
Chapter 13
Interaction-Based Programming in MGS

Antoine Spicher and Jean-Louis Giavitto

Abstract The modeling and simulation of morphogenetic phenomena require to
take into account the coupling between the processes that take place in a space and
the modification of that space due to those processes, leading to a chicken-and-
egg problem. To cope with this issue, we propose to consider a growing structure
as the byproduct of a multitude of interactions between its constitutive elements.
An interaction-based model of computation relying on spatial relationships is then
developed leading to an original style of programming implemented in the MGS
programming language. While MGS seems to be at first glance a domain specific
programming language, its underlying interaction-based paradigm is also relevant
to support the development of generic programming mechanisms. We show how
the specification of space independent computations achieves polytypism and we
develop a direct interpretation of well-known differential operators in term of data
movements.

13.1 Introduction

The development of the MGS unconventional programming language was driven
by a motto: computations are made of local interactions. This approach was moti-
vated by difficulties encountered in the modeling and simulation of morphogenetic
processes [13, 16] where the construction of an organism in the course of time, from
a germ cell to a complete organism, is achieved through a multitude of local interac-
tions between its constitutive elements. In this kind of systems, the spatial structure
varies over time and must be calculated in conjunction with the state of the system.

A. Spicher (B)
LACL, Université Paris-Est Créteil, 61 rue du général de Gaulle, 94010 Créteil, France
e-mail: antoine.spicher@u-pec.fr

J.-L. Giavitto
UMR 9912 STMS, IRCAM – CNRS – Paris Sorbonne University,
UPMC – INRIA, 1 Place Igor-Stravinsky, 75004 Paris, France
e-mail: jean-louis.giavitto@ircam.fr

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
DOI 10.1007/978-3-319-33924-5_13

305

306 A. Spicher and J.-L. Giavitto

As an example, consider the diffusion in a growing medium of a morphogen that
controls the speed of growth of this medium. The coupling between the processes
that take place in a space and the modification of the space due to the processes leads
to a chicken-and-egg problem: what comes first?

Recently, a new approach has emerged in theoretical physics to overcome the same
difficulty in general relativity where the mass moves along a space-time geodesic
while space-time geometry is defined by the distribution of mass. In this approach,
space is not seen as a primitive structure but rather as a byproduct of the causal
relationships induced by the interaction between the entities of the system.

Contributions

In this chapter, we propose to reconstruct the MGS mechanisms of computation from
this point of view. This abstract approach is illustrated in Sect. 13.2 by a down-to-
earth example, the bubble sort, and we show how the basic interactions at work (the
swap of two adjacent elements) build an explicit spatial structure (a linear space).
Our motivation in the development of this example, is to make explicit the basic
ingredient of a generic notion of interaction: interactions define a neighborhood
and, from neighbor to neighbor, a global shape emerges. This leads naturally to use
topological tools to describe computations in MGS.

Section13.3 presents the notion of topological rewriting and illustrates this notion
on various paradigmatic examples of morphogenesis. These examples are only
sketched to show the expected relevance of the MGS computational mechanisms
in the simulation of physical or biological systems.

In the Sect. 13.4, we show that these computational mechanisms are also relevant
to support the development of generic programming mechanisms, not necessarily
related to natural computations. Here we address genericity from the point of view
of polytypism, a notion initially developed in functional programming.

The MGS approach of polytypism boils down to the specification of patterns of
data traversals. In Sect. 13.5, we show these patterns of data movements at work in
the interpretation of differential operators. This interpretation gives a computational
content towell-knowndifferential operators subsuming discrete and continuous com-
putations. As an illustration, we provide a generic formulation that encompasses
discrete and continuous equations of diffusion that can be used in hybrid diffusion.
The section ends by sketching how sorting can be achieved by a set of differential
equations.

13.2 From Physics to Computation: Interactions

The simulation of morphogenetic systems leads to a chicken-and-egg situation
between the processes taking place in a space and the modification of the space due
to these processes. This problem has been pointed out by A. Turing in his seminal
study of morphogenesis [54].

13 Interaction-Based Programming in MGS 307

In general relativity, a similar issue occurs where the mass moves along geodesics
while spacial geometry is defined by the distribution of the mass. Physicists achieved
to deal with the interdependence between mass and space through the concept of
causality in a space-time structure. In this section, we propose to transpose this idea
into computations.

13.2.1 Spatial Structure, Causality and Interaction

Space-Time and Causality

To address the interdependence problem, a classical solution consists in considering
a space-time as a manifold M endowed with a differentiable structure with respect
to which a metric g is defined. Then a causal order is derived from the light cones of
g. However, it has been known for some time that one can also go the other way [26,
29]: considering only the events of space-time M and an order relation ≺ such that
x ≺ y if event x may influence what happens at event y, it is possible to recover
from ≺ the topology ofM, its differentiable structure and the metric g up to a scalar
factor [5]. Moreover, it can be done in a purely order theoretic manner [30].

The causal relation ≺ is regarded as the fundamental ingredient in the description
of the systemevolution, the topology andgeometry being secondary in the description
of the dynamics. As advocated by the causal set program developed by Sorkin et
al. [40, 41], this approach is compatiblewith the idea of “becoming”,making possible
to see a system more naturally as a “growing being” than as a “static thing”, a
mandatory characteristic of genuine morphogenetic processes.

Causality and Interaction

A similar path can be followed for the development of a framework suitable for the
computer modeling of morphogenesis. The idea is to describe the evolution of the
system as a set of interactions (read: computation). These interactions entail a causal
relation. In this way, starting from the set of potential entities in the system and from
a set of interactions acting on these entities, one may reconstruct incrementally the
spatial structure of the whole system as a byproduct of the causal structure of the
system’s interactions (computations).

Focusing on interactions rather than on the spatial background in which the evo-
lution takes place is a solution to the problem of describing morphogenetic processes
as dynamical systems. In this view interactions are local by definition. In the manner
of the aforementioned causal relation ≺, interactions are regarded as the fundamen-
tal ingredient in the description of the system evolution, the topology and geometry
being secondary.

The study of causality in computations can be traced back at least to the sixtieswith
the development of Petri nets, where an event (i.e., firing of an enabled transition) is a
local action andwhere there is a clear notion of event independence. Since, the subject
has been extensively studied, for example with the notion of event structure [56]
whose intersection with causal sets in physics has been noticed [35].

308 A. Spicher and J.-L. Giavitto

13.2.2 Computing with Interactions

To illustrate the previous idea in an algorithmic context, let us revisit a classical
algorithm, the bubble sort, by considering first the interactions at work, and then by
trying to reconstruct a data structure from them.

Mathematical Notations

The set of functions (resp. total functions) from a domain D to a range R is written
D → R (resp.D ↪→R). If s ∈ D → R andD′ ⊆ D, then s|D′ is the restriction of s toD′.
The expression [u1 → a1, . . . , un → an] is an element s of {u1, . . . , un} ↪→{a1, . . . ,
an} such that s(ui) = ai. The expression s · s′ denotes a function s′′ of domain
dom(s) ∪ dom(s′) such that s′′(u) = s′(u) if u ∈ dom(s′) else s′′(u) = s(u). Given
a set D = {u1, u2, . . . } we form the set of formal elements ̂D = {̂u1, û2, . . . }. Let
e be an expression where the elements of ̂D appear as variables and let s be some
function ofD ↪→R, e[s] denotes the evaluation of expression ewhere all occurrences
of û are replaced by s(u) for all u ∈ D.

The “memory” where the data are stored is specified as a set of places named
positions. A position plays the role of the spatial part of an event in physics. By
denotingV the set of values that can be stored, a state of a computation is represented
by a total function s from a set of positions to V . Let P = dom(s) be the set
of positions in some state s, elements of ̂P can be used in some expression e as
placeholders replaced by their associated values in e[s].
Interactions as Rules

An interaction is defined by a reciprocal action between positions. The effect of the
interaction is to change the values associatedwith the involved positions. Because the
spatial structure can be dynamic, for a given interaction I we consider a set lI of input
positions and a set rI of output positions. We do not require lI ⊆ rI (meaning that
some positions may appear during the interaction), nor rI ⊆ lI (meaning that some
positions may disappear during the interaction). Finally, an interaction is guarded by
some condition, that is a Boolean expression CI , which controls the occurrence of
the interaction. We will write an interaction I as a rule

lI / CI −→ RI

where RI is an expression to be evaluated to a function of rI ↪→V .
The semantics of an interaction is as follows: an interaction I may occur in a state

s if and only if CI [s] evaluates to true. Then, the result of the interaction is

s|dom(s)\lI · RI [s]

The expression s|dom(s)\lI restricts s to the positions that do not take part into the inter-
action. This partial state is then augmented by the local result RI [s] of the interaction.
After the interaction the set of positions is given by (dom(s)\li) ∪ dom(RI).

13 Interaction-Based Programming in MGS 309

Bubble Sort As a Set of Interactions

For the sake of simplicity, we focus on sorting sequences of three numbers taken
in V = {1, 2, 3}. Initially, the sequence is encoded using three symbolic positions
p1, p2 and p3, so that for instance, the initial sequence [3, 1, 1] is represented by the
function:

s0 = [p1 → 3, p2 → 1, p3 → 1]

The elementary instruction at work in the bubble sort consists in swapping two
neighbor elements that are not well ordered. The algorithm can then be described by
the two following interactions:

I1 :{p1, p2} / (p̂2 < p̂1) −→ [p1 → p̂2, p2 → p̂1]
I2 :{p2, p3} / (p̂3 < p̂2) −→ [p2 → p̂3, p3 → p̂2]

In state s0, only I1 can occur since numbers 3 and 1 are not well ordered on positions
p1 and p2. The result of the interaction gives the sequence [1, 3, 1]:

s1 = s0|dom(s0)\lI1 · RI1 [s0]
= [p3 → 1] · [p1 → 1, p2 → 3]
= [p1 → 1, p2 → 3, p3 → 1]

Figure13.1 gives the state space generated by these interactions where a computation
is a trajectory going from bottom to top.

Interactions I1 and I2 alone do not modify the underlying set of positions. To
illustrate such a modification, let us consider the removal of duplicate values with
some additional interactions whichmerge neighbor positions sharing the same value:

111 222 333 211

121

112

311

131

113

221

212

122

322

232

223

331

313

133

221

212

122

321

231

213

312

132

123

Fig. 13.1 The state space of interactions {I1, I2} with V = {1, 2, 3} andP = {p1, p2, p3} as set of
positions. We write abc for the function [p1 → a, p2 → b, p3 → c]. Starting from an initial state
s = a1a2a3, the final state of the computation must be s′ = aiajak such that {i, j, k} = {1, 2, 3}
and ai ≤ aj ≤ ak . There are |V P | = 33 = 27 states. One goes from one state to another by the
application of one interaction (edges are oriented from bottom to top). The branching from 321
shows the possibility to apply either I1 or I2 leading to a non-deterministic behavior

310 A. Spicher and J.-L. Giavitto

I3 : {p1, p2} / (p̂2 = p̂1) −→ [p4 → p̂1]
I4 : {p2, p3} / (p̂3 = p̂2) −→ [p5 → p̂2]
I5 : {p1, p5} / (p̂5 < p̂1) −→ [p1 → p̂5, p5 → p̂1]
I6 : {p4, p3} / (p̂3 < p̂4) −→ [p4 → p̂3, p3 → p̂4]
I7 : {p1, p5} / (p̂5 = p̂1) −→ [p6 → p̂1]
I8 : {p4, p3} / (p̂3 = p̂4) −→ [p6 → p̂3]

Interaction I3 (resp. I4) expresses the merge of positions p1 and p2 into p4 (resp. p2
and p3 into p5) when they are labeled with the same value. Interactions I5 and I6
specify the sorting of values when p4 and p5 are labeled. Finally, I7 and I8 describe
the merge of positions into a unique position p6.

With these additional interactions, another outcome is possible from state s0 by
applying interaction I4:

s′1 = s0|dom(s0)\lI4 · RI4 [s0] = [p1 → 3, p5 → 1]

As expected, the set of positions is modified to {p1, p5}. The corresponding state
space is of course bigger than the previous one and exhibits more branching (i.e.,
non-determinism) but remains confluent.

The Spatial Organization of Positions

Although the set of positions comes without any structure, the interactions make a
specific use of it so that in general any position is not involved with all the others.
As a consequence, the interactions induce a notion of locality leading to a spatial
organization of the set of positions. This space can be made explicit by building the
minimal structure such that, for any interaction I , the elements of lI are “neighbors”.
Noticing that for an interaction I , the interaction also involves any subset of lI , the
neighborhood must be closed by inclusion. It turns out that this property defines a
combinatorial spatial structure called an abstract simplicial complex (ASC) [22].

An ASC is a collection K of non-empty finite sets such that σ ∈ K and τ ⊆ σ

implies τ ∈ K . The elements of K are called simplices. The dimension of a sim-
plex σ ∈ K is dim(σ) = |σ | − 1 and the dimension of a complex is the maximum
dimension of any of its simplices when it exists. A simplex of dimension n is called
a n-simplex. A vertex is a 0-simplex. The vertex set of an ASCK is the union of all
its simplices, Vert(K) = ∪σ∈K σ . An edge is a 1-simplex whose border consists of
two vertices. A graph is an ASC of dimension 1 built with vertices and edges. An
ASC of dimension 2 also contains triangular surfaces bounded by 3 edges. ASCs of
dimension 3 contain tetrahedrons bounded by four 2-simplices. And so on and so
forth.

LetI be a set of interactions. We call the interaction complex ofI , the smallest
ASC KI containing all the lI as simplices for I ∈ I . For the set of interactions
{I1, I2}, the associated interaction complex is:

K{I1,I2} = {{p1}, {p2}, {p3}, {p1, p2}, {p2, p3}
}

13 Interaction-Based Programming in MGS 311

{p1} {p2} {p3}
{p1, p2} {p2, p3}

{p1} {p2} {p3}

{p4}{p5} {p6}

{p1, p2} {p2, p3}
{p4, p3}{p1, p5}

Fig. 13.2 Examples of interaction complex: K{I1,I2} on the left and K{I1,...,I8} on the right

The complex is pictured on the left of Fig. 13.2. As expected for a bubble sort, the
induced spatial organization is a sequential 1-dimensional structure, here [p1, p2, p3].
The bubble sort without duplicate values gives raise to the interaction complex
K{I1,...,I8} pictured on the right of Fig. 13.2. The complex exhibits the four sequential
organizations that the system can take over time: [p1, p2, p3], [p4, p3] (after themerge
of p1 and p2), [p1, p5] (after the merge of p2 and p3), and [p6] (if the three values were
initially the same). Notice thatK{I1,I2} is a sub-complex ofK{I1,...,I8} since {I1, . . . , I8}
contains I1 and I2.

Asymmetry of Interaction

The interactions involved in the bubble sort are asymmetric. For example, the roles
played by p1 and p2 in I1 are not interchangeable so that I1 differs from:

I ′1 : {p2, p1} / (p̂1 < p̂2) −→ [p2 → p̂1, p1 → p̂2]

although lI1 = lI ′1 . In fact, using a set to track the input positions lI does not catch
all the information contained in the interaction. As a consequence, some different
sets of interactions may have the same interaction complex. For example, K{I ′1,I2} is
exactly the same asK{I1,I2}.

We can get round this issue by considering a directed spatial structure rather
than an ordinary ASC. The notion of directed graph exists, as well as the notion
of directed ASC [21] (direction in ASC differs from the notion of orientation for
dimension greater than 2, e.g., there are two orientations for a 2-simplex but three
directions). For the sake of simplicity, let us put aside the asymmetry issue and restrict
the formal descriptions to undirected structures.

13.3 An Interaction-Based Programming Language

Following the approach given above, sorting n elements requires n positions and
(n − 1) interactions, and sorting n elements without duplicate values requires
n(n + 1)/2 positions and

∑n
i=0 2i(n − i) interactions. However, these rules are pretty

similar and can be captured by some “meta-rules”. For example, the previous inter-
actions can be represented by the following generic rules:

312 A. Spicher and J.-L. Giavitto

ρx,y :{x, y} / ŷ < x̂ −→ [x → ŷ, y → x̂]
ρ ′
x,y,z :{x, y} / ŷ = x̂ −→ [z → x̂]

These rules mean to denote a whole family of interactions that are obtained by
substituting positions for x, y and z. In fact, x, y and z are position variables instead
of actual positions. For example, interaction I1 is got by applying substitution [x →
p1, y → p2], that is, I1 = ρp1,p2 ; in the same way, I3 = ρ ′

p1,p2,p4 .
However, while some substitutions are desired, a lot of them are not. For example,

ρp1,p6 is definitively not part of the original specification of the bubble sort. Indeed,
the authorized substitutions have to respect some knowledge that was built implicitly
in the original interactions. In our example, x and y should stand for two positions
so that x is “before” y. As a matter of fact, this knowledge is the one captured by
the interaction complex. Thus, a necessary condition for a substitution of ρx,y (resp.
ρ ′
x,y,z) to be accepted is that set lρx,y (resp. lρ ′

x,y,z
) corresponds to a simplex ofK{I1,...,I8}.

This approach has been used to design the interaction-based programming lan-
guage MGS. In MGS, a computation is specified through sets of “meta-rules” called
transformations. Such a transformation is to be applied on a topological collection,
that is, a set of labeled positions equipped with an interaction complex. The appli-
cation is done by matching some positions in the collection which respect the inputs
and conditions of some rule of the transformation. The instance of the rule gives raise
to an interaction which modifies locally the state of the collection and possibly its
structure. In this section, the syntax of the language is briefly described and its use is
illustrated with a light survey of examples involving dynamic organizations (where
the set of positions is not fixed once and for all) and higher dimensional structures
(beyond graphs).

13.3.1 A Brief Description of the MGS Language

MGS provides topological collections, an original data structure for representing
the state of a system based on the topology of interactions, and transformations, a
rule-based definition of functions on collections for specifying the interaction laws
of the system.

Topological Collections

Topological collections are the unique data structure available in MGS. They define
the interaction structure of a dynamic system. They can also be seen as a field associ-
ating a value with each element of a combinatorial structure modeling the topology
of a space.

In the previous section, we focused on ASC to model the spatial structure. This
structure is the natural choice for the spatial constraint arising from the interactions.
However, other combinatorial structures extending the notion of ASC can be used
to get more concision and flexibility in the representation. In the MGS language, cell

13 Interaction-Based Programming in MGS 313

spaces [53] are used to subsume ASC and other kinds of spatial organization, so that
a topological collection is a labeled cell space.

Cell Spaces

Formally, cell spaces are made of an assembly of elementary objects called topo-
logical cells (cells for short). For the sake of simplicity, let us assume the existence
of a set of topological cells P together with a function dim : P ↪→N associating
a dimension with each cell. Cells σ ∈ P such that dim(σ) = n are called n-cells.
Cells represent elementary pieces of space: 0-cells are vertices, 1-cells are edges,
2-cells are surfaces, 3-cells are volumes, etc.

A cell space K is a partially ordered subset of P , that is a couple K = 〈SK ,

≺K 〉 such that SK ⊂ P and ≺K is a strict partial order1 over S such that the
restriction of the dimension function on SK is strictly monotonic: for all σ, τ ∈
SK , σ ≺K σ ′ ⇒ dim(σ) < dim(σ ′). If it exists, the dimension of a cell space is
the maximal dimension of its cells.

The relation ≺K is called the incidence relationship of the cell space K , and if
σ ≺K σ ′, σ and σ ′ are said incident. Contrary to ASC, the number of cells in the
boundary of a cell is not constrained.

We call closure (resp. star) of a cell σ the set Cl σ = { σ ′ | σ ′ σ } (resp. St σ =
{ σ ′ | σ ′ � σ }). Operator Cl is a closure operator that can be used to equip the set of
cells SK with a topology. Numerous operators can be defined to exploit the induced
space. The notions of face and (p, q)-neighborhood are especially used in MGS.
The faces of a cell σ are the cells σ ′ that are immediately incident: σ ′ ≺K σ and
dim(σ ′) = dim(σ) − 1; σ is called a coface of σ ′ and wewrite σ ′ < σ . Two cells are
q-neighbor if they are incident to a common q-cell. If the two cells are of dimension
p, we say that they are (p, q)-neighbor. A (p, q)-path is then a sequence where any
two consecutive cells are (p, q)-neighbor.

Cell spaces are very general objects allowing sometimes unexpected construc-
tions. For example, an edge with three vertices in its border is a regular cell space.
Additional properties are often considered leading to particular classes of cell spaces,
such as the abstract cell complexes of A. Tucker [52], the CW-complexes of J. H.
Whitehead, the combinatorial manifolds of V. Kovalevsky [25], to cite a few. ASCs
also form a class of cell spaces. Figure13.3 shows an example of cell space.

Topological Collections

A topological collection C is a function that associates values from an arbitrary set
V with cells of some cell space (see Fig. 13.3). Thus the notation C(σ) refers to
the value of cell σ in collection C. We call support of C and write |C| for the set
of cells for which C is defined. Set V is left arbitrary to allow the association of
any kind of information with the topological cells: for instance geometric properties
(V = {−1, 0, 1} for representing orientation or V = R

n for Euclidean positions) or

1ı.e. a irreflexive, transitive and antisymmetric binary relation on SK : for x, y and z in SK , we
have x ≺K y ≺K z ⇒ x ≺K z and we never have x ≺K y ≺K x.

314 A. Spicher and J.-L. Giavitto

f

e1

c1

e3

e2c3 c2

f

c3c1c2

e2 e3e1

(0,4)

6

55

(3,0)

12

(−3,0)

Fig. 13.3 On the left, the Hasse diagram of the incidence relationship of the cell space given in
the middle: it is composed of three 0-cells (c1, c2, c3), of three 1-cells (e1, e2, e3) and of a single
2-cell (f). The closure of cell e1 is composed of e1, c1 and c2. The faces of cell f are e1, e2 and e3.
The cofaces of cell c1 are e1 and e3. On the right, a topological collection associates data with the
cells: positions with vertices, lengths with edges and area with f

arbitrary state of a subsystem (a mass, a concentration of chemicals, a force acting
on certain cells, etc).

The collection C can be written as a formal sum

∑

σ∈|C|
vσ · σ where vσ

def.= C(σ)

With this notation, the underlying cell space is left implicit but can usually be recov-
ered from the context. By convention, when we write a collection C as a sum

C = v1 · σ1 + · · · + vp · σp

we insist that all ci are distinct.2 Notice that this addition is associative and com-
mutative: the specific order of operations used to build a topological collection is
irrelevant. Using this notation, a subcollection S of a collection C is defined as a
collection forming a subpart of the sum: C = S + S′; subcollection S′ is then called
the complement of S in C and we write S′ = C − S.

The current implementation of MGS provides the programmerwith different types
of collections, namely seq, array, set, bag, etc. Actually, the topological collection
approach makes possible to unify various data structures as sketched in Sect. 13.4.2.

Transformations

Transformations of topological collections embody the concepts of interaction and
interaction complex introduced in Sect. 13.2 with the notion of topological rewriting.
A transformation T is a function specified by a set {r1, . . . , rn} of rewriting rules of
the form p => ewhere the left hand side (l.h.s.) p is a pattern and the right hand side
(r.h.s.) e is an MGS expression. For example, the bubble sort algorithm is defined in
MGS by:

2The formal sum notation is borrowed from algebraic topology where set V is taken with a commu-
tative group structurewhich gives an abelian group structure to topological chains and cochains [33].
See the elaboration in Sect. 13.5.

13 Interaction-Based Programming in MGS 315

trans bubble_sort = {
x, y / y < x => y, x;
x, y / y == x => x;

}

An application of a transformation rule on a collection C selects a subcollection S of
C matching with the pattern p that is then substituted by the subcollection resulting
from the evaluation of the expression e.

Patterns

Patterns are used to specify subcollections where interactions may occur. They
play the exact same role as lI and CI in the interaction notation lI / CI −→ RI of
Sect. 13.2.2. However, the cell space setting used in the definition of topological col-
lections requires a more elaborate tool for this specification instead of a simple set lI
of interacting positions (which is restricted to the simplicies of an ASC). Transfor-
mation rule patterns allow the programmer to describe the local spatial organizations
(and states) leading to some interactions.

Let us describe the core part of the pattern syntax which is based on three con-
structions summarized in the following grammar:

Π ::= id | Π Ω Π | Π / Λ

Ω ::= ε | < | > | ,

In this grammar, Λ represents an MGS expression, id corresponds to an identifier,
and ε denotes the empty string. The grammar can be described as follows:

Pattern Variable: An identifier x of id, called in this context a pattern variable,
matches a n-cell σ labeled by some value C(σ) in the collection C to be trans-
formed.
The same pattern variable can be usedmany times in a pattern; it then always refers
to the same matched cell. Moreover, patterns are linear: two distinct variables
always refer to two distinct cells.

Incidence: A pattern p1 ⊕ p2 of Π Ω Π specifies a constraint ⊕ ∈ Ω on the
incidence between the last element matched by pattern p1 and the first element
matched by pattern p2. The pattern x < y (resp. x > y) matches two cells σx

and σy such that σx is a face (resp. coface) of σy. The lack of operator (ε) denotes
the independence of the cells (there is no constraint between them).
Binary interactions between two elements, say x and z, are frequent in models
and can be specified with the pattern x < y > z. Variable pattern y stands for
some k-cell making x and z (k − 1, k)-neighbors, e.g., two vertices linked by an
edge in a graph. Often, the naming of y does not matter and the syntactic sugar
x, z is used instead.
Although directed structures are out of the scope of this chapter, one maymention
that it exists a directed extension of cell spaces that is actually used in MGS. The
direction is encoded in the reading so that x > y is directed from x to y and will
not match the same subcollections than y < x in directed collections.

316 A. Spicher and J.-L. Giavitto

Guard: Assuming a pattern p of Π and an MGS expression e of Λ, p / ematches
a subcollection complying with p such that the expression e evaluates to true.
We do not detail here the syntax of MGS expressions which is not of main impor-
tance but two elements have to be clarified. Firstly, in this chapter,3 function
application is expressed using currying as in functional programming: f e1 e2
means that function f is applied with two arguments e1 and e2. The benefit of
this syntax lies in the left associativity of the application so that feeding a binary
function with the first argument builds a unary function waiting for the second,
like in (f e1) e2. This principle extends to any n-ary functions. Secondly, any
pattern variable, say x, can be used in guard expressions (as well as in the r.h.s.
expression of a rule) where it denotes the label of the matched k-cell. Its faces
(resp. cofaces, resp. (k, k + 1)-neighbor cells) are accessed by faces x (resp.
cofaces x, resp. neighbors x).
SinceMGS is a dynamically typed language (that is, types are checked at run time),
types can be seen as predicates checking if their argument is of the right type.
Some syntactic sugar has been introduced to ease the reading of type constraints
in patterns so that the pattern x / int(x), matching a cell labeled by some
integer, can be written x:int. On the contrary, x:!int matches a cell labeled by
something but an integer.

For example, the pattern

v1 < e12 > v2 < e23 > v3 < e31 > v1
f > e12 f > e23 f > e31 / (e12 == e31)

matches the entire collection of Fig. 13.3with, for instance, the following association:

v1 �→ (0, 4) · c1 e12 �→ 5 · e1 f �→ 12 · f
v2 �→ (3, 0) · c2 e23 �→ 6 · e2
v3 �→ (−3, 0) · c3 e31 �→ 5 · e3

Rule Application

Let T = {r1, . . . , rn} be an MGS transformation. Following the interaction-based
computation model described in Sect. 13.2.2, the application of a rule p => e of T
on a collection C consists in finding some subcollection S of C matching pattern p
then replacing S by the evaluation S′ of e in C. One point not discussed earlier is the
choice of the rule(s) to be applied when a number of instances exist. This choice is
called rule application strategy.

The default rule application strategy in MGS is qualified maximal-parallel. It
consists in choosing a maximal set {S1, S2, . . . } of non-intersecting subcollections
of C each matched by some pattern of T . In this context, non-intersectingmeans that

3Since the expression syntax is secondary, the authors made the choice to use in papers an ideal
syntax that may differ from the syntax currently implemented (which may by the way change from
a major release to another).

13 Interaction-Based Programming in MGS 317

for any two subcollections Si and Sj, their supports check that |Si| ∩ |Sj| = ∅. The
application is then done in parallel as represented by the following diagram:

C = S1 + S2 + · · · + R
⏐

⏐

⏐

	

T

⏐

⏐

⏐

	

ri1

⏐

⏐

⏐

	

ri2

⏐

⏐

⏐

	

T(C) = S′
1 + S′

2 + · · · + R

where eachS′
k results from the evaluationof eik andR = C − (S1 + S2 + · · ·) consists

of the untouched part ofC. Since it may exist different ways to decompose collection
C w.r.t. transformation T , only one of the possible outcomes (randomly chosen) is
returned by the transformation. The formal semantics is given in [47].

On the contrary, the strategy informally used in Sect. 13.2.2 is qualified asyn-
chronous since only one rule application is considered at a time. Its diagram is as
follows:

C = S + (C − S)
⏐

⏐

⏐

	

T

⏐

⏐

⏐

	

r

⏐

⏐

⏐

	

T(C) = S′ + (C − S)

The asynchronismmeans that two events cannot take place simultaneously. Between
the synchronous and the asynchronous strategy, there is considerable room for alter-
native rule application strategies.

For instance, asynchronism is often assumed for stochastic processes on popu-
lations where simultaneous events are unlikely (e.g., in Poisson processes). These
kinds of processes are often used for stochastic simulation, for example of chemi-
cal or biochemical systems of reactions. In this context, pure asynchronism is not
enough: a stochastic constant is attached to each reaction (that is, rule) and expresses
“how fast” it is. A continuous-timeMarkov chain can then be derived from the trajec-
tories generated by the iterations of the transformation.We name the continuous-time
extension of the asynchronous rule application strategy with stochastic constants, the
Gillespie rule application strategy after the name of D.T. Gillespie. Gillespie pro-
posed in [20] an algorithm for the exact stochastic simulation of well-stirred reaction
systems which is implemented in MGS. The MGS Gillespie strategy has been used in
different applications in integrative and synthetic biology, see for example [46, 49].

13.3.2 Reviews of Some Applications to Complex Systems

We advocate that MGS is adequate for the modeling and simulation of dynamical
systems. In this section, we show various examples that support this assertion. These
examples are only sketched to support our claim and the interested reader may refer
to the references given for the technical details.

318 A. Spicher and J.-L. Giavitto

Fig. 13.4 Trajectory of a flock of 50 birds. Left plot the initial state where each bird has a randomly
chosen direction. Center plot the configuration after 300 iterations. Right plot after 900 iterations
of the transition function

Flocking Birds

In [18] the classical example of a simulation of a flock of birds has been considered.
The simulation is the direct implementation of a model of flocking birds proposed
by U. Wilensky and by the development of steering behaviors of boids (generic
simulated flocking creatures) invented by C. Reynolds [39].

Here, no creation nor destruction of birds happen, but the neighborhood structure
changes in time with the movements of the birds. This example uses the Delaunay
topological collection [32, 42]where the neighborhood structure is not built explicitly
by the programmer but is computed implicitly at run time using the positions of the
birds in aEuclidean space represented as labels of 0-cells in the collection. Figure13.4
illustrates three iteration steps of the simulation. The transformation corresponding
to the dynamics specifies three rules corresponding to the three behaviors described
by Wilensky: separation (when a bird is at close range of a neighbor, it changes
direction), cohesion (when a bird is too far from all its neighbors, it tries to join
the group quickly) and alignment (when the neighbors of a bird are neither too far
nor too close, the bird adjusts its direction following the average directions of its
neighbors).

Diffusion Limited Aggregation

Diffusion Limited Aggregation, or DLA, is a fractal growth model studied by two
physicists, T.A. Witten and L.M. Sander, in the 80s [57]. The principle of the model
is simple: a set of particles diffuses randomly on a given spatial domain. Initially one
particle, the seed, is fixed. When a mobile particle collides a fixed one, they stick
together and stay fixed. For the sake of simplicity, we suppose that they stick together
forever and that there is no aggregate formation between two mobile particles. This
process leads to a simple CA with an asynchronous update function or a lattice gas
automaton with a slightly more elaborated set of rules.

13 Interaction-Based Programming in MGS 319

Fig. 13.5 DLA on complex objects (topology and final state). On the left: a sphere with 18 parallels
and 24 meridians. On the right: a Klein’s bottle

The MGS approach enables a generic specification of such a DLA process which
works on various kinds of space [45]. Figure13.5 shows applications of the same
DLA transformation on two different topologies: it is an example of the polytypic [24]
capabilities of MGS.

Declarative Mesh Subdivision

Mesh subdivision algorithms are usually specified informally with the help of graph-
ical schemes defining local mesh refinements. For example, the Loop subdivision
scheme [28], working on triangular meshes, is described with the local rule

These specifications are then implemented efficiently in an imperative framework.
These implementations are often cumbersome and imply some tricky indices man-
agement. Smith et al. [38] asked the question of the declarative programming of such
algorithms in an index-free way that has been positively answered in [47] with the
MGS specification of some classical subdivision algorithms in terms of transforma-
tions (see Fig. 13.6).

Coupling Mechanics and Topological Surgery

Developmental biology investigates highly organized complex systems. One of the
main difficulties raised by the modeling of these systems is the handling of their
dynamical spatial organization: they are examples of dynamical systems with a
dynamical structure.

In [43] a model of the shape transformation of an epithelial sheet requiring the
coupling of a mechanical model with an operation of topological surgery has been
considered. This model represents a first step towards the declarative modeling of
neurulation. Neurulation is the topological modification of the back region of the
embryo when the neural plate folds; then, this folding curves the neural plate until
the two borders touch each other and make the plate becomes a neural tube (see
Fig. 13.7).

320 A. Spicher and J.-L. Giavitto

Fig. 13.6 Results of the application of subdivision algorithms. From top to bottom: the Loop’s

algorithm, the Butterfly algorithm, the Catmull-Clark’s algorithm and the Kobbelt’s algorithm.

From the left to the right, the initial state then 3 iteration steps. These pictures have been generated

in MGS

Fig. 13.7 Simulation of a neurulation-like process in MGS: from the left to the right, a sheet of
epithelial cells is curving until the hems sew together to form a tube

Modeling the Growth of the Shoot Apical Meristem

Understanding the growth of the shoot apical meristem at a cellular level is a funda-
mental problem in botany. The protein PIN1 has been recognized to play an impor-
tant role in facilitating the transport of auxin. Auxin maxima give the localization of
organ formation. In 2006, Barbier de Reuille et al. investigated in [4] a computational
model to study auxin distribution and its relation to organ formation. The model has
been implemented in the MGS language using a Delaunay topological collection.
Figure13.8 shows the results of a simulation done in MGS of a model of meristem
growth.

Integrative Modeling

Systems biology aims at integrating processes at various time and spatial scales into
a single and coherent formal description to allow analysis and computer simulation.
Rule-based modeling is well fitted to model biological processes at various levels of

13 Interaction-Based Programming in MGS 321

Fig. 13.8 Results, at time steps 3, 18, 27, 35, 41 and 59, for the simulation of a virtual meristem
done by Barbier de Reuille in [3]. Red dots correspond to auxin and each primordium cell is shown
in a different color

Fig. 13.9 Results of an integrative model. Germinal cells are in dark gray and somatic cells in light
gray. a–c correspond to an initial population and its evolutions at logical time 43 and 62. Refer
to [48]

description. This approach has been validated through the description of variousmod-
els of a synthetic bacterium designed in the context of the iGEM competition [48],
from a very simple biochemical description of the process to an individual-based
model (see Fig. 13.9).

This model, as well as the previous one, aims at the modeling of an entire pop-
ulation (of cells, of bacteria) through an explicit representation of the individuals
with mechanical, chemical and biological (i.e., gene expression) behaviors, inte-
grated with the specification of entity/entity interaction and dynamic neighborhood
computation.

Algorithmic Problems

The use of MGS is not restricted to the modeling and simulation of complex systems.
Many other applications not given here have been developed. For example, purely
algorithmic applications include the Needham–Schroeder public-key protocol [31],
the computation of prime numbers using Eratosthene’s sieve, the normalization of
Boolean formulas, the computation of various algorithms on graphs like the com-
putation of the shortest distance between two nodes or the maximal flow, to cite a
few. Moreover, any computation described in an unconventional framework can be
programmed in MGS since the language unifies many models of computation as we
will see in Sect. 13.4.2. Detailed examples can be found on the MGS web page.4

4http://www.spatial-computing.org/mgs.

http://www.spatial-computing.org/mgs

322 A. Spicher and J.-L. Giavitto

13.4 Generic Programming in Interaction-Oriented
Programming

While MGS was initially designed as a domain specific programming language ded-
icated to the modeling of dynamical systems with a dynamical structure, it allows an
elegant and concise formulation of classical algorithms (as illustratedwith the bubble
sort in Sect. 13.2.2). The main difference with other general-purpose programming
languages lies in its interaction-based style of programming. In this section, we out-
line the new perspectives on genericity opened by the interaction-oriented approach.

We advocate that the design of unconventional models of computation has an
impact not only in the study of alternative models of computation (with alternative
calculability and complexity classes) but may also impact questions raised in “clas-
sical programming languages”. This development offers also a link, investigated in
the next section, between the notion of data structure/traversal and the notion of
differential operators.

13.4.1 Polymorphism, Polytypism and Generic Programming

Genericity in a programming language is the crucial ability to abstract away irrel-
evant requirement on data types to produce, once and for all, a piece of code that
can be reused in many different situations. It is then a central question in software
engineering.

Several mechanisms have been proposed to support genericity. In Musser and
Stepanov’s approach [34], the fundamental requirements on data structures are for-
malized as concepts, a notionmore general than a type, with generic functions imple-
mented in terms of these concepts. The best known examples are the STL in C++ or
the Java Collection interface.

Let us take a look at the Java Collection interface. This interface is implemented
by all data containers of the Java standard API. Besides the usual container methods
(size, emptiness, membership, etc.), any Java Collection has to implement an iter-
ator over its elements to be compatible with the enhanced for loop syntax. Iterators
decouple data structure traversals from data types, which enables the definition of
the same algorithm operating on different data type.

This property has been formalized in type theory as polymorphism available in
many programming languages. For example, Parametric polymorphism [8] allows
the definition of functions working uniformly (i.e., the same code) on different types.
The uniformity comes from the use of a type variable representing a type to-be-
specified-later and instantiated usually at function application. For example, the
OCaml type declaration for “lists of something” is as follows:

type α list = Empty | Cons of α * α list

In this definition (specifying that a list is either empty or built from an element
prepended to a list), the type variable α can be instantiated by any types: α = int

13 Interaction-Based Programming in MGS 323

for a list of integers, α = string for a list of strings, α = β list for a list of lists of
something-abstracted-by-type-variable-β, etc. Any function acting on the structure
of lists independently of the content type has a polymorphic type. For example, the
classical map function applying some function f on each element of a list is defined
once and for all by:

let rec map f = function
| Empty -> Empty
| Cons (h, t) -> Cons (f h, map f t)

and is of type (α -> β) -> α list -> β list. This sole definition works for
any instance of type variables α and β.

We can go further by considering polytypism where the type of the container is
also abstracted. For example, consider the following type definition of binary trees:

type α tree = Leaf of α | Node of α tree * α * α tree

As for list, a map function can be defined on trees:

let rec map f = function
| Leaf e -> Leaf (f e)
| Node (l, e, r) -> Node (map f l, f e, map f r)

of types (α -> β) -> α tree -> β tree. Both map functions actually work the
same way: they transform all elements of type α in the structure by traversing it
recursively. This traversal can be specified by associating a combinator with each
constructors of the data type (Empty, Leaf, etc).

Generic programming as proposed in [23, 24] generalizes this idea by allowing to
program only one map algorithm (in our example, the map function is defined twice).
This approach is applicable for a class of types called algebraic data types (ADT).
Roughly speaking, ADT are specified inductively using the unit type, type variables,
disjoint union of types (operator | in the previous definitions), product of types
(operator *), composition of types, and a fixpoint operator. Generic programming
uses this uniformity to provide a way to express inductively polytypic algorithms for
ADT by associating a combinator with each of these data type constructions. Refer
to [23] for a detailed presentation.

13.4.2 From Data Structures to Topological Collections

In MGS, topological collections can be polymorphic in the sense mentioned above
since there is no constraint on the set of labels: the same cell space can be labeled
by integers, strings, or anything else [9]. In addition, a transformation relies on the
(local) notion of neighborhood which is constitutive of the notion of space without
constraining a particular (global) shape of space. In other words, the same trans-
formation can be used on any collection providing the programmer with a form of
polytypism.

324 A. Spicher and J.-L. Giavitto

However, the spatial point of view goes beyond polymorphism and polytypism
as found in “classical programming languages”. The previous discussion makes
apparent that generic programming relies on abstracting away some information
on data type to keep the information relevant to data traversal. This can be explicit
through the notion of iterators in Java, or implicit through the notion of natural
homomorphism (combinator associated to a constructor) in ADT.

This information is alternatively expressed in term of space, where the notion
of (data-)movement find a natural setting. The spatial point of view provides both a
richer set of data structures than those described by the algebraic approach5 andmore
expressive mechanisms to express elementary movements (e.g., iterators impose an
ordering which can be detrimental).

In the following we investigate the idea that a data structure corresponds to a
topological collection with a specific kind of topology. The polytypism of MGS
transformations is presented together with some examples. In the next section, we
introduce a family of generic operators which are finally related with differential
operators considered in continuous computation.

Data Structures

In computer science, the notion of data structure is used to organize a collection
of data in a well organized manner. The need of structuring data is twofold: firstly,
programmers are interested in capturing in a data structure the logical relationship
between the data it contains. This is for example one of the primary idea behind
database tools like entity–relationship models, UML diagrams, or XML document
type definitions when used to specify how the represented objects are ontologically
related to each other (e.g., a book has an ISBN, a title, some authors, etc.). The data
structure becomes a model of some organization in the world.

Secondly, from a computational perspective, data structures are designed to effi-
ciently access the data. (In this respect, the art of database design consists inmodeling
consistently reality while being queried efficiently.) Algorithms are often expressed
as nested traversals of some structures. The choice of a data structure is then highly
coupled to the algorithm to be implemented. For example, the list structure defined
above allows a linear traversal of the data in order of appearance in the list, while the
tree structure allows the so-called prefix, infix and postfix traversals. In the object-
oriented programming paradigm, the iterator design pattern (mandatory for any Java
class implementing the Collection interface for example) can be understood as an
attempt to catch this notion of traversals.

MGS Collection Types

By confronting the concept of traversal with the concept of topological collection, it
is possible to retrieve the conventional notion of data structure in MGS. Themain idea
consists in extracting from each data structure a specific topology capturing the graph

5Incidentally ADT are restricted to tree-shaped structures while topological collections are able
to deal with a wider class of data structures; for instance, the generic handling of arrays, circular
buffers or graphs cannot be adequately done in the ADT framework.

13 Interaction-Based Programming in MGS 325

of its traversals: the nodes represent positions for storing the data and the edges are
defined so that two elements are neighbor in the collection (i.e., may interact) if they
are consecutive in some traversal of the data structure. Let us review some classical
data structures and their MGS interpretations. Each of them is associated with a
dedicated collection type corresponding to a specific (constrained) topology. Each
collection type comes with some syntactic facilities in the current implementation
of the language.

Sequences

As already said, such structures are linear, meaning that elements are accessed one
after the other. The associated topological structure is then a linear graph as the one
obtained in Sect. 13.2. These structures exhibit two natural traversals that we can
refer to left-to-right and right-to-left. Considering only one of these two traversals
leads to a directed structure similar to a linked list while considering both leads to
doubly linked list structures.

In its current implementation, MGS provides the programmer with two linear left-
to-right directed collection types: seq and array. They differ by the nature of the
underlying space; the former is a Leibnizian collection type where the structure is
generated by a specific relationship between the data (here the order of insertion)
while the latter isNewtonian6 where the structure is firstly specified (or allocated) and
then inhabited. The following example of MGS program illustrates this difference:

trans rem = { x / even (right x) => <undef> }

rem (1, 2, 3, 4, 5) � (2, 4, 5)
rem [| 1, 2, 3, 4, 5 |] � [| <undef>, 2, <undef>, 4, 5 |]

Transformation rem removes all labels of positions having an even number on its
right. The predicate right can be expressed as a straightforward expression involving
the generic comma operator “,”; it takes its specific meaning on sequence from the
underlying topology. In the case of a seq collection, the removal modifies the space
from a 5-node graph to a 3-node graph. In the case of an array collection, the
underlying space remains unchanged but the affected positions are left empty (i.e.,
without any label).

(Multi-)Sets

The main difference with linear structures is that sets are unordered collections, so
that when iterated, no order gets the priority. As a consequence, for any pair of
elements there exists at least one iteration making them neighbors. The obtained
topological structure is a complete graph.

6The qualifiers Newtonian and Leibnizian have been chosen after the names of I. Newton and G.W.
Leibniz who had completely different understanding of the concept of space: the former thought
space as a container, that is, an absolute space pre-existing to the bodies it contains; the latter
understood space as the expression of a relationship between bodies.

326 A. Spicher and J.-L. Giavitto

In the current implementation of MGS, collection types set and bag are available:
bag collections allowmultiple occurrences of the same elementwhile set collections
do not.

Records

A record corresponds to a collection of data aggregated together in a single object.
Each data can be referred by a different field name. This is equivalent to a struct

construction in the C programming language. The elements of a record are not gen-
erally accessed one from the other (they are accessed from the whole record) leading
to consider an empty neighborhood between the data. The topological structure of
records is then a graph with no edge: each field is represented by an isolated vertex
labeled by its associated data.

Group Based Fields (GBF)

Algorithms on matrices often work by traversing data regularly by row and/or by
column. Forgetting what happens on the boundary, the induced topological structure
exhibits a very regular pattern where each element has four neighbors: its immediate
successors and predecessors on its row and column. Of course this reasoning can be
extended to any multidimensional arrays.

GBF are the generalization of multidimensional arrays where the regular structure
corresponds to the Cayley graph of an abelian group presentation. The abelian group
is finitely generated by a set of directions from an element to its neighbors (e.g.,
north, south, east and west for matrices) together with a set of relations between these
directions (e.g., north and south are opposite directions). GBF are a powerful tool that
allows the specification in few lines of complicated regular structures. Figure13.10
illustrates the specification of an infinite hexagonal grid using GBF.

1

3

4

2

a

c

b

Fig. 13.10 Infinite hexagonal grid generated by 3 directions a, b and c related by a + b = c. On
the right, a local view of the associated Cayley graph focused on the 4 positions marked in the grid
on the left. Each arrow represents the displacement from a position to another following one of the
directions or their inverses

13 Interaction-Based Programming in MGS 327

Unifying Natural Models of Computation

The previous paragraph shows that the notion of topological collection subsumes
a large variety of data structures. As a consequence, it appears that various natural
models of computation can be adequately described in the MGS framework simply
by choosing the right collection type and the right rule application strategy:

• Artificial Chemistry [2] corresponds to a spacewhere any two entitiesmay interact.
Wehave seen that this corresponds to a complete graph, hence to the set or bag col-
lection types. The application of transformation rules on these structures achieves
the same effect as multiset rewriting [10] (rewriting on associative-commutative
terms).

• Membrane Computing [14, 36] extends the idea of multiset programming by con-
sidering nested multisets (membranes) and transport between them. The corre-
sponding space can be represented as a multiset containing either ordinary values
and nestedmultisets. This example shows the interest to reflect the spatial structure
also in the labels, see [19]. The rule application strategy is usually the maximal-
parallel one.

• Lindenmayer Grammars [27] correspond to parallel string rewriting and hence to
a linear space and a maximal-parallel application strategy.

• Cellular Automata (CA) [55] and Lattice Gas Automata [50] correspond to
maximal-parallel rewriting in a regular lattice. Such a lattice can be easily specified
as a GBF collection type. For example the classical square grids with von Neuman
or Moore neighborhoods are defined in MGS by:

gbf NEWS = < N, E, W, S; W + E = S + N = 0 >
gbf Moore = < N, E, NE, SE; N + E = NE, E - N = SE >

13.4.3 Polytypism in MGS

Transformations allow the programmer to iterate over the neighbors of an element
(e.g., with the neighbors, faces and cofaces primitives) or over the pairs of
neighbor elements in a topological collection.

Since transformation patterns express interactions in terms of cells incidence in
full generality, the same pattern can be applied on any collection of any collec-
tion type, so that a transformation can be viewed as a polytypic computation in an
interaction-based style.

The following paragraphs present some examples of MGS polytypic transforma-
tions.

Map-Reduce in MGS

The MGS counterpart of the aforementioned polytypic map function can be imple-
mented as follows:

trans map f = { x => f x }

328 A. Spicher and J.-L. Giavitto

In this declaration an extra-parameter f is expected so that map f is a transformation
applying f on each element of a collection. For example:

map succ (1,2,3,4,5) � (2,3,4,5,6)

In this example, f is set to the successor function succ so that the elements of the
collection are incremented by one.

In functional programming, the map function appears in conjunction with another
polytypic function,reduce. This function iterates over the elements of some structure
to build up a new value in an accumulator. It is parameterized by the accumulation
function. For example, reduce can be used to compute the sum of the elements of a
list of integers. The MGS counterpart of this function can be implemented as follows:

trans reduce op = { x, y => op x y }

This rule collapses two neighbor elements into one unique value computed from the
combination function op. Obviously this rule has to be iterated until a fixpoint is
reached to finally get the reduction of the whole structure. For example:

(reduce add) [fixpoint] (1,2,3,4,5) � (15)

sums up all the elements of a sequence. The application of the transfor-
mation (reduce add) is annotated by the qualifier fixpoint.

Bio-Inspired Algorithms

Numerous distributed algorithms are inspired by the behavior of living organisms.
For instance ant colony optimization algorithms use ants ability to seek the shortest
path between the nest and a source of food [12]. Such algorithms are often specified
as reactive mutli-agent systems where the individual behavior is defined indepen-
dently from the spatial organization of the underlying structure. In this respect, these
algorithms are polytypic and can be easily specified in MGS. We focus on two toy
but representative examples of such computations.

Random Walk

One of the key behaviors of agent-based distributed algorithms is a random walk
allowing agents to scatter everywhere in the space so that each place is visited at
least once by an agent with high probability. The expression of such a walk in MGS
is as follows:

trans walk agent empty = { p:agent, q:empty => q, p }

Transformation walk is composed of a simple rule specifying that if an agent has an
empty place in its neighborhood, it moves to that place leaving its previous location
empty. To get even more genericity the predicates for being an agent or an empty
place are given as parameters agent and empty. This rule is not deterministic since
a choice as to be done when several empty places surround the agent; in such a case,
one of these places is randomly chosen uniformly, ensuring no bias in the walk. This
transformation operates on any type of collection.

13 Interaction-Based Programming in MGS 329

Propagation

Another fundamental procedure consists in broadcasting some information in space.
This mechanism is at work in propagated outbreak of epidemics, in graph flooding
in networks or in the spread of fire in a burning forest. A simple MGS transformation
can implement this last example as follows:

trans fire on_fire to_fire to_ash = {
p:!on_fire / (neighbors_exists on_fire p) => to_fire p;
p:on_fire => to_ash p;

}

Two rules are given to (1) set into fire an unburnt place which is neighbor with a
burning one (primitive neighbors_exists checks for some neighbor of p where
predicate on_fire holds), and to (2) extinguish places in fire. Once again, the gener-
icity of this specification (especially of primitive neighbors_exists which visits
all the neighbors of an element whatever the collection type is) makes this transfor-
mation polytypic.

The genericity of these specifications allows the development of tools and tech-
niques operable in many different situations. For example, we have developed in [37]
the tracking of the spatial activity in such algorithms, leading to a generic optimized
simulation procedure usable with any collection type.

13.5 From Computation to Physics: Differential Calculus
in MGS

Cell spaces are defined in algebraic topology for a discrete (and algebraic) description
of spaces. Therefore, one can expect to find on these spaces the operators mathemati-
cians have imagined on more usual spaces, like differential operators. This is indeed
the case and the interested reader may refer to [11] for an introduction.

Topological collections are directly inspired by the notions of topological chain
and cochain built upon cell spaces, but with a weaker structure. In the previous
sections we have established a direct link between the notion of data structure and
the notion of topological collection, it is then tempting to investigate in the context
of data structures what a differential operator is. All the mathematical background
required to understand this relation is detailed in the Appendix.

In this section, we show how a set of operators can be derived as computation
patterns of MGS programs. These operators, which can be seen as movements of
data on data structures [15], inherit algebraic properties from differential calculus,
providing the programmer with the ability to express a program as a set of differential
equations.

330 A. Spicher and J.-L. Giavitto

13.5.1 Transport of Data

The main motivation of this section is to relate the formal definition of topological
collections to the discrete counterpart of differential forms as developed in [11].

As defined in Sect. 13.3.1, a topological collection C is a function associating
values from a set V with the cells of a cell space K . This structure is almost a
discrete form: a discrete form further constrains the set V to be equipped with a
structure of abelian group (i.e., with an addition operator +V) and the cell spaceK
to be equipped with a structure of chain complex (i.e., with a boundary operator ∂).
Topological chains are the basic ingredient to define a boundary operator. As amatter
of fact, the boundary of a (n + 1)-cell is a n-chain, that is a function associating
integers with the n-cells of a cell space. These integers are used to represent the
multiplicity and the orientation of a cell in the complex. This operator is linearly
extended from cells to chains.

From now on, we consider that the set V of values of a topological collection is
an abelian group7 written additively +V , and that a boundary operator ∂ is defined
on its support cell space. Collections C are then forms. As functions on cells, they
can be linearly extended to n-chains of (K , ∂), so that:

C(n1.σ1 + n2.σ2 + · · ·) = n1C(σ1) +V n2C(σ2) +V . . .

where the σi are cells of K .
The application of a collection C on a chain c, usually written [C, c], leads to

consider a derivative operator d as the “adjoint operator” of ∂ defined by:

[dC, c] = [C, ∂c]

By duality, the same can be done to get a dual derivative operator d, called here
coderivative, from a dual boundary operator ∂ . Both operators are then related by
a correspondence operator ∗ analogous to the Hodge dual. All technical details are
given in Appendix.

The point is that the three operators d, d and ∗ act on topological collections
(forms), and can be defined as transformations parameterized by the group operator
+V and the boundary operators ∂ and ∂:

• the correspondence operator ∗ behaves like a map function and transforms the
value associated with a cell,

• the derivative operator d transfers values from cells to their cofaces, and
• the coderivative operator d transfers values from cells to their faces.

7In MGS, the set V of values is usually arbitrary with no meaningful addition. In such a case,
instead of working in V , one may consider the free abelian group 〈V 〉 finitely generated by the
elements of V . This group is in a way universal since any group on V can be recovered from an
homomorphism h : 〈V 〉 → V such that h(1.v) = v and h(g1 +〈V 〉 g2) = h(g1) +V h(g2).

13 Interaction-Based Programming in MGS 331

τ τ

ρ

σ

κ σ + κ + τ + ρ ω

ω

ω

ω

ω

ω

ω

’

’

’

ω + ω ’

Fig. 13.11 Transport of values under the actions of differential operators: on the left, the derivative
operator where only some 1-cells are labeled; on the right, the dual derivative operator where only
the 2-cells are labeled (the action is represented on the primal mesh)

Figure13.11 illustrates these data movements. From the point of view of data move-
ments, the group operations can be interpreted as follows:

• Identity: the zero of V coincides with the absence of label. It can then be used to
deal with partially defined collection.

• Addition: is used to combine multiple labels moving to the same cell due to the
action of an operator. Examples of such collisions are pictured on Fig. 13.11. The
commutativity means that the order of combinations does not matter.

• Negation: this operator is essential to program the relative orientation8 between
cells and to get the nilpotence of the boundary operator (∂ ◦ ∂ = 0).

The three differential operators can straightforwardly be translated in MGS fol-
lowing the definitions given in Appendix. As an example, the derivative is defined
in MGS as follows:

trans derivative add mul zero inc = {
x => faces_fold (fun y -> add (mul (inc x y) y)) zero x

}

The transformation is parameterized by four arguments. The three first arguments
specify the considered abelian group structure9 over V , and function inc gives the
incidence number of a pair of cells (which defines the boundary operator). Transfor-
mation derivative works on each cell σ of a collection by summing up (add) all
the labels associated with the faces of σ (faces_fold) with respect to the relative
orientation between incident cells (inc).

13.5.2 Programs and Differential Equations

The previous operators are generic: they are polymorphic because they apply irre-
spectively of V (as soon as it is an abelian group) and polytypic because they apply

8Orientation is only a matter of convention. It is always possible to consider the opposite orientation
to change the sign of a value: for example, a negative flow labeling an edge represents a positive
flow going against the chosen orientation of the edge.
9Expression add v1 v2 evaluates the addition v1 +V v2 of two values, expression mul n v evaluates
the multiplication v +V · · · +V v

︸ ︷︷ ︸

n times

of a value by an integer, and zero gives the identity element.

332 A. Spicher and J.-L. Giavitto

on cell spaces of any shape. We qualify these operators as “discrete differential
operators” because they exhibit the same formal properties as their continuous coun-
terparts.

These basic operators can be composed to get more complex data transports.
By mimicking their continuous counterparts, they can be used as building blocs to
define more elaborated data circulation in the data structures, like gradient, curl,
divergence, etc. For example, we have proposed in [15] an MGS implementation
of the Laplace–Beltrami operator �, a general Laplacian operator, defined in our
notations by:

� = ∗ d ∗ d + d ∗ d∗

We have also shown that the straightforward translation of differential equations
results in effective MGS programs.

In the rest of this paragraph, we illustrate the approach on the modeling of two
classical physical phenomena: diffusion and wave propagation. However, the chal-
lenge at stake is not restricted to the generic coding of (the numeric simulation of)
physical models. We believe that the abstract spatial approach of computation, based
on the notion of interaction, opens the way to a new comprehension of algorithms
through the physical modeling of data circulation. To illustrate this idea, we present
in the last paragraph of this chapter an analysis of a system of differential equations
that exhibits a sorting behavior.

Programming of Differential Equations

Let us consider the modeling of two classical physical systems, the diffusion and the
wave propagation, given by the following equations:

U̇ = D�U V̈ = C2�V

whereD,C are respectively the diffusion coefficient and the wave propagation speed,
U, V stand for the collections to be transformed, and U̇, V̈ are their first and second
temporal derivatives respectively. The behavior of the corresponding MGS programs
depends on the parameterization chosen for the differential operators. Figure13.12
shows simulations where the differential operators are parameterized so that the
abelian group of labels corresponds to the real numbers under the usual addition, and
the boundary, coboundary and correspondence operators encode a classical square
grid with step dx. The temporal derivatives are interpreted using the forward differ-
ence (e.g., U̇(t) = U(t+dt)−U(t)

dt for some time t and duration dt).
With these parameters, the MGS programs coincide with the numerical resolution

of the equations using a finite difference method. Some applications of Sect. 13.3.2
(neurulation, meristem growth and the integrative model) can also be derived from
a model originally described in terms of differential equations.

More complex numerical schemes (equivalent or improved compared to the usual
finite element method in terms of error control, convergence and stability) can be
expressed in this framework as shown in [11, 51]. All these works rely on the under-

13 Interaction-Based Programming in MGS 333

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

 0
 20
 40
 60
 80

 100

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

 0
 20
 40
 60
 80

 100

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0
 5 10 15 20 25 30 0

 5
 10

 15
 20

 25
 30

 0
 20
 40
 60
 80

 100

 20
 25
 30
 35
 40
 45
 50
 55
 60

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

 0
 20
 40
 60
 80

 100

 36.5
 37
 37.5
 38
 38.5
 39
 39.5
 40

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

-60
-40
-20

 0
 20
 40
 60
 80

 100

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

-60
-40
-20

 0
 20
 40
 60
 80

 100

 20
 25
 30
 35
 40
 45
 50
 55
 60

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

-60
-40
-20

 0
 20
 40
 60
 80

 100

-60
-40
-20
 0
 20
 40
 60
 80

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

-60
-40
-20

 0
 20
 40
 60
 80

 100

 10
 20
 30
 40
 50
 60
 70
 80

Fig. 13.12 Simulations of a diffusion and a wave propagation in MGS from the straightforward
implementation of the differential equations: diffusion with coefficientsD = 10−2 and dt = dx = 1
on top line, from left to right at time t = 0, 1000, 3500 and10000;wave propagationwith coefficients
C = 5.10−3 and dt = dx = 1 on bottom line, from left to right at time t = 0, 1500, 3000 and 4500

standing of physical laws with a discrete interpretation of the differential calculus;
MGS lends itself to the implementation of these theories.

Furthermore, the genericity of the spatial point of view makes possible to encom-
pass, in the same computational formulation, different physical models of the same
phenomena. For example, we can change the nature of the labels in V from real
numbers to multisets of symbols. While the former corresponds to concentrations
in the previous setting, the later can be interpreted as individual particles. In this
setting, the Laplacian operator � expresses the jump of particles from a position
to some neighbor in the collection. A multiplication between two collections with
same support specifies reactions between particles. We find here the basic ingredi-
ents ofmembrane computing that we havementioned earlier in Sect. 13.4.2: diffusing
between membranes and reacting.

Subsuming different kinds of models is fruitful to get refined models of complex
systems. Another application consists in coupling different models relying syntacti-
cally on the same differential description. For example, we have been able to simulate
a 1D hybrid diffusion system partitioned into subsystems each governed by its own
diffusion model, either the Fick’s second law or a random walk of particles both
specified by the same generic equation but parameterized by a specific (V ,+V).
The interface between two models is simply driven by the conversion laws between
the involved parameters (here particles and concentrations). See Fig. 13.13 for an
illustration.

Programming with Differential Equations

Continuous formalisms are sometimes used to describe the asymptotic behavior of
a discrete computation. As an example, we have been able in [44] to provide a
differential specification of population protocols, a distributed computing model [1],
allowing us to study the asymptotic behavior of such programs.

We further believe that the formulation of classical (combinatorial, discrete) com-
putations through differential operators acting on a data structure, is able to bring new
understanding on old problems and to make a bridge with the field of analog com-

334 A. Spicher and J.-L. Giavitto

t = 0 t = 10

t = 20 t = 30

t = 40 t = 50

Fig. 13.13 Hybrid diffusion in 1D. The initial distribution is given by 1
2 (1 − cos(2πxL)) for x ∈

[0,L]with L = 100. The system is divided into 4 parts: on intervals [0, 25] and [50, 75] the diffusion
is governed by the Fick’s second law (FL) solved by a finite differencemethodwith space stepΔx =
5 and time step Δt = 1; on intervals [25, 50] and [75, 100] the diffusion is governed by a discrete
uniform random walk (RW) with space step δx = 0.5 and time step δt = 0.1. The correspondence
between the two models is given by a unit of matter in FL for 104 particles in RW. The figures
give the states taken by the system at times t = 0, 10, 20, 30, 40 and 50 for a diffusion coefficient
D = 10

putation. In this perspective, a computation is seen as a dynamical system (see [17]
for an application in the field of autonomic computing).

To illustrate this point, we elaborate on an example introduced by R.W. Brockett
about the computational content of the systems of ordinary differential equations of
the form Ḣ = [H, [H,N]] where H and N are symmetric matrices and [·, ·] is the
commutator operator [6, 7]. It has been shown that by choosing appropriately N and
the initial value of H, the system is able to perform many combinatorial algorithms,
like sorting sequences, emulating finite automata or clustering sets of data.10

In the case of sorting, the system corresponds to a non-periodic finite Toda lattice,
a simple model for a one-dimensional crystal given by a chain of particles with

10http://hrl.harvard.edu/analog/.

http://hrl.harvard.edu/analog/

13 Interaction-Based Programming in MGS 335

nearest neighbor interaction. The equations of motion of a particle are given by:

{

ṗi = e(qi−1−qi) − e(qi−qi+1)

q̇i = pi
i ∈ [1..n]

where qi is the displacement of the ith particle from its equilibrium position, and pi is
its momentum. To integrate the system, one uses the following change of variables:

ui = −1

2
pi vi = 1

2
e(qi−qi+1)/2

giving the following system:

{

u̇i = v2i − v2i−1
v̇i = 2(ui+1 − ui)vi

i ∈ [1..n]

The behavior of this system is as follows: starting from an initial sequence of values
ui(0) (and small non-zero values for the vi(0)), the ui(t) asymptotically converge to
si where si is the ith value in the sorted sequence of the ui(0).

This system can be specified in the differential setting of MGS by:

{

U̇ = ∇(V 2)

V̇ = 2(∇U)V

where U and V are coupled topological collections defined on the same one-
dimensional cell space, and ∇ is a gradient-like operator inducing the direction
followed by the sort.

From this specification, many applications can be derived. Obviously the original
formulation can be retrieved when the underlying cell space is a sequence and labels
are real numbers. By understanding literally the specification as a usual system of
differential equations, the implementation computes the sorting of a continuous field.
In fact, the formulation can be interpreted in n dimensions giving raise to a fully
polytypic specification of sorting in several dimensions. By relying on genericity
and by switching the labels from numbers to sets of symbols, the system turns to
be a distributed sorting algorithm in the artificial chemistry style. See Fig. 13.14 for
illustrations.

13.5.3 Future Research Directions

The development presented here only scratch the surface of the subject and many
works remain to be done to investigate and to understand the contribution of the
differential formulation in MGS. For example, while the development of MGS has put
emphasis on the spatial structure induced by the interactions, the temporal aspects

336 A. Spicher and J.-L. Giavitto

(a) (b)

(c) (d)

 0
 5

 10
 15

 20
 25

 30
 35

 0

 50000

 100000

 150000

 200000

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2

-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

(e)

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

 0
 0.2
 0.4
 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

 0
 0.2
 0.4
 0.6
 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

 0
 0.2
 0.4
 0.6
 0.8

 1

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

 0 5 10 15 20 25 30 0
 5

 10
 15

 20
 25

 30

 0
 0.2
 0.4
 0.6
 0.8

 1

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

(f)

Fig. 13.14 Different applications of the Brockett’s analog sort in MGS. a presents the results
of an MGS simulation of the original system sorting the sequence [1000, 2000, 3000, 4000] into
[4000, 3000, 2000, 1000]. Time flows from left to right; each curve in a plot shows the evolution
of an element of the sequence. b–d show 3 runs of the same system in the artificial chemistry
interpretation.While the original system is deterministic, the chemical version is stochastic (relying
on the Gillespie rule application strategy) and exhibits a wide variety of trajectories; however almost
all runs converge to the correct sorted sequence (with more or less accuracy). e–f illustrate the sort
of continuous fields respectively in 1D (on the left, the space-time diagram of the sort; on the right,
states of the system after 0, 100, 1000 and 10000 steps of simulation) and 2D following the x-axis
(from left to right, states of the system after 0, 100, 200 and 3000 steps of simulation)

13 Interaction-Based Programming in MGS 337

have been relegated to the choice of the rule application strategy. In differential
calculus, time is considered homogeneously with space with the use of a temporal
derivative (written Ẋ in the previous differential equations) revealing the complex
and algebraic nature of time in computation. A future work must relate the dot
operator with the causal structure mentioned in Sect. 13.2 and revisit the concept of
rule application strategy in consequence. In the previous example, the transport of
data seems more effective to express patterning rather than structural evolution. The
handling of dynamical structures with the sole use of the MGS differential operators
remains an open question.

Appendix

This section introduces some elements of algebraic topology and discrete differential
calculus used in Sect. 13.5. Algebraic topology (and more especially homology)
extends the notion of cell space with an algebraic structure. The key ingredients of
this extension are the so-called topological chains and boundary operators.

Topological Chains

Given a cell spaceK and a non-negative integer n, topological chains of dimension
n (or n-chains) are the elements of the free abelian group Cn(K) finitely gener-
ated by the n-cells of K . A chain c ∈ Cn(K) can be understood as a function of
SK ↪→Z null everywhere but on a finite set of n-cells ofK . Consequently they can
be represented by finite formal sum of the form:

c = c(σ1).σ1 + · · · + c(σp).σp =
∑

σ∈SK
c(σ).σ

where {σ1, . . . , σp} is the set of cells of K where c is not null.
Topological chains can be interpreted in various ways. They provide a mean to

count the cells of a cell space; the possibility to count cells negatively allows to
consider orientation of cells. Topological chains are sometimes defined with values
in an arbitrary group.11 Here we restrict ourselves to the group Z.

Boundary Operators

By definition, cell spaces cannot take into accountmulti-incidence, that is the number
of times a cell is incident to another. A solution [53] consists in considering the
incidence numbers iτσ for any pair of cells σ and τ , so that:

11The group of n-chains with values in an abelian group G is denoted Cn(K ,G). One can show
that Cn(K ,G) ∼= Cn(K) ⊗ G where ⊗ denotes the tensor product of groups.

338 A. Spicher and J.-L. Giavitto

∀σ ∂σ =
∑

τ<σ

iτσ .τ ⇒ ∂c =
∑

σ

c(σ)∂σ

Of course, iτσ = 0 if σ and τ are not incident, and iτσ can be negative to take orientation
into account. The operator ∂ is linearly extended to any chain of Cn(K).

Homology uses the operator ∂ to study holes in a cell space. In such a case, the
operator is called a boundary operator and has to respect the nil-potent property:
∂ ◦ ∂ = 0, which can be interpreted as “the boundary of a boundary is empty” or “a
boundary has no boundary”. Such a boundary operator gives raise to a mathematical
structure called a chain complex:

C0(K)
∂←−−− C1(K)

∂←−−− . . .

Discrete Forms and Derivative

The discrete counterpart of differential forms coincides with the notion of cochain
[11]. The set of discrete forms of dimension n (or n-forms12) over a cell-spaceK with
values in an abelian group G consists of the group homomorphisms of Cn(K ,G) =
Hom(Cn(K),G) from n-chains to the group G. This set inherits naturally the group
structure of Cn(K) and its elements can be uniquely specified by the value of G
they associate with each cell ofK . Like chains, forms can be represented by formal
sums with a slight difference, the sum can be infinite. For example, the action [F, c]
of a n-form F on a n-chain c works as follows:

[g1 · σ1 + g2.σ2 + g3.σ3, 2.σ1 − 4.σ3] = 2g1 − 4g3

where the gi are elements ofG. This application is the discrete analogue of integration
of forms on some domain represented by a chain.

The derivative dF of a n-form F is then defined to implement a discrete Stokes’
theorem, that is, dF is the (n + 1)-form adjoint of the boundary operator with respect
to application:

∀c [dF, c] = [F, ∂c] ⇒ dF =
∑

σ

(

∑

τ<σ

iτσ F(τ)

)

· σ

Informally the derivative dF associates with a cell σ the sum of the values associated
with the incident cells of σ in F with respect to the incident numbers. One can show
easily that d ◦ d = 0 leading to the mathematical structure of cochain complex used
in cohomology:

12We choose the term “form” instead of “cochain” in reference to the work of Desbrun et al. [11]
about a discrete counterpart of differential calculus. However our concern is more symbolic com-
pared to the numerical issues investigated in discrete differential calculus.

13 Interaction-Based Programming in MGS 339

C0(K ,G)
d−−−→ C1(K ,G)

d−−−→ . . .

Duality

Since a cell space is a partially ordered set, one may consider its inverse order. With
this respect, one associates with any cell spaceK a cell space K , called the dual of
K , as a formal copy ofK where the incidence relationship is reversed. By referring
by σ to the copy of σ in K , we get

∀σ, τ σ ≺ τ ⇔ τ ≺ σ

When K is of dimension n, so does K and dim(σ) = n − dim(σ).
Like any cell complex, K can be equipped with a boundary operator ∂ and

its dual derivative operator d, so that, considering a well chosen correspondence
operator ∗ between the primal and dual forms, we get the following diagram:

. . .
∂←−−− Cp(K)

∂←−−− Cp+1(K)
∂←−−− . . .

. . .
d−−−→ Cp(K ,G)

d−−−→ Cp+1(K ,G)
d−−−→ . . .

∗
⏐

⏐

⏐

	

�

⏐

⏐

⏐

∗ ∗
⏐

⏐

⏐

	

�

⏐

⏐

⏐

∗

. . .
d←−−−− Cn−p(K ,G)

d←−−−− Cn−p−1(K ,G)
d←−−−− . . .

. . .
∂−−−−→ Cn−p(K)

∂−−−−→ Cn−p−1(K)
∂−−−−→ . . .

In this presentation, the choice of ∂ (i.e., of the incidence numbers iστ of K) and
the correspondence operator ∗ (as well as the group G) are left as parameters since
it depends on the application. For example, while [53] chooses iστ = iτσ , [11] uses
iστ = −1dim(σ)iτσ . Moreover the correspondence operator takes an important place
in the discrete calculus of [11] as it corresponds to the discrete counterpart of the
Hodge operator.

References

1. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato, B.,Miranda,H.,
Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile Applications, pp. 97–120.
Springer, Heidelberg (2009)

2. Banâtre, J.P., LeMétayer, D.: Programming bymultiset transformation. Commun. ACM 36(1),
98–111 (1993)

3. Barbier deReuille, P.: Vers unmodèle dynamique duméristème apical caulinaire d’Arabidopsis
thaliana. These, Université Montpellier II - Sciences et Techniques du Languedoc (2005)

4. Barbier de Reuille, P., Bohn-Courseau, I., Ljung, K., Morin, H., Carraro, N., Godin, C., Traas,
J.: Computer simulations reveal properties of the cell-cell signaling network at the shoot apex
in Arabidopsis. PNAS 103(5), 1627–1632 (2006)

340 A. Spicher and J.-L. Giavitto

5. Bombelli, L., Lee, J., Meyer, D., Sorkin, R.: Space-time as a causal set. Phys. Rev. Lett. 59(5),
521 (1987)

6. Brockett, R.W.: Dynamical systems that sort lists, diagonalize matrices, and solve linear pro-
gramming problems. Linear Algebra Appl. 146, 79–91 (1991)

7. Brockett, R.W.: Differential geometry and the design of gradient algorithms. In: R. Green,
e. S.T. Yau (eds.) Symposia in Pure Mathematics, vol. 54, pp. 69–92 (1993)

8. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymorphism. ACM
Comput. Surv. 17(4), 471–523 (1985)

9. Cohen, J.: Typing rule-based transformations over topological collections. Electron. Notes
Theor. Comput. Sci. 86(2), 1–16 (2003). Elsevier

10. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer
Science, vol. B, pp. 243–320. MIT Press, Cambridge (1991)

11. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In:
ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, pp. 39–54. ACM, New York, NY, USA
(2006)

12. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate (2004)
13. Giavitto, J.L., Michel, O.: MGS: a programming language for the transformations of topological

collections. Technical Report 61-2001, LaMI – Université d’Évry Val d’Essonne (2001)
14. Giavitto, J.L., Michel, O.: The topological structures of membrane computing. Fundamenta

Informaticae 49, 107–129 (2002)
15. Giavitto, J.L., Spicher, A.: Topological rewriting and the geometrization of programming.

Physica D 237(9), 1302–1314 (2008)
16. Giavitto, J.L., Spicher, A.: Morphogenesis: Origins of Patterns and Shapes. Computer Mor-

phogeneis, pp. 315–340. Springer, Berlin (2011)
17. Giavitto, J.L., Michel, O., Spicher, A.: Spatial organization of the chemical paradigm and the

specification of autonomic systems. Software-Intensive Systems and New Computing Para-
digms. Lecture Notes in Computer Science, vol. 5380, pp. 235–254. Springer, Berlin (2008)

18. Giavitto, J.L., Michel, O., Spicher, A.: Interaction based simulation of dynamical system with
a dynamical structure (ds)2 in mgs. In: Summer Computer Simulation Conference, pp. 99–106
(2011)

19. Giavitto, J.L., Michel, O., Spicher, A.: Unconventional and nested computations in spatial
computing. Int. J. Unconv. Comput. (IJUC) 9(1–2), 71–95 (2013)

20. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.
81(25), 2340–2361 (1977)

21. Grandis, M.: Ordinary and directed combinatorial homotopy, applied to image analysic and
concurrency. Homol. Homotopy Appl. 5(2), 211–231 (2003)

22. Henle, M.: A Combinatorial Introduction to Topology. Dover publications, New York (1994)
23. Jansson, P., Jeuring, J., Meertens, L.: Generic programming: an introduction. In: 3rd Interna-

tional Summer School on Advanced Functional Programming, pp. 28–115. Springer, Heidel-
berg (1999)

24. Jeuring, J., Jansson, P.: Polytypic programming. Advanced Functional Programming, pp. 68–
114. Springer, Berlin (1996)

25. Kovalevsky, V.A.: Geometry of Locally Finite Spaces. Editing House Dr. Baerbel Kovalevski,
Berlin (2008)

26. Kronheimer, E., Penrose, R.: On the structure of causal spaces. In: Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 63, pp. 481–501. Cambridge University Press
(1967)

27. Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I and II.
J. Theor. Biol. 18, 280–315 (1968)

28. Loop, T.L.: Smooth subdivision surfaces based on triangle. Master’s thesis, University of Utah
(1987)

29. Malament, D.B.: The class of continuous timelike curves determines the topology of spacetime.
J. Math. Phys. 18(7), 1399–1404 (1977)

13 Interaction-Based Programming in MGS 341

30. Martin, K., Panangaden, P.: A domain of spacetime intervals in general relativity. Commun.
Math. Phys. 267(3), 563–586 (2006)

31. Michel, O., Jacquemard, F.: An analysis of the Needham–Schroeder public-key protocol with
MGS. In: Mauri, G., Paun, G., Zandron, C. (eds.) In: Preproceedings of the Fifth workshop on
Membrane Computing (WMC5), pp. 295–315. ECMolConNet - Universita diMilano-Bicocca
(2004)

32. Michel, O., Spicher, A., Giavitto, J.L.: Rule-based programming for integrative biological
modeling - application to the modeling of the lambda phage genetic switch. Natural Comput.
8(4), 865–889 (2009)

33. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley, Boston (1984)
34. Musser, D.R., Stepanov, A.A.: Generic programming. In: Gianni, P. (ed.) Symbolic and Alge-

braic Computation. Lecture Notes in Computer Science, vol. 358, pp. 13–25. Springer, Berlin
(1989)

35. Panangaden, P.: Causality in physics and computation. Theor. Comput. Sci. 546, 10–16 (2014)
36. Paun, G.: Computing with membranes: An introduction. Bull. Eur. Assoc. Theor. Comput. Sci.

67, 139–152 (1999)
37. Potier, M., Spicher, A., Michel, O.: Topological computation of activity regions. In: Proceed-

ings of the 2013 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
SIGSIM-PADS ’13, pp. 337–342. ACM, New York, NY, USA (2013)

38. Prusinkiewicz, P., Samavati, F.F., Smith, C., Karwowski, R.: L-system description of subdivi-
sion curves. Int. J. Shape Model. 9(1), 41–59 (2003)

39. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In: Stone,M.C.
(ed.) Computer Graphics. In: Proceedings of the SIGGRAPH ’87. vol. 21, pp. 25–34 (1987)

40. Sorkin, R.: Geometry from order: causal sets. Einstein Online 2, 1007 (2006)
41. Sorkin, R.D.: Relativity theory does not imply that the future already exists: a counter example.

In: Relativity and the Dimensionality of the World, pp. 153–161. Springer, Heidelberg (2007)
42. Spicher, A., Michel, O.: Using rewriting techniques in the simulation of dynamical systems:

Application to the modeling of sperm crawling. In: Proceedings of the Fifth International
Conference on Computational Science (ICCS’05), vol. I, pp. 820–827 (2005)

43. Spicher, A., Michel, O.: Declarative modeling of a neurulation-like process. BioSystems 87,
281–288 (2006)

44. Spicher, A., Verlan, S.: Generalized communicating p systemsworking in fair sequential mode.
Sci. Ann. Comput. Sci. 21(2), 227–247 (2011)

45. Spicher, A., Michel, O., Giavitto, J.L.: A topological framework for the specification and the
simulation of discrete dynamical systems. In: Proceedings of the Sixth International confer-
ence on Cellular Automata for Research and Industry (ACRI’04), Lecture Notes in Computer
Science, vol. 3305. Springer, Amsterdam (2004)

46. Spicher, A., Michel, O., Cieslak, M., Giavitto, J.L., Prusinkiewicz, P.: Stochastic p systems
and the simulation of biochemical processes with dynamic compartments. BioSystems 91(3),
458–472 (2008)

47. Spicher,A.,Michel,O.,Giavitto, J.L.:Declarativemesh subdivision using topological rewriting
in mgs. In: Proceedings of the International Conference on Graph Transformations (ICGT)
2010, Lecture Notes in Computer Science, vol. 6372, pp. 298–313 (2010)

48. Spicher, A.,Michel, O., Giavitto, J.L.: Understanding the dynamics of biological systems, chap.
Interaction-based simulations for Integrative Spatial Systems Biology, pp. 195–231. Springer,
Heidelberg (2011)

49. Spicher, A., Michel, O., Giavitto, J.L.: Interaction-based simulations for integrative spatial
systems biology. In: Understanding the Dynamics of Biological Systems: Lessons Learned
from Integrative Systems Biology. Springer, New York (2011)

50. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling.
MIT Press, Cambridge (1987)

51. Tonti, E.: A direct discrete formulation of field laws: the cell method. CMES - Comput. Model.
Eng. Sci. 2(2), 237–258 (2001)

52. Tucker, A.: An abstract approach to manifolds. Ann. Math. 34(2), 191–243 (1933)

342 A. Spicher and J.-L. Giavitto

53. Tucker, A.W.: Cell spaces. Ann. Math. 37(1), 92–100 (1936)
54. Turing, A.M.: The chemical basis of morphogenesis. Philoso. Trans. Royal Soc. Lond. B: Biol.

Sci. 237(641), 37–72 (1952)
55. Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Cham-

paign (1966)
56. Winskel, G.: Event structures. Springer, Heidelberg (1987)
57. Witten, T., Sander, L.: Diffusion-limited aggregation. Phys. Rev. B 27(9), 5686 (1983)

	13 Interaction-Based Programming in MGS
	13.1 Introduction
	13.2 From Physics to Computation: Interactions
	13.2.1 Spatial Structure, Causality and Interaction
	13.2.2 Computing with Interactions

	13.3 An Interaction-Based Programming Language
	13.3.1 A Brief Description of the 4-1MGS4+1 Language
	13.3.2 Reviews of Some Applications to Complex Systems

	13.4 Generic Programming in Interaction-Oriented Programming
	13.4.1 Polymorphism, Polytypism and Generic Programming
	13.4.2 From Data Structures to Topological Collections
	13.4.3 Polytypism in 4-1MGS4+1

	13.5 From Computation to Physics: Differential Calculus in 4-1MGS4+1
	13.5.1 Transport of Data
	13.5.2 Programs and Differential Equations
	13.5.3 Future Research Directions

	References

