fig. 15.21a) represents ‘0’ on the tape. The component 0Blo_Ē is formed
by 12Ē particles. The construct includes two components to represent the state ‘1’:
1BloP_Ē (Fig. 15.21f) named primary and 1BloS_Ē (Fig. 15.21g) named standard.
A leader component SepInit_EĒ (Fig. 15.21d) is used to separate trains of data and
to determine their incorporation into of the tape.

The components 1Add_Ē (Fig. 15.21i) and 0Add_Ē (Fig. 15.21h) are produced
by two previous different trains of data. The component 1Add_Ē must be generated
by a block 1BloP_Ē or by 1BloS_Ē. This way, both components can yield the same
element. The component 0Add_Ē is generated by a component 0Blo_Ē (Fig. 15.21e).
For a complete and full description of such reproduction by phases fi_1, see [38].

To get a cyclic tag system emulation in rule 110 by beam routings, we will use con-
nections between beam routings as a finite state machine represented in Fig. 15.22.



414 G. Martínez et al.

p 0
p 1

de
le
te

tr
an

sf
or
m

1

1

0

Fig. 15.22 Beam routing finite state machine simulating the cyclic tag system by state of cyclotrons
representation



15 A Computation in a Cellular Automaton Collider Rule 110 415

Transitions between beam routings means a change of state (transition function).
Initial state is represented by the component 1Ele_C2. A final state is not specified
because it is determined by the state of the computation, i.e., a halt condition. Com-
ponents 1Ele_C2 and 0Ele_C2 are compressed and shown as a dark circle, which
represents the point of collision. Both components are made of four C2 particles
being at different distances. When a leader component (SepInit_EĒ) is transformed,
given previous binary value on the tape, it collides with p0

? component, i.e., a p0
1 or p0

0
element. If p0

? is ‘0’, then a cascade of collisions starts to delete all components that
come with three particles successively. If p0

? is ‘1’ then a cascade of transformations
dominated by additional particles p0 is initiated, in order to reach the next leader
component. Here, we have more variants because pre-transformed train of particles
is encoded into binary values that are then written on the machine tape. If a com-
ponent of particles is 1BloP_Ē or 1BloS_Ē this means that such a component will
be transformed to one 1Add_Ē element. If a component of particles is 0Blo_Ē, then
such a component will be transformed to 0Add_Ē element. At this stage, when both
components are prepared then a binary value is introduced on the tape, a 1Add_Ē
element stores a 1 (1Ele_C2), and a 0Add_Ē element stores a 0 (0Ele_C2), which
eventually will be deleted for the next leader component and starts a new cycle in
the cyclic tag system. In bigger spaces these components will be represented just as
a point in the evolution space: we describe this representation in the next section.

15.7 Cyclotrons

We use cyclotrons to explore large computational spaces where exact structures of
particles are not relevant but only the interactions between the particles. There we
can represent the particles as points and trains of particles as sequences of points. A
3D representation is convenient to understand the history of the evolutions, number
of particles, positions, and collisions. Figure 15.23 shows a cyclotron evolving from
a random initial configuration with 20,000 cells. Three stages are initialised in the
evolution and the particles undergo successions of collisions in few first steps of
evolution. The evolution is presented in a vertical orientation rotated 90 degrees.
The present state shown is a front and its projection in three dimensions unveils the
history and the evolution. Following this representation we can design a number of
initial conditions to reproduce periodic patterns.5

Figure 15.24 shows a basic flip-flop pattern. We synchronise 16 particlespF ← pB,
the basic collision takes place for two pairs of particles, a pD1 particle and a train of
pA2 particles. The distance is determined by a factor of mod 14. A second reaction is
synchronised with pD1 ← pA2 to return back to the initial pF and pB particles. All 16
particles are forced in the same phase to guarantee an adequate distance, this distance
is fixed in 64 copies of 14 cells (ether). Finally eight collisions are controlled every
time simultaneously on an evolution space with 7,464 cells.

5The simulations are done in Discrete Dynamics Lab (DDLab, http://www.ddlab.org/) [59].

http://www.ddlab.org/


416 G. Martínez et al.

Fig. 15.23 ECA rule 110 particles traveling and colliding inside a cyclotron in a evolution space
of 20,000 cells. A filter is selected for a better view of particles, each cyclotron initial stage in the
history (three dimensional projection) is restarted randomly to illustrate the complex dynamics and
variety of particles and collisions



15 A Computation in a Cellular Automaton Collider Rule 110 417

Fig. 15.24 Basic flip-flop oscillator implemented in a cyclotron with 7,464 cells in 25,000 gener-
ations. 16 particles pF ← pB were coded



418 G. Martínez et al.

accelerating E's 
particles to 

constant velocity 
of 

accelerating A's 
particles to constant 

velocity of 

contact point
(point of collision)

periodic injection of 
particles

left area

right area

2/3
-4/15

Fig. 15.25 Collider diagram

15.8 Collider Computing

A cyclic tag system consists of three main components. Each stage of computation
can be represented with a cyclotron. A synchronisation of these cyclotrons injects
beams of particles to a central main collider to obtain the collisions that will simulate
a computation. The periodic representations of left and right cyclotrons are fixed.
Diagram in Fig. 15.25 shows the dynamics of particles in a collider.

Left part Periodic area handle beams of three trains of four pA4 particles, travelling
from the left side with a constant velocity of 2/3. This ring has 30,640 cells, the
minimum interval between trains of particles is 649 copies of ether. Each beam of
pA4 can have three possible phases. The sequence of phases is periodic and fixed
sequentially: {649e-4A4(Fi)}∗, for 1 ≤ i ≤ 3 (Fig. 15.25 left area). Figure 15.26
shows a simulation of these periodic beams of 4pA4(Fi) particles.

Right part Periodic area handle beams of six trains of 12E’s particles (pEn , pĒ),
travelling from the right side with a constant velocity of −4/15. There are 12
particles related to a perfect square with 13,5002 possibilities to arrange inputs
into the main collider. Interval between 12 particles is mod 14. Figure 15.27



15 A Computation in a Cellular Automaton Collider Rule 110 419

Fig. 15.26 Three beams of 4pA4(Fi) particles. Simulation is displayed in a vertical position to get
a better view of particles’ trajectories



420 G. Martínez et al.

Fig. 15.27 A beam composed of six 12pEs particles. Simulation is shown in a vertical position to
get a better view of particles’ trajectories. Interval between first and last particles can be any number
mod 14



15 A Computation in a Cellular Automaton Collider Rule 110 421

Fig. 15.28 First stage of collisions of the cyclic tag system. Solitonic interactions take place 4pA4(F3)

and two pĒ particles. First symbol ‘1’ on the type is deleted (center). The first separator is read and
deleted

shows the whole set of 72 pEs particles. The set contains leaders and separator
components, and beams of particles that introduce ‘0’s and ‘1’s on the tape.

Center Initial state of particles starts with a ‘1’ on the type of the cyclic tag system.
Figure 15.28 shows the first stage of the collider. The system start with one ‘1’ in
the type (four vertical pCs particles), they are static particles that wait for the first
beam of pEs particles to arrive at the right side to delete this input and decode the
next inputs. In this process two solitons emerge, but they do not affect the system
and the first beam of 4pA4(F3) particles without changing their states.
Figure 15.29 shows how a second symbol ‘1’ is introduced in the collider. A leader
component is deleted and the second binary data is prepared to collide later with
the first beam of 4pA4(F3) particles. Finally, the second ‘1’ is represented for the
vertical particles, as shown at the bottom of Fig. 15.29.



422 G. Martínez et al.

Fig. 15.29 This snapshot shows when a ‘1’ is introduced in the type. A second beam of 12 pĒ
particles is coming to leave just spaced four pĒ particles, these particles collide with one of 4pA4(F3)

particles. The result is four 4pCs particles at the bottom of the simulation that represent one ‘1’ in
the cyclic tag system type

Figure 15.30 shows how further symbols ‘0’ and ‘1’ are introduced in the system.
They are coded with pĒs particles. Before the current ‘1’ is introduced with 4pA4(F3)

particles, the next set of 4pA4(F3) particles is prepared in advance.
Figure 15.31 shows the largest stage of the collider’s working. A second beam of
4pA4(F1) arrives. More beams of pEs particles are introduced. Figure 15.32 displays
a full cycle of beams of pA and pEs particles. All operations are performed at least
once. The next set of particles is ready to continue with the next stage of the
computation.



15 A Computation in a Cellular Automaton Collider Rule 110 423

Fig. 15.30 This snapshot shows how a sequence of values ‘0’ and ‘1’ is precoded. You can see
sequences of ‘0’s and ‘1’s, and pEs particles travelling to from the left to the right

15.9 Discussion

The CA collider is a viable prototype of a collision-based computing device. It well
compliments existing models of computing circuits based on particle collisions [15,
18, 23, 42, 45, 56, 60]. How complex is our design? With regarding to time com-
plexity, rule simulates Turing machine a polynomial time and any step of rule 110
can be predicted in a polynomial time [46]. As to space complexity, left cyclotron in
the collider is made of 30,640 cells and the right cyclotron of 5,864 cells. The main
collider should have 61,280 cells to implement a full set of reactions; however, it is
possible to reduce the number of cells in the main collider, because the first train
of 4pA4(Fi) particles needs just 10,218 cells; and subsequent trains can be prepared
while initial data are processed. Thus, the simulated collider have just thousands of
cells not millions. The space complexity of the implemented cyclic tag systems has
been reduced substantially [11, 12, 58].



424 G. Martínez et al.

Fig. 15.31 This snapshot shows from another angle how binary values are introduced in the cyclic
tag system. We can also see how a number of values are prepared to collide with beams of 4pA4(Fi)
particles at the end of simulation

What are chances of implementing the CA collider model in physical substrates?
A particle, or gliders, is a key component of the collider. The glider is a finite-
state machine implementation of a propagation localisation. A solitary wave, or an
impulse, propagating in a polymer chain could be a phenomenologically suitable
analog of the glider. A wide range of polymer chains, both inorganic and organic,
support solitons [1–3, 6, 9, 13, 14, 17, 19, 50, 52]. We believe actin filaments could
make the most suitable substrate for implementation of a cyclic tag system via linked
rings of CA colliders.



15 A Computation in a Cellular Automaton Collider Rule 110 425

Fig. 15.32 This evolution displays a full cycle of beams of pA and pEs particles. In this snapshot
we can see all necessary operations in the cyclic tag system: input values, deleting block of values,
particles like solitons, and the next stage of the collider

An actin filament is a double spiral helix of globular protein units. Not only actin
is a key element of a cell skeleton, and is responsible for a cell’s motility, but actin
networks is a sensorial, information processing and decision making system of cells.
In [4] we proposed a model of actin filaments as two chains of one-dimensional
binary-state semi-totalistic automaton arrays. We show that a rich family of travel-
ling localisations is observed in automaton model of actin, and many of the locali-
sation observed behave similarly to gliders in CA rule 110. The finite state machine
model has been further extended to a quantum cellular automata model in [48]. We
have shown that quantum actin automata can perform basic operations of Boolean
logic, and implemented a binary adder. To bring more ‘physical’ meaning in our
actin-computing concept we also employed the electrical properties of imitated actin
filaments—resistance, capacitance, inductance — and found that it is possible to



426 G. Martínez et al.

implement logical gates via interacting voltage impulses [49]; voltage impulses in
non-linear transmission wires are analogs of gliders in 1D CA. Clearly, having just
actin is not enough: we must couple rings together, arrange physical initiation of soli-
tons and their detection, and solve myriad of other experimental laboratory problems.
That will be a scope of further studies.

References

1. Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives. Institute of Physics
Publishing, Bristol (2001)

2. Adamatzky, A. (ed.): Collision-Based Computing. Springer, London (2002)
3. Adamatzky, A.: Unconventional Computing. Human Brain Project Magazine (2015)
4. Adamatzky, A., Mayne, R.: Actin automata: phenomenology and localizations. Int. J. Bifurc.

Chaos 25(02), 1550030 (2015)
5. Arbib, M.A.: Theories of Abstract Automata. Prentice-Hall Series in Automatic Computation,

Michigan (1969)
6. Bandyopadhyay, A., Pati, R., Sahu, S., Peper, F., Fujita, D.: Massively parallel computing on

an organic molecular layer. Nat. Phys. 6, 369–375 (2010)
7. Banks, E.R.: Information and transmission in cellular automata. PhD Dissertation. Massa-

chusetts Institute of Technology, Cambridge (1971)
8. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical Plays, vol.

2, Chap. 25, Academic Press, Cambridge (1982)
9. Bredas, J.L., Street, G.B.: Polarons, bipolarons, and solitons in conducting polymers. Acc.

Chem. Res. 18(10), 309–315 (1985)
10. Codd, E.F.: Cellular Automata. Academic Press, Inc., New York (1968)
11. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)
12. Cook, M.: A concrete view of Rule 110 computation. In: Neary, T., Woods, D., Seda, A.K.,

Murphy, N. (eds.) The Complexity of Simple Programs, pp. 31–55 (2008)
13. Davydov, A.S.: Solitons and energy transfer along protein molecules. J. Theor. Biol. 66(2),

379–387 (1977)
14. Davydov, A.S.: Solitons in Molecular Systems. Springer, Heidelberg (1990)
15. Fredkin, E., Toffoli, T.: Design principles for achieving high-performance submicron digi-

tal technologies. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 27–46. Springer,
London (2002)

16. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman, New York (1986)
17. Heeger, A.J., Kivelson, S., Schrieffer, J.R., Su, W.P.: Solitons in conducting polymers. Rev.

Mod. Phys. 60(3), 781 (1988)
18. Hey, A.J.G.: Feynman and computation: exploring the limits of computers. Perseus Books,

New York (1998)
19. Jakubowski, M.H., Steiglitz, K., Squier, R.: Computing with solitons: a review and prospectus.

Multiple-Valued Logic 6(5–6), 439–462 (2001)
20. Kudlek, M., Rogozhin, Y.: New small universal post machine. Lect. Notes Comput. Sci. 2138,

217–227 (2001)
21. Kudlek, M., Rogozhin, Y.: Small universal circular post machine. Comput. Sci. J. Moldova.

9(25), 34–52 (2001)
22. Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional cellular

automata. Complex Syst. 4, 229–318 (1990)
23. Lu, Y., Sato, Y., Amari, S.: Traveling bumps and their collisions in a two-dimensional neural

field. Neural Comput. 23(5), 1248–1260 (2011)
24. Margolus, N.H.: Physics-like models of computation. Physica D. 10(1–2), 81–95 (1984)



15 A Computation in a Cellular Automaton Collider Rule 110 427

25. Margolus, N.H.: Crystalline computation, In: Hey, A.J.G. (ed.) Feynman and computation:
exploring the limits of computers, pp. 267–305. Perseus Books, New York (1998)

26. Margolus, N.H.: Universal cellular automata based on the collisions of soft spheres. In:
Adamatzky, A. (ed.) Collision-Based Computing, pp. 107–134. Springer, London (2002)

27. Martínez, G.J., Adamatzky, A., Chen, F., Chua, L.: On soliton collisions between localizations
in complex elementary cellular automata: rules 54 and 110 and beyond. Complex Syst. 21(2),
117–142 (2012)

28. Martínez, G.J., Adamatzky, A., McIntosh, H.V.: Computing on rings. In: Zenil, H. (ed.) A
Computable Universe: Understanding and Exploring Nature as Computation, pp. 283–302.
World Scientific, Singapore (2012)

29. Martínez, G.J., Adamatzky, A., McIntosh, H.V.: Computing with virtual cellular automata
collider. In: IEEE Proceedings of Science and Information Conference, pp. 62–68. London
(2015). doi:10.1109/SAI.2015.7237127

30. Martínez, G.J., Adamatzky, A., Stephens, C.R., Hoeflich, A.: Cellular automaton supercolliders.
Int. J. Mod. Phys. C. 22(4), 419–439 (2011)

31. McIntosh, H.V.: Linear Cellular Automata Via de Bruijn diagrams, http://delta.cs.cinvestav.
mx/~mcintosh/cellularautomata/Papers_files/debruijn.pdf. Cited 10 August 1991

32. McIntosh, H.V.: Rule 110 as it Relates to the Presence of Gliders, http://delta.cs.cinvestav.mx/
~mcintosh/comun/RULE110W/RULE110.html. Cited 14 May 2001

33. McIntosh, H.V.: A Concordance for Rule 110, http://delta.cs.cinvestav.mx/~mcintosh/
cellularautomata/Papers_files/ccord.pdf. Cited 14 May 2002

34. McIntosh, H.V.: One Dimensional Cellular Automata. Luniver Press, Bristol (2009)
35. Martínez, G.J., McIntosh, H.V.: ATLAS: Collisions of Gliders like Phases of

Ether in Rule 110, http://uncomp.uwe.ac.uk/genaro/Papers/Papers_on_CA_files/ATLAS/
bookcollisions.html. Cited 14 August 2001

36. Martínez, G.J., McIntosh, H.V., Seck, J.C.S.T.: Gliders in Rule 110. Int. J. Unconv. Comput.
2(1), 1–49 (2006)

37. Martínez, G.J., McIntosh, H.V., Mora, J.C.S.T., Vergara, S.V.C.: Determining a regular lan-
guage by glider-based structures called phases fi_1 in Rule 110. J. Cell. Automata 3(3), 231–270
(2008)

38. Martínez, G.J., McIntosh, H.V., Mora, J.C.S.T., Vergara, S.V.C.: Reproducing the cyclic tag
system developed by Matthew Cook with Rule 110 using the phases f1_1. J. Cell. Automata
6(2–3), 121–161 (2011)

39. Martínez, G.J., McIntosh, H.V., Mora, J.C.S.T., Vergara, S.V.C.: Rule 110 objects and other
collision-based constructions. J. Cell. Automata 2(3), 219–242 (2007)

40. Martínez, G.J., Seck-Tuoh-Mora, J.C., Zenil, H.: Computation and Universality: Class IV
versus Class III Cellular Automata. J. Cell. Automata 7(5–6), 393–430 (2013)

41. Mills, J.W.: The nature of the extended analog computer. Physica D. 237, 1235–1256 (2008)
42. Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall, Upper Saddle River

(1967)
43. Morita, K.: Simple universal one-dimensional reversible cellular automata. J. Cell. Automata

2, 159–166 (2007)
44. Morita, K.: Simulating reversible Turing machines and cyclic tag systems by one-dimensional

reversible cellular automata. Theor. Comput. Sci. 412, 3856–3865 (2011)
45. Margolus, N., Toffoli, T., Vichniac, G.: Cellular-automata supercomputers for fluid dynamics

modeling. Phys. Rev. Lett. 56(16), 1694–1696 (1986)
46. Neary, T., Woods, D.: P-completeness of cellular automaton Rule 110. Lect. Notes Comput.

Sci. 4051, 132–143 (2006)
47. Ninagawa, S., Martínez, G.J.: Compression-based analysis of cyclic tag system emulated by

Rule 110. J. Cell. Automata 9(1), 23–35 (2014)
48. Siccardi, S., Adamatzky, A.: Actin quantum automata: communication and computation in

molecular networks. Nano Commun. Netw. 6(1), 15–27 (2015)
49. Siccardi, S., Tuszynski, J. A., Adamatzky, A.: Boolean gates on actin filaments. Phys. Lett. A

(2015)

http://dx.doi.org/10.1109/SAI.2015.7237127
http://delta.cs.cinvestav.mx/~mcintosh/cellularautomata/Papers_files/debruijn.pdf
http://delta.cs.cinvestav.mx/~mcintosh/cellularautomata/Papers_files/debruijn.pdf
http://delta.cs.cinvestav.mx/~mcintosh/comun/RULE110W/RULE110.html
http://delta.cs.cinvestav.mx/~mcintosh/comun/RULE110W/RULE110.html
http://delta.cs.cinvestav.mx/~mcintosh/cellularautomata/Papers_files/ccord.pdf
http://delta.cs.cinvestav.mx/~mcintosh/cellularautomata/Papers_files/ccord.pdf
http://uncomp.uwe.ac.uk/genaro/Papers/Papers_on_CA_files/ATLAS/bookcollisions.html
http://uncomp.uwe.ac.uk/genaro/Papers/Papers_on_CA_files/ATLAS/bookcollisions.html


428 G. Martínez et al.

50. Scott, A.C.: Dynamics of Davydov solitons. Phys. Rev. A 26(1), 578 (1982)
51. Smith III, A.R.: Simple computation-universal cellular spaces. J. Assoc. Comput. Mach. 18,

339–353 (1971)
52. Toffoli, T.: Non-conventional computers. In: Webster, J. (ed.) Encyclopedia of Electrical and

Electronics Engineering, vol. 14, pp. 455–471. Wiley, New York (1998)
53. Toffoli, T.: Symbol super colliders. In: Adamatzky, A. (ed.) Collision-Based Computing, pp.

1–23. Springer, London (2002)
54. von Neumann, J.: Theory of Self-reproducing Automata (edited and completed by A.W. Burks),

University of Illinois Press, Urbana and London (1966)
55. Voorhees, B.H.: Computational analysis of one-dimensional cellular automata. In: World Sci-

entific Series on Nonlinear Science, Series A, vol. 15. World Scientific, Singapore (1996)
56. Wolfram, S.: Cellular automata supercomputing. In: Wilhelmson, R.B. (ed.) High Speed Com-

puting: Scientific Applications and Algorithm Design. pp. 40–48. University of Illinois Press,
Champaign (1988)

57. Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley Publishing Company, Col-
orado (1994)

58. Wolfram, S.: A New Kind of Science. Wolfram Media Inc, Champaign (2002)
59. Wuensche, A.: Exploring Discrete Dynamics. Luniver Press, Bristol (2011)
60. Zenil, H. (ed.): A Computable Universe. World Scientific Press, Singapore (2012)


	15 A Computation in a Cellular Automaton Collider Rule 110
	15.1 Introduction: Rule 110
	15.1.1 System of Particles
	15.1.2 Particles as Regular Expressions

	15.2 Universal elementary CA 
	15.3 Cyclic Tag Systems
	15.4 Cyclic Tag System Working in Rule 110
	15.4.1 Components Based on Sets of Particles
	15.4.2 Simulating a Cyclic Tag System in Rule 110

	15.5 Cellular Automata Supercollider
	15.6 Beam Routings and Computations
	15.7 Cyclotrons
	15.8 Collider Computing
	15.9 Discussion
	References


