
Chapter 10
Two Small Universal Reversible Turing
Machines

Kenichi Morita

Abstract We study the problem of constructing small universal Turing machines
(UTMs) under the constraint of reversibility, which is a property closely related
to physical reversibility. Let URTM(m,n) denote an m-state n-symbol universal
reversible Turing machine (URTM). Then, the problem is to find URTM(m,n) with
small m and n. So far, several kinds of small URTMs have been given. Here, we
newly construct two small URTMs. They are URTM(13,7) and URTM(10,8) that
can simulate cyclic tag systems, a kind of universal string rewriting systems pro-
posed by Cook. We show how these URTMs can be designed, and compare them
with other existing URTMs.

10.1 Introduction

A universal Turing machine (UTM) is a TM that can simulate any TM. Turing himself
showed it is possible to construct such a machine [21]. Since then, there have been
many researches on UTMs, in particular, on finding small UTMs. If we write an m-
state n-symbol UTM by UTM(m,n), then the problem is to find UTM(m,n) with small
values ofm and n. This problem attracted many researchers, and various small UTMs
have been presented till now (see e.g., a survey paper [23]). In the early stage of this
study, a direct simulation method of TMs was employed. Later, an indirect method
of simulating universal systems that are much simpler than TMs was proposed to
construct very small UTMs. Minsky [7] presented a method of simulating 2-tag
systems, which are universal string rewriting systems, and gave a UTM that has seven
states and four symbols. After that, such an indirect simulation method has mainly
been used to give small UTMs. Rogozhin [20] designed small UTMs for many pairs
of m and n. They are UTM(24,2), UTM(10,3), UTM(7,4), UTM(5,5), UTM(4,6),
UTM(3,10), and UTM(2,18) that also simulate 2-tag systems. Some of these results
were improved later. Kudlek and Rogozhin [6] gave UTM(3,9) that simulates 2-tag

K. Morita (B)
Hiroshima University, Higashi-hiroshima 739-8527, Japan
e-mail: km@hiroshima-u.ac.jp

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
DOI 10.1007/978-3-319-33924-5_10

221

222 K. Morita

systems, and Neary and Woods [18] constructed UTM(15,2), UTM(9,3), UTM(6,4),
and UTM(5,5) that simulate bi-tag systems.

Here, we study the problem of constructing small universal reversible Turing
machines (URTMs). Reversible computing is a paradigm of computing that reflects
physical reversibility, one of the fundamental microscopic properties of physical
systems. It is thus related to quantum computing, since the evolution of a quantum
system is reversible. A reversible Turing machine (RTM) is a standard model in the
theory of reversible computing. In fact, it was shown by Bennett [2] that for any
(irreversible) TM, there is an RTM that simulates the former.

Roughly speaking, an RTM is a “backward deterministic” TM, where each com-
putational configuration has at most one predecessor (a precise definition will be
given in the next section). Although its definition is simple, it has a close relation to
reversible physical systems. It has been shown that any RTM can be implemented as
a circuit composed of reversible logic element with 1-bit memory very simply [8, 11,
14]. It is also known that a reversible logic element with 1-bit memory can be realized
in the billiard ball model (BBM) [9, 17]. BBM is an idealized mechanical model of
a reversible physical system proposed by Fredkin and Toffoli [5], where computing
is carried out by collisions of balls and reflectors. Hence, the whole system of an
RTM can be embedded in such a reversible physical model.

So far, there have been several researches on small URTMs. Let URTM(m,n)
denote an m-state n-symbol URTM. Morita and Yamaguchi [15] first constructed
URTM(17,5) that simulates cyclic tag systems, which are another kind of univer-
sal string rewriting systems proposed by Cook [4]. Axelsen and Glück [1] studied
a different type of URTM that computes all computable injective functions, but
their objective was not finding a small URTM. Later, Morita [9, 13] constructed
URTM(15,6), URTM(24,4), and URTM(32,3), which also simulate cyclic tag sys-
tems. On the other hand, it is in general difficult to design simple URTMs with only
two symbols, or with a very small number of states. As for a 2-symbol URTM,
we can use a general procedure for converting a many-symbol RTM into a 2-
symbol RTM [16]. By this, we obtain URTM(138,2) [13]. In [10], methods for
converting an m-state n-symbol RTM into 4-state (2mn + n)-symbol RTM, and 3-
state O(m2n3)-state RTM were given. Applying these methods to URTM(17,5) and
URTM(32,3), we obtain URTM(4,175) and URTM(3,36654), respectively. Note that,
in Sect. 10.3, we newly give URTM(10,8). Applying the conversion method to it, we
have URTM(4,168) that is slightly simpler than URTM(4,175).

In this chapter, we give two new URTMs, and explain how we can design small
URTMs. They are URTM(13,7), and URTM(10,8), which again simulate cyclic tag
systems. In Sect. 10.2, we give basic definitions on RTMs, 2-tag systems (2-TSs),
and cyclic tag systems with halting condition (CTSHs). We also show how a CTSH
can simulate a 2-TS. In Sect. 10.3, we construct URTM(13,7) and URTM(10,8). In
Sect. 10.4, we compare these two URTMs with other small URTMs, and summarize
the results.

10 Two Small Universal Reversible Turing Machines 223

10.2 Reversible Turing Machines and Tag Systems

In this section, we give definitions and basic properties on reversible Turing machines,
m-tag systems, and cyclic tag systems.

10.2.1 Reversible Turing Machines

There are two kinds of formulations for reversible Turing machines. They are the
quadruple formulation [2], and the quintuple formulation [9]. They can be easily
converted each other keeping reversibility. Here, we use the quintuple formulation,
because the number of states of a Turing machine of this form can be about a half of
that in the quadruple form. Also, most classical universal Turing machines are given
in the quintuple form.

Definition 1 A one-tape Turing machine (TM) in the quintuple form is defined by

T = (Q, S, q0, s0, δ),

where Q is a non-empty finite set of states, S is a non-empty finite set of symbols, q0

is an initial state (q0 ∈ Q), s0 is a special blank symbol (s0 ∈ S). δ is a move relation,
which is a subset of (Q× S× S× {−,+} ×Q). The symbols “−”, and “+” are shift
directions of the head, which stand for “left-shift”, and “right-shift”, respectively.
Each element of δ is a quintuple of the form [p, s, s′, d, q]. It means if T reads the
symbol s in the state p, then writes s′, shifts the head to the direction d, and goes to
the state q.

In the above definition, final states that halt for any symbol are not specified
according to the designing convention of universal Turing machines (in other words,
final states are not counted in the number of states of a universal Turing machine).
Also note that δ is defined as a “relation” rather than a “function”, This is because
determinism and reversibility will be defined almost symmetrically by this definition
(but, they are slightly asymmetric since the head-shift operation is performed after
the read/write operation).

Let w ∈ S∗, q ∈ Q, and h ∈ {0, 1, . . . , |w| − 1}. A triplet [w, q, h] is called a
computational configuration (or simply a configuration) of T = (Q, S, q0, s0, δ).
The configuration [w, q, h] means that the tape contains w (all the other squares of
the tape have the blank symbol s0), the state is q, and the head position is at the hth
symbol of w (the position of the leftmost symbol of w is the 0-th). In the following,
we use such an expression to write a configuration of T .

Determinism and reversibility of TM is defined as follows. T is called a determin-
istic TM iff the following holds for any pair of distinct quintuples [p1, s1, s′1, d1, q1]
and [p2, s2, s′2, d2, q2] in δ.

If p1 = p2, then s1 �= s2

224 K. Morita

T is called a reversible TM iff the following holds for any pair of distinct quintuples
[p1, s1, s′1, d1, q1] and [p2, s2, s′2, d2, q2] in δ.

If q1 = q2, then s′1 �= s′2 ∧ d1 = d2

The above is called the reversibility condition. It is easy to see that if T is reversible,
then there is at most one reversely applicable quintuple to each configuration, and
thus every configuration of T has at most one predecessor.

In the following, we consider only deterministic (irreversible or reversible) TMs,
and thus the word “deterministic” is omitted. Hence, by a “reversible TM” (RTM),
we mean a deterministic reversible TM.

10.2.2 m-Tag Systems

A tag system is a string rewriting system originally proposed by Post [19], and an
m-tag system (m = 1, 2, . . .) is a variant of it. In the m-tag system, rewriting of
strings is performed in the following way. Let α = a1 . . . an be a string over an
alphabet A. If the system has a production rule a1 → b1 . . . bk and n ≥ m, then we
can obtain a new string am+1 . . . anb1 . . . bk . Namely, if the first symbol of α is a1 and
|α| ≥ m, then remove the leftmost m symbols, and append the string b1 . . . bk at the
right end of it as shown in Fig. 10.1. Repeating this procedure, we can obtain new
strings successively. If we reach a string β to which there is no applicable production
rule, or |β| < m, then the rewriting process terminates.

We now define m-tag systems based on the definition by Rogozhin [20].

Definition 2 An m-tag system (m-TS) is defined by T = (m,A,P), where m is a
positive integer,A is a finite alphabet, andP : A → A∗∪{halt} is a mapping that gives
a set of production rules (we assume halt /∈ A). Let a ∈ A. If P(a) = b1 . . . bk ∈ A∗,
we write it by a → b1 . . . bk , and call it a production rule of T . If P(a) = halt,
then a is called a halting symbol. We usually write P as the set of production rules:
{a → P(a) | a ∈ A ∧ P(a) �= halt}.

The transition relation ⇒
T

on A∗ is defined as follows. For any a1, . . . , am,

am+1, . . . , an, b1, . . . , bk ∈ A such that n ≥ m,

a1 · · · am am+1 · · · an

⇒ am+1 · · · an b1 · · · bk

Fig. 10.1 Rewriting in an m-TS. If there is a production rule a1 → b1 . . . bk and n ≥ m, then the
first m symbols are removed, and the string b1 . . . bk is appended at the right end. If a1 is a halting
symbol or n < m, then the rewriting process terminates

10 Two Small Universal Reversible Turing Machines 225

a1 . . . amam+1 . . . an ⇒
T

am+1 . . . anb1 . . . bk iff a1 → b1 . . . bk ∈ P.

When there is no ambiguity, we use ⇒ instead of ⇒
T

. Let α ∈ A∗. By the above

definition of ⇒, if the first symbol of α is a halting symbol, or |α| < m, then there
is no α′ ∈ A∗ that satisfy α ⇒ α′. Such α is called a halting string or a final
string. The reflexive and transitive closure of ⇒ is denoted by

∗⇒. Let αi ∈ A∗ (i ∈
{0, 1, . . . , n}, n ∈ N). We say α0 ⇒ α1 ⇒ · · · ⇒ αn is a complete computing
process of T starting from α0 if αn is a halting string.

In [3, 7], it is shown that for any TM there is a 2-TS that simulates the TM. Hence,
the class of 2-TS is computationally universal.

Theorem 1 ([3, 7]) For any one-tape two-symbol TM, there is a 2-TS that simulates
the TM.

10.2.3 Cyclic Tag Systems

A cyclic tag system (CTS) is a variant of a tag system proposed by Cook [4]. He
used CTS to prove computational universality of the elementary cellular automaton
of rule 110. Since CTS has two kinds of symbols, we fix its alphabet as {Y ,N}. In
CTS, there are k (= 1, 2, . . .) production rules Y → w0,Y → w1, . . . ,Y → wk−1,
which are used one by one cyclically in this order. More precisely, the pth production
rule Y → wp is applicable at time t, if p = t mod k. If the first symbol of the string at
time t is Y , then it is removed, andwp is appended at the end of the string. On the other
hand, if the first symbol is N , then it is removed, and nothing is appended. Hence,
we assume that the production rule N → λ is always applicable. Figure 10.2 shows
this process. In the following, we write the set of production rules as (w0, . . . ,wk−1),
since the left-hand side of each production rule is always Y . CTSs are simpler than
m-TSs because of the following reasons: they have only two kinds of symbols Y and
N , production rules are used one by one in the specified order (hence there is no need
of table lookup), and a string is appended only when the first symbol is Y .

In the original definition of a CTS in [4], the notion of halting was not defined
explicitly. In fact, it halts only if the string becomes the empty string λ. Hence, the
final configuration of simulated TM cannot be retrieved from the halting string (i.e.,
λ) of a CTS. Therefore, when we use CTS as an intermediate system for making a
UTM, then some halting mechanism should be incorporated. Though there will be
several ways of defining the notion of halting, we use the method employed in [15],
which is given in the following definition.

Definition 3 A cyclic tag system with halting condition (CTSH) is a system defined
by

C = (k, (halt,w1, . . . ,wk−1)),

226 K. Morita

t: Y a2 · · · an

⇒ t+1: a2 · · · an wp

t: N a2 · · · an

⇒ t+1: a2 · · · an

Fig. 10.2 Rewriting in a cyclic tag system at time t. Here, we assume its cycle length is k, and the
pth production rule is y → wp, where p = t mod k. If the first symbol of the string at time t is Y ,
then it is removed, and wp is appended at the right end. If the first symbol is N , then it is removed,
and nothing is appended

where k ∈ Z+ is the length of a cycle, and (w1, . . . ,wk−1) ∈ ({Y ,N}∗)k−1 is a
(k − 1)-tuple of production rules. A pair (v,m) is an instantaneous description (ID)
of C, where v ∈ {Y ,N}∗ and m ∈ {0, . . . , k−1}. m is called the phase of the ID. The
transition relation ⇒

C
is defined below. For any v ∈ {Y ,N}∗, m,m′ ∈ {0, . . . , k− 1},

(Yv,m) ⇒
C

(vwm,m′) iff (m �= 0) ∧ (m′ = m + 1 mod k),

(Nv,m) ⇒
C

(v,m′) iff m′ = m + 1 mod k.

If there is no ambiguity, we use ⇒ instead of ⇒
C

. By the definition of ⇒, we can

see that, for any v ∈ {Y ,N}∗ and m ∈ {0, . . . , k − 1}, IDs (Yv, 0) and (λ,m) have
no successor ID. Hence, an ID of the form (Yv, 0) or (λ,m) is called a halting
ID. Let vi ∈ {Y ,N}∗,mi ∈ {0, . . . , k − 1} (i ∈ {0, 1, . . . , n}, n ∈ N). We say
(v0,m0) ⇒ (v1,m1) ⇒ · · · ⇒ (vn,mn) is a complete computing process of C
starting from an initial string v if (v0,m0) = (v, 0) and (vn,mn) is a halting ID. Here,
vn is called a final string. The reflexive and transitive closure of ⇒ is denoted by

∗⇒.
An n-step transition is denoted by

n⇒.

We give a simple example of a CTSH Ĉ in Example 1. In Sect. 10.3 it will be used
to explain how constructed URTM simulate CTSHs.

Example 1 Consider a CTSH Ĉ = (3, (halt, NY , NNY)). A complete computing
process of Ĉ starting from the initial string NYY is as follows.

(NYY , 0) ⇒ (YY , 1) ⇒ (Y NY , 2)

⇒ (NY NNY , 0) ⇒ (Y NNY , 1) ⇒ (NNY NY , 2)

⇒ (NY NY , 0) ⇒ (Y NY , 1) ⇒ (NY NY , 2)

⇒ (Y NY , 0)

The last ID (YNY , 0) is a halting ID, and YNY is the final string. ��

10 Two Small Universal Reversible Turing Machines 227

We now show that any 2-TS can be simulated by a CTSH. Thus, from Theorem 1,
the class of CTSHs is computationally universal. The proof method is due to Cook
[4] except that halting of CTSH is properly managed here.

Theorem 2 For any 2-TS T, we can construct a CTSH C that simulates T.

Proof Let T = (2,A,P). We define AN and AH as follows: AN = {a | P(a) �= halt}
and AH = {a | P(a) = halt}. They are the sets of non-halting symbols, and halting
symbols, respectively. Thus, A = AN ∪ AH. We denote AN = {a1, . . . , an} and AH =
{b0, . . . , bh−1}. Let k = max{n,
log2 h�}. Let bink : {0, . . . , 2k − 1} → {N,Y}k
be the function that maps an integer j (0 ≤ j ≤ 2k − 1) to the k-bit binary number
represented by N and Y , where N and Y stand for 0 and 1, respectively. For example,
bin4(12) = YYNN . Now, we define a coding function ϕ : A∗ → {N,Y}∗. It is a string
homomorphism that satisfies the following.

ϕ(ai) = NiYNk−i (1 ≤ i ≤ n)
ϕ(bi) = Ybink(i) (0 ≤ i ≤ h − 1)

Namely, each symbol in A is coded into a string of length k + 1 over {N,Y}. Now,
the CTSH C that simulates T is given as follows.

C = (2k + 2, (halt,w1, . . . ,w2k+1))

wi =
{

ϕ(P(ai)) (1 ≤ i ≤ n)
λ (n + 1 ≤ i ≤ 2k + 1)

Let s1 · · · sm be a string over A, where sj ∈ A (j ∈ {1, . . . ,m}). In C, it is represented
by (ϕ(s1 · · · sm), 0). First, consider the case s1 = ai for some ai ∈ AN. Thus, in
T , s1 · · · sm ⇒

T
s3 · · · smP(ai) holds. Since ϕ(s1 · · · sm) = NiYNk−iϕ(s2)ϕ(s3 · · · sm),

this transition is simulated by C in 2k + 2 steps as below.

(NiYNk−iϕ(s2)ϕ(s3 · · · sm), 0)
i⇒
C

(YNk−iϕ(s2)ϕ(s3 · · · sm), i)

⇒
C

(Nk−iϕ(s2)ϕ(s3 · · · sm)ϕ(P(ai)), i + 1)

k−i⇒
C

(ϕ(s2)ϕ(s3 · · · sm)ϕ(P(ai)), k + 1)

k+1⇒
C

(ϕ(s3 · · · smP(ai)), 0)

Second, consider the case s1 = bi for some bi ∈ AH. In this case, s1 · · · sm is
a halting string in T . Since ϕ(s1 · · · sm) = Ybink(i)ϕ(s2 · · · sm), the ID (Ybink(i)
ϕ(s2 · · · sm), 0) is also a halting ID in C.

By above, if
α0 ⇒

T
α1 ⇒

T
· · · ⇒

T
αl−1 ⇒

T
αl

228 K. Morita

is a complete computing process of T , then it is simulated by

(ϕ(α0), 0)
2k+2⇒
C

(ϕ(α1), 0)
2k+2⇒
C

· · · 2k+2⇒
C

(ϕ(αl−1), 0)
2k+2⇒
C

(ϕ(αl), 0),

which is a complete computing process of C. ��

10.3 Constructing Small Universal Reversible Turing
Machines

In this section, we give URTM(13,7) and URTM(10,8). If codes (descriptions) of a
CTSHC and an initial string α0 ∈ {Y ,N}∗ are given, each of these URTMs simulates
the rewriting process of C from the initial ID (α0, 0) step by step until C halts. The
URTM U has a one-way infinite tape, and keeps the codes of C and an ID of C as
shown in Fig. 10.3. The production rules ofC are stored in the left-side segment of the
tape. Initially, the segment of “removed symbols” on the tape is empty, and the initial
string α0 is kept in the segment of “current string”. To indicate the border between the
removed symbols and the current string, different kinds of symbols are used for the
removed ones, and for the leftmost one of the current string (or, temporarily pointed
by the head). Each time the leftmost symbol of the current string is removed by a
rewriting in C, this border is shifted to the right by one square. Thus, if the ID of C
is (α,m), then α is stored in the segment of the current string. The phase m of the
ID is recorded by putting a “phase marker”, which is also a specified symbol of U,
at the mth production rule of C on the tape. If the first symbol of the current string
is Y and m > 0, then the right-hand side wm of the mth production rule Y → wm is
appended at the right end of the current string. If the first symbol is N , then nothing
is appended. In both cases, the phase marker is moved to the position of the next
production rule. If C enters a halting ID, then U halts.

10.3.1 13-State 7-Symbol URTM

We first give URTM(13,7) U13_7. It is defined as follows.

�

U

Production rules of CTSH C Removed symbols Current string
•

Delimiter DelimiterPhase marker
︷︸︸︷ ︷︸︸︷

Fig. 10.3 A configuration of a URTM U that simulates a CTSH C

10 Two Small Universal Reversible Turing Machines 229

U13_7 = (Q13_7, {b, y, n,Y ,N, ∗, $}, qbegin, b, δ13_7)

Q13_7 = {qbegin, qcase_y_1, qcase_y_2, qcase_y_n, qcopy_start, qcopy_y_1, qcopy_y_2,

qcopy_y_3, qcopy_n_1, qcopy_n_2, qcopy_n_3, qcopy_end, qcycle_end}

The move relation δ13_7 is described in Table 10.1. It contains 57 quintuples. In this
table, “halt” means that the simulated CTSH halts with an ID (Yv, 0) for some v ∈
{Y ,N}∗, while “null” means that it halts with an ID (λ,m) for some m ∈ N. We can
verify that U13_7 satisfies the reversibility condition by a careful inspection of δ13_7.
It was also verified by a computer program. Note that, if reversibility is not required,
then, for example, the states qcase_y_2 and q copy_y_2 could be merged to reduce the
number of states. However, since there are quintuples [qcase_y_2, y, y,+, qcase_y_2], and

Table 10.1 The move relation δ13_7 of U13_7

b y n

qbegin (null) Y ,−, qcase_y_1 N,−, qcase_y_n

qcase_y_1 (halt) y,−, qcase_y_1 n,−, qcase_y_1

qcase_y_2 y,+, qcase_y_2 n,+, qcase_y_2

qcase_y_n ∗,−, qcopy_start y,−, qcase_y_n n,−, qcase_y_n

qcopy_start b,+, qcycle_end b,+, qcopy_y_1 b,+, qcopy_n_1

qcopy_y_1 y,+, q copy_y_2 y,+, qcopy_y_1 n,+, q copy_y_1

qcopy_y_2 b,−, qcopy_y_3

qcopy_y_3 y,−, qcopy_start y,−, qcopy_y_3 n,−, qcopy_y_3

qcopy_n_1 n,+, q copy_n_2 y,+, qcopy_n_1 n,+, q copy_n_1

qcopy_n_2 b,−, qcopy_n_3

qcopy_n_3 n,−, qcopy_start y,−, qcopy_n_3 n,−, qcopy_n_3

qcopy_end y,+, q copy_end n,+, qcopy_end

q cycle_end y,+, qcycle_end n,+, q cycle_end

Y N ∗ $

qbegin

qcase_y_1 ∗,+, qcase_y_2 $,−, qcase_y_1

qcase_y_2 Y ,−, qcase_y_n $,+, qcase_y_2

qcase_y_n ∗,−, qcase_y_n $,−, qcase_y_n

q copy_start b,+, qcopy_end

q copy_y_1 Y ,+, qcopy_y_1 N,−, q copy_y_3 ∗,+, qcopy_y_1 $,+, q copy_y_1

qcopy_y_2

qcopy_y_3 Y ,−, qcopy_y_3 ∗,−, qcopy_y_3 $,−, qcopy_y_3

q copy_n_1 Y ,+, qcopy_n_1 N,−, q copy_n_3 ∗,+, qcopy_n_1 $,+, q copy_n_1

qcopy_n_2

qcopy_n_3 Y ,−, qcopy_n_3 ∗,−, qcopy_n_3 $,−, qcopy_n_3

q copy_end y,+, qbegin n,+, qbegin ∗,+, qcopy_end $,+, qcopy_end

q cycle_end ∗,+, qcycle_end $,−, q copy_start

230 K. Morita

[qcopy_y_1, b, y,+, qcopy_y_2], they cannot be merged without violating the reversibility
condition.

We now give a string homomorphism ϕ1 : {Y ,N}∗ → {y, n}∗ as follows: ϕ1(Y) =
y, ϕ1(N) = n. Note that ϕ1 simply converts the uppercase Y and N into lower case y
and n. Let C = (k, (halt,w1, . . . ,wk−1)) be an arbitrary CTSH, and v0 ∈ {Y ,N}∗ be
an initial string. Then the initial tape for U13_7 is as follows, where $ and the leftmost
b are used as delimiters (see Fig. 10.3). Here, wR denotes the reversal of the string w.

b ϕ1(w
R
k−1) ∗ · · · ∗ ϕ1(w

R
2) ∗ ϕ1(w

R
1) ∗ b $ ϕ1(v0) b

In the case of CTSH Ĉ with v0 = NYY in Example 1, the initial tape for it is
b ynn ∗ yn ∗ b $ nyy b. Snapshots of computation of U13_7 is as below. It simu-
lates the complete computing process of Ĉ: (NYY , 0) ⇒ (YY , 1) ⇒ (YNY , 2) ⇒
(NYNNY , 0) ⇒ (YNNY , 1) ⇒ (NNYNY , 2) ⇒ (NYNY , 0) ⇒ (YNY , 1) ⇒
(NYNY , 2) ⇒ (YNY , 0). In each computational configuration of U13_7, the head
position is also indicated by the underline.

t = 0 : [b y n n ∗ y n ∗ b $ n y y b, qbegin, 10]
7 : [b y n n ∗ y n b ∗ $ n y y b, qbegin, 11]
8 : [b y n n ∗ y n b ∗ $ n Yy b, qcase_y_1, 10]

18 : [b y n n ∗ y n ∗ ∗ $ n Yy b, qcopy_start, 6]
19 : [b y n n ∗ y b ∗ ∗ $ n Yy b, qcopy_n_1, 7]
25 : [b y n n ∗ y b ∗ ∗ $ n Yy b, qcopy_n_1, 13]
26 : [b y n n ∗ y b ∗ ∗ $ n Yy n b, qcopy_n_2, 14]
27 : [b y n n ∗ y b ∗ ∗ $ n Yy n b, qcopy_n_3, 13]
35 : [b y n n ∗ y n ∗ ∗ $ n Yy n b, qcopy_start, 5]
36 : [b y n n ∗ b n ∗ ∗ $ n Yy n b, qcopy_y_1, 6]
44 : [b y n n ∗ b n ∗ ∗ $ n Yy n b, qcopy_y_1, 14]
45 : [b y n n ∗ b n ∗ ∗ $ n Yy n y b, qcopy_y_2, 15]
46 : [b y n n ∗ b n ∗ ∗ $ n Yy n y b, qcopy_y_3, 14]
56 : [b y n n ∗ y n ∗ ∗ $ n Yy n y b, qcopy_start, 4]
57 : [b y n n b y n ∗ ∗ $ n Yy n y b, qcopy_end, 5]
64 : [b y n n b y n ∗ ∗ $ n y y n y b, qbegin, 12]

174 : [b y n n ∗ y n ∗ ∗ $ n y Yn y n n y b, qcopy_start, 0]
175 : [b y n n ∗ y n ∗ ∗ $ n y Yn y n n y b, qcycle_end, 1]
184 : [b y n n ∗ y n ∗ ∗ $ n y Yn y n n y b, qcopy_start, 8]
185 : [b y n n ∗ y n ∗ b $ n y Yn y n n y b, qcopy_end, 9]
291 : [b y n n b y n ∗ ∗ $ n y y n y n n y n y b, qbegin, 15]
292 : [b y n n b y n ∗ ∗ $ n y y n y N n y n y b, qcase_y_n, 14]
303 : [b y n n ∗ y n ∗ ∗ $ n y y n y N n y n y b, qcopy_start, 3]
315 : [b y n b ∗ y n ∗ ∗ $ n y y n y N n y n y b, qcopy_n_1, 15]
316 : [b y n b ∗ y n ∗ ∗ $ n y y n y N n y n y b, qcopy_n_3, 14]
665 : [b y n n ∗ y n ∗ b $ n y y n y n n y n y n y b, qbegin, 19]
676 : [b y n n ∗ y n ∗ b $ n y y n y n n y n Yn y b, qcase_y_1, 8]

10 Two Small Universal Reversible Turing Machines 231

We explain how U13_7 simulates CTSH by this example. Production rules of Ĉ is
basically expressed by the string ynn∗ yn∗∗. However, to indicate the phase m of
an ID (v,m), the mth ∗ from the right is altered into b (where the rightmost ∗ is the
0-th). This b is used as a “phase marker”. Namely, ynn∗ yn∗ b, ynn∗ yn b ∗, and
ynn b yn∗∗ indicate the phase is 0, 1, and 2, respectively. Hence, in the configuration
at t = 0, the string ynn∗ yn∗ b is given on the tape. To the right of the production
rules the initial string nyy is given. Between them, there is a delimiter $ that is not
rewritten into another symbol throughout the computation. In the state qbegin, the
leftmost symbol of the current string is pointed by the head. Then, it is changed to
the uppercase letter Y or N to indicate the leftmost position of the current string.

The state qbegin (appearing at time t = 0, 7, 64, 291, and 665) reads the first symbol
y or n of the current string, and temporarily changes it into Y or N , respectively.
Depending on the read symbol y or n,U13_7 goes to either qcase_y_1 (t = 8), or qcase_y_n

(t = 292). If the read symbol is b, U13_7 halts, because it means the string is null.
If the symbol is y, U13_7 performs the following operations (the case n is explained
in the next paragraph). By the state qcase_y_1 (t = 8), the URTM moves leftward to
find the delimiter $, and then visits the left-neighboring square by qcase_y_1. If it reads
b, then it halts (t = 676), because the phase is 0. If otherwise, U13_7 returns to the
delimiter $. Then, using qcase_y_2, U13_7 goes to the state qcase_y_n, and moves leftward
to find the phase marker b that indicates the position of the next production rule. By
the state qcopy_start (t = 18, and 35)U13_7 starts to copy each symbol of the production
rule. If U13_7 reads a symbol y (t = 18) (or n (t = 35), respectively), then it shifts
the marker b to this position, and goes to qcopy_y_1 (t = 36) (or qcopy_n_1 (t = 19))
to attach the symbol at the end of the string to be rewritten. On the other hand, if it
reads symbol ∗ in qcopy_start (t = 56), then it goes to qcopy_end (t = 57), which mean
the end of execution of a production rule, and thus it starts to read the next symbol
in the rewritten string (t = 64). Likewise, if it reads symbol b in qcopy_start (t = 174),
then it goes to qcycle_end (t = 175), which mean the end of one cycle, and thus the
phase is set to 0 (t = 185). The state qcopy_y_1 is for moving rightward to find the first
b that is to the right of the current string (t = 44), and rewrites it into y (t = 45). The
states qcopy_y_2 and qcopy_y_3 (t = 46) are for returning to the marker position and for
repeating the copying procedure. qcopy_n_1, . . . , qcopy_n_3 are for copying the symbol
n, which are similar to the case of y (t = 19, 25, 26, 27).

On the other hand, if U13_7 reads a symbol n in the state qbegin (t = 291), then it
enters the state qcase_y_n (t = 292), and tries to copy symbols as in the case of y. At
t = 303 it starts to copy a symbol n in qcopy_start . However, since it finds a symbol N
in the state qcopy_n_1 (t = 315), it enters the state qcopy_n_3 (t = 316) without attaching
the symbol n at the right end. By above, the phase marker is finally shifted to the
next production rule without copying the symbols of the current production rule.

Repeating the above procedure, U13_7 simulates a given CTSH step by step, and
halts in the state qcase_y_1 reading the symbol b if the CTSH halts in an ID with phase
0. If the string of the CTSH becomes null, U13_7 halts in the state qbegin reading the
symbol b. In the above example, U13_7 halts at t = 676, and the final string YNY of
Ĉ is obtained at as a suffix of the string (excluding the last blank symbol b) starting
from the symbol Y .

232 K. Morita

10.3.2 10-State 8-Symbol URTM

Next, we give URTM(10,8) U10_8. It is defined as below.

U10_8 = (Q10_8, {b, y, n, n′,Y ,N, ∗, $}, qbegin, b, δ10_8)

Q10_8 = {qbegin, qcase_y_1, qcase_y_2, qcase_y_n, qcopy_start, qcopy_y_1, qcopy_y_2,

qcopy_n_1, qcopy_n_2, qcopy_end}

Table 10.2 shows the move relation δ10_8. It contains 61 quintuples. Reversibility
of U10_8 is verified by a careful checking of δ10_8. It was also checked by a computer
program. The URTM U10_8 is constructed by modifying U13_7 in the previous sub-
section. Thus, the initial tape of U10_8 is just the same as that of U13_7. Furthermore,
the simulation time for a given CTSH is also the same.

The difference between U13_7 and U10_8 is as follows. First, the removed symbols
from the string are indicated by the uppercase letters Y and N . Second, if the leftmost
symbol of the current string is n, then it is temporarily changed to n′, which is a newly
added symbol in U10_8. Third, if the current phase is m, then the symbols of the

Table 10.2 The move relation δ10_8 of U10_8

b y n n′

qbegin (null) y,−, qcase_y_1 n′,−, qcase_y_n

qcase_y_1 (halt)

qcase_y_2 b,−, qcopy_y_2 y,−, qcase_y_n

qcase_y_n ∗,−, qcopy_start

qcopy_start b,+, qbegin b,+, qcopy_y_1 b,+, qcopy_n_1

qcopy_y_1 y,+, qcase_y_2 y,+, qcopy_y_1 n,+, qcopy_y_1 n′,−, qcopy_y_2

qcopy_y_2 Y ,−, qcopy_start y,−, qcopy_y_2 n,−, qcopy_y_2

qcopy_n_1 n,+, qcopy_end y,+, qcopy_n_1 n,+, qcopy_n_1 n′,−, qcopy_n_2

qcopy_n_2 N,−, qcopy_start y,−, qcopy_n_2 n,−, qcopy_n_2

qcopy_end b,−, qcopy_n_2 Y ,+, qbegin N,+, qbegin

Y N ∗ $

qbegin y,+, qbegin n,+, qbegin ∗,+, qbegin $,−, qcopy_start

qcase_y_1 Y ,−, qcase_y_1 N,−, qcase_y_1 ∗,+, qcase_y_2 $,−, qcase_y_1

qcase_y_2 Y ,+, qcase_y_2 N,+, qcase_y_2 $,+, qcase_y_2

qcase_y_n Y ,−, qcase_y_n N,−, qcase_y_n ∗,−, qcase_y_n $,−, qcase_y_n

qcopy_start b,+, qcopy_end

qcopy_y_1 Y ,+, qcopy_y_1 N,+, qcopy_y_1 ∗,+, qcopy_y_1 $,+, qcopy_y_1

qcopy_y_2 Y ,−, qcopy_y_2 N,−, qcopy_y_2 ∗,−, qcopy_y_2 $,−, qcopy_y_2

qcopy_n_1 Y ,+, qcopy_n_1 N,+, qcopy_n_1 ∗,+, qcopy_n_1 $,+, qcopy_n_1

qcopy_n_2 Y ,−, qcopy_n_2 N,−, qcopy_n_2 ∗,−, qcopy_n_2 $,−, qcopy_n_2

qcopy_end Y ,+, qcopy_end N,+, qcopy_end ∗,+, qcopy_end $,+, qcopy_end

10 Two Small Universal Reversible Turing Machines 233

production rules w1, . . . ,wm−1 are changed into the uppercase letters. By above, the
states qcopy_y_2 and qcase_y_2 in U13_7 can be merged into one state without violating
the reversibility condition. Likewise, the states qcopy_n_2 and qcopy_end in U13_7 can be
merged into one state. Hence, in U10_8, the old state qcopy_y_2 (qcopy_n_2, respectively)
is removed, and the old state qcopy_y_3 (qcopy_n_3) is renamed to qcopy_y_2 (qcopy_n_2).
Furthermore, the states qbegin and qcycle_end in U13_7 can be merged into one state.
Therefore, in U13_7, qcycle_end is removed. By above, the number of states of U10_8 is
reduced to 10.

Snapshots of computation process of U10_8 for the CTSH Ĉ with the initial string
NYY is as below.

t = 0 : [b y n n ∗ y n ∗ b $ n y y b, qbegin, 10]
7 : [b y n n ∗ y n b ∗ $ Ny y b, qbegin, 11]
8 : [b y n n ∗ y n b ∗ $ Ny y b, qcase_y_1, 10]

18 : [b y n n ∗ y n ∗ ∗ $ Ny y b, qcopy_start, 6]
19 : [b y n n ∗ y b ∗ ∗ $ Ny y b, qcopy_n_1, 7]
25 : [b y n n ∗ y b ∗ ∗ $ Ny y b, qcopy_n_1, 13]
26 : [b y n n ∗ y b ∗ ∗ $ Ny y n b, qcopy_end, 14]
27 : [b y n n ∗ y b ∗ ∗ $ Ny y n b, qcopy_n_2, 13]
35 : [b y n n ∗ y N ∗ ∗ $ Ny y n b, qcopy_start, 5]
36 : [b y n n ∗ bN ∗ ∗ $ Ny y n b, qcopy_y_1, 6]
44 : [b y n n ∗ bN ∗ ∗ $ Ny y n b, qcopy_y_1, 14]
45 : [b y n n ∗ bN ∗ ∗ $ Ny y n y b, qcase_y_2, 15]
46 : [b y n n ∗ bN ∗ ∗ $ Ny y n y b, qcopy_y_2, 14]
56 : [b y n n ∗YN ∗ ∗ $ Ny y n y b, qcopy_start, 4]
57 : [b y n n b YN ∗ ∗ $ Ny y n y b, qcopy_end, 5]
64 : [b y n n b YN ∗ ∗ $ NYy n y b, qbegin, 12]

174 : [b YNN∗ YN∗ ∗ $ NYy n y n n y b, qcopy_start, 0]
175 : [b YNN∗ YN∗ ∗ $ NYy n y n n y b, qbegin, 1]
184 : [b y n n ∗ y n ∗ ∗ $ NYy n y n n y b, qcopy_start, 8]
185 : [b y n n ∗ y n ∗ b $ NYy n y n n y b, qcopy_end, 9]
291 : [b y n n b YN ∗ ∗ $ NYYNYn n y n y b, qbegin, 15]
292 : [b y n n b YN ∗ ∗ $ NYYNYn′n y n y b, qcase_y_n, 14]
303 : [b y n n ∗ YN ∗ ∗ $ NYYNYn′n y n y b, qcopy_start, 3]
315 : [b y n b ∗ YN ∗ ∗ $ NYYNYn′ n y n y b, qcopy_n_1, 15]
316 : [b y n b ∗ YN ∗ ∗ $ NYYNYn′n y n y b, qcopy_n_2, 14]
665 : [b y n n ∗ y n ∗ b $ NYYNYNNYNy n y b, qbegin, 19]
676 : [b y n n ∗ y n ∗ b $ NYYNYNNYNy n y b, qcase_y_1, 8]

Comparing the above computational configurations with the ones of U13_7, we can
see that, e.g., at time t = 45 the state qcase_y_2 is used instead of qcopy_y_2, and at time
t = 175 the state qbegin is used instead of qcycle_end . However, the essentially the same
operation as in U13_7 is performed at each step, and thus at time t = 676 the final
string YNY is obtained.

234 K. Morita

10.4 Comparison with Other Small URTMs

Besides URTM(13,7) and URTM(10,8), which are constructed here, several URTMs
that simulates CTSH have been given in [9, 13, 15]. They are URTM(15,6),
URTM(17,5), URTM(24,4), and URTM(32,3).

On the other hand, it is generally difficult to design an RTM that has only two
symbols, or a very small number of states. To obtain an RTM with a small number
of states, general procedures for converting a given many-state RTM into a 4-state
and 3-state RTMs are given in [10], though the number of symbols of the resulting
RTMs becomes very large.

Theorem 3 ([10]) For any one-tape m-state n-symbol RTM T, we can construct a
one-tape 4-state (2mn + n)-symbol RTM T̃ that simulates T.

Theorem 4 ([10]) For any one-tape m-state n-symbol RTM T, we can construct a
one-tape 3-state RTM T̂ with O(m2n3)-symbols that simulates T.

Applying the method of Theorem 3 to URTM(10,8), we obtain URTM(4,168). Like-
wise, by the method of Theorem 4, we obtain URTM(3, 36654) from URTM(32,3).

To construct a 2-symbol URTM, we can use a method of converting a many-
symbol RTM into a 2-symbol RTM shown in [16]. In particular, the following lemma
is shown in [13] to convert a 4-symbol RTM to a 2-symbol RTM.

Lemma 1 ([13]) For any one-tape m-state 4-symbol RTM T, we can construct a
one-tape m′-state 2-symbol RTM T † that simulates T such that m′ ≤ 6m.

By this method, we can obtain URTM(138,4) from URTM(24,4) [13].
These results are summarized as follows.

• URTM(3,36654) with 37936 quintuples [10]
• URTM(4,168) with 381 quintuples [10]
• URTM(10,8) with 61 quintuples
• URTM(13,7) with 57 quintuples
• URTM(15,6) with 62 quintuples [9]
• URTM(17,5) with 67 quintuples [15]
• URTM(24,4) with 82 quintuples [13]
• URTM(32,3) with 82 quintuples [13]
• URTM(138,2) with 220 quintuples [13]

We can see URTM(10,8) has the minimum value of m × n among the above
URTM(m, n)’s. On the other hand, URTM(13,7) has the smallest number of quintu-
ples among them. The pairs of numbers of states and symbols of these URTMs, as
well as the smallest UTMs so far known, are plotted in Fig. 10.4.

The products of the numbers of states and symbols of URTM(10,8), URTM(13,7),
URTM(15,6), URTM(17,5), URTM(24,4), and URTM(32,3) are all less than 100,
and thus relatively small. However, those of URTM(3,36654), URTM(4,168), and
URTM(138,2), which are converted from the above ones, are very large, and it is not

10 Two Small Universal Reversible Turing Machines 235

∼ ∼ States
2 3 4 5 6 9 10 13 15 17 24 32 138

∼∼

∼∼

Symbols

2
3
4
5
6
7
8
9

18

168

36654 �

�

�
�

�

�

�

�

�

�

�
��� � �

Fig. 10.4 State-symbol plotting of small URTMs and UTMs. � shows URTMs newly given in
this paper that simulate cyclic tag systems. • indicates URTMs given in [9, 13, 15] that simulate
cyclic tag systems. � indicates URTMs converted from other URTMs. � shows UTMs given in
[6, 18, 20] that simulate 2-tag systems or bi-tag systems

known whether there are much smaller URTMs. Also, small URTM(m,n)’s such that
5 ≤ m ≤ 9 have not yet been constructed till now.

Examples of computing processes of the nine URTMs listed above were simulated
by a computer program. Animation-like figures of the computer simulation results,
as well as description files of the URTMs, are available in [12].

10.5 Concluding Remarks

We studied the problem of constructing small URTMs, which are universal TMs that
satisfy the reversibility condition. For this, we used a method of simulating cyclic
tag systems with halting condition. In this way, we newly obtained URTM(13,8),
and URTM(10,8).

Woods and Neary [22] proved that both cyclic tag systems, and 2-tag systems can
simulate TMs in polynomial time, and thus the small UTMs of Minsky [7], Rogozhin
[20], Kudlek and Rogozhin [6], Neary and Woods [18], and others can simulate TMs
efficiently. Although we did not discuss time complexity of the URTMs in detail, it
is easy to see that the URTMs given here simulate cyclic tag systems in polynomial
time. Therefore, these URTMs also simulate TMs in polynomial time.

In this study, we used a method of simulating cyclic tag systems with halting
condition to construct small URTMs. However, it is not known whether there are

236 K. Morita

better methods other than it. Also, it is not known whether a 2-state URTM exists.
Since there have been only several researches on small URTMs so far, there seems
much room for improvement, and thus they are left for the future study.

Acknowledgments This work was supported by JSPS KAKENHI Grant Number 15K00019.

References

1. Axelsen, H.B., Glück, R.: A simple and efficient universal reversible Turing machines. In:
Proceedings of the LATA 2011, LNCS, vol. 6638, pp. 117–128 (2011). doi:10.1007/978-3-
642-21254-3_8

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973).
doi:10.1147/rd.176.0525

3. Cocke, J., Minsky, M.: Universality of tag systems with P = 2. J. Assoc. Comput. Mach. 11,
15–20 (1964). doi:10.1145/321203.321206

4. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)
5. Fredkin, E., Toffoli, T.: Conserv. Log. Int. J. Theoret. Phys. 21, 219–253 (1982). doi:10.1007/

BF01857727
6. Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols. In: Pro-

ceedings of the DLT 2001, LNCS, vol. 2295, pp. 311–318 (2002). doi:10.1007/3-540-46011-
X_27

7. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs
(1967)

8. Morita, K.: A simple reversible logic element and cellular automata for reversible computing.
In: Proceedings of the MCU 2001, LNCS 2055, pp. 102–113 (2001). doi:10.1007/3-540-
45132-3_6

9. Morita, K.: Reversible computing and cellular automata – A survey. Theoret. Comput. Sci.
395, 101–131 (2008). doi:10.1016/j.tcs.2008.01.041

10. Morita, K.: Reversible Turing machines with a small number of states. In: Proceedings of
the NCMA 2014, pp. 179–190 (2014). Slides with figures of computer simulation: Hiroshima
University Institutional Repository, http://ir.lib.hiroshima-u.ac.jp/00036075

11. Morita, K.: Constructing reversible Turing machines by reversible logic element with mem-
ory. In: Adamatzky, A. (ed.) Automata, Computation, Universality, pp. 127–138. Springer-
Verlag (2015). doi:10.1007/978-3-319-09039-9_6. Slides with figures of computer simulation:
Hiroshima University Institutional Repository, http://ir.lib.hiroshima-u.ac.jp/00029224

12. Morita, K.: Constructing small universal reversible Turing machines (slides with figures of com-
puter simulation). Hiroshima University Institutional Repository (2015). http://ir.lib.hiroshima-
u.ac.jp/00036736

13. Morita, K.: Universal reversible Turing machines with a small number of tape symbols. Fundam.
Inform. 138, 17–29 (2015). doi:10.3233/FI-2015-1195

14. Morita, K., Suyama, R.: Compact realization of reversible Turing machines by 2-state reversible
logic elements. In: Proceedings of the UCNC 2014, LNCS, vol. 8553, pp. 280–292 (2014).
doi:10.1007/978-3-319-08123-6_23. Slides with figures of computer simulation: Hiroshima
University Institutional Repository, http://ir.lib.hiroshima-u.ac.jp/00036076

15. Morita, K., Yamaguchi, Y.: A universal reversible Turing machine. In: Proceedings of the MCU
2007, LNCS, vol. 4664, pp. 90–98 (2007). doi:10.1007/978-3-540-74593-8_8

16. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE
Japan E-72, 223–228 (1989)

17. Mukai, Y., Morita, K.: Realizing reversible logic elements with memory in the billiard ball
model. Int. J. Unconv. Comput. 8, 47–59 (2012)

http://dx.doi.org/10.1007/978-3-642-21254-3_8
http://dx.doi.org/10.1007/978-3-642-21254-3_8
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1145/321203.321206
http://dx.doi.org/10.1007/BF01857727
http://dx.doi.org/10.1007/BF01857727
http://dx.doi.org/10.1007/3-540-46011-X_27
http://dx.doi.org/10.1007/3-540-46011-X_27
http://dx.doi.org/10.1007/3-540-45132-3_6
http://dx.doi.org/10.1007/3-540-45132-3_6
http://dx.doi.org/10.1016/j.tcs.2008.01.041
http://ir.lib.hiroshima-u.ac.jp/00036075
http://dx.doi.org/10.1007/978-3-319-09039-9_6
http://ir.lib.hiroshima-u.ac.jp/00029224
http://ir.lib.hiroshima-u.ac.jp/00036736
http://ir.lib.hiroshima-u.ac.jp/00036736
http://dx.doi.org/10.3233/FI-2015-1195
http://dx.doi.org/10.1007/978-3-319-08123-6_23
http://ir.lib.hiroshima-u.ac.jp/00036076
http://dx.doi.org/10.1007/978-3-540-74593-8_8

10 Two Small Universal Reversible Turing Machines 237

18. Neary, T., Woods, D.: Four small universal Turing machines. Fundamenta Informaticae 91,
123–144 (2009). doi:10.3233/FI-2009-0036

19. Post, E.L.: Formal reductions of the general combinatorial decision problem. Am. J. Math. 65,
197–215 (1943). doi:10.2307/2371809

20. Rogozhin, Y.: Small universal Turing machines. Theoret. Comput. Sci. 168, 215–240 (1996).
doi:10.1016/S0304-3975(96)00077-1

21. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc.
Lond. Math. Soc. Ser. 2 42, 230–265 (1936)

22. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal Turing
machines. In: Proceedings of the 47th Symposium on Foundations of Computer Science, pp.
439–446 (2006). doi:10.1109/FOCS.2006.58

23. Woods, D., Neary, T.: The complexity of small universal Turing machines: a survey. Theoret.
Comput. Sci. 410, 443–450 (2009). doi:10.1016/j.tcs.2008.09.051

http://dx.doi.org/10.3233/FI-2009-0036
http://dx.doi.org/10.2307/2371809
http://dx.doi.org/10.1016/S0304-3975(96)00077-1
http://dx.doi.org/10.1109/FOCS.2006.58
http://dx.doi.org/10.1016/j.tcs.2008.09.051

	10 Two Small Universal Reversible Turing Machines
	10.1 Introduction
	10.2 Reversible Turing Machines and Tag Systems
	10.2.1 Reversible Turing Machines
	10.2.2 m-Tag Systems
	10.2.3 Cyclic Tag Systems

	10.3 Constructing Small Universal Reversible Turing Machines
	10.3.1 13-State 7-Symbol URTM
	10.3.2 10-State 8-Symbol URTM

	10.4 Comparison with Other Small URTMs
	10.5 Concluding Remarks
	References

