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Preface

Unconventional computing is a science in flux. What is unconventional today will
be conventional tomorrow. Designs being standard in the past are seen now as a
novelty. Unconventional computing is a niche for interdisciplinary science, a
cross-breed of computer science, physics, mathematics, chemistry, electronic
engineering, biology, materials science and nanotechnology. The aims are to
uncover and exploit principles and mechanisms of information processing in, and
functional properties of, physical, chemical and living systems to develop efficient
algorithms, design optimal architectures and manufacture working prototypes of
future and emergent computing devices.

I invited world’s leading scientists and academicians to describe their vision of
unconventional computing and to highlight the most promising directions of future
research in the field. Their response was overwhelmingly enthusiastic: over
50 chapters were submitted spanning almost all the fields of natural and engineering
sciences. Unable to fit over one and half thousands pages into one volume,
I grouped the chapters as “theoretical” and “practical”. By “theoretical” I mean
constructs and algorithms which have no immediate application domain and do not
solve any concrete problems, yet they make a solid mathematical or philosophical
foundation to unconventional computing. “Practical” includes experimental labo-
ratory implementations and algorithms solving actual problems. Such a division is
biased by my personal vision of the field and should not be taken as an absolute
truth.

The first volume brings us mind-bending revelations from gurus in computing
and mathematics. The topics covered are computability, (non-)universality and
complexity of computation; physics of computation, analog and quantum com-
puting; reversible and asynchronous devices; cellular automata and other mathe-
matical machines; P-systems and cellular computing; spatial computation; chemical
and reservoir computing. As a dessert we have two vibrant memoirs by founding
fathers of the field.

The second volume is a tasty blend of experimental laboratory results, modelling
and applied computing. Emergent molecular computing is presented by enzymatic
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logical gates and circuits, and DNA nano-devices. Reaction-diffusion chemical
computing is exemplified by logical circuits in Belousov–Zhabotinsky medium and
geometrical computation in precipitating chemical reactions. Logical circuits rea-
lised with solitons and impulses in polymer chains show advances in
collision-based computing. Photo-chemical and memristive devices give us a
glimpse into the hot topics of novel hardware. Practical computing is represented by
algorithms of collective and immune-computing and nature-inspired optimisation.
Living computing devices are implemented in real and simulated cells, regenerating
organisms, plant roots and slime moulds. Musical biocomputing and living archi-
tectures make the ending of our unconventional journey non-standard.

The chapters are self-contained. No background knowledge is required to enjoy
the book. Each chapter is a treatise of marvellous ideas. Open the book at a random
page and start reading. Abandon all stereotypes, conventions and rules. Enter the
stream of unusual. Even a dead fish can go with the flow. You can too.

Bristol, UK Andrew Adamatzky
March 2016
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Chapter 1
Nonuniversality in Computation:
Fifteen Misconceptions Rectified

Selim G. Akl

Abstract In January 2005 I showed that universality in computation cannot be
achieved. Specifically, I exhibited a number of distinct counterexamples, each of
which sufficing to demonstrate that no finite and fixed computer can be universal
in the sense of being able to simulate successfully any computation that can be
executed on any other computer. The number and diversity of the counterexamples
attest to the general nature of the nonuniversality result. This not only put to rest the
“Church–Turing Thesis”, by proving it to be a false conjecture, but also was seen to
apply, in addition to the Turing Machine, to all computational models, past, present,
and future, conventional and unconventional. While ten years have now passed since
nonuniversality in computation was established, the result remains largely misun-
derstood. There appear to be at least two main reasons for this state of affairs. As
often happens to new ideas, the nonuniversality result was confronted with a stub-
born entrenchment in a preconceived, deeply held, and quasi-religious belief in the
existence of a universal computer. This was exacerbated by a failure to read the liter-
ature that demonstrates why such a belief is unfounded. Behavior of this sort, sadly
not uncommon in science, explains the enduring mirage of the universal computer.
The purpose of this chapter is to rectify the most notorious misconceptions asso-
ciated with nonuniversality in computation. These misconceptions were expressed
to the author in personal communications, orally, by email, and in referee reports.
Each misconception is quoted verbatim and a detailed response to it is provided. The
chapter concludes by inviting the reader to take a computational challenge.

1.1 Introduction

For a long time people believed that the Sun orbits our Earth. We now know better.
And so it is with universality in computation. Consider the following statement:

It can also be shown that any computation that can be performed on a modern-day digital
computer can be described bymeans of a TuringMachine. Thus if one ever found a procedure

S.G. Akl (B)
School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
e-mail: akl@cs.queensu.ca

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
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2 S.G. Akl

that fitted the intuitive notions, but could not be described by means of a Turing Machine,
it would indeed be of an unusual nature since it could not possibly be programmed for any
existing computer [35], p. 80.

The first sentence in the preceding quote is clearly false, and well known coun-
terexamples abound in the literature (see, for example, [36, 63], and for further
references [4, 8]). The second sentence, on the other hand, is only half true. Indeed,
it is perfectly justified to say that a computation that cannot be performed on a Tur-
ing Machine must be of an unusual nature. However, this does not mean that such a
computation cannot be programmed on any existing computer. Rather, the existence
of such a computation would instead mean that the Turing Machine is simply not
universal and that the “Church–Turing Thesis” (whose validity is assumed implicitly
in the opening quote of this chapter) is in fact invalid.

In January 2005 I showed that the concept of a Universal Computer cannot be
realized [4]. Specifically, I exhibited instances of a computable functionF that cannot
be computed on any machine U that is capable of only a finite and fixed number of
operations per step (or time unit). This remains true even if themachineU is endowed
with an infinite memory and the ability to communicate with the outside world while
it is attempting to compute F . It also holds if, in addition, U is given an indefinite
amount of time to compute F .

1.1.1 The Main Theorem

Formally, my result is stated as follows:

Theorem 1 Nonuniversality in computation: Given n spatially and tem-
porally connected physical variables, X1, X2, . . . , Xn, where n is a positive
integer, there exists a function Fn(X1, X2, . . . , Xn) of these variables, such
that no computer can evaluate Fn for any arbitrary n, unless it is capable of
an infinite number of operations per time unit.

A constructive proof of Theorem 1 seeks to define a function Fn that obeys the
following property: Fn is readily computable by a machine Mn capable of exactly
n operations per time unit; however, this machine cannot compute Fn+1 when the
number of variables is n + 1. While a second machine Mn+1 capable of n + 1 oper-
ations per time unit can now compute the function Fn+1 of n + 1 variables, Mn+1 is
in turn defeated by a function Fn+2 of n + 2 variables. In principle, the escalation
continues without end.

This point deserves emphasis. While the function Fn+1(X1, X2, . . . , Xn+1) is
easily computed by Mn+1, it cannot be computed by Mn . Even if given infinite
amounts of time and space, machine Mn is incapable of simulating the actions of
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Mn+1. Furthermore, machine Mn+1 is in turn thwarted by Fn+2(X1, X2, . . . , Xn+2),
a function computable by a third machine Mn+2. The process repeats indefinitely.
Therefore no computer is universal if it is capable of exactly T (i) operations during
time unit i , where i is a positive integer, and T (i) is finite and fixed once and for all,
for it will be faced with a computation requiring V (i) operations during time unit i ,
where V (i) > T (i) for at least one i . (Note that this last statement is, in fact, a more
general form of the result in Theorem 1, as it invokes neither the physical variables
nor the function Fn .)

Therefore, in order to actually proveTheorem1constructively, it suffices to exhibit
(at least) one concrete instance of the function Fn satisfying the property described
in the previous two paragraphs. Indeed we offer several examples of such a function
occurring in:

1. Computationswith time-varying variables:The variables, overwhich the function
is to be computed, are themselves changing with time.

2. Computations with time-varying computational complexity: The computational
complexity of the function to be computed is itself changing with time.

3. Computations with rank-varying computational complexity: Given several func-
tions to be computed, and a schedule for computing them, the computational
complexity of a function depends on its position in the schedule.

4. Computations with interacting variables: The variables of the function to be
computed are parameters of a physical system that interact unpredictably when
the system is disturbed.

5. Computations with uncertain time constraints: There is uncertainty with regards
to the input (when and for how long are the input data available), the calculation
(what to do and when to do it), and the output (the deadlines are undefined at the
outset); furthermore, the function that resolves each of these uncertainties, itself
has demanding time requirements.

6. Computationswith globalmathematical constraints:The function to be computed
is over a systemwhose variables must collectively obey a mathematical condition
at all times.

It should be clear at this point that all computable functions used in this work are
in fact generalizations of the definition of a mathematical function in that they may
enjoy one or more of the following properties: they have real (that is, physical) time
as a variable, their variables interact with one another, there exists a condition that
must be satisfied while a function is being evaluated, and so on.

1.1.2 A Simple Example: Time-Varying Variables

For instance, suppose that the Xi are themselves functions that vary with time. It is
therefore appropriate to write the n variables as X1(t), X2(t), . . . , Xn(t), that is, as
functions of the time variable t . Further assume that, while it is known that the Xi
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change with time, the actual functions that effect these changes are not known (for
example, Xi may be a true random variable). Let

Fn+1(X1, X2, . . . , Xn+1) = F1(X1), F2(X2), . . . , Fn+1(Xn+1) , (1.1)

where each Fi is a simple function of one variable that takes one time unit to com-
pute. The problem calls for computing Fi (Xi (t)), for i = 1, 2, . . . , n, at time t = t0.
Specifically, let Fi (Xi (t)) simply represent the reading of Xi (t) from an external
medium. The fact that Xi (t) changes with the passage of time means that, for k > 0,
not only is each value Xi (t0 + k) different from Xi (t0), but also the latter cannot be
obtained from the former. No computer capable of fewer than n read operations per
time unit can solve this problem.

We note in passing that the example in the previous paragraph is deliberately
simple in order to convey the idea. Reading a datum, that is, acquiring it from an
external medium, is the most elementary form of information processing. Any com-
puter must be able to perform such operation. This simplest of counterexamples
suffices to establish nonuniversality in computation. Of course, if one wishes, the
computation can be mademore complex, at will. While our main conclusion remains
unchanged, for some, a more complex argument may sound more convincing. Thus,
for example, we may add arithmetic by requiring that Fi (Xi (t)) call for reading
Xi (t) and incrementing it by one, for i = 1, 2, . . . , n, at time t = t0. Reading Xi (t),
incrementing it by one, and returning the result takes one time unit.

In any case, a computer Mn capable of n operations per time unit (for example,
one with n processors operating in parallel) can compute all the Fi (Xi (t)) at t = t0
successfully. A computer capable of fewer than n operations per time unit fails to
compute all the Fi (Xi (t)) at t = t0. Indeed, consider a computer Mn−1 capable of
n − 1 operations per time unit. Mn−1 would compute n − 1 of the Fi (Xi (t)) at t = t0
correctly. Without loss of generality, assume that it computes Fi (Xi (t)) at t = t0 for
i = 1, 2, . . . , n − 1. Now one time unit would have passed, and when Mn−1 attempts
to compute Fn(Xn(t0)), it would be forced to incorrectly compute Fn(Xn(t0 + 1)).

Is computer Mn universal? Certainly not. For when the number of variables is
n + 1, Mn fails to perform the simple computation presented in this section and
involving time-varying variables. As stated earlier in Sect. 1.1.1, a succession of
machines Mn+1,Mn+2, . . . , each succeeds at one level only to be foiled at the next.

1.1.3 Consequences

The implication of this result to the theory of computation is akin to that of Gödel’s
incompleteness theorem to mathematics. In the same way as no finite set of axioms
Ai can be complete, no computer Ci is universal that can perform a finite and fixed
number of operations per time unit. This is illustrated in Fig. 1.1: For every set of
axioms Ai there exists a statement Gi+1 not provable in Ai , but provable in Ai+1;
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Fig. 1.1 Incompleteness in mathematics and nonuniversality in computation

similarly, for every machine Ci there is a problem Pi+1 not solvable on Ci , but
solvable on Ci+1.

The nonuniversality in computation result applies to any computer that obeys the
finiteness condition, that is, a computer capable of only a finite and fixed number of
operations per step (that is, per time unit). It should be noted that computers obey-
ing the finiteness condition include all “reasonable” models of computation, both
theoretical and practical, such as the Turing Machine, the Random Access Machine,
and other idealized models [53], as well as all of today’s general-purpose comput-
ers, including existing conventional computers (both sequential and parallel), and
contemplated unconventional ones such as biological and quantum computers [5]. It
is true for computers that interact with the outside world in order to read input and
return output (unlike the Turing Machine, but like every realistic general-purpose
computer). It is also valid for computers that are given unlimited amounts of time
and space in order to perform their computations (like the TuringMachine, but unlike
realistic computers). Even accelerating machines that increase their speed at every
step (such as doubling it, or squaring it, or any such fixed acceleration) at a rate that
is set in advance, cannot be universal! (Divine intervention, in the form of the Oracle
Machine [61], for example, is clearly beyond the scope of the present discussion.)

Theonly constraint thatwehaveplacedon the computer (ormodel of computation)
that claims to be universal is that the number of operations of which it is capable per
time unit be finite and fixed once and for all. In this regard, it is important to note
that:

1. The requirement that the number of operations per time unit, or step, be finite is
necessary for any “reasonable” model of computation; see, for example, [56], p.
141.
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2. The requirement that this number be fixed once and for all is necessary for any
model of computation that purports to be “universal”; see, for example, [25], p.
210.

Without these two requirements, the theory of computation in general, and the theory
of algorithms, in particular, would be totally irrelevant.

The consequences to theoretical and practical computing are significant. Thus
the conjectured “Church–Turing Thesis” is false. It is no longer true that, given
enough time and space, any single general-purpose computer, defined a priori, can
perform all computations that are possible on all other computers. Not the Turing
Machine, not a personal computer, not the most powerful of supercomputers. In view
of the computational problems mentioned in Sect. 1.1.1 and presented more fully in
Sect. 1.3 (for details, see [4–15, 18–20, 29, 45–50]), the only possible universal
computer would be one capable of an infinite number of operations per time unit.

In fact, this work has led to the discovery of computations that can be performed
on a quantum computer but not on any classical machine (even one with infinite
resources), thus showing for the first time that the class of problems solvable by
classical means is a true subset of the class of problems solvable by quantum means
[47]. Consequently, the only possible universal computer would have to be quantum
(as well as being capable of an infinite number of operations per time unit).

1.1.4 Motivation

The results described in the previous paragraphs were obtained and published
between 2005 and 2015. They appeared in technical reports, were presented at con-
ferences, and published as journal papers and book chapters, as documented in the
bibliography section. Yet, ten years after they were first announced, they remain
generally misunderstood, and consequently controversial. This is not surprising: Old
habits die hard. It is difficult to abandon ideas that one has believed all of one’s
life. This applies to inherited scientific ideas, that people persist in defending, even
if these ideas are demonstrably wrong. Disruptive innovations usually disturb and
destabilize. To announce that the long-held belief in universality in computation is,
in fact, in error was met with great skepticism, to say the least. Most of the animosity
towards the author came from scientists who had not bothered to read his work. The
title of a paper alone was sufficient to ignite their anger.

It started with hostile email. Then came the uninspired referee reports. And finally
Wikipedia removed the entry onNonuniversality inComputation, createdbya student
of the author, after one reader objected. It was clear that these people had not read
any of my work on the subject. This is when I decided to write this chapter, based
on a web page [16] I had created to reply to unfounded criticisms.

The remainder of this chapter is organized as follows. Section1.2 provides def-
initions for many of the terms used in the discussion to follow (some of the more
common of these terms were already introduced in this section without definition, in
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order not to interrupt the flow of the opening paragraphs). Section1.3 summarizes
the work in my previous papers, culminating in the fundamental result that the ‘Uni-
versal Computer’ is a myth. Section1.4 is a dialog with an imaginary debater who
embodies all of my critics and voices all their misconceptions. Section1.5 offers a
computational challenge to the readers.

1.2 Preliminaries

A time unit is the length of time required by a processor to perform a step of its
computation, consisting of three elementary operations: a read operation in which it
receives a constant number of fixed-size data as input, a calculate operation in which
it performs a fixed number of constant-time arithmetic and logical calculations (such
as adding two numbers, comparing two numbers, and so on), and a write operation
in which it returns a constant number of fixed-size data as output.

A sequential computer, consists of a single processor. A parallel computer has
n processors, numbered 1 to n, where n ≥ 2. Both computers use the same type of
processor and that processor is the fastest possible [2]. The assumption that the com-
puters on hand, whether sequential or parallel, use the fastest conceivable processor
is an important one. This is because the speed of the processor used is what speci-
fies the duration of a time unit, as defined in the previous paragraph; the faster the
processor, the smaller the time unit. In the time-varying variables computation of
Sect. 1.1.2, for example, the value of each input variable Xi (t) changes at the same
speed as the processor in charge of evaluating Fi (Xi (t)).

The concept of computational universality is one of the dogmas in Computer
Science, stated as follows: Given enough time and space, any general-purpose com-
puter can, through simulation, perform any computation that is possible on any other
general-purpose computer. Statements such as this are commonplace in the computer
science literature, and are served as standard fare in undergraduate and graduate
courses alike. Sometimes the statement is restricted to the Turing Machine (TM),
and is referred to as the “Church–Turing Thesis” (CTT), which stipulates that there
exists a Universal Computer, namely, the TM; thus, the following quote is typical:

A Turing Machine can do everything that a real computer can do [56], p. 125.

Other times, the statement is made more generally about a Universal Computer,
that is, a computer capable of executing any computation that can be performed by
any other computer; thus, we are told:

It is possible to build a universal computer: a machine that can be programmed to perform
any computation that any other physical object can perform [25], p. 134.

As its name indicates, the CTT is a conjecture, whose proof has remained elusive
due to the difficulty in defining what it means to compute. A few points are worth
making in this regard:



8 S.G. Akl

1. The Universal Turing Machine (UTM) defined by Alan Turing, is ‘universal’
in the sense of being able to simulate any computation performed by any other
special-purpose TM. In other words, the UTM can be programmed to execute
any TM computation. This is a provable property, and is not in question here or
elsewhere.

2. However, the UTM is not known to be ‘universal’ in the more general sense of
being able to simulate by its own means any computation performed by means
of any other computational device (not necessarily a TM). It is this universality
of the UTM, in the more general sense, that is expressed by the CTT.

3. My work has shown the CTT, and more generally computational universality, to
be false. Specifically, I proved the stronger result that no ‘Universal Computer’
is possible, thus eliminating, not only the UTM, but also all other models of
computation as contenders for the title.

1.3 Inherently Parallel Computations

The term inherently parallel computation refers to a computation that can be per-
formed successfully only on a parallel computer with an appropriate number of
processors. Examples are computations that involve: time-varying variables, time-
varying computational complexity, rank-varying computational complexity, inter-
acting variables, uncertain time constraints, and variables obeying mathematical
constraints. These computations also provide counterexamples to the existence of
a universal computer [4–15, 18–20, 29, 45–50].

1.3.1 Time-Varying Variables

This computation was described in Sect. 1.1.2. It is reproduced briefly here for com-
pleteness in the context of inherently parallel computations. For a positive integer n
larger than 1, we are given n functions, each of one variable, namely, f1, f2, . . . , fn,
operating on the n physical variables x1, x2, . . . , xn, respectively. Specifically, it is
required to compute fi (xi ), for i = 1, 2, . . ., n. For example, fi (xi )maybe equal to x2i .
What is unconventional about this computation, is the fact that the xi are themselves
(unknown) functions x1(t), x2(t), . . . , xn(t), of the time variable t . It takes one time
unit to evaluate fi (xi (t)). The problem calls for computing fi (xi (t)), 1 ≤ i ≤ n, at
time t = t0. Because the function xi (t) is unknown, it cannot be inverted, and for
k > 0, xi (t0) cannot be recovered from xi (t0 + k).

A sequential computer fails to compute all the fi as desired. Indeed, suppose that
x1(t0) is initially operated upon. By the time f1(x1(t0)) is computed, one time unit
would have passed. At this point, the values of the n − 1 remaining variables would
have changed. The same problem occurs if the sequential computer attempts to first
read all the xi , one by one, and store them before calculating the fi .
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By contrast, a parallel computer consisting of n independent processors may
perform all the computations at once: For 1 ≤ i ≤ n, and all processors working at
the same time, processor i computes fi (xi (t0)), leading to a successful computation.

1.3.2 Time-Varying Computational Complexity

Here, the computational complexity of the problems at hand depends on time (rather
than being, as usual, a function of the problem size). Thus, for example, tracking a
moving object (such as a spaceship racing towardsMars) becomes harder as it travels
away from the observer.

Suppose that a certain computation requires that n independent functions, each of
one variable, namely, f1(x1), f2(x2), . . . , fn(xn), be computed. Computing fi (xi )
at time t requires C(t) = 2t operations, for t ≥ 0 and 1 ≤ i ≤ n. Further, there is
a strict deadline for reporting the results of the computations: All n values f1(x1),
f2(x2), . . . , fn(xn) must be returned by the end of the third time unit, that is, when
t = 3.

It should be easy to verify that no sequential computer, capable of exactly one
constant-time operation per step (that is, per time unit), can perform this computa-
tion for n ≥ 3. Indeed, f1(x1) takes C(0) = 20 = 1 time unit, f2(x2) takes another
C(1) = 21 = 2 time units, by which time three time units would have elapsed. At
this point none of f3(x3), . . . , fn(xn) would have been computed. By contrast, an
n-processor parallel computer solves the problem handily. With all processors oper-
ating simultaneously, processor i computes fi (xi ) at time t = 0, for 1 ≤ i ≤ n. This
consumes one time unit, and the deadline is met.

1.3.3 Rank-Varying Computational Complexity

Suppose that a computation consists of n stages. There may be a certain precedence
among these stages, or the n stages may be totally independent, in which case the
order of execution is of no consequence to the correctness of the computation. Let
the rank of a stage be the order of execution of that stage. Thus, stage i is the i th stage
to be executed. Here we focus on computations with the property that the number of
operations required to execute stage i is C(i), that is, a function of i only.

When does rank-varying computational complexity arise? Clearly, if the compu-
tational requirements grow with the rank, this type of complexity manifests itself in
those circumstances where it is a disadvantage, whether avoidable or unavoidable,
to being i th, for i ≥ 2. For example, the precision and/or ease of measurement of
variables involved in the computation in a stage s may decrease with each stage
executed before s.

The same analysis as in the previous section applies by substituting the rank for
the time.
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1.3.4 Interacting Variables

A physical system has n variables, x1, x2, . . ., xn , each of which is to be measured or
set to a given value at regular intervals. One property of this system is that measuring
or setting one of its variables modifies the values of any number of the system
variables unpredictably.

A sequential computer measures one of the values (x1, for example) and by so
doing it disturbs the equilibrium, thus losing all hope of recording the state of the
system within the given time interval. Similarly, the sequential approach cannot
update the variables of the system properly: Once x1 has received its new value,
setting x2 disturbs x1 unpredictably.

A parallel computer with n processors, by contrast, will measure all the variables
x1, x2, . . . , xn simultaneously (one value per processor), and therefore obtain an
accurate reading of the state of the systemwithin the given time frame. Consequently,
new values x1, x2, . . . , xn can be computed in parallel and applied to the system
simultaneously (one value per processor).

1.3.5 Uncertain Time Constraints

In this paradigm, we are given a computation each of whose components, namely, the
input phase, the calculation phase, and the output phase, needs to be computed by a
certain deadline. However, unlike the standard situation in conventional computation,
the deadlines here are not known at the outset. In fact, and this is what makes this
paradigm truly unconventional, we do not know at the moment the computation is
set to start, what needs to be done, and when it should be done. Certain physical
parameters, from the external environment surrounding the computation, become
spontaneously available. The values of these parameters, once received from the
outside world, are then used to evaluate two functions, call them f1 and f2, that tell
us precisely what to do and when to do it, respectively.

The difficulty posed by this paradigm is that the evaluation of the two functions f1
and f2 is itself quite demanding computationally. Specifically, for a positive integer
n, the two functions operate on n variables (the physical parameters). Only a parallel
computer equipped with n processors can succeed in evaluating the two functions
on time to meet the deadlines.

1.3.6 Computations Obeying Mathematical Constraints

There exists a family of computational problems where, given a mathematical object
satisfying a certain property, we are asked to transform this object into another
which also satisfies the same property. Furthermore, the property is to be maintained



1 Nonuniversality in Computation … 11

throughout the transformation, and be satisfied by every intermediate object, if any.
More generally, the computations we consider here are such that every step of the
computation must obey a certain predefined constraint. (Analogies from popular
culture include picking up sticks from a heap one by one without moving the other
sticks, drawing a geometric figure without lifting the pencil, and so on.)

1.3.6.1 Rewriting Systems

An example of such transformations is provided by rewriting systems. From an
initial string ab, in some formal language consisting of the two symbols a and b, it
is required to generate the string (ab)n , for n > 1. Thus, for n = 3, the target string
is ababab. The rewrite rules to be used are: a → ab and b → ab. Throughout the
computation, no intermediate string should have two adjacent identical characters.
Such rewrite systems (also known asL-systems) are used to draw fractals and model
plant growth [51]. Here we note that applying any one of the two rules at a time
causes the computation to fail (for example, if ab is changed to abb, by the first
rewrite rule, or to aab by the second).

A sequential computer can change only one symbol at once, thereby causing the
adjacency condition to be violated. By contrast, for a given n, a parallel computer
with n processors can easily perform a transformation on all the inputs collectively.
The required property is maintained leading to a successful computation. Thus, the
string (ab)n is obtained in log n steps, with the two rewrite rules being applied simul-
taneously to all symbols in the current intermediate string, in the following manner:
ab, abab, abababab, and so on. It is interesting to observe that a successful genera-
tion of (ab)n also provides an example of a rank-varying computational complexity
(as described in Sect. 1.3.3). Indeed, each legal string (that is, each string generated
by the rules and obeying the adjacency property) is twice as long as its predecessor
(and hence requires twice as many operations to be generated).

1.3.6.2 Sorting Variant

A second example of computations obeying a mathematical constraint is provided
by a variant to the problem of sorting. For a positive even integer n, where n ≥ 8, let
n distinct integers be stored in an array A with n locations A[1], A[2], . . ., A[n], one
integer per location. Thus A[ j], for all 1 ≤ j ≤ n, represents the integer currently
stored in the j th location of A. It is required to sort the n integers in place into
increasing order, such that:

1. After step i of the sorting algorithm, for all i ≥ 1, no three consecutive integers
satisfy:

A[ j] > A[ j + 1] > A[ j + 2] , (1.2)

for all 1 ≤ j ≤ n − 2.
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2. When the sort terminates we have:

A[1] < A[2] < · · · < A[n]. (1.3)

This is the standard sorting problem in computer science, but with a twist. In
it, the journey is more important than the destination. While it is true that we are
interested in the outcome of the computation (namely, the sorted array, this being the
destination), in this particular variant we are more concerned with how the result is
obtained (namely, there is a condition that must be satisfied throughout all steps of
the algorithm, this being the journey). It is worth emphasizing here that the condition
to be satisfied is germane to the problem itself; specifically, there are no restrictions
whatsoever on the model of computation or the algorithm to be used. Our task is
to find an algorithm for a chosen model of computation that solves the problem
exactly as posed. One should also observe that computer science is replete with
problems with an inherent condition on how the solution is to be obtained. Examples
of such problems include: inverting a nonsingular matrix without ever dividing by
zero, finding a shortest path in a graph without examining an edge more than once,
sorting a sequence of numbers without reversing the order of equal inputs, and so
on.

An oblivious (that is, input-independent) algorithm for an n/2-processor parallel
computer solves the aforementioned variant of the sorting problem handily in n steps,
by means of predefined pairwise swaps applied to the input array A, during each of
which A[ j] and A[k] exchange positions (using an additional memory location for
temporary storage) [2]. A sequential computer, and a parallel computer with fewer
than (n/2) − 1 processors, both fail to solve the problem consistently, that is, they
fail to sort all possible n! permutations of the input while satisfying, at every step,
the condition that no three consecutive integers are such that A[ j] > A[ j + 1] >
A[ j + 2] for all j . In the particularly nasty case where the input is of the form

A[1] > A[2] > · · · > A[n] , (1.4)

any sequential algorithm and any algorithm for a parallel computer with fewer than
(n/2) − 1 processors fail after the first swap.

It is interesting to note here that a Turing Machine with n/2 heads succeeds in
solving the problem, yet its simulation by a standard (single-head) Turing Machine
fails to satisfy the requirements of the problem. Indeed, suppose that the standard
Turing Machine is presented with the input sequence A[1] > A[2] > · · · > A[n]:
1. It will either use the given representation of the input, and proceed to perform an

operation (a swap, for example), in which case it would fail after one step of the
algorithm,

2. Or it will transform the given representation into a different encoding (perhaps
one intended to capture the behavior of the Turing Machine with n/2 heads) in
preparation for the sort, in which case it would again fail since the transformation
itself will consist of more than one algorithmic step.
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This is a surprising result as it goes against the common belief that any computation
by a variant of the Turing Machine can be effectively simulated by the standard
model [40].

1.3.7 The Universal Computer Is a Myth

The Principle of Simulation is the cornerstone of computer science. It is at the heart
of most theoretical results and practical implements of the field such as programming
languages, operating systems, and so on. The principle states that any computation
that can be performed on any one general-purpose computer can be equally carried
out through simulation on any other general-purpose computer [25, 32, 44]. At
times, the imitated computation, running on the second computer, may be faster or
slower depending on the computers involved. In order to avoid having to refer to
different computers when conducting theoretical analyses, it is a generally accepted
approach to define a model of computation that can simulate all computations by
other computers. This model would be known as a Universal Computer U . Thus,
Universal Computation, which clearly rests on the Principle of Simulation, is also
one of the foundational concepts in the field [23].

Our purpose here is to prove the following general statement: There does not exist
a finite computational device that can be called a Universal Computer. Our reason-
ing proceeds as follows. Suppose there exists a Universal Computer capable of n
elementary operations per step, where n is a finite and fixed integer. This computer
will fail to perform a computation requiring n′ operations per step, for any n′ > n,
and consequently lose its claim of universality. Naturally, for each n′ > n, another
computer capable of n′ operations per step will succeed in performing the afore-
mentioned computation. However, this new computer will in turn be defeated by a
problem requiring n′′ > n′ operations per step.

This reasoning is supported by each of the computational problems presented
in Sects. 1.3.1–1.3.6. As we have seen, these problems can easily be solved by a
computer capable of executing n operations at every step. Specifically, an n-processor
parallel computer led to a successful computation in each case. However, none of
these problems is solvable by any computer capable of at most n − 1 operations per
step, for any integer n > 1. Furthermore, the problem size n itself is a variable that
changes with each problem instance. As a result, no parallel computer, regardless
of how many processors it has available, can cope with a growing problem size, as
long as the number of processors is finite and fixed. This holds even if the computer
purporting to be universal is endowed with an unlimited memory and is allowed to
compute for an indefinite amount of time.

Therefore, the Universal Computer U is clearly a myth. As a consequence, the
Principle of Simulation itself (though it applies to most conventional computations)
is, in general, a fallacy. In fact, the latter principle is responsible formany othermyths
in computing, such as the Speedup Theorem, the Slowdown Theorem, and Amdahl’s
Law. Counterexamples for dispelling these and other myths are presented in [3, 21].
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1.4 Misconceptions and Replies

Almost all the other fellows do not look from the facts to the theory but from the theory to the
facts; they cannot get out of the network of already accepted concepts; instead, comically,
they only wriggle about inside [27].

What follows are fifteenmisconceptions relating tomy nonuniversality result, and
responses to them. They are presented as a dialog with an interlocutor who, I assume
(perhaps wishfully), has read my papers listed in the bibliography on the myth of
universal computation.

1.4.1 Misconception 1

Interlocutor: So, you describe a number of functions that are uncomputable. What’s
new about that? Uncomputable functions have been known since the time of Turing.

Response: This is incorrect. The functions that I describe are eminently com-
putable. In my papers listed in the bibliography, every function Fn of n variables can
be easily evaluated by a computer capable of at least n elementary operations per
time unit (an n-processor parallel computer [10], for example). However, a computer
capable of only n − 1 or fewer elementary operations per time unit cannot compute
Fn . Nonuniversality in computation immediately follows by simple induction.

1.4.2 Misconception 2

Interlocutor: You are proposing computations that cannot be simulated efficiently.
What’s new about that? Your own book [2] and your earlier papers presented such
computations that can be performed in constant time by n processors, but require
time exponential in n when executed on n − 1 or fewer processors.

Response: The error in the preceding statement is in the phrase “cannot be simu-
lated efficiently”. Indeed, my nonuniversality result does not follow from computa-
tions that cannot be simulated efficiently. It follows from computations that cannot
be simulated at all. Thus, for each of the functions Fn of n variables that I describe
in my papers listed in the bibliography, no computer capable of fewer than n ele-
mentary operations per time unit can simulate the actions of a computer capable of
n elementary operations per time unit. The latter computer is capable of evaluat-
ing Fn successfully; the former is not capable of doing so, even if given an infinite
amount of time and memory space. It is this impossibility of simulation that leads to
nonuniversality.

In every one of my examples, the job simply cannot be done by simulation.
The world does not stand still while the simulator is taking its sweet time. In some
examples (the time-varying variables, say), physical time is the enemy: If a moment
is not grasped, it is gone forever, and no amount of simulation will help. In other
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examples (the sorting variant, say), if a given condition is violated in the course of the
simulation, the computation by the simulator is considered to have failed, regardless
of whether the correct solution is eventually reached (simulating a plane landing after
it has crashed is not useful to the unfortunate passengers, nor is simulating a surgery
after the patient has died of any help to the deceased, and so on).

Simulation is no more than a “mathematical exercise” in such cases.

1.4.3 Misconception 3

Interlocutor: On the issue of simulation. You have added a dimension of time
deadlines that is not present in the Turing Machine model. The “Church–Turing
Thesis” (I thought) says that if a Turing Machine can do it in any finite amount of
time, it is a computable function. However, if the job is to get the function computed
by some deadline, then some machines are not up to the job. Is this the essence of
what you are saying?

Response: I will start by saying that the Turing Machine confuses the issue
because it is, by all measures, an inadequate model to capture what happens in the
real world. The claims of universality that I aim to disprove have been made about
much more powerful physical devices (e.g. modern computers, robots that move
about their environment, sensing and control devices, and so on).

Now that the Turing Machine is out of the way, I will answer your question with
a yes and a no:

1. Yes: I am describing unconventional computations, in some of which physical
time plays a role. However, these are unlike the problems encountered in the
field of real time computing, where deadlines are artificial ones imposed by the
designer of the application (sometimes they are soft, sometimes they are hard,
and they invariably refer to internal machine time). In my computations, nature
essentially is in control; for example, a physical variable takes on a value at
time unit t which is lost forever at time unit t + 1; two physical variables may
interact causing one or both to lose their value unpredictably, unavoidably, and
irreversibly; computational complexity grows with the passage of time; and so
on.

2. No: Not all of my counterexamples to universality use time deadlines. See, for
example, the problems described in Sect. 1.3.6 inwhich amathematical constraint
must be satisfied at every step of the computation.

1.4.4 Misconception 4

Interlocutor: What do you think about this way of attacking your time-varying
variables problem:
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First of all, we should separate the tasks into sensing and computation tasks. That
means, I assume that there are sensors equipped with memory which read the values
of the variables at time t and write them into appropriate memory locations. So, for
every t we have memory locations x1(t), x2(t), . . ., xn(t). Furthermore, assume that
the values of n and t are stored in some other variables. Then, a universal machine
would read the value of n (and t), read the values from memory, and perform the
requested computations on these values, which is a rather simple task.

So, the main argument of this is that we allow for this separation. The sensors are
peripheral components, which do not perform any computations, but ‘just’ provide
the input for the computation, that is, they sense their values simultaneously at time
t and store them in their respective memory locations, and the computations can
access these values later on.

I guess that you will argue that this requires n values to be stored in the memory of
the machine at the same time, which would contradict a specification of a machine
which is independent of n. But if we can reduce the problem you posed to this
separation of concerns, we would have the consistence with the traditional theory of
computation except for the addition of these sensors, which are not considered to be
a part of the universal computing device but of the input specification.

Response: Surely, you cannot “separate” part of the universal computer (in this
case the input unit) from the rest of the computer just to fit the problem. The universal
computer is one unit, and a computational step is: [read, calculate, write].

The definition of ‘to compute’ as ‘the process of transforming information’ applies
to all three phases of computation, namely,

1. The input phase, where data such as keystrokes, mouse clicks, or temperatures
are reduced, for example, to binary strings;

2. The calculation phase, where data are manipulated through arithmetic and logic
operations, as well as operations on strings, and so on; and

3. The output phase, where data are produced as numbers on a screen, or rendered
as images and sounds, for instance.

Each of the three phases represents information transformation; each is an integral
part of every computation, and no computation worthy of that name can exclude any
of them. In particular, input and output are fundamental in the design and analysis
of algorithms. Input-sensitive and output-sensitive computations often play an espe-
cially important role in deriving lower and upper bounds on algorithmic complexity.

One of themost dramatic illustrations of the interweaving of input and output with
calculation is the well-known linear-time planarity testing algorithm [34]. In order to
determine whether a graph with V vertices is planar, Step 1 of that algorithm avoids
a potentially quadratic-time computation, by reading in the edges of the graph one
at a time from the outside world; if there is one more edge than 3V − 6, the graph is
declared nonplanar.

But let’s assume you have set up n sensors and succeeded in solving the problem.
What happens when you discover, the next morning, that there are now, not n, but
n + 1 inputs? Do you think it is a fair solution for you to go to the sensor shop,
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buy one more sensor and rush back to attach it to the extra input source and to the
computer? And even if you did, what if by the time you return, the time t0 at which
the result is needed would have passed?

1.4.5 Misconception 5

Interlocutor: Your argument is great. It is simple and effective. However, it does
not show that there is something theoretically flawed with the concept of a universal
computer; it shows that a universal computer could never be physically realized. So
the “Church–Turing Thesis” is all right if we take it that the space/time needed is
infinite. Having said that, I imagine that the distinction between the theoretical and
the implementation claim is often overlooked, which makes the proof integral in
making that distinction very sharp indeed.

Response: Thank you for reading. But, sorry, I beg to differ. Even if given infinite
space and infinite time (which we allow the Turing Machine anyway), no computer
that you define once and for all (and are not allowed to change ever again) can solve
the problems that I define.

The issue is not with infinite space and infinite time. The issue is: How many
operations can you do in one slice of time? You have to define this for every theoret-
ical (and of course practical) computer. Otherwise, analysis of algorithms becomes
meaningless, and the running time of a program a void concept. For example, the
Turing Machine can do one, two, or three operations per slice of time, depending on
your definition, but it is always a finite number. It can read a symbol, then change
state, or write a symbol, or move left or right or stay put. Then a new iteration starts. It
cannot do an arbitrary number of these fundamental operations per slice of time (you
may call the latter a step, an iteration, a time unit, and so on). In passing, I should say
that it is this finiteness of the number of operations per time unit that caused the great
success of computer science, making the Computer the greatest invention of the 20th
century: A machine designed once and for all that can simulate any operation by
another machine. In theory, you should be able to buy a computer and use it for the
rest of your life, for it will never be faced with a computable function that it cannot
compute. Or so we thought . . .

Suppose you have defined your machine once and for all (it can be a Turing
Machine or a Supercomputer, or the chip in your digital camera or that in your
toaster). I will now give you a computable function that it fails to compute. One
example of such a computation is the problem of operating on variables that change
with time (as described in Sect. 1.3.1). Even if given all the time in the world from
here to eternity, even if given all the space in the known Universe and beyond, you
could not solve the problem, not even in theory with pen and paper. Why? Because
you defined your machine and fixed it once and for all (as one should if one claims
to have a Universal Computer that can simulate anything that another computer
can compute). And herein lies the Achilles heel of the Universal Computer: I, as
a designer of the problem, ask you for a definition of your purported Universal
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Computer; I then concoct a computation that thwarts it. This computation, of course,
can be easily carried out by another “Universal Computer”, but then I’ll give you
another problem, and so on.

There is nothing here about implementation. I put no limits on what your machine
can do, except for one: It must do a finite number of operations per time unit. This
number can be as big as you want, it can even be defined by a function of time, but
it must be fixed the moment you define your model of computation, and it cannot be
infinite. Once you define it, you cannot change it. We can play the game with paper
and pencil. I will always win.

I believe that the result is perfectly theoretical as well as being perfectly practical.

1.4.6 Misconception 6

Interlocutor:While I could not makemuch sense of your “proof” (right off the bat, I
do not think ‘spacially and temporally connected variables’ iswell defined, although I
also think it suffers frommany other flaws) I decided to take your challenge seriously,
within the bounds and the scope of your restrictions, language and assumptions, in
an attempt to define a reasonable sounding computational device that would solve
the time-varying variables computation. I will assume that the variables appear each
on a luminous display of some sort.

I am going to assume relativity (please let me know if spacially and temporally
connected variables is supposed to mean something else?). There is space k between
displays so that, when they update their values, the light from their screens arrive at
my computational device at nearly, but not precisely the same time (determined by k
and where my device is in the ‘room’). I will move my computational device close to
the displays so that I can exploit the hypotenuse the signals from each display must
travel first to reach the sensor of my device. Then, it is simply a matter of setting the
processing speed to a finite value around ‘a constant × k meters / the speed of light.’
In this way, my computational device is able to compute the function Fn as desired.

My device has one sensor. It only needs one sensor, since the signals from the
displays come in sequentially. Remember that the displays are separated by a distance
and the signal from each display, after they update, must travel this distance (at the
speed of light). So my device uses its one sensor to read in a display and then it
reuses that sensor some time later after the signal from the next display has reached
it (some time later).

Response: Right off the bat, as is clear from my papers, the spatial and temporal
relationship among the variables is such that:

1. The variables occupy the same region in physical space; specifically, the distance
separating any two variables is no larger than a small constant (whose magnitude
depends on the general paradigm under consideration);
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2. The variables are constrained by a unique parameter representing true physical
time.

Now turning to your solution, I would say it is original; unfortunately, I am afraid
you are missing the point of the exercise.

The problems I pose are to be treated independently of specific physical properties.
For example, the time-varying variables could be anything one would want them to
be (atmospheric pressures for instance, or humidity readings, etc.), and they should
not necessarily be on display (they would need to be acquired, that is, measured,
first). Light rays, the basis of your argument, should play no role in the solution (for
they may not help in general).

However, let’s consider your one-sensor solution, assuming the variables are
indeed displayed. The difficulty with such setups is that they inevitably break down
at some point as the problem scales up. Specifically,

1. The dimensions of the sensor are fixed.
2. As the number of variables n, and hence displays, grows, the angle with the

horizontal formed by a line from the furthest display to the sensor approaches 0.
There will not be enough real estate on the sensor for a light ray from the furthest
display to impinge upon.

3. Thus, the problem poser can make n sufficiently large so as to render the sensor
useless.

And one more thing: How does your sensor handle multiple simultaneous (or
perhaps overlapping) inputs from displays all equidistant from it?

1.4.7 Misconception 7

Interlocutor: Your definition of computation is unconventional.
Response: Absolutely, if one considers as unconventional the passage of time, or

the interactions among the constituents of the universe subject to the laws of nature,
or for that matter any form of information processing. In any case, my definition of
computation may be unconventional, but it is not unrealistic.

Besides, it is important to realize that defining “to compute” as “what the Turing
Machine does”, which is quite commonly done (see, for example, [28]), leads to
a logical reasoning that is viciously circuitous. If computation is what the Turing
Machine does, then clearly the Turing Machine can compute anything that is com-
putable. Furthermore, the “Church–Turing Thesis” would move immediately from
the realm of “conjecture” to that of “theorem”. The fact that it has not done so to this
day, is witness to the uncertainty surrounding the widespread definition of “com-
putation”. As stated in Sect. 1.1.3, my counterexamples, by contrast, disprove the
“Church–Turing Thesis”.
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1.4.8 Misconception 8

Interlocutor: But the Turing Machine was not meant for this kind of computation.
Response: Precisely. Furthermore, the nonuniversality result covers all comput-

ers, not just the Turing Machine.

1.4.9 Misconception 9

Interlocutor:Abstract models of computation do not concern themselves with input
and output.

Response: This opinion is held by those who believe that computation is the
process that goes from input to output, while concerning itself with neither input nor
output (see, for example, [28] cited in Sect. 1.4.7). By analogy, one might say that
eating is all about digestion, and a Moonlight Sonata interpretation is nothing but
the hitting of piano keys. Perhaps.

Perhaps not. A model of computation is useful to the extent that it is a faithful
reflection of reality, while beingmathematically tractable. In computer science, input
and output are not cumbersomedetails to be ignored; they are fundamental parts of the
computation process, which must be viewed as consisting of three essential phases,
namely, input, calculation, and output. A computer that does not interact with the
outside world is useless. In that sense, the thermostat in your house is more powerful
than the Turing Machine. Please remember that my result goes beyond the Turing
Machine (which, by the way, is a very primitive model of computation). To ask
computer scientists to stick to the Turing Machine and not to look beyond, would be
as if physics stopped progressing beyond the knowledge of the Ancient Greeks.

In fact, looking ahead, if computers of the future are to be quantum in nature,
their main challenge is expected to be, not calculation but, input and output.

1.4.10 Misconception 10

Interlocutor: Classical computability theory does not include variables that change
with time.

Response: This is a serious lacuna in classical theory. My work shows that there
are in fact many such lacunae. Their result is to severely restrict the definition of
computation. Indeed, to define computationmerely as function evaluation, with fixed
input and fixed output, is unrealistic and naive. It also trivializes the “Church–Turing
Thesis” (turning it into a tautology), because it necessarily leads to the kind of sterile
circular reasoning mentioned in the response to Sect. 1.4.7.
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Having said that, the time-varying variables counterexample is only one of many
such refutations of universality in computation. Other examples arise in the compu-
tations described in Sect. 1.3 (for details, see [4–15, 18–20, 29, 45–50]).

1.4.11 Misconception 11

Interlocutor: The Church–Turing Thesis applies only to classical computations.
Response: This is certainly not the case. As the multitude of examples listed in

[18] amply demonstrate, the commonly accepted statement of the “Church–Turing
Thesis” [39] is essentially this:

There exists a Universal Computer capable of performing any computation that is possible
on any other computer.

There are no restrictions, exceptions, or caveats whatsoever on the definition of
computation. In fact, a typical textbook definition of computation is as follows:

A computation is a process that obeys finitely describable rules [52].

What’smore, it is suggested in every textbook on the subject that, thanks to the fun-
damental and complementary notions of simulation and universality, every general-
purpose computer is universal: A Turing Machine, a Random-Access Machine, a
Personal Computer, a Supercomputer, the processing chip in a cell phone, are all
universal. (My result shows this claim to be false.)

Going a little further, many authors consider all processes taking place in the
Universe as computations. Interested readers may consult [13, 22, 25, 26, 30, 38,
41, 42, 52, 54, 55, 59, 60, 62, 64–68].

I happen to agreewith the authors listed in the previous paragraph on the pervasive
nature of computation. However, in order to reach my conclusion about nonuniver-
sality in computation, I do not in fact need to go that far. My counterexamples
use very simple computations to refute universality: computations whose variables
change with time, computations whose variables affect one another, computations
the complexity of whose steps changes with the passage of time, computations the
complexity of whose steps depends (not on the time but) on the order of execu-
tion of each step, computations with uncertain time constraints, computations that
involve variables obeying certain mathematical conditions, and so on. These are
not uncommon computations. They may be considered unconventional only when
contrasted with the standard view of computation as a rigid function evaluation, in
which, given a variable x , it is required to compute f (x), in isolation of the rest of
the world.
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1.4.12 Misconception 12

Interlocutor:Actually, Alan Turing knew that computations involving physical time
would cause problems for his machine.

Response: This is the back-pedaling argument par excellence. Perhaps Turing
knew about the computations that I describe here, but I doubt it.

Indeed, Turing did propose theOracleMachine (o-machine) [61] as an (unconven-
tional) extension to his a-machine (today known as the Turing Machine). However,
the o-machine has nothing to do with the problems I propose to counter universality
in computation. Furthermore, the o-machine is a fanciful creation that appeals to
some form of divine intervention in order to solve the problems it faces, while the
computations that I use to prove nonuniversality are eminently executable on every-
day computers, provided the latter are capable of performing the proper number of
basic operations per time unit.

The “Church–Turing Thesis” [39] is proof that both Turing and Church were
convinced of the universality of the Turing Machine. In any case, I am not aware of
anywritings by Turing, vonNeumann, or anybody else, that hint to nonuniversality in
computation, prior to my January 2005 paper on the myth of the universal computer.

This type of argument, exemplified byMisconception 12, remindsme of thewords
of the American philosopher William James [37]:

First, you know, a new theory is attacked as absurd; then it is admitted to be true, but obvious
and insignificant; finally it is seen to be so important that its adversaries claim that they
themselves discovered it.

1.4.13 Misconception 13

Interlocutor: The problem I see with the nonuniversality claim is that it does not
appear to be falsifiable. It might be improved by thinking further about how to make
the claim more specific, clear, testable, well-defined and worked out into detail.
The entire claim would ideally be described in a few very worked out, specific,
sentences—needing little external exposition or justification.

Response: Have you had a chance to read any of my papers? There is no lack
of mathematical formalism there. For example in one of my papers, M. Nagy and I
used quantum mechanics to illustrate five of the six aforementioned paradigms [48].
I am certain you will enjoy that one.

Or how about the best understood problem in computer science, arguably that of
sorting a sequence of numbers, but with a twist? See Sect. 1.3.6.2 for a description.

But let me try this since you would like something simple and crisp. Consider a
computation C2 consisting of two processes P0 and P1 and two global variables x
and y, both initially equal to 0, as shown below:
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C2:
P0: if x = 0 then y ← y + 1; return y else loop forever
P1: if y = 0 then x ← x + 1; return x else loop forever

ComputationC2 is time critical and specifies that the then part of each if statement
must be executed immediately when x is found to be 0, and immediately when y is
found to be 0, respectively, and no later. Similarly, for the else part. This condition
can be formalized by introducing global time as a variable in the above formulation,
a detail omitted here for simplicity.

A two-processor machine M2 does the job and returns x and y. A single-processor
machine M1 completes P0 (alternatively, P1) but loops forever when attempting
P1 (alternatively, P0). As well, when trying to simulate M2’s behavior through an
interleaved execution (such as for example: {x = 0?; y = 0?; y ← y + 1; x ← x +
1}), M1 again fails since at least one assignment statement is executed more than
one time unit too late. Incidentally, {x = 0?; x ← x + 1; y = 0?; y ← y + 1}, is
obviously not a legitimate simulation, as x is incremented without first checking the
value of y.

It is clear that M1 cannot be a universal machine, for it is not capable of properly
simulating the actions of M2. But neither is M2 universal, for it cannot execute the
time-critical computation C3 below and terminate:

C3:
P0: if x = 0 then y ← y + 1; return y else loop forever
P1: if y = 0 then z ← z + 1; return z else loop forever
P2: if z = 0 then x ← x + 1; return x else loop forever

It is easy to see that C3 is carried out successfully by a three-processor machine
M3. The latter, however, is in turn defeated by a computation C4 of the same type as
C2 and C3.

In general, simple induction shows that no machine Mi is universal for finite i .

1.4.14 Misconception 14

Interlocutor: A fine student just presented your NonUniversality in Computation
work in my graduate theory course. Going simply on her presentation, I am not
impressed. You start by quoting Hopcroft and Ullman and saying that their statement
is clearly false. You took this quote out of the context of all of theoretical computer
science which clearly defines that a ‘computation’ is to start with the entire input
presented and is given as much time as it wants to read this input and do its compu-
tation. It is true that since Turing, the nature of computation has changed to require
real time interactions with the world. But you should not misrepresent past work.
Having not studied your arguments at length, the only statement that I have gotten is
that a machine is unable to keep up if you only allowed it to read in a fixed number of
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bits of information per time step and you throw at it in real time an arbitrarily large
number of bits of information per time step. In itself, this statement is not very deep.

Response: I am sure the student did a wonderful job, but somehow the message
did not get across. I will take your remarks one by one. They are repeated below as
Remark A, Remark B, and Remark C.

Remark A: You took this quote out of the context of all of theoretical computer
science which clearly defines that a ‘computation’ is to start with the entire input
presented and is given as much time as it wants to read this input and do its compu-
tation.

Response to Remark A:

1. I did not find your definition of ‘computation’ anywhere. It is certainly not in
Hopcroft and Ullman’s book [35], from which the quote in question was taken,
namely:

It can also be shown that any computation that can be performed on a modern-day
digital computer can be described by means of a Turing Machine. Thus if one ever
found a procedure that fitted the intuitive notions, but could not be described by means
of a TuringMachine, it would indeed be of an unusual nature since it could not possibly
be programmed for any existing computer [35], p. 80.

2. Your definition of ‘computation’ applies narrowly to some primitive computa-
tional models, such as the Turing Machine, Cellular Automata, and so on.

3. Because of (2), your definition trivializes the “Church–Turing Thesis”, rendering
it a tautology: By defining ‘computation’ as ‘what the Turing Machine does’,
it obviously follows that ‘the Turing Machine can compute everything that is
computable’. As mentioned earlier (see the response to Misconceptions 7 and
10 in Sects. 1.4.7 and 1.4.10, respectively), this is a typical example of circular
reasoning.

4. Your definition is not sufficiently general to capture the richness and complexity of
the notion of ‘computation’.Others have proposedmore encompassing definitions
of ‘computation’. Here are a few quotes:

In a sense Nature has been continually computing the ‘next state’ of the universe for
billions of years; all we have to do - and actually, all we can do - is ‘hitch a ride’ on this
huge ongoing computation [60].

Computation is physical; it is necessarily embodied in a device whose behaviour is
guided by the laws of physics and cannot be completely captured by a closed mathe-
matical model. This fact of embodiment is becoming ever more apparent as we push
the bounds of those physical laws [57] (see also [58]).

Information sits at the core of physics ... every particle, every field of force, even the
space-time continuum itself derives its function, its meaning, its very existence entirely
... from answers to yes-or-no questions ... all things physical are information-theoretic
in origin [65].

Think of all our knowledge-generating processes, ourwhole culture and civilization, and
all the thought processes in theminds of every individual, and indeed the entire evolving
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biosphere as well, as being a gigantic computation. The whole thing is executing a self-
motivated, self-generating computer program [25].

5. And onemore thing about your point that a computation is to “start with the entire
input presented”. Since all of my counterexamples indeed require the entire input
to be “present”, I will assume that you mean “start with the entire input residing
in the memory of the computer”. (Incidentally, some of my counterexamples
assume the latter as well.) The relevant point here is this: Hopcroft himself has
a well-known algorithm that makes no such assumption about the entire input
residing in memory. As stated in response to Misconception 4 in Sect. 1.4.4, one
of the most dramatic illustrations of the interweaving of input and output with
calculation is the well-known linear-time planarity testing algorithm of Hopcroft
and Tarjan [34]. In order to determine whether a graph with n vertices is planar,
Step 1 of that algorithm avoids a computation that could potentially run in time
at least quadratic in n, by reading in the edges of the graph one at a time from the
outside world; if there is one more edge than the absolute maximum stipulated by
Euler’s formula, namely 3n − 6 (the paper actually uses the loose bound 3n − 3
in order to allow for n < 3), the graph is declared nonplanar [34].

Remark B: It is true that since Turing, the nature of computation has changed to
require real time interactions with the world. But you should not misrepresent past
work.

Response to Remark B:

1. I am glad to see that you agree with me about the nature of computation. You
should know, however, that my counterexamples to universality are not all about
“real time interaction with the world”. There is a list of such counterexamples
in Sect. 1.1, a brief description of some in Sect. 1.3, and a list of references to
my papers in the bibliography section. One counterexample involving mathe-
matical constraints (it is a variant of sorting, in which the entire input is avail-
able in memory at the outset of the computation) is described in Sect. 1.3.6.2.
Note also that my nonuniversality result applies to putative ‘universal comput-
ers’ capable of interaction with the outside world. These ‘universal computers’
are endowed with unlimited memories and are allowed an indefinite amount
of time to solve the problems they are given. They all still fail the test of
universality.

2. However, I do take exception to the claim that I misrepresented past work. Below
are quotes from famous computer scientists asserting, without caveat, exception,
or qualification that a universal computer is possible (often explicitly stating
that such a universal computer is the Turing Machine, and essentially taking for
granted the unproven “Church–Turing Thesis”):

Church’s thesis: The computing power of the TuringMachine represents a fundamental
limit on the capability of realizable computing devices [24], p. 2.

Anything which can be computed can be computed by a Turing Machine [1], p. 123.
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It is theoretically possible, however, that Church’s Thesis could be overthrown at some
future date, if someone were to propose an alternative model of computation that was
publicly acceptable as fulfilling the requirement of ‘finite labor at each step’ and yet
was provably capable of carrying out computations that cannot be carried out by any
Turing Machine. No one considers this likely [40], p. 223.

If we have shown that a problem can (or cannot) be solved by any TM, we can deduce
that the same problem can (or cannot) be solved by existing mathematical computation
models nor by any conceivable computing mechanism. The lesson is: Do not try to
solve mechanically what cannot be solved by TMs! [43], p. 152.

Any algorithmic problem for whichwe can find an algorithm that can be programmed in
some programming language, any language, running on some computer, any computer,
even one that has not been built yet but can be built, and even one that will require
unbounded amounts of time and memory space for ever-larger inputs, is also solvable
by a Turing Machine [32], p. 233.

It is possible to build a universal computer: a machine that can be programmed to
perform any computation that any other physical object can perform. Any computa-
tion that can be performed by any physical computing device can be performed by
any universal computer, as long as the latter has sufficient time and memory [33],
pp. 63–64.

Hundreds of such statements can be found in the literature; for a sample see [18].

3. Finally, please note that to correct previous mistakes is not to misrepresent the
past. This is how science advances. Newton, Darwin, and Einstein were giants
who built great scientific edifices. Each edifice, magnificent yet incomplete.

Remark C: Having not studied your arguments at length, the only statement that
I have gotten is that a machine is unable to keep up if you only allowed it to read in a
fixed number of bits of information per time step and you throw at it in real time an
arbitrarily large number of bits of information per time step. In itself, this statement
is not very deep.

Response to Remark C:

1. Asmentioned in Sect. 1.4.10, the “time-varying variables” computation is but one
of many counterexamples to universality.

2. Surely you must know that a reasonable model of computation must be finite.
The Turing Machine has a finite alphabet, a finite set of states, and a finite set of
elementary operations per step. To assume otherwise would render the fields of
complexity theory and algorithm design and analysis useless.

3. Your characterization of my result is erroneous. I describe computable functions
that no machine that claims to be universal can compute.

4. Let’s try the following: You define a “universal computer” fulfilling the require-
ment of ‘finite labor at each step’ (to quote [40] again), and I will give you a
computable function that it cannot compute.
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1.4.15 Misconception 15

Interlocutor: I still find myself puzzled by things you say. I have no dispute that
there are computations with various constrains such as real time constraints, time-
varying aspects, globalmath constraints, and the like. I know thatwe have to dealwith
such computations already on existing machines. But since existing machines are
Turing computable, I am puzzled why these constraints force us outside the limits
of Turing computability. Can you help me understand?
Response: Thank you for your continued interest and for engaging me in this con-
structive exchange. This is a privilege that most computer scientists not often afford
me on this subject. I will try to address your question.

The Turing Machine of the 1930s as well as the 2015 machine on which I am
typing this reply, operate in isolation of their environment. In particular, time for
the problems we solve on these machines always means running time, and space
means memory space. I dream of computations in which physical time and physical
space play a central role, where the environment inwhich the computations take place
affects the computations, and in turn is affected by them. Some of these computations,
as you say, are starting to show up already. Many more will come as we expand the
realm of computing.

It is important to note here that I am not just talking about interaction. Even
if equipped with the ability to interact with the outside world, unlike the Turing
Machine but like all computers today, a machine that claims to be universal will fail
to solve the problems that I propose as counterexamples to universality.

How is this possible? Simply because physical time and physical space overwhelm
any machine that satisfies the fundamental requirement of being fixed once and for
all–the very definition of universality. Every problem I describe has a condition that
must be satisfied in order for the computation to be said to have been carried out
successfully. If this condition is not satisfied, the computation is judged to have failed,
regardless of whether a correct output is later produced (by, for example, correcting
the error, or by restarting the computation, or by simulation, and so on).

Assume that a computer is supposed to control the reconfiguration of a physical
structure of size n. It is required that the structure maintain its integrity at every
step, otherwise the structure will collapse, and the operation will be declared to have
failed. A universal computer will fail inevitably for a certain structure of a certain
size.

In particular, a standard Turing Machine cannot solve the problem in the pre-
vious paragraph. By contrast, a Turing Machine with n tapes (and n heads) can.
Interestingly, this contradicts the general belief that any computation by any variant
of the standard Turing Machine can be simulated on the latter.
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1.5 Conclusion

Facts do not go away when scientists debate rival theories to explain them [31].

In conclusion, I offer the reader the following challenge.

Computational Challenge:

Anyone who still does not accept my result, namely, that universality in computation
is a myth, has but one option: to prove it wrong. In order to do this, one must exhibit
a universal computer capable of a finite and fixed number of operations per time unit,
on which each one of the computations in the following classes, and described in
[4–15, 18–20, 29, 45–50], can be performed:

1. Computations with time-varying variables
2. Computations with time-varying computational complexity
3. Computations with rank-varying computational complexity
4. Computations with interacting variables
5. Computations with uncertain time constraints
6. Computations with global mathematical constraints.

It is important that the purported universal computer be able to execute suc-
cessfully all aforementioned computations, since each one of them, by itself, is a
counterexample to computational universality. For a simplified (and perhaps more
colorful) version of the challenge, please see [17].
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Chapter 2
What Is Computable? What Is Feasibly
Computable? A Physicist’s Viewpoint

Vladik Kreinovich and Olga Kosheleva

Abstract In this chapter, we show how the questions of what is computable and
what is feasibly computable can be viewed from the viewpoint of physics: what is
computable within the current physics? what is computable if we assume—as many
physicists do—that no final physical theory is possible? what is computable if we
consider data processing, i.e., computations based on physical inputs? Our physics-
based analysis of these questions leads to some unexpected answers, both positive
and negative. For example, we show that under the no-physical-theory-is-perfect
assumption, almost all problems are feasibly solvable—but not all of them.

2.1 What Is Computable? What Is Feasibly Computable?
Different Aspects of These Questions

The two main questions of theoretical computer science. One of the main objec-
tives of theoretical computer science is to answer the following two fundamental
questions:

• The first question is: which tasks are computable in principle?
• Oncewe learned that a task is, in principle, computable, a natural next question is: is
this task feasibly computable, i.e., canwe perform the corresponding computations
in reasonable time?

These questions are usually considered from the viewpoint of a computer sci-
entist. From the viewpoint of a computer scientist, computation is a solution to a
well-defined task, performed on a well-defined computational devices. As a result,
when formulating and analyzing the above problems, computer scientists usually
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consider well-defined tasks and computations which consist of a sequence of well-
defined elementary steps.

A physicist’s understanding is somewhat different. Computer science is, after all,
an applied discipline. From the practical viewpoint, we need computations to process
data from the real world—so that we will be able to predict the future state of the
world and, in situations whenwe can control this future state, to come upwith actions
that would result in the best possible outcome.

From this viewpoint, we can distinguish between two different types of compu-
tations:

• traditional computations, when we are trying to find a solution to a well-defined
(= mathematical) problem, and

• data processing computations, when we process the data coming from the physical
world.

Similarly, based on what computational devices we can use, we can distinguish
between two possible approaches:

• a “purist” approach, when we are only allowed step-by-step computations on a
well-defined computational device, and

• a pragmatic approach, when, in addition to computations, we can set up physical
models of the analyzed systems, analog computations—whatever helps.

Thus, each of the two fundamental questions—what is computable? what is feasibly
computable?—can be formulated in three different ways. Namely, in addition to
the traditional formulation, when we consider computing well-defined mathematical
tasks on well-defined computers, we can also consider:

• a pragmatic formulation, when, in addition to well-defined computers, we can use
physical processes to help with computations, and, finally

• a data processing formulation when we are interested in processing physical data.

What we do in this chapter. In this chapter, we consider all these three approaches
one by one, and we show that they lead to somewhat different answers to the funda-
mental questions of what is computable and what is feasible computable.

The structure of this chapter is as follow. The pragmatic formulation is discussed
in Sects. 2.2 and 2.3, and the data processing formulation is discussed in Sect. 2.4.

2.2 Non-Standard Physical Processes Can Help
Computations: Examples Based On Specific
Physical Models

Solving NP-complete problems is important. In practice, we often need to find a
solution that satisfies a given set of constraints–or at least check that such a solution is
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possible. Once we have a candidate for the solution, we can feasibly check whether
this candidate indeed satisfies all the constraints. In theoretical computer science,
“feasibly” is usually interpreted as computable in polynomial time, i.e., in time
bounded by a polynomial of the length of the input.

A problem of checking whether a given set of constraints has a solution is called
a problem of the class NP if we can check, in polynomial time, whether a given
candidate is a solution; see, e.g., [26].

Examples of suchproblems include checkingwhether a givengraph canbe colored
in 3 colors, checkingwhether a given propositional formula—i.e., formula of the type

(v1 ∨ ¬v2 ∨ v3)& (v4 ∨ ¬v2 ∨ ¬v5)& . . . ,

is satisfiable, i.e., whether this formula is true by some combination of the proposi-
tional variables vi, etc.

Each problem from the class NP can be algorithmically solved by trying all pos-
sible candidates. For example, we can check whether a graph can be colored by
trying all possible assignments of colors to different vertices of a graph, and we can
check whether a given propositional formula is satisfiable by trying all 2n possible
combinations of true-or-false values v1, . . . , vn. Such exhaustive search algorithms
require computation time like 2n, time that grows exponentially with n. For medium-
size inputs, e.g., for n ≈ 300, the resulting time is larger than the lifetime of the
Universe. So, these exhaustive search algorithms are not practically feasible.

It is not knownwhether problems from the class NP can be solved feasibly (i.e., in

polynomial time): this is a famous open problem P
?=NP. It is known, however, that

there are problems in the class NP which are NP-complete in the sense that every
problem from the class NP can be reduced to this problem. Reduction means, in
particular, that if we can find a way to efficiently solve one NP-complete problem,
then, by reducing other problems from the class NP to this problem, we can thus
efficiently solve all the problems from the class NP.

So, it is very important to be able to efficiently solve even one NP-complete
problem. (By the way, both above example of NP problems—checking whether a
graph can be colored in 3 colors and whether a propositional formula is satisfiable—
are NP-complete.)

Can the use of non-standard physics speed up the solution of NP-complete prob-
lems?NP-completeness of a problemmeans, crudely speaking, that the problemmay
take an unrealistically long time to solve—at least on computers based on the usual
physical techniques. A natural question is: can the use of non-standard physics speed
up the solution of these problems?

To answer this question, let us start the analysis of the corresponding physics.

Parallelization: a natural idea. If a person faces a task that would take too much
time for him or her working alone—e.g., building a house—this person asks for
help. Similarly, when a problem takes too much time to solve on a single computer,
a natural idea is to have several computers working on this problem in parallel.
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Physical limitations to parallelization speed-up. At first glance, potentially, by
dividing the original problem into smaller and smaller pieces and using more and
more processors to process these pieces, we can speed up the computation as much
as possible.

In reality, however, there are physical limitations on the possible speed-up; see,
e.g., [24]. Indeed, let us assume that we have a parallel algorithm that, for all inputs
of bit length ≤ n, solves the original problem in time Tpar(n).

The user is located at some point in space. The user inputs the problem at this
spatial location, and the user expects the result of the computation to be delivered to
the same spatial location. Each processor that participates in the desired computation
must:

• get this signal (directly or indirectly) from the user’s location, and then
• start some other signals that will eventually reach the user at his or her spatial
location.

So, if a processor is located at distance r from the user, then the signal going from
the user to the processor and back must cover the distance of at least 2r.

According to modern physics, the speed of all communications is limited by the
speed of light c. Thus, the smallest amount of time for this signal transmission is
2r

c
. If this time exceeds Tpar(n), this means that this processor is unable to contribute

to the computation result. Thus, only processors for which
2r

c
≤ Tpar(n), i.e., for

which r ≤ R(n)
def= 1

2
· c · Tpar(n), contribute to the computation. So, we only need

to consider processors which are located inside the sphere of radius R(n) centered at
the user.

How many processors can fit inside this sphere? A physical bound of the number
Nproc(n) of these processors can be obtained if we divide the volume V(R(n)) of the
inside of this sphere by the smallest possible volume ΔV of a processor:

Nproc ≤ V(R(n))

ΔV
.

In the Euclidean space, V(R) = 4

3
· π · R3, so we conclude that

Nproc(n) ≤ 1

ΔV
· 4
3

· π · (R(n))3 = 1

ΔV
· 4
3

· π · 1
8

· c3 · (Tpar(n))
3,

i.e., that Nproc(n) ≤ const · (Tpar(n))3, where the multiplicative constant does not
depend on the size n of the input.

We can always simulate parallel computations by Npar(n) processors on a sequen-
tial machine: for this, for each original cycle of the parallel machine, we need to
emulate how the state of each of Nproc(n) processors change. In this simulation, one
step of the original parallel machine requiresNproc(n) steps of the simulating sequen-
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tial machine. Thus, the overall time Tseq(n) of the corresponding sequential machine
can be obtained by multiplying the original parallel time Tpar(n) by the number of
processors: Tseq(n) ≤ Tpar(n) · Nproc(n). By using the bound Nproc(n) ≤ const ·
(Tpar(n))3, we conclude that

Tseq(n) ≤ const · (Tpar(n))
4.

So, if a problem is difficult to solve on a sequential machine, and there is a huge
lower bound on Tseq(n), then we can conclude that there is a related lower bound
on the parallel time as well: Tpar(n) ≥ const · (Tseq(n))1/4. In particular, if—as most
computer scientists believe—an NP-complete problem cannot be solved faster than
in exponential time Tseq(n) ≥ 2n, then we get similar exponential lower bounds on
the parallel time as well: Tpar(n) ≥ (

4
√
2)n. This is faster than 2n, but still not feasible.

Important observation: these limitations depend on physics. The above limita-
tions are based on the usual physics, where the space is Euclidean (so that the volume
grows as a cube of the radius), and the speeds of all physical processors are limited
by the speed of light.

However, it is well known that the actual space-time is different fromEuclidean, it
is curved; see, e.g., [5]. Also, physicists are seriously considering space-time models
in which it is possible to exceed the speed of light; see, e.g., [29]. This leads to
the possibility of potentially physically realistic situations in which we can solve
NP-complete problems in polynomial time. Let us briefly enumerate such situations.

Case of curved space-time. Already in the historically very first non-Euclidean
geometry—the hyperbolic Lobachevsky space—the volumeV(R) of the inside of the
sphere grows exponentially with radius. Thus, in principle, we can fit exponentially
many processors within a radius that grows linearly with n. On the resulting parallel
machine, if we ask each processor to check one of 2n Boolean vectors, we can
thus solve the NP-complete propositional satisfiability problem in linear time; see,
e.g., [21, 24]. So, if the proper physical space is hyperbolic, we can solve NP-
complete problems in polynomial time.

Another possible scheme is related to the “almost” black holes [24]. One of the
well-known consequences of general relativity is the existence of the “black hole”
solutions. A black hole is an area from which nothing comes out (in particular, light
cannot escape it, hence it looks black). It is proved that if an object (e.g., a star) is
massive enough, it will eventually be crushed by its own gravitational force and form
a black hole. If the object is smaller, or if it has a significant electric charge, then it
forms an “almost” black hole, i.e., an area from which it is possible but difficult to
escape. If you enter this “almost” black hole, you go into the narrow throat; see, e.g.,
[23], Chaps. 31 and 44. From the outside, it looks like a small particle. So, a natural
hypothesis (described in Chap.44 of [23]) is that all charged elementary particles
are actually such “almost” black holes.

Each of these throats is gateway to a different space-time. So, to solve a proposi-
tional satisfiability problem with n variables v1, . . . , vn, we can pick up two particles
in our world—which are gateways to different worlds—and:
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• ask the folks from the first of these worlds to check the propositional satisfiability
of a formula obtained when we plug in vn =“true”, and

• ask the second world to do the same with vn =“false”.

Participants living in each of these world will thus be given a formula with n − 1
Boolean variables. To check the satisfiability of each of these formulas, they will
repeat the same procedure: find two particles-gateways in their world, and ask the
corresponding creatures to solve a problem with n − 2 variables, etc. In n steps, we
reduce the problem to checking a formula with a single variable, and we need n steps
to send the results back. Thus, in linear time,we also get a solution to the propositional
satisfiability problem (because, as one can see, in this world with almost black holes,
the volume V(R) also grows exponentially with the radius R).

Possibility of velocities exceeding the speed of light. If we allow processes exceed-
ing the speed of light, then we have acausal processes, i.e., the possibility to go back
to the past [29]. The simplest thing that we can do in this case is to let a slow computer
solve the problem for as long as it takes—and then send the result back in time, so
that the user will get it right after he or she requested the solution. More sophisticated
schemes are also possible; see, e.g., [10, 11].

Other possible schemes of using non-standard physics to speed up computations.
To speed up computations, we can also use the fact that, according to relativity theory,
time slows down when one travels at a speed close to the speed of light or in a strong
gravitational field (e.g., near the black hole). So, if the whole civilization starts going
around at a speed close to the speed of light and/or moves close to the black hole,
then, by performing computations on stationary planets far away from the black hole,
we get the result much faster—in terms of our time. For example, if 1 year for us
will be 10 years for the outside world, then a problem that takes 10 years to compute
will be solved after 1 year of our time.

Other possible schemes include the use of quantum effects, etc.; see, e.g., [1, 28].

2.3 What if No Final Theory Is Possible?

In the previous section, we analyzed how specific physical phenomena affect com-
putability. In this analysis, we considered several specific physical models, such as
cosmological solutionswithwormholes and/or casual anomalies, etc.However,many
physicists believe that no physical theory is perfect, i.e., that no matter how many
observations support a physical theory, inevitably, new observations will comewhich
will require this theory to be updated. In this section, following [13, 14, 20, 31], we
prove that if such a no-perfect-theory principle is true, then the use of physical data

• can enhance computations, and
• can drastically speed up the solution of NP-complete problems: namely, we can
feasibly solve almost all instances of each NP-complete problem.
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2.3.1 No Physical Theory Is Perfect: How to Formalize the
Widely Spread Physicists’ Belief

No physical theory is perfect: a widely spread physicists’ belief. If we prove
that, within a given physical theory, we can speed up the solution to NP-complete
problems, will this answer be fully satisfactory?

So far, in the history of physics, no matter how good a physical theory, no matter
how good its accordance with observations, eventually, new observations appear
which are not fully consistent with the original theory—and thus, a theory needs
to be modified. For example, for several centuries, Newtonian physics seems to
explain all observable facts—until later, quantum (and then relativistic) effects were
discovered which required changes in physical theories.

Because of this history, many physicists believe that every physical theory is
approximate—no matter how sophisticated a theory, no matter how accurate its
current predictions, inevitably new observations will surface which would require a
modification of this theory; see, e.g., [5].

How does this belief affect computations? At first glance, the fact that no theory is
perfectmakes the questionof possible computationof non-computable sequences and
of possible speed-up rather hopeless: no matter how good results we achieve within
a given physical theory, eventually, this theory will turn out to be, strictly speaking,
false—and thus, our computation or speed-up schemes will not be applicable.

In this section, we show, however, that in spite of this seeming hopelessness, an
important non-standard computations and speed-up results can be deduced simply
from the fact no physical theory is perfect.

How to describe, in precise terms, that no physical theory is perfect: discussion.
The statement that no physical theory is perfect means that no matter what physical
theory we have, eventually there will be observations which violate this theory. To
formalize this statement, we need to formalize what are observations and what is a
theory.

What are observations? Each observation can be represented, in the computer, as
a sequence of 0s and 1s; actually, in many cases, the sensors already produce the
signal in the computer-readable form, as a sequence of 0s and 1s.

Anexact description of each experiment can also be described in precise terms, and
thus, it will be represented in a computer as a sequence of 0s and 1s. An experiment
should specify how long we wait for the result; in this way, we are guaranteed that
we get the result.

In each experiment, we can specify which bit of the result we are interested in;
for convenience, we can consider producing different bits as different experiments.

Each such experiment is represented as a sequence of 0s and 1s; by appending
1 at the beginning of this sequence, we can view this sequence as a binary expan-
sion of a natural number i. This natural number will serve as the “code” describing
the experiment. For example, a sequence 001 is transformed into i = 10012 = 910.
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(We need to append 1, because otherwise two different sequences 001 and 01 will
be represented by the same integer.)

For natural numbers i which correspond to experiment descriptions, let ωi denote
the bit result of the experiment described by the code i.

Let us also define ωi for natural numbers i which do not correspond to a syn-
tactically correct description of experiments. For example, we can fix a scheme of
an experiment that uses a natural number i as a parameter (e.g., repeating a certain
procedure i times), and define ωi as the result of this scheme.

In these terms, all past and future observations form a (potentially) infinite
sequence ω = ω1ω2 . . . of 0s and 1s, ωi ∈ {0, 1}.
Comment. To make sure that the resulting algorithm is feasible, we need to define
experiment descriptions in which a way that the time needed to complete the i-th
experiment does not exceed a polynomial of log(i). From this viewpoint, an exper-
iment in which there is no explicit time limit should be described as a sequence of
experiments with a cutoff time 1, 2, …, t, …; the allocated time can be indicated,
e.g., by adding t special time symbols to the original description of the experiment.

What is a physical theory from the viewpoint of our problem: a set of sequences.
A physical theory may be very complex, but all we care about is which sequences
of observations ω are consistent with this theory and which are not. In other words,
for our purposes, we can identify a physical theory T with the set of all sequences ω
which are consistent with this theory.

Not every set of sequences corresponds to a physical theory: the set T must be
non-empty and definable. Not every set of sequences comes from a physical theory.
First, a physical theory must have at least one possible sequence of observations, i.e.,
the set T must be non-empty.

Second, a theory—and thus, the corresponding set—must be described by a finite
sequence of symbols in an appropriate language. Sets which are uniquely described
by (finite) formulas are known as definable. Thus, the set T must be definable.

Since at any moment of time, we only have finitely many observations, the set
T must be closed. Another property of a physical theory comes from the fact that
at any given moment of time, we only have finitely many observations, i.e., we only
observe finitely many bits. From this viewpoint, we say that observations ω1 . . . ωn

are consistent with the theory T if there is a continuing infinite sequence which is
consistent with this theory, i.e., which belongs to the set T .

The only way to check whether an infinite sequence ω = ω1ω2 . . . is consistent
with the theory is to check that for every n, the sequences ω1 . . . ωn are consistent
with the theory T . In other words, we require that for every infinite ω = ω1ω2 . . .,

• if for every n, the sequence ω1 . . . ωn is consistent with the theory T , i.e., if for
every n, there exists a sequence ω(m) ∈ T which has the same first n bits as ω, i.e.,
for which ω(m)

i = ωi for all i = 1, . . . , n,
• then the sequence ω itself should be consistent with the theory, i.e., this infinite
sequence should also belong to the set T .
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From the mathematical viewpoint, we can say that the sequences ω(m) converge to
ω: ω(m) → ω (or, equivalently, lim ω(m) = ω), where convergence is understood in

terms of the usual metric on the set of all infinite sequences d(ω,ω′) def= 2−N(ω,ω′),

where N(ω,ω′) def= max{k : ω1 . . . ωk = ω′
1 . . . ω′

k}.
In general, if ω(m) → ω in the sense of this metric, this means that for every n,

there exists an integer � such that for everym ≥ �, we have ω(m)
1 . . . ω(m)

n = ω1 . . . ωn.
Thus, if ω(m) ∈ T for all m, this means that for every n, a finite sequence ω1 . . . ωn

can be a part of an infinite sequence which is consistent with the theory T . In view
of the above, this means that ω ∈ T .

In other words, if ω(m) → ω and ω(m) ∈ T for all m, then ω ∈ T . So, the set T
must contain all the limits of all its sequences. In topological terms, this means that
the set T must be closed.

A physical theory must be different from a fact and hence, the set T must be
nowhere dense. The assumption that we are trying to formalize is that nomatter how
many observations we have which confirm a theory, there eventually will be a new
observation which is inconsistent with this theory. In other words, for every finite
sequence ω1 . . . ωm which is consistent with the set T , there exists a continuation of
this sequence which does not belong to T . The opposite would be if all the sequences
which start with ω1 . . . ωm belong to T ; in this case, the set T will be dense in the
open set of all the sequences starting with ω1 . . . ωm. Thus, in mathematical terms,
the statement that every finite sequence which is consistent with T has a continuation
which is not consistent with T means that the set T is nowhere dense.

Resulting definition of a theory. By combining the above properties of a set T
which describes a physical theory, we arrive at the following definition.

Definition 2.3.1 By a physical theory, we mean a non-empty closed nowhere dense
definable set T .

Mathematical comment. To properly define what is definable, we need to have a con-
sistent formal definition of definability. In this chapter, we follow a natural definition
from [15, 16, 19, 20, 31]—which is reproduced in the Appendix.

Formalization of the principle that no physical theory is perfect. In terms of
the above notations, the no-perfect-theory principle simply means that the infinite
sequence ω (describing the actual results of all observations) is not consistent with
any physical theory, i.e., that the sequenceω does not belong to any physical theoryT .
Thus, we arrive at the following definition.

Definition 2.3.2 We say that an infinite binary sequence ω is consistent with the
no-perfect-theory principle if the sequence ω does not belong to any physical theory
(in the sense of Definition 2.3.1).

Comment. Are there such sequences in the first place? Our answer is yes. Indeed,
by definition, we want a sequence which does not belong to a union of all defin-
able physical theories. Every physical theory is a closed nowhere dense set. Every
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definable set is defined by a finite sequence of symbols, so there are no more than
countably many definable theories. Thus, the union of all definable physical theories
is contained in a union of countably many closed nowhere dense sets. Such sets are
knows asmeager (or Baire first category); it is known that the set of all infinite binary
sequences is not meager. Thus, there are sequences who do not belong to the above
union—i.e., sequences which are consistent with the no-perfect-theory principle;
see, e.g., [9, 25].

2.3.2 The Use of Physical Computations Can Enhance
Computations

How to describe general computations. Each computation is a solution to a well-
defined problem. As a result, each bit in the resulting answer satisfies a well-defined
mathematical property. All mathematical properties can be described, e.g., in terms
of Zermelo–Fraenkel theory ZF, the standard formalization of set theory. For each
resulting bit, we can formulate a property P which is true if and only if this bit is
equal to 1. In this sense, each bit in each computation result can be viewed as the
truth value of some statement formulated in ZF. Thus, our general ability to compute
can be described as the ability to (at least partially) compute the sequence of truth
values of all statements from ZF.

All well-defined statements from ZF can be numbered, e.g., in lexicographic
order. Let αn denote the truth value of the nth ZF statement, and let α = α1 . . . αn . . .

denote the infinite sequence formed by these truth values. In terms of this sequence,
our ability to compute is our ability to compute the sequence α.

Kolmogorov complexity as a way to describe what is easier to compute. We want
to analyze whether the use of physical observations (i.e., of the sequence ω analyzed
in the previous section) can simplify computations. A natural measure of easiness-
to-compute was invented by A. N. Kolmogorov, the founder of modern probability
theory, when he realized that in the traditional probability theory, there is no formal
way to distinguish between:

• finite sequences which come from observing from truly random processes, and
• orderly sequences like 0101 . . . 01.

Kolmogorov noticed that an orderly sequence 0101 . . . 01 can be computed by a
short program, while the only way to compute a truly random sequence 0101 . . .

is to have a print statement that prints this sequence. He suggested to describe this
differences by introducing what is now known as Kolmogorov complexity K(x) of a
finite sequence x: the shortest length of a program (in some programming language)
which computes the sequence x.

• For an orderly sequence x, the Kolmogorov complexity K(x) is much smaller than
the length len(x) of this sequence: K(x) 
 len(x).

• For a truly random sequence x, we have K(x) ≈ len(x); see, e.g., [22].
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The smaller the difference len(x) − K(x), the more we are sure that the sequence x
is truly random.

Relative Kolmogorov complexity as a way to describe when using an auxiliary
sequence simplifies computations. The usual notion of Kolmogorov complexity
provides the complexity of computing x “from scratch”. A similar notion of the
relative Kolmogorov complexity K(x | y) can be used to describe the complexity of
computing xwhena (potentially infinite) sequence y is given.This relative complexity
is based on programswhich are allowed to use y as a subroutine, i.e., programswhich,
after generating an integer n, can get the nth bit yn of the sequence y by simply calling
y. When we compute the length of such programs, we just count the length of the
call, not the length of the auxiliary program which computes yn—just like when
we count the length of a C++ program, we do not count how many steps it takes
to compute, e.g., sin(x), we just count the number of symbols in this function call.
The relative Kolmogorov complexity is then defined as the shortest length of such a
y-using program which computes x.

Clearly, if x and y are unrelated, having access to y does not help in computing
x, so K(x | y) ≈ K(x). On the other hand, if x coincides with y, then the relative
complexity K(x | y) is very small: all we need is a simple for-loop, in which we call
for each bit yi, i = 1, . . . , n, and print this bit right away.

Resulting reformulation of our question. In terms of relative Kolmogorov com-
plexity, the question of whether observations enhance computations is translated
into checking whether K(α1 . . . αn | ω) ≈ K(α1 . . . αn) (in which case there is no
enhancement) or whether K(α1 . . . αn | ω) 
 K(α1 . . . αn) (in which case there is a
strong enhancement). The larger the difference K(α1 . . . αn) − K(α1 . . . αn | ω), the
larger the enhancement.

Enhancement is possible. Let us show that under the no-perfect-theory principle,
observations do indeed enhance computations.

Proposition 2.3.1 Let α be a sequence of truth values of ZF statements, and let ω be
an infinite binary sequence which is consistent with the no-perfect-theory principle.
Then, for every integer C > 0, there exists an integer n for which K(α1 . . . αn | ω) <

K(α1 . . . αn) − C.

Comment. In other words, in principle, we can have an arbitrary large enhancement.

2.3.3 The Use of Physical Observations Can Help in Solving
NP-Complete Problems

Towards the main result of this section: that the use of physical observations
can help in solving NP-complete problems. In this section, we prove that under
the no-perfect-theory principle, it is possible to drastically speed up the solution of
NP-complete problems.
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How to represent instances of an NP-complete problem. For each NP-complete
problem P, its instances are sequences of symbols. In the computer, each such
sequence is represented as a sequence of 0s and 1s. Thus, as in the previous section,
we can append 1 in front of this sequence and interpret the resulting sequence as a
binary code of a natural number i.

In principle, not all natural numbers i correspond to instances of a problem P; we
will denote the set of all natural numbers which correspond to such instances by SP.

For each i ∈ SP, the correct answer (true or false) to the ith instance of the problem
P will be denoted by sP,i.

Easier-to-solve and harder-to-solve NP-complete problems. We will show that
our method works on “harder-to-solve” NP-complete problems, harder-to-solve in
the following sense. By definition, for all NP-complete problems, unless P = NP,
there is no feasible algorithm for solving all its instances. However, for some easier-
to-solve problems, there are feasible algorithms which solve “almost all” instances,
in the sense that for each n, the proportion of instances i ≤ n for which the problem
is solved by this algorithm tends to 1. In this case, while the worst-case complexity
is still exponential, in practice, almost all problems can be feasibly solved.

A more challenging case is that of harder-to-solve NP-complete problems, for
which no feasible algorithm is known that would solve almost all instances.

In this section, we show that our method works on all NP-complete problems,
both easier-to-solve and harder-to-solve ones.

What we mean by using physical observations in computations. In addition to
performing computations, our computational device can produce a scheme i for an
experiment, and then use the result ωi of this experiment in future computations. In
other words, given an integer i, we can produce ωi.

In precise theory-of-computation terms, the use of physical observations in com-
putations thus means computations that use the sequence ω as an oracle; see,
e.g., [26].

Definition 2.3.3 By a ph-algorithm A, we mean an algorithm which uses, as an
oracle, a sequence ω which is consistent with the no-perfect-theory principle.

Notation The result of applying an algorithmA using ω to an input iwill be denoted
by A(ω, i).

Definition 2.3.4 Let P be an NP-complete problem. We say that a feasible
ph-algorithm A solves almost all instances of P if for every ε > 0, and for every
natural number n, there exists an integer N ≥ n for which the proportion of the
instances i ≤ N of the problem P which are correctly solved by A is greater than
1 − ε:

∀ε > 0 ∀n ∃N
(
N ≥ n&

#{i ≤ N : i ∈ SP &A(ω, i) = sP,i}
#{i ≤ N : i ∈ SP} > 1 − ε

)
.
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Comment. The restriction to sufficiently long inputs N ≥ n makes perfect sense: for
short inputs, NP-completeness is not an issue: we can perform exhaustive search of
all possible bit sequences of length 10, 20, and even 30. The challenge starts when
the length of the input is high.

Proposition 2.3.2 For every NP-complete problem P, there exists a feasible ph-
algorithm A that solves almost all instances of P.

Comments. In other words, we show that the use of physical observations makes all
NP-complete problems easier-to-solve (in the above-described sense).

It turns out that this result is the best possible, in the sense that the use of physical
observations cannot solve all instances.

Proposition 2.3.3 If P=NP, then no feasible ph-algorithmA can solve all instances
of P.

Comment.Another possible idea of strengthening Proposition 2.3.2 is to require that
the property

#{i ≤ N : i ∈ SP &A(ω, i) = sP,i}
#{i ≤ N : i ∈ SP} > 1 − ε

hold not only for infinitely many N , but for all N starting with some N0. It turns out
that in this formulation, the use of physical observation does not help.

Definition 2.3.5 Let P be an NP-complete problem. Let δ > 0 be a real number. We
say that a feasible ph-algorithm A δ-solves P if

∃N0 ∀N
(
N ≥ N0 → #{i ≤ N : i ∈ SP &A(ω, i) = sP,i}

#{i ≤ N : i ∈ SP} > δ

)
.

Proposition 2.3.4 For every NP-complete problem P and for every δ > 0, if there
exists a feasible ph-algorithmA that δ-solvesP, then there exists a feasible algorithm
A′ (not using physical observations) which also δ-solves P.

2.4 What if We Take into Account that We Are only
Interested in Processing Physical Data

Many physical theories accurately predict which events are possible and which are
not, or—in situations where probabilistic (e.g., quantum) effects are important—
predict the probabilities of different possible outcomes. At first glance, it may seem
that this probabilistic information is all we need.

In this section, we show, however, that to adequately describe physicists’ reason-
ing, it is important to also take into account additional physical knowledge—about
what is possible and what is not. We show that, if we limit ourselves to objects
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which are physically possible, then many seemingly undecidable problems become
algorithmically decidable.

How physicists make their conclusions: why probabilities are sometimes not
enough. Modern physics makes many very accurate predictions of different events.
In situations when quantum effects are important and thus, deterministic predictions
are not possible, physics predicts probabilities of different events; see, e.g., [5].
There are still many problems where we cannot accurately predict the events and/or
their probabilities, but in many other situations, the accuracy of predictions is truly
amazing.

At first glance, once we know the probabilities, we are done: we can thus predict
the frequencies with which the corresponding events will occur in real life. In many
situations, probabilities are indeed all we need. For example, when we predict that
the probability of a coin falling heads is 1/2, this means that in half of the cases, the
coin will fall heads, in half, tails, and there is no other information that we can extract
from observing the results of an actual coin toss: these results should be random.

This is true not only for coin tossing, but also for other predictions in which
the predicted probability is “reasonable”, i.e., not too small and not too close to 1.
However, the situation is somewhat different when it comes to events with a very
small probability. Let us give a few simple examples.

According to statistical physics, entropy of a closed system can only increase. This
means, for example, that if we place a cold kettle on a cold stove, it is not possible
that the kettle will start boiling by itself, while the stove will get colder—although
this transfer of energy from the stove to the kettle does not contradict to the energy
conservation law.

How do physicists conclude that this is not possible? They estimate the probability
of such an event and conclude that this probability is extremely small. From the purely
mathematical viewpoint, the fact that this probability is not zero means that if we
wait long enough, then we will still see a kettle boiling on a cold stove. However,
this is not what the physicists claim. What they claim is that the kettle cannot boil.
In other words, they claim that the corresponding event is simply not possible [3–5].

Another example is the impossibility of spontaneous human levitation. The fact
that a body has a non-zero temperature means that all the atoms and all the molecules
in the body are randomly oscillating. Again, since all the molecules are going in
random directions, there is a non-zero probability that they will all go into the same
direction and a personwill be spontaneously lifted above ground.What the physicists
claim is not that such a possibility is rare, they claim is that it is simply not possible.

Physicists make similar conclusions about all irreversible events. For example, if
we place a gas in one half of the box and leave another half—separated by a door—
empty, then, when we open the door, gas will spread evenly through both halves of
the box. From the purely mathematical viewpoint, it is also possible that, vice versa,
if we start with a gas which is uniformly spread through the box, then at some future
moment of time, all the molecules will concentrate in one half of this box, while the
other half will remain empty: the probability of this event is small but still positive.
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However, what the physicists claim is that such a spontaneous separation is simply
not possible.

Need to go beyond probabilities is in good accordance with common sense. The
impossibility of events with very low probability may sound counter-intuitive, but it
is actually in good accordance with common sense. Suppose that you flip a coin—
which you believe to be fair—several times, and every time it falls heads. If this
happens two, three, even ten times in a row, you may still continue believing that
the coin is fair and that the actual probability of heads is indeed 1/2. However, what
if this happens 30 times in a row? 100 times in a row? Different people may have
different thresholds, but for any person, there is some number after which the person
will be absolutely sure that this coin is not fair.

Let us give another example. In each state lottery, usually, someone wins the big
prize. If the same person wins the big prize two years in a row, one may still claim
that this was a random coincidence. But what if the same person wins three years in a
row? four years in a row? No matter how much you originally believe in the fairness
of the state lottery process, if this continues year after year, eventually, every person
will be convinced that the lottery is rigged.

Events with very small probability are not possible: can we describe this physical
idea in purely probabilistic terms? We have mentioned that both physics and
common sense use a rule that events with very small probability cannot happen.
How can we describe this rule in precise terms?

At first glance, it may seem that we can describe this rule in purely probabilistic
terms: namely, we can set up some threshold small value p0 
 1, and we can claim
that any event with probability ≤ p0 is not possible. However, a simple example of
coin tossing shows that proposal does not work. Indeed, what wewant to claim is that
after tossing a coin a large number (N) of times, we cannot have a sequence HH…H
of all heads. The probability of this event is 2−N , which, for large N , is indeed a very
small number. So, at first glance, it may seem that if we take p0 ≥ 2−N , then we will
be able to make the desired conclusion.

But the situation is not so easy. The problem is that any sequence of N heads and
tails—including the actual sequence that we will get after tossing a coin N times—
has the exact same probability 2−N . So, if we require that no event with probability
≤ p0 is possible, we come up with a strange conclusion that no sequence of heads
and tails is possible at all—which makes no sense, since, of course, we can flip the
coin N times and record the results.

Comment. It is worthmentioning that there is a direct relation between this discussion
and the notions of Algorithmic Information Theory, such as algorithmic randomness
and Kolmogorov complexity; see, e.g., [22]. The main difference, however, is that
the notion of algorithmic randomness is based on the assumption that events with
probability 0 cannot occur, while we are trying to describe a more general statement:
that not only events with zero probability cannot occur, but events with a sufficiently
small positive probability cannot occur either.
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Additional information is needed. The above simple example shows that we can-
not separate possible from impossible events by only using the known probabilities
of different events. Thus, to properly describe physicists’ reasoning (and our com-
mon sense), we need to supplement the probabilistic information with an additional
information about what is possible.

How to describe what is possible. Let U be the set of all theoretically possible
events. We assume that we know the probabilities of different events, i.e., that for
some subsets S ⊆ U, we know the probability p(S) that the actual event will be in S.

From all possible events, a physicist selects a subset T of all events which are
possible. The main idea that we want to formalize is that if the probability is very
small, then the corresponding event is not possible. What constitutes “very small”
depends on the situation, but it is clear that if we have a definable sequence of
events A1 ⊇ A2 ⊇ . . . ⊃ An ⊇ . . ., with p(An) → 0, then for some sufficiently large
N , the probability of the corresponding event AN becomes so small that this event is
impossible, i.e., T ∩ AN = ∅.

This is what we trying to describe for the case of coin tossing: An is the event
when the heads appear in the first n coin tosses; then, p(An) = 2−n → 0.

In general, we arrive at the following formalization:

Definition 2.4.1 [8] Let U be a set with a probability measure p. We say that a
subset T ⊆ U is a set of possible elements if for every definable sequence An for
which An ⊇ An+1 and p(An) → 0, there exists an N for which T ∩ AN = ∅.
Need to go beyond probabilities. Sometimes, physicists use similar arguments even
in situations when we do not know the probabilities. For example, physicists often
expand a dependence in Taylor series f (x) = a0 + a1 · x + a2 · x2 + . . . When x is
small, i.e., when |x| ≤ δ for some small δ, they argue that we can safely ignore
quadratic (and higher order) terms in this expansion and assume that f (x) ≈ a0 +
a1 · x; see, e.g., [5].

This conclusion is definitely justified if we know the value a2, or, at least, if we
know some a priori bound C on this value. Then, |a2 · x2| ≤ C · δ2, so when δ is
sufficiently small, this term can indeed be safely ignored. However, physicists make
this conclusion even when we do not know of any a priori bound on a2. Their idea
is that values which are too large are highly improbable.

In this case, we also have a series of events An ⊇ An+1: namely, An is the set
of situations in which |a2| > n. Here, we do not have probabilities, but we know
that ∩An = ∅. Thus, no matter what is the (unknown) probability measure p, we
have p(An) → 0. As a result, we can use Definition 2.4.1 and conclude that for a
sufficiently large N , events from AN are impossible—hence |a2| ≤ N .

Such situations lead to the following alternative definition that can be used even
when we do not know probabilities; see, e.g., [6–8, 15–20]:

Definition 2.4.2 Let U be a set. We say that a subset T ⊆ U is a set of possible
elements if for every definable sequence An for which An ⊇ An+1 and∩An = ∅, there
exists an N for which T ∩ AN = ∅.
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What we do in this section. In this section, we show that many problems become
algorithmically decidable if we restrict ourselves to physically possible objects.

In general, many problems are not algorithmically decidable. In general, many
computational problems are not algorithmically decidable; see, e.g., [2, 30]. As a
simple example, let us consider the problem of deciding whether two given real
numbers are equal or not.

In this problem, the input consists of two real numbers, and the desired output is
“yes” or “no”, depending on whether these numbers are equal or not.

To describe this problem in precise terms, we need to formulate how exactly we
present the input to a computer. In practice, real numbers come from measurements,
and measurements are never absolutely accurate. In principle, we can measure a
real number x with higher and higher accuracy (if not now, then in the future). For
example, for any integer n, we canmeasure this number with the accuracy of n binary
digits, i.e., with the accuracy of 2−n. As a result of each such measurement, we get
a rational number rn for which |x − rn| ≤ 2−n. This is exactly the usual definition
of a computable real number: it is a process (maybe algorithmic, maybe involving
measurements) that enables us, given an integer n, to generate a rational number rn
for which |x − rn| ≤ 2−n [2, 30].

Computing with computable real numbers means that, in addition to usual com-
putational steps, we can also generate some n, get the corresponding value rn, and
then use this value in computations.

Some things can be computed this way. For example, if we know computable real
numbers x and y, then their sum z = x + y is also a computable real number. Indeed,
to compute the 2−n-approximation tn to the sum z, it is sufficient to take the sum
sn = rn+1 + sn+1 of 2−(n+1)-approximations rn+1 and sn+1 to x and y. Indeed, from
|x − rn+1| ≤ 2−(n+1) and |y − sn+1| ≤ 2−(n+1), we can then conclude that

|z − sn| = |(x + y) − (xn+1 + yn+1)| = |(x − xn+1) + (y − sn+1)| ≤

|x − xn+1| + |y − sn+1| ≤ 2−(n+1) + 2−(n+1) = 2−n.

However, it is not possible to algorithmically check whether the two computable
numbers x and y are equal or not. Indeed, if this was possible, then, e.g., for equal
real numbers x = y = 0 for which rn = sn = 0 for all n, our procedure will return the
answer “yes”. This procedure consists of finitely many steps, thus it can only ask for
finitelymanyvalues rn and sn. LetN be the smallest numberwhich is larger than all the
requests n. Then, we can keep the same x, but take instead a different y′ = 2−N = 0
for which s′1 = . . . = s′N−1 = 0 (so our equality-checking procedure will not notice
the difference), but s′N = s′N+1 = . . . = 2−N . Since our procedure cannot notice the
difference between y and y′, it will still produce the same answer – that yes, the inputs
are equal—while in reality, the new inputs x = 0 and y′ = 2−N = 0 are different.

Similar negative results are known for many other problems [2, 30].
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If we restrict ourselves to possible pairs of real numbers, then equality becomes
decidable. Let us show, following [17], that if we restrict ourselves to possible pairs
(x, y), then it is algorithmically possible to check whether x = y or x = y.

Indeed, the fact that we consider possible pairs of real numbers means that on the
setU = IR × IR of all possible pairs of real numbers, we have a subset T of possible
numbers that satisfied Definition 2.4.2. In particular, we can consider the following

definable sequence of sets An
def= {(x, y) : 0 < |x − y| ≤ 2−n}.

One can easily see that An ⊇ An+1 for all n and that ∩An = ∅. Thus, by Definition
2.4.2, there exists a natural number N for which T ∩ AN = ∅, i.e., for which no
element s ∈ T belongs to the setAN . This, in turn,means that for every pair (x, y) ∈ T ,
either |x − y| = 0 (i.e., x = y) or |x − y| > 2−N .

So, to check whether x = y or not, it is sufficient to compute both x and y with
accuracy 2−(N+2), i.e., to compute values rN+2 and sN+2 for which |x − rN+2| ≤
2−(N+2) and |y − sN+2| ≤ 2−(N+2). Then:

• if x = y, then, due to the triangle inequality, we have

|rN+1 − sN+2| ≤ |x − rN+2| + |x − sN+2| ≤ 2−(N+2) + 2−(N+2) = 2−(N+1);

• on the other hand, if x = y, then from |x − y| > 2−N , we conclude that

|rN+1 − sN+2| ≥ |x − y| − |x − rN+2| − |y − sN+2| >

2−N − (2−(N+2) + 2−(N+2)) = 2−N − 2−(N+1) = 2−(N+1).

Thus, by checking whether |rN+1 − sN+2| ≤ 2−(N+1) or whether |rN+1 − sN+2| >

2−(N+1), we can decide whether x = y or x = y.
Here, we compare rational numbers, i.e., ratios of integers, and for rational num-

bers, we can indeed algorithmically tell whether one is smaller or the other one is
smaller.

Towards a general description of similar properties. To generalize the above
result, let us come up with a general description of similar properties [12].

Let us start with reformulating the question of whether x = y in generalizable
terms. Specifically, we would like to describe the corresponding property in terms
of the observable sequences rn and sn describing the real numbers x and y.

The equality between real numbers can indeed be described in these terms. Indeed,
if x = y, then, for every n, we have

|rn − sn| ≤ |rn − x| + |x − sn| ≤ 2−n + 2−n = 2−(n−1).

Vice versa, let us assume that we have two computable real numbers x and y for which
|rn − sn| ≤ 2−(n−1) for all n. In this case, due to |x − rn| ≤ 2−n and |y − sn| ≤ 2−n,
we have

|x − y| ≤ |x − rn| + |rn − sn| + |sn − y| ≤ 2−n + 2−(n−1) + 2−n = 2−(n−2).
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Since this holds for every n, for n → ∞, we get x = y.
Thus, the equality between computable real numbers has the form

∀n (|rn − sn| ≤ 2−(n−1)).

In general, as shown, e.g., in [27, 30], many properties involving limits, differentia-
bility, etc., can be described in similar terms, namely as an arithmetic formula

Qn1 Qn2 . . .Qnk F(r1, . . . , r�, n1, . . . , nk), (2.4.1)

where:

• each Qni is either a universal quantifier ∀ni or an existential quantifier ∃ni,
• r1, . . . , r� are corresponding sequences, and
• the property F is simply a propositional (“and”, “or”, and “not”) combination
of equalities and inequalities between the explicitly computable rational-valued
expressions.

In the above example of checking whether two given real numbers are equal:

• we have two sequences � = 2,
• we only have one quantifier k = 1,
• this quantifier is a universal quantifier Q1 = ∀, and
• the property F has (in these terms) the form |r1(n1) − r2(n1)| ≤ 2−(n1−1).

Let us show that for all such arithmetic expressions, the information on what is
possible and what is not leads to algorithmic decidability.

Proposition 2.4.1 For every arithmetic formula of type (2.4.1) and for every set
T of possible tuples r = (r1, . . . , r�), there exists an algorithm that, given a tuple
r = (r1, . . . , r�) ∈ T , checks whether or not the given formula holds for this tuple.

Conclusion. In this section, we have shown that in order to adequately describe
physical reasoning, we need to supplement the usual probabilistic information with
an additional knowledge describing what is physically possible and what is not. We
have also shown that if we restrict ourselves to physically possible objects, thenmany
problems become algorithmically decidable.

2.5 Conclusions

In this chapter, we showed that what is computable and what is feasibly computable
depends:

• on what physical processes we allow, and
• on whether we are interested in:
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– general computations, in particular, solving mathematical problems, or
– only processing physical data (in which case inputs must satisfy some physics-
motivated constraints).

Somewhat surprisingly, the possibility to enhance computations comes not only
when we consider specific physical models, but also when we take into account that,
according to many physicists, no physical theory is perfect—i.e., no matter how well
a theory fits the experimental data, it will eventually have to be modified.
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Appendix: Proofs

A precise definition of definability.

Definition A1 LetL be a theory, and let P(x) be a formula from the language of the
theory L, with one free variable x for which the set {x |P(x)} is defined in the theory
L. We will then call the set {x |P(x)} L-definable.

Crudely speaking, a set is L-definable if we can explicitly define it in L. The set
of all real numbers, the set of all solutions of a well-defined equation, every set that
we can describe in mathematical terms: all these sets are L-definable.

This does not mean, however, that every set is L-definable: indeed, every L-
definable set is uniquely determined by formula P(x), i.e., by a text in the language
of set theory. There are only denumerably many words and therefore, there are only
denumerably many L-definable sets. Since, e.g., in a standard model of set theory
ZF, there are more than denumerably many sets of integers, some of them are thus
not L-definable.

Our objective is to be able to make mathematical statements about L-definable
sets. Therefore, in addition to the theory L, we must have a stronger theory M in
which the class of all L-definable sets is a set—and it is a countable set.

Denotation For every formula F from the theory L, we denote its Gödel number
by �F�.
Comment. A Gödel number of a formula is an integer that uniquely determines this
formula. For example, we can define aGödel number by describingwhat this formula
will look like in a computer. Specifically, we write this formula in LATEX, interpret
every LATEX symbol as its ASCII code (as computers do), add 1 at the beginning of
the resulting sequence of 0 s and 1s, and interpret the resulting binary sequence as
an integer in binary code.
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Definition A2 We say that a theoryM is stronger than L if it contains all formulas,
all axioms, and all deduction rules from L, and also contains a special predicate
def(n, x) such that for every formula P(x) fromLwith one free variable, the formula
∀y (def(�P(x)�, y) ↔ P(y)) is provable inM.

The existence of a stronger theory can be easily proven: indeed, for L=ZF, there
exists a stronger theoryM. As an example of such a stronger theory, we can simply
take the theory L plus all countably many equivalence formulas as described in
Definition A2 (formulas corresponding to all possible formulas P(x) with one free
variable). This theory clearly containsL and all the desired equivalence formulas, so
all we need to prove is that the resulting theory M is consistent (provided that L is
consistent, of course). Due to the compactness principle, it is sufficient to prove that
for an arbitrary finite set of formulas P1(x), . . . ,Pm(x), the theory L is consistent
with the above reflection-principle-type formulas corresponding to these properties
P1(x), . . . ,Pm(x).

This auxiliary consistency follows from the fact that for such a finite set, we can
take

def(n, y) ↔ (n = �P1(x)�&P1(y)) ∨ . . . ∨ (n = �Pm(x)�&Pm(y)).

This formula is definable in L and satisfies all m equivalence properties. The state-
ment is proven.

Important comments. In themain text, wewill assume that a theoryM that is stronger
than L has been fixed; proofs will mean proofs in this selected theory M.

An important feature of a stronger theory M is that the notion of an L-definable
set can be expressed within the theory M: a set S is L-definable if and only if

∃n ∈ I N ∀y(def(n, y) ↔ y ∈ S).

In the paper, whenwe talk about definability, wewill mean this property expressed
in the theoryM. So, all the statements involving definability become statements from
the theory M itself, not statements from metalanguage.

Proof of Proposition 2.3.1. Let us fix an integer C. To prove the desired property
for this C, let us prove that the set T of all the sequences which do not satisfy this
property, i.e., for which K(α1 . . . αn | ω) ≥ K(α1 . . . αn) − C for all n, is a physical
theory in the sense of Definition 1. For this, we need to prove that this set T is
non-empty, closed, nowhere dense, and definable. Then, from Definition 2, it will
follow that the sequence ω does not belong to this set and thus, that the conclusion
of Proposition 1 is true.

The set T is clearly non-empty: it contains, e.g., a sequence ω = 00 . . . 0 . . .

which does not affect computations. The set T is also clearly definable: we have just
defined it.
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Let us prove that the set T is closed. For that, let us assume that ω(m) → ω and
ω(m) ∈ T for all m. We then need to prove that ω ∈ T . Indeed, let us fix n, and let us
prove thatK(α1 . . . αn | ω) ≥ K(α1 . . . αn) − C. We will prove this by contradiction.
Let us assume thatK(α1 . . . αn | ω) < K(α1 . . . αn) − C. This means that there exists
a program p of length len(p) < K(α1 . . . αn) − C which usesω to computeα1 . . . αn.
This program uses only finitely many bits of ω; let B be the largest index of these
bits. Due to ω(m) → ω, there exists anM for which, for all m ≥ M, the first B bits of
ω(m) coincide with the first B bits of the sequence ω. Thus, the same program p will
work exactly the same way—and generate the sequence α1 . . . αn—if we use ω(m)

instead ofω. But since len(p) < K(α1 . . . αn) − C, this wouldmeans that the shortest
length K(α1 . . . αn | ω(m)) of all the programs which use ω(m) to compute α1 . . . αn

also satisfies the inequality K(α1 . . . αn | ω(m)) < K(α1 . . . αn) − C. This inequal-
ity contradicts to our assumption that ω(m) ∈ T and thus, that K(α1 . . . αn | ω(m)) ≥
K(α1 . . . αn) − C. The contradiction proves that the set T is indeed closed.

Let us now prove that the set T is nowhere dense, i.e., that for every finite sequence
ω1 . . . ωm, there exists a continuation ω which does not belong to the set T . Indeed, as
such a continuation, we can simply take a sequence ω = ω1 . . . ωmα1α2 . . . obtained
by appending α at the end. For this new sequence, computingα1 . . . αn is straightfor-
ward: we just copy the values αi from the corresponding places of the new sequence
ω. Here, the relative Kolmogorov complexity K(α1 . . . αn | ω) is very small and
is, thus, much smaller than the complexity K(α1 . . . αn) which—since ZF is not
decidable—grows fast with n.

The proposition is proven.

Proof of Proposition 2.3.2. 1◦. As the desired ph-algorithm, we will, given an
instance i, simply produce the result ωi of the ith experiment. Let us prove, by
contradiction, that this algorithm satisfies the desired property.

2◦. We want to prove that for every ε > 0 and for every n, there exists an integer
N ≥ n for which

#{i ≤ N : i ∈ SP &ωi = sP,i} > (1 − ε) · #{i ≤ N : i ∈ SP}.

The assumption that this property is not satisfied means that for some ε > 0 and for
some integer n, we have

#{i ≤ N : i ∈ SP &ωi = sP,i} ≤ (1 − ε) · #{i ≤ N : i ∈ SP} for all N ≥ n.
(2.A.1)

Let T denote the set of all the sequences x that satisfy the property (3.1), i.e., let

T
def= {x : #{i≤ N : i∈ SP & xi = sP,i}≤ (1 − ε) · #{i≤ N : i∈ SP} for allN ≥ n}.

We will prove that this set T is a physical theory in the sense of Definition 2.3.1.



2 What Is Computable? … 53

Then, due to Definition 2.3.2 and the fact that the sequence ω satisfies the no-
perfect-theory principle, we will be able to conclude that ω /∈ T , and thus, that the
property (3.1) is not satisfied for the given sequence ω. This will conclude the proof
by contradiction.

3◦. By definition of a physical theory T , it is a set which is non-empty, closed,
nowhere dense, and definable. Let us prove these four properties one by one.

3.1◦. Non-emptiness comes from the fact that the sequence xi for which xi = ¬sP,i

for i ∈ SP and xi = 0 otherwise clearly belongs to this set: for this sequence, for
every N , we have

#{i ≤ N : i ∈ SP & xi = sP,i} = 0

and thus, the desired property is satisfied.

3.2◦. Let us prove that the set T is closed, i.e., that if we have a family of sequences
x(m) ∈ T for which x(m) → ω, then x ∈ T .

Indeed, let us take any N = n, and let us prove that

#{i ≤ N : i ∈ SP & xi = sP,i} ≤ (1 − ε) · #{i ≤ N : i ∈ SP}

for this N . Due to x(m) → x, there exists an M for which, for all m ≥ M, the first N
bits of x(m) coincide with the first N bits of the sequence x: x(m)

i = ωi for all i ≤ N .
Thus,

#{i ≤ N : i ∈ SP & xi = sP,i} = #{i ≤ N : i ∈ SP & x(m)
i = sP,i}.

Since x(m) ∈ T , we have

#{i ≤ N : i ∈ SP & x(m)
i = sP,i} ≤ (1 − ε) · #{i ≤ N : i ∈ SP},

thus
#{i ≤ N : i ∈ SP & xi = sP,i} ≤ (1 − ε) · #{i ≤ N : i ∈ SP}.

So, the set T is indeed closed.

3.3◦. Let us now prove that the set T is nowhere dense, i.e., that for every finite
sequence x1 . . . xm, there exists a continuation x which does not belong to the set T .

Indeed, as such a continuation, we can simply take a sequence

x = x1 . . . xmxm+1xm+2 . . .

where for i > m, we take xi = sP,i if i ∈ SP and xi = 0 otherwise. For this new
sequence, for every N , at most m first instances may lead to results different from
sP,i, so we have

#{i ≤ N : i ∈ SP & xi = sP,i} ≥ #{i ≤ N : i ∈ SP} − m.
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When N → ∞, then #{i ≤ N : i ∈ SP} → ∞, so for sufficiently large N , we have

#{i ≤ N : i ∈ SP} − m > (1 − ε) · #{i ≤ N : i ∈ SP},

thus,
#{i ≤ N : i ∈ SP & xi = sP,i} > (1 − ε) · #{i ≤ N : i ∈ SP},

and we cannot have

#{i ≤ N : i ∈ SP & xi = sP,i} ≤ (1 − ε) · #{i ≤ N : i ∈ SP}.

Therefore, this continuation does not belong to the set T .

3.4◦. Finally, since the formula (2.A.1) explicitly defines the set T , this set T is clearly
definable.

So, T is a physical theory, hence ω /∈ T , and the proposition is proven.

Proof of Proposition 2.3.3. Let us assume that P =NP. We then need to prove that
for every feasible ph-algorithm A, it is not possible to have

#{i ≤ N : i ∈ SP &A(ω, i) = sP,i} = #{i ≤ N : i ∈ SP}

for all natural numbers N .
To prove this impossibility, let us consider, for each feasible ph-algorithm A, the

set

T(A)
def= {x : #{i≤ N : i∈ SP &A(x, i)= sP,i} = #{i ≤ N : i ∈ SP} for all N}.

Similarly to the proof of Proposition 2.3.2, we can show that this set T(A) is closed
and definable.

Let us prove that the set T(A) is nowhere dense, i.e., that for every finite sequence
x1 . . . xm, there exists a continuation x which does not belong to the set T(A). Indeed,
we can simply extend the original finite sequence x1 . . . xm by 0s. In this case, when
the oracle has only finitely many nonzero bits, we can incorporate these bits into
an algorithm and get a feasible non-oracle algorithm A′ which produces the same
results: A′(i) = A(x, i) for all i.

Let us prove, by contradiction, that x /∈ T(A). Indeed, if x ∈ T(A), this would
mean that

#{i ≤ N : i ∈ SP &A′(i) = sP,i} = #{i ≤ N : i ∈ SP}

for all N . Thus, the feasible non-oracle algorithm A′ solves all the instances of the
original NP-complete problem P, which contradicts to our assumption that P =NP.
This contradiction proves that x /∈ T(A) and thus, the set T(A) is indeed nowhere
dense.
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We have thus proven that the set T(A) is closed, nowhere dense, and definable.
The only property which is still missing from the definition of a physical theory
(Definition 2.3.1) is non-emptiness. We do not know whether the set T(A) is non-
empty or not, but we can prove the desired impossibility in both cases.

If the set T(A) is non-empty, then this set is a theory in the sense of Definition
1, and thus, since the sequence ω satisfies the no-perfect-theory principle, we have
ω /∈ T(A). This means that the ph-algorithm A is not solving all instances of the
problem P.

If the set T(A) is empty, this also means that the ph-algorithm A does not solve
all instances of the problem P—no matter what oracle we use.

The proposition is proven.

Proof of Proposition 2.3.4. Let us assume that no non-oracle feasible algorithm
δ-solves the problem P. We then need to prove that for every feasible ph-algorithm
A, it is not possible to have N0 for which

#{i ≤ N : i ∈ SP &A(ω, i) = sP,i} > δ · #{i ≤ N : i ∈ SP}

for all natural numbers N ≥ N0.
To prove this impossibility, let us consider, for each feasible ph-algorithm A and

for each natural number N0, the set

T(A,N0)
def=

{x : #{i≤ N : i∈ SP &A(x, i)= sP,i} > δ · #{i≤ N : i ∈ SP} for all N ≥ N0}.

Similarly to the proof of Proposition 2.3.2, we can show that this set T(A,N0) is
closed and definable.

Let us prove that the set T(A,N0) is nowhere dense, i.e., that for every finite
sequence x1 . . . xm, there exists a continuation x which does not belong to the set
T(A,N0). Indeed, similarly to the proof of Proposition 2.3.3, we can extend the
original finite sequence x1 . . . xm by 0s. In this case, when the oracle has only finitely
many nonzero bits, we can incorporate these bits into an algorithm and get a feasible
non-oracle algorithm A′ which produces the same results: A′(i) = A(x, i) for all i.

Let us prove, by contradiction, that x /∈ T(A,N0). Indeed, if x ∈ T(A,N0), this
would mean that

#{i ≤ N : i ∈ SP &A′(i) = sP,i} > δ · #{i ≤ N : i ∈ SP}

for all N ≥ N0. Thus, the feasible non-oracle algorithm A′ δ-solves the original
NP-complete problem P, which contradicts to our assumption that no such feasible
non-oracle algorithm is possible. This contradiction proves that x /∈ T(A,N0) and
thus, the set T(A,N0) is indeed nowhere dense.
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We have thus proven that the set T(A,N0) is closed, nowhere dense, and definable.
The only property which is still missing from the definition of a physical theory
(Definition 2.3.1) is non-emptiness. We do not know whether the set T(A,N0) is
non-empty or not, but we can prove the desired impossibility in both cases.

For each N0, if the set T(A,N0) is non-empty, then this set is a theory in the sense
of Definition 2.3.1, and thus, since the sequence ω satisfies the no-perfect-theory
principle, we have ω /∈ T(A,N0), i.e.,

#{i ≤ N : i ∈ SP&A(ω, i) = sP,i} ≤ δ · #{i ≤ N : i ∈ SP} for some N ≥ N0. (2.A.2)

If the set T(A,N0) corresponding to a given N0 is empty, then also ω /∈ T(A,N0),
i.e., we also have the property (2.A.2).

Since the property (2.A.2) holds for all N0, this means that the ph-algorithm A

does not δ-solve the problem P.
The proposition is proven.

Proof of Proposition 2.4.1. If the formula (2.4.1) had no quantifiers, then we could
simply plug in the corresponding values into this formula and check whether the
corresponding formula holds or not. The problem is with the quantifiers: while we
can easily check whether some property holds for a specific value ni, it is not possible
to directly check whether this property holds for all infinitely many natural numbers
ni = 0, 1, 2, . . . The situation would be different if we could have a bound N on
possible values of ni, i.e., if the quantifier had the form ∀ni ≤ N or ∃ni ≤ N : in this
case, we can simply test all possible values ni ≤ N .

Let us show that for tuples from the set T , we can indeed have such bounds on the
variables ni. Let us start with a bound on n1. For the variable n1, there are two possible
cases: when Q1 is a universal quantifier and when Q1 is an existential quantifier. Let
us consider these two cases one by one.

In the first case, the formula (2.4.1) has the form ∀n1 G(n1), for some expression
G(n1) (with one fewer quantifier). Let us take

An = {r : ∀n1 (n1 ≤ n → G(n1))&¬∀n1 G(n1)}.

One can easily check that An ⊇ An+1 and ∩An = ∅. Thus, there exists a natural
numberN forwhichT ∩ AN = ∅. So, for r ∈ T , if∀n1 (n1 ≤ N → G(n1)),wecannot
have ¬∀n1 G(n1), so we must have ∀n1 G(n1). Clearly, ∀n1 G(n1) always implies
∀n1 (n1 ≤ N → G(n1)). Thus, for r ∈ T , ∀n1 G(n1) with an unlimited quantifier is
equivalent to a formula ∀n1 (n1 ≤ N → G(n1)) with a bounded quantifier.

In the second case, the formula (2.4.1) has the form∃n1 G(n1), for some expression
G (with one fewer quantifier). Let us take

An = {r : ¬∃n1 (n1 ≤ n&G(n1))& ∃n1 G(n1)}.

One can easily check that An ⊇ An+1 and ∩An = ∅. Thus, there exists a natural
number N for which T ∩ AN = ∅. So, for r ∈ T , if ¬∃n1 (n1 ≤ N &G(n1)), we
cannot have ∃n1 G(n1), so we must have ¬∃n1 G(n1). Clearly, ¬∃n1 G(n1) always
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implies ¬∃n1 (n1 ≤ N &G(n1)). Thus, for r ∈ T , ¬∃n1 G(n1) is equivalent to
¬∃n1 (n1 ≤ N &G(n1)). So, by taking negations, we conclude that the original for-
mula ∃n1 G(n1) with an unlimited quantifier is equivalent to a formula
∃n1 (n1 ≤ N &G(n1)) with a bounded quantifier.

Now, we have reduced the original formula with k quantifiers to a formula in
which the first quantifier is bounded. This bounded-quantifier formula is equivalent
to, correspondingly, G(0)&G(1)& . . . &G(N) or to G(0) ∨ G(1) ∨ . . . ∨ G(N),

where the corresponding formulas G(n1) have k − 1 quantifiers. So, if we can find
the truth values of each of these (finitely many) formulas G(n1), we could be able to
check the truth value of the original formula (2.4.1).

For each of these formulas G(n1) with k − 1 quantifiers, we can apply the same
reduction to reduce them to formulaswith k − 2quantifiers, etc., untilweget formulas
with no quantifiers at all – which can be therefore directly checked.

This reduction proves that it is indeed algorithmically possible to check whether
a given formula (2.4.1) holds or not for a given tuple r. The proposition is proven.
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Chapter 3
The Ideal Energy of Classical Lattice
Dynamics

Norman Margolus

Abstract We define, as local quantities, the least energy and momentum allowed by
quantum mechanics and special relativity for physical realizations of some classical
lattice dynamics. These definitions depend on local rates of finite-state change. In two
example dynamics, we see that these rates evolve like classical mechanical energy
and momentum.

3.1 Introduction

Despite appearances to the contrary, we live in a finite-resolution world. A finite-
sized physical system with finite energy has only a finite amount of distinct detail,
and this detail changes at only a finite rate [1–3]. Conversely, given a physical sys-
tem’s finite rates of distinct change in time and space, general principles of quantum
mechanics define its minimum possible average energy and momentum. We apply
these definitions to classical finite-state lattice dynamics.

3.1.1 Ideal Energy

It was finiteness of distinct state, first observed in thermodynamic systems, that neces-
sitated the introduction of Planck’s constant h into physics [4]. Quantum mechanics
manages to express this finiteness using the same continuous coordinates that are
natural to the macroscopic world. Describing reality as superpositions of waves in
space and time, finite momentum and energy correspond to effectively finite band-
width; hence finite distinctness. For example [3], the average rate ν at which an
isolated physical system can traverse a long sequence of distinct states is bounded
by the average (classical) energy E :
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ν ≤ 2 E/h , (3.1)

taking the minimum possible energy to be zero. Here E/h is the average frequency
of the state, which defines a half-width for the energy frequency distribution. If we
compare (3.1) in two frames, we can bound the average rate μ of changes not visible
in the rest frame, and hence attributable to overall motion:

μ ≤ 2 pv/h . (3.2)

Here p is the magnitude of a system’s average (classical) momentum, which is also
a half-width for a (spatial) frequency distribution; v is the system’s speed.

These kinds of constraints are sometimes referred to as uncertainty bounds, but
they in no way preclude precise finite-state evolution. Given rates of change, these
bounds define ideal (minimum achievable) average energy and momentum for finite
state systems, emulated as efficiently as possible (with no wasted motion or state)
by perfectly-tailored quantum hamiltonians [3, 5].

Clearly there can never be more overall spatial change μ than total change ν in
a physical evolution: this is reflected in pv/E = (v/c)2. From this and (3.2),

E ≥ (hμ/2)/(v/c)2 . (3.3)

Thus for a given rate μ of overall motional change, E can only attain its minimum
possible value if the motion is at the speed of light; then no energy is invested in rest-
frame dynamics (rest energy). In a finite-state dynamics with several geometrically
related signal speeds, to minimize all energies (3.3) the fastest signals must move at
the speed of light. If we then want to realize the dynamics running faster, we must
put the pieces of the system closer together: we can increase p in (3.2), but not v. Of
course in finite-state models of particular physical systems, realistic constraints on
speeds and separations may require higher energies.

These bounds can be used to define ideal local energies and momenta for some
invertible lattice dynamics, determined by rates of distinct change.

3.1.2 Local Change

We restrict our attention to finite-state lattice dynamics that emulate the locality,
uniformity and microscopic invertibility of physical law: invertible cellular automata
(CA). We assume the dynamics is defined as a regular arrangement of invertible
interactions (logic gates), repeated in space and time, each of which independently
transforms a localized set of state variables.

This kind of CA format, where the state variables are always updated in indepen-
dent groups, has sometimes been called partitioning CA, and encompasses a variety
of lattice formats that have been used to model physical dynamics [6–13]. It is inter-
esting that all globally invertible CA can be recast in this physically realistic format,
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as a composition of independent invertible interactions, even if the CA was originally
defined as a composition of non-invertible operations on overlapping neighborhoods
[14–16]. Historically, CA originated as physics-like dynamics without invertibility
[17–19].

Now, in the energy bounds above, only rates of change matter, not the amount of
state updated in a single operation. This is unrealistic. We can define a large-scale
synchronous dynamics, where the global rate of state change is independent of the
size of the system. Physically, total energy must be bounded by the total rate of local
changes, since each independent local update also obeys an energy bound. We resolve
this conflict by allowing synchronous definition, but counting the global average rate
of distinct change as if local updates were non-synchronous—which would in fact
be true in most relativistic frames.

There is also an issue of what not to count. For a dynamics defined by a set of
gate operations, it might seem natural to include, in the minimum, energy required
to construct the gates and to turn them on and off. This is the energy needed to
construct a perfectly-tailored hamiltonian. Here we ignore this construction energy,
and discuss the ideal case where the hamiltonian is given for free (as part of nature),
and we only need to account for energy required by state change within the dynamics.

3.1.3 Two Examples

In the remainder of this paper, we introduce and discuss two 2×2 block partitioning
CA (cf. [20]). These dynamics are isomorphic to classical mechanical systems, and
are simple enough that it is easy to compare energetic quantities, defined by local
rates of state change, with classical ones.

The first example is a scalable CA version of the Soft Sphere Model [21], which is
similar to Fredkin’s classical mechanical Billiard Ball Model [22]. This digital system
emulates the integer time behavior of an idealized classical mechanical system of
elastically colliding balls, and is computation universal. The CA is scalable in that
square blocks of ones (balls) of any size can be collided to simulate a billiard ball
computation. This model has not been published before.

The second example is a CA model of an elastic string that exhibits simple-
harmonic motion and exactly emulates the continuum wave equation at integer times,
averaged over pairs of adjacent sites. This model has been discussed before [7, 23–
25], but the analysis of overall translational motion, ideal energy, and their relativistic
interpretation, have not been previously published.

3.2 Scalable Soft Sphere CA

Many CA dynamics can be interpreted as the integer-time behavior of a continu-
ous classical mechanical system, started from an exactly specified initial state. This
is true, for example, for lattice gas models of fluids. Such stroboscopic classical
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mechanical CA inherit, from their continuous counterparts, conserved quantities
such as energy and momentum that we can compare to ideal quantities determined
by local rates of state change. Of course the continuum models we have in mind
would be numerically unstable if actually run as continuous dynamics, but this issue
is not inherited by the finite-state CA [26].

A famous stroboscopic dynamics of this sort is Fredkin’s billiard ball model of
computation, in which hard spheres moving in a plane, each with four possible
initial velocities, are restricted to a square lattice of initial positions. At each integer
time, the system is again in such a configuration. To guarantee this property without
additional restrictions on initial states, we let billiard balls pass through each other
in some kinds of collisions, without interacting.

Figure 3.1 shows a variant of this model in which the balls are much more com-
pressible, so collisions deflect paths inward rather than outward. This variant has the
advantage that it is more directly related to a simple partitioning CA (cf. [6]). In the
collision illustrated in Fig. 3.1a balls enter from the left with a horizontal component
of velocity of one column per time unit, so consecutive moments of the history of a
collision occur in consecutive columns.

The collision shown is energy and momentum conserving, and compression and
rebound take exactly the time needed to displace the colliding balls from their original
paths onto the paths labeled AB. If a ball had come in only at A with no ball at B,
it would have left along the path labeled AB̄: the collision acts as a universal logic
gate.

Figure 3.1b shows a realization of the collision as a simple partitioning dynam-
ics. Each time step in (a) corresponds to two in (b), and again particles are shown
at each integer time—drawn dark at even times and light at odd. The rule (c) is
inferred from (b), interpreting that diagram as showing the positions of two streams
of colliding particles at one moment (dark), and their positions at the next moment

AB

AB

AB

AB
A

B

(a) (b) (c) (d)

Fig. 3.1 Scalable Soft Sphere dynamics. a Stroboscopic view of continuous classical collision,
one time step per column. b Finite state collision, with particles drawn lighter at odd time-steps. c
2D partitioning rule. Only these cases (and their rotations) interact. Otherwise, all particles move
diagonally, unchanged. d 1D version of the rule
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(light). All particles move diagonally across a block, unchanged, in the cases not
defined explicitly in (c). If this rule is applied to just the dark particles in each of the
dark-bordered 2 × 2 blocks in (b), ignoring the light particles, it moves them to the
light positions; applied to just the light particles in each of the light-bordered blocks,
it moves them to the dark positions. The dynamics alternately applies the rule to these
two partitions. To also allow collisions like (b) for streams of balls arriving from the
right, top, or bottom, we define the rule (c) to have discrete rotational symmetry: in
each of the cases shown in (c), each of the four 90◦ rotations of the pattern on the
left turns into the corresponding rotation of the pattern on the right.

Note that (b) can also be interpreted as showing a time history of a collision of two
particles in a one-dimensional partitioning dynamics (the center of mass dynamics).
Then we get the rule (d), with the cases not explicitly shown interchanging the two
cell values. Three dimensional versions of the dynamics can be constructed as in [21].

It is not surprising that a time-independent continuous dynamics turns into a time-
dependent discrete partitioning. In the continuous model, balls approach a locus of
possible collision, interact independently of the rest of the system, and then move
away toward a new set of loci. The partitions in the continuous case are just imaginary
boxes we can draw around places within which what happens next doesn’t depend
on anything outside, for some period of time. Thus it is also not surprising that we
can assign a conserved energy to partitioning dynamics.

3.2.1 Ideal Energy and Momentum

For a physical realization of the SSS dynamics, let τ be the time needed for gate
operations to update all blocks of one partition, and let v0 be the average speed
at which the physical representation of a fastest-moving particle travels within the
physical realization of the CA lattice (assuming discrete isotropy).

Equations (3.2) and (3.3) define an ideal (minimum) momentum and energy for
a block in which there is a distinct overall spatial change and direction of motion.
Clearly these ideal quantities are conserved overall in collisions, since freely moving
particles move diagonally at v0 before and after. Are they also conserved in detail
during collisions?

When two freely moving particles enter a single block in the collision of Fig. 3.1b,
the number of block changes is reduced: one instead of two. The ideal magnitude of
momentum for each freely moving particle before the collision is p1 = (h/2τ)/v0.
For two colliding particles moving horizontally within a block the ideal is p2 =
(h/2τ)/(v0/

√
2) = 2p1/

√
2, which is the same as the net horizontal momentum

before the collision. Ideal energy is similarly conserved.
Note, however, that the separate horizontal motions of the + and − particles

during the next step of the collision of Fig. 3.1b imply an increase in the minimum
energy and momentum for that step. This effect becomes negligible as we enlarge
the scale of the objects colliding.
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3.2.2 Rescaling the Collision

If two columns of k particles are collided in the SSS dynamics, then the resulting
collision just shifts the output paths by k positions along the axis of the collision. This
is illustrated in Fig. 3.2a for k = 3. Thus k × k blocks of particles collide exactly as
in the classical collision of Fig. 3.1a: the SSS CA can perform logic with diagonally-
moving square “balls” of any size. When two balls of equal size meet “squarely,”
moving together along a horizontal axis, each pair of columns evolves independently
of the rest; colliding along a vertical axis, pairs of rows evolve independently. Square
balls can participate in both kinds of collisions.

During such a collision, from the blocks that change we can infer a net momentum
and hence a velocity for the motion of each colliding ball: Fig. 3.2b illustrates this for
k = 100, with the time unit being the time for a freely moving k × k ball to travel its
length (and width). Looking at just the changes in the top half of (a), we determine
the magnitude and direction of minimum average momentum for each block that
changes using (3.2), and hence determine a total momentum. Half of the conserved
total energy is associated with each ball, so v/v0 = vEball/v0Eball = p/p0 gives the
magnitude of velocity of a ball as a function of time, as number and type of changes
evolve. This is plotted in (b).

The fraction 1/γ of the total energy E that is mass energy depends on (v/c)2 =
(v/v0)

2(v0/c)2. Thus given (b), it depends on an assumption about the value of v0/c.
The fraction 1/γ , as a function of time in the k = 100 collision, is plotted in Fig. 3.2c
under different assumptions. The bottom case, v0 = c, has the greatest range but the
smallest value at all times. The top case is v0 = .2c. As expected, the faster the speed
of the fastest signals, the less the energy tied up in mass, hence the smaller the total
energy. Ideally, v0 = c.

(a) (b) (c)

Fig. 3.2 Multiple collisions in the SSS dynamics. a Colliding columns of particles are displaced
horizontally by the height of the column. b Each column is slowed down by the collision. c The
fraction of energy that is mass during a collision decreases with increasing initial particle speed v0
(from top, 20 % of c, 40 %, 60 %, 80 %, 100 %)
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3.3 Elastic String CA

In this second example we discuss a classical finite state model of wave motion in
an elastic string. This stroboscopic classical mechanical model exactly reproduces
the behavior of the time-independent one-dimensional wave equation sampled at
integer-times and locations. As in the SSS example, a continuous model is turned
into a finite state one by restricting the initial state (in this case the initial wave
shape) to a perfect discrete set of possible initial configurations, and this constraint
reappears at each integer time. In the continuum limit the discrete constraint on the
wave shape disappears; the exactness of the wave dynamics itself (at discrete times)
is independent of this limit.

The elastic string CA uses partitioning, but in a different way than the SSS CA:
here the partitioning actually constrains the continuous classical dynamics used to
define the CA, but in a way that never affects the classical energy. In the SSS case,
the time dependence associated with the partitioning completely disappears in the
continuous classical-mechanical version of the dynamics.

3.3.1 Discrete Wave Model

Consider an ideal continuous string for which transverse displacements exactly obey
the wave equation. Figure 3.3a shows an initial configuration with the string stretched
between equally spaced vertical bars. The set of initial configurations we’re allowing
are periodic, so the two endpoints must be at the same height.1 Any configuration is
allowed as long as each segment running between vertical bars is straight and lies at
an angle of ±45◦ to the horizontal.

Initially the string is attached at a fixed position wherever it crosses a vertical bar.
We start the dynamics by releasing the attachment constraint at all of the gray bars.
The attachment to the black bars remains fixed. In Fig. 3.3b the segments that are
about to move are shown with dotted lines: the straight segments have no tendency
to move. Under continuum wave dynamics, the dotted segments all invert after some
time interval τ . This will be our unit of time for the discrete dynamics. The new
configuration at the end of this interval is shown in Fig. 3.3c, with segments that have
just moved dotted. At this instant in time all points of the string are again at rest and
we are again in an allowed initial configuration. Now we interchange the roles of the
black and gray bars and allow the segments between adjacent gray bars to move for a
time interval τ . The dynamics proceeds like this, interchanging the roles of the black
and gray bars after each interval of length τ . Since attachments are always changed
at instants when all energy is potential and the string is not moving, the explicit time
dependence of the system doesn’t affect classical energy conservation.

1Unless the right and left edges of the space itself are joined with a vertical offset.
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(a) (b) (c)

Fig. 3.3 Discrete wave dynamics. Elastic string is held fixed where it crosses black bars

1 1
0 0 1 1

0 0

else, no change

(a) (b) (c)

Fig. 3.4 Discrete wave dynamics. a A wave configuration. Possible wave paths are indicated by
dotted lines. b Horizontal and vertical lines indicate one of two partitions used for discrete update
rule. A 1D array summarizing wave gradients is shown below (not part of the 2D dynamics). c
Top, dynamical rule for 2D wave. Presence of wave-path segments is indicated by 1’s. Bottom,
equivalent 1D dynamical rule for gradients

We express this dynamics as a purely digital rule in Fig. 3.4. In Fig. 3.4a we show
a wave with the black bars marking the attachments for the next step. To simplify the
figure we have suppressed the gray bars—they are always situated midway between
the black bars and so don’t need to be shown. We have also added a grid of 45◦
dotted lines that shows all of the segments that the string could possibly follow. In
Fig. 3.4b we add in horizontal black bars, in order to partition the space into a set of
2 × 2 blocks that can be updated independently. Note that in all cases the segments
that are allowed to change during this update step, as well as the cells that they will
occupy after the update, are enclosed in a single block. The long box below Fig. 3.4b
contains just the slope information from the string. This array of gradients is clearly
sufficient to recreate the wave pattern if the height at one position is known. This is
not part of the 2D dynamics: it will be discussed as a related 1D dynamics.

Figure 3.4c shows the dynamical rule for a block. Since the dotted lines indicate the
direction in which segments must run if they appear in any cell, the state information
for each segment is only whether it is there or not: this is indicated with a 1 or a 0.
The only segments that change are peaks /\ or valleys \/, and these are represented
by two 1’s at the top of a block or at the bottom of a block respectively. The rule is
that peaks and valleys turn into each other, and nothing else changes. We apply the



3 The Ideal Energy of Classical Lattice Dynamics 67

rule alternately to the blocks shown, and to a complementary partition shifted half a
block horizontally and vertically.

3.3.2 Exact Wave Behavior

At the bottom of Fig. 3.4c we’ve presented a dynamics for the gradients of the wave.
The full 2D dynamics just turns peaks into valleys and vice versa, leaving straight
segments unchanged: we can do that equally well on the array of gradients. As the
2D dynamics interchanges which blocking to use, the dynamics on the gradients also
alternates which pairs of gradients to update together. In all cases, the dynamics on
the gradients duplicates what happens on the string: if the two dynamics are both
performed in parallel, the gradient listed below a column will always match the slope
of the string in that column.

The dynamics on the gradients has an interesting property. Turning a peak into a
valley and vice versa is exactly the same as swapping the left and right elements of a
block. Leaving a // or \\ unchanged is also exactly the same as swapping the left and
right elements of a block. In all cases, the dynamics on the gradients is equivalent to
a swap.

This means that the left element of a block will get swapped into the right position,
and at the next update it will be the left element of a new block and will again get
swapped into the right position, and so on. Thus all of the gradients that start off in
the left side of a block will travel uniformly to the right, and all that start in the right
side of a block will travel uniformly to the left.

This shows that the system obeys a discrete version of the wave equation. Half
of the gradients constitute a right-going wave, and half constitute a left-going wave.
At any step of the dynamics, the 2D wave in the original dynamics is just the sum of
the two waves: it is reproduced by laying gradients end to end.

If we refine the lattice, using more and more cells to represent a wave of given
width, smoother and smoother waves can be represented. Of course even without
going to a large-scale limit, the CA dynamics is already exactly equivalent to a con-
tinuous wave equation with constrained initial wave shapes, sampled at integer times:
simply stretch the rightgoing and leftgoing waves constructed out of gradients to the
full width of the lattice. This just amounts to drawing the wave shape corresponding
to each block of the current partition a little differently.

3.3.3 Overall Transverse Motion

Assume the string carrying a discrete wave wraps around the space. We’ve discussed
the horizontal motion of waves along such a string, but the string itself can move
vertically. For example, a pattern such as \/\/\/ . . . \/ all the way around the space
reproduces itself after two partition update steps, but shifted vertically by two lattice
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units. This is clearly the maximum rate of travel for a string: one position vertically
per update step. Call this v0.

We can express the net velocity of the string in terms of the populations of right-
going and leftgoing gradient segments. Let R+ be the number of rightgoing segments
with slope +1 (rightgoing /’s), and similarly for R−, L+ and L−. If the width of the
space is B blocks, then there are B = R+ + R− segments forming the rightgoing
wave, and B = L+ + L− forming the leftgoing one.

For the rightgoing or leftgoing wave, periodically repeating its sequence of gra-
dients corresponds to an unbounded wave with the same average slope. When both
waves have shifted horizontally the width of one period (after 2B partition update
steps), the net vertical shift is the sum of the slopes of the leftgoing gradients, minus
the sum for the rightgoing ones: (L+ − L−) − (R+ − R−). We can compute this by
summing the differences for each pair of slopes grouped together in the columns of
one partition. Only columns containing \/ or /\ contribute a non-zero difference,
and so we only need to count the numbers of blocks B\/ and B/\ that are about to
change, to compute the constant velocity

v

v0
= (L+ − L−) − (R+ − R−)

2B
= B\/ − B/\

B
. (3.4)

3.3.4 Ideal Energy and Momentum

Only blocks that change have overall motion, and with τ the time taken to update
one partition, the frequencies of positive and negative motion are B\//τ and B/\/τ .
Thus from (3.2), attributing a momentum to each changing block, the total ideal
momentum up is hB\//2τv0, and down is hB/\/2τv0, so the net ideal momentum
p = (h/2τv0)(B\/ − B/\). From (3.4), the corresponding relativistic energy is E =
c2 p/v = (hB/2τ)/(v0/c)2. Letting v0 → c to minimize energy, and choosing units
with h = 2 and c = 1 and τ = 1, this becomes

E = B and p = B\/ − B/\ . (3.5)

Energy is the constant width (in blocks) of the string, and momentum is the constant
net number of blocks moving up.

There is an interesting subtlety involved in letting v0 → c in the 2D dynamics. We
interpret all gradient segments as always moving, swapping in pairs in each update
in order to recover the wave equation—even though some paired segments are in
different blocks when they “swap” identical values. If all block motion forward or
backward is at the speed c, each segment must be interpreted as traveling at the speed
c
√

2 as it swaps diagonally. If instead we interpret segments as moving up and down
(or not moving), none travel faster than light, but the interaction is non-local at the
scale of an individual block.
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3.3.5 Rest Frame Energy

For the transverse motion of the string to approach the maximum speed, almost
all of the block updates must contribute to overall motion, and almost none to just
internally changing the string. This slowdown of internal dynamics is a kind of time
dilation, which is reflected in the rest frame energy

√
E2 − p2. From (3.5),

Er =
√
B2 − (B\/ − B/\)2 . (3.6)

The energy Er available for rest-frame state-change decreases as more blocks move
in the same direction. In this model total energy E is independent of v, hence rest
energy Er = E/γ must approach 0 as 1/γ → 0. This contrasts with a normal
relativistic system that can never attain the speed of light, which has a constant rest
energy Er and a total energy E that changes with v.

The analysis up to here applies equally well to both the 1D and 2D versions of the
dynamics of Fig. 3.4. In 2D, however, there is an additional constraint: there must be
an equal number B of positive and negative slopes, so that the string meets itself at
the periodic boundary. Since there are also an equal number B of right and left going
gradients, R+ = L− and R− = L+. Thus from (3.4) and (3.6),

Er = 2
√
R+L+ . (3.7)

If R+/B were the probability for a walker to take a step to the right, and L+/B
the probability to the left, then (3.7) would be the standard deviation for a 2B-step
random walk. Related models of diffusive behavior that make contact with relativity
are discussed in [24, 27, 28]. None of these define relativistic objects that have an
internal dynamics, however.

3.4 Discussion

Given the definition of a finite-state dynamics, we could try to assign intrinsic prop-
erties to it based on the best possible implementation. For example, programming it
on an ordinary computer, a basic property is the minimum time needed, on average,
to simulate a step of the dynamics. It would be hard, though, to be sure we’ve found
the most efficient mapping onto the computer’s architecture, and the minimum time
would change if we used a different computer, or built custom hardware using var-
ious technologies. The true minimum time would correspond to the fastest possible
implementation allowed by nature! Such a definition seems vacuous, though, since
we don’t know the ultimate laws of nature, and even if we did, how would we find
the best possible way to use them?
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Surprisingly, a fundamental-physics based definition of intrinsic properties is not
in fact vacuous, if we base it on general principles. Assuming the universe is funda-
mentally quantum mechanical, we couldn’t do better than to simply define a hamil-
tonian that exactly implements the classical finite-state dynamics desired at discrete
times, with no extra distinct states or distinct state change. This ideal hamiltonian
identifies the fastest implementation that ismathematically possible, with given aver-
age energy.

This procedure assigns to every invertible finite-state dynamics an ideal energy
that depends only on the average rate of distinct state change. This is generally not
much like a physical energy, though, since we haven’t yet included any realistic
constraints on the dynamics. For example, each state change might correspond to a
complete update of an entire spatial lattice, as in the synchronous definition of a CA.
Then the energy would be independent of the size of the system. We can fix this by
constraining the finite-state dynamics to be local and not require synchrony: defining
it in terms of gates that are applied independently.

We expect the ideal energy, and distinct portions of it, to become more realistic
with additional realistic constraints. For this reason, we studied invertible lattice
dynamics derived from the integer-time behavior of idealized classical mechanical
systems. In the examples we looked at, ideal energies and momenta defined by local
rates of state change evolve like classical relativistic quantities.

It seems interesting and novel to introduce intrinsic definitions of energy and other
physical quantities into classical finite-state systems, and to use these definitions in
constructing and analyzing finite-state models of physical dynamics. Since all finite-
energy systems in the classical world actually have finite state, and since classical
mechanics doesn’t, this may be a productive line of inquiry for better modeling
and understanding that world. Moreover, inasmuch as all physical dynamics can be
regarded as finite-dimensional quantum computation, finite-state models of classical
mechanics may play the role of ordinary computation in understanding the more
general quantum case.

Acknowledgments I thank Micah Brodsky and Gerald Sussman for helpful discussions.
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Chapter 4
An Analogue-Digital Model of Computation:
Turing Machines with Physical Oracles

Tânia Ambaram, Edwin Beggs, José Félix Costa, Diogo Poças
and John V. Tucker

Abstract We introduce an abstract analogue-digital model of computation that cou-
ples Turing machines to oracles that are physical processes. Since any oracle has the
potential to boost the computational power of a Turing machine, the effect on the
power of the Turing machine of adding a physical process raises interesting ques-
tions. Do physical processes add significantly to the power of Turing machines; can
they break the Turing Barrier? Does the power of the Turing machine vary with
different physical processes? Specifically, here, we take a physical oracle to be a
physical experiment, controlled by the Turing machine, that measures some physical
quantity. There are three protocols of communication between the Turing machine
and the oracle that simulate the types of error propagation common to analogue-
digital devices, namely: infinite precision, unbounded precision, and fixed precision.
These three types of precision introduce three variants of the physical oracle model.
On fixing one archetypal experiment, we show how to classify the computational
power of the three models by establishing the lower and upper bounds. Using new
techniques and ideas about timing, we give a complete classification.
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4.1 Introduction

Loosely speaking, by an analogue-digital system we mean a system that makes
physical measurements in the course of a digital computation; equivalently, the term
hybrid system may be used. The digital computation can be of any complexity,
though some embedded systems can be modelled by hybrid systems based upon
finite automata. Actually, many processes perform an analogue measurement that
is used in a digital computation of some kind. For example, models of analogue
computation also involve digital elements: this is found in the construction of the
analogue recurrent neural net model (ARNN) (see [1])1; in the optical computer
model (see [2]); and in the mirror system model (see [3]).

Computational dynamical systems that are able to read approximations to real
numbers also behave as analogue-digital systems: they perform digital computa-
tions, occasionally accessing some external values. At the moment of access, the
“computer” executes some task on the analogue device, such as a test for a given
value of a quantity. In the perfect platonic world, this test cab be performed with
infinite or arbitrary precision, in the sense that the machine can obtain as many bits
of the real number as needed; or, less ideally, with a fixed finite precision provided
by the equipment in use.

To analyse the computational capabilities of analogue-digital systems, we intro-
duce an abstract analogue-digitalmodel of computation that couplesTuringmachines
to oracles that are physical processes. Thus, we consider Turing machines with the
ability of making measurements. The Turing machines considered are deterministic,
but in fact they can use the oracle both to get advice and to simulate the toss of a
coin.

Interacting with physical processes takes time. There are cost functions of the
form T : N → N that gives the number of time steps to perform the measurements
that the Turing machine allows. In weighing using a balance scale—as, indeed, in
most measurements—the pointer moves with an acceleration that depends on the
difference of masses placed in the pans. It does so in a way such that the time
needed to detect a mass difference increases exponentially with the precision of the
measurement, no matter how small that difference can be made. This means that
the measurement has an exponential cost that should be considered in the overall
complexity of the analogue-digital computation.2

A possible objection to such a model is that it is not limited in precision; for even
if it is sufficiently precise, it sooner or later finds the obstacle of the atomic structure
of matter. However, measurement has its own theoretic domain and can only be
conceived as a limiting procedure; see [4–6, 8, 9]. It means that measurement is like

1In the ARNN case, a subsystem of about eleven neurones (variables) performs a measurement of a
real-valued weight of the network up to some precision and resumes to a computation with advice
simulated by a system of a thousand rational neurones interconnected with integer and a very few
rational weights.
2In contrast, in the ARNN model, the time of a measurement is linear due to the fact that the
activation function of each neuron is piecewise linear instead of the common analytic sigmoid.
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complexity and can only be conceived asymptotically. Once we limit, in absolute
terms, space or time resources of a Turing machine, its complexity vanishes, since
all (now finite) sets can be decided in linear time and constant space.3

A measurement can be fundamental or derived. Measuring distance is funda-
mental, but measuring velocity is derived. Commonly, according to Hempel [8],
fundamental measurement is based on a partial order of comparisons that, taken to
the limit, generates a real number. Comparisons in the sense of Hempel are based on
events in the experimental setup. The most common measurement of some concept
y—position, mass, electric resistance, etc.—consists of performing the experiment
with a test value z, for which we could test one or both of the comparisons “z < y”
and “y < z”; experiments allowing such comparisons are called two-sided.

Experiments in physics provide intuitions about abstract measurements, namely
(a) that they result from comparisons, (b) that they have a cost, (c) that they comewith
errors, and (d) that they are stochastic. Coupling a Turing machine with a physical
experiment, we construct a specific type of analogue-digital machine.

Since any oracle has the potential to boost the computational power of a Turing
machine, the effect on the power of the Turing machine of adding a physical process
is an interesting area to investigate.

Do experiments add significantly to power to the Turing machine, and break the
Turing Barrier? Does the power of the Turing machine vary with different experi-
ments?

We classify computational power. In Sect. 4.2, from a number of physical exper-
iments, the so-called smooth scatter machine, first seen in [13], is selected as rep-
resentative of the analogue-digital of machines of interest. In Sect. 4.3, we sum-
marise the analogue-digital model. Sect. 4.4, we begin by summarising the theory of
non-uniform complexity classes, which allows us to formalise a real number value
for a parameter, by encoding an advice function of some class F�, and reading it
into the memory of the machine. The section continues with lower bounds (starting
Sect. 4.4.3) and upper bounds (starting Sect. 4.4.7).

The role of precision of data has been explicated in our earlier papers, but the
role of precision in time has been less clear. The notion is subtle: there is time in
the physical theory, time that manages the oracle queries, and the runtime of the
computation. In addition to explaining the model and its properties, we develop
some new techniques and results to explore the nature of timing. In Sect. 4.5, we use
a technique, based on knowing time exactly, to lower the upper bounds.

All the concepts will be defined in due course. Among the results proved in this
paper are:

Theorem 1 The classification of the computational power of the analogue-digital
model in the absense and presence of errors is as follows:

3In the same way, we could also say that tapes of Turing machines can have as many cells as the
number of particles in the universe, but in such a case no interesting theory of computability can be
developed.
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1. If B is decidable by a smooth scatter machine with infinite precision and expo-
nential protocol, clocked in polynomial time, then B ∈ P/ log2�.

2. B is decidable by a smooth scattermachinewith infinite precision and exponential
protocol T (k) ∈ �(2k), clocked in polynomial time, if, and only if, B ∈ P/ log�.

3. If B is decidable by a smooth scatter machine with unbounded or fixed precision
and exponential protocol, clocked in polynomial time, then B ∈ BPP// log2�.

4. B is decidable by a smooth scatter machine with unbounded or fixed precision
and exponential protocol, clocked in polynomial time, and having access to exact
physical time if, and only if, B ∈ BPP// log�.

Moreover, wewill argue that such bounds are, to a large extent, really independent
of the analogue system considered.

This paper offers an overview of the development of the analogue-digital model
with technical details and new results. Here we have the first complete analysis of the
analog-digital machine having access to two-sided measurements, including the full
proofs of the lower and upper computational bounds for the polynomial time case.

4.2 Physical Oracles

The substrate of a real number computation is a physical process executed by a
machine; the input data is inmany cases obtained by a physicalmeasurement process.
During a computation, themachinemay have access to external quantities. For exam-
ple, an analogue-digital device controlling the temperature in a building “solves”
differential equations while “calling” thermometers to check the values of the tem-
perature through time.

This idea that both computation and data are in some way physical processes
motivates the theoretical quest for the limits of computational power of a physical
process. We propose the coupling of a Turing machine with a physical oracle. The
idea is to replace the standard oracle, which is just a set, by a physical experiment
that allows the machine to perform a measurement.

A Turing machine coupled with such an oracle becomes a hybrid computation
model, having an analogue component—the experiment—combined with a digital
component—the Turing machine. As the standard Turing machine with oracle, the
Turing machine with physical oracle will use the information given by the physical
oracle in its computations.

4.2.1 Types of Physical Oracles

The physical oracles that we will be considering are physical processes that enable
the Turing machine to measure quantities. As far as we have investigated (see [7]),
measurements can be classified in one of the three types: one-sided—also called
threshold—measurement, two-sided measurement and vanishing measurement.
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Fig. 4.1 Threshold Can
only measure y < z. Can
give a sequence of tests
approximating z from below y

z

Fig. 4.2 Can measure both
a < x and x < a. A
bisection method can be used
to find a

a

x

Fig. 4.3 Vanishing Can only
measure (a < x or x < a). A
modified bisection method
will work. Assume
monotonicity on each side
of a

a
x

A one-sided experiment is an experiment that approximates the unknown value
a just from one side, i.e., it approximates an unknown value a either with values x
from above or with values x from below, checking either if a < z or if z < a, but not
both (see Fig. 4.1).

A two-sided experiment is an experiment that approximates the unknown value a
from two sides, i.e., it approximates the unknown value a with values x from above
and with values x from below, checking if a < x and x < a (see Fig. 4.2).

A vanishing experiment is an experiment that approximates the unknown value y
from the physical time taken by the experiment (see Fig. 4.3).

Note that this type of experimental classification is neither in Hempel’s original
work in [8], nor in the developed theory synthesised in [9], since, in a sense, these
authors only consider the two-sided experiments.

In this paper we deal only with the two-sided measurement. Threshold experi-
ments were considered in [10] and vanishing experiments in [11].

We now illustrate this category with a gallery of two-sided experiments of mea-
surement, emphasising the experimental time.

4.2.1.1 Balance Experiment

The balance experiment is intended to measure the (gravitational) mass of some
physical body. To perform the experiment we put the unknown mass mA of body A
in one of the pans and we approximate its value by placing another body, B, in the
other pan. Body B can have a known mass, mB , bigger or smaller than mA. After
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Fig. 4.4 The balance experiment

placing the body B, the balance can display one of the behaviors explained in the
right hand side of Fig. 4.4.

Accordingly to the behavior of the balance, we can change the mass of B in
order to approximate mA, using linear search. Repeating the experiment a number
of times and considering bodies with masses each time closer to mA we get the
desired approximation of the unknown value. The time needed to detect a move in
the pointer of the balance scale is exponential in the number of bits of precision of
the measurement.

4.2.1.2 Elastic Collisions

The collision experiment can be used to measure the (inertial) mass of a body. This
experiment was already studied as a physical oracle in [12]. To perform the exper-
iment, we project a test body B with known mass mB and velocity vB along a line
towards the body A at rest with unknownmassmA. Themass of B,mB , can be bigger
or smaller thanmA. After the collision the bodies acquire new speeds, accordingly to
their relative masses. After the collision we can have one of the behaviors explained
in the right hand side of of Fig. 4.5. According to the behavior of the particles, we can
change the mass of B in order to approximatemA, using linear search. Repeating the
experiment a number of times and considering masses each time closer tomA, we get
an approximation of the unknown value. The time needed to detect a possible motion
of body A is exponential in the number of bits of precision of the measurement.

Fig. 4.5 The collision experiment
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4.2.1.3 The Foucault’s Pendulum

The construction of this gedankenexperiment is based on the principles of classical
mechanics (see Fig. 4.6). Themotion of the pendulum exhibits two coupled harmonic
components:

1. A periodic motion of period

T = 2π

√
�

g
,

corresponding to the classical period of the pendulum of length � for small ampli-
tude oscillations.

2. Another periodic motion of period

τ = 24 h

| sin λ| ,

corresponding to a complete rotation of the plane of oscillation at latitude λ.
Moreover, the rotation of the plane of oscillation of the pendulum is clockwise to
the north of equator and counterclockwise to the south of equator.

This two-sided experiment can be designed to locate the equator. The time needed
for the pendulum to cross the angular distance of 1s of arc is given by

tλ = 1

15| sin λ| s,

that, for small values of the angle λ, is of the order of

tλ = 1

|15λ| s,

180◦

90◦

0◦ start here

270◦

pendulum
ω rads−1

P+ counterclockwise flag

P− clockwise flag

plane of oscillation
rads−1 Input: The latitudes λ0 = 0◦ (equator) and λ (test)

if λ > 0 then plane of oscillation crosses the flag P+;
if λ < 0 then plane of oscillation crosses the flag P−;
else the plane of oscillation does not rotate ;

ϖ

Fig. 4.6 Foucault’s machine experiment
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going to infinity as the angle λ approaches 0. In the case of a dyadic value λ, this time
is exponential in the size of λ. The time needed to detect the equator is exponential
in the number of bits of precision.

4.2.2 The Smooth Scatter Experiment

We now introduce the measurement experiment that we take as a generic example
throughout this paper.

The smooth scatter experiment (SmSE for short), considered in [13], is a variation
of the sharp scatter experiment introduced in [14, 15]. As the sharp scatter experi-
ment, it measures the position of a vertex but it has a slightly different experimental
apparatus. In the sharp case we considered a vertex in a sharp wedge and in the
smooth case we are considering a vertex in a rounded wedge (see Fig. 4.7), where
the shape of the wedge is given by a smooth symmetric function.

In order to measure the vertex position y, the smooth scatter experiment sets a
cannon at some position z, shoots a particle from the cannon, and then waits some
time until the particle is captured in a detection box. We consider that y can take
any value in ]0, 1[. The fire and detection phases define one run of the experiment.
After the shooting, we can have one of the behaviours explained in the algorithm of
Fig. 4.7 (right). By analyzing in which box the particle is detected, it is possible to
conclude the relative position of y and z, i.e., whether the vertex is in the right or left
side of the cannon. Then, repeating this procedure, by resetting the cannon position
and executing one more run of the experiment, we can better approximate the vertex
position.

� m

� m

cannon

sample trajectory
v m/s

0

1

z

limit of traverse of cannon
cannon aims at dyadic z ∈]0,1[

0

1

y

limit of traverse
of point of wedge

V

φ
φ

w

x

LEFT COLLECTING BOX

RIGHT COLLECTING BOX

Input: The position z
if z > y then the particle is detected in the right box;
if z < y then the particle is detected in the left box;

else the particle is not detected in any box

Fig. 4.7 The smooth scatter experiment
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4.2.2.1 The Physical Theory

The SmSE is governed by a fragment of Newtonian mechanics, consisting in the
following laws and assumptions:

1. Particles obey Newton’s laws of motion in the two dimensional plane;
2. Collisions between barriers and particles are perfectly elastic, that is, kinetic

energy is preserved;
3. Barriers are rigid and do not deform upon impact;
4. Cannon projects a particle with a given velocity and direction;
5. Detectors are capable of telling if a particle has crossed them; and
6. A clock measures the time.

The experimental clock that measures the physical time τ : [0, 1] → R is very
important in analysing the cost of accessing the oracle. When the Turing machine
accesses the oracle it must wait until the end of the experiment in order to continue
with its computation, so this means that accessing the oracle no longer takes one
computation step but “t steps”, where t is a function of the precision of the query.

4.2.2.2 The Time

The access to the SmSE will cost more than one computation step as the physical
experiment takes some intrinsic time t to be performed, designated as physical time.
As explained in [13, 16], the time required to run the SmSE is given by the following
proposition:

Proposition 1 Consider that g(x) is the function describing the shape of the wedge
of a SmSE. Suppose that g(x) is n times continuously differentiable near x = 0, all
its derivatives up to (n − 1)th vanish at x = 0, and the nth derivative is nonzero.
Then, when the SmSE, with vertex position y, fires the cannon at position z, the time
needed to detect the particle in one of the boxes is t (z), where:

A

|y − z|n−1
≤ t (z) ≤ B

|y − z|n−1
, (4.1)

for some A, B > 0 and for |y − z| sufficiently small.
Looking at Eq. 4.1, we conclude that we cannot bound the physical time, as it goes

to infinity when z and y become close. Without loss of generality, we will assume
from now on that n = 2, that is, g(x) ∈ C2, since the results are essentially the same
for values of n > 2.
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4.3 The Smooth Scatter Machine

Wenowfix the smooth scatter experiment as paradigmatic of two-sidedmeasurement
experiments and will proceed with the developing of our theory of analogue-digital
computation.

A Turingmachine coupled with the smooth scatter experiment as oracle is called a
smooth scatter machine (SmSM). This machine was introduced in [13]. The SmSM
communicates with the SmSE using the query tape. During a computation, the
SmSM performs its standard transitions and, whenever necessary, it consults the
oracle. The oracle is an experiment that allows the Turing machine to measure an
approximation to the vertex position of the scatter and use this value in the compu-
tation. In order to initialize the experiment, the Turing machine writes in the query
tape the parameters for the experiment, e.g., the position of the cannon. After some
time, the machine will be in other state according to the outcome of the experiment.
To guarantee that our machine does not wait unbounded time for the answer, we will
add to the Turing machine a time constructible schedule T : N → N. The schedule
depends on the size of the query.

Therefore, after some time not exceeding T (n), where n is the size of the query,
if the particle is detected in the right box, then the next state of the Turing machine
is qr ; if the particle is detected in the left box, then the next state is ql ; and if the
particle is not detected in any box, then the next state is qt . The machine resumes the
computation. The states qr , ql , and qt replace the standard states yes and no of an
oracle Turing machine. Note that, during the consultation of the oracle, the Turing
machine waits for the oracle answer but keeps counting the running time in parallel.

4.3.1 Communicating with the Smooth Scatter Experiment

The Turing machine communicates with the SmSE when necessary. The communi-
cation is made through the query tape, where the Turing machine writes the parame-
ters of the experiment, in this case the position of the cannon. We consider that the
position provided by the Turing machine is written in binary and denotes a number
of the form n/2k , where n is a non-negative integer in ]0, 2k[ and k is a positive
integer. The query z corresponds to the dyadic rational

z =
|z|∑
i=1

2−i z[i], (4.2)

where z[i] denotes the i th bit of z. After processing z, the apparatus should set the
position of the cannon and execute the experiment. Note that by Eqs. 4.1 and 4.2,
with the vertex at y ∈ ]0, 1[, the experimental time grows exponentially with the size
of the query, for values of z approaching y.
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We consider that our experiment can set the cannon’s position in three ways,
inducing different computational powers. The three protocols are:

Protocol 1 Given a dyadic rational z in the query tape, the experiment sets the
position of the cannon to z′ = z. In this case we are working with an error-free
SmSE or with an infinite precision SmSE—the protocol is Prot_I P(z). A Turing
machine coupled with this oracle is called an error-free smooth scatter machine.

Protocol 2 Given a dyadic rational z in the query tape, the experiment sets the
position of the cannon to z′ ∈ [z − 2−|z|, z + 2−|z|], chosen uniformly. In this case
we are working with an error-prone SmSE with unbounded precision—the protocol
is Prot_U P(z). A Turing machine coupled with this oracle is called an error-prone
smooth scatter machine with unbounded precision.

Protocol 3 Given a dyadic rational z in the query tape, the experiment sets the
position of the cannon to z′ ∈ [z − ε, z + ε], chosen uniformly, for a fixed ε = 2−q ,
for some positive integer q. In this case we are working with an error-prone SmSE
with fixed precision—the protocol is Prot_FP(z). A Turing machine coupled with
this oracle is called an error-prone smooth scatter machine with fixed precision.

We can describe all the protocols in the Algorithm 1.
The procedure Prot used in Algorithm 1 assigns a value to z′ according

with the protocol, i.e., using infinite precision (Prot (z, in f ) = z), unbounded pre-
cision (Prot (z, unb) ∈ [z − 2−|z|, z + 2−|z|]), or fixed precision (Prot (z, f i x) ∈
[z − ε, z + ε]).

Algorithm 1: General communication protocol.
Data: Dyadic rational z (possibly padded with 0’s)
Set cannon’s position to z′ = Prot (z,mode) ;
Wait T (|z|) units of time ;
if The particle is detected in the right box then

A transition to the state qr occurs ;
end
if The particle is detected in the left box then

A transition to the state ql occurs ;
end
if The particle is not detected in any box then

A transition to the state qt occurs ;
end

Definition 1 Let A ⊆ {0, 1}�. We say that an error-free SmSM M, clocked with
runtime τ : N → N, decides A if, for every w ∈ {0, 1}�, M accepts w in at most
τ(|w|) steps if w ∈ A and M rejects w in at most τ(|w|) steps if w /∈ A.

Definition 2 Let A ⊆ {0, 1}�. We say that an error-prone SmSM M, with
unbounded or fixed precision, clocked in runtime τ : N → N, decides A if there
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exists γ , 1/2 < γ ≤ 1, such that, for every w ∈ {0, 1}�, M accepts w in at most
τ(|w|) steps with probability γ if w ∈ A and M rejects w in at most τ(|w|) steps
with probability γ if w /∈ A.

4.3.2 Measurement Algorithms

The measurement of the vertex position depends on the protocol, so that different
protocols may originate different measurement algorithms. From now on we denote
by m�� the first � digits of m, if m has � or more than � digits, otherwise it represents
m padded with k zeros, for some k such that |m0k|= �. The pruning or the padding
technique is used to control the time schedule during the measurement process. For
the infinite precision we have the measurement Algorithm 2.

In Algorithm 2 we have no errors associated with the protocol since the cannon’s
position is always set to the desired position. Thus, doing this search around the
vertex, we can approximate it up to any precision with no errors. The following
result was already proved in [10, 13].

Algorithm 2: Measurement algorithm for infinite precision.
Data: Positive integer � representing the desired precision
x0 = 0 ;
x1 = 1 ;
z = 0 ;
while x1 − x0 > 2−� do

z = (x0 + x1)/2 ;
s = Prot_I P(z��) ;
if s == “qr” then

x1 = z ;
end
if s == “ql” then

x0 = z ;
else

x0 = z ;
x1 = z ;

end
end
return Dyadic rational denoted by x0

Proposition 2 Let s be the result of Prot_I P(z��), y the vertex position of the
SmSE, and T the time schedule. If s = “ql”, then z��< y; if s = “qr”, then z��> y;
otherwise |y − z��|< C

T (�)
, for some constant C > 0.

Proof The first two cases are obvious. In the third case we have
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Algorithm 3: Measurement algorithm for unbounded precision.
Data: Positive integer � representing the precision
x0 = 0 ;
x1 = 1 ;
z = 0 ;
while x1 − x0 > 2−� do

z = (x0 + x1)/2 ;
s = Prot_U P(z��) ;
if s == “qr” then

x1 = z ;
end
if s == “ql” then

x0 = z;
else

x0 = z ;
x1 = z ;

end
end
return Dyadic rational denoted by x0

C

|y − z��| = t (z��) > T (�),

for some constant C > 0. Whence, |y − z��|< C
T (�)

. �

Unbounded precision requires the measurement Algorithm 3.
In the Algorithm 3 we have errors associated with the protocol since the cannon’s

position is set to a value uniformly chosen in the closed interval [z − 2−|z|, z + 2−|z|].
But, according to the definition of Prot_U P (see Protocol 2), the interval that is
considered could be increasingly smaller by increasing the precision, and so the error
will be increasingly smaller too.

We proved in [10, 14] the following result, where � is such that
[z�� −2−�, z�� +2−�] ∈]0, 1[.
Proposition 3 Let s be the result of Prot_U P(z��), y the vertex position of the
SmSE, and T the time schedule. If s = “ql”, then z��< y + 2−�, if s = “qr”, then
z��> y − 2−�, otherwise |y − z��| < C

T (�)
+ 2−�, for some constant C > 0.

Proof Let z′ be the position uniformly chosen by the Prot_U P(z��). Thus
z′ ∈ [z�� −2−�, z�� +2−�] and |z�� −z′| ≤ 2−�. From this it follows that, if s = “ql”,
then z′ < y and therefore z�� < y + 2−�; if s = “qr”, then z′ > y and therefore
z�� > y − 2−�; otherwise, |y − z′| < C

T (�)
, for some constant C > 0. Therefore

|y − z�� | < C
T (�)

+ 2−�. �

Proposition 4 Given a SmSM with unbounded or infinite precision, vertex position
at y and time schedule T (�) = C2�,
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1. The time complexity for the measurement algorithm for input � is O(�T (�));
2. The output of the algorithm, for input �, is a dyadic rational z such that |y − z|

< 2−�+1.

Proof Statement (1) comes from the fact that the call to the protocol is repeated
� times, each taking O(T (�)) steps. To prove statement (2) note that: (a) in the
infinite precision case, the execution of the algorithm halts when |y − z| < C

T (�)
;

(b) in the worst case of the unbounded precision, the execution of the algorithm
halts when |y − z| < C

T (�)
+ 2−�, i.e., |y − z| < 2−�+1; in both cases we have |y − z|

< 2−�+1. �

For the fixed precision protocol the measurement algorithm is different from the
previous two.

Assume that initially we have a SmSE with vertex at any real number s ∈ ]0, 1[.
We consider another SmSE with vertex at position y = 1/2 − ε+2s ε and repeat
ξ times the Prot_FP protocol with input z′ = 1, i.e., with the vertex at position
1/2. Consider a fixed precision ε = 2−q , for some q ∈ N, and physical time given
by the Eq. 4.1. Consider also a Turing machine coupled with this SmSE with a fixed
schedule T . Then wewill have three possible outcomes after running the experiment:
qr , ql , or qt . If η represents the position of the cannonwhere the time schedule exceeds
the limit, for some precision �, we have that the output qr occurs for cannon positions
in the interval [y + η, 1/2 + ε], the output qt occurs for cannon positions in the
interval [y − η, y + η] and the output ql occurs for cannon positions in the interval
[1/2 − ε, y − η]. Therefore we have that each outcome occurs with the following
probability:

1. For the output qr we have pr = (1/2 + ε−y − η)/(2ε).
2. For the output qt we have pt = (y + η − y + η)/(2ε).
3. For the output ql we have pl = (y − η − 1/2 + ε)/(2ε).

So, our experiment can be modeled as a multinomial distribution with three cate-
gories of success, each one with the stated probabilities. Let α, β, and γ be random
variables used to count outcomes ql , qr , and qt , respectively, and consider a new
random variable X = 2α+δ

2ξ . The expected value of X is

X̄ = 2E[α] + E[δ]
2ξ

= −1 + 2y + 2 ε

4 ε
= 4s ε

4 ε
= s .

The variance of X is

Var(X) =
(1
ξ

)2
Var(α) +

( 1

2ξ

)2
Var(δ) + 2

(1
ξ

)( 1

2ξ

)
Covar(α, δ) .

Simplifying we get

Var(X) = −−4s ε +4s2 ε +η

4 ε ξ
≤ 4s ε(1 − s)

4 ε ξ
≤ 1

ξ
.
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Using the Chebyshev’s Inequality, for � > 0, we get:

P(|X − X̄| > �) ≤ Var(X)

�2

P(|X − s| > �) ≤ 1

ξ�2

For precision � > 1/2�, we get

P(|X − s| > 1/2�) ≤ 22�

ξ
.

If we consider
22�

ξ
< 2−h,

for h ∈ N − {0}, then we get ξ > 22l+h .
Finally, we get the Algorithm 4 for the fixed precision case, where h is a positive

integer chosen in order to get the error less than 2−h .

Algorithm 4: Measurement algorithm for fixed precision.
Data: Integer � representing the precision
c = 0 ;
i = 0 ;
ξ = 22�+h ;
while i < ξ do

s = Prot_FP(1��) ;
if s == “ql” then

c = c + 2 ;
end
if s == “qt” then

c = c + 1 ;
end
i++ ;

end
return c/(2ξ)

The following statements have been proved in [10].

Proposition 5 For any real number s ∈ ]0, 1[, fixed precision ε = 2−q for q ∈ N,
error probability 2−h for h ∈ N − {0}, vertex position at y = 1/2 − ε +2s ε, and
time schedule T ,

1. The time complexity of the measurement algorithm for fixed precision with input
� is O(22�T (�));

2. The output of the algorithm is a dyadic rational m such that |y − m| < 2−�.
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Proof Statement (1) derives from the fact that the procedure calls the oracle 22�+h

times. Statement (2) is justified by observing that an approximation to y ± 2−� with
error probability less than 2−h requires 22�/2−h calls to the oracle. �

We are now ready to investigate the computational power of analogue-digital
machines clocked in polynomial time, using (without loss of generality) the smooth
scatter machine. Note that, on input �, all the measurement algorithms output a value
with � bits of precision, or a value with the maximum number of bits of precision
(< �) allowed by the schedule.

4.4 Computational Power of the Smooth Scatter Machine

The three types of SmSM obtained in the Sect. 4.3 express different computational
powers. In this section, we first recall some concepts of nonuniform complexity
classes (see [17, 18]).

4.4.1 Nonuniform Complexity Classes

An advice function is a total map f : N → {0, 1}� and a prefix advice function is
an advice function with the extra condition that f (n) is a prefix of f (n + 1). These
functions have an important role in nonuniform complexity as they provide external
information to themachines that depend only in the input size.We recall the definition
of nonuniform complexity class.

Definition 3 LetC be a class of sets and F be a class of advice functions. We define
C/F∗ as the class of sets B for which there exists a set A ∈ C and a prefix advice
function f ∈ F such that, for every word w ∈ �∗ with size less or equal to n, w ∈ B
iff 〈w, f (n)〉 ∈ A.

We consider deterministic Turing machines clocked in polynomial time and log-
arithmic prefix advice functions (see [18]), obtaining the nonuniform complexity
classes

P/ log� and P/ log2�.

We also consider probabilistic Turing machines clocked in polynomial time. Thus,
based on the Definition 3, we get the following:

Definition 4 BPP/ log� is the class of sets B for which a probabilistic Turing
machine M, a prefix advice function f ∈ log and a constant γ < 1/2 exist such
that, for every word w with size less or equal to n, M rejects 〈w, f (|w|)〉 with prob-
ability at most γ if w ∈ B and accepts 〈w, f (|w|)〉 with probability at most γ if
w /∈ B.
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The above definition is too restrictive, forcing the advice function to be chosen
after the Turing machine (see Appendix A). Thus we choose to use a more relaxed
definition where the Turing machine is chosen after the advice function.

Definition 5 BPP// log� is the class of sets B for which, given a prefix advice
function f ∈ log, a probabilistic Turing machine M and a constant γ < 1/2 exist
such that, for every word w with size less or equal to n, M rejects 〈w, f (|w|)〉 with
probability at most γ if w ∈ B and accepts 〈w, f (|w|)〉 with probability at most γ if
w /∈ B.

Similarly we define the nonuniform class BPP// log2�, just changing the class of
advice functions.

At this point we know that the Turingmachine has an oracle that measures approx-
imations of the vertex position. Since we are talking about nonuniform complexity
classes, the information given by the advice is codified in the position of the vertex
of the SmSE .

4.4.2 The Cantor Set C3

The Cantor set C3 is the set of ω-sequences x of the form

x =
+∞∑
k=1

xk2
−3k,

for xk ∈ {1, 2, 4}. This means that C3 corresponds to the set of elements composed
by the triples 001, 010, or 100. This set is often used to codify real numbers. For
example, in [19], the Cantor codification with base 4 and 9 is used to codify the real
weights of neural nets.

This type of codification is required in order to be able to distinguish close values.
For example, in order to describe the first bit of 011 · · · 1 and 100 · · · 0, we must
read the whole number. To enforce gaps between close values, we encode the binary
representations of the values in elements of the cantor set C3.

Wewill workwith prefix advice f : N → {0, 1}�, such that f ∈ log.We denote by
c(w), with w ∈ {0, 1}�, the binary sequence obtained from the binary representation
of w where each 0 is replaced by 100 and each 1 is replaced by 010. Given f , we
denote its encoding as a real number by y( f ) = lim y( f )(n) recursively defined as
follows:

1. y( f )(0) = 0.c( f (0));

2. If f (n + 1) = f (n)s, then y( f )(n + 1) =
{
y( f )(n)c(s) if n + 1 is not power of 2
y( f )(n)c(s)001 if n + 1 is power of 2

.

Bymeans of this definition, y( f )(n) is logarithmic in n and the encoding function
returns a word of size O( f (n)). Note that separators are added only at positions that
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are a power of 2. If we want to decode f (|w|), such that 2m−1 < |w| ≤ 2m , we need
to read y( f ) in triplets until we reach the (m + 1)th separator. To reconstruct f (2m),
we eliminate the separators and replace each triplet for the corresponding value.
Since |c( f (2m))|= am + b, for some constants a and b, the number of binary digits
needed to reconstruct f (2m) is linear in m.

Note that we considered a prefix advice function instead of an advice function,
otherwise the encoding would not be logarithmic in the size of the input.4

As first proved in [10, 14], these Cantor sets have the following property (see
Appendix B):

Proposition 6 For every y ∈ C3 and for every dyadic rational z ∈ ]0, 1[, such that
|z| = m, if |y − z| ≤ 1/2i+5, then the binary expansion of y and z coincide in the
first i bits and |y − z| > 1/2−(m+10).

4.4.3 Lower Bound for the Infinite Precision

We specify smooth scatter machines that decide the sets of some suitable nonuniform
complexity class.

Theorem 2 If B ∈ P/ log�, then there exists an error-free SmSM, clocked in poly-
nomial time, that decides B.

Proof If B ∈ P/ log�, then there exists a set A ∈ P (i.e., A is decided by a deter-
ministic Turing machine MA clocked in polynomial time pA) and a prefix advice
function f ∈ log, such that w ∈ B iff 〈w, f (| w |)〉 ∈ A. We can thus compute the
pairing of w and f (|w|) in polynomial time p, and check in polynomial time pA,
using Turing machine MA, if such a pair belongs to A.

To get f (|w|), M reads some binary places of the vertex position y( f ) using the
SmSE (Algorithm 2) with an exponential schedule T (�) = C2�. Since |w| may not
be a power of 2 the SmSM reads f (n), where n ≥ |w| and n = 2�log |w|. We have
that | f (|w|)| ≤ a log(|w|) + b, for some constants a, b ∈ N. Consequently | f (n)| ≤
a�log(|w|) + b, so that M reads

� = 3(a�log(|w|) + b) + 3(�log(|w|) + 1)

binary places of the vertex, where 3(�log(|w|) + 1) denotes the number of bits used
in the separators.

Using Algorithm 2 on � + 5 − 1, by Proposition 4, the algorithm returns a dyadic
rational m such that |y( f ) − m| < 2−�−5. Hence, by Proposition 6, y( f ) and m
coincide in the first � bits.

Again, by Proposition 4, we know that the time complexity of the Algorithm 2 is
O(�T (�)). Since � is logarithmic in the size of the input word and T is exponential in
the size of the query word we find that the Algorithm 2 takes polynomial time pa in

4We would get y( f ) = 0.c( f (0))001c( f (1))001 · · · and since each c( f (i)) has a logarithmic size
in i , the sequence y( f )(n) would have a size O(n × log(n)).
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the size of the input word. We conclude that the total time for the whole computation
is O(pa + p + pA), that is polynomial in the size of the input. �

4.4.4 Smooth Scatter Machine as a Biased Coin

To prove the lower bounds for an error-prone SmSM with unbounded or fixed pre-
cision we need some preliminary work. The first two statements—proved in [12, 13,
15]—explain how the SmSE can be seen as a biased coin. The third statement—
already proved in [14, 16]—state that, given a biased coin it is possible to simulate
a sequence of fair coin tosses.

Proposition 7 Given an error-prone smooth scatter machine with unbounded preci-
sion, vertex position at y, experimental time t, and time schedule T , there is a dyadic
rational z and a real number δ ∈]0, 1[ such that the outcome of Prot_U P on z is a
random variable that produces ql with probability δ.

Proof Consider an error-prone SmSM with unbounded precision, vertex position y,
experimental time t and time schedule T . Fix a positive integer � such that t (0) <

T (�) and t (1) < T (�), which means that if we run the experiment in the position 0��

or if we run the experiment in the position 1��, we will get an answer within T (�)

units of time.5

Given y and T (�) we know that there exists y′ < y such that t (y′) = T (�). Con-
sider now a dyadic rational z′ such that |z′| = � and 0 < z′ − 2−� < y′ ≤ z′. Observe
that 0 < y′ < y < 1 and so 0 < z′ < 1 (see Fig. 4.8). The value of � is fixed once
and for all; however, it is supposed that � can be fixed to a value large enough to get
z′ − 2−� > 0. This restriction is easy to satisfy sincewe only require t (0) < T (�) and
t (1) < T (�), which is obviously true for a large � since the schedule is exponential.

If we run the Prot_U P on z′, it will choose a value z ∈ [z′ − 2−�, z′ + 2−�]
uniformly. Thus, the probability that the protocol returns ql is

δ = y′ − z′ + 2−�

z′ + 2−� − (z′ − 2−�)
= 1

2
− z′ − y′

2 × 2−�
.

Therefore 0 < δ < 1 and the probability that the protocol returns qt or qr
is 1 − δ. �

Proposition 8 Given an error-prone smooth scatter machine with fixed precision,
vertex position at y, experimental time t, and time schedule T , there is a dyadic
rational z and a real number δ ∈ ]0, 1[ such that the outcome of Prot_FP on z is
a random variable that produces ql with probability δ.

5In this case the position 0�� or 1�� means 0. 0 · · · 0︸ ︷︷ ︸
�

and 1. 0 · · · 0︸ ︷︷ ︸
�

, respectively, not the dyadic

position.
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Fig. 4.8 The SmSE with unbounded precision as a coin

z′ − ε

z′ + ε

0

1

y′
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Fig. 4.9 The SmSE with fixed precision as a coin

Proof Consider an error-prone SmSM with fixed precision ε, vertex position at y,
experimental time t and time schedule T . Fix a positive integer � that verifies the
following conditions: 2−� ≤ ε, t (0) < T (�), and t (1) < T (�). The last restriction
means that if we run the experiment with the cannon either at 0�� or at 1��, we will
get an answer within T (�) units of time.6

Given y and T we know that there exists y′ < y such that t (y′) = T (�). Consider
now a dyadic rational z′ such that |z′| = � and 0 < z′ ≤ y′ ≤ z′ + 2−� < 1 (Figs. 4.9
and 4.10). The value of ε is fixed once and for all as is the value of y. However, it is
supposed that ε can be fixed to a value that although fixed is very small, such that,
z′ − ε > 0.

If we run the Prot_FP on z′ it will choose a value z ∈ [z′ − ε, z′ + ε] uniformly.
Thus the probability of the protocol return ql is

δ = y′ − z′ + ε

z′ + ε −(z′ − ε)
= 1

2
− z′ − y′

2 ε
.

Therefore, 0 < δ < 1 and the probability of outcome qt or qr is 1 − δ. �

6Id.
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Fig. 4.10 Schematic description of the behavior of the SmSM with unbounded precision

Proposition 9 Given a biased coin with probability of heads q ∈]δ, 1 − δ[, for some
0 < δ < 1/2, and γ ∈]0, 1[, we can simulate, up to probability ≥ γ , a sequence of
independent fair coin tosses of length n by doing a linear number of biased coin
tosses.

See the proof in Appendix C.

4.4.5 Lower Bound for the Unbounded and Fixed Precisions

Theorem 3 If B ∈ BPP// log�, then there exists an error-prone smooth scatter
machine with unbounded precision, clocked in polynomial time, that decides B.

Proof If B ∈ BPP// log�, then there exists a prefix advice function f ∈ log, a proba-
bilistic Turing machineMworking in polynomial time p1, and a constant γ1 < 1/2,
such that, for every word w with size less or equal to |w|,M rejects 〈w, f (|w|)〉with
probability at most γ1 if w ∈ B and M accepts 〈w, f (|w|)〉 with probability at most
γ1 if w /∈ B.

We compute f (|w|) from y( f ) (the vertex of our SmSM) and use M to decide
B. For this purpose consider γ2 such that γ1 + γ1γ2 < 1/2 and an exponential time
schedule T .

By Proposition 7 there is a dyadic rational z, depending on y and T , that can
be used to produce independent coin tosses with probability of heads δ ∈ ]0, 1[. By
Proposition 9, we can use the biased coin to simulate a sequence of fair coin tosses
of size p1(n), with probability of failure γ2.

Similarly to the proof of the Theorem 2, if |w| = n, using Algorithm 3 on input
� + 5 − 1, for � = 3(a�log(n) + b) + 3(�log(n) + 1), we can extract, by Propo-
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sition 4, a dyadic rationalm such that |y( f ) − m| < 2−�−5. Hence, by Proposition 6,
y( f ) and m coincide in the first � bits, so we can use M to compute f (2�log(n)).

Thus, after using the SmSE as oracle in order to compute f (2�log(n)), it is used
as a generator of a biased coin and thus as a generator of a sequence of size p1(n) of
random coin tosses. Then we just need to simulate M on 〈w, f (2�log(n))〉.

The behavior of the smooth scatter machine is the following (Fig. 4.10):
Firstly, the SmSM uses the SmSE to compute f (2�log(n)); then it uses the SmSE

as a generator of a fair sequence of coin tosses (with error probability γ2); finally the
SmSM uses this sequence to guide its computation on 〈w, f (2�log(n))〉.

Therefore, if w ∈ A, then the SmSM rejects w if M, guided by the sequence of
coin tosses, rejects 〈w, f (2�log(n))〉, a situation that happens with probability at most
γ2γ1 + γ1 < 1/2. Similarly, the probability thatM acceptsw, forw /∈ A, is less than
1/2.

We can conclude that the SmSM decides A with an error probability less than
1/2. To see that it decides A in polynomial time note that Proposition 4 states that
the running time of the measurement algorithm is O(�T (�)). Since � is logarithmic
in input size and T is exponential in �, the result is polynomial in the size of the
input. Let such time be denoted by p3.

Let p4 denote the time needed to encode the pair w with f (|w|), that is O(|w| +
| f (|w|)|), and that p2 denote the polynomial time needed to generate the sequence
of coin tosses. Then we can conclude that the total time for the whole computation
is O(p1 + p2 + p3 + p4), which is a polynomial in the size of the input. �
Theorem 4 If B ∈ BPP// log�, then there exists an error-prone smooth scatter
machine with fixed precision ε, clocked in polynomial time, that decides B.

Proof The proof is similar to that of Theorem 3 but instead of Proposition 7 it uses
Proposition 8; instead of using Proposition 4 it uses the Proposition 5; and instead
of using measurement Algorithm 3 it uses Algorithm 4.

Note that in the fixed precision case the Algorithm 3 has an error γ3. Thus,
in this case, we consider γ2 and γ3 such that γ1 + γ2 + γ3 < 1/2. In these condi-
tions, if w ∈ A, then the SmSM rejects w with probability at most γ3(γ2γ1 + γ1) +
γ2γ1 + γ1 < 1/2. Similarly, the probability that w /∈ A is accepted by M is less
than 1/2. �

4.4.6 Boundary Numbers

For the purpose of proving upper bounds, we introduce the boundary numbers.

Definition 6 Let y ∈ ]0, 1[ be the vertex position and T the time schedule for a
smooth scatter machine. For every z ∈ {0, 1}�, we define l|z| and r|z| as the two real
numbers in ]0, 1[ that satisfy the equation t (l|z|) = t (r|z|) = T (|z|), with l|z| < y <

r|z|.7

7There are always two boundary numbers satisfying this equation, as Fig. 4.11 shows.
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Fig. 4.11 The boundary numbers

Suppose that we want to query the oracle with z. If we query the SmSE , with
vertex at y, we have three possible answers: ql , if z < y and t (z) ≤ T (|z|); qr , if
z > y and t (z) ≤ T (|z|); qt otherwise. We thus arrive at the Algorithm 5.

Therefore we may replace oracle consultation by a comparison of the query word
(dyadic rational) with both l|z| and r|z|. As we are going to see, in a sense to be precise
later on, knowing enough bits of the boundary numbers is like querying the oracle.

Algorithm 5: Oracle simulation.
Data: Dyadic rational z representing the query, boundary numbers l|z| and r|z|
if z ≤ l|z| then

A transition to the state ql occurs ;
end
if z ≥ r|z| then

A transition to the state qr occurs ;
end
if l|z| < z < r|z| then

A transition to the state qt occurs ;
end
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4.4.7 Upper Bound for the Infinite Precision

The precision we can get on the measurement of the vertex position determines the
computational bounds of the smooth scatter machine. So far, the time schedule did
not interfere in establishing the computational bounds. Now we apply the simulation
technique, replacing the oracle by an advice function and prove upper bounds that,
this time, seem to be sensitive to the time schedule.

Theorem 5 If B is decidable by a smooth scatter machine with infinite precision
and exponential protocol, clocked in polynomial time, then B ∈ P/ log2�.

Proof Suppose that B is decidable by a SmSM M with infinite precision and expo-
nential time schedule T , clocked in polynomial time. Since T is exponential and M
is clocked in polynomial time, we conclude that the size of the oracle queries grows
at most logarithmically in the input size. This means that for any word w with size n,
there exist constants a and b such that, during the computation, M only queries the
oracle with words of size less or equal to � = a�log(n) + b. We consider a prefix
advice function f such that f (n) encodes the concatenation of boundary numbers
needed to answer to all the queries of size �:

l1�1#r1�1#l2�2#r2�2# · · · #l���#r���#.

The prefix advice function f is such that | f (n)| ∈ O(2� + 2
∑�

i=1 i) = O(�2) =
O(log2(n)). Therefore, to decide B in polynomial time, with prefix advice f ∈ log2,
we simulate M on the input word but whenever a transition to the query state occurs
and z is written in the query tape, we compare the query with the boundary numbers
relative to |z|), i.e., with l|z| and r|z|. The comparison, as explained in Sect. 4.4.6,
gives us the same answer as Prot_I P(z), and thus the machine uses a similar
measurement algorithm to approximate the vertex, replacing the call to the physical
oracle by a comparison of the query word with f (n). Since the comparison explained
in Algorithm 5 can be done in polynomial time and M runs in polynomial time too,
we can decide B in polynomial time given the advice in P/ log2�. �

Ifwe analyze better the binary expansion of each boundary number,we can change
the advice function considered in the previous proof, which is quadratic in the size
of the query word, in order to obtain an advice function linear in the size of the query
word. The main idea of this result is based on the fact that the boundary number
l|z|+1 (r|z|+1) can be obtained from l|z| (r|z|, respectively), by adding a few more bits
of information.

Proposition 10 Given the boundary numbers for a smooth scatter machine with
time schedule T (k) ∈ �(2k) it is possible to define a prefix advice function f such
that f (n) encodes all the boundary numbers with size up to n and | f (n)| ∈ O(n).

Proof Consider a SmSM with vertex at y. If the time schedule associated with the
SmSM is T (k) ∈ �(2k), then there exist α and k0 in N such that for all k ≥ k0,
T (k) ≥ α2k .
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The value of the boundary number rk is such that y < rk < y + 2−k+c, for some
constant c ∈ N and for k > k0. This means that, when we increase the size of k by
one bit, we also increase the precision on y by one bit. Let us write the dyadic rational
rk�k as the concatenation of two strings, rk�k= vk · wk , where wk has size c and vk
has size k − c. Note that rk − 2−k+c < vk < rk , i.e.,y − 2−k+c < rk − 2−k+c < vk <

rk < y + 2−k+c, i.e., |vk − y| < 2−k+c.
The same reasoning applies to lk�k= xk · yk , i.e., |xk − y| < 2−k+c, where yk has

size c and xk has size k − c.
We show that we can obtain vk+1 from vk with just two more bits. Suppose that

vk ends with the sequence vk = · · · 10�. The only two possibilities for the first k −
c bits of y are · · · 10� or · · · 01�. Thus, vk+1 must end in one of the following:
vk+1 = · · · 10�1 or vk+1 = · · · 10�0 or vk+1 = · · · 01�1 or vk+1 = · · · 01�0. That is,
even though vk is not necessarily a prefix of vk+1, the latter can be obtained from
vk by appending some information that determines which of the four possibilities
is the case.8 Suppose now that vk ends with the sequence vk = · · · 01�. The only
two possibilities for the first k − c bits of y are · · · 01�−11 or · · · 01�−10. Thus, vk+1

must end in one of the following: vk+1 = · · · 01�0 or vk+1 = · · · 01�1 or vk+1 =
· · · 01�−100 or vk+1 = · · · 01�−101. In the same way, vk+1 can still be obtained from
vk by appending some information that determines which of the four possibilities is
the case.

Similarly we obtain xk+1 from xk .
We define the advice function inductively as follows: if n < k0, then f (n) =

l1�1#r1�1#l2�2#r2�2# · · · #ln�n#rn�n; if n = k0, then f (k0) = f (k0 − 1)##xk0#yk0#vk0#
wk0 ; and if n > k0, then f (n) = f (n − 1)#b11b12#yn#b21b22#wn , where the bi j ’s
denote the bits that distinguish between xn−1 and xn and between vn−1 and vn .

Considering f (n), we can always recover rk�k or lk�k , for k ≤ n, because, if
k ≤ n < k0, then the values of rk�k and lk�k are explicitly in f (n); if k = n = k0,
then these values are explicitly in f (n) and, moreover, the machine knows it is
the last fully given boundary numbers rk�k and lk�k (with the two ##); and finally,
if n ≥ k > k0, to obtain lk and rk after knowing lk−1 and rk−1 we only need to
recalculate the two final bits of xk and vk and concatenate the result with either yk or
wk , respectively.

To conclude, since yn and wn have constant size c, the value of | f (n)| is asymp-
totically linear in n. �

With these different encodings we obtain a different upper bound for the infinite
case.

Theorem 6 If B is decidable by a smooth scatter machine with infinite precision and
exponential protocol T (k) ∈ �(2k), clocked in polynomial time, then B ∈ P/ log�.

8The following example helps to clarify the argument. Suppose that y = 0.1100011000 . . . The
sequence vk can be taken as follows: v1 = 1, v2 = 11, v3 = 111, v4 = 1101, v5 = 11001, v6 =
110010, v7 = 1100100, v8 = 11000111, v9 = 110001100, ...
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Proof Suppose that B is decidable by a SmSM M with infinite precision and expo-
nential time schedule T (k) ∈ �(2k), clocked in polynomial time. Since T is expo-
nential and M is clocked in polynomial time, we conclude that the size of the oracle
queries can grow at most logarithmically in the size of the input. This means that for
any word w with size n, there exist constants a and b such that, during the computa-
tion,M only queries the oraclewithwords of size less or equal to � = a�log(n) + b.

By Proposition 10 we can now define a prefix advice function f , encoding the
boundary numbers, such that | f (|z|)| is linear in size of the query |z| ∈ O(�), i.e.,
| f (|z|)|∈ O(log(n)), where n is the size of the input.

Therefore, to decide B in polynomial time with prefix advice f ∈ log, we can
simulateM on the input word but whenever a transition to the query state occurs and
z is written in the query tape we compare the query with the corresponding boundary
numbers, i.e., with l|z| and r|z|. The comparison, as explained in Sect. 4.4.6, provides
the same answer as Prot_I P(z), and thus the machine uses a similar measurement
algorithm to approximate the vertex, replacing the call to the physical oracle by a
comparison with f (n).

Since the comparison can be done in polynomial time and M runs in polynomial
time too, we can decide B in polynomial time given the advice. �

The Theorems 2 and 6 allow us to prove the following corollary:

Corollary 1 B is decidable by a smooth scatter machine with infinite precision
and exponential protocol T (k) ∈ �(2k), clocked in polynomial time, if and only if
B ∈ P/ log�.

It is an open problem to know if the above corollary holds if we remove the
schedule restriction.

4.4.8 Probabilistic Query Trees

The error-prone smooth scatter machine can obtain approximations to the vertex
position through themeasurement algorithm.After each run of the SmSE , the Turing
machine is in one of the three possible states: qr , qt or ql . The oracle consultations of a
SmSM can then be seen as a ternary query tree since its (deterministic) computations
are interspersed with calls to the oracle; after each call the machine is in one of the
three above mentioned states.

Definition 7 A query tree is a rooted tree (V, E, ν) where each node in V is a
configuration of the Turing machine in the query state (the root ν is the configuration
of the first call to the oracle) or in a halting state, and each edge in E is a deterministic
computation of the Turing machine between consecutive oracle calls or between
oracle calls and halting configurations. The only nodes with zero children are the
corresponding accepting and rejecting configurations.
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Definition 8 A m-ary query tree is a query tree where each node except the leaves
has m children.

Since we are not considering now the infinite precision case, we know that the
behavior of the SmSE is stochastic and thus, after each call to the oracle, themachine
is in one of the three states with some probability. With this idea in mind, we can see
all the oracle consultations by a SmSM on an inputw as a probabilistic ternary query
tree, i.e., a ternary query tree where each edge is labeled by a probability. A single
computation on w corresponds to a path in the tree, beginning in the root and ending
in a leaf. The leaves of the tree are labeled with an A, if the computation on input w
halts in an accepting configuration and are labeled with an R, if the computation on
input w halts in a rejecting configuration (see Fig. 4.12).

Let Tn,m = (Vn,m, En,m, νn,m) denotes a n-ary probabilistic query tree with
depth m.

Definition 9 We define the set of all assignments of probabilities to the edges of
Tn,m as

ρ(Tn,m) = {σ : En,m → [0, 1] : the sum of σ ’s over the n outcomes of every node is 1}.

Denote by T σ
n,m the n-ary probabilistic query tree with depth m and assignment

σ .

Definition 10 The probability of one single path π of a n-ary probabilistic query
tree T σ

n,m with depth m and assignment σ is

m∏
i=1

σ(π [i]),

where π [i] stands for the i th edge of the path from the root. The acceptance proba-
bility P(T σ

n,m) is the sum of the probabilities of all accepting paths.

We define D(σ1, σ2), σ1, σ2 ∈ ρ(Tn,m) as the maximum distance between the two
probabilistic query trees T σ1

n,m and T σ2
n,m .

Definition 11 For every σ1, σ2 ∈ ρ(Tn,m), we define

D(σ1, σ2) = max{| σ1(e) − σ2(e) |: e ∈ En,m} .

Now we define the largest possible difference in the acceptance probability for
two different assignments, where the distance between the probabilities is less or
equal to a value s.

Definition 12 For any m ∈ N, s ∈ [0, 1] and number of outcomes out ∈ N, we
define a function Aout : N × [0, 1] → [0, 1] as

Aout (m, s) = sup{|P(T σ ′
out,m) − P(T σ

out,m)|: σ, σ ′ ∈ ρ(Tout,m) and D(σ, σ ′) ≤ s} .
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Fig. 4.12 The oracle calls by a smooth scatter machine as a ternary query tree, where iCP means
the i th cannon position

This function satisfies the following relevant property:

Proposition 11 For any m ∈ N, s ∈ [0, 1], and any number out ∈ N of children in
the tree, Aout (m, s) ≤ (out − 1)ms.

Proof The proof follows by induction in m. The result is straightforward for
m = 0: we take P(T σ

out,0) = P(T σ ′
out,0) = 0 for each rejecting leaf, and P(T σ

out,0) =
P(T σ ′

out,0) = 1 for each accepting leaf. Let the statement be true form and consider the
probabilistic query tree Tout,m+1 with out outgoing edges, e1, e2, ..., eout , and depth
m + 1. Each edge ei is incident in a node Tout,m(i), for i = 1, . . . , out , respectively.
Consider probability assignments σ, σ ′ ∈ ρ(Tout,m+1) such that D(σ, σ ′) ≤ s. We
have then

P(T σ
out,m+1) = σ(e1)P(T σ

out,m(1)) + σ(e2)P(T σ
out,m(2)) + · · · + σ(eout )P(T σ

out,m(out))

P(T σ ′
out,m+1) = σ ′(e1)P(T σ ′

out,m(1)) + σ ′(e2)P(T σ ′
out,m(2)) + · · · + σ ′(eout )P(T σ ′

out,m(out)) .

As σ(eout ) = 1 − σ(e1) − σ(e2) − · · · − σ(eout−1) and σ ′(eout ) = 1 − σ ′(e1) −
σ ′(e2) − · · · − σ ′(eout−1), we have that

∣∣∣P(T σ
out,m+1) − P(T σ ′

out,m+1)

∣∣∣ = ∣∣(σ (e1) − σ ′(e1))(P(T σ
out,m(1)) − P(T σ

out,m(out)))

+ (σ (e2) − σ ′(e2))(P(T σ
out,m(2)) − P(T σ

out,m(out)))

+ · · ·
+ (σ (eout−1) − σ ′(eout−1))(P(T σ

out,m(out − 1)) − P(T σ
out,m(out − 1))

+ σ ′(e1)(P(T σ
out,m(1)) − P(T σ ′

out,m(1)))

+ σ ′(e2)(P(T σ
out,m(2)) − P(T σ ′

out,m(2)))

+ · · ·
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+σ ′(eout )(P(T σ
out,m(out)) − P(T σ ′

out,m(out))
∣∣∣ .

Since the difference of any two real numbers in [0, 1] lies in [−1, 1], we conclude
that
∣∣∣P(T σ

out,m+1) − P(T σ ′
out,m+1)

∣∣∣ ≤ ∣∣σ(e1) − σ ′(e1)| + | σ(e2) − σ ′(e2) | + · · · + | σ(eout−1) − σ ′(eout−1)
∣∣

+ σ ′(e1)Aout (m, s) + σ ′(e2)Aout (m, s) + · · · + σ ′(eout )Aout (m, s)

≤ (out − 1)s + Aout (m, s) .

Therefore, using the induction hypothesis,

Aout (m + 1, s) ≤ Aout (m, s) + (out − 1)s

≤ (out − 1)ms + (out − 1)s

= (out − 1)(m + 1)s . �

4.4.9 Upper Bound for the Unbounded Precision

Consider a SmSM with vertex at position y and physical time t , and suppose that
the SmSM writes a query z with |z| = k, for k ∈ N. Then consider the two boundary
numbers lk and rk (see Sects. 4.4.6 and 4.4.7) for the schedule T (k). Since the
transition to one of the states qr , qt and ql is probabilistic whenever the SmSM uses
the SmSE with the protocol Prot_U P , we conclude that approximations to the
probabilities involved in these possible transitions are needed in order to simulate
the oracle calls.

Protocol Prot_U P(z) chooses uniformly some position z′ ∈ [z − 2−k, z + 2−k]
from where to shoot, originating eight possible shooting cases represented in
Fig. 4.13. Assuming that we always have k large enough to obtain the shooting
interval inside ]0, 1[, we exclude the cases 6 and 8. Assuming that the protocol is
exponential, we can discard also case 7, since the interval ]lk, rk[ shrinks faster than
the shooting interval. For each one of these cases, from 1 to 5, we will have the
following probabilities:

Fig. 4.13 Shooting cases 0 1ylk rk

1

2 3

4 5

6 7 8
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1. 0 < z − 2−k < lk < rk < z + 2−k < 1

P(“ql”) = lk − z + 2−k

z + 2−k − z + 2−k
= 1

2
− z − lk

2 × 2−k

P(“qt”) = rk − lk
z + 2−k − z + 2−k

= rk − lk
2 × 2−k

P(“qr”) = z + 2−k − rk
z + 2−k − z + 2−k

= 1

2
− rk − z

2 × 2−k
;

2. 0 < z − 2−k < lk < z + 2−k < rk < 1

P(“ql”) = lk − z + 2−k

z + 2−k − z + 2−k
= 1

2
− z − lk

2 × 2−k

P(“qt”) = z + 2−k − lk
z + 2−k − z + 2−k

= 1

2
− lk − z

2 × 2−k

P(“qr”) = 0 ;

3. 0 < lk < z − 2−k < rk < z + 2−k < 1

P(“ql”) = 0

P(“qt”) = rk − z + 2−k

z + 2−k − z + 2−k
= 1

2
− z − rk

2 × 2−k

P(“qr”) = z + 2−k − rk
z + 2−k − z + 2−k

= 1

2
− rk − z

2 × 2−k
;

4. 0 < z − 2−k < z + 2−k < lk

P(“ql”) = 1

P(“qt”) = 0

P(“qr”) = 0 ;

5. rk < z − 2−k < z + 2−k < 1

P(“ql”) = 0

P(“qt”) = 0

P(“qr”) = 1 .

Looking at the expressions, and considering error propagation, we can conclude
that if we know k + d bits of lk and rk we can approximate the probabilities within
an error less than 2−d .

Theorem 7 If B is decidable by a smooth scatter machine with unbounded precision
and exponential protocol T , clocked in polynomial time, then B ∈ BPP// log2�.
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Proof Suppose that B is decidable by a SmSM M with unbounded precision and
exponential protocol T , in polynomial timeO(na). SinceM onw runs in polynomial
time in n = |w| and it has an exponential time schedule T (k), we can conclude that
the size of the oracle queries must be at most logarithmic in the size of the input,
that is, the size of the oracle queries must be less or equal to b�log(n) + c. The
number of queries to the oracle cannot exceed the running time of the machine, so
that the probabilistic query trees of the SmSM have a depth of at most αna , for some
constant α.

Let γ be the error probability ofmachineM and d ∈ N such that 2d > 2α/(1/2 −
γ ). The probabilities of each outcome of all oracle queries will be truncated up to
the precision 2−d−a�log(n), according with Proposition 11, in order to obtain error
probability of acceptance less than 1/2 − γ :

A(αna, 2−d−a�log(n)) ≤ 2 × αna × 2−d−a�log(n)

= 2αna

2d × 2a�log(n)

= 2α

2d
< (1/2 − γ ) .

Hence, as explained before the statement, to approximate the probabilities of all
queries with precision 2−d−a�log(n) we have to know i + d + a�log(n) bits of li
and ri , for 1 ≤ i ≤ b�log(n) + c. Consider now β = max{a, b} and a prefix advice
function f defined recursively as follows:

1. f (0) = l1�d+c#r1�d+c#l2�d+c#r2�d+c# · · · #lc�d+c#rc�d+c;
2. f (x + 1) is obtained by concatenating f (x) with the bits d + c + 2βx + 1 to

d + c + 2βx + 2β of li and ri , for 1 ≤ i ≤ βx + c; and then by adding the first
d + c + 2βx + 2β bits of li and ri for βx + c + 1 ≤ i ≤ βx + c + β. (All the
blocks of bits separated by #.)

Advice f encodes approximations to the boundary numbers li and ri , for 1 ≤ i ≤
βx + c: a Turing machine can read 2(βx + c) nonsequential blocks of size 2β from
f (x), updating at the same time the approximations of li and ri for 1 ≤ i ≤ βx + c
and 2β nonsequential blocks of size d + c + 2βx + 2β, to get approximations of li
and ri , for βx + c + 1 ≤ i ≤ βx + c + β. Thus, a Turing machine can have access
to approximations of li and ri with d + c + 2βx bits of precision. Analysing the
advice function we can conclude that:

| f (x)| = 2 × (d + c + 2βx) × (c + βx) +
x∑

i=0

2(βx + c) = O(x2).

Since we only consider x at most logarithmic in the input size, n, we have that
| f (�log(n))| = O(log2(n)). Thus, the advice function g(n) = f (�log(n)) pro-
vide approximations of li and ri , for 1 ≤ i ≤ b�log(n) + c, with at least i + d +
a�log(n) bits of precision, as desired.



104 T. Ambaram et al.

Therefore, to decide B in polynomial time, using the prefix advice f ∈ log2, we
construct a TuringmachineM′ that simulatesM on the input word but, wheneverM
queries the oracle with z,M′ compares the query z with the corresponding boundary
numbers, i.e., with lk and rk , where k = |z|; checks the shooting cases; and computes
the approximations to the probabilities with an error less than 2−d−a�log(n). ThenM′
simulates a path in the probabilistic query tree, that represents the oracle consultation,
by means of the computed probabilities, by tossing a coin d + a�log(n) times. Note
that this probabilistic tree has a depth of at most αna and the edge difference is less
than 2−d−a�log(n). After simulating this path, the machine M′ proceeds as M. Since
the difference in the probability of acceptance is bounded by 1/2 − γ , M′ gives a
wrong answer with probability less than γ + 1/2 − γ = 1/2.

Recalling that the SmSM M runs in polynomial time, and that comparing query
words with boundary numbers and computing probabilities can also be done in
polynomial time, we conclude that B is decidable in polynomial time with advice
g(n) = f (�log(n)). �

4.4.10 Upper Bound for the Fixed Precision

The error-prone SmSM with fixed precision ε has also probabilistic computation
trees. Thus, once again, we need approximations to the boundary numbers (see
Sects. 4.4.6, 4.4.7 and 4.4.9) and to the probabilities in order to simulate the oracle
whenever the SmSM calls the SmSE with the protocol Prot_FP .

Consider a SmSM with vertex at position y, fixed precision ε = 2−q , for some
positive integer q, and physical time t . Suppose that the SmSM writes a query z
with |z| = k for k ∈ N. Then consider the two boundary numbers lk and rk for the
schedule T (k).

Since Prot_FP(z) will choose uniformly some position z′ ∈ [z − ε, z + ε] from
where to shoot, we have eight possible shooting cases represented also in Fig. 4.13.
As previously discussed in Sect. 4.4.9, we assume that we always have k large enough
to have the shooting interval inside ]0, 1[, excluding the cases 6 and 8. We also know
that the interval ]lk, rk[ shortens, so that we consider that the case 7 does not occur
also.

For each one of the remaining cases, from 1 to 5, we will have the following
probabilities:

1. 0 < z − ε < lk < rk < z + ε < 1

P(“ql”) = lk − z + ε

z + ε −z + ε
= 1

2
− z − lk

2 ε

P(“qt”) = rk − lk
z + ε −z + ε

= rk − lk
2 ε

P(“qr”) = z + ε −rk
z + ε −z + ε

= 1

2
− rk − z

2 ε
;
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2. 0 < z − ε < lk < z + ε < rk < 1

P(“ql”) = lk − z + ε

z + ε −z + ε
= 1

2
− z − lk

2 ε

P(“qt”) = z + ε −lk
z + ε −z + ε

= 1

2
− lk − z

2 ε

P(“qr”) = 0 ;

3. 0 < lk < z − ε < rk < z + ε < 1

P(“ql”) = 0

P(“qt”) = rk − z + ε

z + ε −z + ε
= 1

2
− z − rk

2 ε

P(“qr”) = z + ε −rk
z + ε −z + ε

= 1

2
− rk − z

2 ε
;

4. 0 < z − ε < z + ε < lk

P(“ql”) = 1

P(“qt”) = 0

P(“qr”) = 0 ;

5. rk < z − ε < z + ε < 1

P(“ql”) = 0

P(“qt”) = 0

P(“qr”) = 1 .

Considering error propagation, we can conclude that if we know q + d bits of lk
and rk , then we can approximate these probabilities with an error at most 2−d . (Note
that, if we consider a real valued ε, we can also approximate the probabilities within
the desired precision by providing the bits of ε too.)

We can now prove the upper bound for the fixed precision case.

Theorem 8 If B is decidable by a smooth scatter machine with fixed precision ε =
2−q , for some positive integer q, and exponential protocol T , clocked in polynomial
time, then B ∈ BPP// log2�.

Proof Suppose that B is decidable by a SmSM M, with fixed precision ε = 2−q ,
for some positive integer q, and exponential protocol T , in polynomial time O(na).
Since M has an exponential time schedule T (k), we can conclude that the size of
the oracle queries must be at most logarithmic in the size of the input, i.e., less then
or equal to b�log(n) + c. Moreover, there exists a constant α such that the number
of queries does not exceed αna and, consequently, the probabilistic query trees of
the SmSM will have a depth of at most αna .
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Let γ be the error probability ofmachineM and d ∈ N such that 2d > 2α/(1/2 −
γ ). The probabilities of each outcome of all oracle queries will be truncated up to
the precision 2−d−a�log(n), according with Proposition 11, in order to obtain error
probability of acceptance less than 1/2 − γ :

A(αna, 2−d−a�log(n)) ≤ 2 × αna × 2−d−a�log(n)

= 2αna

2d × 2a�log(n)

= 2α

2d
< (1/2 − γ ) .

Hence to approximate the probabilities of all queries with precision 2−d−a�log(n)
we have to know q + d + a�log(n) bits of li and ri , for 1 ≤ i ≤ b�log(n) + c.
Consider the prefix advice function f defined recursively as follows:

1. f (0) = q#l1�q+d#r1�q+d#l2�q+d#r2�q+d# · · · #lc�q+d#rc�q+d ;
2. f (x + 1) is obtained by concatenating f (x) with the bits q + d + ax + 1 to

q + d + ax + a of li and ri , for 1 ≤ i ≤ bx + c; then by adding the first q + d +
ax + a bits of li and ri for bx + c + 1 ≤ i ≤ bx + c + b. All the blocks of bits
are separated by #.

From advice f (x) a Turing machine has access to the value q (and then computes
ε), and to the approximations of the boundarynumbers li and ri , for 1 ≤ i ≤ bx + c by
doing the following: themachine reads 2(bx + c) nonsequential blocks of size a from
f (x), updating at the same time the approximations of li and ri , for 1 ≤ i ≤ bx + c,
and 2b nonsequential blocks of size q + d + ax + a, to get approximations of li and
ri , for bx + c + 1 ≤ i ≤ bx + c + b. Thus, given advice f (x), a Turing machine
can approximate li and ri with q + d + ax bits of precision, for 1 ≤ i ≤ bx + c.

Analyzing the advice function we can conclude that:

| f (x)| ≤ 2 × (q + d + ax) × (bx + c) +
x∑

i=0

2(bx + c) = O(x2) .

Since we only consider x at most logarithmic in the input size, n, we have
that | f (�log(n))| = O(log2(n)). Thus, the advice function g(n) = f (�log(n))
provides approximations of li and ri , for 1 ≤ i ≤ b�log(n) + c, with at least
q + d + a�log(n) bits of precision, as desired.

Therefore, to decide B in polynomial time with help by a prefix advice f ∈ log2,
we construct a Turing machine M′ that simulates M on the input word but when-
ever M queries the oracle with z, M′ compares the query with the corresponding
boundary numbers, i.e., with l|z| and r|z|; checks the shooting cases; and computes
the approximations to the probabilities with an error less than 2−d−a�log(n). Then
M′ simulates a path in the probabilistic query tree, that represents the oracle con-
sultation, by means of the computed probabilities, by tossing a coin d + a�log(n)
times. Note that this probabilistic query tree has a depth of at most αna and that the
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edge difference is less than 2−d−a�log(n). After simulating this path the machine M′
proceeds with the computation as M.

Turing machine M′ gives a wrong answer with probability less than γ + 1/2 −
γ = 1/2. Recalling that the SmSM M runs in polynomial time, that comparing
query words with boundary numbers and computing probabilities can also be done
in polynomial time, we conclude that B is decidable in polynomial time with advice
g(n) = f (�log(n)). �

4.5 Upper Bound with Explicit Time Technique

As we have seen in the previous sections, the use of boundary numbers raises the
question of whether we really can achieve the upper bound of BPP// log2�. We can
equally ask, under what circumstances is the upper bound actuallyBPP// log�? Here
we consider a special case where the upper bound does reduce to BPP// log�.

Using the physical time explicitly means that, given an exact expression for the
experimental time for a SmSM , we take good use of it to compute the boundary
numbers. We assume that we have an exact expression for the experimental time
t (z) = f (z − y) for cannon position z. As usual, the vertex position y is unknown,
but we have the explicit form of the function f . Of course, this approach can cost a
lot of computational resources since the function f may be computationally difficult
to compute.

In order to understand better the explicit time idea note that, in the unbounded
precision case, we use the advice function to encode approximations of the boundary
numbers, allowing us to simulate the oracle answers and to compute approximations
to the probabilities. The simplest formula for an explicit time consistent with our
assumptions in (4.1) would be, for some constant C > 0,

t (z) = C

|y − z| . (4.3)

To make use of this formula, we need C to be computable, but also we need bounds
on how quickly we can compute approximations to C . To further simplify matters,
we shall assume that C = 1.

Suppose that the SmSM writes a query z with |z| = k for k ∈ N. Then consider
the two boundary numbers lk and rk for the schedule T (k). If we consider the explicit
time, as the boundary numbers satisfy the property t (lk) = t (rk) = T (k), we have

lk = y − 1

T (k)
, rk = y + 1

T (k)
. (4.4)

Thus, given approximations to y, we can obtain approximations of lk and rk . We
consider that the schedule T is internal to the Turingmachine, i.e. the Turingmachine
is capable of computing it up to any precision. Thus, by looking at the expressions
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and considering the error propagation rules, we conclude that if we have d + 1 bits
of precision of y and A = 1/T (k), we can compute the boundary numbers with an
error less than 2−d .

Theorem 9 If B is decidable by a smooth scatter machine with unbounded precision
and exponential protocol T , clocked in polynomial time, then, considering explicit
time in the form (4.3) with C = 1, B ∈ BPP// log�.

Proof We refer to the proof of Theorem 7, providing now the advice function that
solves the problem in BPP// log�. All variables and constants are as in the proof of
Theorem 7.

Consider a SmSM M running in polynomial time and with schedule T (k), expo-
nential in k. By Theorem 7, we know that B can be decided by a probabilistic
Turing machine, M′ in polynomial time with access to an advice function f of size
O(log2(n)), which contains the first d + c + 2βx bits of li and ri for 1 ≤ i ≤ βx + c.

We consider another function g, defined recursively as follows: g(0) is the con-
catenation of the first d + c bits of y; g(x + 1) is the concatenation of g(x) with
the bits d + c + 2βx + 1 to d + c + 2βx + 2β of y. We can use g(x) to get the
first d + c + 2βx bits of y, therefore, by the previous reasoning, we can use the
approximations of y in order to compute the approximation of all lk and rk , for
1 ≤ k ≤ bx + c, with d + c + 2βx bits of precision as the Turing machine can com-
pute in polynomial time A with d + c + 2βx bits of precision.

Analyzing g(x)we conclude that |g(x)| = (d + c + 2βx) + (x + 1) = O(x). As
in our case, as x will be at most logarithmic in the size of the input, we conclude that
|g(�log(n))| = O(�log(n)).

Thus, we define a probabilistic Turing machine M′′ that on input w simulates
M′ on w but instead of using the advice f (|w|), uses the advice g(|w|). Since we
can recover the information of f from g in polynomial time and M′ runs in poly-
nomial time too, we conclude that our Turing machine runs in polynomial time and
decides B. �

Using Theorems 3 and 9 we can trivially state the following corollary.

Corollary 2 Considering explicit time in the form (4.3) with C = 1, B is decidable
by a smooth scatter machine with unbounded precision and exponential protocol T ,
clocked in polynomial time, if and only if B ∈ BPP// log�.

Theorem 10 If B is decidable by a smooth scatter machine with fixed precision ε =
2−q , for some positive integer q, and exponential protocol T , clocked in polynomial
time, then, considering explicit time in the form (4.3) with C = 1, B ∈ BPP// log�.

Proof We refer to the proof of Theorem 8, providing now the advice function that
solves the problem in BPP// log�. All variables and constants are as in the proof of
Theorem 8.

Consider a SmSM M running in polynomial time, with fixed precision ε = 2−q ,
for some positive integer q, and a schedule T (k), exponential in k. By Theorem 8,
we know that B can be decided by a probabilistic Turing machine M′ in polynomial
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time with access to an advice function f of size O(log2(n)), which contains the first
q + d + ax bits of li and ri for 1 ≤ i ≤ bx + c and the the value q.

We consider another function g, defined recursively as follows: g(0) is the con-
catenation of q with the first q + d bits of y; g(x + 1) is the concatenation of g(x)
with the bits q + d + 1 + ax to q + d + 1 + ax + a of y. We can use g(x) to get
ε and to get the first q + d + ax bits of y. Therefore, by the previous reasoning,
we can use the approximations of y to compute the approximation of all lk and rk
for 1 ≤ k ≤ bx + c with q + d + ax bits of precision, as the Turing machine can
compute in polynomial time A with q + d + ax bits of precision.

Analyzing g(x) we conclude that |g(x)| = (q + d + ax) + (x + 2) = O(x). As
in our case x will be at most logarithmic in the size of the input we conclude that
|g(�log(n))| = O(log(n)).

Thus, we define a probabilistic Turing machine M′′ that on input w simulates
M′ on w but instead of using the advice f (|w|), uses the advice g(|w|). Since we
can recover the information of f from g in polynomial time and M′ runs in poly-
nomial time too we conclude that our Turing machine runs in polynomial time and
decides B. �

Using Theorems 4 and 10 we can trivially state the following corollary:

Corollary 3 Considering explicit time in the form (4.3) with C = 1, B is decid-
able by a smooth scatter machine with fixed precision ε = 2−q , for some positive
integer q, and exponential protocol T , clocked in polynomial time, if and only if
B ∈ BPP// log�.

4.6 Conclusion

In the past two decades there was a growing of interest in non-conventional models
of computation inspired by the natural processes in biology, physics and chemistry.
Some of these models explore parallel processing, some others see advantage in
analogue components translated into real numbers, appearing as parameters in the
systems. In this paperwe explored an abstraction of the last category ofmodels, study-
ing an analogue-digital (hybrid) model of computation where the Turing machine is
coupled with a physical oracle.

Abstracting from other models, the model we propose is introduced as a labo-
ratory, where the computational power can be studied depending on the protocol
between the Turing machine and the analogue component—being it infinite pre-
cision, unbounded precision and fixed precision, and still open to other forms of
communication. The physical oracle itself is a measurement that the Turing machine
performs in the physical world as an abstract scientist. The communicating between
the Turing machine and the physical oracle is made through a query tape where the
parameter needed to initialize the experiment is written. The consultation of the ana-
logue oracle has a cost that is not just one time step of computation as a consequence
of the unavoidable time costs inherent to the physical process.
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We considered a particular physical oracle, the smooth scatter experiment or
SmSE . This experiment is a symmetric two-sided measurement of distance and it is
governed by elementary Newtonian mechanics. The SmSE belongs to the class of
physical oracleswith exponential physical time t (the intrinsic timeof the experiment)
characterized by the following axioms:

1. Real values—The experiment is designed to find a physical unknown parameter
y ∈ ]0, 1[;

2. Queries—Each query is a binary string z1z2 · · · zk denoting a dyadic rational
z = 0.z1z2 · · · zk ;

3. Finite output—The outcome is either y < z, y > z, with possible mistakes, or
timeout;

4. Protocol timer—There is a time schedule T : N → N, so that the time given to
any query of length k is bounded by T (k);

5. Sufficiency of the protocol—If |y − z| > 2−|z|, then the result is not timeout;
6. Repeatability—Identical queries will result in identical results including identical

timeouts.

This particular set of oracles led to a conjecture, already discussed in [5, 20],
stating that for all “reasonable” physical theories and for all measurements based on
them, the physical time of the experiment is at least exponential, i.e., the time needed
to access the nth bit of the parameter being measured is at least exponential in n.

4.6.1 The Computational Power of the Analogue-Digital
Machine

Usingdifferent protocolsweget differentways of communicating between theTuring
machine and the analogue device—the SmSE in the present case (see Sect. 4.3).
Different protocols relate with different measurement algorithms (see Sect. 4.3.2),
defining three different types of smooth scatter machine or SmSM .

Codifying in the vertex of a SmSE enough information, we were able to use
the oracle to both generate sequences of non-biased coin tosses and, performing a
measurement, solving decision problems of a suitable nonuniform complexity class.
To measure the position of the vertex, we considered a bound for the consultation
time—a time schedule—exponential in the precision (number of bits) of the query.
Note that, although the lower bounds were proved for a specific analogue-digital
machine—the SmSM—they are the same for every oracle we studied (see [7]).

Then we constructed advice functions encoding enough information to simulate
SmSE queries and established upper bounds, namely we proved that logarithmic
squared size advice suffices to encode approximations to the so-called boundary
numbers (see Sect. 4.4.6) as in [10]. Afterwards, again as in [10], we used an explicit
time technique to reduce logarithmic squared advice just to logarithmic advice. Since
boundary numbers exist, at least for the two-sided oracles with exponential physical
time, we also conclude that the upper bounds are common to all two-sided physical
oracles with such physical times.
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Table 4.1 Main non-uniform complexity classes relative to the different protocols of the analogue-
digital machine clocked in polynomial time

Infinite Unbounded Fixed

Lower Bound P/ log� BPP// log� BPP// log�

Upper Bound P/ log� BPP// log2�
Exponential schedule

BPP// log2�
Exponential schedule

Upper Bound Explicit

Time

— BPP// log� Exponential

schedule

BPP// log� Exponential

schedule

Our statements on the computational power of the analogue-digital machine
clocked in polynomial time are summarized in the Table 4.1.

4.6.2 Open Problems

We have two non-trivial open problems related to oracles with exponential consulta-
tion time: (a) in the infinite precision case, to know if the lower and the upper bounds
can be made to coincide without assumptions on the time schedule and (b) in the
error-prone cases, to know if the lower and the upper bounds can be made to coincide
without using the explicit time technique, namely, it is not known if there exists a
set not belonging BPP// log�, decidable by a smooth scatter machine (or any other
equivalent two-sided machine) in polynomial time.

Acknowledgments To Bill Tantau for the use of pgf/TikZ applications.

Appendix A: Nonuniform Complexity Classes

A nonuniform complexity class is a way of characterising families {Cn}n∈N of finite
machines, such as logic circuits, where the element Cn decides a restriction of some
problem to inputs of size n. Nonuniformity arises because for n �= m, Cn may be
unrelated to Cm ; eventually, there is a distinct algorithm for each input size (see
[17]). The elements of a nonuniform class can be unified by means of a (possibly
noncomputable) advice function, as introduced in Sect. 4.4, making up just one
algorithm for all input sizes. The values of such a function provided with the inputs
add the extra information needed to perform the computations (see [18]).

The nonuniform complexity classes have an important role in the Complexity
Theory. The class P/poly contains the undecidable halting set {0n: n is the encoding
of a Turing machine that halts on input 0}, and it corresponds to the set of families
decidable by a polynomial size circuit. The class P/ log also contains the halting set
defined as {02n : n is the encoding of a Turing machine that halts on input 0}.
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The definition of nonuniform complexity classes was given in Sect. 4.4. Generally
we consider four cases: C/F, C/F�, C//F, and C//F�. The second and the fourth
cases are small variations of the first and third, respectively. To understand the dif-
ference, note thatC/F is the class of sets B for which there exists a set A ∈ C and an
advice function f ∈ F such that, for everyw ∈ {0, 1}�,w ∈ B iff 〈w, f (|w|)〉 ∈ A. In
this case, the advice function is fixed after choosing the Turing machine that decides
the set A. As it is more intuitive to fix the Turing machine after choosing the suitable
advice function, we considered a less restrictive definition, the type C//F: the class
of sets B for which, given an advice function f ∈ F, there exists a set A ∈ C such
that, for every w ∈ {0, 1}�, w ∈ B iff 〈w, f (|w|)〉 ∈ A.

The following structural relations hold between the nonuniform classes used
throughout this paper:

P/ log� ⊆ BPP/ log� ⊆ BPP// log� .

This result is trivial since we can just use the same Turing machine and the same
advice function.

Appendix B: The Cantor Set

We prove Proposition 6 (see [10, 12] for further details). This proposition allows
us to frame the distance between a dyadic rational and a real number. Recall that a
dyadic rational is a number of the form n/2k , where n is an integer and k is a positive
integer. If such a number belongs to C3 then it is composed by triplets of the form
001, 010 or 100.

Proposition 12 For every x ∈ C3 and for every dyadic rational z ∈ ]0, 1[ with size
|z|= m, if |x − z| ≤ 1/2i+5, then the binary expansion of x and z coincide in the
first i bits and |y − z| > 1/2−(m+10).

Proof Suppose that x and z coincide in the first i − 1 bits and differ in the i th bit.
We have two possible cases:

z < x : In this case zi = 0 and xi = 1 and the worst case for the difference occurs
when the binary expansion for z after the i th position begins with a sequence of 1s
and the binary expansion for x after i th position begins with a sequence of 0s.

z > x : In this case zi = 1 and xi = 0 and the worst case for the difference occurs
when the binary expansion for z after i th position begins with a sequence of 0s and
the binary expansion for x after the i th position begins with a sequence of 1s:

We can conclude that in any case |x − z| > 2−(i+5). Thus, if |x − z| ≤ 2−(i+5),
then x an z coincide in the first i bits.

The binary expansion of z after some position m is exclusively composed by 0s
and since x ∈ C3, it has at most 4 consecutive 0s after the mth bit. Thus, supposing
that x and z coincide up to mth position, after this position they can coincide at most
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in the next 4 positions so they cannot coincide in m + 5 bits. Therefore, by the first
part of the statement, |x − z| > 2−(m+10). �

Appendix C: Random Sequences

Propositions 7 and 8 showhow the SmSE with unbounded or fixed precision could be
seen as a biased coin. Given a biased coin, as stated by Proposition 9, we can simulate
a fair sequence of coin tosses. Herein, we present the proof of such a statement.

Proposition 13 Given a biased coin with probability of heads δ ∈ ]0, 1[ and a con-
stant γ ∈ ]0, 1[, we can simulate, up to probability ≥ γ , a sequence of independent
fair coin tosses of length n by performing a linear number of biased coin tosses.

Proof Consider that we have a biased coin with probability of heads δ ∈ ]0, 1[. To
simulate a fair coin toss we perform the following algorithm: Toss the biased coin
twice and,

1. If the output is HT then output H ;
2. If the output is T H then output T ;
3. If the output is HH or T T then repeat algorithm.

As the probability of HT is equal to T H , we have the same probability of getting
a H and a T and thus we simulate a fair coin. The probability that the algorithm halts
in one run is r = 2q(1 − q) and the probability of running it again is s = 1 − δ. We
want to run the algorithm until we get a sequence of fair coin tosses with size n. To
get this sequence we may need to run the algorithm more than n times and thus we
will study the total number of coin tosses required by considering the variable Tn
denoting the number of runs until we get n fair coin tosses. The value Tn is a random
variable that is given by the negative binomial distribution

Tn
d= N B(n, s) .

In this case we have the following mean and variance:

μ = ns

r
+ n = n

r
, υ = ns

r2
.

Now, using the Chebyshev’s inequality, we get

P(| Tn − μ |≥ t) ≤ υ

t2
.

And thus, by considering t = αn, for some α, we get

P(Tn ≥ μ + αn) ≤ ns

r2(αn)2
<

1

r2α2n
.
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Since the worst case is for n = 1, in order to get the probability of failure less than
1 − γ we need

α ≥ 1

r
√

(1 − γ )
.

Noticing that Tn ≥ μ + αn, we find that the total number of runs is

n

r
+ 1

r
√

(1 − γ )
× n = n

r

(
1 + 1√

1 − γ

)
.

Since we toss a coin two times in each run, we get that the total number of coin tosses
is linear in n

n

δ(1 − δ)

(
1 + 1√

1 − γ

)
.

�
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Chapter 5
Physical and Formal Aspects
of Computation: Exploiting Physics
for Computation and Exploiting
Computation for Physical Purposes

Bruce J. MacLennan

Abstract Achieving greater speeds and densities in the post-Moore’s Law era will
require computation to be more like the physical processes by which it is realized.
Therefore we explore the essence of computation, that is, what distinguishes com-
putational processes from other physical processes. We consider such issues as the
topology of information processing, programmability, and universality. We sum-
marize general characteristics of analog computation, quantum computation, and
field computation, in which data is spatially continuous. Computation is convention-
ally used for information processing, but since the computation governs physical
processes, it can also be used as a way of moving matter and energy on a micro-
scopic scale. This provides an approach to programmable matter and programmed
assembly of physical structures. We discuss artificial morphogenesis, which uses
the formal structure of embryological development to coordinate the behavior of a
large number of agents to assemble complex hierarchical structures. We explain that
this close correspondence between computational and physical processes is charac-
teristic of embodied computation, in which computation directly exploits physical
processes for computation, or for which the physical consequences of computation
are the purpose of the computation.

5.1 Introduction

“Unconventional computation” is, of course, a negative term, and is defined by ref-
erence to “conventional computation,” which is quite specific. Characteristics of
conventional computation include digital (in fact binary) data and program rep-
resentation, von Neumann architecture, (primarily) sequential program execution,
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addressable random-access memory, information processing implemented through
sequential electronic binary logic, irreversible operations, classical (non-quantum)
operation, etc. Unconventional computation may be defined, then, as computation
that differs in one or more of these characteristics.

Given the success of conventional computation, it is reasonable to ask the reasons
for studying unconventional computation. One motive is purely scientific: we would
like to understand the full range of computational processes, in natural systems aswell
as in computers. Information processing is widespread in nature, but for themost part
natural computation does not have the characteristics of conventional computation,
and therefore we need to understand computation in a broader sense.

5.1.1 Post-Moore’s Law Computation

The secondmotive for studying unconventional computation is technological, for it is
apparent that Moore’s Lawmust come to an end. First, the atomic structure of matter
places limits on the smallness of electronic components and the density with which
they can be assembled.Moreover, it is likely that economics will defeatMoore’s Law
even before it reaches these physical limits [60]. Therefore, in the post-Moore’s Law
world, progress in computation will depend on processing information in new ways,
that is, on unconventional computation. The end of Moore’s Law is on the horizon,
and so it is important that we develop post-Moore’s Law technologies to the point
of practicality before the end is reached.

What might be the characteristics of post-Moore’s Law computation? Conven-
tional computer technology has benefitted from clearly separated hierarchical lev-
els. Programming abstractions, such as data structures, are implemented in terms
of primitive data elements, such as floating-point numbers and pointers, which are
implemented in terms of many bits, each of which is represented by many electrons.
Similarly, conceptually primitive operations, such as floating-point division, may be
implemented by iterative algorithms, themselves implemented in sequential logic. In
particular, the Boolean logic level is largely independent from those above and below
it. That is, on one hand, Boolean logic can be used to implement various computer
architectures, and on the other, Boolean logic can be implemented in many different
technologies (e.g., relay, vacuum tube, transistor, VLSI).

Computing abstractions are implemented in terms of lower-level abstractions, and
ultimately in the laws of physics, but post-Moore’s Law computing technologies can-
not afford these multiple hierarchical levels. To permit greater densities and speeds,
computing abstractions and physical laws will need to be brought closer together,
but we cannot change the laws of physics, so this assimilation of computation and
physics will have to be accomplished by developing computing paradigms that are
more like the laws of physics. Therefore post-Moore’s Law computing will have
more of the characteristics of the underlying physical processes.
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For example, the laws of physics are fundamentally concurrent; individual par-
ticles respond in parallel to fields, forces, and other particles. Therefore, we expect
parallel computation to be the norm in the post-Moore’s Law era.

The laws of physics are expressed in differential equations (or partial differential
equations), which describe continuous change in continuous quantities. Therefore,
analog computation can be expected to increase in importance. Often operations
can be implemented in a few analog components, which would require many digital
components (see Sect. 5.3.2 below). Therefore analog representations are preferable
for achieving higher densities.

It might be objected that quantum mechanics applies at the smallest scales, and
therefore that digital computation is better matched to the physics at these scales. It is
true that at very small scales certain quantities, such as charge, spin, and energy, are
quantized. On the other hand, quantum wave functions are continuous functions of
space and time, and the Schrödinger equation is a differential equation. Even qubits
are continuous linear combinations of the basis states.

Conventional computation takes place indiscreteor sequential time (seeSect. 5.2.3
below), in which operations take place in sequence at discrete times. (Parallel com-
putation does not contradict the essentially sequential execution of digital compu-
tation.) At both the classical and the quantum levels, however, the laws of physics
are expressed by differential equations. Therefore, as our computational processes
become more like physical processes, we expect continuous-time processes to play
an increasing role in post-Moore’s Law computation.

As we approach very small scales, noise, uncertainty, defects, imperfections, and
faults all become more likely, and ultimately unavoidable. Therefore, in the post-
Moore’s Law era we will have to abandon the idea that we are striving for systems
that approximate evermore closely an ideal,which is perfect, noiseless, fault-free, etc.
Rather,wewill take these phenomena as a given, and design systems that exploit them
rather than trying to avoid or mitigate them. Natural computation, which we find in
living systems, has much to teach us about exploiting physical phenomena for robust
and efficient information processing. For example, “noise” can be reconceptualized
as a source of free variability, which can be used for escaping from local optima and
for many other purposes [31, 37].

5.2 The Essence of Computation

Given a growing assimilation of computation to physics, one might wonder what dis-
tinguishes computational processes from other physical processes. Is every physical
process a computation? What common properties distinguish information process-
ing, computation, and control from other physical processes [40]?

All of these computational processes use physical arrangements (physical form)
to represent something else, and use physical rearrangement (transformation) to rep-
resent some abstract process. What distinguishes a computation from other physical
processes is that in principle the goals of the process could be achieved by any phys-
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ical system that realized the same abstract transformation (a property calledmultiple
realizability) [29, 35]. That is, while computationmust be physically realized, it does
not depend essentially on a particular physical realization.

5.2.1 The Four Whys of Computation

The preceding observation raises several issues, which are addressed best in terms of
Aristotle’s “fourwhys” (commonly knownas his “four causes”) (Aris.,Phys. II 194b–
195a, Met. 983a–b, 1013a–1014a). These are four sorts of answers to the question
of why an object or process is what it is. In general, none of the four is sufficient
on its own, and they differ in explanatory value depending on the subject matter and
motivation of the question. His taxonomy is useful for classifying explanations not
only in biological systems but also in artifacts, and therefore it can be applied to both
natural and artificial information processing and control [40].

One of the whys answers the question: What is this? Traditionally it is called the
formal cause because it accounts for an object or process in terms of its form or
pattern: the formula that describes it. The second why answers: From what is this
made? It is known traditionally as thematerial cause, since its explanation is in terms
of the unformed stuff which gains its specific properties through the formal cause.
These two whys are central to our topic, since information is realized by material
forms, and information processing by physical rearrangement of these forms [24].
Although computation requires some material realization of its formal processes, it
is independent (qua computation) of its particular material realization. Moreover,
form and matter are relative terms, and the formed matter at one level of organization
can provide the unformed matter for a higher level. For example, in conventional
computers the addressable bytes and basic operations are the medium that software
formally organizes, but the bytes and operations are themselves organized structures
of lower-level objects and processes (logic gates).

The thirdwhy answers:Bywhat is this object or process created and sustained? It is
the familiar efficient cause. Computation must be powered, either by an initial supply
of energy or by a continuing supply. Without its efficient cause, the computation is
a potentiality that is not actualized.

The last why answers the question: For the sake of what does this object exist or
this process take place? Traditionally it is called the final cause since it addresses the
end, goal, or purpose of something. Artifacts, such as manufactured computers, are
designed for somepurpose, but biological systems also have functions that they fulfill.
The heart circulates the blood, the immune system fights infections, the nervous
system coordinates behavior and cognition, and so on.

The final cause is essential to the definition of computation, for what distinguishes
computational and information processing systems from other physical systems is
that their goal or function can be performed by any system with the same formal
structure, independent of its material realization [31, 38, 40]. That is, their func-
tion is information processing as opposed to some other physical process. One test
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of whether a system is computational is to ask whether it could be replaced with
another systemwith the same formal structure and still achieve its ends (i.e., whether
it is multiply realizable). Of course, many natural systems serve multiple functions
(e.g., circulation of the blood distributes oxygen, but also hormones, which transmit
information), and so they might not be purely computational [40]. From this per-
spective, it is remarkable the extent to which the function of the nervous system is
pure computation and control.

The relationship between a computational or information processing system and
its physical realization can be expressed by the realization homomorphism [31],
which says that a physical system realizes an abstract computation if there is a
homomorphism from the physical system to the abstract system. The significance of
the homomorphism is that it preserves some of the algebraic structure of the physical
system, but not all of it. This captures our intuition that the physical system can have
many properties that are irrelevant to its realization of the abstract system. However,
we must also recognize that many realizations are only approximate. For example,
the abstract computation might involve real numbers that are only approximately
realized by floating-point numbers in a physical computer.

5.2.2 The Topology of Information

Rolf Landauer reminded us that information is physical; it must be represented in
some physical medium [24]. But its essence—what makes it this information versus
that information—lies in its form. Therefore differences of information are differ-
ences of abstract form, which can be described by topology, the science of abstract
form and similarity.

The realization homomorphismH is a surjectionmapping the physical state space
S onto the abstract state space �, that is, H : S � �. In the physical state space
we distinguish the information-bearing degrees of freedom (IBDF) from the non-
information-bearing degrees of freedom (NIBDF) [4]. For example, the IBDF may
be macrostates representing, for example, the bits 0 and 1, while the NIBDF may
include the positions, momenta, etc. of individual particles, which do not represent
information and which manifest as heat, noise, etc. The IBDF are managed by the
computational process in order to realize the computation, but the NIBDF are not
managed or are managed only in aggregate to keep them from interfering with the
computation. Let E ⊂ S ××× S be the equivalence relation between physical states that
are equivalent in their IBDF, and define the quotient spaceQ = S/E, which represents
the IBDF. Then the realization homomorphism can be factored H = A ◦ I , where
I : S � Q is a surjection from the physical state space onto the IBDF, andA : Q ↔ �

is a bijection between the IBDF and the abstract state space.
Conventional computation is digital; it uses discrete representations of informa-

tion. Formal models of digital computation, such as finite-state machines and Turing
machines, use finite, discrete alphabets of symbols or states, in which each element
is identical to itself and completely different from every other element. This is a
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discrete topology (�, δ), in which the metric is defined δ(x, x) = 0 for x ∈ � and
δ(x, y) = 1 for all y �= x. There are only two possible distances in a discrete metric
space. A finite discrete space with 2n elements is homeomorphic to the space {0, 1}n
with the ∞-product metric1; this is of course the basis of binary representations on
digital computers. Other, less trivial, topologies can be defined over these discrete
spaces for the purposes of computation. For example, the discrete space {0, 1}n can
represent the integers {0, 1, . . . , 2n − 1} with their usual metric.

Traditionally, analog computers have operated on bounded real numbers repre-
sented by a physical quantity, but they are also capable of operating on other contin-
uous quantities, such as complex numbers (represented, for example, by the phase
and amplitude of a periodic signal). Moreover, quantum computers operate on com-
plex linear superpositions of basis states (e.g., z|0〉 + z′|1〉, with z, z′ ∈ C). Further,
analog field computers can operate on fields [33], that is, spatially continuous dis-
tributions of continuous quantity (see Sect. 5.3.4). Images and continuous signals
are examples of fields. All of these information spaces are continua, which may be
defined formally as connected second-countable metric spaces. Second-countability
means that they have a countable dense subset (as, for example, the rationals are a
countable dense subset of the reals).

More generally, unconventional computers may be hybrid, that is, capable of
operating on both discrete and continuous information spaces. These are products
of spaces that are individually discrete or continuous spaces. The U-machine model
encompasses both digital and analog computing (Sect. 5.3.5).

5.2.3 The Topology of Information Processing

Computation takes place in time. In conventional digital computation, operations are
performed at discrete points in time. This is properly described as sequential-time
computation since there is no implication that the operations be performed at regular
time intervals, as in discrete-time computation [66].More generally computationmay
be described by a partial order defining how later computations depend on earlier
ones, thus permitting operations to be performed concurrently.

Analog computation can also be defined over either discrete or sequential time,
as in the BSS model of computation over the reals [5]. Most artificial neural network
models are sequential-time analog computations, since the neural operations do not
happen at specific times, but require only that their inputs be available. Even most
recurrent neural networks operate in sequential time, since the sequence of their
outputs depends only on the sequence of their inputs. Neural networks can of course
operate in discrete time, but only if the neural computations are clocked.

Traditionally, however, analog computers have operated in continuous time, inte-
grating differential equations, which serve as programs. But there is also a continuous

1The ∞-product metric on the Cartesian product of two spaces (X, δ1), (Y , δ2) is defined
δ∞[(x, y), (x′, y′)] = max[δ1(x, x′), δ2(y, y′)].
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version of sequential computation, in which the computation is defined over a set of
“instants” homeomorphic to a closed or half-open interval of the real numbers. That
is, sequence is defined, but not duration or rate. More generally, both discrete and
continuous concurrent computation can be defined by a partial order that defines the
dependence of later computations on earlier ones. Operations are permitted to take
place sequentially or concurrently, so long as this partial order is respected.

5.2.4 Programmability

Programmability is an important property of many computation systems. A system
is programmable if it is capable of performing a wide range of functions depending
on some finite systematic external specification (a program). Programmable systems
are valuable because they can be used for many different purposes and their behavior
can be adapted to changing circumstances, simply by changing the program.

Computational programs are usually described textually; for example sequential-
time computations (digital or analog) are described by programs in programming
languages, and continuous-time computations are described by ordinary or partial
differential equations. Programs can also be described by diagrams, such as flow-
charts for sequential-time computations and block diagrams for continuous-time
processes.

The preceding are examples of discrete programs, but continuous programs are
also possible. For example, some analog computers permit functions to be described
by continuous graphs (Sect. 5.3.2.1). Moreover, many useful computations can be
defined as relaxation processes in which the state descends a potential surface to
approach an attractor, which is the solution to the problem (Sect. 5.3.2.3). Such
processes may be continuous-, discrete-, or sequential-time depending on how the
state changes as the system computes. In these cases the program, which governs the
computation, is defined by the potential surface, which therefore defines a continuous
program, which wemight call a guiding image [29, 31]. The metaphors are different:
instead of writing a program, we could say we are drawing or sculpting a guiding
image. While it is certainly possible to create such a continuous program manually,
more likely it will emerge from an adaptive or training process, as happens in artificial
neural networks.

5.2.5 Universality

Programmability raises the issue of universality: Is a computer capable of computing
anything, given an appropriate program? For example, we know theUniversal Turing
Machine (UTM) is capable of computing any Turing-computable function. That is,
for any Turing machine there is a UTM plus program combination that is equivalent
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(computes the same function). However, we must be careful applying these familiar
ideas to unconventional computation.

When comparing the power of different models of computation, it is important
to remember that all models are idealizations of the things they are modeling, and
these idealizations are intended to make the model more tractable than the original
system for some purpose. Therefore, each model exists in a (usually implicit) frame
of relevance, which delimits the sort of questions it is suited to answer [31, 35]. A
model cannot be expected to give useful answers when applied outside of its frame of
relevance; indeed, the answers are often misleading, more a reflection of the model
than the system under investigation.

Therefore, while it is very tempting to compare various models of unconventional
computation to the Church-Turing model, we must be cautious doing so. This model
was developed to address questions of effective calculability in the foundations of
mathematics, and they delimit its primary frame of relevance. It makes many idealiz-
ing assumptions, such as that tokens are discrete and can be perfectly discriminated
from their background and classified as to type, etc. [31]. Two machines or programs
are considered equivalent in power if they compute the same input–output function.
Efficiency in analyzed in terms of asymptotic complexity, which ignores constant
scale factors. And so forth.

While the conventional theory of Church-Turing computation has proved enor-
mously fruitful, there are many important issues that are outside of its frame of
relevance. For example, an important question in natural computation is how brains
are able to process complex, noisy sensorimotor information in real time using rela-
tively slow, low-precision computing devices (neurons). The conventional theory of
computation is not equipped to deal with issues in real-time control. Further, asymp-
totic analysis is not very useful because (1) the constantsmatter, and (2) the size of the
input is usually bounded. Therefore, inmany of the contexts in which unconventional
computation is relevant, such as natural computation and post-Moore’s Law compu-
tation, the idealizing assumptions of Church-Turing computation are inappropriate,
and different models, which make different assumptions, are more useful [31]. In
these contexts, it is not usually appropriate to consider two computations equivalent
solely because they compute the same function, and therefore it is not very useful
to measure the power of a model of computation in terms of the class of functions
it computes. This is only one of the criteria by which models of computation can be
compared. In the context of unconventional computing there are many dimensions
for comparing the capability of computational models.

5.3 Computation for Formal Ends

In order to understand the full range of unconventional computation, it is useful to
explore the relation between the computational processes and their physical realiza-
tions. In this section we address computation in its usual sense, wherein the principal
goal is an abstract information process, and the realization is a means to this end.
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That is, the material processes are serving formal purposes. In Sect. 5.4 we consider
the opposite situation, which is less familiar.

5.3.1 General Considerations

What are the requirements for unconventional realizations of abstract information and
control processes or computations? In general, any reasonably controllable, mathe-
matically describable physical process can be used for computation, including living
systems, such as slime molds and bacterial mats [1]. We can outline some more
specific considerations [35]. First we need a physical process that has at least the
algebraic structure of the desired computation, so that the realization homomorphism
holds. Therefore, we need to have sufficient control over the physical arrangements
to implement the required structure. For general-purpose computation, we will want
some flexibility in making these arrangements, so that any computation in a useful
class can be implemented. In this case, we also may consider programmability, that
is, whether there is some systematic way to set up the physical process in accord
with an abstract description (the program).

Of course, the applicationmay place additional restrictions on the class of admissi-
ble realizations. For example, some physical processes might be too slow or consume
too much energy for the application. On the other hand, many potential applications
do not require high speed, and a slower physical process, which is better matched to
the application requirements, may have other advantages, such as energy efficiency,
power source, stability, robustness, programmability, or precision. Moreover, many
applications do not require high precision or faultless operation, and computation and
control in nature provide many examples of how to tolerate and even exploit noise,
errors, faults, imprecision, defects, indeterminacy, etc. For example, they can be used
as sources of free variability for escaping from local optima, breaking deadlocks,
driving exploration, etc. [41].

Useful computations require transduction, that is, the transfer of information from
the environment into the computation, and the transfer of information and control
from the computation back out into the environment [31, 35]. Both computation and
transduction involve the formal and material aspects of physical processes. Com-
putation, as we’ve seen, is generically realizable; that is, it can be realized by any
physical process with the required formal structure. On the other hand, transduc-
tion provides the interface between the computational medium and specific physical
systems (e.g., a photoreceptor or temperature sensor for input, an LED display or
servomotor for output). In principle, a pure input transducer transfers the form from
one material (the input medium) to another material (the computational medium),
and a pure output transducer transfers the form from the computational medium to
the output medium. In practice, pure transducers are rare, for there is usually some
(intended or unintended) change in the form in addition to the intended material
change; for example, the input might be filtered, digitized, limited, etc. Thus most
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transducers combine some information processing or computation with the change
of medium.

5.3.2 Analog Computation

Analog computation is an important unconventional computing paradigm. Since
the laws of physics are continuous, it is likely to become more important in the
post-Moore’s Law era, because it can be more directly realized [44]. In principle,
any continuous physical quantities can be used as a medium for analog computing.
Electronic analog computing, in which real numbers are represented typically by
current, voltage, or charge, is most familiar, but there are many other possibilities.
For example, mechanical analog computers have represented numbers by angular
or linear displacement. Concentrations of substances that are continuous or approx-
imately continuous can be used (as in reaction-diffusion computation [2]). Light is
an attractive medium [3].

In choosing an analog computation medium, we must also consider the physical
realization of the abstract operations required by the computation (e.g., addition,
subtraction, multiplication, integration, filtering, various transcendental functions).
The virtue of analog computation is that common, useful operations often have simple
realizations. For example, addition can be performed by simply combining currents,
charges, or light intensities; integration can be performed by charging a capacitor or
by accumulation of a chemical reaction product.

One critical question in any analog computing technology is precision, which
refers to the quality of a representation. Precision has two major components: reso-
lution, which refers to the fineness of the representation, and stability, which refers
to its ability to maintain its value over the duration of the computation. Precision
can be expressed as a fraction of full-scale variation of a variable (the difference of
its maximum and minimum values). Doubling the precision of an analog represen-
tation or computation can be very expensive compared to doubling digital precision
(add one more bit), since it requires higher quality devices [32]. Fortunately, high
precision is not required for many applications and for some approaches to analog
computing, such as neural networks. In general, natural computation provides many
examples of the utility of low-precision analog computing.

5.3.2.1 Programming Techniques

Certain basic operations are simple to implement in many analog computing tech-
nologies.Asmentioned, direct combination of physical quantities can often be used to
implement analog addition, u(t) = v(t) + w(t). Some physical quantities are signed
(e.g., voltage, current, charge) and can be used directly to represent signed quanti-
ties, others are not (e.g., intensities, concentrations of chemicals). In the latter case,
signed quantities can be represented as differences of positive quantities. That is,
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instead of one signed variable v(t), we use two non-negative variables, v+(t) and
v−(t), that implicitly represent v(t) = v+(t) − v−(t). The analog algorithm must be
re-expressed in terms of the differential quantities. Given a signed representation,
subtraction [u(t) = v(t) − w(t)] and negation [u(t) = −v(t)] are easy to implement.

Positive constant multiplication, u(t) = cv(t) for c > 0, can be implemented by
passive attenuation or active amplification. Signed constant multiplication can be
implemented directly or in terms of the signed operations. The assumption here is
that the scale factor c must be programmed, either externally (e.g., by adjusting a
potentiometer) or internally (e.g., by programming a floating-gate transistor), and
that this is a relatively slow process, which might not be under analog program
control. Therefore, we contrast it with full variable multiplication, u(t) = v(t) ×
w(t), in which both factors can be the result of ongoing analog computation. Direct
analog implementation can be more difficult than constant multiplication, but it
can be accomplished. For example, a squaring operation can be used to implement
multiplication by [56, p. 92]:

v × w = 0.25[(v + w)2 − (v − w)2].

Squaring can be implemented directly without multiplication [56, chap. 3]. This
illustrates an important principle of analog computing: we cannot transfer our dig-
ital intuitions about what is simple into the analog domain. In the analog domain,
apparently complicated operations, such as square, square-root, logarithm, and expo-
nential, can have more direct implementations than apparently simpler operations,
such as multiplication. Certain nonlinear and transcendental functions can be built
into an analog computer as basic operations.

Division, u(t) = v(t)/w(t), has to be handled carefully, since a small divisor can
saturate the quotient register. Similarly, although analog implementation of differ-
entiation, u(t) = v̇(t), is generally simple, the operation is problematic since it is
sensitive to high-frequency noise, which it amplifies. One solution is to apply a low-
pass filter to the differentiator’s input. Alternatively, analog computations involving
differentiation can be recast as integrations.

Integration usually has a straightforward implementation as the accumulation of
some quantity:

u(t) = u0 +
∫ t

0
v(τ )dτ.

The integrator is initialized to the constant of integration u0 at the beginning of the
computation. This implements a differential equation u̇(t) = v(t)with an initial value
u(0) = u0.

For some applications (such as real-time control programs) the integration will be
with respect to real time. In others, time in the analog computer will be independent
of time in the abstract computation; it might integrate slower or faster. To ensure
accurate results, the rate of analog integration has to be considered, since if it is
too fast it may exceed the high-frequency response of the integrator, and if it is too
slow, quantities will drift. Therefore analog integration often involves time scaling,
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in which time t in the computer is related to time τ in the abstract computation
by t = bτ for some b > 0. To integrate the abstract differential equation u̇(τ ) =
v(τ ), that is, u(τ ) = ∫ τ

0 v(τ ′)dτ ′, the analog computer uses the scaled integration
u(t) = b−1

∫ t
0 v(t

′)dt′. In electronic analog computers this can be accomplished by
decreasing the integrator input gain by a factor of b.

Since analog computing represents abstract quantities directly by physical quanti-
ties,magnitude scaling is another important consideration.Avariable x in the abstract
computation, with a certain range of values, must be mapped into a physical quantity
v, with a dynamic range and precision limited by the physical device. Exceeding the
device’s operating range can lead to inaccuracy through distortion. Magnitude scal-
ing is accomplished by choosing a scale factor, v = ax, which is small enough to stay
within the device’s dynamic range, but not so small that important differences are
less than the device’s resolution. Therefore, the variables in the abstract computations
have to be scaled, and differential equations (or integrations) need to be adjusted to
incorporate the scale factors. Moreover, in addition to the explicit variables, there
are implicit variables corresponding, for example, with derivatives ẋ, ẍ, etc. These
too need to be scaled with the equations adjusted accordingly.

Some analog computers provide tunable band-pass filters, which can be used to
performadiscrete Fourier transformon a signal.Others provide analogmatrix–vector
multiplication inwhich the elements of thematrices and vectors are continuous quan-
tities, and the multiplications and additions are implemented by analog computation.
That is, u(t) = Mv(t), where uj(t) = ∑n

k=1 Mjkvk(t). This operation can be used
to implement linear operators, such as filters. Another useful operation is a noise
generator, which produces Gaussian white noise, which can be adjusted and filtered
to have desired characteristics. Randomness is useful in some analog algorithms.
Simple decision making can be implemented by sigmoid functions:

σ(s) = 1

1 + e−βs
.

Then a differential equations such as ẋ = σ(s − θ)F(x, y, . . .) + σ(θ − s)
G(x, y, . . .) will be governed by F(x, y, . . .) if s is above the threshold, s > θ , and
by G(x, y, . . .) if s < θ , with β controlling the sharpness of the transition.

Some analog computers provide means for computing arbitrary functions by
means of a continuous version of table lookup. This mechanism allows the computa-
tion of functions for which there is no known closed-form description, or that would
be too complicated to compute from their closed forms. To implement such a func-
tion, its graph {(x, f (x))|x ∈ [xlwb, xupb]} is represented in a suitable two-dimensional
medium.When this medium is loaded in the computer, it can compute u(t) = f [v(t)].
Similarly, an arbitrary binary function g can be computed by representing its graph
(x, y, g(x, y)) in a suitable three-dimensionalmedium. These are examples of guiding
images, i.e., continuous representations of analog algorithms (Sect. 5.2.4 above).
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5.3.2.2 General-Purpose and Universal Computation

Universality is an important question for any computing paradigm, for it tells us what
are the minimal requirements for performing any computation in a large class of
possible computations. Claude Shannon proved fundamental universality theorems
for the differential analyzer, whichwere completed, corrected, and extended by Pour-
El, Lipshitz, and Rubel [25, 57, 62, 63].

A related question is the power of analog computing relative to Turing computabil-
ity, but it presents an immediate paradox. On the one hand, it is easy to show that the
ability to operate on arbitrary real numbers confers super-Turing power (e.g., there
is a real constant whose bits encode the solutions to the Halting Problem). On the
other hand, analog computers are routinely simulated on ordinary digital comput-
ers, suggesting that analog computers have no more than Turing power. There are
a variety of theorems in the literature, proving sub-Turing, Turing, or super-Turing
power depending on the premises (representative citations can be found elsewhere
[44]). The resolution of these apparently contradictory conclusions is that analog
computation is not in the frame of relevance of Church-Turing computation (recall
Sect. 5.2.5), and therefore the results are more a reflection of the idealizing assump-
tions of the various models than of the computational systems being modeled (more
details are provided elsewhere [35]).

There are a number of ways to program analog computers. Sequential analog
computations can be described in programming languages similar to those for digi-
tal computers, the principal difference being that the primitive operations are analog
rather than digital. However, some caution is necessary. For example, exact equality
and inequality tests, which are unproblematic in digital computation, may be infea-
sible in the analog domain, where infinite precision would be required. In the context
of analog computing, it is more reasonable to test if the difference of two numbers
is less than some ε.

Continuous-time analog computations are most often described by differential
equations. They are also represented by block diagrams in which the differential
equations are recast as explicit integrations (e.g., Fig. 5.1).

In principle, analog programs can contain constants that are not rational or even
Turing-computable. Such constants cannot be represented finitely in discrete sym-
bols, but they can be represented directly as continuous quantities. In a practical
sense, however, due the limited precision of analog computing, constants can be rep-
resented digitally to the accuracy required. Nevertheless, it is important to broaden
the notion of a program to include representations that are not textual, such as guiding
images (Sect. 5.2.4 above).

5.3.2.3 Dynamical Systems

Dynamical systems are an attractive approach to analog computation; the system is
defined so that the point attractors are solutions to the problem. Examples include
analog solutions to traditional digital problems, such as sorting [8] and Boolean sat-
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Fig. 5.1 Example analog algorithm implementing a dynamical system Boolean satisfiability [12].
The block enclosed in dotted lines is repeated for m = 1, . . . ,M and i = 1, . . . ,N

isfiability [17, 48]. In the latter case, to solve a k-SAT Boolean satisfiability problem
withM clauses andN variables, Ercsey-Ravasz and her colleagues define a dynamical
system by the differential equations:

ṡi(t) = −si(t) + Af [si(t)] +
M∑

m=1

cmig[am(t)],

ȧm(t) = −am(t) + Bg[am(t)] −
N∑
i=1

cmif [si(t)] + 1 − k.

A particular problem instance is defined by the cmi matrix elements: cmi = +1 if
variable i is positive in clause m, cmi = −1 if variable i is negative in clause m, and
cmi = 0 if variable i is not in clause m. The f and g activation functions are linear
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squashing functions that map the s and a values into [−1, 1] and [0, 1], respectively.
The si converge on a solution to the problem, if one exists.

Figure5.1 displays an analog algorithm for implementing this dynamical system
[12]. The overall structure is a cross-bar between theM integrators for the am and the
N integrators for the si; thusM + N integrators are required. A particular instance is
programmed by setting the cmi and−cmi connections as required for the problem. The
integrators are initialized to small values to start the computation; non-zero offset or
noise in the hardware integrators might have the same effect.

5.3.3 Quantum Computation

Quantum computation is another promising approach to post-Moore’s Law com-
puting. Because the units of information representation are qubits (quantum bits),
it is often supposed that quantum computation is a species of digital computation,
but in fact it is hybrid analog–digital computation. Quantum computation gets its
power from being able to operate simultaneously on superpositions (complex linear
combinations) of digital basis states. Quantum operations are unitary operators that
operate on the continuous complex coefficients of the basis states. Fundamentally,
“binary” quantum computation is computation over finite-dimensional complex vec-
tor spaces. One of the remarkable properties of quantum computation, which gives
it an advantage over classical analog computation, is that it is possible to do error
correction to eliminate noise in the complex coefficients [52, Sect. 10.6.4]. Some
quantum computation takes place in continuous time, such as adiabatic quantum
computing and quantum annealing [13, 61]. Continuous-value quantum computa-
tion is another approach to analog quantum computation [26].

5.3.4 Field Computation

While ordinary differential equations (ODEs) are adequate for describing some
systems, spatially extended systems normally require partial differential equations
(PDEs). Although most historical analog computers processed ODEs, already in the
nineteenth century there were developments such as the “field analogy method” [33,
44]. Sometimes the state was represented in a continuous medium, such as a rubber
sheet or an electrolytic tank; in other cases a sufficiently dense array of discrete
components was used. Therefore, we may define a field as either a spatially contin-
uous distribution of continuous quantity, or a discrete distribution that is sufficiently
dense to be treated as continuous. (Physicists similarly distinguish physical fields,
which are literally continuous, such as electromagnetic fields, from phenomenolog-
ical fields, which can be treated as though continuous, such as fluids.) Thus we can
have real- or complex-valued scalar fields or vector fields (more generally, fields over
any continuous algebraic field).
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Field computation, then, may be defined as computation in which the state is
represented by one or more fields [27, 33]. It is also a natural way of describing
image processing or other computation with spatially extended data, and field com-
puters have operations, such as convolution, that operate in parallel on entire fields.
The original motivation for the theory of field computation was to describe neural
information processing in regions of cortex large enough to be considered fields
(typically 0.1 mm2 or larger) and in neurocomputers with comparable numbers of
spatially organized neurons [27].

Mathematically, fields are treated as continuous functions over some spatial
domain 	. More precisely, they are elements of a Hilbert space of square-integrable
functions on	, whichwe denote
(	). Itsmetric is determined by the inner product;
for φ,ψ ∈ 
(	),

〈φ | ψ〉 =
∫

	

φ(u)ψ(u)du,

where φ(u) denotes the complex conjugate (in case the fields are complex-valued).
Field transformations are functions (linear or nonlinear) that map fields into fields;
that is, they are operators on Hilbert spaces. One especially useful field transforma-
tion is the field product φ ∈ 
(	′), for  ∈ 
(	′ ××× 	) and φ ∈ 
(	), which
is defined by the Hilbert–Schmidt integral, (φ)(u) = ∫

	
(u, v)φ(v)dv, for all

u ∈ 	′. It is the field analog of a matrix–vector product. The outer product also has
a field analogue: if φ ∈ 
(	) and ψ ∈ 
(	′), then φ ∧ ψ ∈ 
(	 ××× 	′) is defined
(φ ∧ ψ)(u, v) = φ(u)ψ(v). Other useful operations include the gradient, Laplacian,
convolution, cross-correlation, and point-wise arithmetic operations between fields.

Two questions immediately arise: Are there universal field computers? And (more
practically), what operations should be provided by a general-purpose field com-
puter? These questions can be answered in the context of approximation theory for
operators on Hilbert spaces. For example, there is a sort of field-polynomial approx-
imation based on an analogue of Taylor’s theorem for functional derivatives [27, 28,
30, 33]. Also, since a field can be considered a continuum of (infinitesimal) neurons,
many neural network approximation theorems can be adapted to field computation
[20, pp. 166–168, 219–220, 236–239, 323–326]. For example, one universal set of
operations is the field product (Hilbert–Schmidt integral), pointwise addition, and
scalar multiplication [33, 44].

5.3.5 The U-Machine

We commonly classify computation as digital or analog, or as “hybrid” if it combines
both, but does digital (computation on discrete spaces) and analog (computation on
continua) exhaust the possibilities of computation? What other topologies might
there be for information and computation?

We have explored computation on second-countable metric spaces because they
include both discrete spaces and continua, and have developed a corresponding
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machine model, theU-machine [38]. It gets its name fromUrysohn’s theorem, which
states that any second-countablemetric space is homeomorphic (topologically equiv-
alent) to a subset of a Hilbert space [51, pp. 324–326]. Therefore, computations in
second-countable spaces have realizations in Hilbert spaces, that is, they can be
implemented by field computations. Indeed, the details of the Urysohn embedding
imply that they can be approximated by computations over finite-dimensional vector
spaces (and, in particular, neural networks).

Because the Urysohn embedding is a homeomorphism, any continuous computa-
tional process in a second-countable metric space has a continuous image in the sub-
set of the Hilbert space. Further, for any continuous function on a second-countable
space, there is a corresponding continuous function on the Hilbert space. Therefore,
computations in second-countable spaces can implemented by computations in these
Hilbert spaces, which can be implemented via the various universal approximation
theorems on Hilbert spaces (Sect. 5.3.4). These provide the basic operations required
for general-purposes computation on the U-machine.

Other sorts of physical media can be used to realize computational processes, for
example, molecular computation. Next, however, I will address a different aspect
of unconventional computation: how computation can be used directly to control
physical processes.

5.4 Computation for Material Ends

In computation we have a relationship between a physical system and a formal
system in which the formal system is a (typically incomplete) description of the
physical system; this is the import of the realization homomorphism (Sect. 5.2.1). In
conventional computation, as well as in the unconventional computation discussed
in Sect. 5.3, the end (goal) is the abstract formal process, and the physical process
is a means to that end. Furthermore, in a programmable computer, the program
controls the physical processes so that they realize the abstract process described
by the program. In particular, in the process of computation, matter and energy is
reorganized in the computer, and this reorganization is under control of the program.
Thereforewe can look at the formal-material relationship from a different perspective
in which the end is the physical process and the computation is the means to this
end; that is, we have formal processes serving material purposes.

The tradeoffs are different. When the material processes are serving formal pur-
poses, we usually try to minimize the energy andmatter reorganized by computation,
in order to decrease size, power requirements, and computation time. In contrast,
when formal purposes are used to serve material ends, we might want to rearrange
more matter or energy.

Computation formaterial purposes is different froma traditional control system, in
which information processes (realized physically) govern a separate physical system
via transducers. Here, we are describing a situation in which the physical realization
of the computation is the physical process that is the goal. In particular, there are
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no transducers because there is no distinction between the information system and
the controlled system; they are simply the formal and material aspects of the same
process.

A simple example is provided by chemical reaction-diffusion (RD) systems [2].
On the one hand, an RD system can be viewed as a formal process and analyzed
mathematically, as Turing did [65]. On the other hand, RD systems can be realized
chemically so that the chemical reaction and diffusion processes are essential to both
the computation and the physical patterns it creates. Such processes underlie patterns
in animal skin colors and hair coats [46]. Algorithmic assembly by DNA is another
example in which the molecules realize a process that computes a desired physical
structure [58, 59, 64].

In general, programs are hierarchical structures that, when executed, generate
complex dynamics, which is capable of generating complex structures. That is, com-
plex hierarchical temporal patterns can generate complex hierarchical spatial pat-
terns. When we look at the physical realization of a computation, we realize that
these intricate data structures are realized in correspondingly intricate arrangements
of matter and energy.

5.4.1 Programmable Materials

The value of this inverted perspective on computations and their realizations is that
it is an approach to programmable matter, that is, to controlling systematically the
properties and behavior of physical systems on a small scale [19, 45].

A step in this direction is provided by what can be called programmable materi-
als, that is, materials whose physical properties vary widely and can be controlled
systematically (i.e., programmed) [45]. Some of the many properties we might like
to control are hardness, elasticity, flexibility, density, relative resistance, permittivity,
photoconductivity, opacity, and refractive index.Moreover,wewould like a combina-
torially rich code for determining these physical properties; by analogy with biology,
we may call the code the genotype, and the physical substance the phenotype.

Itmight seemunlikely that such aversatilematerial could exist, but nature provides
an example: proteins. Proteins are coded by the four nucleotide bases of DNA and so,
effectively, by strings over the alphabet {A, C, T, G}, a simple, but combinatorially
rich code. Nevertheless, proteins, which are the primary elements of living things,
have an enormous range of physical properties and have both active and passive
functions. Proteins are the constituents of keratin (the material of horns, nails, and
feathers), connective tissue (collagen and elastin), cellular skeletons (microtubules),
enzymes, ion channels, signaling molecules, receptor and sensor molecules (such
as rhodopsin), transporter and motor proteins, and so forth. The DNA code defines
long sequences of a few different building blocks (amino acids), but the resulting
polymers fold into complex three-dimensional shapes that give them a wide variety
of physical properties. Some allosteric protein molecules even make simple deci-
sions, responding to various combinations of regulators [7, pp. 63–65, 78–79]. One
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approach to programmable materials builds on proteins (natural and artificial), but
once we understand the principle by which a simple, but combinatorially rich code
can create structures with diverse physical properties, we can design new program-
mable materials based on different substrates.

5.4.1.1 Artificial Morphogenesis

Programmable materials may be very valuable, but much of the behavioral rich-
ness of living things comes from their complex hierarchical structure: from cells
up to tissues, organs, and organisms, and from cells down to vesicles, membranes,
andmolecules (including proteins). There are many applications for which wewould
like to be able to build complex systems hierarchically structured from themicroscale
up to the macroscale. For example, we would like to be able to build robots with
artificial nervous systems of comparable complexity and density to mammalian ner-
vous systems, with similarly complex sensors and effectors to permit fluent, real-time
behavior [42].

This raises the question of how to coordinate the self-assembly of vast numbers
(millions or billions) of microscopic components into macroscopic complex sys-
tems. The problem might seem hopeless, but once again nature proves that it can
be done. A human body has trillions of cells, yet during embryological develop-
ment the cells self-organize into tissues, organs, and other structures. This suggests
that embryological morphogenesis—the creation of physical form—can provide a
model for the self-assembly of complex systems [6, 14, 15, 18, 23, 49, 50, 64]. Arti-
ficial systems may be very different from biological systems, but we can abstract the
formal computation and control processes of morphogenesis from their biological
realizations and apply them in artificial systems.

Our own approach to artificial morphogenesis is directed to the development of
self-assembly processes that scale up to very large numbers of components (hundreds
of thousands to millions or more) [34, 36, 37, 39, 41–43, 45]. To reach this goal,
we describe morphogenetic processes by partial differential equations, effectively
treating tissues as continuous media, and we use the mathematics of continuum
mechanics. This is a reasonable approximation if the number of cells or agents is
large, and is in fact commonly used in embryology and developmental biology.
Using PDEs effects a useful separation of scales. The algorithms are developed
and operate in terms of the dimensions of the object under assembly; this is the
basis for determining parameters such as diffusion rates and agent velocities. These
morphogenetic processes are independent of the scale of the “particles” (cells, agents,
microrobots, etc.) constituting the medium, so long as it can be approximated as a
continuum. Therefore, the algorithms do not depend on the size or number of agents;
they scale.

To facilitate the expression of morphogenetic programs, we have developed a
PDE-based programming language, which can be realized by computer simulation
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or, in principle, by microscopic physical agents [34]. The notation is designed to
be interpretable in discrete or continuous time in order to facilitate a variety of
realizations in simulation and physical agents.

5.5 Embodied Computation

Artificial morphogenesis is an example of embodied computation, which may be
defined as “computation in which the physical realization of the computation or the
physical effects of the computation are essential to the computation” [41]. The term
is inspired by the theories of embodied cognition and embodied artificial intelli-
gence, which call attention to the role that the body plays in control and information
processing in humans and other animals [9–11, 16, 21, 22, 47, 53–55]. Formal struc-
tures emerge from the possibilities of physical interaction between a body and its
environment, and these physical processes can substitute for information processes,
thus decreasing the computational load on the nervous system.

In embodied computation, the formal and material aspects are not so separable
as they are in conventional computation. On the one hand, information processing
and control may depend for its correctness and effectiveness on realization in a spe-
cific kind of physical system. However, the specifics of the physical systems also
limit the purpose of the computation, that is, the final cause, since the computation
is not required to operate in other situations. The specifics may also provide mater-
ial realizations of the computation that are available for the specific computational
systems, but not necessarily for others. That is, a specific embodiment restricts the
final, material, and efficient causes (e.g., possible energy sources), but these same
restrictions may afford a wider range of formal causes (i.e., information and control
processes) to accomplish its purpose. To take an example from nature, the specific
embodiment ofE. coli and the properties of its environment facilitate its use of chemi-
cal gradients to control its metabolically-powered movement toward more favorable
locations. Indeed, all living systems use embodied computation, and they suggest
ways of designing artificial embodied computation systems.

5.6 Conclusions

Computation is physical, but conventional computing technology has been built on
a hierarchy of abstractions. In the post-Moore’s Law era, computational processes
will need to be more like the physical processes by which they are realized, which
implies a greater role for analog, parallel, and stochastic models of computation.
The increasing assimilation of computation to physics raises the question: What
distinguishes computational processes from other physical processes? The answer
is that the purpose of the system could be accomplished as well by other physical
realizations with the same formal structure but different material realizations (mul-
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tiple realizability). Therefore, any formal process can be considered computation
(information processing, control), and it is apparent that there is a wide variety of
possible unconventional computing paradigms. The computational state space can
be discrete or continuous, and information processing can proceed in continuous,
discrete, or sequential time, either serially or concurrently. As we journey out from
the familiar domain of conventional computation, we must leave behind familiar
notions of programming and universality, whose assumptions may be misleading
outside of their frame of relevance. Promising unconventional computing paradigms
include analog computation, quantum computation, field computation, and compu-
tation over second-countable metric spaces (which subsumes both analog and digital
computation).

Traditionally, the purpose of a computation is a certain formal process, and the
accompanying physical processes are merely a means to that end. However, we may
turn the tables, and use computation for the sake of these physical processes, using
the formal power and flexibility of computation to control the assembly and behavior
of physical objects. This approach provides a path towards programmable matter and
artificial morphogenesis. More generally, embodied computation takes advantage of
a closer assimilation of computation to physics by exploiting physical processesmore
directly for computation, and by using computational techniques to govern physical
processes.
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Chapter 6
Computing in Perfect Euclidean Frameworks

Jérôme Durand-Lose

Abstract This chapter presentswhat kind of computation can be carried out using an
Euclidean space—as input, memory, output...—with dedicated primitives. Various
understandings of computing are encountered in such a setting allowing classical
(Turing, discrete) computations as well as, for some, hyper and analog computa-
tions thanks to the continuity of space. The encountered time scales are discrete
or hybrid (continuous evolution between discrete transitions). The first half of the
chapter presents threemodels of computation based on geometric concepts—namely:
ruler and compass, local constrains and emergence of polyhedra and piece-wise con-
stant derivative. The other half concentrates on signal machines: line segments are
extended; when they meet, they are replaced by others. Not only are these machines
capable of classical computation but moreover, using the continuous nature of space
and time they can also perform hyper-computation and analog computation. It is
possible to build fractals and to go one step further on to use their partial generation
to solve, e.g., quantified SAT in “constant space and time”.

6.1 Introduction

This chapter provides some insight on the following question:What can be done with
an Euclidean space with dedicated primitives and controls? Space is not considered
as the place to stack gates andwires for a computer (would it be sequential, parallel or
distributed) but rather as the substrate of computation itself. The general framework is
not machines or automata but some Euclidean space where information is displayed
and evolved according to some dynamics.
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The approaches considered here are: constructions with ruler and compass, poly-
hedra emerging from local constrains, extending a sequence of line segments crossing
polyhedral regions, extending line segments until they intersect… In each case, local-
ization, distance, carried information, available room, encounters… are elements
where space matters.

Space is Euclidean, this means, on the one hand, that it is continuous and, on
the other hand, that the underlying geometry is the one of points, lines and circles.
This geometrical point of view is the prevalent as shown by the illustrations in this
chapter.

This general framework has limitations: no differential equation that would not
be trivial, no algebraic geometry… Outside of instantaneous “border” crossing or
apparatus operation, all is straightforward and absolutely plain. Themodels presented
here belongs to a more general framework: hybrid systems with continuous traits
(related to the nature of space and possibly time) and discrete (phase transition,
collision…).

Continuity opens theway toZenon effect: an infinite number of discrete transitions
during a finite (continuous) duration (in a finite space). Many models use this capa-
bility to hyper-compute (solving the Halting problem and even less “computable”
problems).

These are idealizedmodels: line have zerowidth, positions are exact…Physically,
they are not very realistic: unbounded density of information, Euclidean at every scale
space…

Each presented model is described, main results and references are provided. Of
course it is not possible to give detailed proofs nor get into complex results; clues,
sketches are provided as long as they remain intelligible.

This chapter has two parts. The first part presents three computingmodels inwhich
primitives rely on the Euclidean nature of space. The first model, the Geometric
Computation Machines of Huckenbeck [30, 31], uses an automaton to activate ruler
and compass and generates points, lines and circles. The second one, the Mondrian
Automata of Jacopini and Sontacchi [32], starts from uniform local constrains (on
open balls from R

n) on space-time diagrams ensuring causality; from these emerges
polyhedra at the usual scale. The third one, the Piecewise Constant Derivative of
Asarin and Maler [2, 3], partitions space into polyhedral regions corresponding to
constant speeds; the orbit stating from a single point can be very complex with
possibly infinitely many region changes during a finite portion of it.

The second part concentrates on one model: the signal machines of Durand-Lose
[18]. After the definition of the model, a simulation of Turing machine is presented
(thus asserting its computing capability). Using the continuity of both space and
time, it is possible to dynamically scale down the computation and accelerate to
implement a form of the Black Hole model of computation (and to hyper-compute).
Fractal generation scheme can be used in order to dispatch sub-computations and to
achieve fractal computation (allowing, e.g., to solve quantified SAT in constant space
and time). This part ends by showing that themodel is capable of analog computation
(computing over real numbers).
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This survey of computing models involving space is not comprehensive. Some
models like cellular automata, tile assembling systems, tilings…have somuch litera-
ture about that eachwould spread over a few chapters; it would be pointless to present
them in a few pages. Models using higher level mathematics (differential equations,
algebraic geometry…) would not fit here and neither would computational geometry
algorithms. Many others (e.g. continuous counterparts of cellular automata like [28,
38]) are not addressed just because the purpose of this article is to show the variety
and not to start a zoo recollection.

6.2 Three Models Operating on Euclidean Geometry

The first model uses ruler/straightedge and compass. The second one relies on local
constraints. The third one concentrates on orbitswhen speed is constant on polyhedral
regions.

6.2.1 Ruler and Compass

This section is devoted to the work of U. Huckenbeck on Geometric Computation
Machines [30, 31]. The primitives of these machines are the usual geometric oper-
ations that can be carried out with ruler and compass. The purpose is not to do
geometry algorithmic (would it be discrete, symbolic or algebraic) but to use these
primitives to construct in a two dimensional Euclidean space.

Each machine is an automaton (or program) equipped with a finite number of reg-
isters. There are three kinds of register: for points, for lines and for circles. States are
used to represent both the program counter and to record the state of the computation
(i.e. Unfinished, Finished and Error, the last two ones are final).

The available operations are:

• output a value (point, line or circle),
• put in a register the intersection of two lines,
• put in a register one of the intersections of a line and a circle (optionally different
from some point),

• put in a register one of the intersections of two circles (optionally different from
some point),

• put in a register the line going through two points,
• put in a register the circle whose center is given (as a point) as well as its radius
(as the distance between two points),

• copy a register, and
• Finished.
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1: c1← Circle ( center A, radius d(A,B) )
2: c2← Circle ( center B, radius d(A,B) )
3: p1← Intersection ( c1, c2 )
4: p2← Intersection ( c1, c2 ) different from p1
5: d1← Line ( p1, p2 )
6: d2← Line ( A, B )
7: p3← Intersection ( d1, d2 )
8: Output p3
9: Finished

A B
p3

c1

c2

d1

d2

(a) (b)

Fig. 6.1 Constructing the middle of the segment AB. a Program. b Construction

Intersections do not necessarily exist and neither are unique. This means that the
execution of the automaton is non deterministic. Whenever an instruction cannot be
carried out, the branch (of the tree of all possible executions) ends with Error.

Considering the whole tree of possible executions, if it is finite, has only Finished
(i.e. no Error) leaf and all branches generate the same output, then the computation
succeed and the output is the common output (it is generated by every branch).
For example, the program of Fig. 6.1 computes the middle of a segment (whose
extremities are A and B and are the only input). Please note that there are two
possible executions (where are p1 and p2?), but their outputs are identical.

Conditional jump instructions are like “if pk ∈E go to i: otherwise to j:” where
pk is a point-register and E is a predefined set used as an oracle.

A simple case is whenE contains only the origin (0, 0) and points (1, 0) and (0, 1)
are provided as constants. The functions (computable in constant time) from an n-
uplet of points to points are then exactly the ones where the coordinates of output
points can be expressed from the one in the input using only piece-wise rational
functions with integer coefficients.

This algebraic result is related to the possibility to implement the following prim-
itives: on the one hand, projections (x, y) → (x, 0), (x, y) → (y, 0) and recon-
struction (x, 0) (y, 0) → (x, y) and, on the other hand, addition, multiplication and
division on the x axis. These constructions are left as exercises to the reader.

This corresponds to the classical construction of numbers computable with rule
and compass [12, chap. 7]. Those are also closed by square rooting. Here, the condi-
tion that each branch should generate the same output makes it impossible for root
to appear [31].

It should be noted that since the following operations can be performed: (x, 0) →
(x + 1, 0), (x, 0) → (x − 1, 0), and test whether (x, 0) is (0, 0); an unbounded
counter can be encoded with a point register. These machines can simulate any
2-counter automaton and are thus Turing-universal.
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6.2.2 Mondrian Automata

The work of G. Jacopini and G. Sontacchi [32] starts from a space and time mod-
elization of reality. Hypothesis are made from which follows local constraints that
brought forth the emergence of polyhedra.

In a Euclidean space of any dimension, each point is associate to a state, a color.
The hypothesis is made that color and neighborhood are linked: if two points have the
same color, then there is a sufficiently small (non-zero) radius where neighborhoods
match. This is depicted in Fig. 6.2.

As a consequence, if there is a ball of uniform color then any point of this color
are only surrounded by this color. Topologically, this means that they form an open
set.

Similarly, if there is a curve (of zero width) of a color then the curve must be
a line segment (if neighborhoods are identical, so must be the derivatives). All the
points of this color must be on parallel line segments and, following any direction,
the surrounding colors should be the same. The extremities of the segments should
have a color different from the line.

Each color corresponds to equal-dimension and parallel polyhedral regions. There
frontiers of lesser dimensions should be colored differently (when restricted to their
dimensions, they are open). Adjacent colors following another dimensions are always
of the same color.

The other hypothesis made is that there is a finite number of colors. Hence, having
a common neighborhood (up to re-scaling) for each color defines all the constraints.
They provide all the information on the dimension and direction associated to each
color as well as the color of the neighbors of higher dimensions.

(a) (b)

Fig. 6.2 Mondrian space. a Colored space. b Local constraints
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(a) (b)

Fig. 6.3 Cones and causality. a Past and future cones. b Causality

Next step consists in adding one dimension for time and rules for causality. This
is defined by a speed of light, c and the condition that the color of a point is uniquely
defined by what is inside the past cone (delimited by the speed of light). Figure6.3b
shows two portions of space at different dates where colors are displayed similarly.
The two cones based on this portions and delimited by the speed of light are thus
identical.

Another argument from physical modelisation is that the system should be
reversibility. This implies that the same constraint is also applied with time run-
ning in the opposite direction. This corresponds to exchanging the cones (pointing
to past and future) in Fig. 6.3b.

Temporal constraints can also be read at the polyhedra scale. It is still possible
to think in terms of intersections and collisions (this kind of approach is developed
in the signal machine section). At this level, simulating a reversible Turing machine
using rational positions for endpoints is not very difficult.

6.2.3 Piece-Wise Constant Derivative

In this model introduced by E. Asarin and O. Maler [2], space is partitioned into
a finite number of polyhedral regions. On each region, a constant speed is defined.
On Fig. 6.4, thick lines separate the regions and the arrows indicate the directions of
speeds.

Starting from any point a trajectory is defined. When a region border is reached,
movement just follows on the other side with the new speed. In Fig. 6.4, two trajecto-
ries are indicated. They both start on the left. The dashed trajectory changes direction
twice and then goes away forever. The dotted one is wrapping itself infinitely around
the intersection point of three regions.
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Fig. 6.4 Piece-wise constant derivative trajectories

This second trajectory is singular: it changes region infinitely often but neverthe-
less reaches its limit in finite time (as a convergent geometrical sum) and stops there.
There are two distinct time scales: a continuous time one where the limit is reached
in finite time and an infinite discrete time one (of region change events). This is a
Zeno phenomenon/effect.

The rest of the section is restricted to rational initial points and vertices (of poly-
hedra). This allows to have exact manipulation on a computer and avoids having
unbounded information (an oracle) encoded into a real number (for example the
solution to the Halting problem as the Chaitin’s omega number [11, Chap.7]).

This systemcan compute considering that the input is the initial position (in a given
zone) and that halt and result correspond to entering some other identified zone. In
three dimensions, it is possible to encode the configuration of a Turingmachine into a
rational point and to design the PCD such that the trajectory loops and that each loop
corresponds to a transition of the Turing machine. The Reachability problem—to
decide whether a zone can be reached from a point—is thus undecidable.

Adding dimensions to the systems allows to add nested levels of Zeno effect
and to climb hierarchies in the undecidable. With d dimensions, the level d−2
of the arithmetical hierarchy (viz. Σd−2)1 is decidable [2, 3]. The model is even
more powerful: Reachability is complete on levels of the hyper-arithmetic hierarchy2

[8–10].

1Σ0 is the recursive sets, Σ1 is recursively enumerable sets, e.g. the Halting problem.
2Extension of the arithmetical hierarchy to ordinal indices.
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6.3 Signal Machines

This section is dedicated to one model that have been studied for over a decade:
signal machines [16]. This model was born from reflections on the fabric of cellular
automata [20]. Indeed, one of the key notions in cellular automata literature both
for creating CA for special purposes or for understanding one is signals. They allow
to store and transmit information, to start a process, to synchronize… Dynamics is
often detailed as signals interacting in collisions resulting in the generation of new
signals.

In the context of cellular automata, signals are discrete and often spread over
more than one cell. They are often represented as line segments to stress on the
global dynamics without blurring the picture with discretization details. The step
forward is to get rid of discretization and to consider these ideal line segments as
exact traces [20].

Signals are now dimensionless points on a one-dimensional Euclidean space.
Typical properties of cellular automata (CA) are preserved: synchronicity and uni-
formity. Synchronicity means that signals move, at the same pace. Uniformity means
that the dynamics of signals does not change, the speeds of signals only rely on their
natures and their interactions only depend on their nature (like CA-patterns define
the evolution of discrete signals). Signals have uniformmovement. They “draw” line
segments on space-time diagrams. The nature of a signal is called a meta-signal.

After defining signal machines, it is shown that they are able to compute (in
the Turing understanding). Space and time continuity as well as malleability of
computations are developed to implement the Black Hole model of computation and
hyper-compute. Fractal generation is a natural feature of the model and unfinished
fractal construction can be used to provide unbounded parallelism (and make fractal
computation). Finally, the capacity of the model to do analog computation (over the
reals) is considered.

6.3.1 Definitions

Definition 1 (Signal machine) A signal machine is defined by a triplet (M, S, R)

where

• M is a finite set of meta-signals,
• S is function associating a speed to each meta-signal, and
• R is a set of collision rules. A collision rule associates to sets of at least two meta-
signals of different speeds (incoming) a set of meta-signals of different speeds
(outgoing). R is deterministic: a set appears at most once as the left (incoming)
part of a rule.

In any configuration, there are finitely many signals and collisions. They are
located in distinct places in space. Since a signal is completely defined by its
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associated meta-signal and a collision by a rule, a configuration is fully defined
by associating to each point the real axes a meta-signal, a rule or nothing.

Definition 2 (Configuration) Let (M, S, R) be any signal machine. A configuration
is totally defined by a function from space (i.e. R) into meta-signals, collision rules
and a special value void (from meta-signal and collision) such that the number of
non-void positions is finite.

Let V be the setM ∪ R ∪ {�}where� /∈ M ∪ R. A configuration, c, is a function
from R into V such that: |c−1(M ∪ R)| < ∞.

In the following, location designates space-time coordinates while position is a
spacial coordinate and date a temporal one. A location is denoted (x, t), space then
time.

The dynamics from a signal machine is defined as time evolves: as long as signals
do not meet, each one moves uniformly. Whereas as soon as two or more signals
meet, they are replaced according to the corresponding collision rule.

Time is continuous but there is also a different discrete time scale: the one of
collisions. Dynamics is defined using this scale considering dates with collision(s)
and in-between times (simple propagation).

Definition 3 (Dynamics and space-time diagram) Let c be a configuration, let t be
the date of the next collision if any, ∞ otherwise).

t = min

{
d ∈ R

+∗
∣∣∣∣ ∃x1, x2 ∈ R, x1 	= x2, ∃μ1, μ2 ∈ M,

μ1�c(x1) ∧ μ2�c(x2) ∧ ( x1+S(μ1)d = x2+S(μ2)d )

}

where the relation �means “is equal (to the meta-signal) or belongs to the outgoing
set of meta-signals (of the collision rule)”.

The configurations between 0 and t have no collision and are defined by simple
propagation of signals:

∀d, 0 < d < t, cd(x) =
{

μ if μ � c(x − S(μ)d)

� otherwise

}

where, by definition of t , μ is unique (if it exists).
If t is not ∞, the configuration at t is defined similarly with an extra case: if more

than one signal arrives in x , then it is the corresponding collision rule.
Orbits are computed like that, one collision time after another. A space-time

diagram gathers all the configurations between two dates.

This definition emphasizes the hybrid aspect of signal machines: continuous steps
separated by discrete steps.

Example 1 The meta-signals and collision rules are defined in the left Fig. 6.5. On
the right, is depicted a space-time diagram generated from a configuration where can
be found (from left to right) signals of meta-signals μ4, μ1, μ2 and μ4.
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Name Speed
μ1 1
μ2 −1/2
μ3 3
μ4 0

{ μ1, μ2 } → { μ2, μ1, μ3 }
{ μ3, μ4 } → { μ2 }
{ μ4, μ2 } → { μ2, μ4 }

Space
R

T
im

e

R+

μ1

μ1

μ1

μ2

μ2

μ2

μ2

μ2

μ3

μ3

μ4

μ4

μ4
(a)

(b)

(c)

Fig. 6.5 Example of a signal machine and a generated space-time diagram. a Meta-signals. b
Collision rules. c Space-time diagram

Used collision rules can also be read from the diagram. A rule is blank if it
regenerates the same set of meta-signals (like the one for { μ4, μ2 } in the example).
These rules are not indicated.

To find the location of a collision, a linear system of two equations in two variables
has to be solved. Thus the location of any collision of signals whose speeds and initial
locations are rational numbers, has to be rational (numbers). More generally, with
rational speed and rational initial positions, all collisions happen at rational locations.

Definition 4 (Rational signal machine) It is a machine such that all speeds are
rational numbers as well as any non-void positions in any initial configuration. In any
generated space-time diagram, all collisions have rational locations and the positions
of signals are rational at each collision time.

This is particularly useful to simulate signal machines: rational signal machines
can be simulated exactly on a computer since rational numbers can be manipulated
in exact precision. Such a simulation has indeed been implemented in Java3 and was
used to generate the figures.

Unless otherwise noted, all results are valid both on rational and unrestricted
signal machines.

Example 2 (Finding the middle) It is possible to compute the middle of two signals,
i.e. to position a signal exactly there. This is illustrated in Fig. 6.6 where a O signal
is positioned exactly half-way between two W signals (bottom of Fig. 6.6c). This is
started by the arrival of a Add signal on the left. When it encounters the left W, it

is transformed into A and
−→
R . The latter is three times faster than the former and

bounces on the right W; it becomes then
←−
R , still three times faster (but opposite

direction). It encounters A exactly half-way between the twoW.

3The author is not satisfied enough with its code to put it on the internet but send it on request.
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Name Speed
Add, Sub 1/3

A, E 1
O, W 0−→

R 3←−
R −3

{ Add, W } → { W, A,
−→
R }

{ −→
R , W } → { ←−

R , W }
{ A,

←−
R } → { O }

{ −→
R , O } → { ←−

R , O }
{ Sub, W } → { W, E }

{ E, O } → { }
Space R

T
im

e

R+

Sub

W

W

W

W

W

W

Add

AAdd

A

E

−→
R

←−
R

−→
R

←−
R

O

OO

(a)

(b)

(c)

Fig. 6.6 Finding the middle and more. a Meta-signals. b Collision rules. c Space-time diagram

The correct positioning of this collision can be proved by computing the locations
of all the intermediate collisions (each time a linear system of two equations in two
variables). Almost all the proofs of correction of space-time diagrams (and hence the
dynamics) are not more difficult.

Considering the rules of Fig. 6.6b, finding themiddle only uses the three first ones.
The fourth one allows to generate the middle between the left W and the first O on
right of it. This is started by sending another Add from the left as illustrated in the
middle of Fig. 6.6c.

It is also possible to suppress the first O on the right of the left W. To achieve
this, a Sub order is sent from the left. It becomes E when passing over W. Signal E
collides and destroys the first O it encounters. This corresponds to the last two rules
and the top of Fig. 6.6c.

Adding another Sub on the right removes the other O. Adding another Sub on
the right again makes it exit on the right. The reader is invited to add a rule to destroy
this unwanted signal.

Finding the middle is a key primitive for designing signal machines. For example,
as shown above, it is possible to use it repeatedly to record any natural number in
unary (with O’s as in Fig. 6.6c) in a bounded space.
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6.3.2 Turing Computation

Signal machines are able to compute (in the Turing understanding) as shown by the
simulation of a generic Turing machine. A Turing machine is composed of a finite
automaton, an unbounded tape made of cells and a read/write head that allows the
automaton to act and move on the tape. The tape is always finite but enlarged as
needed.

Simulation is straightforward as shown in Fig. 6.7 (time always elapses upward).
The evolution of the Turing machine in Fig. 6.7a can be seen in Fig. 6.7b. Vertical
(null speed) signals encode each cell of the tape. Zigzagging signals indicate the
position of the head and record the state of the automaton. The number of collisions
is linear in the number of iterations of the Turing machine.

The only technical part is the dynamic enlargement of the tape. The speeds of head

signals and
−→̄
# are 1 and −1. Setting to −3 and 3 the speed of

←−
# and

−→
# ensures

that each time the head goes further right, a new signal/cell is added with the same

^

qf

b b a b #

^

qf

b b a b #
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(b)(a)

Fig. 6.7 Simulating a Turing machine with a signal machine. a Turing machine run. b Simulation
by a signal machine
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distance between vertical signals. This is the middle construction, but backwards! It
is also possible to set these speeds such that the distance is halved each time. The
width of the whole tape would then be bounded independently from the number of
cells.

This construction works on rational signal machines that can be simulated exactly
on any computer. Leaving open the definition of input, halt and output, rational signal
machines have exactly the same computing power as Turing machines. Next section
goes beyond this framework by considering accumulation points, then Sect. 3.5 con-
siders non-rational signal machines and relates that to analog computation.

The simulation of Turing machines leads to the undecidability of the following
problems for rational signalmachines (expressible in classic context since everything
is rational):

• decide whether the number of collisions is finite,
• decide whether a meta-signal appears,
• decide whether a signal participates in any collision,
• decide whether the computation remains spatially bounded…

The space-time diagram in Fig. 6.7b displays the trace of the Turing machine.
Another interest of signal machines is also to provide graphical traces.

Using various meta-signals similar to O in Fig. 6.6, it is possible to encode
sequences of letters functioning as a stack. These simulations can also be done
with a bounded number of signals to encode the whole stack: positions are used to
encode values instead of sequences of signals [18]. (With irrational positions, it is
even possible to encode infinite stacks.) It is possible to simulate any Turing machine
with a constant number of signals and collisions involving only two signals result-
ing in exactly two signals (conservation of the number of signals), but more over
it remains true if rules should be injective: the rule is also defined by outgoing sig-
nals (reversibility) [25]. This simulation uses reversible universal Turing machines
[5, 33, 35].

Signal machines can also be used to simulate the Cyclic Tag Systems introduced
by Cook [13]. His work restarted the race to small universal machines, e.g. on Turing
machines [40]. The smallest Turing-universal signal machine known simulates any
CTS and has 13 meta-signals and 21 collision rules [22].

6.3.3 Malleability of Space-Time and the Black Hole Model

There is no scale nor origin in the figures and neither in the definition. The context
is the continuum: scaling or translating the initial produces the same space-time
diagram with all proportions preserved. In particular, if all distances are halved, then
so are the durations.

It is possible to dynamically re-scale a configuration and then to restart it as shown
in Fig. 6.8. On the left, there is the structure with the name of the meta-signals; on the
middle, the dotted area at the bottom represents the initial active part of the space-time

http://dx.doi.org/10.1007/978-3-319-33924-5_3
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(a) (b) (c) (d)

Fig. 6.8 Shrinking step. a Structure. b Modification. c Control. d Shrunk

diagram; it is frozen (parallel lines), scaled (change of direction) and then restarted
(densely dotted area). On the right, an example is provided: control diagram alone
(Fig. 6.8c) and with a shrinking (Fig. 6.8d).

To freeze a computation, a
−→
fast signal crosses the configuration and replaces

anything it meets by a null-speed signal encoding what is encountered. The frozen
system drifts as parallel signals. Being parallel, there is no collision and the (relative)
distances are preserved. Is unfrozen by a signal of the same velocity as the freezing

one (
−→
fast is reused here).

Scaling is done by changing the direction of parallel signals. It follows from
Thales’s theorem that each time proportion between distances is preserved. All dis-

tances are halved, so it the length of the
−→
fast signal.

On the continuum, there is no limit to scaling. It is possible to restart the shrinking
process forever by sending a signal (restart in Fig. 6.9a) on the left to restart the
process.

side

siderestart

(a) (b) (c)

Fig. 6.9 Iterated shrinking. a Structure. b Modification. c Example
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Each time the entangled original computation is activated with the same rela-
tive duration because although the activation duration is halved, since distances are
halved, duration between collision is also halved. Altogether, in this finite portion of
the space-time diagram, the whole infinite original space-time diagram is entangled.

With a bounded space simulation of a Turing machine entangled, if the com-
putation stops, then it is in bounded time. With minor technical modification, it is
possible, in case of halting to let some signal leave the iterated shrinking.

Outside of the structure, this signal (witness of the halt) could be collected by
another signal. Recollection of the halting signal can only happen during a bounded
delay. This bound on duration can be “implemented” in the space-time diagram
by a collision with another signal. If the machine does not halt, then nothing is
received before that collision. But, in case of halting, the witness is collected before.
Outside of the shrinking structure, the halt is decided this way. Signal machines can
hyper-compute by creating a local Zeno effect. This kind of construction was already
presented in the first papers on the domain [17, 18].

The general principle behind this construction is to have two time-lines: one is
infinitely accelerated and does the computation and possibly sends some signal while
the other waits for it or timeout. This corresponds to the so-called Black Hole model
of computation (the reader is refereed to the works of M. Hogarth [29] and I. Németi
and colleagues [1, 27]). The accumulation on top of Fig. 6.9c corresponds to the
Black Hole.

It is also possible to twist a space-time diagram by tapping the speed with a
linear function locally without freezing the computation. A continuous shrinking is
possible and can also be iterated [25] (in this article, the machine is also reversible
and conservative).

6.3.4 Build and Use Fractals

Many fractals can be generated using signal machines in a straightforward way. For
example, fourmeta-signals are enough to build the fractal accumulation in Fig. 6.10a.
The space-time diagram is undefined at this accumulation singularity.

Recursively generating middles also generate a fractal as in Fig. 6.10b. By consid-
ering left and right thirds instead of halves, a classical construction of the Cantor set
is generated as in Fig. 6.10c. By varying the speed and the proportion, it is possible
to generate sets of any fractal dimension between 0 and 1 [36, Chap.5].

The embedding structure in Fig. 6.9b is fractal. As seen previously, it can be used
in depth to accelerate computations. In Fig. 6.10b spaces are sliced in half at each
step. This one can be used breadth wisely to provide parallelism. For example, it is
possible to carry out a case study on each side, e.g. for a boolean variable true on
one side, false on the other.
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zig right
left

zag
zig

right
left

(a) (b) (c)

Fig. 6.10 Fractals. a Simple accumulation. b Half slicing. c Cantor set

Sub-cases (or other variables) can be treated by sub-slicing. For boolean formulas,
it is possible to recursively slice until there is no more variable. All cases are thus
considered. (Local results remains to be aggregated.)

If the variables appear in some boolean formula whose satisfiability is to be
checked, then one gets a scheme to solve SAT: satisfaction of boolean formula (with
¬, ∨ and ∧) over boolean variables x1, x2, . . . , xn .

This scheme can be further refined to deal with quantified variables. QSAT deals
with quantified boolean formula, i.e. SAT formula prefixed by Q1x1 Q2x2 . . . Qnxn
where Qi belongs to {∀, ∃}. The problemQSAT is PSPACE-complete [37, Sect. 8.3],
i.e. complete for the polynomial reduction among problems solvable in polynomial
space (deterministic or not by Savitch’s theorem).

Going back to the scheme, if a boolean formula contains 10 variables, then 10
levels of slicing are done.What remains of the construction of the fractal in Fig. 6.10b
is useless. Moreover since the diagram is not defined at the limit, the achievement of
the fractal construction is unwanted.

There are many ways to stop the construction. The most basic one is to have a set
of meta-signals for each level (unary counting in the machine definition). Another
relies on a meta-signal used to initiate the construction of another layer (for ten
layers, put ten copies of it). In the latter approach, the same machine can be used for
any depth (genericity).

A QSAT formula, e.g. ∃x1∀x2∀x3 x1 ∧ (¬x2 ∨ x3), is represented by a ray of
signals encoding all its elements. Computation is organized following a complete
binary tree (of depth 3 for the example, as can seen in Fig. 6.11). At each node, a
boolean variable is set to true on the right and to false on the left (Fig. 6.12a).

At the leaves, variables are all been replaced by values, the formula is evaluated
(Fig. 6.12b). The value goes back in the treewhich folds back: each node is a conjunc-
tion (resp. disjunction) when it is a universal (resp. existential) variable (Fig. 6.13).
There are a lot of technical details; full presentation can be found in [14] and [36,
Chap.7].
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Fig. 6.11 Solving QSAT with fractal computation, the whole picture

A specificmachine is generated for each formula. Using amore complex encoding
of formulas, it is possible to use a uniquemachine. The formula is then totally encoded
in the initial configuration [15] and [36, Chap.8].

It is also possible to solve other problems on formulas: how many satisfying
valuations (#SAT, #P-complete), what is the “smallest” satisfying valuation?… One
“just” has to change the way the variable-free formulas are evaluated and the results
are aggregated to generate an integer, a valuation…This is amodular parametrization
of the construction.

If more levels are needed, one lets more levels of the fractal be generated. It does
not need more time or space. Altogether, there is a signal machine able to decide any
instance of QSAT in constant space and time.

Comparing to deciding the Halting problem in constant time in previous section,
QSAT is trivial. Both rely on the continuity of space and time and the capability of
unbounded acceleration. The difference is that, with QSAT, there is no accumulation,
the key is to use the continuity to always be able to slice in two.

This technique of a controlled and unfinished fractal construction to display par-
allel computations and then aggregate the result is called fractal computation.
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Fig. 6.12 Solving QSAT with fractal computation, details. a Setting x1(
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Fig. 6.13 Aggregating the results

Complexities.

Space and time as considered above are continuous measures of complexity. Yet, this
is an hybridmodel paced by discrete events: collisions.Discrete complexitymeasures
can be defined by considering space-time diagrams as directed acyclic graphs. A
direct causal link exists between two signals if the first ends in the collision where
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the second starts. A causal link is the transitive closure of direct causal links. Time
complexity is then the size of the longest sequence of signals with direct causal link
between each two consecutive signals (path in the DAG). Space complexity is the
largest number of signals without any causal link.

With these definitions, complexity is quadratic in time (cubic for the generic case)
but exponential in space.

Further readings.

Figure6.10a shows that it is possible to build a fractal with only four different speeds.
With two speeds or less, then number of collisions is finite and bounded. With three
speeds, the situation is two-fold: with a rational signal machine, signals must travel
on a regular mesh (without any accumulation). But accumlation might happen as
soon as there is an irrational ratio between speeds or between initial positions. This
can be understood by the presence of a mechanism computing the gcd, which only
converges on rational [4].

What about the computing capability? In the rational case, the same mesh shows
that usable memory is finite and bounded. Whereas in the other case, it is possible:
a Turing machine is simulated and a fractal construction step is used to enlarge the
tape [26].

6.3.5 Analog Computation

This section deals with computation on real numbers (not just rational, decimal, or
algebraic). The only available real values in the model are distances between signals
(if some unit is available) or the position of signals (if an origin is also provided) or
the proportion between distances (orientation provides the sign).

Let there be a pair of (parallel) signals to be considered as unit. Then two (parallel)
signals of distinct meta-signals (base or value)—or one encoding zero zero—
can represent any real number. Dividing by two correspond to finding the middle.
Multiplication by any constant can be done likewise.

Adding two numbers can be done as in Fig. 6.14. The presence of a parallelogram
proves the equality of the distances.

Adding a negative value (or from the left) is done similarly. The sign of a value is
deduced from the order the signals base and value are encountered. This provides
a direct way to test the sign to make appropriate actions.

To add to a remote value, the number of values to pass has to counted, for
example with a set of signals as the one of the bottom of the parallelogram
(bottomk…bottom1bottom0,side,top,side). This is used in Fig. 6.14 to skip values.

Starting from a sequence of real values (like the sequence of cells of the tape of a
Turing machine), it is possible to multiply by constants and to add a value to another.
Since values to skip are hard encoded into meta-signals, operations always happen
on a bounded portion of the sequence, a window.
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Fig. 6.14 Adding real 15 to
real −8
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value
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bottom1
bottom0

add

end

15 −8

7

Increasing values could lead to have them overlap. The technical answer to this
is re-scaling all values as well as the unit pair (while preserving the distance from
a base to the next) thus preserving encoded values. This can be tested and realizes
dynamically.

Above primitive could be triggered by some deterministic finite automata (or
sequential program). The state of the automaton can be encoded in the meta-signals
used to carry out the operations (the number of meta-signals remains finite). Equally
it is possible to start the next operation from the same value (preserving the window).
It is also possible to move one value to the left or to the right, enlarging the sequence
when needed like for the Turing machine simulation (moving the window).

The automaton can be equipped with conditional transition: testing the sign of a
value can be used to branch. The automaton can have an initial and final state (no
more collision then). Constants may be provided in the initial configuration.

Altogether, starting from a finite sequence of real numbers (infinity extendable
on both side), it is possible to store in a cell the linear combination of values around
it, branch according to sign and move inside the sequence. This corresponds to the
Blum, Shub and Smale (BSS [6, 7]) model without inner multiplication. It is the
linear version of it: lin-BSS [10, 34] with an unbounded number of registers.

Signal machines are capable to implement lin-BSS. The converse is also true. The
configuration of a signal machine can be represented by a sequence of block each one
encoding the meta-signal, the distance to next plus various temporary registers. The
lin-BSS machine runs through the configuration and computes the minimal time to
a collision. Since speeds are constant of the signal machine, they become constants
of the lin-BSS machine, thus everything is linear.

Once this delay to the next collision time known, the automaton runs through
the configuration again. Distances are updated. When the distance is zero, then a
collision happens (it is tested whether more than two signals are involved). Involved
signals are replaced according to rules (there are hard encoded into the automaton).
If the number of signals is changed, all the values on the right are moved accordingly.
When room is needed (or should be removed) shifting the values in the cells is done
like for a Turing machine. The BSS automaton is like the one of a Turing machine:
it operates on a window (instead of a single cell) which he can moved.
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Further readings.

This corresponds only to the regular operating of a signal machine. Taking accumu-
lations and infinitely many signals during finite duration into account allows to go
further on.

For example, it is possible to extract an infinite sequence of 0 and 1 representing
the binary encoding of a real number. This flow can be used to make a multiplication:
each time half and add or not depending on the received bit. Inner multiplication thus
becomes possible and the whole classical BSS model can be implemented [19].

Accumulation can also be perceived as a convergent approximating process which
is the foundation of recursive/computable analysis, type-2 Turing machine [39]. In
this context, an input is an infinite stream of symbols representing a convergent
approximation (approximation bound is known at each step) and the output is also
such a stream (once something is output, it cannot be modified) with the same rep-
resentation. It is possible to make a accumulation be located according to a process
generating such a stream [21, 23] on a rational signal machine.

One last result about isolated accumulation on rational signal machine: not only
they cannot happen everywhere (by a simple cardinality argument) but their possible
locations are exactly characterized. They can only happen at dates that correspond
to computably enumerable (c.e.) real numbers [11, Chap.7], i.e. there is a Turing
machine that produces an increasing and convergent infinite sequence (there is no
hypothesis on the quality of the approximation). The positions of isolated accumu-
lations are exactly the differences of two such numbers. Position and date can be
handled independently. This is proved by a two scales construction: an embedded
Turing machine is accelerated and stopped so that it provides the data on request in
bounded time, the large scale directs the accumulation to the right spot according to
the provided data [24].

6.4 Conclusion

Presented models operate inside continuous euclidean spaces. Their variety is huge
as well as their computing capabilities. They bring forth a new kind of algorithmic
where place, distance, relative positions… provide possibilities as well as constrains.

In most presented models, one key concept is signal: something continuous gen-
erating line segments.

Unsurprisingly, the capability to compute in the Turing understanding is common.
As soon as it is possible to take advantage of continuity of space and time, analog
computation and hyper-computation arise too (thus transcending the Church–Turing
thesis). This remains true only in the ideal word of the model where there is no error
no approximation nor limit to sub-division nor to density of information.

This is a limit to the realism of the models. Other arguments are the unbounded
quantity of information that can be store and retrieve in a bounded space and the
absence of Heisenberg’s Uncertainty principle at any scale.
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Chapter 7
Unconventional Computers
and Unconventional Complexity
Measures

Ed Blakey

Abstract Unconventional computers—for example those exploiting chemical,
analogue or quantum phenomena in order to compute, as opposed to those employing
the standard, digital-computer approach of electronically implementing discrete-
value logic gates—are widely studied both theoretically and experimentally. One
notable motivation driving this study is the desire efficiently to solve classically
difficult problems—we recall for example a chemical-computer approach to theNP-
complete Travelling Salesperson Problem—, with computational complexity the-
ory providing the criteria for judging this efficiency. However, care must be taken:
conventional (Turing-machine-style) complexity analyses are in many cases inap-
propriate for assessing unconventional computers; new, non-standard computational
resources, with correspondingly new complexity measures, may well be consumed
during unconventional computation, and yet are overlooked by conventional analy-
ses. Accordingly, we discuss in this chapter various resources beyondmerely the con-
ventional time and space, advocating such resources’ consideration during analysis
of the complexity of unconventional computers (and,more fundamentally,we discuss
various interpretations of the term ‘resource’ itself). We hope that this acts as a use-
ful starting point for practitioners of unconventional computing and computational
complexity.

7.1 Background

We begin by outlining the prerequisite concepts of computational complexity and
unconventional computing, and by recalling as a specific instance of the latter a
certain analogue integer-factorization device.
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7.1.1 Computational Complexity Theory

Computation—whether performed by a Turing machine (see [23]), a real-life digital
computer, a quantum system, or any other device that has provision for accepting
input and supplying corresponding output—must be efficient to be of practical use.
The question ofwhich aspects of a computation have a bearing on its efficiency or lack
thereof is to some extent context-dependent (for example, portable but non-critical
devices may favour space- over time-efficiency, whilst supercomputers processing
meteorological data may not), though a widely accepted criterion for efficiency is
offered by computational complexity theory.

Complexity theory suggests, and decades of collective practical experience cor-
roborate, that a computer’s efficiency corresponds to its using only a polynomial
amount of computational resource (this polynomial function is of the size of the
computation’s input value). Since complexity theory has been developed primarily
with the Turing machine and equivalent models/paradigms of computation in mind,
these resources (that one hopes scale polynomially so as to be able to claim effi-
ciency) are traditionally run-time and memory space; this limited view of resource
is adequate when analysing the complexity of standard computers such as the (non-
parallel, deterministic) Turing machine and closely related physical instantiations
such as the real-life digital computer, but (as we see in Sect. 7.1.3) can lead to an
unrealistically optimistic quantification of the complexity of non-standard, uncon-
ventional computers. The discrepancy arises since unconventional computers (for
more about which see Sect. 7.1.2) may well consume unconventional resources (that
is, those other than time and space), and the complexity measures corresponding to
these resources should therefore be considered, though often are not.

7.1.2 Unconventional Computation

Aswe suggest above, traditional complexity theory is adequate for analysis of Turing-
machine-style computers, but does not necessarily cater sufficiently for unconven-
tional systems. Whilst it is unnecessary in the context of the present publication to
describe or define unconventional computers (in their many forms: quantum, chemi-
cal/DNA, analogue, kinematic, optical, slime-mould, etc.), it is important to mention
that such computers consume resources other than time and space, and that these
resources may contribute significantly to a system’s complexity in that they may
impinge on the system’s efficiency before availability of either time or space has
become pressing. It is at least prima facie feasible, for instance, that a kinematic
computer will need energy to compute, and that the time and space complexities of
the system may be dwarfed by its ‘energy complexity’; or that an analogue com-
puter requires of the user a certain precision in order to function correctly, and that
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‘precision complexity’ is more indicative of the system’s efficiency than its time
and space complexities. We consider now the latter (analogue/precision) example in
more detail.

7.1.3 Motivating Example

We recall from [10] an analogue/optical system for factorizing natural numbers.
Whilst we do not describe the system in detail here (a full account is available in
[10], and an earlier, related system is described in [6] and covered by patent [11]),
we note now some important features:

• the system can factorize numbers using time and space polynomial in the numbers’
size (this is in contrast with the exponentially scaling time required by known
conventional-computer solutions to the problem of factorization—see [14]1), but

• the precision with which the user must manipulate/measure certain physical para-
meters (so as to effect input to/output from the system) increases as an exponential
function of the size of the number being factorized.

For present purposes, then, the relevant point is that the true complexity of the
system, and the bars to its practical efficiency, arise because of issues relating to the
resource of required precision rather than of time or space. This exemplifies the
fact that insightful analysis of the complexity of unconventional computers entails
consideration of accordingly unconventional resources. We consider now several
such resources.

7.2 Commodity Resources

In this section, we detail certain resources consumed during unconventional compu-
tation.

7.2.1 What We Mean by ‘Resource’

Note that, for present purposes, resource has a more specific meaning than its com-
mon usage2 suggests. ‘Resource’ could validly be taken to mean

1Although [14] is some years old now, the stated exponential time requirement remains state-of-
the-art.
2We find as a dictionary definition of ‘resource’ the following: “[a] means of supplying some want
or deficiency; a stock or reserve upon which one can draw when necessary” [22].
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• not only those commodities consumed/required during computation (i.e., “when
necessary” as in the quotation in Footnote 2)—time, space, precision, etc.; but also

• the availability of non-determinism, oracles, etc. (that is, of features of the com-
putational model/enveloping laws of physics, which features apparently augment
computational power);

• the costs involved in manufacturing (rather than running) a computer (including,
for example, distillation/manufacture of any entangled/cluster states from which
respectively a general/measurement-based quantum computation proceeds; and
including manufacturing costs viewed thermodynamically—see [18, 27]);

• etc.

One may, further, consider ‘information-theoretic’ resources and the inequali-
ties (based essentially on simulability) between them—see Sect. 7.3.1.4; similar
ideas arise in the context of trades-off between (computation-time, ‘commodity’)
resources.

In the present chapter, we are concerned primarily with what we call commodity
resources. These are computational resources consumed or required by a computer
during execution of a computation (as opposed, for example, to resources used during
a computer’s manufacture, and to ‘information-theoretic’ resources such as commu-
nication channels; see Sect. 7.3 for more on non-commodity resources). Commodity
resources include, but are far from limited to, time and space.

For the remainder of Sect. 7.2, by ‘resource’ we mean ‘commodity resource’.
An important question here is:

(�) what methods can be used to identify the relevant resources for a given compu-
tational model?

This question may be posed either in generality—‘given an arbitrary computational
model, which resources should be considered?’—or for specificmodels; we consider
both levels of generality (see Sects. 7.2.3 and 7.2.6 respectively).

Some clarification is needed on what it means for a resource to be ‘relevant’. An
intuitive understanding of this concept can be gleaned from the analogue factorization
example of Sect. 7.1.3, which, we have commented, has time and space complexities
(both polynomial) that fail to capture the system’s actual, exponential complexity; the
unconventional resource of precision captures the true complexity here, and, hence
(unlike time and space), is relevant.

Note that, whereas the phrasing of our question (�) suggests that resources’ rel-
evance is a function of the computational model under consideration, it may in fact
vary between instances of the model: one computer of a certain model may have say
time but not precision as a relevant resource, whilst, to another of the same model,
precision but not time may be relevant. Nonetheless, when identifying candidate
relevant resources, the choice of model seems more influential than the choice of
specific computer. The complexity functions of these candidates (for the model(s)
under consideration) can then be evaluated for the specific computer(s) of interest to
see which are relevant (using for this evaluation notions such as dominance, which
is defined and described in [9]).
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Our focus is, of course, on unconventional models of computation. We claim
as an aside that, in the conventional, Turing-machine model, the resources of time
and space (and variations thereon) encompass all relevant complexity behaviour.
We recall, for example, Păun’s belief (see [20]) that “[t]he standard dimensions of
computations are time and space”3; neither need one take Păun’s word for it: note
that many standard complexity classes are defined in terms of what is achievable
by various computers within a certain time (loosely, these are P, NP (including the
subclass of NP-complete problems), coNP, PH, EXP, NC, P/poly, BPP, BQP,
PP) or using a certain amount of space (loosely, PSPACE, AC0, NC, L).4

(Of course, should one deem parallel computation to be conventional, then to
the conventional resources of time and space must be added number of processors.
However, one may—and we do—view parallelism as an issue separate from our
notions of (unconventional) complexity theory: susceptibility to a parallel approach
is a property of a problem; of more interest here is how efficiently each parallel
sub-computation can be performed (whether by Turing machine or unconventional
computer); then account of parallelism is taken simply by summing respective sub-
complexities. Similarly to parallelism, non-determinism may be—but here is not—
viewed as a conventional computational practice, whence the resource number of
random bits consulted (cf. Sect. 7.3.2) would be included in a list of conventional
resources.)

7.2.2 Formalizing Commodity Resources

We model commodity resources (denoted A, B, C , etc.) as functions that depend
upon the choice of computer and that map each input value to the corresponding
amount5 of resource used by the computer in processing the input value.

So, where � is a computer and x an input value for �, A� (x) (or simply A (x) if
the choice of � is understood) is the amount—in fact, number of units: we stipulate
that resource A have codomain N ∪ {∞} (the natural numbers6 augmented with an
infinity element)—of resource A consumed by � in processing x .

With each resource is associated a complexity function. For a given computer and
resource, one may consider how the resource scales: one may be interested not in the

3Păun adds that “[t]his is true for computer science, not necessarily for the brain”; not wishing
to deny the brain recognition as a computer, we must, and here do, question what resources are
involved in unconventional computation.
4The 14 classes mentioned here are those in the ‘Petting Zoo’ section of Scott Aaronson’s Com-
plexity Zoo [1] (ignoring classes of function problems)—purportedly the most important (i.e., most
referenced/fundamental/etc.) classes; those in the Petting Zoo but not amongst the 14 areMA, AM
and SZK, which nonetheless are defined in terms of no other resources than time and space).
5This amount may, when no finite quantity of a resource is sufficient for a computation to complete
satisfactorily, be infinite (e.g., no finite amount of the resource of time will suffice when a Turing
machine has entered an infinite loop).
6Note that, in the present context, zero is deemed to be a natural number: N := {0, 1, 2, . . .} .
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resource required by the computer in processing some specific input value (i.e., in
some ‘A (x)’), but in the resource required as a function of the input value’s size7—
this is the complexity function corresponding to the resource. Specifically, we make
the following definition.

Definition 1 (Complexity function) Let � be a computer with set X� of possible
input values and let A be a resource. The complexity function A∗

�, corresponding to
resource A, is given by

A∗
� (n) := sup {A� (x) | x ∈ X� ∧ |x | = n} .

Whilst A, B, C , etc. denote types of resource, then, A∗, B∗, C∗, etc. denote types
of complexity.

(Note that ‘resource’ has not been defined; we have described necessary, but not
sufficient, properties of the notion, and consider further restrictions in Sect. 7.2.4,
where the notion is summarized.)

7.2.3 Model-Independent Resources

We look now at some resources that apply to all computers, regardless of model.

7.2.3.1 Time and Space

Run-time and memory space are the standard resources considered in complexity
analyses of Turing machines; indeed, up to variations (ink, head reversals, etc.), they
are the only ones—recall the discussion of Sect. 7.2.1.

Whilst we see above that consideration of unconventional computation necessi-
tates consideration of unconventional resources, this is not to say that time and space
are not still relevant in unconventional contexts. Furthermore, it is clear for virtually
all physical computing paradigms how to generalize these two resources from Tur-
ing machines to the wider class of physical computers. Time can be taken to be the
number of units of physical time (measured in seconds, say8) that elapse during a
computation (i.e., between input and output) performed by a physical system9; space

7We defer to [8, 12] and standard complexity theory further discussion of size functions (that map
input values to their non-negative, real sizes), noting here by way of illustration only that the size of
a natural number n expressed in place notation—with base b, say—can be taken to be the number
of digits of n (or the often-convenient approximation logb (n)). We denote the size of an input value
x by |x |.
8The use in complexity theory of O-notation renders irrelevant this choice of the second as unit; it
is made only for the sake of concreteness. Similarly the choice below of cubic metres.
9Here we implicitly assume that computations are not affected by relativistic effects, which is
clearly not the case with so-called relativistic computation; for this model, then, our definition of
time needs modification—see Sect. 7.2.6.3.
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can be taken to be the physical volume (in cubic metres, say) occupied by the system
(including any required storage space, electrical or not).

7.2.3.2 Material Cost

In addition to the material cost of constructing a computer (which may, from a
commodity-resource point of view, be supposed to be a constant, one-off cost; or
which can be treated as a non-commodity resource—see Sect. 7.3.1.1), there may be
a cost in running it (over and above energy costs, which we discuss in Sect. 7.2.6
below). For example, if memory is implemented in such a way that each write (either
to a fresh or used memory cell) costs a constant amount, then one may wish to
consider the resource of ‘ink’; this existing notion can be generalized to the resource
of material cost, in what should in any given context be an obvious way.

7.2.3.3 Thermodynamic Cost

Strictly speaking, this resource is not applicable to computers from all paradigms
(failing, in particular, for those from abstract, mathematical models), but is at least
applicable to those that are physically implemented; Turing machines, then, are
excluded, but digital computers that implement Turing machines are not.

The idea behind this resource is that computation typically erases information:
evaluating a function (which will not in general be injective) in such a way that the
input is destroyed and only the output is available after computation represents a loss
of information, an increase in entropy and, hence, a thermodynamic cost; this con-
cept was introduced by Landauer in [17] and developed by, amongst others, Bennett
and Vitányi (who survey the notion in [4] and [25] respectively). Reference [27]—
in which the corresponding complexity measure is explicitly introduced—notes
that limits on the thermodynamic cost (a form of computational complexity) of
a computation can be inferred by considering its algorithmic (that is, Kolmogorov)
complexity. Note that, at least from the perspective of [27], this resource arises
from information-theoretic (and, specifically, entropy-related) concerns; accordingly,
(reversible) computation of an injective function is deemed to have negligible ther-
modynamic cost, regardless of (for example) the energy inefficiency of a physical
instantiation of the computation.

In passing,we recall from [18] the notion of thermodynamic depth, which provides
a measure of the amount of information lost in formation of an object (such as a
computer) rather than in execution of a computational process. This is not, then, a
commodity resource, but rather a manufacturing cost; see Sect. 7.3.1.1.
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7.2.4 Model-Independent Features of Resources

Apart from consideration of individual resources (time, space, material/thermo-
dynamic costs, etc.) that are applicable in the context of arbitrary computational
models, one may consider broader features that (unspecified) such resources should
possess; we briefly discuss two such features now.

7.2.4.1 Blum’s Axioms

These two axioms, introduced in [13], say of a resource that

1. the resource is defined if and only if computations during which the resource is
consumed are themselves defined (this is the case, for example, with the Turing-
machine resource of time: the number of time steps is a well-defined, finite natural
number if and only if the computation is defined in the sense that it halts), and
that

2. it is a decidable problem to check purported measurements of the resource’s
amount (again, time in the context of Turing machines satisfies this: given a
Turing machine, an input value and a purported number n of time steps, one
can check—simply by running the computation for n steps and checking for
termination at that point and not before—whether the computation really does
use n steps).

The axioms are, for our purposes, desirable,10 andwe stipulate that our commodity
resources satisfy them. However, necessary as we deem the axioms to be, they are
not sufficient; we note in [8] that a notion of commodity resource constrained only by
Blum’s axioms leads to undesirable and deceptive complexity behaviour11—whereas
tools exist (see [8, 9]) to determinewhich of several resources are ‘relevant’ to a given
computation, these tools fail when our concept of resource is not restricted further
than by the axioms.

One restriction to the definition of resource that mitigates this deceptive com-
plexity behaviour is to stipulate that resources be normal; we now briefly describe
the features of normalization of which we make use here, deferring to [8] a more
complete account.

10In particular, we do not consider here non-deterministic (commodity) resources; were we to, then
we should not want axiom 2 to take the form given here.
11Specifically, we demonstrate in [8] that the importance of certain resources can be artificially
exaggerated, as follows. One may, for example, count a Turing-machine computation’s time steps
(let T be their number) and tape cells (S); then the measure T of time is more ‘significant’ than
that, S, of space in that T ≥ S. However, one may (perversely but perfectly validly) measure space
instead as 2S (with the mapping k �→ 2k establishing an order-isomorphism between the two spatial
measures, demonstrating their equivalence in some sense), whence it is for some Turing machines
the case that space appearsmore significant than time (in that 2S > T ). It is this undesirable freedom
to engineer resources’ apparent relative significance that motivates the below-described restriction
to normal resources.
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7.2.4.2 Normalization

Roughly speaking, a normal resource is one that attains all natural-number values: a
resource A is normal if and only if, for any natural number n, there exist a computer
� and an input value x such that �, in processing x , consumes exactly n units of
the resource (i.e., such that A� (x) = n). Normalization is a process whereby non-
normal resources can be converted into normal resources that are order-isomorphic
with the originals.12

If one were to allow as a resource an arbitrary function with codomain N∪ {∞},
then the resource would effectively return ‘cardinals’: the resource counts time steps,
tape cells or similar, and one has an intrinsic unit of measurement. This seems
resource-dependent and not conducive to comparison (for example, how many time
steps, numerically speaking, should one deem of equivalent cost/value to one tape
cell?). If, on the other hand, one allows only normal resources, then one has not
‘cardinals’ but ‘ordinals’, with 0 representing the least possible resource consump-
tion, 1 the second-least, 2 the third-least, etc.; this is independent of the choice of
resource, and of any unit of measurement suggested thereby, and so fairer, resource-
heterogeneous comparison becomes possible.

If we stipulate that our commodity resources be as described in Sect. 7.2.2, satisfy
Blum’s axioms and be normal, then (as hinted at above and discussed in [8]) one
finds that much of the deceptive complexity behaviour alluded to—notably, that of
Footnote 11—is precluded.

7.2.4.3 Summary of ‘Resource’

We summarize now our restrictions on the notion of resource. In the present chapter,
a valid (commodity) resource

• is a function, dependent upon the choice of computer, that maps input values to
natural numbers (or to ∞) (see Sect. 7.2.2);

• satisfies Blum’s axioms (see Sect. 7.2.4.1); and
• is normal (see Sect. 7.2.4.2).

These are necessary conditions for a resource to be ‘valid’, though are still not
between them sufficient13; a full definition of resource remains an open problem, to
be investigated further in the wider project of which the present work is part.

12The resource S of Footnote 11, then, is normal, whereas 2S—which normalizes to S—is not.
13An illustration of this insufficiency arises from the fact that, though normalization precludes
exaggeration of a resource’s importance via application of functions such as k �→ 2k , it does
nothing to preclude understatement of a resource’s importance via application of functions such as
k �→ 
ln k�.
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7.2.5 Resource as a Lower Bound

We comment in passing that individual values of resources and of complexity func-
tions are to be thought of as lower bounds on what is needed for a computation to
succeed—recall (for example from Footnote 4 of [9]) the assumption that a compu-
tation can still proceed with more resource than is necessary (a desirable by-product
of this is that our unconventional-complexity definitions are in some respects analo-
gous to their traditional counterparts).14 However, note that, in a quantum-mechanical
(and, hence, quantum-computational) context, additional ‘possibilities’ (for exam-
ple, potential routes taken by photons in a double-slit experiment) may interfere with
and cancel out existing ones (see [21]); such phenomena should be considered, then,
when selecting resources, so that provision of extra resource cannot, all else being
equal, preclude a previously viable computation.

7.2.6 Specific, Model-Dependent Resources

Wenow consider specific (illustrative rather than exhaustive)models of computation,
and ask which resources are likely to be relevant for instances thereof.

7.2.6.1 Actual, Physical Implementations of Turing Machines

We have already commented that, for the abstract, unimplemented Turing-machine
model itself, the resources of time and space (and variants thereof) are sufficient
for complexity-theoretic purposes. The resource of precision, then, is not a direct
concern for Turing machines:

“[w]hat is fundamental about the idea of aTuringMachine and digital computation in general,
is that there is a perfect correspondence between the mathematical model and what happens
in a reasonable working machine. Being definitely in one of two states is easily arranged
in practice, and the operation of real digital computers can be (and usually is) made very
reliable” [24].

However, both the alphabet size and number of states relate to precision in that
distinguishing a greater number of distinct symbols/states entails there being smaller

14We must clarify this point: the sense in which resource and complexity offer lower bounds is that
a computationwith fixed input valuemay proceed with at least these bounds’ allocation of resource;
extra resource beyond that prescribed by a resource/complexity function is not problematic. This
is in contrast with, and should not be confused with, the observation that a complexity function is
the maximum (over input values of a certain size) amount of resource sufficient for a computation
to succeed, in which sense complexity functions are upper bounds.
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differences between them, resulting in smaller differences (in voltage or similar)
between their respective real-world implementations.15

Nonetheless, the alphabet case is not problematic: ‘meta-symbols’ each com-
prising several symbols can be used instead of exponentially larger alphabets of
individual symbols; similarly, the states may be encoded via such ‘place notation’.
Further, the Turing machine’s unbounded tape seems unproblematic, as long as by
‘computer’ we mean not a fixed-memory machine, but the machine plus arbitrary
additional memory (which must, of course, be accounted for in terms of the resource
of space).

This suggests that consideration of time and space alone may still be enough, and
(unsurprisingly) Turing [23] argues similarly (noting in particular the issue of alpha-
bet size/symbol differentiation). However, from a complexity point of view, though
real-world computers may offer a good, finite approximation of Turing machines,
we are interested in asymptotic behaviour of resources, and so precision should be
accounted for.

So,we consider, aswe normally should, the resources of time and space (which lat-
ter accounts for the unboundedness of aTuringmachine’s tape: the resource quantifies
how much space is needed given a certain input size, and may then determine adher-
ence or lack thereof to financially/technologically/geographically imposed bounds
on the space available to a physically implemented computer), and add to these pre-
cision so as to account for symbol and state numbers (and, hence, indirectly, for the
size of the machine’s transition table). These, it would seem, are the only significant
differences between a Turing machine and a real-world implementation as far as
complexity resources are concerned.

7.2.6.2 Analogue/Kinematic Computers

Time and space need, as always, to be considered when working with these models.
However, they alone are not sufficient: recall the factorization system of Sect. 7.1.3.
One additional relevant resource, as we have seen, is precision (this is also evident
from, for example, the greatest-common-divisor system described in [7], the wedge-
detection cannon system of [3] and the Differential Analyzer of [15]), and, we see
below, there are others besides.

It seems intuitively clear that one should consider also the energy required to
drive the computer. (Energy was not considered in the case of Sect. 7.2.6.1 (namely,
real-world implementations of Turing machines) since, assuming ‘ballistic’ compu-
tation where the processor is used at capacity without, in particular, pauses for user
interaction, energy consumption is linear in run-time and therefore redundant from
a complexity-theoretic perspective (provided that one has not neglected to consider
time).

15Strictly speaking, symbol and state numbers are a priori fixed, whereas we as complexity theorists
should like to think in terms of functions of input size; accordingly, we may consider measures such
as ‘number of distinct symbols/states used in the current computation’ as a function of input size.
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In [24], the resource of precision is dealt with by acknowledging that an analogue
computer has some ‘ε’ of imprecision, which value is fixed a priori and determines
the maximum size of input that can be processed successfully, therefore not render-
ing precision a resource in our (commodity) sense. However, various standard and
non-standard resources in our commodity sense—physical size, mass, initial stored
energy, time interval of operation—are considered, though these happen to reduce
(due to bounded density and similar) to the standard time and space.

In summary, then, relevant resources for analogue/kinematic computers include
time, space, precision and energy.

7.2.6.3 Relativistic Computers

The broad idea of relativistic computation (of which the detailed physics is beyond
the scope of the present chapter) is to exploit relativistic effects that allow a computer
to experience time at a greater rate than its user; for then the user need wait less time
(than if the user’s and computer’s clocks agreed) for an output value:more (computer)
time steps are accommodated in each (user) second. Suggestions of how to achieve
this effect include sending computers through wormholes, near black holes, etc.;
the situation is sometimes contrived such that an infinite amount of computer time
elapses in a finite amount of user time, whence hypercomputation becomes available.

When identifying resources for this model, there are two points to consider.
First, the resource of time is now ambiguous: one may consider seconds (say)

counted by the computer or by the user. The tacit assumption is that the latter refer-
ence frame is the more telling and important, for else no computational speed-up is
achieved. This assumption is perfectly reasonable: one views the computer, worm-
hole, etc. (but not the user) together as the computing system, and measures the time
for which the user has to wait—this seems the more natural choice to resolve the
ambiguity of the resource of time, and the most natural generalization of the resource
as encountered in other models.

Secondly, note that, for present purposes, we adopt a fairly practical stance when
considering models of computation: when identifying resources, for instance, we are
careful to distinguish between (abstract) Turing machines and their (physical) imple-
mentations; and we consider practical issues such as achievable precision. Against
this backdrop, then, it seems reasonable to exclude relativistic computers (at least as
a form of hypercomputer) on the grounds of (for example) their energy consumption:
although the user experiences only a finite amount of time, the computer needs to be
powered for what the computer itself deems an eternity—we exploit relativity in an
attempt to bypass time restrictions, but other resources’ constraints (energy, durability
of the physical machine, etc.) are still present. We see in another guise our original
contention: time (and space) are not the only complexity-theoretic resources, and
should not be treated as such. (There may, prima facie, still be an advantage offered
by relativistic computers, in particular where computations are time-heavy; however,
maintaining a computer’s running appears to require other resources (energy or sim-
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ilar) in linear proportion to time, which suggests that a computation is never truly
uniquely time-heavy.)

The power of this paradigm, then, comes primarily from neglect of the computer’s
time-frame in favour of the user’s, though the availability (to the computer) of other
resources such as energy is still a significant stumbling block.

(Commodity resources of user- and computer-time aside, there is clearly a signifi-
cant non-commodity—specifically manufacturing—cost incurred during production
(or at least discovery or similar) of the wormholes, black holes, etc. used by this com-
putational paradigm; see Sect. 7.3.1.)

7.2.6.4 Optical Computers

Reference [26] introduces an optical system that computes via image manipulation;
the resources considered are: time; number of grid images; spatial, amplitude and
phase resolutions; dynamic range; and frequency of illumination. Without justifica-
tion here, we state that these resources are akin to forms of time, space and precision,
of which each is relevant for optical computers. We suggest also that energy is a rele-
vant resource to the wider paradigm of optical computers, since some instances rely,
for example, on the availability of electromagnetic waves of a prescribedwavelength
(which may depend on the input size).

In summary, then, relevant resources for optical computers are time, space, pre-
cision and energy (and variants thereof).

7.2.6.5 Quantum Computers

We defer to future work a detailed account of the computational resources consumed
by quantum computers, but make some general comments here.

In circuit-model quantum computation (wherein input is encoded via preparation
of several quantum bits, processing takes the form of the application of unitary opera-
tions to subsets of these quantum bits, and output is via measurement of the system),
we note that a commonly used complexity measure is the number of invocations
of unitary operations [19]. This measure essentially captures the system’s run-time
(just as a Turing machine’s run-time can be defined as the number of invocations
of atomic, one-time-step operations whereby tape content, machine state and head
position are updated), which is not, we suggest, a particularly insightful measure
for quantum computers: the benefit enjoyed by quantum computers over their clas-
sical counterparts is gleaned in part from the use of superposition states, and the
effective parallelism that this allows; a drawback is the strictly constrained way in
which measurements can be taken of the system; this run-time measure, then, is a
reflection of neither the ‘amount of computation’ performed (since ‘parallelism’ is
not taken into account) nor the ‘difficulty’ in using the system (notably during mea-
surement), of which two features at fewest one should arguably be captured by any
useful complexity measure.
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We consider now the adiabatic quantum model (where output values are encoded
in the final ground state of an evolving system, with the evolution proceeding from
an achievable initial ground state sufficiently slowly that no higher energy state is
attained, so that our ‘output-value’ final ground state is indeed encountered). Standard
expositions of the paradigm consider time as the only resource, as, indeed, is tacit in
our “sufficiently slowly” above; however, determining this sufficient time makes use
of trades-off with other resources. For example, the time sufficient for an evolution
to remain in the ground state is a function of the minimum gap between the 0th
(ground) and 1st energy states; energy, then, is an important (though commonly
‘behind-the-scenes’) resource for this computational model.

The measurement-based quantum model sees a computation take the form of
several measurements (which can, in principle, be performed simultaneously), each
of an individual quantum bit from an initial, large, entangled (cluster) state. As
this description suggests, the complexity resources relevant to such a computation
may be markedly different from those encountered in the circuit and other quan-
tum models: enumerating invocations of unitary operations no longer applies in a
straightforward manner; in fact, a relevant interpretation of ‘(non-commodity) com-
plexity resource’ in this context concerns the difficulty in producing the initial cluster
state—see Sect. 7.3.1.1.

7.2.6.6 Chemical Computers

We mention here one specific resource that is particularly relevant to chemical com-
puters, namely mass. We recall from [2] that DNA computers offer an approach to
the (NP-complete) Travelling Salesperson Problem, and that the time (and, for that
matter, energy) complexity of thismethod appears acceptable. However, as is pointed
out in [16], the mass of DNA required by the method in processing non-trivial prob-
lem instances is greater than the mass of the Earth!16 We recall the long-held, de
facto rule of thumb that tractability corresponds to polynomial resource consump-
tion, and note that, in this case, the resource of mass imposes an exponential cost,
and, therefore, intractability.17

(As an aside, note that, due to the bounded density of chemical-computing
apparatus—including DNA itself—, mass is bounded by a constant multiple of
space, and so the resource of mass tells us little new, provided that we already
consider space. However, the distinction is illustrative of the unexpected ways in

16Hartmanis [16] writes of weight, but strictly means mass; the distinction is important since we
are dealing with masses of the order of that of Earth, whence we may no longer assume negligible
changes in gravitational strength from one part of the computational apparatus to another (nor,
hence, negligible changes in the ratio between weight and mass).
17An alternative view of mass in this instance is as a measure of the number of parallel ‘processors’
at work during a chemical computation: the exponential speed-up observed with the TSP system
and similar stems essentially from the presence of exponentially many DNA strands simultaneously
testing one potential solution each. Recall, however, the discussion of parallelism in Sect. 7.2.1.
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which complexity (in this example, space complexity) can be affected by strictly
unconventional-computing concerns.)

7.3 Other Resources

We mention now in passing some (but by no means all) non-commodity interpreta-
tions of ‘resource’ (though justify briefly our focus18 on commodity resources by cit-
ing (a) analogy with traditional complexity classes, where non-commodity resources
such as the computational use of non-determinism are accounted for in the specifica-
tions of the classes themselves; and (b) the fact that many non-commodity resources
can be viewed as features of the computational model, which is accommodated by
our model-independent approach to complexity theory).

Hereafter, by ‘resource’, we do not necessarily mean ‘commodity resource’.

7.3.1 Non-commodity Resource Types

We give now several non-commodity interpretations of ‘resource’.

7.3.1.1 Manufacturing Costs

One may view as a resource the costs of constructing (rather than running) a com-
puter. These may, for example, include the cost (whether this be financial, thermo-
dynamic—see [18]19 and [27]—, or other) of manufacturing the system’s physical
structure (including the structure of wormholes, black holes, etc. in the case of rel-
ativistic computing—recall Sect. 7.2.6.3), or of producing an entangled state to be
used in a quantum computation (e.g., a cluster state from which measurement-based
quantum computation proceeds).

Viewing living brains as computers, one may also reasonably include under this
type of resource such measures as time taken to evolve.

18Because of this focus, a more rigorous description of ‘non-commodity resource’ than is presented
here is not necessary; furthermore, such description is rendered elusive by (amongst others) issues
described in Sect. 7.3.2.
19We recall from [18] the complexity measure of thermodynamic depth, which gauges the loss of
information during formation of an object (e.g., a computer). In relation to this measure, and in
agreement with our general thesis that unconventional computers warrant consideration of uncon-
ventional resources, Lloyd and Pagels [18] write that, “if a definition of complexity is to be a useful
measure for physical systems then it must be defined as a function of physical quantities, which in
turn obey physical laws.”
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7.3.1.2 Features of Computational Models

Computation may be facilitated by taking advantage of ‘permissions’ granted by the
computational model. For example, one may augment a Turing machine by allowing
it to use non-determinism; then, although the same problems are computable, one
does at least enjoy an apparent (and, if P �= NP, an actual) increase in (time)
efficiency. Similarly, a computer may be augmented by allowing consultation of
oracles.

Such permissions are non-commodity resources on which one may draw to aid
computation.

7.3.1.3 Features of Enveloping Physical Laws

Similarly to the features of the computationalmodel (see above), onemay exploit fea-
tures of the physics describing the model. For example, a quantum computation may
rely on the availability of entanglement, which entails one’s adopting a non-classical
physics, whereas, when using other computational models (such as centimetre-scale
and larger kinematic computers), it may be convenient to assume that entanglement
and other non-classical phenomena are not present, and that one may safely assume
Newtonian dynamics.

Again, such features are non-commodity resources on which one may draw to aid
computation (and to aid our describing and reasoning about computation).

(We mention in passing Heisenberg’s uncertainty principle, closely related to
which are trades-off between precision and other (commodity) resources such as
energy. Further discussion of this idea is beyond the scope of the present chapter.)

7.3.1.4 Information-Theoretic Resources

Another class of resources that are non-commodity, but onwhich one can nonetheless
draw for computational gain, is the class of ‘information-theoretic’ resources. These
include (classical and quantum) communication channels, entangled states, etc.

Wemay, for example, summarize the information-theoretic content of the quantum
teleportation protocol [5] with the inequality,

2cl-bit + e-bit ≥ qubit ,

where ‘cl-bit’ stands for the resource of being able to transfer a classical bit, ‘qubit’
stands for the resource of being able to transfer a quantum bit, ‘e-bit’ stands for
the resource of having available an (entangled, two-party) Bell state, and ‘X ≥
Y ’ indicates that resources X are at least as powerful as (i.e., they can simulate)
resources Y .
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7.3.2 Recasting as Different Resource Types

Note that the boundaries between ‘types’ of resource (commodity, model-feature,
physics-feature, information-theoretic, etc.) are not always clear: there is not always
a unique ‘type’ to which a given computational resource belongs. For example, the
resource of non-determinism is discussed above in the context of being a model-
feature resource; however, its presence or otherwise could equally be considered
a physics-feature resource (where the presence or otherwise in physics of pre-
ordainment is the determining factor), or even a commodity resource (where one
may count, say, the number of random bits consulted during a computation).

However, the crucial point is not that resources fall neatly into these categories, but
that practitioners of unconventional computing consider all resources (fromwhatever
categories they may be) relevant to their systems.

7.4 Summary

We reiterate our main claim: that successful analysis of the complexity of unconven-
tional computers requires consideration of correspondingly unconventional
resources. This claim is justified by the motivating example of the factorization
system (Sect. 7.1.3), the true complexity of which conventional resources alone fail
to capture.We discuss above various non-standard (commodity) resources, which are
relevant to various computational models; we discuss also different, non-commodity
interpretations of the term ‘resource’.

We hope that the issues raised here provoke thought amongst the unconventional-
computing and computational-complexity communities, and lead to more rigorous
and complete analyses of unconventional systems’ computational complexity.
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Chapter 8
Decreasing Complexity in Inductive
Computations

Mark Burgin

Abstract Kolmogorov or algorithmic complexity has found applications in many
areas including medicine, biology, neurophysiology, physics, economics, hardware
and software engineering. Conventional Kolmogorov/algorithmic complexity and its
modifications are based on application of conventional, i.e., recursive, algorithms,
such as Turing machines. Inductive complexity studied in this paper is based on
application of unconventional algorithms such as inductive Turing machines, which
are super-recursive as they can compute much more than recursive algorithm can. It
is possible to apply inductive complexity in all cases where Kolmogorov complexity
is used. In particular, inductive complexity has been used in the study of mathe-
matical problem complexity. The main goal of this work is to show how inductive
algorithms can reduce complexity of programs and problems. In Sect. 8.2, we build
the constructive hierarchy of inductive Turing machines and study the correspond-
ing hierarchy of inductively computable functions. Inductive Turing machines from
the constructive hierarchy are very powerful because they can build (compute) the
whole arithmetical hierarchy. In Sect. 8.3, it is proved that inductive algorithms from
the constructive hierarchy can essentially reduce complexity of programs and prob-
lems and the more powerful inductive algorithms are utilized the larger reduction of
complexity is achievable.

8.1 Introduction

Being a scientific reflection of efficiency, complexity has become a buzzword in con-
temporary science. There are different kinds and types of complexity with a diversity
of different complexity measures. Kolmogorov, also called algorithmic, complex-
ity has turned into an important and popular tool in many areas such as computer
science, software development, probability theory, statistics, and information theory.
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Algorithmic complexity has found applications in medicine, biology, neurophysiol-
ogy, physics, economics, hardware and software engineering. In biology, algorithmic
complexity is used for estimation of protein identification [18, 19]. In physics, prob-
lems of quantum gravity are analyzed based on the algorithmic complexity of a given
object. In particular, the algorithmic complexity of the Schwarzschild black hole is
estimated [20, 21]. Benci et al. [1] apply algorithmic complexity to chaotic dynam-
ics. Zurek elaborates a formulation of thermodynamics by inclusion of algorithmic
complexity and randomness in the definition of physical entropy [32, 33]. Kreinovich
and Kunin [24] apply Kolmogorov complexity to problems in mechanics. Tegmark
[29] discusses what can be the algorithmic complexity of the whole universe. The
main problem with this discussion is that the author identifies physical universe with
physical models of this universe. To get valid results on this issue, it is necessary to
define algorithmic complexity for physical systems because conventional algorith-
mic complexity is defined only for such symbolic objects as words and texts [26]. In
addition, it is necessary to show that there is a good correlation between algorithmic
complexity of the universe and algorithmic complexity of its model used by Tegmark
[29].

In economics, a new approach to understanding of the complex behavior of finan-
cial markets using algorithmic complexity is developed [27]. In neurophysiology,
algorithmic complexity is used to measure characteristics of brain functions [28].
Algorithmic complexity has been useful in the development of software metrics and
other problems of software engineering [14, 17, 25]. Crosby and Wallach [16] use
algorithmic complexity to study low-bandwidth denial of service attacks that exploit
algorithmic deficiencies in many common applications’ data structures.

Thus, we see that Kolmogorov/algorithmic complexity is a frequent word in the
present days’ scientific literature, in various fields andwith diversemeanings, appear-
ing in some contexts as a precise concept of algorithmic complexity, while being a
vague idea of complexity in general in other texts. The reason for this is that people
study and create more and more complex systems.

Algorithmic complexity in its classical form gives an estimate of how many bits
of information we need to build or restore a given text by algorithms from a given
class. Conventional Kolmogorov/algorithmic complexity and its modifications, such
as uniform complexity, prefix complexity, monotone complexity, process complex-
ity, conditional Kolmogorov complexity, time-bounded Kolmogorov complexity,
space-boundedKolmogorov complexity, conditional resource-boundedKolmogorov
complexity, time-bounded prefix complexity, and resource-bounded Kolmogorov
complexity, are based on application of conventional, i.e., recursive, algorithms,
such as Turing machines. Besides, researchers investigated quantum Kolmogorov
complexity based on quantum algorithms [30]. Inductive complexity studied in this
paper is based on application of unconventional algorithms such as inductive Turing
machines, which are super-recursive as they can compute much more than recursive
algorithm can. It is possible to apply inductive complexity in all cases where Kol-
mogorov complexity is used. In particular, inductive complexity has been used in
the study of mathematical problem complexity [13, 15, 22].
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The main goal of this work is to show how inductive algorithms can reduce
the complexity of programs and problems. In Sect. 8.2, we build the constructive
hierarchy of inductive Turing machines and study the corresponding hierarchy of
inductively computable functions. The constructive hierarchy of inductive Turing
machines also generates a hierarchy of algorithmic problems [9]. Inductive Turing
machines from the constructive hierarchy are very powerful because they can build
(compute) thewhole arithmetical hierarchy [7]. In addition, as it is proved in Sect. 8.3,
inductive algorithms from the constructive hierarchy can essentially reduce the com-
plexity of programs and problems and the more powerful inductive algorithms are
utilized the larger reduction of complexity is achievable.

Denotations
If X is an alphabet, then X* is the set of all words (finite sequences) in the

alphabet X .
If x is a word in an alphabet, then l(x) is the length of x .
N is the set of all natural numbers.
A partial function f : X* → N tends to infinity (we denote it by f (x) → ∞) if

for any number m from N, there is a number k such that f (x) > m when l(x) > k.
A partial function f : N → N tends to infinity (we denote it by f (n) → ∞) if for

any number m from N, there is a number k such that f (n) > m when n > k.
ICn(x) is the inductive complexity of an object (word) x on the level n.
C(x) is the Kolmogorov complexity of an object (word) x .

8.2 Constructive Hierarchy of Inductive Turing Machines
and Inductively Computable Functions

An inductive Turing machine has hardware, software and infware as any computer.
The infware of a computer is the system of all data that can be processed by the

computer. The infware of inductive Turing machines, as in the case of the majority
of other abstract automata, such as finite automata or Turing machines, consists of
words in some alphabet. Here we consider only finite words in a finite alphabet.
However, it is possible to think about infinite words and/or infinite alphabets, e.g.,
the alphabet of all real numbers.

The hardware of an inductiveTuringmachineM consists of three abstract devices:
a control device A, which is a finite automaton and controls the performance of
M ; a processor or operating device H , which corresponds to one or several heads
of a conventional Turing machine; and the memory E , which corresponds to the
tape or tapes of a conventional Turing machine. The memory E of the simplest
inductive Turing machine consists of three linear tapes, and the operating device
consists of three heads, each of which is the same as the head of a Turing machine
and works with the corresponding tape. Such machines are called simple inductive
Turing machines [8].
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The control device A ofM is a finite automaton. It controls and regulates processes
and parameters of the machine M : the state of the whole machine M , the processing
of information by H , and the storage of information in the memory E .

Thememory E of a general inductive Turing machine is divided into different but,
as a rule, uniform cells. It is structured by a system of relations that organize memory
as a well-structured system and provide connections or ties between cells. In partic-
ular, input registers, the working memory, and output registers of M are discerned
in the structure of E . Connections between cells form an additional structure K of
E . Each cell can contain a symbol from the alphabet of the language of the machine
M or it can be empty. In what follows, we consider inductive Turing machine with a
structuredmemory. Note that adding additional structure to a linear tape, it is possible
to build many (even an infinite number of) tapes of different dimensions.

In a general case, cells may be of different types. Different types of cells may be
used for storing different kinds of data. For example, binary cells, which have type B,
store bits of information represented by symbols 1 and 0. Byte cells (type BT) store
information represented by strings of eight binary digits. Symbol cells (type SB) store
symbols of the alphabet(s) of the machine M . Cells in conventional Turing machines
have SB type. Natural number cells, which have type NN, are used in random access
machines (RAM). Cells in the memory of quantum computers (type QB) store qubits
or quantum bits. Cells of the tape(s) of real-number Turing machines [8] have type
RN and store real numbers. Cells in finite-dimensional machines of Blum, Shub and
Smale have type RN and store real numbers [2]. When different kinds of devices are
combined into one, this new complex devicemay have several types ofmemory cells.
This feature makes inductive Turing machines an efficient model for heterogeneous
computing systems and computations. In addition, different types of cells facilitate
modeling the brain neuron structure by inductive Turing machines.

The processor H performs information processing in M . However, in comparison
to computers, H performs very simple operations. When H consists of one unit, it
can change a symbol in the cell that is observed by H , and go from this cell to another
using a connection from K . It is possible that the processor H consists of several
processing units similar to heads of a multihead Turing machine. This allows one to
model various real and abstract computing systems: multiprocessor computers; Tur-
ing machines with several tapes; networks, grids and clusters of computers; cellular
automata; neural networks; and systolic arrays.

The software R of the inductive Turing machine M is also a program that consists
of simple rules similar to the rules of conventional Turing machines:

qhai → a jqkc (8.1)

In this formula, symbols qh and qk denote states of A, symbols ai and a j denote
symbols from the alphabet of M , and c is a type of connections (links) in the mem-
ory E . The rule (8.1) means that if the state of the control device A of M is qh
and the processor H observes the symbol ai in the observed cell, then the state of
A becomes qk , while the processor H writes the symbol a j in the cell where it is
situated and moves to the next cell by a connection of the type c. Each rule directs



8 Decreasing Complexity in Inductive Computations 187

one step of computation of the inductive Turing machine M . Rules of the inductive
Turingmachine M define the transition function of M and describe changes of A, H ,
and E . Consequently, these rules also determine the transition functions of A, H ,
and E . Note that application of a rule (8.1) depends not on two variables qh and ai
as in the case of conventional Turing machines but on three variables c, qh and ai ,
i.e. the rule is applicable only if there is a connection (link) of the type c from the
observed cell. Thus, it is also possible to write this rule in the following form:

qhai c → a jqkc (8.2)

The described rules (8.1) and (8.2) represent only synchronous parallelism of
computation. At the same time, it is possible to consider inductive Turing machines
of any order in which their processor can perform computations in the concurrent
mode. For instance, different heads can work in the asynchronous mode. Besides, it
is also possible to consider inductive Turingmachines with several processors. These
more sophisticated computational models are studied elsewhere.

A general step of the machine M has the following form. At the beginning, the
processor H observes some cell with a symbol ai (it may be � as the symbol of an
empty cell) and the control device A is in some state qh . Then the control device A
(and/or the processor H) chooses from the system R of rules a rule rwith the left part
equal to qhai and performs the operation prescribed by this rule. If there is no rule in
R with such a left part, the machine M stops functioning. If there are several rules
with the same left part, M works as a nondeterministic Turing machine, performing
all possible operations. When A comes to one of the final states from F , the machine
M also stops functioning. In all other cases, it continues operation without stopping.

In the output stabilizing mode, M gives the result when M halts and its control
device A is in a final state from F , or when M never stops but at some step of the
computation the content of the output register becomes fixed and does not change.
The computed result of M is the word that is written in the output register of M . In
all other cases, M does not give the result.

This means that an inductive Turing machine can do what a Turing machine can
do but in addition, it produces its results without stopping. It is possible that in the
sequence of computations after some step, the word (say, w) on the output tape (in
the output register) is not changing, while the inductive Turing machine continues
working. Then this wordw is the output of the inductive Turing machine. Note that if
an inductive Turing machine gives some output, it is produced after a finite number
of steps (in finite time). So, contrary to confusing claims of some researchers, an
inductive Turing machine does not need infinite time to produce a result.

Now let us build the constructive hierarchy of inductive Turing machines.
The memory E is called recursive if all relations that define its structure are

recursive.Here recursivemeans that there areTuringmachines that decide or build the
structuredmemory E [6]. There are different techniques to organize this process. The
simplest approach assumes that given some data, e.g., a description of the structure
of E , a Turingmachine T called the construction machine of thememory E builds all
connections in thememory E before themachineM starts its computation.According
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to another methodology, memory construction by the machine T and computations
of the machine M go concurrently, i.e., while the machine M computes, the machine
T constructs connections in the memory E . It is also possible to consider a situation
when some connections in the memory E are assembled before the machine M
starts its computation, while other connections are formed parallel to the computing
process of the machine M .

In real computers, all three techniques are employed although it is done in a very
simple form. Indeed, when the hardware of a computer is manufactured, the connec-
tions in its memory are put together before the machine starts working. In contrast to
this, utilization of external memory such as floppy discs, CD-ROM and flash drives
involves formation of memory connections when computer is functioning.

Besides, it is possible to consider a schema when the construction machine T is
separate from themachineM , while another structural design adopts the construction
machine T as a part of the machine M . In some sense, T performs preprocessing of
information for the machine M and works as an agent for M in the sense of agent
technology. In [5], it is demonstrated how such preprocessing can essentially improve
device performance.

Note that preprocessing is a process often utilized in natural information process-
ing systems. For instance, visual information is at first preprocessed in eyes of ani-
mals and humans and only then it is transmitted to the brain. Psychologists call this
preprocessing sensation, which is considered as an early stage of perception when
neurons in a receptor create a pattern of nerve impulses that are transmitted to the
brain for further processing [31]. This shows that inductive Turing machines perform
biologically inspired computations.

Inductive Turing machines with recursive memory are called inductive Turing
machines of the first order.

While in inductive Turing machines of the first order, the memory is constructed
by Turing machines, it is also possible to use inductive Turing machines for memory
construction for other inductive Turing machines. This brings us to the concept
of inductive Turing machines of higher orders. For instance, in inductive Turing
machines of the second order, the memory is constructed by Turing machines of the
first order.

In general, we have the following definition.
The memory E is called n-inductive if its structure is constructed by an inductive

Turing machine of the ordern. Inductive Turing machines with n-inductive memory
are called inductive Turing machines of the order n + 1. Namely, the memory of
an inductive Turing machine of order n is constructed by Turing machines of order
n − 1.

Note that any inductive Turing machine of order n is also an inductive Turing
machine of order n + 1 because inductive Turing machines of order n can simulate
any inductive Turing machine of order n − 1 [8].

Inductive algorithmic level n consists of all inductive Turing machines of order
n. We denote the class of all inductive Turing machines of the order n by ITn and
define the constructive hierarchy of inductive Turing machines
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IT =
⋃

n=1

∞ ITn

Machines from IT are called constructively inductive Turing machines.
The constructive hierarchy of inductiveTuringmachines induces hierarchic induc-

tive computability for functions.

Definition 8.2.1 A function f is inductively computable on the level n if there is an
inductive Turing machine of order n that computes f .

Note that an inductively computable on the level 0 function f is a recursively
computable function and vice versa.

Results from [6, 8] show that each level of inductively computable functions
has essentially more functions than the previous level. For instance, Kolmogorov
complexity is computable on the first level but is not computable on the zero level
being recursively non-computable [3]. The difference between the levels of inductive
computability brings us to the following definition.

Definition 8.2.2 A function f is inductively computable on the exact level n if there
is an inductive Turingmachine of order n that computes f , while there is no inductive
Turing machine of order n − 1 that computes f .

Note that an inductively computable on the exact level 0 function f is a recursively
computable function and vice versa, i.e., the inductive algorithmic exact level 0 is
the same as the inductive algorithmic level 0.

Proposition 8.2.1 For any n ≥ 0, function f is inductively computable on the level
n, then it is inductively computable on the level n + 1.

Indeed, any inductive Turing machine of order n is also an inductive Turing
machine of order n + 1 that computes the same function and so what is computable
on the level n is also computable on the level n + 1.

8.3 Inductive Complexity of Higher Orders

The constructive hierarchy of inductive Turingmachines induces hierarchic inductive
complexity for finite objects such as natural numbers or words in a finite alphabet.

Definition 8.3.1 For any n ≥ 0, the inductive complexity ICn(x) of an object (word)
x on the level n is defined as

ICn(x) =
⎧⎨
⎩
min{l(p);U (p) = x} when there is p such that U (p) = x

undefined when there is no p such that U (p) = x

Here l(p) is the length of theword p andU is a universal inductive Turingmachine
of order n.
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Note that for n = 0, inductive complexity IC0(x) coincides with Kolmogorov
complexity C(x), while for n = 1, inductive complexity on the first level IC1(x)
coincides with inductive complexity IC(x) studied in [7, 8].

Definition 8.3.2 The inductive complexity ICT (x) of an object (word) x with respect
to an inductive Turing machine T is defined as

ICT (x) =
⎧⎨
⎩
min{l(p); T (p) = x} when there is p such that T (p) = x

undefined when there is no p such that T (p) = x

Note that if T is a Turing machine, then inductive complexity ICT (x)with respect
to T coincides with Kolmogorov complexity CT (x) with respect to T .

Relation � is basic for the theory of inductive complexity [4, 8]. Namely, if f (n)

and g(n) are functions that take values in natural numbers, then

f (n) � g(n) if there is a real number c such that f (n) ≤ g(n) + c for almost all n ∈ N

Let us consider a classH of functions that take values in natural numbers. Then a
function f (n) is called optimal for H if f (n) � g(n) for any function g(n) from H.

Theorem 8.3.1 ([8]) For any n ≥ 0, the function ICn(x) is optimal in the class of
all inductive complexities ICT (x) with respect to some inductive Turing machine T
of order n.

In what follows, it is possible to assume, without loss of generality (cf., for exam-
ple, [8]), that all considered inductive Turing machines have only one-dimensional
(linear) tapes and work with words in the alphabet {1, 0}.

As for any n, there is an inductive Turing machine M of order n such that M(x) =
x for all words x in the alphabet {1, 0}, we have the following result.

Proposition 8.3.1 For any n ≥ 0, ICn(x) is a total function on the set of all words
in the alphabet {1, 0}.

As it is demonstrated in [10], inductive complexity is intrinsically related to induc-
tive decidability and undecidability of algorithmic problems.

For a given class of algorithms K, there are various algorithmic problems [11].
Here is one of them, which is closely related to inductive complexity. For simplicity,
we consider automata that work with words in some alphabet A.

TheDefinability ProblemRD. Find an automatonW that for an arbitrary automa-
ton D from K and an arbitrary word x in the alphabet A, informs whether D(x) is
defined, e.g., gives 1 when D(x) is defined and 0 when D(x) is not defined.

Finding when an algorithm gives a result and when it does not is an important
task for many practical problems. Note that for Turing machines, the Definability
Problem is equivalent to the Halting Problem.
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Theorem 8.3.2 ([11]) The Definability ProblemRD for the class ITn of all inductive
Turing machines of order n is undecidable in the class ITn of all inductive Turing
machines of order n.

However, if we consider a larger class of inductive Turing machines, this algo-
rithmic problems become decidable. Namely, we have the following result.

Theorem 8.3.3 For any n ≥ 0, the Definability Problem RD for the class ITn of all
inductive Turing machines of order n is decidable in the class ITn+1 of all inductive
Turing machines of order n + 1.

Proof We need to find an inductive Turing machineW of order n + 1 that solves the
Definability Problem RD for the class of all inductive Turing machines of order n.
However at first, we describe the inductive Turing machine H of order n that builds
the structuredmemory of themachineW utilizing a binary codification c : ITn → N
of all Turing machines of order n, for example, the codification constructed in [8].

Themachine H has the following components (subroutines): a universal inductive
Turing machine U of order n with a tester T , a connector L and a generator G of
all words in the alphabet {1, 0}. A standard technique to include subroutines in
the structure of Turing machines and inductive Turing machines is described, for
example, in [8].

The machine H works in the following way. At first, the generator G generates
all words in the alphabet {1, 0} and writes them on the word tape of the machine H .
Then the head of the machine H comes to the first cell of the indicating tape of the
machineW and the connector L connects the first cell of the indicating tape with the
second cell of the indicating tape by two links - one of the type a and another of the
type d. After this, the tester T checks if the first word in the word tape has the form
c(K )*w where c(K ) is the code of some inductive Turing machine K of order n and
w is a word in the alphabet {0, 1}. When this is not true, the head of the machine H
comes to the second cell of the indicating tape of the machine W .

When the first word in the word tape has the form c(K )*w, the component U
starts working with the word c(K )*w. IfU gives a result, the connector L eliminates
the link of the type a between the first and second cells of the indicating tape. Then
L connects the first cell of the indicating tape with the second cell of the indicating
tape by a link of the type b. After this, the head of the machine H comes to the
second cell of the indicating tape of the machine W . If U does not give a result, the
head of the machine H simply goes to the second cell of the indicating tape of the
machine W .

After this, while the head of the machine H is in the second cell of the indicating
tape of the machine W , the connector L connects the second cell of the indicating
tape with the third cell of the indicating tape with two links - one of the type a and
another of the type d. After this, the tester T checks if the second word in the word
tape has the form c(K )*w where c(K ) is the code of some inductive Turing machine
K of order n and w is a word in the alphabet {0, 1}. When this is not true, the head
of the machine H comes to the third cell of the indicating tape of the machine W .
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When the second word in the word tape has the form c(K )*w, the component U
starts working with the word c(K )*w. IfU gives a result, the head of the machine H
comes to the third cell of the indicating tape of the machine W , while the connector
L eliminates a link of the type a between the second and third cells of the indicating
tape and connects the second cell of the indicating tape with the third cell of the
indicating tape by a link of the type b. If U does not give a result, the head of the
machine H simply goes to the third cell of the indicating tape of the machine W .

The machine H continues to perform this procedure until all subsequent cells of
the indicating tape of the machine W are connected by a link of the type a or b. In
addition, the connector L connects all cells of other tapes in the conventional way
where a cell is connected with its left and right neighbors. Then the inductive Turing
machine W of order n + 1, which has a counter C and the same generator G as the
machine H has as components (subroutines) of W , is ready to start working.

Given a word u = c(K )*w, themachineW uses the generatorG for generating all
words in the alphabet {1, 0} writing them one by one on a word tape of the machine
W . Note that generators in H and W are the same. So, all words in the alphabet {0,
1} are written in the word tapes of the machines H and W in the same order. While
the generator G is writing, the machine W is comparing each generated word with
the word u and the counter C is counting the number of comparisons made.

When the comparison gives the positive result, i.e., when the number (say m) of
the word u is found, this cycle finishes and a new cycle begins. In it, the head of the
machine W that works in the indicating tape of the machine W uses three rules:

q1�b → 1q11b (8.3)

q1�a → 0q10a (8.4)

q0�d → q0�d (8.5)

Using rule (8.5), the head of the machine W goes from a cell to the next cell,
while on each step, the counter subtracts 1 from its content. When the head comes
to the cell with number m, the register of the counter is empty and the machine W
changes its state from q0 to q1. After this either rule (8.3) or rule (8.4) is used. Thus,
the machineW changes its state. When the state becomes q11, the machineW writes
1 into the output tape and stops. When the state becomes q10, the machine W writes
0 into the output tape and stops.

We see that the machine W writes 1 when there is the link b from the cell with
number m and writes 0 when there is the link a from the cell with number m. By
construction, this means that the machine Wwrites 1 when the inductive Turing
machine K of order n gives the result being applied to the word w and writes 0 when
the machine K does not give the result being applied to the word w. It means that
inductive Turing machine W of order n + 1 solves the Definability Problem RD for
the class of all inductive Turing machines of order n.

Theorem is proved.

Corollary 8.3.1 ([8]) Inductive Turing machines of the first order can solve the
Halting Problem for Turing machines.
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As it is possible to simulate any recursive algorithm by a Turing machine, we
have the following result.

Corollary 8.3.2 ([12]) Inductive Turing machines of the first order can solve the
Definability Problem RD for any class of recursive algorithms.

Now let us consider computability of inductive complexities ICn(x).

Theorem 8.3.4 For any n ≥ 0, the function ICn(x) is inductively computable on the
level n + 1.

Proof The definition of the function ICn(x) depends on the choice of a universal
inductive Turing machine U of order n. However, if we can compute this function
defined by one universal inductive Turing machine of order n, then we can we can
compute this function defined by any universal inductive Turing machine of order
n due to the property of universality. Thus, we assume that the function ICn(x) is
determined by a universal inductive Turing machine U of order n.

So, we need to find an inductive Turing machine W of order n + 1 that computes
this function ICn(x). To do this, we describe the inductive Turing machine H of
order n that builds the structured memory of the machine W utilizing a binary codi-
fication c : ITn → N of all inductive Turing machines of order n, for example, the
codification constructed in [8].

Note that it is possible to assume that an inductiveTuringmachinewith a structured
memory has any (even a countable) number of tapes and works in the alphabet
{1, 0} [8].

Themachine H has the following components (subroutines): the chosen universal
inductive Turing machine U of order n; a connector L , which connects cells in the
tapes of machine W ; a forward counter F , which given a number m, bring the head
of H to the cell with the number m; a generator G, which generates all words in the
alphabet {1, 0}; and an enumerator N , which enumerates words generated by G so
that if a word w is longer than a word u, then w has the larger number than u. A
standard technique to include subroutines in the structure of Turing machines and
inductive Turing machines is described, for example, in [8].

The machine H builds connections between cells from three linearly ordered
tapes of the machine W : the upper indicating tape, the lower indicating tape and
the length tape. The machine H works in the following way. At first, the generator
G generates all words in the alphabet {1, 0} and writes them on the word tape of
the machine H . Then the enumerator N enumerates all generated by H words and
writes their numbers on the number tape of the machine H .

At the beginning, the connector L connects the first cell of the lower indicating
tape of the machine W with the first cell of the upper indicating tape and with the
first cell of the length tape of the machine W by a link of the type a.

After this, the first cycle of the machine H starts. The head of the machine H
comes to the first cell of the lower indicating tape of the machineW and the universal
inductive Turing machine U begins processing the first word u1 written in the word
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tape. If the machine U gives a result w, then the connector L connects the first
cell of the lower indicating tape by a link of the type b with the cell of the upper
indicating tape that has the number equal to the number of the word w. The cell with
the necessary number is determined by the forward counter F of the machine H . In
addition, the machine H determines the length of the word u1 and the connector L
connects the first cell of the lower indicating tape by a link of the type l with the
cell of the length tape that has the number equal to the length of the word u1. The
cell with the necessary number is also determined by the forward counter F of the
machine H . After this, the head of the machine H comes to the second cell of the
lower indicating tape of the machine W . If U does not give a result being applied to
u1, the head of the machine H simply goes to the second cell of the lower indicating
tape of the machine W .

Then the machine H performs the second cycle, the third cycle and so on. Begin-
ning the nth cycle, the head of the machine H comes to the nth cell of the lower
indicating tape of the machine W and the universal inductive Turing machine U
begins processing the nth word un written in the word tape. If the machine U gives
a result v, then the connector L connects the nth cell of the lower indicating tape by
a link of the type b with the cell of the upper indicating tape that has the number
equal to the number of the word v. The cell with the necessary number is determined
by the forward counter F of the machine H . In addition, the machine H determines
the length of the word un and the connector L connects the nth cell of the lower
indicating tape by a link of the type l with the cell of the length tape that has the
number equal to the length of the word un . The cell with the necessary number is also
determined by the forward counter F of the machine H . After this, the head of the
machine H comes to the (n + 1)th cell of the lower indicating tape of the machine
W . IfU does not give a result being applied to un , the head of the machine H simply
goes to the (n + 1)th cell of the lower indicating tape of the machine W . Note that
any cell from the lower indicating tape has a link of the type l if and only if it a link
of the type b.

The machineW has the following components (subroutines): a backward counter
B, which determines the number of the cell where the head of the machine W is
situated m; a forward counter F , which given a number m, bring the head of W to
the cell with the number m; and the enumerator N , from the machine H .

The machine W works with the input x according to the following algorithm. At
the beginning, determines the number of the word x using the enumerator N and
stores this number in the number tape of the machine W .

After this the first cycle ofW starts. The head of the machineW comes to the first
cell of the lower indicating tape. If this cell has a link of the type l, then the head of
the machine W uses this link to go to the length tape of the machine W . Note that
any cell of the lower indicating tape has at most one link of the type l. Therefore,
this move is uniquely determined.

After the head of the machine W comes to the length tape using the link of the
type l, the backward counter B finds the number of this cell and writes this number
in the output register (tape). Then the head of the machine W comes to the first cell
of the length tape and after that, it goes to the first cell of the lower indicating tape
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using the link of the type l. Performing the next step of the first cycle, the head of
the machine W uses the link of the type b to go to the upper indicating tape of the
machine W .

Then using backward counter B, the machine W finds the number of the cell
where its head is situated and compares this number with the number of the word
x stored in the memory. When the numbers coincide, the machine W stops, and the
length k of the first word is its output. In this case, the value of ICn(x) is equal to k
because U (u1) = x and u1 has the minimal length with this property.

When the compared numbers do not coincide or thefirst cell of the lower indicating
tape does not have a link of the type l, the machine W goes to the second cell of the
lower indicating tape.

In a general case, the nth cycle of the machineW when its head is in the nth cell of
the lower indicating tape. At first, the machineW stores the number n in its memory.
Then if the nth cell has a link of the type l, then the head of the machine W uses
this link to go to the length tape of the machine W . Note that any cell of the lower
indicating tape has at most one link of the type l. Therefore, this move is uniquely
determined.

After the head of the machine W comes to the length tape using the link of the
type l, the backward counter B finds the number of this cell and writes this number
in the output register (tape). Then the head of the machine W comes to the first cell
of the length tape and after that, it goes to the first cell of the lower indicating tape
using the link of the type l.

Performing the next step of the nth cycle, the head of the machine W uses the a
forward counter F to bring the head of W back to the cell with the number n. Then
the machine W uses the link of the type b to go to the upper indicating tape of the
machine W .

Then using backward counter B, the machine W finds the number of the cell
where its head is situated and compares this number with the number of the word
x stored in the memory. When the numbers coincide, the machine W stops, and the
length t of un is its output. n this case, the value of ICn(x) is equal to t because
U (un) = x and un has the minimal length with this property.

When the compared numbers do not coincide or the nth cell of the lower indicating
tape does not have a link of the type l, the machine W goes to the (n + 1)th cell of
the lower indicating tape.

After a finite number of steps, the machine W computes the value of ICn(x)
because there is an inductive Turing machine E that computes the identity function
e(x) = x , i.e., E(x) = x for all words x in the alphabet {1, 0}, and thus, ICn(x) is
always defined and is not larger than l(c(E)) + l(x) where c(E) is the code c(E)

of E .
Theorem is proved.

Corollary 8.3.3 ([3, 8]) Kolmogorov complexity C(x) is inductively computable on
the first level.

We remind that l(x) is the number of symbols in the word x in the alphabet
{1, 0}.
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Theorem 8.3.5 For any n ≥ 0, ICn(x) → ∞ when l(x) → ∞.

Proof The number of elements x for which ICn(x) is less than or equal to a given
numberm is finite because there are finitelymany inductive Turingmachines of order
n the program of which has length less than or equal to the number m, so as m tends
to infinity, the function ICn(x) does the same. Note that the program of an inductive
Turing machine T of order n with a structured memory contains the program of the
inductive Turing machine of order n – 1 that builds the memory of the machine T .

Theorem is proved.
This theorem implies the corresponding results for Kolmogorov complexity

proved in [23] and inductive complexity on the level 1 proved in [8].

Corollary 8.3.4 ([23]). Kolmogorov complexity Cn(x) tends to∞when l(x) → ∞.

Corollary 8.3.5 ([8]) Inductive complexity IC(x) tends to ∞ when l(x) → ∞.

Let us consider two partially ordered by relation < sets X and Y . As always,
x ≤ z means either x < z or x = z.

We remind that a function f : X → Y is called increasing if for any x and z from
X , the inequality x ≤ z implies the inequality f (x) ≤ f (z) and is called strictly
increasing if for any x and z from X , the inequality x < z implies the inequality
f (x) < f (z).
Although ICn(x) tends to infinity, on an infinite set of words, it grows slower than

any total increasing inductively computable on the level n function.

Theorem 8.3.6 For any n ≥ 0, if f is a total strictly increasing inductively com-
putable on the level n function with natural numbers as its values, then for infinitely
many elements (words in the alphabet {1, 0}) w, we have f (w) > ICn(w).

Proof Let us assume that all words in the alphabet {1, 0} form an ordered sequence
u1, u2, u3, . . . , ui , . . . and there is some word u such that for all elements y that are
larger than u, we have f (w) ≤ ICn(w). Because f (w) is an inductively computable
on the level n function, there is an inductive Turing machine T of order n that
computes f (w). It is done in the following way. Given a word w, the machine T
makes the first step, producing f1(w) on its output tape. Making the second step, the
machine T produces f2(w) on its output tape and so on. After n steps, T has fn(w)

on its output tape. Since the function is inductively computable on the level n, this
process stabilizes on some value fn(w) = f (w), which is the result of computation
with the input w.

Taking the function h(m) = min{x; f (x) ≥ m}, we construct an inductive Turing
machine M of order n that computes the function h(x).

The inductive Turing machine M contains a copy of the machine T . Utilizing
this copy, M finds one after another the values f1(u1), f1(u2), . . . , f1(um+1) and
compares these values to m. Then M writes into the output tape the least u for
which the value f1(u) is larger than or equal to m. Then M finds one after another
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the values f2(u1), f2(u2), . . . , f2(um+1) and compares these values to m. Then M
writes the least u for which the value f2(u) is larger than or equal to m into the
output tape. This process continues until the output value of M stabilizes. It happens
for any number m due to the following reasons. First, f (x) is a total function,
so all values fi (u1), fi (u2), . . . , fi (um+1) after some step i = t become equal to
f (u1), f (u2), . . . , f (um+1). Second, f (x) is a strictly increasing function and thus,
fi (um+1) > m. In such a way, themachineM computes h(m). Sincem is an arbitrary
number, the machine M computes the function h(x).

Since for all elements y that are larger than w, we have f (y) ≤ ICn(y). Thus,
there is an element m such that ICn(h(m)) ≥ f (h(m)) and f (h(m)) ≥ m as f (x)
is a strictly increasing function and h(m) = min{x; f (x) ≥ m}. By definition,
ICT (h(m)) = min{l(x) ; T (x) = h(m)}. As T (m) = h(m), we have ICT (h(m)) ≤
l(m). Thus, l(m) ≥ ICT (h(m)) � ICn(h(m)) ≥ m. However, it is impossible that
l(m) � m. This contradiction concludes the proof of the theorem.

Corollary 8.3.6 ([8]) If f is a total strictly increasing inductively computable on
the first level function with natural numbers as its values, then for infinitely many
elements (words in the alphabet {1, 0}) w, we have f (w) > IC1(w).

We can prove a stronger statement than Theorem 8.3.6. To do this, we assume
for simplicity that inductive Turing machines are working with words in some finite
alphabet and that all these words are well ordered, that is, any set of words contains
the least element. It is possible to find such orderings, for example, in [26].

Theorem 8.3.7 For any n ≥ 0, if h is an increasing inductively computable on the
level n function that has natural numbers as its values, is defined in an infinite
inductively decidable on the level n set V and tends to infinity when l(x) tends to
infinity, then for infinitely many elements x from V , we have h(x) > ICn(x).

Proof Let us assume that there is some element z such that for all elements x that are
larger than z, we have h(x) ≤ IC(x). Because h(x) an inductively computable on
the level n function, there is an inductive Turing machine T of order n that computes
h(x). Taking the function g(m) = min{x; h(x) ≥ m and x ∈ V }, we construct an
inductive Turing machine M of order n that computes the function g(x).

As V is an inductively decidable on the level n set, there is an inductive Turing
machine H of order n that given an input x , produces 1 when x ∈ V , and produces
0 when x /∈ V . It means that H computes the characteristic function cV (x) of the
set V .

The inductive Turing machine M , which is constructed, contains a copy of the
machine H and a copy of themachine T . These copies are constructed as subroutines
of M with separate memories. As each of these memories is (n − 1)-inductive, the
inductive Turing machine M has order n. Utilizing this copy of T , the machine
M computes the value h1(1) and compares it to m. Utilizing this copy of H , the
machine M computes the value cV 1(1). If h1(1) is larger than m and cV 1(1) = 1,
then M writes 1 into the output tape. Otherwise, M writes nothing into the output



198 M. Burgin

tape. After this, M finds the values h2(1) and h2(2) and compares these values to m.
Concurrently, M finds the values cV 2(1) and cV 2(2). Then M writes into the output
tape the least xfor which the value h1(x) is larger than or equal to m and at the
same time, cV 2(x) = 1. This process continues. Making cycle i of the computation,
M computes the values hi (1), hi (2), . . . , hi (i) and compares these values to m. We
remind here that hi ( j) is the result of i steps of computation of T with the input
j . Concurrently, M computes the values cV i (1), cV i (2), . . . , cV i (i). Then M writes
into the output tape the least x for which the value hi (x) is larger than or equal to m
and at the same time, cV i (x) = 1. Such cycle is repeated until the output value of M
stabilizes.

Each value cV i (x) stabilizes at some step t because cV (x) is a total inductively
computable function. In a similar way, each value hi (x) stabilizes at some step q
becauseh(x) is an inductively computable function defined for all x ∈ V . Thus, after
this step p = max{q, t}, the value hi (x) becomes equal to the value h(x). In addition,
there is such a step t when a number n is found for which h(n) ≥ m. After this step,
only such numbers x can go to the output tape of M that belong to V and are less
than or equal to n.

This happens for any given number m due to the following reasons. First, h(x)
is defined for all elements from V , so those values hi (1), hi (2), . . . , hi (m + 1), for
which the argument of hi belongs to V , after some step i = r become equal to
h(1), h(2), . . . , h(m). Second, h(x) is an increasing function that tends to infinity.

This shows that the whole process stabilizes and by the definition of inductive
computability, the machine M computes g(m). Since m is an arbitrary number, the
machine M computes the function g(x).

To conclude the proof, we repeat the reasoning from the proof of Theorem 8.3.6.
Since for all elements x that are larger than z, we have h(x) ≤ IC(x), there is an
elementm such that IC(g(m)) ≥ h(g(m)) and h(g(m)) ≥ m as h(x) is an increasing
function and g(m) = min{x; h(x) ≥ m and x ∈ V }. By definition, ICT (g(m)) =
min{l(x) ; T (x) = g(m)}. As T (m) = g(m), we have ICT (g(m)) ≤ l(m). Thus,
l(m) ≥ ICT (h(m)) � IC(h(m)) ≥ m. However, it is impossible that l(m) � m. This
contradiction concludes the proof of the theorem.

Corollary 8.3.7 ([8]) If h is an increasing inductively computable on the first level
function that has natural numbers as its values, is defined in an infinite recursively
decidable set V and tends to infinity when l(x) tends to infinity, then for infinitely
many elements x from V , we have h(x) > IC1(w).

Remark 8.3.1 AlthoughTheorem8.3.6 can be deduced fromTheorem8.3.7, we give
an independent proof of Theorem 8.3.6 because it demonstrates another technique,
which displays essential features of inductive Turing machines.

Corollary 8.3.8 If h is a total increasing inductively computable on the level n
function that tends to infinity when l(x) → ∞, then for infinitely many elements x,
we have h(x) > ICn(x).
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Since the composition of two increasing functions is an increasing function and
the composition of a recursive function and an inductively computable on the level n
function is an inductively computable on the level n function, we have the following
result.

Corollary 8.3.9 If h(x) and g(x) are increasing functions, h(x) is inductively com-
putable on the level n and defined in an inductively decidable on the level n set V ,
g(x) is a recursive function, and they both tend to infinity when l(x) → ∞, then for
infinitely many elements x from V , we have g(h(x)) > IC(x).

In addition to the function ICn(x) with i = 0, 1, 2, 3, . . ., we also introduce the
function

mICn(x) = min{ICn(y); l(y) ≥ l(x)}

It has the following properties.

Theorem 8.3.8 (a) For any n, mICn (x) is a total increasing function.
(b) For any n, mICn (x) is not inductively computable on the level n.
(c) For any n, mICn(x) → ∞ when l(x) → ∞.
(d) For any n, mICn(x) is inductively computable on the exact level n + 1.

Proof (a) Since ICn(x) is a total function, mICn(x) is also a total function. By
definition, mCn(x) is increasing.

(b) If mICn(x) is an inductively computable function on the level n, then by
Theorem 8.3.6, for infinitely many elements x , we have mICn(x) > ICn(x). How-
ever, by the definition of mICn(x), we have mICn(x) ≤ ICn(x) everywhere. This
contradiction completes the proof of the part (b).

Part (c) follows from Theorem 8.3.3.
(d) As by Theorem 8.3.4, the function ICn(x) is inductively computable on the

level n + 1, there is an inductive Turing machine T of order n + 1 that computes
ICn(x). Then we can change themachine T so that the new inductive Turingmachine
M of order n + 1 will compute mICn(x). To achieve this, we add a new output tape
to T making its output tape intermediate and include T as a subroutine of M .

Then with the input x , the machine M starts computing ICn(y) for all words y
such that l(y) ≥ l(x). When the value of ICn(z) is computed (cf. Theorem 8.3.4), it
is compared to all previously computed values ICn(y) and the least is written into the
output tape of the machine M . Because ICn(x) → ∞ when l(x) → ∞, after some
number of steps the output stabilizes and by the definition of inductive computation,
this will be the value mICn(x).

Theorem is proved.

Theorem 8.3.9 For any n ≥ 0, ICn(x) is not inductively computable on the level n.

Proof At first, we show that if ICn(x) is inductively computable on the level n,
then mICn(x) is also inductively computable on the level n. Let us assume that the
function ICn(x) is inductively computable on the level n. Then there is an inductive
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Turing machine T of order n that computes ICn(x). Then we can change the machine
T so that the new inductive Turing machine M of order n will compute mICn(x). To
achieve this, we add a new output tape to T making its output tape intermediate and
include T as a subroutine of M .

Then with the input x , the machine M starts computing ICn(y) for all words y
such that l(y) ≥ l(x). When the value of ICn(z) is computed, it is compared to all
previously computed values ICn(y) and the least is written into the output tape of
the machine M . Because ICn(x) → ∞when l(x) → ∞, after some number of steps
the output stabilizes and by the definition of inductive computation, this will be the
value mICn(x).

At the same time, by Theorem 8.3.8, the function mICn(x) tends to infinity when
l(x) → ∞ and is increasing but not inductively computable on the level n. This gives
us a contradiction. Thus, the statement of Theorem 8.3.9 is true.

Theorem is proved.

Corollary 8.3.10 ([8]) The inductive complexity IC1(x) is not inductively com-
putable by inductive Turing machines with recursive memory.

Theorems 8.3.4 and 8.3.9 imply the following result.

Corollary 8.3.11 For any n ≥ 0, the function ICn(x) is inductively computable on
the exact level n + 1.

Corollary 8.3.12 There is no inductively computable on the exact level n function
f (x) defined for an infinite inductively decidable set that coincides with IC(x) in the
whole of the domain of definition of f (x).

Theorems 8.3.4, 8.3.7 and 8.3.8 allow us to prove the following result.

Theorem 8.3.10 There are infinitelymany elements x forwhich ICn+1(x) < ICn(x).

Proof By Theorems 8.3.4 and 8.3.8, the functionmICn(x) is inductively computable
on the level n + 1. In addition, the functionmICn(x) tends to infinitywhen l(x) → ∞
and is increasing but not inductively computable on the level n. Thus, by Theo-
rem 8.3.7, there are infinitely many elements x for which ICn+1(x) < mICn(x).
As mICn(x) ≤ ICn(x), there are infinitely many elements (words) x for which
ICn+1(x) < ICn(x).

Theorem is proved.
Theorem 8.3.10 shows that for infinitely many elements x , their complexity on

the level n+1 is less than their complexity on the level n.

Corollary 8.3.13 ([8]) There are infinitely many elements x for which IC1(x) <

C(x).
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Corollary 8.3.13 shows that for infinitely many elements x , their inductive com-
plexity on the first level is less than their Kolmogorov complexity.

Corollary 8.3.14 For any n > 0, there are infinitely many elements x for which
ICn(x) < C(x).

Corollary 8.3.14 shows that for any n > 0 and infinitely many elements x , their
inductive complexity on the level nis less than their Kolmogorov complexity.

As composition of increasing functions is an increasing function, Theorems 8.3.7
and 8.3.8 imply the following result.

Theorem 8.3.11 For any increasing recursive function h(x) that tends to infinity
when l(x) → ∞andany inductively decidable on the level n set V , there are infinitely
many elements x from V for which ICn+1(x) < h(Cn(x)).

Corollary 8.3.15 ([8]) In any inductively decidable on the first level set V , there
are infinitely many elements x for which C(x) > IC(x).

Corollary 8.3.16 ([8]) In any recursive set V , there are infinitely many elements x
for which IC1(x) < C(x).

Corollary 8.3.17 For any n and any inductively decidable on the first level set V ,
there are infinitely many elements x in V for which ICn+1(x) < Cn(x).

Corollary 8.3.18 For any n and any recursive set V , there are infinitely many ele-
ments x in V for which ICn+1(x) < Cn(x).

Corollary 8.3.19 In any inductively decidable (recursive) set V , there are infinitely
many elements x for which ln2(C(x)) > IC(x).

If ln2(C(x)) > IC(x), then C(x) > 2IC(x). At the same time, for any natural num-
ber k, the inequality 2n > k · n is true almost everywhere. This and Corollary 8.3.19
imply the following result.

Corollary 8.3.20 For any natural number k and in any inductively decidable (recur-
sive) set V , there are infinitely many elements x for which C(x) > k · IC(x).

Corollary 8.3.21 For any natural number a, there are infinitely many elements x
for which lna(C(x)) > IC(x).

8.4 Conclusion

We have demonstrated that, with respect to a natural extension of the Kolmogorov
or algorithmic complexity, inductive Turing machines of order n + 1 are much more
efficient than inductive Turing machines of order n. In particular, inductive Turing
machines are much more efficient than any kind of recursive algorithms. Informally,
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this means that in comparison with recursive algorithms, super-recursive programs
for solving the same problem are shorter, have lower branching (i.e., less instructions
of the form IF A THEN B ELSE C), make fewer reversions and unrestricted tran-
sitions (i.e., fewer instructions of the form GO TO X) for infinitely many problems
solvable by recursive algorithms. In addition, the higher level of inductive algorithms
is utilized the larger reduction of complexity is achievable.

Researchers introduced and studied different modifications of Kolmogorov/
algorithmic complexity, such as uniform complexity, prefix complexity, monotone
complexity, process complexity, conditional Kolmogorov complexity, time-bounded
Kolmogorov complexity, space-bounded Kolmogorov complexity, conditional
resource-bounded Kolmogorov complexity, time-bounded prefix complexity, and
resource-bounded Kolmogorov complexity (cf. [8, 26]). It would be interesting to
define and study corresponding modifications of inductive complexity.
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Chapter 9
Asymptotic Intrinsic Universality
and Natural Reprogrammability
by Behavioural Emulation

Hector Zenil and Jürgen Riedel

Abstract We advance a Bayesian concept of intrinsic asymptotic universality,
taking to its final conclusions previous conceptual and numerical work based upon a
concept of a reprogrammability test and an investigation of the complex qualitative
behaviour of computer programs. Our method may quantify the trust and confidence
of the computing capabilities of natural and classical systems, and quantify comput-
ers by their degree of reprogrammability. We test the method to provide evidence in
favour of a conjecture concerning the computing capabilities of Busy Beaver Tur-
ing machines as candidates for Turing universality. The method has recently been
used to quantify the number of intrinsically universal cellular automata, with results
that point towards the pervasiveness of universality due to a widespread capacity
for emulation. Our method represents an unconventional approach to the classical
and seminal concept of Turing universality, and it may be extended and applied in a
broader context to natural computation, by (in something like the spirit of the Turing
test) observing the behaviour of a system under circumstances where formal proofs
of universality are difficult, if not impossible to come by.
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9.1 Introduction

Attempts to answer even the simplest questions about the behaviour of computer
programs are bedevilled by uncomputability. The concept of asymptotic intrinsic
universality introduced here is based upon a Bayesian approach to emulation by
computer programs of other computer programs. The method provides a means to
quantify their reprogramming capabilities, associating them with a deciding proce-
dure that asymptotically recognizes computation with a confidence value and sets
forth a hierarchy of reprogrammability (see [21]) based upon the likelihood of a sys-
tem being, in one degree or another, close to (or removed from) Turing universality.

In [18], a related conjecture concerning other kinds of simply defined programs
was presented, suggesting that all Busy Beaver Turing machines may be capable of
universal computation, as they seem to share some of the informational and complex
properties of systems known to be capable of universal computational behaviour.

We have recently found that most computer programs can be reprogrammed to
emulate an increasing number of other (different) computer programs of the same
size [8] under a similar block emulation transformation or set of compilers of increas-
ing size.We also previously advanced a conceptual framework for reprogrammability
based upon the display of different qualitative output behaviours [20] and modelled
as a type of Turing test to determine computational capabilities [21]. This has been
used in connection with an instance of natural computation–in an in-silico simulation
of Porphyrin molecules [12] in the context of spatial computing.

Here we advance a Bayesian method, namely asymptotic intrinsic universality,
that draws everything together and translates the seminal concept of computation
universality to degrees of belief and confidence based upon emulation and repro-
grammability capabilities applicable to natural computation.We test themethodwith
a case study of the set of Turing machines defined by the Busy Beaver functions.

9.2 Methods

9.2.1 The Classical Turing Machine Model

A Turing machine consists of a finite alphabet set with symbols
∑ = {0, 1, . . . , k}

and states {1, 2, . . . n} ⋃{0}, with 0 the “halting state”. The Turing machine “runs”
on an one-way unbounded tape and for each pair:

• the machine’s current “state” n′; and
• the tape symbol k ′ the machine’s head is “reading”.

For each pair (n′, k ′) there is a corresponding instruction (n′′, k ′′, d):

• a state n′′ to transition into (which may be the same as the one it was in). If 0 the
machine halts;
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• a unique symbol k ′′ to write on the tape (the machine can overwrite a 1 on a 0, a
0 on a 1, a 1 on a 1, and a 0 on a 0), and

• a direction to move in d: −1 (left), 1 (right) or 0 (none, when halting).

For k = 2, there are (4n + 2)2n Turing machines with n states according to this
formalism. The output string is taken from the number of contiguous cells on the
tape the head has gone through.

Definition 9.2.1 Wedenote by (n, 2) the set (or space) of all n-state 2-symbol Turing
machines (with the halting state not included among the n states) and by T (n, k) a
specific Turing machine with n states and k symbols.

9.2.2 The Busy Beaver Functions

A Busy Beaver Turing machine [11] is a Turing machine that, when provided with
a blank tape, does a lot of work. Formally, it is an n-state k-symbol Turing machine
started on an initially blank tape that writes a maximum number of 1s or moves
the head a maximum number of times upon halting. An online computer program
showing the behaviour of these computer programs can be found in [16].

Most Turing machines never halt, yet Busy Beavers do halt (by definition over
the empty tape). We know from algorithmic information theory that among those
Turing machines that do halt, most will halt quickly or will perform very little work,
yet by definition Busy Beavers are those that perform the greatest amount of work.
In a recent investigation [8] focused on cellular automata (CA), we have also shown
that most computer programs are candidates for intrinsic universality, and thus for
Turing universality.

There are known values for all 2-symbol Busy Beavers up to 4-state Turing
machines, and explicit constructions give exact or lower bounds for other state and
symbol pairs.

Definition 9.2.2 If σT is the number of 1s on the tape of a Turing machine T upon
halting, then:

∑
(n) = max {σT : T ∈ (n, 2) T (n) halts}.

Definition 9.2.3 If tT is the number of steps that a machine T takes upon halting,
then S(n) = max {tT : T ∈ (n, 2) T (n) halts}.

∑
(n) and S(n) are noncomputable functions by reduction to the halting problem.

Yet values are known for (n, 2) with n ≤ 4.
Busy beavers are the Turing machines that perform more computation among the

machines if their same size (by number of states but more appropriately by program
length in bits) needed. This follows from Rado’s definitions and it means that Busy
Beavers have also the greatest Logical Depth, as defined by Bennett [1]. Yet a Busy
beaver is required to halt. When running for the longest time or writing the largest
number of non-blank symbols, bb(n) has to be clever enough to make wise use
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of its resources and an instruction away to halt at the end. There is thus evidence
that these machines are far from trivial and that for several important measures of
complexity they are among most complex, if not the most, yet their computational
power is unknown and its investigation would represent a way to connect complexity
to computational power. Here we undertake first steps with interesting results.

9.2.3 Block Emulation and Intrinsic Universality

The notion of intrinsic computational universality used for cellular automata was an
adaptation of classical Turing-universality [6]. Intrinsic universality is stronger than
Turing-universality [9, 10] and the concept can be extended and adapted to other
computing systems, including computer programs in general.

Definition 9.2.4 A computer program of a given size is intrinsically universal if
it is able to emulate the output behaviour of any other computer program under a
coarse-graining compiler [9].

The so-called Game of Life is an example of 2-dimensional cellular automaton
that is not only Turing-universal but also intrinsic universal [5]. This means that the
Game of Life does not only compute any computable function but can also emulate
the behavior of any other 2D-dimensional cellular automaton (under rescaling).

Definition 9.2.5 (emulation/simulation by rescaling/coarse-graining) Let A and B
be two computer programs. Then A emulates/simulates B if there exists a rescal-
ing/projection P of A such that f PA = fB , where f A and fB are the computed
functions of A and B. We consider P a compiler to translate A into B (see Fig. 9.1).

The exploration of the computing capabilities of computer programs can then pro-
ceed by block emulation, whereby the scale of space-time diagrams of a computation
are found and rescaled/coarse-grained.

The emulations here explored are related to an even stronger form of intrin-
sic universality, namely linear-time intrinsic universality [9], which implies that all
emulations carry only a linear overhead as a result of our brute force exploration
of the compiler and rule space. This is because the coarse-graining emulation is of
a block of fixed length and therefore what one can consider a compiler (another
computer program of fixed size).

Following these ideas, one can try out different possible compilers and see what
type of computer programs a specific computer program is able to emulate. The
linear block transformation was suggested in [13, 14].
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Fig. 9.1 Illustration of the process of one Turing machine emulating another via a block transfor-
mation. In this case a shows a bb(2, 3) with initial tape ������ after 2 steps. By performing
the block transformation of length 3 b on the initial condition of a, after 6 steps using the same
bb(2, 3) rule one gets c. If the output of every 3rd step is taken and the back transformation d
performed on these outputs, one gets the output e. This is identical with the output of T M(2, 3)
with rule number 2 797 435 run on the same initial condition as in a for 2 steps. In other words, e
is the coarse-grained version of the block transformed bb(4, 2) a which in turn produces the same
output as T M(4, 2) of rule number 2 797 435. In this picture one cannot see the compiler directly
as it is encoded within the internal states of the bb(4, 2). a emulating TM, b block transformation,
c coarse grain, d emulated TM, e back transformation

9.2.4 Turing Machine Emulation

The exploration of the emulating space of Turingmachines (TM) ismore complicated
than for Cellular Automata because the space-time diagram does not contain the head
configuration state of the Turing machine.

We ran the random TMs and the Busy Beaver Turing machines for the number of
steps given by S(n). For example, for n = 4 states, S(n) = 107, given by the Busy
Beaver bb(4). We looked for all transformations which allow a back transformation
for block sizes 2 to 4 and only considered (2-symbol, 4-state) and (3-symbol, 2-state)
Busy Beaver Turing machines and a sample of random Turing machines of the same
size.

To ascertain which TM from the same rule space corresponded to the emulated
Busy Beaver or TM, we adopted the following algorithm:
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For a n-state and k-symbol Turing machine (TM), we enumerated all possible
block transformations P(n, k) of given block size n (n-tuples), e.g. P(2, 3) = � →
��,� → ��,� → �� for a 3-symbol, 2 state TM.We found a total of k2n possi-
ble transformations. We applied each member of the set of possible transformations
to a TM of the corresponding rule space, in this paper that of a Busy Beaver (bb)
or a randomly selected TM given a randomly initialized tape. We then let the TM
evolve for n steps. Then we took every n output line of the TM and performed a back
transformation on the output, e.g. P(2, 3)−1 = �� → �,�� → �,�� → �. At
the same time we drew a TM of the same rule space out of a random sample and let
it evolve for n steps using the same initial tape. If the output was a valid output of a
TM, we tried to match it with the output of the Busy Beaver or random TM described
above. In order to exclude trivial emulations, we filtered out all those emulated TMs
which are just a n-time repetition of the initial tape. It is important to note that we
are not taking the initial states of the TMs into account. We are just focusing on the
output of TMs when performing the block transformations (Figs. 9.1 and 9.2).

Fig. 9.2 Flow diagram of emulation of TMs
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9.2.4.1 Busy Beaver Conjectures

These facts suggest the following conjectures, which are also relevant to the dynamic
behaviour of a set of simply-described machines characterized by universal behav-
iour.

In previous work we explored these conjectures relating to Busy Beavers with
numerical approximations of their sensitivity to initial conditions [18] and the quali-
tative behaviour that initial conditions induce over space-time diagrams [17]. Which
was similar to work we did on the Game of Life [19].

Definition 9.2.6 Aweak universal Turingmachine is amachine that allows its initial
tape to be in a non all-‘blank’ configuration.

If bb(n) is weak universal, then it is allowed to start either from a periodic tape
configuration or an infinite sequence produced by e.g. a finite automaton. In other
words, these are machines that are Turing universal not necessarily running on non-
empty tapes.

Conjecture 9.2.1 The Busy Beaver conjecture(s) as advanced in [18] establish(es)
that:

• (strong version): For all n > 2, bb(n) is Turing universal.
• (sparse version): For some n > 2, bb(n) is Turing universal.

Fig. 9.3 Typical space-time evolution/behaviour of Busy Beaver Turing machines. The first 6
figures from left to right correspond to Busy Beaver machines with 2-symbols and 2 to 6 states
(for illustration purposes only those <4 were plotted with a background mesh) for which the first 3
have exact (S(n)) runtime values (6, 21, 107). For the rest a cutoff value was arbitrarily chosen, so
as to provide an optimally effective illustration. The behaviour of a Busy Beaver cannot be a trivial
repetition because it does have to avoid getting into an infinite cycle in order to halt
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• (weak version): For all n > 2, bb(n) is weak Turing universal.
• (weakest version): For some n > 2, bb(n) is (weak) Turing universal.

Hereweprovide evidence in favour of all conjectures in the formof an increasingly
monotonic asymptotic intrinsic universal behaviour.

It is known that among all 2-state 2-symbol Turing machines, none can be uni-
versal. bb(n), as defined by Rado [11], is a Turing machine with n states plus the
halting state. bb(2) is thus actually bb(2, 3), a 3-state 2-symbol machine in which
one state is specially reserved for halting only. If bb is unary, then it will be assumed
to be a 2-symbol Turing machine, otherwise it will be denoted by bb(n, k) (Fig. 9.3).

9.3 Results

9.3.1 A Bayesian Approach to Turing Universality

We looked into the number of compilers up to a certain size for which a computer
program can emulate other computer programs of the same size (e.g. in number of
states for TMs, number neighbours for CAs, or description bits in general). Given
all the unknown priors and the uncertainty in the degree of belief, we need a basic
function that:

• Is increasingly monotonic. Normalizing by total number of explored compilers
should provide a measure for comparison, but the function itself should only count
the number of emulations.

• f (x) > 0 when x > 0. Evidently any emulation should amount to a non-zero
value.

• Nonlinearly converges to 1. We want a function that “slowly” converges to a
positive value and

• Incorporates a degree of belief weighting the number of emulations found.

Because intrinsic universality implies Turing universality [9], this approach is of
relevance in finding the reprogramming capabilities of classical and unconventional
computing systems.

The exact shape of the function has no essential meaning as long as it is concave
and complies with the above requirements. A canonical function is ax/(ax + 1),
where x ∈ N

+ is the number of different non-trivial emulations of a system under
evaluation and a ∈ (0, 1] the degree of belief modifying the rate of convergence, in
this case a = 1 (see Fig. 9.4). We then define the asymptotic intrinsic universality of
a computing system s as:

Definition 9.3.1 (asymptotic intrinsic universality) Let s be a computing machine
of fixed size and x the number of non-equivalent (e.g. under coarse-graining) emu-
lations of other computing systems of the same size that s can emulate, then
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Fig. 9.4 Asymptotic intrinsic universality curve (ax/(ax + 1), made continuous for illustration
purposes) is the Bayesian approach to the otherwise seminal but abstract concept of computation
universality applicable to both abstract and natural/unconventional computation. For example, we
found evidence in favour of a conjecture postulating that Busy Beaver Turing machines are some-
where on the asymptotic universality curve, highly so if the degree of belief according to a assigns
it a higher confidence every time that such a machine in question is able to emulate some other

�(s) = ax/(ax + 1) is the function that retrieves a confidence value of repro-
grammability based upon the intrinsic universality of s according to belief a.

9.3.2 Case Study: Busy Beaver Functions

Here we provide evidence in favour of the Busy Beaver conjectures byway of the dif-
ferent qualitative behavioural properties they display and their intrinsic universality
capabilities.

9.3.2.1 Qualitative Behaviour Analysis

Among the intuitions suggesting the truth of one of these conjectures, is that it is
easier to find a machine capable of halting and performing unbounded computations
for a Turing machine if the machine already halts after performing a sophisticated
calculation, than it is to find a machine showing sophisticated behaviour whose
previous characteristic was simply to halt. This claim can actually be quantified,
given that the number of Turing machines that halt after t = n for increasing values
of n decreases exponentially [2, 4, 22]. In other words, if a machine capable of
halting is chosen by chance, there is an exponentially increasing chance of finding
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that it will halt sooner rather than later, meaning that most of these machines will
behave trivially because they will not have enough time to do anything interesting
before halting.

Figure9.5 provides a summation of the behavioural investigation of Busy Beaver
machines. Histograms show the different qualitative behaviour in bimodal and mul-
timodal discrete distributions. The multimodality is not an effect of the size of the
initial condition that grows smoothly by log(n), nor of the stepwise behaviour of the
lossless compression algorithm (Compress based upon Deflate). If it were an effect

Fig. 9.5 a–d Histograms of the compressed lengths (x axis using Compress) of the space-time
diagrams of bb(n) for n = 3 to 6 for 1×103 steps each, showing accumulation of different qualitative
behaviours. e A right-left compressed behaviour of a Busy Beaver runnning for 1.5 × 103. Only
rows for which the head has moved further to the right or left than ever before are kept, a method
suggested in [15]. f Function computed by the Busy Beaver b(5, 2) for consecutive initial conditions
1 to 100 in binary
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Fig. 9.6 Left State diagram after 20 steps (state 1 is a down-tick, state 2 is an up-tick). Right Two
runs from different “random” initial conditions of length 100 bits showing (left) a quick halting
(computation of the identity) and (right) an apparently random movement of the head for another
initial condition running on the same 4-state 3-symbol Busy Beaver Turing machine

of the length of the initial condition, then Fig. 9.5b–dwould look like Fig. 9.5a, which
is not the case. They display genuinely different behaviours (see Fig. 9.6(right)).

The state diagram in Fig. 9.6(left) suggests how to choose an initial configuration
for the machine to enter into an infinite loop (e.g. connected cycle on the left), and
therefore how to enter into a never-halting computation, a requirement for (weak)
Turing universality. Fig. 9.6(right) shows the behaviour of bb(4, 3) for 2 different
initial conditions, one for which it halts (or “computes” the identity) and another for
which the computation goes on in a rather complex head movement fashion.

9.3.2.2 Reprogrammability of Busy Beavers by Block Emulation

Figure9.7 shows that Busy Beavers are much more capable of emulating the behav-
iour of other (non-trivial) Turing machines than the control case, a sample of random
Turing machines from the same rule space size (i.e. all machines are of the same
size). This is consonant with theoretical expectations [2].

9.3.2.3 Busy Beavers Are Candidates for Turing Universality

The capacity for universal behaviour implies that a system is capable of being repro-
grammed and is therefore reactive to external input. It is no surprise that universal
systems should be capable of responding to their input and doing so succinctly, if
the systems in question are efficient universal systems. If the system is incapable
of reacting to any input or if the output is predictable (decidable) for any input, the
system cannot be universal.

We have here provided evidence that Busy Beavers comply with all the require-
ments for Turing universality and must therefore be considered a very interesting
non-trivial set of Turing machines that are candidates for Turing universality.

Evidence in favour of the conjectures is based upon the following observations:
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Fig. 9.7 Top Boxplots showing the differences in the emulation power of (left) bb(4, 2) versus a
set of randomly selected TMs in (4, 2), and (right) bb(2, 3) versus a set of randomly selected TMs
in (2, 3). The data show how many emulations on average a set of Busy Beavers of a given rule
space and a set of random TMs selected from the same rule space can produce for given block
sizes. The data shows a variance for both TM types, since the output of valid block transformations
is compared with the output of a TM sample taken from the same rule space. Trivial TMs (c.f.
flow chart in Fig. 9.2) are excluded. Each emulation is counted, even if it corresponds to the same
TM. The diamond shapes represent the mean of the data points. Bottom Same plots, but only TM
evolutions with different hash values (from their evolution) are counted, i.e. only distinct TMs are
counted, rendering the difference between Busy Beavers and random Turing machines even more
prominent

• Busy beavers produce space-time diagrams of the highest complexity compared
to the space-time diagrams of other rules in the same rule space.

• Busy beavers show qualitatively different behaviour for different initial condi-
tions; they can halt and it is not difficult to devise ways to perform non-halting
computations based upon infinite loops, especially for non-empty inputs.

• The small set of Busy Beavers investigated emulate a larger number of other
(non-trivial) Turing machines on average compared to random Turing machines
of the same size. In other words, we found evidence indicating that�(bb(n, k)) >
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�(RndT M(n, k)), where RndT M(n, k) ∈ bbc is a random Turing machine in
the complement set of the Busy Beavers bbc, and the confidence level a is fixed.

• Thus the measure of asymptotic intrinsic universality that we defined �(bb(n, k))
converges to 1 much faster than �(RndT M(n, k)).

Asymptotic intrinsic universality is strictly stronger than Turing universality.
Fig. 9.7: Random TM statistics serve as a control because we know that the set
of machines that either quickly halt or never halt are of density measure 1, and will
therefore end up dominating the average emulation with �(RndT M(n, k))/nk ∼ 0
for n, k → ∞. So if we find, as we in fact did, that�(bb(n, k))/nk grows faster than
�(RndT M(n, k))/nk, we would be demonstrating with a high level of confidence
that Busy Beaver Turing machines have greater reprogramming capabilities and are
candidates for intrinsic universality, and therefore Turing universality.

9.4 Discussion

9.4.1 Universality Versus Reprogrammability in Natural
Computation

We have brought together several concepts that are relevant and applicable to natural
computation where, e.g., resources are often scarce and computation occurs inde-
pendently of the substrate, making for concepts that are disembodied, independent
not only of specific hardware but of models and formalisms (e.g. whether one can
define a halting configuration).

On the one hand, there is the use of the concept of intrinsic universality, which
our definition of asymptotic universality relies upon. Intrinsic universality as origi-
nally formulated for cellular automata does not require a halting configuration. This
makes it applicable to natural computation, because a halting state is an arbitrary
choice–the option to design a state as a halting one–which is meaningless in natural
computation. Furthermore, the coarse-graining only takes into consideration the out-
put configuration rather than the state configuration, which is consistent with recent
extensions for membrane computing or P systems [7], where a computation with
only one possible output can be reached through many different paths, regardless
of the internal states transited through en route. Indeed, since we are not looking
‘inside’ the TM (its internal states), we are treating it as a black box (see Fig. 9.1) on
which we perform an external observer test. The compiler used to look at the internal
states is a behaviourally shallow one. Interestingly, the transformed TM (in Fig. 9.1,
a Busy Beaver) does lock immediately into the same pattern. Again, one would need
to visualize the internal states to see a difference between other emulations producing
the same output.

On the other hand, in a world where “emptiness” or simple/completely regular
initial conditions cannot be guaranteed, weak universality is more realistic. The
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concept of asymptotic universality is based upon and adapted to deal with these
situations in the context of natural computation where a system may be a black
box but its behaviour can be reinterpreted (by emulation) and exploited. Of course
one difficulty is to identify different behaviours in order to undertake a behavioural
comparison, and this iswhywehave also introduced complexity indices that can serve
as tools to quantify the space-time evolutions of systems or their representations.

A limitation of any empirical approach is that of a non-universal system able to
emulate an increasing number of non-universal systems may not be universal but an
open question iswhether there is a thresholdN abovewhich a system is universal after
simulating N number of other systems. This is also why the emulation results should
be complemented by an analysis of the complexity of the emulations themselves.
While we do know that, for example, finite automata are bounded by the kind of
complexity they can produce by the complexity of the set of regular languages, the
connection between these qualitative differences and the computational power of the
systems in this context is a future subject of further investigation.

The chief advantage of this approach is the amenability to non-formal evidence
of the reprogrammability of less conventional systems, where formal proofs of uni-
versality are difficult, if not impossible to come by. In other words, while the method
does disclose universal systems at the limit, it does not rule out non-universal ones,
thus producing possible false positives. However limited, any false positive is still
a reprogrammable system, thereby providing a more natural/pragmatic definition of
natural universality.

9.4.2 The Busy Beaver Conjectures

It would not have been possible to anticipate that the behaviour displayed would
have been that of Busy Beavers, despite their complexity for empty inputs. Nor
could the low emulation capabilities of all other trivial and non-trivial machines in
the complement set of the Busy Beavers bbc have been anticipated, because they are
no longer being tested and quantified over the full set of possible initial conditions
but over the subset that allow the emulation of other computer programs (Turing
machines) of the same (growing) size. In other words, what we are exploring is the
Cartesian product P × C of the pairs (p, c), where p ∈ P is a computer program
(e.g. a Turing machine) and c ∈ C a compiler that maps p onto p′ ∈ P of size
|p′| = |p| (in this case the number of states, but in the general the number of bits,
i.e. its Kolmogorov complexity [3]).

Here we explored the reprogrammable space, a subset of the the space of all com-
puter programs for either a specific input or, equivalently (per Turing universality),
for all inputs. This also means that most of the machines that either halt almost
immediately and therefore do nothing interesting, or else never halt, can actually
be effectively reprogrammed, and the results obtained here and in [8, 17] strongly
suggest that they may even be candidates for intrinsic universality (i.e. the ability to
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emulate any other computer program under a coarse-graining compiler), a stronger
concept than that of Turing universality.

9.5 Conclusion

The set of Busy Beaver machines describes an (enumerable) infinite set of Turing
machines characterized by a particular specific behaviour. If the conjectures are true
according to the evidence we have provided, the result is more surprising, because a
describable property determines the computational power of this non-trivial infinite
set of Turing machines. Here we have taken these ideas a step further in the direction
of an empirical proposal for considering statistical computational evidence of com-
putational universality. Because of the undecidability of the halting problem we may
never obtain stronger evidence of the computational capabilities of these computer
programs.

We have introduced a novel experimental and methodological Bayesian approach
to theoretical computing challenges that circumvents traditional limitations imposed
by classical definitions, in particular related to undecidability, unreachability and
universality and dealswith pragmatic unconventional reprogramming by behavioural
emulation rather than through attempting producing formal analytical proofs, which
are not only difficult, but impossible in general, specially in the realm of natural
computation where we think these new concepts and methods are more relevant.
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Chapter 10
Two Small Universal Reversible Turing
Machines

Kenichi Morita

Abstract We study the problem of constructing small universal Turing machines
(UTMs) under the constraint of reversibility, which is a property closely related
to physical reversibility. Let URTM(m,n) denote an m-state n-symbol universal
reversible Turing machine (URTM). Then, the problem is to find URTM(m,n) with
small m and n. So far, several kinds of small URTMs have been given. Here, we
newly construct two small URTMs. They are URTM(13,7) and URTM(10,8) that
can simulate cyclic tag systems, a kind of universal string rewriting systems pro-
posed by Cook. We show how these URTMs can be designed, and compare them
with other existing URTMs.

10.1 Introduction

A universal Turing machine (UTM) is a TM that can simulate any TM. Turing himself
showed it is possible to construct such a machine [21]. Since then, there have been
many researches on UTMs, in particular, on finding small UTMs. If we write an m-
state n-symbol UTM by UTM(m,n), then the problem is to find UTM(m,n) with small
values ofm and n. This problem attracted many researchers, and various small UTMs
have been presented till now (see e.g., a survey paper [23]). In the early stage of this
study, a direct simulation method of TMs was employed. Later, an indirect method
of simulating universal systems that are much simpler than TMs was proposed to
construct very small UTMs. Minsky [7] presented a method of simulating 2-tag
systems, which are universal string rewriting systems, and gave a UTM that has seven
states and four symbols. After that, such an indirect simulation method has mainly
been used to give small UTMs. Rogozhin [20] designed small UTMs for many pairs
of m and n. They are UTM(24,2), UTM(10,3), UTM(7,4), UTM(5,5), UTM(4,6),
UTM(3,10), and UTM(2,18) that also simulate 2-tag systems. Some of these results
were improved later. Kudlek and Rogozhin [6] gave UTM(3,9) that simulates 2-tag
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systems, and Neary and Woods [18] constructed UTM(15,2), UTM(9,3), UTM(6,4),
and UTM(5,5) that simulate bi-tag systems.

Here, we study the problem of constructing small universal reversible Turing
machines (URTMs). Reversible computing is a paradigm of computing that reflects
physical reversibility, one of the fundamental microscopic properties of physical
systems. It is thus related to quantum computing, since the evolution of a quantum
system is reversible. A reversible Turing machine (RTM) is a standard model in the
theory of reversible computing. In fact, it was shown by Bennett [2] that for any
(irreversible) TM, there is an RTM that simulates the former.

Roughly speaking, an RTM is a “backward deterministic” TM, where each com-
putational configuration has at most one predecessor (a precise definition will be
given in the next section). Although its definition is simple, it has a close relation to
reversible physical systems. It has been shown that any RTM can be implemented as
a circuit composed of reversible logic element with 1-bit memory very simply [8, 11,
14]. It is also known that a reversible logic element with 1-bit memory can be realized
in the billiard ball model (BBM) [9, 17]. BBM is an idealized mechanical model of
a reversible physical system proposed by Fredkin and Toffoli [5], where computing
is carried out by collisions of balls and reflectors. Hence, the whole system of an
RTM can be embedded in such a reversible physical model.

So far, there have been several researches on small URTMs. Let URTM(m,n)
denote an m-state n-symbol URTM. Morita and Yamaguchi [15] first constructed
URTM(17,5) that simulates cyclic tag systems, which are another kind of univer-
sal string rewriting systems proposed by Cook [4]. Axelsen and Glück [1] studied
a different type of URTM that computes all computable injective functions, but
their objective was not finding a small URTM. Later, Morita [9, 13] constructed
URTM(15,6), URTM(24,4), and URTM(32,3), which also simulate cyclic tag sys-
tems. On the other hand, it is in general difficult to design simple URTMs with only
two symbols, or with a very small number of states. As for a 2-symbol URTM,
we can use a general procedure for converting a many-symbol RTM into a 2-
symbol RTM [16]. By this, we obtain URTM(138,2) [13]. In [10], methods for
converting an m-state n-symbol RTM into 4-state (2mn + n)-symbol RTM, and 3-
state O(m2n3)-state RTM were given. Applying these methods to URTM(17,5) and
URTM(32,3), we obtain URTM(4,175) and URTM(3,36654), respectively. Note that,
in Sect. 10.3, we newly give URTM(10,8). Applying the conversion method to it, we
have URTM(4,168) that is slightly simpler than URTM(4,175).

In this chapter, we give two new URTMs, and explain how we can design small
URTMs. They are URTM(13,7), and URTM(10,8), which again simulate cyclic tag
systems. In Sect. 10.2, we give basic definitions on RTMs, 2-tag systems (2-TSs),
and cyclic tag systems with halting condition (CTSHs). We also show how a CTSH
can simulate a 2-TS. In Sect. 10.3, we construct URTM(13,7) and URTM(10,8). In
Sect. 10.4, we compare these two URTMs with other small URTMs, and summarize
the results.
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10.2 Reversible Turing Machines and Tag Systems

In this section, we give definitions and basic properties on reversible Turing machines,
m-tag systems, and cyclic tag systems.

10.2.1 Reversible Turing Machines

There are two kinds of formulations for reversible Turing machines. They are the
quadruple formulation [2], and the quintuple formulation [9]. They can be easily
converted each other keeping reversibility. Here, we use the quintuple formulation,
because the number of states of a Turing machine of this form can be about a half of
that in the quadruple form. Also, most classical universal Turing machines are given
in the quintuple form.

Definition 1 A one-tape Turing machine (TM) in the quintuple form is defined by

T = (Q, S, q0, s0, δ),

where Q is a non-empty finite set of states, S is a non-empty finite set of symbols, q0

is an initial state (q0 ∈ Q), s0 is a special blank symbol (s0 ∈ S). δ is a move relation,
which is a subset of (Q× S× S× {−,+} ×Q). The symbols “−”, and “+” are shift
directions of the head, which stand for “left-shift”, and “right-shift”, respectively.
Each element of δ is a quintuple of the form [p, s, s′, d, q]. It means if T reads the
symbol s in the state p, then writes s′, shifts the head to the direction d, and goes to
the state q.

In the above definition, final states that halt for any symbol are not specified
according to the designing convention of universal Turing machines (in other words,
final states are not counted in the number of states of a universal Turing machine).
Also note that δ is defined as a “relation” rather than a “function”, This is because
determinism and reversibility will be defined almost symmetrically by this definition
(but, they are slightly asymmetric since the head-shift operation is performed after
the read/write operation).

Let w ∈ S∗, q ∈ Q, and h ∈ {0, 1, . . . , |w| − 1}. A triplet [w, q, h] is called a
computational configuration (or simply a configuration) of T = (Q, S, q0, s0, δ).
The configuration [w, q, h] means that the tape contains w (all the other squares of
the tape have the blank symbol s0), the state is q, and the head position is at the hth
symbol of w (the position of the leftmost symbol of w is the 0-th). In the following,
we use such an expression to write a configuration of T .

Determinism and reversibility of TM is defined as follows. T is called a determin-
istic TM iff the following holds for any pair of distinct quintuples [p1, s1, s′1, d1, q1]
and [p2, s2, s′2, d2, q2] in δ.

If p1 = p2, then s1 �= s2
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T is called a reversible TM iff the following holds for any pair of distinct quintuples
[p1, s1, s′1, d1, q1] and [p2, s2, s′2, d2, q2] in δ.

If q1 = q2, then s′1 �= s′2 ∧ d1 = d2

The above is called the reversibility condition. It is easy to see that if T is reversible,
then there is at most one reversely applicable quintuple to each configuration, and
thus every configuration of T has at most one predecessor.

In the following, we consider only deterministic (irreversible or reversible) TMs,
and thus the word “deterministic” is omitted. Hence, by a “reversible TM” (RTM),
we mean a deterministic reversible TM.

10.2.2 m-Tag Systems

A tag system is a string rewriting system originally proposed by Post [19], and an
m-tag system (m = 1, 2, . . .) is a variant of it. In the m-tag system, rewriting of
strings is performed in the following way. Let α = a1 . . . an be a string over an
alphabet A. If the system has a production rule a1 → b1 . . . bk and n ≥ m, then we
can obtain a new string am+1 . . . anb1 . . . bk . Namely, if the first symbol of α is a1 and
|α| ≥ m, then remove the leftmost m symbols, and append the string b1 . . . bk at the
right end of it as shown in Fig. 10.1. Repeating this procedure, we can obtain new
strings successively. If we reach a string β to which there is no applicable production
rule, or |β| < m, then the rewriting process terminates.

We now define m-tag systems based on the definition by Rogozhin [20].

Definition 2 An m-tag system (m-TS) is defined by T = (m,A,P), where m is a
positive integer,A is a finite alphabet, andP : A → A∗∪{halt} is a mapping that gives
a set of production rules (we assume halt /∈ A). Let a ∈ A. If P(a) = b1 . . . bk ∈ A∗,
we write it by a → b1 . . . bk , and call it a production rule of T . If P(a) = halt,
then a is called a halting symbol. We usually write P as the set of production rules:
{a → P(a) | a ∈ A ∧ P(a) �= halt}.

The transition relation ⇒
T

on A∗ is defined as follows. For any a1, . . . , am,

am+1, . . . , an, b1, . . . , bk ∈ A such that n ≥ m,

a1 · · · am am+1 · · · an

⇒ am+1 · · · an b1 · · · bk

Fig. 10.1 Rewriting in an m-TS. If there is a production rule a1 → b1 . . . bk and n ≥ m, then the
first m symbols are removed, and the string b1 . . . bk is appended at the right end. If a1 is a halting
symbol or n < m, then the rewriting process terminates
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a1 . . . amam+1 . . . an ⇒
T

am+1 . . . anb1 . . . bk iff a1 → b1 . . . bk ∈ P.

When there is no ambiguity, we use ⇒ instead of ⇒
T

. Let α ∈ A∗. By the above

definition of ⇒, if the first symbol of α is a halting symbol, or |α| < m, then there
is no α′ ∈ A∗ that satisfy α ⇒ α′. Such α is called a halting string or a final
string. The reflexive and transitive closure of ⇒ is denoted by

∗⇒. Let αi ∈ A∗ (i ∈
{0, 1, . . . , n}, n ∈ N). We say α0 ⇒ α1 ⇒ · · · ⇒ αn is a complete computing
process of T starting from α0 if αn is a halting string.

In [3, 7], it is shown that for any TM there is a 2-TS that simulates the TM. Hence,
the class of 2-TS is computationally universal.

Theorem 1 ([3, 7]) For any one-tape two-symbol TM, there is a 2-TS that simulates
the TM.

10.2.3 Cyclic Tag Systems

A cyclic tag system (CTS) is a variant of a tag system proposed by Cook [4]. He
used CTS to prove computational universality of the elementary cellular automaton
of rule 110. Since CTS has two kinds of symbols, we fix its alphabet as {Y ,N}. In
CTS, there are k (= 1, 2, . . .) production rules Y → w0,Y → w1, . . . ,Y → wk−1,
which are used one by one cyclically in this order. More precisely, the pth production
rule Y → wp is applicable at time t, if p = t mod k. If the first symbol of the string at
time t is Y , then it is removed, andwp is appended at the end of the string. On the other
hand, if the first symbol is N , then it is removed, and nothing is appended. Hence,
we assume that the production rule N → λ is always applicable. Figure 10.2 shows
this process. In the following, we write the set of production rules as (w0, . . . ,wk−1),
since the left-hand side of each production rule is always Y . CTSs are simpler than
m-TSs because of the following reasons: they have only two kinds of symbols Y and
N , production rules are used one by one in the specified order (hence there is no need
of table lookup), and a string is appended only when the first symbol is Y .

In the original definition of a CTS in [4], the notion of halting was not defined
explicitly. In fact, it halts only if the string becomes the empty string λ. Hence, the
final configuration of simulated TM cannot be retrieved from the halting string (i.e.,
λ) of a CTS. Therefore, when we use CTS as an intermediate system for making a
UTM, then some halting mechanism should be incorporated. Though there will be
several ways of defining the notion of halting, we use the method employed in [15],
which is given in the following definition.

Definition 3 A cyclic tag system with halting condition (CTSH) is a system defined
by

C = (k, (halt,w1, . . . ,wk−1)),
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t: Y a2 · · · an

⇒ t+1: a2 · · · an wp

t: N a2 · · · an

⇒ t+1: a2 · · · an

Fig. 10.2 Rewriting in a cyclic tag system at time t. Here, we assume its cycle length is k, and the
pth production rule is y → wp, where p = t mod k. If the first symbol of the string at time t is Y ,
then it is removed, and wp is appended at the right end. If the first symbol is N , then it is removed,
and nothing is appended

where k ∈ Z+ is the length of a cycle, and (w1, . . . ,wk−1) ∈ ({Y ,N}∗)k−1 is a
(k − 1)-tuple of production rules. A pair (v,m) is an instantaneous description (ID)
of C, where v ∈ {Y ,N}∗ and m ∈ {0, . . . , k−1}. m is called the phase of the ID. The
transition relation ⇒

C
is defined below. For any v ∈ {Y ,N}∗, m,m′ ∈ {0, . . . , k− 1},

(Yv,m) ⇒
C

(vwm,m′) iff (m �= 0) ∧ (m′ = m + 1 mod k),

(Nv,m) ⇒
C

(v,m′) iff m′ = m + 1 mod k.

If there is no ambiguity, we use ⇒ instead of ⇒
C

. By the definition of ⇒, we can

see that, for any v ∈ {Y ,N}∗ and m ∈ {0, . . . , k − 1}, IDs (Yv, 0) and (λ,m) have
no successor ID. Hence, an ID of the form (Yv, 0) or (λ,m) is called a halting
ID. Let vi ∈ {Y ,N}∗,mi ∈ {0, . . . , k − 1} (i ∈ {0, 1, . . . , n}, n ∈ N). We say
(v0,m0) ⇒ (v1,m1) ⇒ · · · ⇒ (vn,mn) is a complete computing process of C
starting from an initial string v if (v0,m0) = (v, 0) and (vn,mn) is a halting ID. Here,
vn is called a final string. The reflexive and transitive closure of ⇒ is denoted by

∗⇒.
An n-step transition is denoted by

n⇒.

We give a simple example of a CTSH Ĉ in Example 1. In Sect. 10.3 it will be used
to explain how constructed URTM simulate CTSHs.

Example 1 Consider a CTSH Ĉ = (3, (halt, NY , NNY)). A complete computing
process of Ĉ starting from the initial string NYY is as follows.

(NYY , 0) ⇒ (YY , 1) ⇒ (Y NY , 2)

⇒ (NY NNY , 0) ⇒ (Y NNY , 1) ⇒ (NNY NY , 2)

⇒ (NY NY , 0) ⇒ (Y NY , 1) ⇒ (NY NY , 2)

⇒ (Y NY , 0)

The last ID (YNY , 0) is a halting ID, and YNY is the final string. ��
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We now show that any 2-TS can be simulated by a CTSH. Thus, from Theorem 1,
the class of CTSHs is computationally universal. The proof method is due to Cook
[4] except that halting of CTSH is properly managed here.

Theorem 2 For any 2-TS T, we can construct a CTSH C that simulates T.

Proof Let T = (2,A,P). We define AN and AH as follows: AN = {a | P(a) �= halt}
and AH = {a | P(a) = halt}. They are the sets of non-halting symbols, and halting
symbols, respectively. Thus, A = AN ∪ AH. We denote AN = {a1, . . . , an} and AH =
{b0, . . . , bh−1}. Let k = max{n, log2 h�}. Let bink : {0, . . . , 2k − 1} → {N,Y}k
be the function that maps an integer j (0 ≤ j ≤ 2k − 1) to the k-bit binary number
represented by N and Y , where N and Y stand for 0 and 1, respectively. For example,
bin4(12) = YYNN . Now, we define a coding function ϕ : A∗ → {N,Y}∗. It is a string
homomorphism that satisfies the following.

ϕ(ai) = NiYNk−i (1 ≤ i ≤ n)
ϕ(bi) = Ybink(i) (0 ≤ i ≤ h − 1)

Namely, each symbol in A is coded into a string of length k + 1 over {N,Y}. Now,
the CTSH C that simulates T is given as follows.

C = (2k + 2, (halt,w1, . . . ,w2k+1))

wi =
{

ϕ(P(ai)) (1 ≤ i ≤ n)
λ (n + 1 ≤ i ≤ 2k + 1)

Let s1 · · · sm be a string over A, where sj ∈ A (j ∈ {1, . . . ,m}). In C, it is represented
by (ϕ(s1 · · · sm), 0). First, consider the case s1 = ai for some ai ∈ AN. Thus, in
T , s1 · · · sm ⇒

T
s3 · · · smP(ai) holds. Since ϕ(s1 · · · sm) = NiYNk−iϕ(s2)ϕ(s3 · · · sm),

this transition is simulated by C in 2k + 2 steps as below.

(NiYNk−iϕ(s2)ϕ(s3 · · · sm), 0)
i⇒
C

(YNk−iϕ(s2)ϕ(s3 · · · sm), i)

⇒
C

(Nk−iϕ(s2)ϕ(s3 · · · sm)ϕ(P(ai)), i + 1)

k−i⇒
C

(ϕ(s2)ϕ(s3 · · · sm)ϕ(P(ai)), k + 1)

k+1⇒
C

(ϕ(s3 · · · smP(ai)), 0)

Second, consider the case s1 = bi for some bi ∈ AH. In this case, s1 · · · sm is
a halting string in T . Since ϕ(s1 · · · sm) = Ybink(i)ϕ(s2 · · · sm), the ID (Ybink(i)
ϕ(s2 · · · sm), 0) is also a halting ID in C.

By above, if
α0 ⇒

T
α1 ⇒

T
· · · ⇒

T
αl−1 ⇒

T
αl
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is a complete computing process of T , then it is simulated by

(ϕ(α0), 0)
2k+2⇒
C

(ϕ(α1), 0)
2k+2⇒
C

· · · 2k+2⇒
C

(ϕ(αl−1), 0)
2k+2⇒
C

(ϕ(αl), 0),

which is a complete computing process of C. ��

10.3 Constructing Small Universal Reversible Turing
Machines

In this section, we give URTM(13,7) and URTM(10,8). If codes (descriptions) of a
CTSHC and an initial string α0 ∈ {Y ,N}∗ are given, each of these URTMs simulates
the rewriting process of C from the initial ID (α0, 0) step by step until C halts. The
URTM U has a one-way infinite tape, and keeps the codes of C and an ID of C as
shown in Fig. 10.3. The production rules ofC are stored in the left-side segment of the
tape. Initially, the segment of “removed symbols” on the tape is empty, and the initial
string α0 is kept in the segment of “current string”. To indicate the border between the
removed symbols and the current string, different kinds of symbols are used for the
removed ones, and for the leftmost one of the current string (or, temporarily pointed
by the head). Each time the leftmost symbol of the current string is removed by a
rewriting in C, this border is shifted to the right by one square. Thus, if the ID of C
is (α,m), then α is stored in the segment of the current string. The phase m of the
ID is recorded by putting a “phase marker”, which is also a specified symbol of U,
at the mth production rule of C on the tape. If the first symbol of the current string
is Y and m > 0, then the right-hand side wm of the mth production rule Y → wm is
appended at the right end of the current string. If the first symbol is N , then nothing
is appended. In both cases, the phase marker is moved to the position of the next
production rule. If C enters a halting ID, then U halts.

10.3.1 13-State 7-Symbol URTM

We first give URTM(13,7) U13_7. It is defined as follows.

�

U

Production rules of CTSH C Removed symbols Current string
•

Delimiter DelimiterPhase marker
︷︸︸︷ ︷︸︸︷

Fig. 10.3 A configuration of a URTM U that simulates a CTSH C
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U13_7 = (Q13_7, {b, y, n,Y ,N, ∗, $}, qbegin, b, δ13_7)

Q13_7 = {qbegin, qcase_y_1, qcase_y_2, qcase_y_n, qcopy_start, qcopy_y_1, qcopy_y_2,

qcopy_y_3, qcopy_n_1, qcopy_n_2, qcopy_n_3, qcopy_end, qcycle_end}

The move relation δ13_7 is described in Table 10.1. It contains 57 quintuples. In this
table, “halt” means that the simulated CTSH halts with an ID (Yv, 0) for some v ∈
{Y ,N}∗, while “null” means that it halts with an ID (λ,m) for some m ∈ N. We can
verify that U13_7 satisfies the reversibility condition by a careful inspection of δ13_7.
It was also verified by a computer program. Note that, if reversibility is not required,
then, for example, the states qcase_y_2 and q copy_y_2 could be merged to reduce the
number of states. However, since there are quintuples [qcase_y_2, y, y,+, qcase_y_2], and

Table 10.1 The move relation δ13_7 of U13_7

b y n

qbegin (null) Y ,−, qcase_y_1 N,−, qcase_y_n

qcase_y_1 (halt) y,−, qcase_y_1 n,−, qcase_y_1

qcase_y_2 y,+, qcase_y_2 n,+, qcase_y_2

qcase_y_n ∗,−, qcopy_start y,−, qcase_y_n n,−, qcase_y_n

qcopy_start b,+, qcycle_end b,+, qcopy_y_1 b,+, qcopy_n_1

qcopy_y_1 y,+, q copy_y_2 y,+, qcopy_y_1 n,+, q copy_y_1

qcopy_y_2 b,−, qcopy_y_3

qcopy_y_3 y,−, qcopy_start y,−, qcopy_y_3 n,−, qcopy_y_3

qcopy_n_1 n,+, q copy_n_2 y,+, qcopy_n_1 n,+, q copy_n_1

qcopy_n_2 b,−, qcopy_n_3

qcopy_n_3 n,−, qcopy_start y,−, qcopy_n_3 n,−, qcopy_n_3

qcopy_end y,+, q copy_end n,+, qcopy_end

q cycle_end y,+, qcycle_end n,+, q cycle_end

Y N ∗ $

qbegin

qcase_y_1 ∗,+, qcase_y_2 $,−, qcase_y_1

qcase_y_2 Y ,−, qcase_y_n $,+, qcase_y_2

qcase_y_n ∗,−, qcase_y_n $,−, qcase_y_n

q copy_start b,+, qcopy_end

q copy_y_1 Y ,+, qcopy_y_1 N,−, q copy_y_3 ∗,+, qcopy_y_1 $,+, q copy_y_1

qcopy_y_2

qcopy_y_3 Y ,−, qcopy_y_3 ∗,−, qcopy_y_3 $,−, qcopy_y_3

q copy_n_1 Y ,+, qcopy_n_1 N,−, q copy_n_3 ∗,+, qcopy_n_1 $,+, q copy_n_1

qcopy_n_2

qcopy_n_3 Y ,−, qcopy_n_3 ∗,−, qcopy_n_3 $,−, qcopy_n_3

q copy_end y,+, qbegin n,+, qbegin ∗,+, qcopy_end $,+, qcopy_end

q cycle_end ∗,+, qcycle_end $,−, q copy_start
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[qcopy_y_1, b, y,+, qcopy_y_2], they cannot be merged without violating the reversibility
condition.

We now give a string homomorphism ϕ1 : {Y ,N}∗ → {y, n}∗ as follows: ϕ1(Y) =
y, ϕ1(N) = n. Note that ϕ1 simply converts the uppercase Y and N into lower case y
and n. Let C = (k, (halt,w1, . . . ,wk−1)) be an arbitrary CTSH, and v0 ∈ {Y ,N}∗ be
an initial string. Then the initial tape for U13_7 is as follows, where $ and the leftmost
b are used as delimiters (see Fig. 10.3). Here, wR denotes the reversal of the string w.

b ϕ1(w
R
k−1) ∗ · · · ∗ ϕ1(w

R
2 ) ∗ ϕ1(w

R
1 ) ∗ b $ ϕ1(v0) b

In the case of CTSH Ĉ with v0 = NYY in Example 1, the initial tape for it is
b ynn ∗ yn ∗ b $ nyy b. Snapshots of computation of U13_7 is as below. It simu-
lates the complete computing process of Ĉ: (NYY , 0) ⇒ (YY , 1) ⇒ (YNY , 2) ⇒
(NYNNY , 0) ⇒ (YNNY , 1) ⇒ (NNYNY , 2) ⇒ (NYNY , 0) ⇒ (YNY , 1) ⇒
(NYNY , 2) ⇒ (YNY , 0). In each computational configuration of U13_7, the head
position is also indicated by the underline.

t = 0 : [ b y n n ∗ y n ∗ b $ n y y b, qbegin, 10 ]
7 : [ b y n n ∗ y n b ∗ $ n y y b, qbegin, 11 ]
8 : [ b y n n ∗ y n b ∗ $ n Yy b, qcase_y_1, 10 ]

18 : [ b y n n ∗ y n ∗ ∗ $ n Yy b, qcopy_start, 6 ]
19 : [ b y n n ∗ y b ∗ ∗ $ n Yy b, qcopy_n_1, 7 ]
25 : [ b y n n ∗ y b ∗ ∗ $ n Yy b, qcopy_n_1, 13 ]
26 : [ b y n n ∗ y b ∗ ∗ $ n Yy n b, qcopy_n_2, 14 ]
27 : [ b y n n ∗ y b ∗ ∗ $ n Yy n b, qcopy_n_3, 13 ]
35 : [ b y n n ∗ y n ∗ ∗ $ n Yy n b, qcopy_start, 5 ]
36 : [ b y n n ∗ b n ∗ ∗ $ n Yy n b, qcopy_y_1, 6 ]
44 : [ b y n n ∗ b n ∗ ∗ $ n Yy n b, qcopy_y_1, 14 ]
45 : [ b y n n ∗ b n ∗ ∗ $ n Yy n y b, qcopy_y_2, 15 ]
46 : [ b y n n ∗ b n ∗ ∗ $ n Yy n y b, qcopy_y_3, 14 ]
56 : [ b y n n ∗ y n ∗ ∗ $ n Yy n y b, qcopy_start, 4 ]
57 : [ b y n n b y n ∗ ∗ $ n Yy n y b, qcopy_end, 5 ]
64 : [ b y n n b y n ∗ ∗ $ n y y n y b, qbegin, 12 ]

174 : [ b y n n ∗ y n ∗ ∗ $ n y Yn y n n y b, qcopy_start, 0 ]
175 : [ b y n n ∗ y n ∗ ∗ $ n y Yn y n n y b, qcycle_end, 1 ]
184 : [ b y n n ∗ y n ∗ ∗ $ n y Yn y n n y b, qcopy_start, 8 ]
185 : [ b y n n ∗ y n ∗ b $ n y Yn y n n y b, qcopy_end, 9 ]
291 : [ b y n n b y n ∗ ∗ $ n y y n y n n y n y b, qbegin, 15 ]
292 : [ b y n n b y n ∗ ∗ $ n y y n y N n y n y b, qcase_y_n, 14 ]
303 : [ b y n n ∗ y n ∗ ∗ $ n y y n y N n y n y b, qcopy_start, 3 ]
315 : [ b y n b ∗ y n ∗ ∗ $ n y y n y N n y n y b, qcopy_n_1, 15 ]
316 : [ b y n b ∗ y n ∗ ∗ $ n y y n y N n y n y b, qcopy_n_3, 14 ]
665 : [ b y n n ∗ y n ∗ b $ n y y n y n n y n y n y b, qbegin, 19 ]
676 : [ b y n n ∗ y n ∗ b $ n y y n y n n y n Yn y b, qcase_y_1, 8 ]
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We explain how U13_7 simulates CTSH by this example. Production rules of Ĉ is
basically expressed by the string ynn∗ yn∗∗. However, to indicate the phase m of
an ID (v,m), the mth ∗ from the right is altered into b (where the rightmost ∗ is the
0-th). This b is used as a “phase marker”. Namely, ynn∗ yn∗ b, ynn∗ yn b ∗, and
ynn b yn∗∗ indicate the phase is 0, 1, and 2, respectively. Hence, in the configuration
at t = 0, the string ynn∗ yn∗ b is given on the tape. To the right of the production
rules the initial string nyy is given. Between them, there is a delimiter $ that is not
rewritten into another symbol throughout the computation. In the state qbegin, the
leftmost symbol of the current string is pointed by the head. Then, it is changed to
the uppercase letter Y or N to indicate the leftmost position of the current string.

The state qbegin (appearing at time t = 0, 7, 64, 291, and 665) reads the first symbol
y or n of the current string, and temporarily changes it into Y or N , respectively.
Depending on the read symbol y or n,U13_7 goes to either qcase_y_1 (t = 8), or qcase_y_n

(t = 292). If the read symbol is b, U13_7 halts, because it means the string is null.
If the symbol is y, U13_7 performs the following operations (the case n is explained
in the next paragraph). By the state qcase_y_1 (t = 8), the URTM moves leftward to
find the delimiter $, and then visits the left-neighboring square by qcase_y_1. If it reads
b, then it halts (t = 676), because the phase is 0. If otherwise, U13_7 returns to the
delimiter $. Then, using qcase_y_2, U13_7 goes to the state qcase_y_n, and moves leftward
to find the phase marker b that indicates the position of the next production rule. By
the state qcopy_start (t = 18, and 35)U13_7 starts to copy each symbol of the production
rule. If U13_7 reads a symbol y (t = 18) (or n (t = 35), respectively), then it shifts
the marker b to this position, and goes to qcopy_y_1 (t = 36) (or qcopy_n_1 (t = 19))
to attach the symbol at the end of the string to be rewritten. On the other hand, if it
reads symbol ∗ in qcopy_start (t = 56), then it goes to qcopy_end (t = 57), which mean
the end of execution of a production rule, and thus it starts to read the next symbol
in the rewritten string (t = 64). Likewise, if it reads symbol b in qcopy_start (t = 174),
then it goes to qcycle_end (t = 175), which mean the end of one cycle, and thus the
phase is set to 0 (t = 185). The state qcopy_y_1 is for moving rightward to find the first
b that is to the right of the current string (t = 44), and rewrites it into y (t = 45). The
states qcopy_y_2 and qcopy_y_3 (t = 46) are for returning to the marker position and for
repeating the copying procedure. qcopy_n_1, . . . , qcopy_n_3 are for copying the symbol
n, which are similar to the case of y (t = 19, 25, 26, 27).

On the other hand, if U13_7 reads a symbol n in the state qbegin (t = 291), then it
enters the state qcase_y_n (t = 292), and tries to copy symbols as in the case of y. At
t = 303 it starts to copy a symbol n in qcopy_start . However, since it finds a symbol N
in the state qcopy_n_1 (t = 315), it enters the state qcopy_n_3 (t = 316) without attaching
the symbol n at the right end. By above, the phase marker is finally shifted to the
next production rule without copying the symbols of the current production rule.

Repeating the above procedure, U13_7 simulates a given CTSH step by step, and
halts in the state qcase_y_1 reading the symbol b if the CTSH halts in an ID with phase
0. If the string of the CTSH becomes null, U13_7 halts in the state qbegin reading the
symbol b. In the above example, U13_7 halts at t = 676, and the final string YNY of
Ĉ is obtained at as a suffix of the string (excluding the last blank symbol b) starting
from the symbol Y .
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10.3.2 10-State 8-Symbol URTM

Next, we give URTM(10,8) U10_8. It is defined as below.

U10_8 = (Q10_8, {b, y, n, n′,Y ,N, ∗, $}, qbegin, b, δ10_8)

Q10_8 = {qbegin, qcase_y_1, qcase_y_2, qcase_y_n, qcopy_start, qcopy_y_1, qcopy_y_2,

qcopy_n_1, qcopy_n_2, qcopy_end}

Table 10.2 shows the move relation δ10_8. It contains 61 quintuples. Reversibility
of U10_8 is verified by a careful checking of δ10_8. It was also checked by a computer
program. The URTM U10_8 is constructed by modifying U13_7 in the previous sub-
section. Thus, the initial tape of U10_8 is just the same as that of U13_7. Furthermore,
the simulation time for a given CTSH is also the same.

The difference between U13_7 and U10_8 is as follows. First, the removed symbols
from the string are indicated by the uppercase letters Y and N . Second, if the leftmost
symbol of the current string is n, then it is temporarily changed to n′, which is a newly
added symbol in U10_8. Third, if the current phase is m, then the symbols of the

Table 10.2 The move relation δ10_8 of U10_8

b y n n′

qbegin (null) y,−, qcase_y_1 n′,−, qcase_y_n

qcase_y_1 (halt)

qcase_y_2 b,−, qcopy_y_2 y,−, qcase_y_n

qcase_y_n ∗,−, qcopy_start

qcopy_start b,+, qbegin b,+, qcopy_y_1 b,+, qcopy_n_1

qcopy_y_1 y,+, qcase_y_2 y,+, qcopy_y_1 n,+, qcopy_y_1 n′,−, qcopy_y_2

qcopy_y_2 Y ,−, qcopy_start y,−, qcopy_y_2 n,−, qcopy_y_2

qcopy_n_1 n,+, qcopy_end y,+, qcopy_n_1 n,+, qcopy_n_1 n′,−, qcopy_n_2

qcopy_n_2 N,−, qcopy_start y,−, qcopy_n_2 n,−, qcopy_n_2

qcopy_end b,−, qcopy_n_2 Y ,+, qbegin N,+, qbegin

Y N ∗ $

qbegin y,+, qbegin n,+, qbegin ∗,+, qbegin $,−, qcopy_start

qcase_y_1 Y ,−, qcase_y_1 N,−, qcase_y_1 ∗,+, qcase_y_2 $,−, qcase_y_1

qcase_y_2 Y ,+, qcase_y_2 N,+, qcase_y_2 $,+, qcase_y_2

qcase_y_n Y ,−, qcase_y_n N,−, qcase_y_n ∗,−, qcase_y_n $,−, qcase_y_n

qcopy_start b,+, qcopy_end

qcopy_y_1 Y ,+, qcopy_y_1 N,+, qcopy_y_1 ∗,+, qcopy_y_1 $,+, qcopy_y_1

qcopy_y_2 Y ,−, qcopy_y_2 N,−, qcopy_y_2 ∗,−, qcopy_y_2 $,−, qcopy_y_2

qcopy_n_1 Y ,+, qcopy_n_1 N,+, qcopy_n_1 ∗,+, qcopy_n_1 $,+, qcopy_n_1

qcopy_n_2 Y ,−, qcopy_n_2 N,−, qcopy_n_2 ∗,−, qcopy_n_2 $,−, qcopy_n_2

qcopy_end Y ,+, qcopy_end N,+, qcopy_end ∗,+, qcopy_end $,+, qcopy_end
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production rules w1, . . . ,wm−1 are changed into the uppercase letters. By above, the
states qcopy_y_2 and qcase_y_2 in U13_7 can be merged into one state without violating
the reversibility condition. Likewise, the states qcopy_n_2 and qcopy_end in U13_7 can be
merged into one state. Hence, in U10_8, the old state qcopy_y_2 (qcopy_n_2, respectively)
is removed, and the old state qcopy_y_3 (qcopy_n_3) is renamed to qcopy_y_2 (qcopy_n_2).
Furthermore, the states qbegin and qcycle_end in U13_7 can be merged into one state.
Therefore, in U13_7, qcycle_end is removed. By above, the number of states of U10_8 is
reduced to 10.

Snapshots of computation process of U10_8 for the CTSH Ĉ with the initial string
NYY is as below.

t = 0 : [ b y n n ∗ y n ∗ b $ n y y b, qbegin, 10 ]
7 : [ b y n n ∗ y n b ∗ $ Ny y b, qbegin, 11 ]
8 : [ b y n n ∗ y n b ∗ $ Ny y b, qcase_y_1, 10 ]

18 : [ b y n n ∗ y n ∗ ∗ $ Ny y b, qcopy_start, 6 ]
19 : [ b y n n ∗ y b ∗ ∗ $ Ny y b, qcopy_n_1, 7 ]
25 : [ b y n n ∗ y b ∗ ∗ $ Ny y b, qcopy_n_1, 13 ]
26 : [ b y n n ∗ y b ∗ ∗ $ Ny y n b, qcopy_end, 14 ]
27 : [ b y n n ∗ y b ∗ ∗ $ Ny y n b, qcopy_n_2, 13 ]
35 : [ b y n n ∗ y N ∗ ∗ $ Ny y n b, qcopy_start, 5 ]
36 : [ b y n n ∗ bN ∗ ∗ $ Ny y n b, qcopy_y_1, 6 ]
44 : [ b y n n ∗ bN ∗ ∗ $ Ny y n b, qcopy_y_1, 14 ]
45 : [ b y n n ∗ bN ∗ ∗ $ Ny y n y b, qcase_y_2, 15 ]
46 : [ b y n n ∗ bN ∗ ∗ $ Ny y n y b, qcopy_y_2, 14 ]
56 : [ b y n n ∗YN ∗ ∗ $ Ny y n y b, qcopy_start, 4 ]
57 : [ b y n n b YN ∗ ∗ $ Ny y n y b, qcopy_end, 5 ]
64 : [ b y n n b YN ∗ ∗ $ NYy n y b, qbegin, 12 ]

174 : [ b YNN∗ YN∗ ∗ $ NYy n y n n y b, qcopy_start, 0 ]
175 : [ b YNN∗ YN∗ ∗ $ NYy n y n n y b, qbegin, 1 ]
184 : [ b y n n ∗ y n ∗ ∗ $ NYy n y n n y b, qcopy_start, 8 ]
185 : [ b y n n ∗ y n ∗ b $ NYy n y n n y b, qcopy_end, 9 ]
291 : [ b y n n b YN ∗ ∗ $ NYYNYn n y n y b, qbegin, 15 ]
292 : [ b y n n b YN ∗ ∗ $ NYYNYn′n y n y b, qcase_y_n, 14 ]
303 : [ b y n n ∗ YN ∗ ∗ $ NYYNYn′n y n y b, qcopy_start, 3 ]
315 : [ b y n b ∗ YN ∗ ∗ $ NYYNYn′ n y n y b, qcopy_n_1, 15 ]
316 : [ b y n b ∗ YN ∗ ∗ $ NYYNYn′n y n y b, qcopy_n_2, 14 ]
665 : [ b y n n ∗ y n ∗ b $ NYYNYNNYNy n y b, qbegin, 19 ]
676 : [ b y n n ∗ y n ∗ b $ NYYNYNNYNy n y b, qcase_y_1, 8 ]

Comparing the above computational configurations with the ones of U13_7, we can
see that, e.g., at time t = 45 the state qcase_y_2 is used instead of qcopy_y_2, and at time
t = 175 the state qbegin is used instead of qcycle_end . However, the essentially the same
operation as in U13_7 is performed at each step, and thus at time t = 676 the final
string YNY is obtained.
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10.4 Comparison with Other Small URTMs

Besides URTM(13,7) and URTM(10,8), which are constructed here, several URTMs
that simulates CTSH have been given in [9, 13, 15]. They are URTM(15,6),
URTM(17,5), URTM(24,4), and URTM(32,3).

On the other hand, it is generally difficult to design an RTM that has only two
symbols, or a very small number of states. To obtain an RTM with a small number
of states, general procedures for converting a given many-state RTM into a 4-state
and 3-state RTMs are given in [10], though the number of symbols of the resulting
RTMs becomes very large.

Theorem 3 ([10]) For any one-tape m-state n-symbol RTM T, we can construct a
one-tape 4-state (2mn + n)-symbol RTM T̃ that simulates T.

Theorem 4 ([10]) For any one-tape m-state n-symbol RTM T, we can construct a
one-tape 3-state RTM T̂ with O(m2n3)-symbols that simulates T.

Applying the method of Theorem 3 to URTM(10,8), we obtain URTM(4,168). Like-
wise, by the method of Theorem 4, we obtain URTM(3, 36654) from URTM(32,3).

To construct a 2-symbol URTM, we can use a method of converting a many-
symbol RTM into a 2-symbol RTM shown in [16]. In particular, the following lemma
is shown in [13] to convert a 4-symbol RTM to a 2-symbol RTM.

Lemma 1 ([13]) For any one-tape m-state 4-symbol RTM T, we can construct a
one-tape m′-state 2-symbol RTM T † that simulates T such that m′ ≤ 6m.

By this method, we can obtain URTM(138,4) from URTM(24,4) [13].
These results are summarized as follows.

• URTM(3,36654) with 37936 quintuples [10]
• URTM(4,168) with 381 quintuples [10]
• URTM(10,8) with 61 quintuples
• URTM(13,7) with 57 quintuples
• URTM(15,6) with 62 quintuples [9]
• URTM(17,5) with 67 quintuples [15]
• URTM(24,4) with 82 quintuples [13]
• URTM(32,3) with 82 quintuples [13]
• URTM(138,2) with 220 quintuples [13]

We can see URTM(10,8) has the minimum value of m × n among the above
URTM(m, n)’s. On the other hand, URTM(13,7) has the smallest number of quintu-
ples among them. The pairs of numbers of states and symbols of these URTMs, as
well as the smallest UTMs so far known, are plotted in Fig. 10.4.

The products of the numbers of states and symbols of URTM(10,8), URTM(13,7),
URTM(15,6), URTM(17,5), URTM(24,4), and URTM(32,3) are all less than 100,
and thus relatively small. However, those of URTM(3,36654), URTM(4,168), and
URTM(138,2), which are converted from the above ones, are very large, and it is not
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Fig. 10.4 State-symbol plotting of small URTMs and UTMs. � shows URTMs newly given in
this paper that simulate cyclic tag systems. • indicates URTMs given in [9, 13, 15] that simulate
cyclic tag systems. � indicates URTMs converted from other URTMs. � shows UTMs given in
[6, 18, 20] that simulate 2-tag systems or bi-tag systems

known whether there are much smaller URTMs. Also, small URTM(m,n)’s such that
5 ≤ m ≤ 9 have not yet been constructed till now.

Examples of computing processes of the nine URTMs listed above were simulated
by a computer program. Animation-like figures of the computer simulation results,
as well as description files of the URTMs, are available in [12].

10.5 Concluding Remarks

We studied the problem of constructing small URTMs, which are universal TMs that
satisfy the reversibility condition. For this, we used a method of simulating cyclic
tag systems with halting condition. In this way, we newly obtained URTM(13,8),
and URTM(10,8).

Woods and Neary [22] proved that both cyclic tag systems, and 2-tag systems can
simulate TMs in polynomial time, and thus the small UTMs of Minsky [7], Rogozhin
[20], Kudlek and Rogozhin [6], Neary and Woods [18], and others can simulate TMs
efficiently. Although we did not discuss time complexity of the URTMs in detail, it
is easy to see that the URTMs given here simulate cyclic tag systems in polynomial
time. Therefore, these URTMs also simulate TMs in polynomial time.

In this study, we used a method of simulating cyclic tag systems with halting
condition to construct small URTMs. However, it is not known whether there are
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better methods other than it. Also, it is not known whether a 2-state URTM exists.
Since there have been only several researches on small URTMs so far, there seems
much room for improvement, and thus they are left for the future study.

Acknowledgments This work was supported by JSPS KAKENHI Grant Number 15K00019.
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Chapter 11
Percolation Transition and Related
Phenomena in Terms of Grossone Infinity
Computations

Dmitry I. Iudin and Yaroslav D. Sergeyev

Abstract In this chapter, a number of traditional models related to the percola-
tion theory is taken into consideration: site percolation, gradient percolation, and
forest-fire model. They are studied by means of a new computational methodology
that gives a possibility to work with finite, infinite, and infinitesimal quantities nu-
merically by using a new kind of a computer—the Infinity Computer—introduced
recently. It is established that in light of the new arithmetic using grossone-based nu-
merals the phase transition point in site percolation and gradient percolation appears
as a critical interval, rather than a critical point. Depending on the ‘microscope’ we
use, this interval could be regarded as finite, infinite, or infinitesimal interval. By
applying the new approach we show that in vicinity of the percolation threshold we
have many different infinite clusters instead of one infinite cluster that appears in
traditional considerations. With respect to the cellular automaton forest-fire model,
two traditional versions of the model are studied: a real forest-fire model where fire
catches adjacent trees in the forest in the step by step manner and a simplified ver-
sion with instantaneous combustion. By applying the new approach there is observed
that in both situations we deal with the same model but with different time resolu-
tions. We show that depending on ‘microscope’ we use, the same cellular automaton
forest-fire model reveals either the instantaneous forest combustion or the step by
step firing.
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11.1 Introduction

There exist several important difference in the usage of, on the one hand, finite
quantities and, on the other hand, infinities and infinitesimals in science. The notions
of infinite and infinitesimal are usually used in pure mathematics. In their turn,
applied mathematics, physics, and engineering work either with finite quantities or
use limits trying in any case to obtain finite answers in order to know, for example,
the behavior of some processes at infinity. One of the main differences consists of the
fact that the Common Notion 5 of Euclid ‘The whole is larger than a part’ observed
in the world around us does not hold true for symbols traditionally used to work
with infinity. For instance, we have ∞ − 1 = ∞ and infinite numbers introduced by
Cantor it also follows x − 1 = x , if x is an infinite cardinal, although for any finite
x we have x − 1 < x .

Due to the enormous importance of the concepts of infinite and infinitesimal in
science, people try to introduce them in their work with computers, too (see, e.g. the
IEEE Standard for Binary Floating-Point Arithmetic). However, the work of people
with infinities and infinitesimals and, in particular, with non-standard Analysis re-
mains a very theoretical field because various arithmetics (see, e.g., [6, 9, 26, 32,
35, 62]) developed for infinite and infinitesimal numbers are quite different with
respect to the finite arithmetic we are used to deal with. It happens that certain opera-
tions with infinite numbers can be undeterminate (e.g.,∞ − ∞, ∞

∞ , sum of infinitely
many items, etc.). Very often representations of infinite numbers are based on infinite
sequences of finite numbers and it is not clear how to store infinite quantities in a
finite computer memory. These crucial difficulties did not allow people to construct
computers that would be able to work with infinite and infinitesimal numbers in the
same manner as we are used to do with finite numbers and to study infinite and
infinitesimal objects numerically.

Numerous trials having as a goal an evolvement of existing counting systems in
such a way that they could include in the process of computing infinite and infin-
itesimal numbers were done during the centuries (see, e.g., [6, 9, 26, 32, 35, 62]
and references given therein). In spite of these numerous efforts, the work with in-
finities and infinitesimals remained symbolic (i.e., non numeric) until a new applied
point of view on infinite and infinitesimal numbers has been introduced recently in
[36, 41, 47]. The new approach does not use Cantor’s ideas and describes infinite
and infinitesimal numbers that are in accordance with Euclid’s Common Notion
5 mentioned above. It gives a possibility to work with finite, infinite, and infini-
tesimal quantities numerically by using: (i) a new kind of computers—the Infinity
Computer—introduced in [37, 42]; (ii) a new numeral system1 with an infinite radix.

1We are reminded that a numeral is a symbol or a group of symbols that represents a number. The
difference between numerals and numbers is the same as the difference between words and the
things they refer to. A number is a concept that a numeral expresses. The same number can be
represented by different numerals. For example, the symbols ‘8’, ‘eight’, and ‘IIIIIIII’ are different
numerals, but they all represent the same number..
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It is worthwhile noticing that the new approach does not contradict Cantor. In
contrast, it can be viewed as an evolution of his deep ideas regarding the existence
of different infinite numbers in a more applied way. For instance, Cantor has shown
that there exist infinite sets having different cardinalities ℵ0 and ℵ1. In its turn, the
new approach specifies this result showing that in certain cases within each of these
classes it is possible to distinguish sets with the number of elements being different
infinite numbers. We emphasize that the new approach has been introduced as an
evolution of standard and non-standard Analysis and not as a contraposition to them.
One or another version of Analysis can be chosen by the working mathematician in
dependence on the problem he deals with.

In order to see the place of the new approach in the historical panorama of ideas
dealing with infinite and infinitesimal, see [27, 45, 46, 54, 56]. In particular, connec-
tions of the new approach with bijections is studied in [28] and metamathematical
investigations on the new theory and its non-contradictory can be found in [27].
The new methodology has been successfully applied for studying percolation and
biological processes (see [22, 23, 49, 61]), infinite series (see [45, 63]), hyperbolic
geometry (see [29, 30]), fractals (see [22, 23, 38, 43, 49]), numerical differentiation
and optimization (see [13, 51]), the first Hilbert problem, Turing machines, and lex-
icographic ordering (see [46, 53, 56–58]), cellular automata (see [11, 12]), ordinary
differential equations (see [51, 52]), etc.

In this chapter, we consider a number of applications related to the theory of
percolation and study them using the new approach. On the one hand, percolation
represents the simplest model of a disordered system. Disordered structures and
random processes that are self-similar on certain length and time scales are very
common in nature. They can be found on the largest and the smallest scales: in
galaxies and landscapes, in earthquakes and fractures, in aggregates and colloids, in
rough surfaces and interfaces, in glasses and polymers, in proteins and other large
molecules. Disorder plays a fundamental role in many processes of industrial and
scientific interest. On the other hand, percolation reveals a concept of self-similarity
and demonstrates numerous fractal features. Owing to the wide occurrence of self-
similarity in nature, the scientific community interested in this phenomenon is very
broad, ranging from astronomers and geoscientists to material scientists and life
scientists. From the mathematical point of view, self-similarity implies a recursive
process and, consequently, is tightly connected with the concept of infinity. This
turns us to an idea that percolation is very suitable to demonstrate advantages of the
new computational approach proposed in [36, 41].

The outline of the chapter is as follows. In Sect. 11.2 we briefly describe the new
approach that allows one to write down different finite, infinite, and infinitesimal
numbers by a finite number of symbols as particular cases of a unique framework
and to execute numerical computations with all of them. Then in Sect. 11.3 we apply
the new methodology to the percolation phase transition. Generalized percolation
problemknown as gradient percolation are analyzed in terms of infinity computations
in Sect. 11.4 while forest fires models are discussed in Sect. 11.5. In the final section,
the applications are summarized and discussed briefly.
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11.2 Expressing Infinities and Infinitesimals
with a High Accuracy

In order to understand how it is possible to study percolation and fractals at infinity
with an accuracy that is higher than the traditional one, let us remind the important
difference that exists between numbers and numerals (see footnote 1): a numeral
is a symbol or a group of symbols used to represent a number. A numeral system
consists of a set of rules used for writing down numerals and algorithms for executing
arithmetical operations with these numerals. It should be stressed that the algorithms
can vary significantly in different numeral systems and their complexity can be also
dissimilar. For instance, division in Roman numerals is extremely laborious and in
the positional numeral system it is much easier.

Notice that numeral systems strongly bound the possibilities to express numbers
and to execute mathematical operations with them. For instance, the Roman numeral
system lacks a numeral expressing zero. As a consequence, such expressions as X–X
and III–XVI in this numeral system are indeterminate forms. The introduction of the
positional numeral system has allowed people to avoid indeterminate forms of this
type and to execute the required operations easily.

One of the simplest existing numeral systems that allows its users to express very
few numbers is the system used byWarlpiri people, aborigines living in the Northern
Territory of Australia (see [5]) and by Pirahã people living in Amazonia (see [18]).
Both peoples use the same very poor numeral system for counting consisting just
of three numerals—one, two, and ‘many’—where ‘many’ is used for all quantities
larger than two.

As a result, this poor numeral system does not allow Warlpiri and Pirahã to
distinguish numbers larger than 2, to execute arithmetical operations with them,
and, in general, to say a word about these quantities because in their languages there
are neither words nor concepts for them. In particular, results of operations 2 + 1
and 2 + 2 are not 3 and 4 but just ‘many’ since they do not know about the existence
of 3 and 4. It is worthy to emphasize thereupon that the result ‘many’ is not wrong,
it is correct but its accuracy is low. Analogously, when we look at a mob, then both
phrases ‘There are 3405 persons in the mob’ and ‘There are many persons in the
mob’ are correct but the accuracy of the former phrase is higher than the accuracy
of the latter one.

Our interest to the numeral system of Warlpiri and Pirahã is explained by the fact
that the poorness of this numeral system leads to such results as

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’, (11.1)

‘many’ − 1 = ‘many’, ‘many’ − 2 = ‘many’, (11.2)

‘many’ + ‘many’ = ‘many’ (11.3)
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that are crucial for changing our outlook on infinity. In fact, by changing in these
relations ‘many’ with ∞ we get relations that are used for working with infinity in
the traditional calculus:

∞ + 1 = ∞, ∞ + 2 = ∞, ∞ − 1 = ∞, ∞ − 2 = ∞, ∞ + ∞ = ∞.

(11.4)
We can see that numerals ‘many’ and ∞ are used in the same way and we know
that in the case of ‘many’ expressions in (11.1)–(11.3) are nothing else but the result
of the lack of appropriate numerals for working with finite quantities. This analogy
allows us to conclude that expressions in (11.4) used toworkwith infinity are also just
the result of the lack of appropriate numerals, in this case for working with infinite
quantities. As the numeral ‘many’ is not able to represent the existing richness of
finite numbers, the numeral ∞ is not able to represent the richness of the infinite
ones.

Aswasmentioned above, in order to give people the possibility towrite downmore
infinite and infinitesimal numbers, a new numeral system has been introduced re-
cently in [36, 41, 54]. It allows people to express a variety of different infinities and in-
finitesimals, to perform numerical computations with them, and to avoid both expres-
sions of the type (11.1)–(11.4) and indeterminate forms such as ∞ − ∞, ∞

∞ , 0 · ∞,

etc. that can occur in the traditional calculus and related to limits. Notice that even
though the new methodology works with infinite and infinitesimal quantities, it is
not related to symbolic computations practiced in non-standard analysis (see [35])
and has an applied, computational character.

The new numeral system and the related computational methodology are based
on the introduction in the process of computations of a new numeral, 1 , called
grossone. It is defined as the infinite integer being the number of elements of the set,
N, of natural numbers.2 Thanks to the introduction of the new numeral the set N can
be written in the form

N = {1, 2, 3, 4, 5, 6, . . . 1 − 2, 1 − 1, 1 },

whereas positive integers larger than grossone are called extended natural numbers.
Notice that symbols used traditionally to dealwith infinite and infinitesimal quantities
(e.g., ∞, Cantor’s ω, ℵ0,ℵ1, ..., etc.) are not used together with 1 . Similarly, when
the positional numeral systemand the numeral 0 expressing zero had been introduced,
symbols I, IV, VI, XIII, and other symbols from the Roman numeral system had been
substituted by the respective Arabic symbols.

The numeral 1 allows one to express a variety of numerals representing different
infinities and infinitesimals, to order them, and to execute numerical computations
with all of them in a handy way. For example, for 1 and 1 4.1 (that are examples of
infinities) and 1 −1 and 1 −4.1 (that are examples of infinitesimals) it follows

2Nowadays not only positive integers but also zero is frequently included in N. However, since zero
has been invented significantly later than positive integers used for counting objects, zero is not
include in N in this text.
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0 · 1 = 1 · 0 = 0, 1 − 1 = 0,
1

1
= 1, 1 0 = 1, 1 1 = 1, 0 1 = 0,

(11.5)
0 · 1 −1 = 1 −1 · 0 = 0, 1 −1 > 0, 1 −4.1 > 0, 1 −1 − 1 −1 = 0,

1 −1

1 −1 = 1,
5 + 1 −4.1

1 −4.1 = 5 1 4.1 + 1, ( 1 −1)0 = 1, 1 · 1 −1 = 1,

1 · 1 −4.1 = 1 −3.1,
1 4.1 + 6 1

1
= 1 3.1 + 6,

1 4.1

1 −4.1 = 1 8.2,

( 1 4.1)0 = 1, 1 4.1 · 1 −1 = 1 3.1, 1 4.1 · 1 −4.1 = 1.

It follows from (11.5) that a finite number b can be represented in this numeral
system simply as b 1 0 = b, since 1 0 = 1, where the numeral b itself can be written
down by any convenient numeral system used to express finite numbers. The simplest
infinitesimal numbers are represented by numerals having only negative finite powers
of 1 (e.g., the number 70.12 1 −10.23 + 5.84 1 −80.37 consists of two infinitesimal parts,
see also examples above). Notice that all infinitesimals are not equal to zero. For
instance, 1 −4.1 = 1

1
4.1 is positive because it is the result of division between two

positive numbers.
In the context of the present chapter it is important that in comparison to the

traditional mathematical tools used to work with infinity the new numeral system
allows one to obtain more precise answers in certain cases. For instance, Table11.1
compares results obtained by the traditional Cantor’s cardinals and the new numeral
system with respect to the measure of some infinite sets (for a detailed discussion
regarding the results presented in Table11.1 and for more examples dealing with
infinite sets see [27, 28, 46, 47, 56]). Notice, that inQ andQ′ we calculate different
numerals and not numbers. For instance, numerals 3

1 and 6
2 have been counted two

times even though they represent the same number 3.
Then, four sets of numerals having the cardinality of continuum are shown in

Table11.1. Among them we denote by A2 the set of numbers x ∈ [0, 1) expressed
in the binary positional numeral system, by A′

2 the set being the same as A2 but
with x belonging to the closed interval [0, 1], by A10 the set of numbers x ∈ [0, 1)
expressed in the decimal positional numeral system, and finally we have the set
C10 = A10 ∪ B10, where B10 is the set of numbers x ∈ [1, 3) expressed in the decimal
positional numeral system. It is worthwhile to notice also that 1 -based numbers
present in Table11.1 can be ordered as follows

�√ 1 	 <
1

2
<

1

2
+ 2 < 1 − 3 < 1 − 4 < 1 < 2 1 < 2 1 + 1 <

1 2 < 2 1 2 + 1 < 2 1 < 2 1 + 1 < 10 1 < 3 · 10 1 .
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Table 11.1 Measuring infinite sets using 1 -based numerals allows one in certain cases to obtain
more precise answers in comparison with the traditional cardinalities, ℵ0 and C, of Cantor
Description of sets Cardinality Number of elements

The set of natural numbers N Countable, ℵ0 1

N \ {3, 5, 10} Countable, ℵ0 1 -3

N \ {3, 5, 10, 23} Countable, ℵ0 1 -4

The set of even numbers E Countable, ℵ0
1
2

The set of odd numbers O Countable, ℵ0
1
2

O
⋃{−2, 10, 23} Countable, ℵ0

1
2 + 2

The set of square natural numbers G =
{x : x = n2, n ∈ N, x ∈ N}

Countable, ℵ0 �√ 1 	

The set of integer numbers Z Countable, ℵ0 2 1 +1

The set of pairs of natural numbers P =
{(p, q) : p ∈ N, q ∈ N}

Countable, ℵ0 1 2

The set of numerals Q′ = {− p
q ,

p
q : p ∈ N,

q ∈ N}
Countable, ℵ0 2 1 2

Q
′ ⋃ {0} Countable, ℵ0 2 1 2 + 1

The set of numerals A2 Continuum, C 2 1

The set of numerals A′
2 Continuum, C 2 1 + 1

The set of numerals A10 Continuum, C 10 1

The set of numerals C10 Continuum, C 3 · 10 1

It can be seen from Table11.1 that Cantor’s cardinalities, ℵ0 and C, say only
whether a set is countable or uncountable while the 1 -based numerals allow us to
express the exact number of elements of the infinite sets. Notice that both numeral
systems—thenewone and thenumeral systemof infinite cardinals—donot contradict
one another. Both numeral systems provide correct answers, but their answers have
different accuracies related to the numeral systems the respective numerals belong
to. By using an analogy from physics we can say that the lens of our new ‘telescope’
used to observe infinite sets is stronger and where Cantor’s ‘telescope’ allows one
to distinguish just two dots (countable sets and the continuum) we are able to see
instead of these two dots many different dots (infinite sets having different number
of elements).

It is worthwhile to emphasize also that the new methodology does not contradict
ideas of the one-to-one correspondence. For instance, in the new fashion, the set, E,
of even natural numbers can be written in the form

E = {2, 4, 6, . . . 1 − 4, 1 − 2, 1 }. (11.6)

It follows from [36, 41] that the number of elements of the set of even numbers
is equal to 1

2 and the set of odd numbers has the same number of elements (see
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Table11.1). Thus, 1 is even. Note that the next even number is 1 + 2 but it is
not natural because 1 + 2 > 1 , it is extended natural (see [36, 41] for a detailed
discussion). Thus, we can write down not only the initial (as it is done traditionally)
part of the record

2, 4, 6, 8, 10, 12, . . .


 
 
 
 
 

1, 2, 3, 4 5, 6, . . .

(11.7)

but also the final part of (11.7)

2, 4, 6, 8, 10, 12, . . . 1 − 4, 1 − 2, 1


 
 
 
 
 
 
 
 

1, 2, 3, 4 5, 6, . . . 1

2 − 2, 1
2 − 1, 1

2

concluding so (11.7) in a complete accordance with the CommonNotion 5 of Euclid.
We end this brief acquaintance with the new computational methodology by noticing
that the new numeral system allows us to solve (it is better to say ‘to avoid’) many
other paradoxes related to infinite and infinitesimal quantities (see [36, 41, 44]).

11.3 Geometric Phase Transition and Square
Lattice Percolation

In 1957, two mathematicians, S.R. Broadbent and J.M. Hammersley, have published
an article [4] where they have shared with readers an idea of probabilistic formal-
izations of water infiltration in electric coffee maker. Their description, named later
percolation theory, represents one of the simplest models of a disordered system.

Consider a square lattice, where each site is occupied randomly with probabil-
ity p or empty with probability 1 − p. Occupied and empty sites may stand for
very different physical properties [20, 21, 60]. For simplicity, let us assume that
the occupied sites are electrical conductors (represented by warm colored pixels in
Fig. 11.1), the empty sites (shown by black pixels in Fig. 11.1) represent insulators,
and that electrical current can flow only between nearest neighbor conductor sites.

At a low concentration p, the conductor sites are either isolated or form small
clusters of nearest neighbor sites (see Fig. 11.1). We suppose that two conductor
sites belong to the same cluster if they are connected by a path of nearest neighbor
conductor sites, and a current can flow between them. At low p values, the mixture
is an insulators, since a conducting path connecting opposite edges of our lattice
does not exist. At large p values, on the other hand, many conducting paths between
opposite edges exist, where electrical current can flow, and themixture is a conductor
(see Fig. 11.2).

At some concentration in between, therefore, a threshold concentration pc must
exist where for the first time electrical current can percolate from one edge to the
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Fig. 11.1 Site percolation on a square lattice. Warm colored cells of a square lattice correspond
to conducting pixels, black stand for non-conducting, white cells belong to maximal conducting
cluster. Concentration of conducting pixels equals to p = 0.5

other (see Fig. 11.3). Thus, for the values p < pc we have an insulator, and for
p ≥ pc we have a conductor. The threshold concentration is called the percolation
threshold, or, since it separates two different phases, the critical concentration. For
a site problem on a square lattice the percolation threshold is approximately equal to
0.59, i.e., p ≈ 0.59. A situation for a value p close to the threshold is displayed in
Fig. 11.3.

If the occupied sites are superconductors and the empty sites are conductors,
then pc separates a normal-conducting phase for values p < pc transition from a
superconducting phase where p ≥ pc. Another example is a mixture of magnets and
paramagnets, where the system changes at pc from a paramagnet to a magnet.

In contrast to the more common thermal phase transitions, where the transition
between two phases occurs at a critical temperature, the percolation transition de-
scribed here is a geometrical phase transition,which is characterized by the geometric
features of large clusters in the neighborhood of pc. At low values of p only small
clusters of occupied sites exist. When the concentration p increases, the average
size of the clusters increases, as well. At the critical concentration pc, a large cluster
appears which connects opposite edges of the lattice. This cluster commonly named
spanning cluster or percolating cluster. In the thermodynamic limit, i.e. in the in-
finite system limit spanning cluster named infinite cluster, since its size diverges
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Fig. 11.2 Site percolation on a square lattice. Concentration of conducting pixels is equal to p =
0.63. Warm colored cells of a square lattice correspond to the conducting pixels isolated from
maximal (white) cluster

when the size of the lattice increases to infinity. It should be emphasized here that
from traditional standpoint there exist unique infinite cluster and this infinite cluster
always coincides with spanning cluster.

When p increases further, the density of the infinite cluster also increases, since
more and more sites start to be a part of the infinite cluster. Simultaneously, the
average size of thefinite clusters,whichdonot belong to the infinite cluster, decreases.
At p = 1, trivially, all sites belong to the infinite cluster.

In percolation, the concentration p of occupied sites plays the same role as the
temperature in thermal phase transitions. Similar to thermal transitions, long range
correlations control the percolation transition and the relevant quantities near pc are
described by power laws and critical exponents.

Thepercolation transition is characterizedby the geometrical properties of clusters
for values of p that are close to pc. One of important characteristics describing these
properties is the probability, P∞, that a site belongs to the infinite cluster. For p < pc,
only finite clusters exist, and, therefore, it follows P∞ = 0. For values p > pc, P∞
behaves similarly to themagnetization below critical temperature, and increases with
p by a power law

P∞ ∼ (p − pc)
β , (11.8)
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Fig. 11.3 Site percolation on a square lattice. Concentration of conducting pixels is equal to p =
0.588

where β = 5/36 is critical exponent in 2D case.
The linear size of the finite clusters, below and above percolation transition, is

characterized by the correlation length ξ . The correlation length is defined as the
mean distance between two sites on the same finite cluster. When p approaches pc,
ξ increases as

ξ � a · |p − pc|−ν , (11.9)

with the same exponent ν = 4/3 below and above the threshold.
To obtain ξ averages over all finite clusters in the lattice are required.
There is Whelsy to note that all quantities described above are defined in the

thermodynamic limit of large systems. In a finite system, P∞, for example, is not
strictly zero below pc.

The structure of percolation cluster can be well described in the framework of the
fractal theory. We begin by considering the percolation cluster at the critical con-
centration pc. A representative example of the spanning clusters shown in Fig. 11.3.
As seen in the figure, the infinite cluster contains holes of all sizes. The cluster is
self-similar on all length scales (larger than the unit size and smaller than the lattice
size), and can be regarded as a fractal. The fractal dimension, d f , describes how, on
the average, the mass, M , of the cluster within a sphere of radius r scales with the r,



250 D.I. Iudin and Y.D. Sergeyev

M (r) ∼ rd f . (11.10)

In random fractals, M (r) represents an average over many different cluster config-
urations or, equivalently, over many different centers of spheres on the same infinite
cluster. Below and above pc, the mean size of the finite clusters in the system is
described by the correlation length ξ . At pc, ξ diverges and holes occur in the infinite
cluster on all length scales. Above pc, ξ also represents the linear size of the holes in
the infinite cluster. Since ξ is finite above pc, the infinite cluster can be self-similar
only on length scales smaller than ξ . We can interpret ξ (p) as a typical length up to
which the cluster is self-similar and can be regarded as a fractal. For length scales
larger than ξ , the structure is not self-similar and can be regarded as homogeneous.
If our length scales is smaller than ξ , we see a fractal structure. On length scales
larger than ξ , we see a homogeneous system which is composed of many unit cells
of size ξ . Mathematically, this can be summarized as

M (r) ∼
{
rd f , r � ξ,

rd , r � ξ.
(11.11)

One can relate the fractal dimension d f of percolation cluster to the exponents β

and ν. The probability that an arbitrary site within a circle of radius r smaller than ξ

belongs to the infinite cluster, is the ratio between the number of sites on the infinite
cluster and the total number of sites,

P∞ ∼ rd f

r2
, r < ξ. (11.12)

This equation is certainly correct for r = λξ , where λ is an arbitrary constant smaller
than 1. Substituting r = λ ξ in (11.12) yields

P∞ ∼ λd f −2 · ξ d f

ξ 2
∼ ξ d f

ξ 2
. (11.13)

Both sides are powers of p − pc. By substituting (11.8) and (11.9) into (11.13) we
obtain,

d f = 2 − β

ν
. (11.14)

Thus the fractal dimension of the infinite cluster at pc is not a new independent
exponent but depends on β and ν. Since β and ν are universal exponents, d f is also
universal. It can be shown [60] that (11.14) also represents the fractal dimension of
the finite clusters at pc and below pc, as long as their linear size is smaller than ξ .

The exponents β, ν, and γ describe the critical behavior of typical quantities
associated with the percolation transition, and are called the cri tical exponents.
The exponents are universal and depend neither on the structural details of the lattice
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(e.g., square or triangular) nor on the type of percolation (site, bond, or continuum),
but only on the dimension d of the lattice (d = 2 in our present consideration).

This universality is a general feature of phase transitions, where the order para-
meter vanishes continuously at the critical point (second order phase transition). In
below table, the values of the critical exponents β, ν, and γ in percolation are listed
for 2D case [20].

Percolation d = 2
Order parameter P∞ : β 5/36
Correlation length ξ : ν 4/3
Mean cluster size S : γ 43/18
Fractal dimension 91/48

The fractal dimension, however, is not sufficient to fully characterize a percolation
cluster. For a further intrinsic characterization of a fractal we consider the shortest
path between two sites on the cluster. We denote the length of this path, which is
called the ‘chemical distance’, by l. The graph dimension dl , which is also called
the ‘chemical’ or ‘topological’ dimension, describes how the cluster mass M within
the chemical distance l from a given site scales with l,

M (l) ∼ ldl . (11.15)

While the fractal dimension d f characterizes how the mass of the cluster scales with
the Euclidean distance r , the graph dimension dl characterizes how the mass scales
with the chemical distance l.

The concept of the chemical distance also plays an important role in the description
of spreading phenomena such as epidemics and forest fires, which propagate along
the shortest path from the seed.

Let us investigate the percolation problem from positions of the new arithmetics
of infinite and infinitesimal numbers (see [36, 38, 41]). Consider a 2D square lattice
with perioda and the linear size L = a · 1 . The full number of cells of such a lattice is,
therefore, infinite and is equal toV = 1 2. Since the critical parameter is defined as the
attitude of the occupied sites number N to their full number p = N/V = N/ 1 2 then
the smallest change in concentration δp = 1 −2 is equivalent to adding or subtracting
only one occupied site. The infinitesimal small value δp is the maximum precision
level we can distinguish by considering the critical parameter p on the 1 × 1 lattice.
In order to obtain a higher precision level we should increase our lattice linear size.
For example, if we use a lattice with period a and linear size L = a · 1 1+ϑ/2, where
ϑ > 0, the maximum precision level we can distinguish by considering the critical
parameter p is δp = 1/V = 1 −(2+ϑ).

When we investigate the percolation problem we increase or decrease the critical
parameter p using an appropriate precision level δp starting from an arbitrary point in
between p = 0 and p = 1. According to the Postulate 1we are able to execute only
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Fig. 11.4 Correlation length
versus p

a finite number of steps with length δp. Therefore, the length of critical parameter p
interval that we can investigate is determined by the precision level we chose.

Consider the behavior of correlation radius. In the vicinity of percolation threshold
the correlation radius diverges according to (11.9). On the other hand, the radius
of correlation cannot exceed the system linear size ξ � ξmax = L = a · 1 , where
ξmax = a · 1 is the maximal correlation length. The situation is depicted in Fig. 11.4.

We see that in the range [pc − 1 −1/ν, pc + 1 −1/ν] the radius of correlation in
our 1 × 1 lattice does not change and keeps the value ξmax = a · 1 .

Now we should decide which step we shall use to express different points on p
axis. Infinitely many variants can be chosen dependent on the precision level we
want to obtain. All these variants form three groups. The first group appears when
in order to change p we use a small but still finite step δp � 1. In the case the
phase transition is infinitely sharp because δp � 1 −1/ν . The second group appears
when δp = c · 1 −1/ν , where c is a finite grossdigit that is less than one. In the case
the phase transition occupies the finite interval [pc − 1 −1/ν, pc + 1 −1/ν]. The third
group appears when δp = 1 −ς , where

1 + ν

ν
≤ ς ≤ 2.3 In the case phase transition

interval contains more than 1 different points and if we execute a finite number of
steps with length δp along this infinite transition area there exist three possibilities:
(1) system contains a lot of finite and infinite clusters that coagulate but spanning
cluster is still absent; (2) spanning cluster already exists and absorbs finite and infinite
clusters; (3) at the beginning of our execution spanning cluster is absent but it appears
after finite number of steps. This appearance is due to adding only one occupied site

3For example, if we add only one occupied site in our greed, then p increases by δp = 1 −2, and
that is the smallest step along p we can distinguish in our 1 × 1 lattice.
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Fig. 11.5 Embedded infinite
clusters of different scales

in our grid that produce confluence of either two infinite clusters or one finite and
one infinite clusters.

Figure11.5 shows that when the positive tune-out of critical parameter from the
threshold value is infinitesimal number the spanning cluster envelops a set of embed-
ded infinite clusters of different scales. The image linear size on Fig. 11.5 is denoted
by 1 and makes 1 pixels Some of the embedded infinite clusters are comparable with
the spanning cluster (e.g., small white cluster on Fig. 11.5 denoted by 2) and have
linear sizes R that could be expressed by following:

R = a

K
1 , (11.16)

where K > 1 is a finite number. Remainder of the embedded infinite clusters has
linear sizes that are indefinitely small as compared with 1 (e.g., point feature on
Fig. 11.5 denoted by 3) and could be expressed as R = 1 ε, where 0 < ε < 1.

On the step when spanning cluster appears the order parameter jumps from zero
value up to the infinitesimal value as seen in Fig. 11.6

P∞min ∼ C1 1
d f −2 = C1 1

−β/ν = C1 1
− 5

48 , (11.17)

where C1 is a finite number. The first equality in (11.17) defines P∞min as a measure
of the relative size of spanning cluster expressible as a proportion of elements number
of spanning cluster C1 1

d f to total number of grid elements 1 2. The second equality
in (11.17) appears as a consequence of Eq. (11.14).
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Fig. 11.6 P∞ versus p

We can see that application of the new arithmetic of infinite and infinitesimal
numbers gives us a unique opportunity to consider a point of phase transition in
more detail (viewed just like a point with respect of traditional approach).

11.4 Gradient Percolation

An important site-percolation problem generalization appears when the concentra-
tion p of occupied sites varies with the vertical distance z in our square grid. In
literature (see [19]), this generalization is commonly named as the gradient perco-
lation. It can be conveniently pictured in a geographical description in which the
set of sites connected to the area p � 1 is called the ‘land’. In Fig. 11.7, it is shown
by white pixels. In this geographical language the set of connected empty sites not
surrounded by land is called the ‘sea’, in Fig. 11.7, it is shown by black pixels. Then,
there naturally exist groups of occupied sites that are not connected with the land
called ‘islands’. They are shown by orange pixels in Fig. 11.7. Analogously, there
exist also connected empty sites surrounded by the land. They are called ‘lakes’,
which are shown also in black in Fig. 11.7. In this geographical description, the part
of the land in contact with the sea is called the ‘seashore’. In [19] this line is attributed
as the diffusion front.

The diffusion front is conveniently described (see [19]) by its average width h f ,
that can be related easily to the concentration gradient dp/dz at the position of the
front. We see in Fig. 11.7 that, far from the front, islands or lakes are very small,
whereas, near the front, their size becomes comparable to the width of the front.
The islands correspond to the finite clusters in a percolation system, and the lakes
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Fig. 11.7 Gradient percolation in two dimensions

correspond to the finite holes. The typical linear size of both quantities scales as
ξ . Relation (11.9) tells that the size of the islands or lakes should increase when
approaching the mean position of the front. But this size, even at z f , is bounded due
to the finite gradient of p(z). The maximum typical size of islands and lakes is then
given by the width of the front, which represents the only characteristic length scale
in the problem, and we can assume

h f � ξ(zc ± h f ). (11.18)

This assumption expresses our observation that islands or lakes near the front have
the size comparable to the width of the front. Using (11.18) and expanding p(z)
around z = zc we obtain

h f � a|p(zc ± h f ) − pc|−ν � a
∣∣∣h f

dp

dz
(zc)

∣∣∣−ν

,

which gives

h f � a
β f
ν

∣∣∣dp
dz

(zc)
∣∣∣−β f

, (11.19)

where



256 D.I. Iudin and Y.D. Sergeyev

β f = ν

1 + ν
. (11.20)

As percolation is a critical phenomenon, the exponent β f depends only on the di-
mensionality of the system (for d = 2 it follows β f = 4/7), and not on the particular
lattice structure (square, triangular, etc.).

Let us assume now, that we examine the gradient percolation phenomenon on
a square lattice N 2 where N = 1 , and the critical parameter p changes linearly,
accepting infinitesimal value p(z = a) = 1

a · 1 −1 (value equal to zero) in the first
line of lattice cells and value equal to unit p(z = a · 1 ) = 1 in the last, 1 -s. In other
words,

p(z) = A · z,

where A = 1
a · 1 −1 and z changes discretely. Then the value of the derivative in

(11.19) is 1
a · 1 −1, and the diffusion front width makes

h f � a · 1 β f = a · 1 4/7, (11.21)

Thus, on scales of the observation commensurable with the size of the entire sys-
tem, the diffusion front width is viewed as infinitesimally small and it is represented
by the sharp border of two contrast phases—‘sea’ and ‘land’. On the contrary, length
scales commensurable with the finite number of the lattice periods a are completely
absorbed by huge fluctuations of the front. At last, on scales proportional with h f

the width of front appearers to the observer as a finite value.

11.5 Forest Fires Model

In this section, we are going to apply the new arithmetic to a self-organized criti-
cal forest-fire model (see [15, 16]) which is tightly connected with the percolation
methodology and in some sense combines the dynamic and the static percolation
problems. Let us assume, that we examine the forest fire model on a d-dimensional
hypercubic lattice with the lattice spacing a and on the linear scale L = a · 1 . Then,
the lattice contains the infinite number of sites N = 1 d . A lattice site can be in one
of the following three states: empty, a tree, or a burning tree. The forest-fire model is
a stochastic cellular automaton in which a configuration at every time step evolves
according to the following rules [2]:

1. A tree grows in an empty site with a probability p;
2. A site with a burning tree becomes an empty site;
3. A tree becomes a burning tree if at least on of its neighbors is a burning tree;
4. A tree without burning neighbors catches fire spontaneously with a probability ε.

Standing with arbitrary initial conditions, the system approaches after a transition
period a steady state the properties of which depend only on the parameter values.
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Let ρe, ρt , and ρ f be the mean overall density of empty sites, of trees, and of burning
trees in the system in the steady state, respectively. These densities are related by the
equations

ρe + ρt + ρ f = 1 (11.22)

and
pρe = ρ f . (11.23)

The last relation says that the mean number of growing trees equals the mean number
of burning trees in the steady state [8].

During one time step, there are
ερt N (11.24)

lightning strokes in the system and
pρeN (11.25)

growing trees. Therefore in the steady state the mean number s̄ of trees that are
destroyed by a lightning stroke is

s̄ = pρeN (ερt N )−1 = p

ε

1 − ρt − ρ f

ρt
(11.26)

When the fire density is large, trees cannot live long enough to become a part of
large forest clusters. So, large-scale structures we are interested in can only occur
when thefire densityρ f is small. Equation (11.23) shows that thefire density becomes
small when the tree growth rate p approaches zero. Therefore value p should be
represented as an infinitesimal small number, say p = 1 −φ , where φ > 0. When
p � 1 and consequently in compliance with (11.23) ρ f � ρe one could rewrite the
last equation in the following approximate form [8, 15]

s̄ = pρeN ( fρt N )−1 = p

ε

1 − ρt

ρt
. (11.27)

As it was already mentioned above, in the model discussed the forest fire can also
be considered as a percolation process [25]. This description is ‘mean field’ in the
sense that spatial correlations are neglected and trees are considered as uniformly
randomly distributed over the lattice at a density equal to ρt . A cluster is defined as
a set of trees that are all connected through nearest neighbor links. If one tree in the
cluster catches fire then the whole cluster will eventually burn down, because the
fire will be able to spread through nearest neighbor links to all trees in the cluster.
This way of considering the forest fire model allows one to make use of several
results from the percolation theory. First of all, in the mean field description ρt � xc,
where xc � 1 is the d-dimensional percolation threshold, for example, xc � 0.59
and xc � 0.35 in 2D and 3D site percolation problem correspondingly. Therefore,
the second factor of the right-hand side of Eq. (11.27) is of the order of one [8, 15],
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and Eq. (11.27) then represents a power law [8, 15]

s̄ ∼
( ε

p

)−1
. (11.28)

Moreover, we have to choose the tree growth rate p so small that even the largest
forest cluster burns down rapidly, before new trees grow up at its edge. The last
statement implies that

p � T−1
L , (11.29)

where TL is the time the fire needs to burn down. In addition, the lightning probability
ε must satisfy

ε � p (11.30)

Otherwise, a tree is destroyed by lightning before its neighbors grow up, and no
large-scale structures can be formed. The inequalities (11.29) and (11.30) represent
a double separation of time scales

TL � p−1 � ε−1, (11.31)

which is the condition for self-similar behavior in the forest firemodel. In this case, the
dynamics of the system depends only on the ratio ε/p, but not on ε and p separately.
The values ε, and ε/p also could be represented as infinitesimal small numbers. The
most essential is the ratio ε/p, and for the beginning we choose ε/p � 1 −θ , where
θ > 0 is a finite number. So, we can rewrite expression (11.28) as following

s̄ ∼ 1 θ . (11.32)

The mean number s̄ of trees that are destroyed by a lightning stroke is obviously less
than N = 1 d . Therefore in the steady state it follows that

θ < d. (11.33)

Lightning will strike the system every T f = (ερt N )−1 time steps on average.
In order to obtain nontrivial dynamics we should keep the lightning waiting time
T f short enough in comparison with time interval p−1 that system requests to be
overgrown with forest trees. Otherwise the model discussed will demonstrate saw-
tooth overall forest density oscillations: firstly, the model grid is overgrown with
forest trees, then one lightning stroke sets fire to the bush, completely destroying the
forest and prepare a place for the new generation. Moreover, increasing the system
size in order to prevent the fire from dying out we observe the fire fronts in the form
of more or less smooth and regular spirals. These spirals represent self-sustained
dissipative structures or combustion autowaves. The characteristic spatial scale of
the autowaves, is of the order of a · p−1 [31]. Thus, in order to obtain self similar
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forest fires dynamics we have to fulfil the following condition

T f = (ερt N )−1 � p−1 (11.34)

and again so long as N = 1 d and ε/p � 1 −θ we have to satisfy the following
inequality

θ < d. (11.35)

Mean field consideration of the forest fire model allows us to make use of a
couple more results from percolation theory. The first is the result that the number of
trees in a forest cluster is simply (R/a)d f where d f is the percolation cluster fractal
dimension and R is the cluster gyration radius (see (11.10)). Then the largest forest
cluster with gyration radius of the order of R ∼ L = a · 1 contains approximately
(L/a)d f = 1 d f elements. The number of the burnt out trees (the size of a fire) is
simply the number of destroyed cluster elements. For the largest fire, this number
under the order of size will make (L/a)d f = 1 d f . So, instead of (11.35) we have to
satisfy the following inequality

θ < d f . (11.36)

The second is the result that the time TR the fire needs to burn down a forest cluster
of size R is determined by the shortest pass dimension dmin on percolation cluster

TR =
( R

a

)dmin

. (11.37)

The scale of the largest fire which can arise on our lattice is comparable to lattice
size R ∼ L = a · 1 . Thus, the maximal forest fire duration will make

TL �
( L

a

)dmin � 1 dmin . (11.38)

Let us introduce the observer of our system, that uses a new time scale with step
equal to themaximal forest fire duration, i.e. 1 dmin steps of initial modelling time. For
such an observer even the largest forest cluster is burned down instantaneously, i.e.,
during one time step when one of its trees is struck by lightning. A typical example
of the forest fire model time evolution that our observer could observe is shown in
Fig. 11.8. The top panel of the figure represents burning tree number time evolution.
Time scales with step equals to TL . The ordinate axis tick labels should be multiplied

by
L

a
factor. One may choose an extremely huge value of

L

a
, even

L

a
= 1 . The

bottom panel of the figure represents time evolution of the overall tree density. From
the point of view of our observer the overall tree density slumps instantly during
forest fire sparks. The tree growth rate p and lightning probability ε for such an
observer will be changed by the following values

p̀ = p · TL , ὲ = ε · TL , (11.39)
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Fig. 11.8 The forest fire model time evolution in two dimensions. Time scales with steps equal to
TL

and can be represented by the infinitesimal numbers

p̀ � 1 dmin−φ, ὲ � 1 dmin−φ−θ . (11.40)

The first expression in (11.40) represents an infinitesimal number when

φ > dmin, (11.41)

in compliance with inequality (11.29) and estimation (11.38).
From the point of view of our observer the system time evolution looks like a set

of sparks of different intensity (see Fig. 11.9 that just zooms up an image patch in
Fig. 11.8). One separate spark could be represented as a product of discrete delta-
functions (one step—one tree in fire) and the number of trees in a forest cluster that
catches the fire. But when we are going to investigate the forest fire internal structure,
its inherent dynamic, our observer could not help us. In the case we have to use more
powerful ‘microscope’. The situation is depicted in Fig. 11.10 that in its turn zooms
up an image patch in Fig. 11.9. In the figure time makes only a couple of steps each
equals to 1 dmin . To launch a narrow analysis of fire spreading we should choose
the time resolution that is considerably less than TL . The model with instantaneous
combustion is referred to as a simplified version of the real forest-fire model [8, 15].
Now one can see that we deal with the samemodel but with different time resolution.

Large-scale structures and therefore criticality canonly occurwhendifferent forest
fires or different sparks are well separated from each other. Otherwise the systemwill
undergo exposure to several fires simultaneously. This separation is well reflected
in Fig. 11.9. Different forest fires in our system are well separated in time when



11 Percolation Transition and Related Phenomena … 261

850 900 950 1000
0

0.2

0.4

0.6

0.8

Time

B
u

rn
in

g
 t

re
es

 n
u

m
b

er

850 900 950 1000
0.1

0.2

0.3

0.4

0.5

0.6

Time

O
ve

ra
ll 

d
en

si
ty

 o
f 

tr
ee

s

Fig. 11.9 The forest firemodel time evolution in two dimensions. Zoomof image patch in Fig. 11.8.
Time scales with step equals to TL
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Fig. 11.10 The forest fire model time evolution in two dimensions. Zoom of image patch in
Fig. 11.9. Time scales in TL units

following condition is fulfilled

ὲ · Nρt ∼ 1 d+dmin−θ−φ � 1. (11.42)

It means that
θ + φ > d + dmin. (11.43)
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The last inequality combined with inequality (11.36) provide us with more rigid
condition in comparison with inequality (11.41)

φ > dmin + (d − d f ) (11.44)

as far as in any dimension d > d f .
Thus, to observe criticality and large-scale structures we have to fulfil the follow-

ing system of inequalities

⎧⎨
⎩

φ > dmin + (d − d f )

θ < d f

θ + φ > d + dmin .

(11.45)

Infinite and infinitesimal numbers introduced in [36, 41, 47] allow us to decide
on the order of priorities in our model space. When we determine the system linear
size L = a · 1 1 the following choice of the model parameters waits on the results of
the choice of the exponents φ and θ

p = 1 −φ; ε = 1 −(φ+θ). (11.46)

In the 2D case, for example, we can use the following parameter values in con-
cordance with (11.45)

φ = 2; θ = 3

2
, (11.47)

and consequently
p = 1 −2; ε = 1 −3.5. (11.48)

11.6 Conclusion

In this chapter, it has been shown that infinite and infinitesimal numbers introduced
in [36, 41, 47] allow us to obtain exact numerical results at different points at infinity
instead of traditional asymptotic forms. We consider a number of traditional models
related to the percolation theory using the new computational methodology. It has
been shown that the new computational tools allow one to create new, more precise
models of percolation and to study the existing models more in detail. The intro-
duction in these models of new, computationally manageable notions of the infinity
and infinitesimals gives a possibility to pass from the traditional qualitative analysis
of the situations related to these values to the quantitative one. Naturally, such a
transition is very important from both theoretical and practical viewpoints.

The point of view on computations presented in this chapter uses strongly two
methodological ideas borrowed from Physics: relativity and interrelations holding
between the object of an observation and the tool used for this observation. Site
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percolation and gradient percolationwere studied by applying the new computational
tools. It has been established that in infinite the system phase transition point is not
really a point as it seems if one uses the traditional approach. In light of the new
arithmetic it appears as a critical interval, rather than a critical point. Depending on
‘microscope’weuse this interval could be regarded asfinite, infinite, and infinitesimal
interval. Using the new approachwe observed that in vicinity of percolation threshold
we have many different infinite clusters instead of one infinite cluster that appears
in the traditional consideration. Moreover, we have now a tool to distinguish those
infinite clusters. In particular, we can distinguish spanning infinite clusters from
embedded infinite clusters.

Then we consider gradient percolation phenomenon on an infinite square lattice
with an infinitesimal gradient of the critical parameter p that changes linearly, ac-
cepting infinitesimal value p(z = a) = 1

a · 1 −1 (value equal to zero) in the first line
of lattice cells and value equal to unit p(z = a · 1 ) = 1 in the last, 1 -s line of lat-
tice cells. We observe that diffusion front width in this case stretches for an infinite
number of lattice spacing: h f � a · 1 β f = a · 1 4/7. And again this value could be
regarded as finite, infinite and infinitesimal short depending on ‘microscope’ we use.

Scientists that deal with forest-firemodel and its applications, distinguish between
two versions of the model: real forest-fire model where fire catches adjacent trees
in the forest in the step by step manner and simplified version with instantaneous
combustion [8, 15]. Using the new approach we show that in both situations we deal
with the samemodel but with different time resolution.We observe that depending on
the ‘microscope’ we use the same cellular automaton forest-fire model reveals either
instantaneous forest combustion or step by step firing. Bymeans of the new approach
it was also observed that the scaling properties of the system to be very sensitive
to the trees growing rate and to the ratio between the ignition probability and the
growth probability. As far as we choose infinitesimal values of the two parameters we
immediately determine the measure or extent of the system size infinity that provides
the criticality of the system dynamics. Correspondent inequalities for grosspowers
are derived.
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Chapter 12
Spacetime Computing: Towards Algorithmic
Causal Sets with Special-Relativistic
Properties

Tommaso Bolognesi

Abstract Spacetime computing is undoubtedly one of the most ambitious and less
explored forms of unconventional computing. Totally unconventional is the medium
on which the computation is expected to take place—the elusive texture of physical
spacetime—and unprecedentedly wide its scope, since the emergent properties of
these computations are expected to ultimately reproduce everything we observe in
nature. First we discuss the distinguishing features of this peculiar form of uncon-
ventional computing, and survey a few pioneering approaches. Then we illustrate
some novel ideas and experiments that attempt to establish stronger connections
with advances in quantum gravity and the physics of spacetime. We discuss tech-
niques for building algorithmic causal sets—our proposed deterministic counterpart
of the stochastic structures adopted in the Causal Set programme for discrete space-
time modeling—and investigate, in particular, the extent to which they can reflect an
essential feature of continuous spacetime: Lorentz invariance.

12.1 Introduction

Most approaches in the broad field of unconventional computing are tightly related to
structures and functions that canbeobserved in the naturalworld (natural computing).

On one hand, smart solutions that have emerged during the multi-billion-year
evolution of life on Earth provide valuable inspiration for developing novel algo-
rithms meant to run on traditional computers, or novel computing paradigms and
architectures to be implemented by ad-hoc, human-designed electronic hardware
(bio-inspired computing).

On the other hand, in the last two decades interest has grown for experiments in
which the ‘hardware’ itself is provided by nature. For example, Rubel’s Extended
Analog Computer (1993) takes advantage of materials that are unfit for conven-
tional computation, but still contribute to the machine functionality, just based

T. Bolognesi (B)
CNR/ISTI, 1, Via Moruzzi, Pisa, Italy
e-mail: t.bolognesi@isti.cnr.it

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
DOI 10.1007/978-3-319-33924-5_12

267



268 T. Bolognesi

on the laws of nature that they follow [22, 26]. As another example, in 1994
Adleman successfully used DNAmolecules to solve a graph theoretic, combinatorial
problem [2], thus starting the field of biomolecular computing. In [1], computing in
‘reaction-diffusion’ excitable media is shown to involve new computational para-
digms, advanced non-standard architectures and novel materials. ‘Natural hardware’
may indeed take several forms, including chemical soups, cellular systems, bacte-
ria, ant colonies, or various other biological substrata, as documented elsewhere in
this volume. One of the main challenges that these unconventional, often massively
parallel systems pose is how to harness their computing capabilities by adequate
programming paradigms and techniques.

How about conceiving, as ‘natural hardware’, the elusive, ultimate fabric of the
universe, namely spacetime? This bold question immediately raises two problems.

First, spacetime, the mathematical structure defined by the Einstein equations, is
classically conceived as a continuous entity (a pseudo-riemannian manifold), while
we usually associate the concept of computation to discrete entities, such as the state
or the tape of a Turingmachine. This objection is easily answered. On one hand, some
of the above mentioned examples of natural computing prove that computation with
continuous media is indeed definitely feasible. On the other hand, several recent
theories of quantum gravity (e.g. Loop Quantum Gravity [29], Causal Dynamical
Triangulations [3], Causal Sets [7]) adopt discrete models of spacetime that appear
as perfectly adequate for supporting computation, as we shall soon illustrate.

The seconddifficulty is severe.While the biosphere offers several examples of bril-
liant information processing activities whose operation and purpose we now under-
stand well, from the processing of genetic information as encoded in DNA to that of
sensory data by various receptors and organs (say, echolocation in bats), we currently
have no direct clues about information processing activities and functions that can be
attributed to the discrete texture of spacetime, and no idea of what type of algorithm,
if any, might be working at those ultra-low scales.

Thus, it would be inappropriate, at least as of today, to talk about spacetime-
inspired computing in the same way as we talk about bio-inspired computing. Simi-
larly, it would be extremely hazardous to imagine that physical spacetime might one
day become the ultimate ‘natural hardware’ for human-controlled computations at
the Plank scale (10−35 m); and not just because current experiments in molecular
electronics and DNA-based computer circuits still take place at a much higher scale
(10−9 m, the nano-scale) [16], but because, under the conjecture that human actions
are themselves ultimately emergent from computations at ultra-low scales, the idea
that we could manipulate those levels appears as highly questionable, if not a loopy
logical impossibility.

Then, does it make sense to talk about spacetime computing?
The main purposes of this chapter are to provide some arguments in favour of a

positive answer, and to illustrate a few past and present research and experimentation
activities which, in our opinion, can be reasonably collected under this bold name.

Two warnings are in order. First, the field is still fuzzily defined and might still
take advantage from several research tracks, across several disciplines. But it is not
our aim to be exhaustive in this respect; rather, we shall mainly focus on our own
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approach to the matter, presenting some of our recent results as well as original
material. Second, we insist on the highly speculative nature of this research and on
the fact that we still lack experimental evidence for punctual connections between
computational processes and spacetime features.

In Sect. 12.2 we mention some solid, general reasons for believing that spacetime
computes, although we are still very far from understanding how it does it.

In Sect. 12.3wemention some early steps in this research area, mainly centered on
themodel of cellular automata. In Sect. 12.4we consider othermodels of computation
and their possible use for modeling a discrete, algorithmic, evolving space.

In Sect. 12.5 we move from a Newtonian view at space and time, intended as
absolute, independent entities, to a relativistic, integrated view at spacetime. This
leads us to deal with causal sets, or causets. After recalling a standard technique
for building these discrete, stochastic models of spacetime, we discuss two gen-
eral methods for obtaining discrete, algorithmic, deterministic versions of them,
and introduce EH-causets (‘Event-History’) and PA-causets (‘Permutation-Ant’).
We also introduce an automaton, that we call ‘Ring Ant’, which produces both types
of causet.

In Sect. 12.6 we identify a key feature of continuous spacetime that any discrete
model of a computational spacetime must cope with: Lorentz invariance. We then
introduce a relatively rough but practical indicatormeant to assess the ‘Lorentzianity’
of the investigated spacetime models.

In Sect. 12.7 we illustrate a number of concrete examples of EH-causets derived
from computations of the Ring Ant automaton, and show how they perform in terms
of our Lorentzianity indicator. Section12.8 is devoted to the illustration of PA-causets
from computations of the same Ring Ant automaton. We find that these causets can
perform better than EH-causets in terms of Lorentzianity.

In Sect. 12.9 we summarise our viewpoints about spacetime computing and its
possible developments.

12.2 An Algorithmic Bottom Layer

A quick argument in support of the idea that nature is fundamentally algorithmic is
offered by the ‘typing monkeys’ metaphor.

In its original version, used, among others, by Borel and Eddington in the context
of statistical mechanics, the metaphor suggests that an infinite sequence of random
charactersmust includewith probability 1, say, all sonnets by Shakespeare. However,
if the sequence is created progressively, one can easily calculate that the expected
time for the first complete sonnet to appear is incomparably longer than the age of
our universe.

A modern version of the metaphor combines the use of old-fashioned typewrit-
ers with that of computer terminals. Assume, for example, that eight monkeys are
typing at random on eight special typewriters with only three characters. The char-
acters have the same shape—a square—but three different colors: white, grey, black.
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Fig. 12.1 Upper random typing on eight paper sheets, using a three-character (three-color) typing
machine. Lower results of 80,000-step computations of eight randomly chosen 3-state, 3-color
Turing machines, each running with the corresponding sheet above as input

Each monkey fills a 30-line sheet, where each line contains 30-characters. The eight
completed sheets are shown in the upper row of Fig. 12.1; they appear statistically
indistinguishable from one another, and no clue of order or structure can be detected
in any of them: no shakespearean sonnet in sight. If the origin and unfolding of our
universe were based on this kind of mechanism, we would get a totally random,
structureless world, unable to support particles, atoms, not to mention stars and life.

When randomness and computation are combined, the picture changes.Eachof the
lower diagrams in Fig. 12.1 shows the result of feeding the corresponding upper sheet
to a different Turing machine selected at random from the set of (4 × 3 × 3)3×3 =
101, 559, 956, 668, 416 two-dimensional, 3-state, 3-color Turing machines, running
for 80,000 steps. The potential ‘universe’ picture is now different: in spite of the
randomness in the inputs and in the choice of the machines, some order emerges,
manifested as an unbalance among the three colors, a tendency to distinguish between
background and foreground ‘objects’, some alignment, and repeated patterns.

Amore formal treatment of the typingmonkeymetaphor is possible via the notion
of algorithmic probability of strings. Consider a string s of n bits. In the absence of
any information on the origin of s, we usually assume that it was picked at random
from the set of all 2n bit strings of length n, thus we assign to it a probability 2−n . If,
however, we have reasons to believe that s was produced algorithmically, we can use
the universal a priori probability, or Solomonoff-Levin algorithmic probability [14]:

m(s) =
∑

p:U [p]=s

1/2|p|

where the summation involves all programs p of length |p| such that a universal,
prefix-free Turing machine terminates with output string s when running p. The use
of this probability is legitimate regardless of the details of the algorithmic process
producing s, as guaranteed byLevin’s coding theorem (see [14] for details and further
references).

Consider the set S of all bit strings of length 5. In Fig. 12.2-left we plot the
individual algorithmic probabilities of the strings of S as estimated by the Online
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Fig. 12.2 Left The algorithmic probabilities of the 32 bit strings of length 5. Right The 12 strings
with algorithmic probability greater than or equal to 1/32

Algorithmic Complexity Calculator tool [30].1 This distribution is normalized—for
each string s the plotted value is indeed m(s)/

∑
x∈S m(x))—and compared with

the uniform distribution of the 32 strings, each occurring with probability 1/32.
Figure12.2-right shows the 12 strings for which the (normalized) algorithmic prob-
ability is greater than or equal to 1/32.

This simple example shows that algorithmic probability favours regular strings—
in this case, those with all bits equal, with at most one exception. In an algorithmic
universe order and disorder still coexist, but the former is given more chances to
emerge.

12.3 Cellular Automata: From Zuse to Wolfram

The idea of a physical space that computes is attributed to the German engineer
Konrad Zuse (1910–1995), one of the fathers of the modern computer, although
a related concept of a universe made of interacting elementary automaton-like
entities—the monads—had been formulated much earlier by Gottfried Wilhelm von
Leibnitz (1646–1716).

In his 1969 technical report Rechnender Raum (Calculating Space [40], re-edited
in [39]) Zuse considered discretised versions of continuous fields in 1-D and 2-
D space, describing, in particular, molecule velocity and pressure in a gas-filled
cylinder, and characterised their discrete dynamics in terms of higher order cellular
automata rules directly derived from the differential equations of the continuous

1http://www.complexitycalculator.com/.

http://www.complexitycalculator.com/
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Fig. 12.3 Zuse’s particles in higher-order cellular automata from discretised velocity-pressure 1-D
fields. The diagrams show expansions of the computations illustrated in Figures 15, 19, 20, 26 of
reference [40], using a circular topology for the CA cells. The integer values represented by the
grey levels of the cells only refer to the velocity field; plots for the pressure field are similar

dynamics. Zuse’s interest focused on what he baptized ‘digital particles’ (see [40],
Sect. 3.1)—localised structures that emerge and possibly interact as the dynamics of
the discretised field evolves. These ‘particles’ are abstract patterns that move in a
spacetime diagram in which space extends horizontally and time flows downward;
they should not be confused with the actual gas molecules, in the same way as an
ocean wave is well distinguished from individual water molecules.

We have implemented some of the 1-D CA discussed in Sect. 3 of [40]; Fig. 12.3
shows the associated emergent particles, that correspond to the computations carried
out by Zuse—only manually, and to a rather limited depth—in Figs. 15, 19, 20 and
26 of his paper.

Zuse observed that, as a consequence of a collision, particles may undergo a slight
displacement of their initial trajectories, depending on their relative phase, and took
this as a sign that ‘a certain reaction process in particle interaction’ is possible. The
phenomenon can be observed in the rightmost diagram of Fig. 12.3.

The discovery of particles in CA computations and the intuition that their interac-
tions resemble those of particle physics led Zuse to conjecture that CAmight not just
be useful discrete approximations of a supposedly continuous physical reality, but a
perfect reflection of what reality ultimately is, and of how it operates: the physical
universe as a giant Cellular Automaton.

Some limited experiments with particle emergence and interaction in 2D CA
are also discussed by Zuse in [40], but it is only with Conway’s Game of Life,
divulged by Martin Gardner in 1970 [13] (the same year of the English translation
of Zuse’s Rechnender Raum) that the spectacular potentialities of these automata
became known to the wider public. Blinkers, gliders, spaceships, pulsars are just a
few examples of the various localised structures that emerge in the Game of Life,
and that are just elaborated instances of Zuse’s digital particles. However, the large
majority of the scientific community has constantly refused to attribute any deep
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theoretical meaning to these emergent phenomena, relegating them to the whimsical
arena of recreational mathematics.

Very important contributions in support to the conjecture of a discrete, algorith-
mic spacetime have been given, after Zuse, by Ed Fredkin, with his work on Digital
Philosophy.2 Fredkin’s Finite Nature assumption states that space and time are ulti-
mately discrete, and that the number of possible states of any volume of spacetime
is also finite [11]. Furthermore, information and computation assume, in Fredkin’s
work, a more fundamental status than matter, energy, and their transformations.
As a consequence, Fredkin’s interest, like Zuse’s, focuses on cellular automata, in
particular on second-order, Reversible Universal Cellular Automata (RUCA) and a
model called SALT [21], in which two distinct components are arranged in a regular
3D lattice resembling NaCl crystals. According to Fredkin, RUCA reflect exactly
and efficiently CPT symmetry, a fundamental property of physical laws, and can be
regarded as the fundamental, information-processing mechanism at the roots of the
physical universe.

Important theoretical and experimental developments in the field of cellular
automata, reversible computation and their applications to the modelling of physical
processes are due, among others, to Toffoli and Margolous [18, 32–35] (see [8] for
a survey).

Perhaps the strongest impulse to the investigation and divulgation of the computa-
tional universe conjecture is due, in more recent years, to StephenWolfram.With his
monumental and controversial volume ‘A New Kind of Science’ [38], appeared in
2002,Wolfram has somehow reversed the approach by Zuse and Fredkin: rather than
deriving a specific model of computation from the consideration of specific physi-
cal systems, he has undertaken a rather systematic, abstract exploration of the wide
space of models of computation—from cellular automata to Turing machines, from
register machines to string and graph rewrite systems, and more—with the objective
to classify their emergent behaviours.

When a model of computation is sufficiently simple, it is possible to exhaustively
explore all its instances: this is the case for Elementary Cellular Automata (ECA). An
ECA is a linear arrangement of potentially infinite binary cells, typically represented
as black (for ‘1’) and white (for ‘0’) squares, representing discrete, 1-D space. Time
is also discrete, and, for any given ECA, the binary value ci (t + 1) of cell ci at time
t + 1 depends on the binary values at time t of ci itself and of its immediate neighbors,
namely ci−1(t), ci (t), ci+1(t). This dependency is expressed by a boolean function
of three boolean arguments; since there are 256 such functions, we have 256 distinct
ECAs, whose behaviours have been thoroughly studied by Wolfram, starting both
from simple and from random initial configurations of the cells.

ECAs are the simplest form of CA, considerably simpler than the higher-order
CAs investigated by Zuse and Fredkin, and yet they turn out to be very effective
in illustrating the creative power of ‘spontaneous’ computations. Emergent features
observed in CA include self-similarity, pseudo-randomness (deterministic chaos),
and digital particles, as illustrated in Fig. 12.4.

2http://www.digitalphilosophy.org/.

http://www.digitalphilosophy.org/
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Fig. 12.4 Three ECAs illustrating self-similarity, pseudo-randomness, digital particles

Fig. 12.5 A 3-color cellular
automaton with elementary
initial condition, exhibiting
pseudo-randomness, particle
trajectories and selfsimilarity

Interestingly, it is enough to move to a slightly more complex class of CAs—
those that operate on ternary rather than binary cells—for finding a single CA in
which the three mentioned features coexist, even when starting from an elementary
initial condition. The automaton, discovered by Remko Siemerink3, is illustrated in
Fig. 12.5.

The properties illustrated in Figs. 12.4 and 12.5 appear to reflect some of the most
fundamental, recurring patterns of Nature. Another crucial ingredient for the exis-
tence ofwhatwe regard as themost complex layer of our universe—the biosphere—is
of course self-replication. In fact, CAs have been originally conceived by John von
Neumann, after a suggestion by Stanislaw Ulam, exactly for studying and simulating
this phenomenon. The pervasive presence of these features both in Nature and in the
abstract space of CAs provides further evidence that the universe is fundamentally
algorithmic.

Beside this ability to replicate key aspects of Nature, two of the principles behind
the operation of CAs appear, apriori, quite attractive to physicists: uniformity—the
same boolean function is used for all cells, and locality—the cell transition function
only involves neighbouring cells. Their relevance for applications to physics is rather
obvious: they reflect the views that physical laws should not change with space or
time, and that effects are transmitted by contact. However, a third principle behind
CAs, namelyparallelism—the synchronous operation of the unbounded set of cells—
is much less appealing, since it hints at the idea of a global clock.

This reserve on parallelism, the fact that all Turing-universal models are equiva-
lent, at least from the point of view of their computing power, and the observation
that interesting emergent properties are found, more or less evident, also outside the
realm of CAs, have provided momentum for the investigation of the wider space of
non parallel, Turing-universal models.

3http://www.wolframscience.com/summerschool/2009/alumni/siemerink.html.

http://www.wolframscience.com/summerschool/2009/alumni/siemerink.html
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12.4 Beyond CA: Ant-Based Models of a Dynamic Space

The diagram of an elementary cellular automaton is a two-dimensional array of bits
in which space extends horizontally and time flows vertically. Each row is a snapshot
of space at a given time. Beside its 0/1 state, each cell in the array is characterised by
the unique, absolute values of its space and time coordinates. Indeed, ECAs reflect
exactly a Newtonian concept of space and time.

But there are several other ways to conceive an algorithmic, netwtonian, evolving
space. By dropping the requirement of parallel operation, one is led to consider
models in which the data structure manipulated by the computation, for example a
1-D array of binary cells, is modified locally rather than globally, for example one
cell at each step.

12.4.1 Turing Machines

Elementary Turing machines (TM) are the most obvious example of this computa-
tional paradigm, that we shall call ant-based. The ‘ant’, in the case of a TM, is the
control head—the finite state, read/write unit that reads the current cell and reacts,
depending also on its own state, by writing a new a bit in the cell and moving one
step left or right, as established by the state transition table.

A TM binary tape is analogous to the row of an ECA array, and can be interpreted
as a snapshot of space. By packing the successive tape configurations of a TM we
obtain a 2-D array conceptually equivalent to an ECA diagram—a discrete space-
time. However, in the TM case the change from one row to the next is confined to one
location, all the rest of the tape being unaffected, so that in general one can trace the
ant motion across spacetime: a TM-based toy universe evolves much more slowly
than an ECA universe.

12.4.2 Turmites

Similar to CAs, TMs admit higher-dimensional variants. For example, in two-
dimensional Turing machines, called ‘turmites’ [15], the control head moves on
a two dimensional square array. The most famous turmite is Langton ant [37], a
machine that gets trapped in a rather complex periodic behavior (a ‘highway’) only
after over a thousand, pseudo-random initial steps, but many more behaviors are
possible in this model, as illustrated in [15].
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12.4.3 Network Mobile Automata

The cell array of a Turing machine is a rigid support similar to an immutable, infinite
newtonian spatial backgroundexpected to exist before starting the computation.As an
alternative, and being inspired by the Big-Bang concept, it is attractive to investigate
algorithmic models in which space is not a predefined infinite rigid structure, but an
emergent product itself of the computation.

Wolfram [38] has widely explored the idea of a graph-based computational
Big-Bang, one in which space is modeled by a graph G(N , E)—a set N of nodes
interconnected, two-by-two, by a set E of edges. A Network Mobile Automaton is
somewhat analogous to a Turing Machine, except that the ant does not move on a
tape but on a graph, and modifies the latter locally, step by step. Space starts as a tiny
graph, and evolves into a gigantic network of nodes due to the graph-rewrite rules
applied at each step. These rules change the local topology of the graph and, most
importantly, may introduce new nodes and edges: space evolves and grows with the
computation. Trivalent (or ‘cubic’) graphs —ones in which each node has exactly
three neighbours—are sufficient for ‘implementing’ spaces of any dimensionality,
including 3D space ([38], Chap. 9).

In [4] we have explored variants of NetworkMobile Automata for creating planar
trivalent networks by using only two simple rewrite rules, namely the 2D Pachner
rules, sometimes called Expand-Contract and Exchange. These rules have found
application also in LoopQuantumGravity [29], where they are used for the dynamics
of spin networks. In spite of the planarity restriction, our experiments have yielded
a wide variety of interesting regular 1-D (‘polymer-like’) and 2D networks, as well
as oscillating rings, semi-regular hexagonal grids, up to totally irregular patterns.

12.4.4 A Multi-threaded Universe

A typical objection against the ant-based computational universe conjecture is thatwe
perceive the world as a concurrent, multi-threaded system, not as the single-threaded
one that the ant-based view seems to imply.

Wolfram [38] has an appealing argument to dismiss this objection. In essence,
viewing a sentient being itself as a bounded region R of the toy universe, and associ-
ating R’s perception to a change of its internal configuration/state, an act of perception
will only occur when the ant visits R. But during the inter-visit intervals the ant has
the opportunity to modify many of the other regions, thus creating R’s subjective
illusion of multiple parallel changes. The sequential ant behaviour is detected by the
external observer, not by the internal one.
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12.5 From Absolute Space to Relativistic Spacetime:
Algorithmic Causets

Although with graph oriented models we have gotten rid of the cumbersome, reg-
ular and rigid spatial background of CAs and TMs, we have still been reasoning in
newtonian terms, dealing with a sequence, in absolute time, of snapshots of absolute
space. But Minkowski and Einstein have taught us that space and time, taken sepa-
rately, have no absolute value, since different inertial observers, say Bob and Alice,
register different spatial distances and different time intervals between the same two
events: in particular, Bob may perceive them as simultaneous when Alice does not,
and vice versa. The only absolute distance between events—one on which all inertial
observers agree—is spacetime distance, i.e. Lorentz distance.

To most physicists, no spacetime model should ignore the lesson of Special Rel-
ativity. Thus, let us briefly summarize some basic features of this integrated view at
space and time, and the associated notion of causality.

12.5.1 Lorentz Distance and Lightcones

Let us consider Minkowski spacetime M (1,3), which describes the simplest form
of a matter-free, flat universe. M (1,3) can be understood as Euclidean 4-D space
E4, with spatial dimensions w, x , y, z, in which one of the dimensions, say w, is
interpreted as a time dimension t , and where the Euclidean distance is replaced by
the Lorentz distance. While the Euclidean distance between two points p(w, x, y, z)
and p′(w′, x ′, y′, z′) is given by d2(p, p′) = (w − w′)2 + (x − x ′)2 + (y − y′)2 +
(z − z′)2, their Lorentz distance is expressed by:

L2(p, p′) = +(t − t ′)2 − (x − x ′)2 − (y − y′)2 − (z − z′)2.

Due to its + − −− signature, the squared Lorentz distance can be positive, null,
or negative: correspondingly, the two points are said to be in time-like, light-like, or
space-like relation.

The lightcone of point p is the set of all points q in light-like relation with p,
including p itself. The future (resp. past) lightcone of p is the subset of the lightcone
whose points have time coordinate larger (resp. smaller) than that of p.4 A physical
process taking place at p can only influence the processes taking place at points on
or inside the future lightcone of p: causality is limited by the speed of light.

4Note that the difference between the time coordinates of two points p and q that are in time-like or
light-like relation depends on the frame of reference, and is affected by the Lorentz transformation
between inertial frames, but only in its absolute value, not in its sign. If the points are in space-like
relation, on the contrary, the sign itself may change, so that different observers may disagree on the
time ordering of the events.
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The Lorentz distance immediately induces a partial order ‘≺’ among spacetime
points: p ≺ q whenever L2(p, q) ≥ 0 and q is on or inside the future lightcone of
p. Given a set of points S with partial order ‘≺’, we can define intervals between
points: the order interval I [s, t] between points s and t is the set of points {p ∈
S|s ≺ p ∧ p ≺ t}, which includes s and t .

12.5.2 Stochastic Causal Sets from ‘sprinkling’

If the fundamental structure of a continuous spacetime manifold is its causal, light-
cone structure, it seems natural to conceive discrete spacetime as a partially ordered
set of events, or a causal set (‘causet’) [7].

A causet is a set with a partial order relation. As such, it can be represented as
a directed acyclic graph (DAG) C(N , E), where N is the set of nodes and E is the
set of edges that define the partial order among nodes. We shall assume causets to
be transitively reduced, in which case their edges are called links. (The transitive
reduction of a DAG G is the unique smallest graph that has the same transitive
closure as G.)

The sprinkling technique is a stochastic method that allows one to directly derive
such a DAG from a continuous, Lorentzian spacetime—one in which the Lorentz
metric is defined. Consider 2-DMinkowski space M (1,1), the simplest toy model of a
Lorentzian spacetime, with one time dimension (vertical) and one space dimension
(horizontal).

In Fig. 12.6-left we show an interval of M (1,1), between the points labelled 0 and
9—source and sink—anda set S of 8 points uniformly sprinkled in it.We also showall
directed edges that connect point-pairs that are in time-like relation (the probability
of finding two points in light-like relation is zero). In Fig. 12.6-right we show, upside-
down, the corresponding causet C(S, E), obtained by taking the transitive reduction
of the ‘raw’ graph on the left and disregarding node coordinate information.

In our opinion, one of the attractive efforts in the field of spacetime computing,
that we begin to illustrate in the next subsection, is to reverse the above logic: under
the assumption of a fundamentally discrete and algorithmic universe, the plan is to
directly build a discrete, algorithmic model—say, an n-node causet—from scratch,
without resorting to an underlying continuum,while expecting the familiar properties
manifested by continuum models—e.g. dimension, curvature, Lorentz invariance—
to emerge as n → ∞.5

Note that this asymptotic perspective implies that those familiar properties might
emerge only after some coarse-graining of the causet, e.g. by focusing only on a
fraction of the available points. This view would leave room for ‘wild’ behaviours

5Most physicists would favour the inclusion of a quantum-mechanical perspective to this effort,
trying to handle collections of causets rather than individual instances, in the spirit of ‘sum over
histories’, or ‘path integrals’. We do not cover this aspect here, except for a few short comments in
the conclusive section.
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Fig. 12.6 Left Sprinkling 8 points in an interval (red dotted lines) between two fixed points,
labelled 0 and 9, of 2-DMinkowski space M (1,1). Right Deriving a transitively reduced causet from
the points, based on their mutual Lorentz distances; causal links here flow downward

of the causet at its smallest scales; for example, the causet as is might turn out not
to be faithfully embeddable in any manifold: “physics near the Plank scale need not
be continuum-like” [25].

12.5.3 Algorithmic EH-causets (‘Event-History’)

In light of the variety of interesting emergent properties offered by the models of
computation mentioned in the previous sections, and of the importance that we have
come to attribute to causal sets for correct, post-newtonian spacetime modeling, we
are interested in the possibility to directly derive causal sets from the computations of
those simple models. The ultimate, ambitious goal of this approach would be not only
to obtain discrete spacetimemodels that exhibit the right properties of dimensionality,
curvature, Lorentz invariance, but that also emergent properties such as fractals, or
periodic localised structures analogous to CA ‘particles’, an effect that we certainly
cannot expect from a purely stochastic approach! In essence, the plan is to merge
two well distinct research efforts that are referred to as the ‘Computational Universe
Conjecture’ and the ‘Causal Set Programme’.

Can we recast the computations of, say, Turing Machines or Network Mobile
Automata in terms of causal sets? Bizarre as the question may sound, the answer is
definitely positive.
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The idea of conceiving the steps of a computation as a set of causally related,
partially ordered events was first explored in [12], but the purpose there was to
characterise computable functions. It was Wolfram [38] who first proposed to view
these graphs as instances of spacetime.

A general method for deriving a DAG from a sequential computation is easily
defined [5], as long as we can represent the computation C as a sequence of steps
that create, destroy, write and read state variables:

C = ((−,W0), (R1,W1), . . . , (Rn,Wn), . . . )

Each event (Ri ,Wi ) in the sequence reads the elements of some set Ri of state
variables, andwrites those of some setWi .We conceive state variables, and associated
read and write operations, in a rather broad sense: a state variable is not only a slot
in some memory support, a cell on a tape, the state of a Turing Machine control
unit; it can also be a node or an edge in a trivalent graph or, generally, any atomic
component of some complex data structure. Then, read, write, creation or elimination
operations are just manipulations of these items. The initial configuration of the
system is created—written—by event 0, which does not read anything.

Once the above sequence C of computation steps is provided, a causet C(N , E) is
readily obtained: nodes N = {1, 2, . . . n, . . . } are in one-to-one correspondence with
the events, and an edge i → j is created in E whenever Wi ∩ R j 
= ∅: this means
that some variable has been written (or created) by event i and read (or destroyed)
by event j . State variables play the role of causality mediators between events, and
organise events in a partial order which describes the history of the computation.
For this reason we shall sometimes refer to these DAGs as EH-causets, for ‘Event
History’. (Note that in this model the actual values assumed by the state variables
play no role.)

Before showing to the reader some examples of application of this general tech-
nique,we introduce a second approach for building algorithmic causets,more directly
related to the stochastic, sprinkling procedure of Sect. 12.5.2. For doing this, it is con-
venient to represent sprinklings by permutations.

12.5.4 Correspondence Between Sprinklings
and Permutations

There exists a tight correspondence between a k-point sprinkling S in 2-DMinkowski
space and a particular permutation π of the first k positive integers. All the infor-
mation necessary for deriving a causet from S, via the Lorentz distance, can be
compactly recorded in a permutation π .

To see this, we must view S under a different angle, literally. Without loss of
generality, assume that the sprinkling—e.g. the one of Fig. 12.6-left —has taken
place in the interval of Minkowski space M (1,1) between points s(0, 0) and t (0,

√
2),

so that the interval, identified by the red dotted lines, is indeed a square with sides
of length 1.
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Let us now rotate by−π/4 this ‘diamond’ and its content around the origin (0, 0),
so that the points fall in the unit box between (0,0) and (1,1). Let now Sx be the list
of the points, after rotation, sorted by ascending x-coordinate, and Sy be the list of
the same points sorted by ascending y-coordinate. Finally, let π = (π1, π2, . . . , πk)

be the list of integers where πi indicates the rank in Sy of the i-th point in Sx . Clearly
π is a permutation of the first k positive integers. The patient reader may check that
the permutation derived from the set S of 8 sprinkled points in Fig. 12.6-left is (4,
8, 7, 6, 1, 2, 3, 5): the first element is 4 because the first point in Sx , labeled ‘1’ in
Fig. 12.6-left, is the 4th point in Sy ; the second element is 8 because the second point
in Sx , labeled ‘3’ in Fig. 12.6-left, is the 8th point in Sy ; and so on.

Consider now the following procedure for deriving a causet from a generic per-
mutation π .

Permutation-based causet construction procedure

A causet Cπ (�, F) is derived from a permutation π of the first k positive integers
as follows:

• Nodes
� = {(i, πi )|i = 1, 2 . . . k} ∪ {(0, 0), (k + 1, k + 1)}

The k + 2 nodes are points with integer-valued coordinates. Of course these coor-
dinates are not part of the causet structure: they are only used for defining the
causet links.

• Links

A link (i, h) → ( j, k) from node (i, h) to node ( j, k) is created in F if and only
if i < j , h < k, and the rectangle identified by the two points (as lower left and
upper right vertices, respectively) is empty, i.e. no other node is found inside it. �

Nodes labeled (0, 0) and (k + 1, k + 1) are the source and the sink of the causet.
Note that graph Cπ (�, F) is acyclic and transitively reduced by construction.

Going back to our original sprinkling S and to the permutation π derived from it,
we can now establish (without proof) the following simple fact.

Fact 1 The causet C(S, E) obtained directly from sprinkling S and the causet
Cπ (�, F) obtained from permutation π (in turn derived from S) are isomor-
phic. More precisely, there is a link pi → p j in E if and only if there is a link
(i, πi ) → ( j, π j ) in F.

Additionally, it is easy to see that the process of obtaining causets from k-point
random sprinklings inM (1,1) intervals, via the Lorentz distance, is statistically equiv-
alent to that of obtaining causets from random permutations of the first k positive
integers, via the permutation-based causet construction procedure above. The ulti-
mate reason is that the x and y coordinates of the rotated sprinkled points are uniform
and independent random variables.

In conclusion, one can safely and conveniently build sprinkled, 2-D interval
causets by just using random permutations.

Let us now consider algorithmic techniques for generating and manipulating per-
mutations, and therefore causets.
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12.5.5 Algorithmic PA-causets (‘Permutation Ant’)

In a Permutation Ant Automaton [6] the ‘ant’ moves up and down a finite, one-
dimensional arrayof cells A(c1, c2, . . . , cn)by short steps or jumps,while performing
operations such as reading, writing, swapping, creating or deleting cells. No matter
how the array evolves, at any stage it stores a permutation π = (π1, π2, . . . , πn)

of the first n integers, one integer in each cell. Based on this permutation, at any
step we can derive a PA-causet, for ‘Permutation Ant’, by the permutation-based
construction procedure of the previous subsection.

The model can be enriched in various ways (see [6]). For example, the ant may be
stateless, or follow a finite-state behaviour, like in Turing Machines. Furthermore,
array cells may store bits, beside the elements of the permutation. The ant may read
and write the bits in its neighborhood, as in CAs, and may react depending on these
bits and on its current state (if any); it may move by unit steps, or may jump to other
locations of array A, as addressed by the πi of the current cell.

In the sequel we describe an algorithm that combines some of these features in
a way that allows us to derive from the same computation two distinct causets: an
EH-causet and a PA-causet. The advantage is to use a single model for illustrating
the two causet construction mechanisms and for exploring two causet spaces.

12.5.6 Ring Ant

This model borrows and combines ideas from automata introduced in [6] and in
[5]. The support of the computation is a circular tape with a distinguished first cell
c1. Each cell ci stores a pair (bi , πi ), where bi is a bit and πi is a positive integer
representing an element of the stored permutation π , which must be read starting
from c1.

The ant has 4 possible states {s1, s2, s3, s4}; its behavior depends on the current
detected situation and is manifested by a set of possible reactions.

Situation. This is coded by 5 bits: 3 bits (bi−1, bi , bi+1) are those found in the cell
ci where the ant is currently positioned, and in the two neighboring cells,
with indices treated circularly. The two remaining bits code the state of
the ant (i.e. s1 ↔ (0, 0), s2 ↔ (0, 1), s3 ↔ (1, 0), s4 ↔ (1, 1)). Thus,
there are 32 possible situations.

Reaction. This is also expressed by 5 bits (b1 . . . b5) whose interpretation is as
follows.

• b1− insert a new cell (b1, n + 1) at the current location, where n is
the current tape length, so that (n + 1) is a fresh new element of the
permutation.
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• (b2, b3) identify 4 cases:
− (0, 0): ant moves left one step;
− (0, 1): ant moves right one step;
− (1, 0): ant moves left by πi steps, where ci is the current cell;
− (1, 1): ant moves right by πi steps, where ci is the current cell;

• (b4, b5) identify the new state of the ant.

The last two of the four ant moves are reminiscent of the GOTO command of
various programming languages. Since for each of the 32 situations we can associate
1 out of 32 reactions, we can conceive 3232 distinct instances of the automaton—a
huge space that we can only explore by random samplings or by a genetic algorithm
approach.6

In our experiments we have started each computation with a two-cell circular tape
storing permutation π = (1, 2), with bits set to 0, and with the ant in state s1, and we
have run the automaton for an arbitrary number of steps—typically a few thousands.
Note that at each step the circular tape and the stored permutation grow by one unit.

The derivation of an EH-causet from a computation of this automaton, along the
lines described in Sect. 12.5.3, needs some clarification. We let the bits stored in the
tape cells play the role of causality mediators among the events that write and read
them; the permutation elements can’t be used for this purpose, because they are never
read. Since each event reads the bits of three cells, we obtain a ‘raw’ causet in which
nodes—representing events—have in-degree 3. The out-degree of an event equals
the number of times subsequent events have read the cell created by that event.

On the other hand, deriving a PA-causet from the final permutation is straightfor-
ward using the procedure described in Sect. 12.5.4. Note that the final permutation,
read from cell c1, always starts with ‘1’. This means that the derived PA-causet has
always the node with integer coordinates (1, 1) as the root; this is also the only source
node of the graph.

We ask again the reader to be patient: before providing examples of causets
obtained by the above techniques we need to discuss an important criterion that
we shall use for their assessment.

12.6 Causal Sets and Lorentz Invariance

We have mentioned earlier the requirement for discrete, algorithmic spacetime mod-
els to reflect as much as possible the features of continuous, physical spacetime.
For example, we might attempt to reproduce the standard 4 dimensions of rela-
tivistic spacetime, or even aim at 10, 11 or 26 dimensions, as suggested by more
recent theories such as String, Superstring and M-theory. In fact, one may expect
spacetime dimensionality to depend on the observation scale. For example, two
recent quantumgravity theories—CausalDynamicalTriangulations [3] andQuantum
Einstein Gravity [24]—agree in picturing a four-dimensional universe which turns

6Some of the computations presented here have been indeed selected by a genetic algorithm, using
appropriate fitness functions. These aspects are not discussed here.
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two-dimensional when observed at ultra low scales. A few techniques are available
for estimating causet dimensionality [20, 23], and some applications to algorithmic
causets have been investigated in [5].

However, the fundamental property of continuous spacetime on which we want
to focus now is Lorentz invariance.

A physical entity, e.g. the distance between two spacetime events, or a physical
law, e.g. theMaxwell equations, is Lorentz invariant if it does not change its value, or
its form, under the Lorentz transformation, which describes the change of spacetime
coordinates in passing from one inertial (non accelerating) frame of reference to
another. According to the principle of relativity, the laws of physics must be invariant
for all inertial frames of reference. It was the consideration of theMaxwell equations
that led Einstein to abandon the Galilean principle of relativity and to adopt the one
based on the Lorentz transformation, since only the latter can account for the constant
speed of light that comes with the Maxwell equations.

The issue of Lorentz invariance for causets is delicate, and we shall try to illustrate
its essence without introducing excessive technicalities.

To beginwith, a causetC(N , E) is an abstract graph structurewithout coordinates,
thus, applying a Lorentz transformation to it appears totallymeaningless. For the idea
to make sense we must still refer to an embedding of C in a manifold M , where each
node has its own coordinates. The embedding must be consistent with the partial
order expressed by the links E , that is, for any edge p → q in the transitive closure
of E , p and q must be causally related also in M , via the Lorentz metric, and vice
versa.

Embeddability is one of the hard problems studied in the field of causal sets.
A generic DAG C(N , E) with a sufficient number of nodes is very unlikely to
be embeddable in a manifold. However, once C is embedded in some manifold
M , it can be embedded in any other manifold M ′ obtained by applying a Lorentz
transformation to M : this is because the transformation drags, with M , the nodes N
embedded in it, and does so while preserving their mutual Lorentz distances, so that
consistency between the partial orders—in the discrete and in the continuum—is
preserved. From the above remarks one might be tempted to conclude that as soon
as a causet is embeddable in a Lorentzian manifold, it is also Lorentz invariant. But
there is a complication.

A key point of Lorentz invariance is that all reference frames must appear
equivalent—none must be singled out as preferred. If we decide to look at the pure
causal structure of the graph, without coordinates, then we have nomeans to discrim-
inate among Lorentz-interrelated reference frames: they all correspond to one and
the same graph. But if we allow to access the coordinate information coming with
the embeddings, then it turns out that for some graphs all embeddings are equivalent,
while for other graphs they are not. In the latter case, a preferred frame may emerge.

The typical examples used for illustrating these two cases are a sprinkled 2-
D causet and a regular square grid. A remarkable feature of a uniform Poisson
distribution of points in a region of 2-D Minkowski space M (1,1) is that a Lorentz
transformation will change the overall shape of the cloud of points, but will leave
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the local picture unchanged: an observer sitting on one of the points will notice no
change in its neighbourhood—in statistical sense. No frame is special.

This is not the case for a regular, directed square grid embedded in M (1,1), one
where each node has two incoming and two outgoing links at +45 or −45 degrees
from the vertical, time axis—links that partition the plane into square tiles. Here
a Lorentz transformation does induce local changes: as the frame speed increases,
points get packed with increasing density along lines that get increasingly separated,
breaking the symmetry of the original grid, and allowing us to single out the latter
as the preferred, rest frame.

The notion of ‘causet Lorentz invariance’ or ‘causet Lorentzianity’ that uses
embeddings and coordinates has, in our opinion, strong and weak aspects. It is strong
because the original notion of Lorentz invariance does rest, crucially, upon that of
reference frame—an embedding manifold. It is weak because causets were not con-
ceived to inhabit a continuous background spacetime, but to be themselves the only
existing, discrete spacetime—a concept known as background independence. Their
‘Lorentzianity’ should be directly manifested by their features—their nodes and
edges—without need to refer to manifolds and their coordinate systems. Of course,
when following this latter path we should be ready to give up the rich tool set that
comes with continuous manifolds. For example, we immediately get into trouble
when trying to define ‘reference frame’ purely in terms of DAGs.

What we show next is an alternative and simplified approach to causet Lorentzian-
ity that avoids embeddings and reference frames, and only looks at DAG properties.
This will be applied to algorithmic causets in the next section.

12.6.1 The Interplay of Longest and Shortest Paths

A rather counterintuitive feature of Minkowski space and its Lorentz distance L is
the reversed triangular inequality—the fact that, given three points p, q and x , with
q in the future lightcone of p and x in the order interval I [p, q] (see Sect. 12.5.1),
we have:

L(p, q) ≥ L(p, x) + L(x, q).

The Lorentz distance measures the time elapsed along a trajectory between two
points, and the above inequality reflects the well known twin paradox of Special
Relativity, by which the travelling twin, going through point x , ages more slowly
than his sedentary brother. In fact, beside the longest path—a straight line from p
to q—there is an infinite number of alternative paths that register shorter, or even
much shorter time delays between those points, up to the limit case of two segments
of light rays forming a π/2 angle at x , corresponding to a null time delay.

In [6] we have proposed a notion of causet Lorentzianity that takes into account,
in a graph-oriented setting, this peculiar, wide range of path lengths that characterises
Lorentzianmanifolds. The technique consists in collecting and aggregating statistical
data about path lengths in the causet C under investigation. Given interval causet
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C[s, t], we compute the lengths lpls(x) and spls(x) of, respectively, the longest
and shortest paths from s to any given element x of the set of causet Nodes. We
then aggregate the data into function msp(l), which provides the mean shortest path
length associated to each possible longest path length l:

msp(l) := Mean|{spls(x)|x ∈ Nodes ∧ lpls(x) = l}|

A very slow growth of this function reveals the presence of a wide gap between the
lengths of the longest and shortest path from s to the other nodes. This is indeed what
we observe in the longest/shortest path plot—the plots of the above msp function—
for interval causets obtained from sprinkling in M (1,1). Instances of this plot will be
included in many of the forthcoming figures (see, for example, the lowest function
plots in the bottom row of Fig. 12.7) as a benchmark for analogous plots of other
causets.

Having introduced our loose but practical indicator of ‘causet Lorentzianity’, we
are ready to examine some empirical results. In the next two sections we explore
the two classes of causets that we can derive from the computations of the Ring Ant
automata of Sect. 12.5.6, namely the EH-causets (Event-History), in which compu-
tation steps are partially ordered through the mediation of write and read operations,
and PA-causets (Permutation-Ant), in which a partial order is directly derived from
the final permutation computed by the ant.

12.7 EH-causets from Ring Ant Automata

By randomly sampling the huge space ofEH-causets we could establish the following
facts.

• All the EH-causets that we have examined—in the order of a few thousand—are
planar. Recall that these causets are obtained by transitively reducing raw graphs:
the latter in general turn out not to be planar.

• We find that around 70–80% of the causets are linear paths—totally ordered
sequences of nodes—or other slightly more elaborate periodic patterns that still
grow, essentially, one-dimensional. Often the periodic phase is reached after an ini-
tial random-like transient phase. Emergent periodic patterns, called ‘highways’, are
commonly observed inmany othermodels of computation, e.g. in two-dimensional
Turing machines [15, 37].

• In the remaining cases we find either random-like planar graphs, or regular planar
graphs that we call tiling causets, for reasons to be clarified later, or intermediate
cases in which randomness and regularity coexist.
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Fig. 12.7 Upper row EH-causets from Ring Ant computations with emergent highways. Lower
row corresponding longest/shortest path plots, compared with the longest/shortest path plot of a
2500-node, sprinkled, 2-D Minkowski interval causet (lower function plots)

12.7.1 Highways

In Fig. 12.7 we show three examples of emergent highways in EH-causets from Ring
Ant computations. Causets are shown in the upper row. In the lower row we present
the corresponding longest/shortest path plots, each compared with the analogous plot
for an interval causet obtained from sprinkling in M (1,1), which grows much more
slowly. Eventually the functions for these causets grow linear: due to the periodic
highway, the longest and (mean) shortest path lengths get coupled by a constant
proportionality factor.

Under a spacetime perspective, these cases are not very interesting: establishing
an analogy with the ‘digital particles’ that emerge in some cellular automata seems
inappropriate, since in that case the localised structures move on a background struc-
ture, possibly interpreted as empty spacetime, which is missing here.

12.7.2 Random-Like Causets

The two rows in Fig. 12.8 show two different, random-like EH-causets fromRingAnt
computations. Each graph is shown in two alternative renderings (left and center).
In each of the two diagrams on the r.h.s., the upper and lower functions represent,
respectively, the longest/shortest path plots for the corresponding causet and for a
sprinkled 2-D Minkowski causet (not shown in figure). The large gap between the
two plots, in both cases, indicates that, in spite of their random-like character, these
causets perform poorly w.r.t. our Lorentzianity criterion.
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Fig. 12.8 Two random-like EH-causets fromRingAnt computations. At each row the same graph is
shownwith two different graph drawing algorithms (left and center). Right the longest/shortest path
plot for the causet at the left (upper function) is compared with the analogous plot for a 2500-node,
sprinkled 2-D Minkowski causet, not shown (lower function)

We may wonder whether better, i.e. lower longest/shortest path plots can be
obtained by a randomised version of the EH-causet construction technique, one in
which each time a new node n is added to the raw causet, three edges p → n, q → n,
r → n are added to the graph, with p, q, r chosen at random among the existing
nodes. The experiment is illustrated in Fig. 12.9, where the longest/shortest path plot
for a causet obtained by such a randomised procedure is compared, as usual, to that of
a sprinkled causet. The randomisation yields an improvement over the random-like
cases of Fig. 12.8, but not enough to achieve the performance of sprinkled causets.7

We note, incidentally, that these randomised causets are not planar.

12.7.3 Regular Tiling Causets

Figure12.10 shows two regular EH-causets from Ring Ant computations, and their
longest/shortest path plots. The graph on the left repeats the basic pattern of the
graph on the right, and should not be likened to the periodic patterns—highways—
of Fig. 12.7. Its corresponding longest/shortest path plot exhibits a slight improve-
ment w.r.t. the linear growth of those periodic causets, but is still very far from the

7Due to computational bottlenecks, in Fig. 12.9 and in subsequent analogous figures we tolerate
possible differences between the maximum longest path length (about 100 links) achieved by the
2500-node, 2-D Minkowski sprinkled causet constantly used as a benchmark, and the maximum
longest path lengths obtained for the various causets under scrutiny, as long as the growth trends
for these functions are sufficiently clear.
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Fig. 12.9 Left causet from randomised version of the Ring Ant EH-causet construction technique.
Right corresponding longest/shortest path plot (upper function), compared with the plot for a sprin-
kled causet (lower function)
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Fig. 12.10 Two regular EH-causets from Ring Ant computations (upper row), and their corre-
sponding longest/shortest path plots (lower row). As in Fig. 12.8, each plot is compared with the
analogous plot for a sprinkled 2-D Minkowski causet, which appears, in both cases, as the lower
function

performance of random, sprinkled causets. The longest/shortest path plot for the
graph on the right of Fig. 12.10 performs better, with a considerably slower growth
of the mean shortest path length.

These regular, ‘tiling causets’ are reminiscent of the tessellations of the hyperbolic
plane, whose patterns are often represented on the Poincaré disc [9].

We recall that regular tessellations of the sphere, of the Euclidean plane and of the
hyperbolic plane, can be represented by the Schläfli symbol {p, q} which indicates
that q regular p-gons meet at each vertex. Based on the value of 1/p + 1/q the
following can be established:
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Fig. 12.11 Pentagonal
tessellations {5, 3} and {5, 4}

• 1/p + 1/q > 1/2: the integer solutions are {{3, 3}, {3, 4}, {3, 5}, {4, 3}, {5, 3}},
which are the Schläfli symbols for the five Platonic solids—tetrahedron, octahe-
dron, icosahedron, cube, dodecahedron.

• 1/p + 1/q = 1/2: the integer solutions are {{3, 6}, {4, 4}, {6, 3}}, corresponding
to the familiar tilings of the plane by equilateral triangles, squares, hexagons.

• 1/p + 1/q < 1/2: there are infinite integer solutions, and as many regular tessel-
lations of the hyperbolic plane.

Figure12.11 shows two tessellations with regular pentagons meeting at vertices
in groups of three (left) and four (right) yielding, respectively, positive and negative
curvature. Curvature can indeed be defined also for planar graphs.

Definition 1 (Combinatorial curvature)

For a planar graph G(N , E), the combinatorial curvature cc of a node x ∈ N is
defined as:

cc(x) := 1 − degree(x)/2 +
∑
f ∼x

(1/si ze( f )),

where summation is over all faces f incident with x . �
Based on this definition, the dodecahedron {5, 3} has constant positive curvature

1/10, while hyperbolic tessellation {5, 4} has constant negative curvature –1/5.
We have mentioned regular tessellations and their curvature for comparisons with

the causet in Fig. 12.10-right. This planar graph has less symmetries than those of
the tessellations in Fig. 12.11, and is essentially formed by two concentric spirals of
pentagonal faces; these faces meet at vertices in groups of three or four, with the
exception of a pair of adjacent faces—a heptagon and an exagon—found at each
round of one of the spirals. Following the spiral paths we find that nodes with degree
3 and degree 4 alternate, with the degree understood now as the sum of the in-degree
and out-degree. Thus, roughly half of the nodes have positive curvature, and half have
negative curvature. Link orientation is not shown in figure: both the radial links and
those on the spiralling paths point outwards. Note that a hypothetical arrangement of
the pentagons into a single spiral would yield a totally ordered, totally uninteresting
causet: the presence of at least two spirals is essential for avoiding this collapse.

An interesting effect of the spiral arrangement is that a spiral path provides the
longest path from the root, at the center of the graph, to any given node x , while an
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Fig. 12.12 Left EH-causet from a Ring Ant computation, in which the pattern observed in the
causets of Fig. 12.10 appears mixed with random-like elements. Right longest/shortest path plot for
this causet (upper function) compared with the analogous plot of a sprinkled causet (lower function)

essentially radial path will provide a substantially shorter, alternative path to x . This
‘trick’ implemented by the graph explains the relatively good performance of the
longest/shortest path plot. Note that a similar pair of paths—a long, spiralling route
and a short, mainly radial one—can be found for any pair of nodes.

12.7.4 Mixed Cases

Several cases were found in which elements of order—e.g. the tiling structure—
are mixed with random-like components. One example is the EH-causet shown in
Fig. 12.12.

The mix of regularity and pseudo-randomness is one of our key motivations for
investigating algorithmic causets. However, the performance of this causet in terms
of our rough Lorentzianity indicator is quite poor, as revealed by the plot in the r.h.s.
of the figure.

12.7.5 Causet from the Fractal Sequence

When discussing random-like EH-causets, we have introduced a randomised causet
construction procedure in which each new node n is connected to previously created
from-nodes p, q, r , chosen at random.

Now that we have seen examples of regular causets it is useful to explore the
opposite solution and directly select those from-nodes by a completely deterministic
procedure.

The fractal sequence [36] is a sequence of natural numbers defined as:

a(n) = k if n = (2k − 1) ∗ 2m,
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Fig. 12.13 Left Fractal sequence. Center Causet obtained from the sequence of pairs of elements
of the fractal sequence. Right longest/shortest path plot of the causet (intermediate solid line),
compared with analogous plots for sprinkled causet (lower) and causet in Fig. 12.10-right (upper)

where m = 0, 1 . . . and k = 1, 2 . . . Its first 12 values are (1, 1, 2, 1, 3, 2, 4, 1,
5, 3, 6, 2); in Fig. 12.13-left we plot the first 1000 values. The center of the figure
shows the 502-node causet derived by splitting that 1000-element sequence into 500
consecutive pairs and using each pair as the from-nodes of each new node.8 More
precisely: we start with two nodes, labeled 1 and 2; the from-nodes of new node 3
are (1, 1), since this is the first pair of the fractal sequence, thus parallel edges 1 → 3
and 1 → 3 are added; then node 4 is added, with edges 2 → 4 and 1 → 4, since
(2, 1) is the second pair of the sequence; then edges 3 → 5 and 2 → 5 are added,
and so on. The longest/shortest path plot of the causet is shown at the right: it is the
solid line that appears in the middle, between the lower reference plot for a sprinkled
causet and the upper longest/shortest path plot for the example of Fig. 12.10-right,
reproduced here for comparison.

The resulting causet is remarkably similar to the causet in Fig. 12.10-right. The
procedures for their construction are quite different, and the raw causets appear
rather different too. But when transitively reduced, the two graphs reveal the same
basic structure, formed by two concentric spirals of planar faces, although with the
fractal sequence one of the spirals is formed by heptagons, not pentagons. Again the
relatively good longest/shortest path plot is due to the simultaneous presence of long
spiral and short radial paths between nodes. This appears to be a recurrent ‘trick’
in algorithmic causets, for keeping the growth rate of the longest/shortest path plots
under control.

12.8 PA-causets from Ring Ant Automata

As explained in Sect. 12.5.6, the deterministic Ring Ant automaton whose computa-
tions can be represented as partially ordered sets of events—yielding the EH-causets
just discussed—also keeps a permutation π of the first n naturals, with n growing
by one unit at each step. At any time the permutation can be readily turned into a
PA-causet (‘Permutation Ant’), as described in Sect. 12.5.4.

8It turns out that segmenting the fractal sequence into triples, quadruples, etc., in place of pairs,
does not yield interesting causets.
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Fig. 12.14 Upper row Final permutations computed by three runs of the Ring Ant automaton.
Lower row PA-causets derived from the permutations

Analogous to the case of EH-causets, about 60% of these PA-causets are unin-
teresting, 1-D linear graphs. The remaining graphs split between regular structures,
such as trees, and random-like structures.

12.8.1 Regular Causets

In Fig. 12.14 we show three very simple cases, meant primarily to further clarify the
process of deriving the PA-causet (bottom row) from the final permutation (upper
row). The elements of the permutation, intended as nodes of the causet, ‘see’ in
their future lightcone only the elements/nodes that appear up-right to them in the
permutation plot. Hence, with the permutation in Fig. 12.14-left, that moves upward,
all nodes are causally related with one another, thus yielding a linear path structure.
With the two remaining permutations, that move downward, one or a few nodes near
the origin of the plot ‘see’ almost all the remaining nodes in their future lightcone,
while all these nodes are totally or largely causally unrelated, thus yielding a tree
structure.

Two further regular cases are illustrated in Fig. 12.15. The graphs look similar,
but differ in link orientation. In the graph on the right all radial edges point outward,
while in the graph on the left the outer radial edges point inward. The reader may
easily deduce the impact of this difference on the two longest/shortest path plots. In
particular, the graph on the right is the first we have found whose longest/shortest
path plot outperforms that of the sprinkled causet. The ‘trick’ is trivial, even more
than that of the spiralling graphs: all nodes that are reached from the root—the central
node—by a longest path longer than 2 can be reached by a shortest path of length 2,
thus the longest/shortest path plot is constant.
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Fig. 12.15 Upper row final permutations computed by two runs of the RingAnt automaton.Central
row PA-causets derived from the permutations. Lower row longest/shortest path plots. In both plots
we compare the longest/shortest path plot of the corresponding causet—a straight line—with that
for a sprinkled causet

12.8.2 Random-Like Causets

Let us now consider some random-like cases. Two of these PA-causets are shown in
the central row of Fig. 12.16; the permutation from which each is derived appears
in the upper row, and the corresponding longest/shortest path plots (dotted lines),
compared with the analogous plot for sprinkled causets (solid lines), is shown in the
lower row.

At a simple visual inspection, these deterministic causets appear indistinguish-
able from the stochastic causets obtained by sprinkling. Most importantly, their
longest/shortest path plots are equivalent to those from sprinkled causets. Thus, we
have eventually found algorithmic causets that satisfy our test for Lorentzianity.

The significance of this success should be correctly assessed, and perhaps demys-
tified: the result ultimately confirms that permutations are indeed equivalent to sprin-
klings, as discussed in Sect. 12.5.4, and that some instances of our Ring Ant automa-
ton behave as ‘good’ pseudo-random number generators—an ability that, according
to a conjecture proposed in [38], would indicate computational universality.
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Fig. 12.16 Upper row final, random-like, 2500-element permutations computed by two runs
of the Ring Ant automaton. Central row PA-causets derived from the permutations. Lower row
longest/shortest path plots. The dotted line is the longest/shortest path plot for the PA-causet, while
the solid line is that of a sprinkled causet of the same size (2500 nodes)

On the other hand, the crucial challenge—one that justifies our insistence on
determinism—would be to find cases in which passing our Lorentzianity test com-
bines with the presence of order, or of some mix of order and disorder in the causet,
where ‘order’ is simply understood as a regularity that can be easily detected by
visual inspection. Would this be possible?

Note that with PA-causets we can visually inspect two types of diagram—the
permutation and the graph—with the idea that possible emergent ordermight bemore
apparent in one than in the other. By exploiting this advantageous circumstance, we
have identified some additional interesting computations that seem to match, at least
to some extent, our objective.

12.8.3 Mixed Cases

In the case illustrated in Fig. 12.17, the final permutation, shown on the left, is
somewhat similar to the fractal sequence of Fig. 12.13-left. A peculiarity of the
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Fig. 12.17 A peculiar, regular Ring Ant computation. Left final permutation. Center PA-causet
derived from the permutation. Right longest/shortest path plot (the short horizontal segment), com-
pared with the analogous plot for a sprinkled causet

Fig. 12.18 The distilled
structure of the causet in
Fig. 12.17

corresponding causet, shown at the center of the figure, is that the shortest path from
the root to any node is never longer than 2. For the 1000-node causet shown, the
longest path has length at most 10. The resulting longest/shortest path plot is shown
in Fig. 12.17-right, where it is compared, as usual, with the analogous plot for a
2500-node sprinkled causet.

Given the high regularity detected in the permutation diagram—a regularity that
goes unnoticed in the plot of the graph—we have reconstructed a version of the
permutation by an ad-hoc algorithm, and plotted the graph with integer node coordi-
nates as defined in Sect. 12.5.4, in order to better expose its structure. This is shown
in Fig. 12.18.

The reader may easily check that the shortest path from the root—the leftmost
node at the bottom—to any other node is never longer than 2, while the longest
path does grow, but quite slowly, presumably as the logarithm of the number of
nodes. This graph implements another brute-force ‘trick’ for keeping the growth
of the longest/shortest path plot under control, alternative to the double spiral of
Fig. 12.10-right or the circular pattern of Fig. 12.15-right.

Of course a flat longest/shortest path plot—one in which the mean shortest path
length is constant, and independent from the longest path length—is as bad as one that
grows linearly; our aim is to approximate the longest/shortest path plots of sprinkled
causets.
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Fig. 12.19 Upper permutations from 20,000-step computations of the Ring Ant automaton. Lower
longest/shortest path plots for the same computations, but limited to 2500 steps. These are compared,
as usual, with the plot for a 2500-node sprinkled causet
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Fig. 12.20 ARing Ant computation producing a mixed, ordered and random-like pattern. Left final
permutation. Center PA-causet derived from the permutation. Right longest/shortest path plot

It turns out that several permutations can be obtained inwhich aspects of regularity
and of pseudo-randomness are mixed to varying degrees, with a beneficial effect on
longest/shortest path plots. This phenomenon is illustrated in Fig. 12.19, where three
permutations of this kind and their corresponding longest/shortest path plots are
presented.

A rather peculiar case of mix between order and randomness, in which the two
components are sharply separated, is illustrated in Fig. 12.20. As in the previous
example of Fig. 12.17, the plot of the final permutation is much more informative
than the (default rendering of the) graph. This permutation appears as a mix of the
descending ‘lines’ already seen in Fig. 12.17, and a series of random-like slabs, and
its structure appears to grow indefinitely. In Fig. 12.21 we show the final permutation
after 21,000 steps of the automaton. The appearance of these slabs plays an essential
role in keeping the longest/shortest path plot close to that of sprinkled causets.

Do the ‘lines’ that appear in the permutation of Fig. 12.17, or the remarkable mix
of order and disorder in the permutation of Fig. 12.21, correspond to properties of
physical relevance for the associated causet/spacetime?
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Fig. 12.21 Final
permutation after 21,000
steps of the automaton of
Figure12.20
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Afirst simple remark is that in both cases the ‘lines’ are formed by points that are in
space-like relation with one another. However, these sets are not maximal space-like
regions, since each line has points that are space-like related also to additional, exter-
nal points. Furthermore, it would be wrong to take these lines as separators between
past and future, since links maywell cross them, as documented in Fig. 12.18. In con-
clusion, whether or not these lines might represent some meaningful 2-D spacetime
pattern is still unclear to us.

On the other hand, in search for properties of physical relevance, we may wonder
how these two cases perform under the Lorentz transformation.

In the left column of Fig. 12.22 we show the sets of points of our two permuta-
tions after a 45 degree rotation, thus going back to their interpretation as events in
Minkowski space M (1,1). In the column at the right we show their Lorentz transfor-
mations, relative to a reference system that moves at 1/3 of the speed of light c with
respect to the system at rest.

Let us focus on the upper case. Consider the descending lines that form the original
permutation π (Figs. 12.17-left and 12.18), and assign them indices i = 1, 2,…,
starting from the top. Line i is formed by points whose y coordinates decrease
by unit steps while x-coordinates are evenly spaced by steps of length 2i . As a
consequence, the angular coefficient of line i is m(i) = −2−i . After the rotation by
π/4, line i has angular coefficient Tan(θ(i) + π/4), where θ(i) = ArcTan(−2−i ).
After some manipulation, using:

Sin(ArcTan(−2−i )) = −2−i/
√
1 + 4−i ,

Cos(ArcTan(−2−i )) = 1/
√
1 + 4−i ,
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Fig. 12.22 Lorentz transformation of the two permutations of Figs. 12.17 (32,767 nodes) and 12.21
(21,000 nodes). The points are plotted as seen by a system at rest (left column) and by a system
moving at 1/3 of the speed of light c (right column). Selfsimilarity is manifested in the upper case,
and approximated in the lower case, as highlighted by the dotted regions

we obtain the values mr(i) of the angular coefficients of the rotated lines in the
upper-left diagram of Fig. 12.22:

mr(i) = 2i − 1

2i + 1
.

We wish now to apply the 2-D Lorentz transformation LTv, for a frame moving at
constant speed v, to the points (x, t) of the rotated lines:

LTv(x, t) = (γv(x − vt), γv(t − xv)),

where γv is the Lorentz factor 1/
√
1 − v2.

We can now compute the slope mrLTv(i) of the Lorentz-transformation LTv of
the rotated line i—another line—based on v and on the slope mr(i) of the latter.
Letting LTv(1,mr(i)) = (xv(i), tv(i)), we have:

mrLTv(i) = tv(i)/xv(i).

In general, a Lorentz transformation of the set of rotated lines, relative to a generic
speed, will yield slopes that do not compare with those of the original line set. But if,
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for any integer j , we select speed v( j) = (2 j − 1)/(2 j + 1), intended as a fraction
of the speed of light c, then:

mrLTv( j)(i) = tv( j)(i)

xv( j)(i)
= mr(i) − v( j)

1 − v( j)mr(i)
= mr(i − j).

The last equality indicates that the Lorentz transformation, for these specific v( j)
speeds, shifts the original lines so that they overlap with themselves.

For example, the set of lines with angular coefficients (1/3, 3/5, 7/9, 15/17, 31/33)
after a Lorentz transformation LT1/3 (i.e. for j = 1) become lines with coefficients (0,
1/3, 3/5, 7/9, 15/17). This is exactly reflected in the upper row of Fig. 12.22, where
the upper line on the r.h.s. is flat (mrLTv(1)(1) = 0), while the lines below it repeat
the slopes of the lines at the l.h.s.. After transformation LT3/5 ( j = 2), the new slopes
are (–1/3, 0, 1/3, 3/5, 7/9), and so on.

The fact that this peculiar form of invariance is achieved only for a discrete set of
inertial observer speeds is strongly reminiscent of the so called Lorentzian lattices
[27], which are invariant only under a discrete subgroup of the Lorentz group.

In the case illustrated in the lower row of Fig. 12.22, the overall structure of the
cloud of spacetime points as seen from the system at rest (l.h.s. diagram) is only
qualitatively repeated in a subset of the Lorentz-transformed set (r.h.s. diagram), due
to the fact that the thickness values for the successive random-like slabs do not seem
to follow a regular progression. Recall, however, that the Lorentz transformation
leaves unaffected, in statistical sense, a cloud of points uniformly distributed in a
region of M (1,1), such as these slabs.

We believe that the examples illustrated in this subsection represent promising
preliminary steps in the search for algorithmic causets that mix regular and pseudo-
random features while attempting to match the requirement of Lorentz invariance.

12.9 Conclusions

Does it make sense to talk about spacetime computing? In this chapter we hope we
have identified a few attractive research items that can be legitimately grouped under
this name, and be seen as dealing with a rather extreme form of natural computing.

As anticipated in the introduction, our presentation has mainly focused on some
specific issues related to the modelling of discrete, algorithmic spacetime by causal
sets, while several other relevant aspects have been left uncovered. A much wider
treatment of the relations between nature and computation can be found, for example,
in [39].

One of the aspects we have largely ignored here is quantum mechanics.
Although causal sets reflect in their basic structure the quantisation of spacetime,

each node of the graph corresponding to a ‘quantum’ (an ‘atom’) of the latter, much
morewould be needed, e.g. in terms of dynamical laws, in order to set up a fully blown
quantum-mechanical, algorithmic, causet-based theory of the natural universe, one
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involving Lagrangians, amplitudes, path integrals or sums over histories and all the
conceptual tools that make quantummechanics and quantumfield theory so powerful
(and so difficult). It is fair to say that very little progress has been done so far by
theoretical physicists in this direction: for our purposes here, any detailed discussion
on these aspects would be inappropriate.

It is worth mentioning, however, that the related question of whether and how we
can use computers to fully and exactly simulate Physics, and quantum mechanical
features in particular, was already addressed by Richard Feynman in 1981, in a
famous keynote speech at a conference on the ‘Physics of Computation’ [10]. In that
speech, also due to previous interactions with Fredkin, Feynman suggested, for this
simulation, a visionary computer architecture based on cellular automata enriched
with quantum mechanical capabilities, thus promoting the development of quantum
computing.

The influenceof these ideas is particularly evident in theworkofSethLloyd,where
all the different physical phenomena of the quantum world—e.g. all sub-atomic
particle interactions—are interpreted as different quantum information processing
activities, and the universe is seen as a huge network of programs that collectively
determine the evolution ... of the universe itself [17].

If this multiplicity of different quantum computing processes is a correct picture
of our world, then we might hope to be eventually able to ‘crack’ the code of some
of these programs and profit from their imitation, in the same way as we do with
bio-inspired computing.

However, the boldest conjecture about spacetime computing hints at the existence
of a single algorithm at the root of everything, with that multiplicity of computing
processes only emerging from this unique source, and Schmidhuber [28] goes as
far as suggesting that it is cheaper for a Turing machine to compute all possible
computable universes rather than just one (ours), thus outlining an ultra-concise,
computational theory of the multiverse.

Whether this is instead the correct picture—whether there is indeed a single, pos-
sibly elementary, possibly immutable, perhaps even deterministic and non-quantistic
algorithm at the bottom of the universe or multiverse9—is still completely unknown.
What is certain is that its discovery would deeply revolutionise the landscape of
theoretical physics, catapulting spacetime computing to its forefront.

In light of the above conjecture, a sensible research track in the spacetime com-
puting agenda is, in our opinion, the exploration of abstract algorithms for building
discrete models of spacetime - models that, in the present chapter, we have identified
with causal sets. By ‘abstract’ we mean that we abstain from coding into these algo-
rithms any knowledge from theoretical physics—e.g. constants such as the speed of
light—since everything should emerge from the algorithm itself, a posteriori.

Onemay object that the space of algorithms is potentially infinite, and that search-
ing it blindly is unreasonable. We believe that these difficulties can be in part miti-
gated. First, the notion of computational universality (or Turing-completeness) acts

9The possible existence of non-quantum mechanical laws at the roots of reality, below the layer of
quantum mechanics, has been recently envisaged by G.’t Hooft [31].
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as a sort of unifying factor for all models above a certain threshold of sophistica-
tion. Second, the space of qualitative behaviours that characterise the computations
of potentially all conceivable algorithms is much smaller than the space of those
algorithms, as widely shown by Wolfram [38].

Furthermore, the search for ‘promising’ algorithms is not totally blind, but should
be guided by the early appearance of interesting emergent patterns—patterns that
we should be able to recognise as useful for setting up, in the long, or very long run,
the features of our familiar physical world. Among the valuable clues we include
periodicity, self-similarity, pseudo-randomness, and ‘digital particles’.

All of these features have been already found in the artificial, computational uni-
verse, but mainly in models such as cellular automata and 2-D TuringMachines that,
due to other intrinsic limitations, lack physical realism. In this chapter we have there-
fore devoted much attention to the alternative model of (algorithmic) causal sets, and
have extended the list of desirable emergent features to one of great physical signif-
icance: Lorentz invariance. We have discussed an indicator—the longest/shortest
path plot—meant to reveal the closeness of an algorithmic causet to the ideal
(2-D) Lorentzian causet, and have shown the extent to which regular, random-like,
or mixed causets perform against this benchmark. Finally, we have identified causets
that satisfy a form of discretised Lorentz invariance while offering a remarkable mix
of regularity and pseudo-randomness.

Causal sets represent amore promising and physically realisticmodel than cellular
automata or Turing machines. Of course, several of the regular, often planar causets
that we have introduced appear naively simple, and remote from the complexity of
the 4-dimensional causets that we might expect to represent spacetime, at least at
sufficiently high scales of observation. Still, they have been helpful for elucidating
the variety of emergent properties that the model can offer.

Cracking the code that animates the elusive, discrete texture of the physical uni-
verse is the most ambitious goal of spacetime computing. As pointed out in [19],
this goal would greatly benefit from the cooperation of various research areas, most
notably quantum gravity and cosmology, complex networks and the theory of com-
puting. Algorithmic causal sets seem to represent an ideal choice also in this respect:
causets have acquired enduring attention and esteem from various schools of thought
in quantum gravity, and, given their high abstraction level, they also offer a relatively
easy access point for investigations and simulations by the curious computer scien-
tist!

Acknowledgments I express my gratitude to Alex Lamb and Marco Tarini for useful technical
discussions, and to Stephen Wolfram for having initially stimulated my interest in this area of
research.
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Chapter 13
Interaction-Based Programming in MGS

Antoine Spicher and Jean-Louis Giavitto

Abstract The modeling and simulation of morphogenetic phenomena require to
take into account the coupling between the processes that take place in a space and
the modification of that space due to those processes, leading to a chicken-and-
egg problem. To cope with this issue, we propose to consider a growing structure
as the byproduct of a multitude of interactions between its constitutive elements.
An interaction-based model of computation relying on spatial relationships is then
developed leading to an original style of programming implemented in the MGS
programming language. While MGS seems to be at first glance a domain specific
programming language, its underlying interaction-based paradigm is also relevant
to support the development of generic programming mechanisms. We show how
the specification of space independent computations achieves polytypism and we
develop a direct interpretation of well-known differential operators in term of data
movements.

13.1 Introduction

The development of the MGS unconventional programming language was driven
by a motto: computations are made of local interactions. This approach was moti-
vated by difficulties encountered in the modeling and simulation of morphogenetic
processes [13, 16] where the construction of an organism in the course of time, from
a germ cell to a complete organism, is achieved through a multitude of local interac-
tions between its constitutive elements. In this kind of systems, the spatial structure
varies over time and must be calculated in conjunction with the state of the system.
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As an example, consider the diffusion in a growing medium of a morphogen that
controls the speed of growth of this medium. The coupling between the processes
that take place in a space and the modification of the space due to the processes leads
to a chicken-and-egg problem: what comes first?

Recently, a new approach has emerged in theoretical physics to overcome the same
difficulty in general relativity where the mass moves along a space-time geodesic
while space-time geometry is defined by the distribution of mass. In this approach,
space is not seen as a primitive structure but rather as a byproduct of the causal
relationships induced by the interaction between the entities of the system.

Contributions

In this chapter, we propose to reconstruct the MGS mechanisms of computation from
this point of view. This abstract approach is illustrated in Sect. 13.2 by a down-to-
earth example, the bubble sort, and we show how the basic interactions at work (the
swap of two adjacent elements) build an explicit spatial structure (a linear space).
Our motivation in the development of this example, is to make explicit the basic
ingredient of a generic notion of interaction: interactions define a neighborhood
and, from neighbor to neighbor, a global shape emerges. This leads naturally to use
topological tools to describe computations in MGS.

Section13.3 presents the notion of topological rewriting and illustrates this notion
on various paradigmatic examples of morphogenesis. These examples are only
sketched to show the expected relevance of the MGS computational mechanisms
in the simulation of physical or biological systems.

In the Sect. 13.4, we show that these computational mechanisms are also relevant
to support the development of generic programming mechanisms, not necessarily
related to natural computations. Here we address genericity from the point of view
of polytypism, a notion initially developed in functional programming.

The MGS approach of polytypism boils down to the specification of patterns of
data traversals. In Sect. 13.5, we show these patterns of data movements at work in
the interpretation of differential operators. This interpretation gives a computational
content towell-knowndifferential operators subsuming discrete and continuous com-
putations. As an illustration, we provide a generic formulation that encompasses
discrete and continuous equations of diffusion that can be used in hybrid diffusion.
The section ends by sketching how sorting can be achieved by a set of differential
equations.

13.2 From Physics to Computation: Interactions

The simulation of morphogenetic systems leads to a chicken-and-egg situation
between the processes taking place in a space and the modification of the space due
to these processes. This problem has been pointed out by A. Turing in his seminal
study of morphogenesis [54].
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In general relativity, a similar issue occurs where the mass moves along geodesics
while spacial geometry is defined by the distribution of the mass. Physicists achieved
to deal with the interdependence between mass and space through the concept of
causality in a space-time structure. In this section, we propose to transpose this idea
into computations.

13.2.1 Spatial Structure, Causality and Interaction

Space-Time and Causality

To address the interdependence problem, a classical solution consists in considering
a space-time as a manifold M endowed with a differentiable structure with respect
to which a metric g is defined. Then a causal order is derived from the light cones of
g. However, it has been known for some time that one can also go the other way [26,
29]: considering only the events of space-time M and an order relation ≺ such that
x ≺ y if event x may influence what happens at event y, it is possible to recover
from ≺ the topology ofM, its differentiable structure and the metric g up to a scalar
factor [5]. Moreover, it can be done in a purely order theoretic manner [30].

The causal relation ≺ is regarded as the fundamental ingredient in the description
of the systemevolution, the topology andgeometry being secondary in the description
of the dynamics. As advocated by the causal set program developed by Sorkin et
al. [40, 41], this approach is compatiblewith the idea of “becoming”,making possible
to see a system more naturally as a “growing being” than as a “static thing”, a
mandatory characteristic of genuine morphogenetic processes.

Causality and Interaction

A similar path can be followed for the development of a framework suitable for the
computer modeling of morphogenesis. The idea is to describe the evolution of the
system as a set of interactions (read: computation). These interactions entail a causal
relation. In this way, starting from the set of potential entities in the system and from
a set of interactions acting on these entities, one may reconstruct incrementally the
spatial structure of the whole system as a byproduct of the causal structure of the
system’s interactions (computations).

Focusing on interactions rather than on the spatial background in which the evo-
lution takes place is a solution to the problem of describing morphogenetic processes
as dynamical systems. In this view interactions are local by definition. In the manner
of the aforementioned causal relation ≺, interactions are regarded as the fundamen-
tal ingredient in the description of the system evolution, the topology and geometry
being secondary.

The study of causality in computations can be traced back at least to the sixtieswith
the development of Petri nets, where an event (i.e., firing of an enabled transition) is a
local action andwhere there is a clear notion of event independence. Since, the subject
has been extensively studied, for example with the notion of event structure [56]
whose intersection with causal sets in physics has been noticed [35].
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13.2.2 Computing with Interactions

To illustrate the previous idea in an algorithmic context, let us revisit a classical
algorithm, the bubble sort, by considering first the interactions at work, and then by
trying to reconstruct a data structure from them.

Mathematical Notations

The set of functions (resp. total functions) from a domain D to a range R is written
D → R (resp.D ↪→R). If s ∈ D → R andD′ ⊆ D, then s|D′ is the restriction of s toD′.
The expression [u1 → a1, . . . , un → an] is an element s of {u1, . . . , un} ↪→{a1, . . . ,
an} such that s(ui) = ai. The expression s · s′ denotes a function s′′ of domain
dom(s) ∪ dom(s′) such that s′′(u) = s′(u) if u ∈ dom(s′) else s′′(u) = s(u). Given
a set D = {u1, u2, . . . } we form the set of formal elements D̂ = {̂u1, û2, . . . }. Let
e be an expression where the elements of D̂ appear as variables and let s be some
function ofD ↪→R, e[s] denotes the evaluation of expression ewhere all occurrences
of û are replaced by s(u) for all u ∈ D.

The “memory” where the data are stored is specified as a set of places named
positions. A position plays the role of the spatial part of an event in physics. By
denotingV the set of values that can be stored, a state of a computation is represented
by a total function s from a set of positions to V . Let P = dom(s) be the set
of positions in some state s, elements of P̂ can be used in some expression e as
placeholders replaced by their associated values in e[s].
Interactions as Rules

An interaction is defined by a reciprocal action between positions. The effect of the
interaction is to change the values associatedwith the involved positions. Because the
spatial structure can be dynamic, for a given interaction I we consider a set lI of input
positions and a set rI of output positions. We do not require lI ⊆ rI (meaning that
some positions may appear during the interaction), nor rI ⊆ lI (meaning that some
positions may disappear during the interaction). Finally, an interaction is guarded by
some condition, that is a Boolean expression CI , which controls the occurrence of
the interaction. We will write an interaction I as a rule

lI / CI −→ RI

where RI is an expression to be evaluated to a function of rI ↪→V .
The semantics of an interaction is as follows: an interaction I may occur in a state

s if and only if CI [s] evaluates to true. Then, the result of the interaction is

s|dom(s)\lI · RI [s]

The expression s|dom(s)\lI restricts s to the positions that do not take part into the inter-
action. This partial state is then augmented by the local result RI [s] of the interaction.
After the interaction the set of positions is given by (dom(s)\li) ∪ dom(RI).
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Bubble Sort As a Set of Interactions

For the sake of simplicity, we focus on sorting sequences of three numbers taken
in V = {1, 2, 3}. Initially, the sequence is encoded using three symbolic positions
p1, p2 and p3, so that for instance, the initial sequence [3, 1, 1] is represented by the
function:

s0 = [p1 → 3, p2 → 1, p3 → 1]

The elementary instruction at work in the bubble sort consists in swapping two
neighbor elements that are not well ordered. The algorithm can then be described by
the two following interactions:

I1 :{p1, p2} / (p̂2 < p̂1) −→ [p1 → p̂2, p2 → p̂1]
I2 :{p2, p3} / (p̂3 < p̂2) −→ [p2 → p̂3, p3 → p̂2]

In state s0, only I1 can occur since numbers 3 and 1 are not well ordered on positions
p1 and p2. The result of the interaction gives the sequence [1, 3, 1]:

s1 = s0|dom(s0)\lI1 · RI1 [s0]
= [p3 → 1] · [p1 → 1, p2 → 3]
= [p1 → 1, p2 → 3, p3 → 1]

Figure13.1 gives the state space generated by these interactions where a computation
is a trajectory going from bottom to top.

Interactions I1 and I2 alone do not modify the underlying set of positions. To
illustrate such a modification, let us consider the removal of duplicate values with
some additional interactions whichmerge neighbor positions sharing the same value:
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Fig. 13.1 The state space of interactions {I1, I2} with V = {1, 2, 3} andP = {p1, p2, p3} as set of
positions. We write abc for the function [p1 → a, p2 → b, p3 → c]. Starting from an initial state
s = a1a2a3, the final state of the computation must be s′ = aiajak such that {i, j, k} = {1, 2, 3}
and ai ≤ aj ≤ ak . There are |V P | = 33 = 27 states. One goes from one state to another by the
application of one interaction (edges are oriented from bottom to top). The branching from 321
shows the possibility to apply either I1 or I2 leading to a non-deterministic behavior
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I3 : {p1, p2} / (p̂2 = p̂1) −→ [p4 → p̂1]
I4 : {p2, p3} / (p̂3 = p̂2) −→ [p5 → p̂2]
I5 : {p1, p5} / (p̂5 < p̂1) −→ [p1 → p̂5, p5 → p̂1]
I6 : {p4, p3} / (p̂3 < p̂4) −→ [p4 → p̂3, p3 → p̂4]
I7 : {p1, p5} / (p̂5 = p̂1) −→ [p6 → p̂1]
I8 : {p4, p3} / (p̂3 = p̂4) −→ [p6 → p̂3]

Interaction I3 (resp. I4) expresses the merge of positions p1 and p2 into p4 (resp. p2
and p3 into p5) when they are labeled with the same value. Interactions I5 and I6
specify the sorting of values when p4 and p5 are labeled. Finally, I7 and I8 describe
the merge of positions into a unique position p6.

With these additional interactions, another outcome is possible from state s0 by
applying interaction I4:

s′1 = s0|dom(s0)\lI4 · RI4 [s0] = [p1 → 3, p5 → 1]

As expected, the set of positions is modified to {p1, p5}. The corresponding state
space is of course bigger than the previous one and exhibits more branching (i.e.,
non-determinism) but remains confluent.

The Spatial Organization of Positions

Although the set of positions comes without any structure, the interactions make a
specific use of it so that in general any position is not involved with all the others.
As a consequence, the interactions induce a notion of locality leading to a spatial
organization of the set of positions. This space can be made explicit by building the
minimal structure such that, for any interaction I , the elements of lI are “neighbors”.
Noticing that for an interaction I , the interaction also involves any subset of lI , the
neighborhood must be closed by inclusion. It turns out that this property defines a
combinatorial spatial structure called an abstract simplicial complex (ASC) [22].

An ASC is a collection K of non-empty finite sets such that σ ∈ K and τ ⊆ σ

implies τ ∈ K . The elements of K are called simplices. The dimension of a sim-
plex σ ∈ K is dim(σ ) = |σ | − 1 and the dimension of a complex is the maximum
dimension of any of its simplices when it exists. A simplex of dimension n is called
a n-simplex. A vertex is a 0-simplex. The vertex set of an ASCK is the union of all
its simplices, Vert(K ) = ∪σ∈K σ . An edge is a 1-simplex whose border consists of
two vertices. A graph is an ASC of dimension 1 built with vertices and edges. An
ASC of dimension 2 also contains triangular surfaces bounded by 3 edges. ASCs of
dimension 3 contain tetrahedrons bounded by four 2-simplices. And so on and so
forth.

LetI be a set of interactions. We call the interaction complex ofI , the smallest
ASC KI containing all the lI as simplices for I ∈ I . For the set of interactions
{I1, I2}, the associated interaction complex is:

K{I1,I2} = {{p1}, {p2}, {p3}, {p1, p2}, {p2, p3}
}
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{p1} {p2} {p3}
{p1, p2} {p2, p3}

{p1} {p2} {p3}

{p4}{p5} {p6}

{p1, p2} {p2, p3}
{p4, p3}{p1, p5}

Fig. 13.2 Examples of interaction complex: K{I1,I2} on the left and K{I1,...,I8} on the right

The complex is pictured on the left of Fig. 13.2. As expected for a bubble sort, the
induced spatial organization is a sequential 1-dimensional structure, here [p1, p2, p3].
The bubble sort without duplicate values gives raise to the interaction complex
K{I1,...,I8} pictured on the right of Fig. 13.2. The complex exhibits the four sequential
organizations that the system can take over time: [p1, p2, p3], [p4, p3] (after themerge
of p1 and p2), [p1, p5] (after the merge of p2 and p3), and [p6] (if the three values were
initially the same). Notice thatK{I1,I2} is a sub-complex ofK{I1,...,I8} since {I1, . . . , I8}
contains I1 and I2.

Asymmetry of Interaction

The interactions involved in the bubble sort are asymmetric. For example, the roles
played by p1 and p2 in I1 are not interchangeable so that I1 differs from:

I ′1 : {p2, p1} / (p̂1 < p̂2) −→ [p2 → p̂1, p1 → p̂2]

although lI1 = lI ′1 . In fact, using a set to track the input positions lI does not catch
all the information contained in the interaction. As a consequence, some different
sets of interactions may have the same interaction complex. For example, K{I ′1,I2} is
exactly the same asK{I1,I2}.

We can get round this issue by considering a directed spatial structure rather
than an ordinary ASC. The notion of directed graph exists, as well as the notion
of directed ASC [21] (direction in ASC differs from the notion of orientation for
dimension greater than 2, e.g., there are two orientations for a 2-simplex but three
directions). For the sake of simplicity, let us put aside the asymmetry issue and restrict
the formal descriptions to undirected structures.

13.3 An Interaction-Based Programming Language

Following the approach given above, sorting n elements requires n positions and
(n − 1) interactions, and sorting n elements without duplicate values requires
n(n + 1)/2 positions and

∑n
i=0 2i(n − i) interactions. However, these rules are pretty

similar and can be captured by some “meta-rules”. For example, the previous inter-
actions can be represented by the following generic rules:
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ρx,y :{x, y} / ŷ < x̂ −→ [x → ŷ, y → x̂]
ρ ′
x,y,z :{x, y} / ŷ = x̂ −→ [z → x̂]

These rules mean to denote a whole family of interactions that are obtained by
substituting positions for x, y and z. In fact, x, y and z are position variables instead
of actual positions. For example, interaction I1 is got by applying substitution [x →
p1, y → p2], that is, I1 = ρp1,p2 ; in the same way, I3 = ρ ′

p1,p2,p4 .
However, while some substitutions are desired, a lot of them are not. For example,

ρp1,p6 is definitively not part of the original specification of the bubble sort. Indeed,
the authorized substitutions have to respect some knowledge that was built implicitly
in the original interactions. In our example, x and y should stand for two positions
so that x is “before” y. As a matter of fact, this knowledge is the one captured by
the interaction complex. Thus, a necessary condition for a substitution of ρx,y (resp.
ρ ′
x,y,z) to be accepted is that set lρx,y (resp. lρ ′

x,y,z
) corresponds to a simplex ofK{I1,...,I8}.

This approach has been used to design the interaction-based programming lan-
guage MGS. In MGS, a computation is specified through sets of “meta-rules” called
transformations. Such a transformation is to be applied on a topological collection,
that is, a set of labeled positions equipped with an interaction complex. The appli-
cation is done by matching some positions in the collection which respect the inputs
and conditions of some rule of the transformation. The instance of the rule gives raise
to an interaction which modifies locally the state of the collection and possibly its
structure. In this section, the syntax of the language is briefly described and its use is
illustrated with a light survey of examples involving dynamic organizations (where
the set of positions is not fixed once and for all) and higher dimensional structures
(beyond graphs).

13.3.1 A Brief Description of the MGS Language

MGS provides topological collections, an original data structure for representing
the state of a system based on the topology of interactions, and transformations, a
rule-based definition of functions on collections for specifying the interaction laws
of the system.

Topological Collections

Topological collections are the unique data structure available in MGS. They define
the interaction structure of a dynamic system. They can also be seen as a field associ-
ating a value with each element of a combinatorial structure modeling the topology
of a space.

In the previous section, we focused on ASC to model the spatial structure. This
structure is the natural choice for the spatial constraint arising from the interactions.
However, other combinatorial structures extending the notion of ASC can be used
to get more concision and flexibility in the representation. In the MGS language, cell
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spaces [53] are used to subsume ASC and other kinds of spatial organization, so that
a topological collection is a labeled cell space.

Cell Spaces

Formally, cell spaces are made of an assembly of elementary objects called topo-
logical cells (cells for short). For the sake of simplicity, let us assume the existence
of a set of topological cells P together with a function dim : P ↪→N associating
a dimension with each cell. Cells σ ∈ P such that dim(σ ) = n are called n-cells.
Cells represent elementary pieces of space: 0-cells are vertices, 1-cells are edges,
2-cells are surfaces, 3-cells are volumes, etc.

A cell space K is a partially ordered subset of P , that is a couple K = 〈SK ,

≺K 〉 such that SK ⊂ P and ≺K is a strict partial order1 over S such that the
restriction of the dimension function on SK is strictly monotonic: for all σ, τ ∈
SK , σ ≺K σ ′ ⇒ dim(σ ) < dim(σ ′). If it exists, the dimension of a cell space is
the maximal dimension of its cells.

The relation ≺K is called the incidence relationship of the cell space K , and if
σ ≺K σ ′, σ and σ ′ are said incident. Contrary to ASC, the number of cells in the
boundary of a cell is not constrained.

We call closure (resp. star) of a cell σ the set Cl σ = { σ ′ | σ ′  σ } (resp. St σ =
{ σ ′ | σ ′ � σ }). Operator Cl is a closure operator that can be used to equip the set of
cells SK with a topology. Numerous operators can be defined to exploit the induced
space. The notions of face and (p, q)-neighborhood are especially used in MGS.
The faces of a cell σ are the cells σ ′ that are immediately incident: σ ′ ≺K σ and
dim(σ ′) = dim(σ ) − 1; σ is called a coface of σ ′ and wewrite σ ′ < σ . Two cells are
q-neighbor if they are incident to a common q-cell. If the two cells are of dimension
p, we say that they are (p, q)-neighbor. A (p, q)-path is then a sequence where any
two consecutive cells are (p, q)-neighbor.

Cell spaces are very general objects allowing sometimes unexpected construc-
tions. For example, an edge with three vertices in its border is a regular cell space.
Additional properties are often considered leading to particular classes of cell spaces,
such as the abstract cell complexes of A. Tucker [52], the CW-complexes of J. H.
Whitehead, the combinatorial manifolds of V. Kovalevsky [25], to cite a few. ASCs
also form a class of cell spaces. Figure13.3 shows an example of cell space.

Topological Collections

A topological collection C is a function that associates values from an arbitrary set
V with cells of some cell space (see Fig. 13.3). Thus the notation C(σ ) refers to
the value of cell σ in collection C. We call support of C and write |C| for the set
of cells for which C is defined. Set V is left arbitrary to allow the association of
any kind of information with the topological cells: for instance geometric properties
(V = {−1, 0, 1} for representing orientation or V = R

n for Euclidean positions) or

1ı.e. a irreflexive, transitive and antisymmetric binary relation on SK : for x, y and z in SK , we
have x ≺K y ≺K z ⇒ x ≺K z and we never have x ≺K y ≺K x.
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Fig. 13.3 On the left, the Hasse diagram of the incidence relationship of the cell space given in
the middle: it is composed of three 0-cells (c1, c2, c3), of three 1-cells (e1, e2, e3) and of a single
2-cell (f ). The closure of cell e1 is composed of e1, c1 and c2. The faces of cell f are e1, e2 and e3.
The cofaces of cell c1 are e1 and e3. On the right, a topological collection associates data with the
cells: positions with vertices, lengths with edges and area with f

arbitrary state of a subsystem (a mass, a concentration of chemicals, a force acting
on certain cells, etc).

The collection C can be written as a formal sum

∑
σ∈|C|

vσ · σ where vσ
def.= C(σ )

With this notation, the underlying cell space is left implicit but can usually be recov-
ered from the context. By convention, when we write a collection C as a sum

C = v1 · σ1 + · · · + vp · σp

we insist that all ci are distinct.2 Notice that this addition is associative and com-
mutative: the specific order of operations used to build a topological collection is
irrelevant. Using this notation, a subcollection S of a collection C is defined as a
collection forming a subpart of the sum: C = S + S′; subcollection S′ is then called
the complement of S in C and we write S′ = C − S.

The current implementation of MGS provides the programmerwith different types
of collections, namely seq, array, set, bag, etc. Actually, the topological collection
approach makes possible to unify various data structures as sketched in Sect. 13.4.2.

Transformations

Transformations of topological collections embody the concepts of interaction and
interaction complex introduced in Sect. 13.2 with the notion of topological rewriting.
A transformation T is a function specified by a set {r1, . . . , rn} of rewriting rules of
the form p => ewhere the left hand side (l.h.s.) p is a pattern and the right hand side
(r.h.s.) e is an MGS expression. For example, the bubble sort algorithm is defined in
MGS by:

2The formal sum notation is borrowed from algebraic topology where set V is taken with a commu-
tative group structurewhich gives an abelian group structure to topological chains and cochains [33].
See the elaboration in Sect. 13.5.
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trans bubble_sort = {
x, y / y < x => y, x;
x, y / y == x => x;

}

An application of a transformation rule on a collection C selects a subcollection S of
C matching with the pattern p that is then substituted by the subcollection resulting
from the evaluation of the expression e.

Patterns

Patterns are used to specify subcollections where interactions may occur. They
play the exact same role as lI and CI in the interaction notation lI / CI −→ RI of
Sect. 13.2.2. However, the cell space setting used in the definition of topological col-
lections requires a more elaborate tool for this specification instead of a simple set lI
of interacting positions (which is restricted to the simplicies of an ASC). Transfor-
mation rule patterns allow the programmer to describe the local spatial organizations
(and states) leading to some interactions.

Let us describe the core part of the pattern syntax which is based on three con-
structions summarized in the following grammar:

Π ::= id | Π Ω Π | Π / Λ

Ω ::= ε | < | > | ,

In this grammar, Λ represents an MGS expression, id corresponds to an identifier,
and ε denotes the empty string. The grammar can be described as follows:

Pattern Variable: An identifier x of id, called in this context a pattern variable,
matches a n-cell σ labeled by some value C(σ ) in the collection C to be trans-
formed.
The same pattern variable can be usedmany times in a pattern; it then always refers
to the same matched cell. Moreover, patterns are linear: two distinct variables
always refer to two distinct cells.

Incidence: A pattern p1 ⊕ p2 of Π Ω Π specifies a constraint ⊕ ∈ Ω on the
incidence between the last element matched by pattern p1 and the first element
matched by pattern p2. The pattern x < y (resp. x > y) matches two cells σx

and σy such that σx is a face (resp. coface) of σy. The lack of operator (ε) denotes
the independence of the cells (there is no constraint between them).
Binary interactions between two elements, say x and z, are frequent in models
and can be specified with the pattern x < y > z. Variable pattern y stands for
some k-cell making x and z (k − 1, k)-neighbors, e.g., two vertices linked by an
edge in a graph. Often, the naming of y does not matter and the syntactic sugar
x, z is used instead.
Although directed structures are out of the scope of this chapter, one maymention
that it exists a directed extension of cell spaces that is actually used in MGS. The
direction is encoded in the reading so that x > y is directed from x to y and will
not match the same subcollections than y < x in directed collections.
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Guard: Assuming a pattern p of Π and an MGS expression e of Λ, p / ematches
a subcollection complying with p such that the expression e evaluates to true.
We do not detail here the syntax of MGS expressions which is not of main impor-
tance but two elements have to be clarified. Firstly, in this chapter,3 function
application is expressed using currying as in functional programming: f e1 e2
means that function f is applied with two arguments e1 and e2. The benefit of
this syntax lies in the left associativity of the application so that feeding a binary
function with the first argument builds a unary function waiting for the second,
like in (f e1) e2. This principle extends to any n-ary functions. Secondly, any
pattern variable, say x, can be used in guard expressions (as well as in the r.h.s.
expression of a rule) where it denotes the label of the matched k-cell. Its faces
(resp. cofaces, resp. (k, k + 1)-neighbor cells) are accessed by faces x (resp.
cofaces x, resp. neighbors x).
SinceMGS is a dynamically typed language (that is, types are checked at run time),
types can be seen as predicates checking if their argument is of the right type.
Some syntactic sugar has been introduced to ease the reading of type constraints
in patterns so that the pattern x / int(x), matching a cell labeled by some
integer, can be written x:int. On the contrary, x:!int matches a cell labeled by
something but an integer.

For example, the pattern

v1 < e12 > v2 < e23 > v3 < e31 > v1
f > e12 f > e23 f > e31 / (e12 == e31)

matches the entire collection of Fig. 13.3with, for instance, the following association:

v1 �→ (0, 4) · c1 e12 �→ 5 · e1 f �→ 12 · f
v2 �→ (3, 0) · c2 e23 �→ 6 · e2
v3 �→ (−3, 0) · c3 e31 �→ 5 · e3

Rule Application

Let T = {r1, . . . , rn} be an MGS transformation. Following the interaction-based
computation model described in Sect. 13.2.2, the application of a rule p => e of T
on a collection C consists in finding some subcollection S of C matching pattern p
then replacing S by the evaluation S′ of e in C. One point not discussed earlier is the
choice of the rule(s) to be applied when a number of instances exist. This choice is
called rule application strategy.

The default rule application strategy in MGS is qualified maximal-parallel. It
consists in choosing a maximal set {S1, S2, . . . } of non-intersecting subcollections
of C each matched by some pattern of T . In this context, non-intersectingmeans that

3Since the expression syntax is secondary, the authors made the choice to use in papers an ideal
syntax that may differ from the syntax currently implemented (which may by the way change from
a major release to another).
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for any two subcollections Si and Sj, their supports check that |Si| ∩ |Sj| = ∅. The
application is then done in parallel as represented by the following diagram:

C = S1 + S2 + · · · + R⏐⏐⏐	 T

⏐⏐⏐	 ri1

⏐⏐⏐	 ri2

⏐⏐⏐	
T(C) = S′

1 + S′
2 + · · · + R

where eachS′
k results from the evaluationof eik andR = C − (S1 + S2 + · · · ) consists

of the untouched part ofC. Since it may exist different ways to decompose collection
C w.r.t. transformation T , only one of the possible outcomes (randomly chosen) is
returned by the transformation. The formal semantics is given in [47].

On the contrary, the strategy informally used in Sect. 13.2.2 is qualified asyn-
chronous since only one rule application is considered at a time. Its diagram is as
follows:

C = S + (C − S)⏐⏐⏐	 T

⏐⏐⏐	 r

⏐⏐⏐	
T(C) = S′ + (C − S)

The asynchronismmeans that two events cannot take place simultaneously. Between
the synchronous and the asynchronous strategy, there is considerable room for alter-
native rule application strategies.

For instance, asynchronism is often assumed for stochastic processes on popu-
lations where simultaneous events are unlikely (e.g., in Poisson processes). These
kinds of processes are often used for stochastic simulation, for example of chemi-
cal or biochemical systems of reactions. In this context, pure asynchronism is not
enough: a stochastic constant is attached to each reaction (that is, rule) and expresses
“how fast” it is. A continuous-timeMarkov chain can then be derived from the trajec-
tories generated by the iterations of the transformation.We name the continuous-time
extension of the asynchronous rule application strategy with stochastic constants, the
Gillespie rule application strategy after the name of D.T. Gillespie. Gillespie pro-
posed in [20] an algorithm for the exact stochastic simulation of well-stirred reaction
systems which is implemented in MGS. The MGS Gillespie strategy has been used in
different applications in integrative and synthetic biology, see for example [46, 49].

13.3.2 Reviews of Some Applications to Complex Systems

We advocate that MGS is adequate for the modeling and simulation of dynamical
systems. In this section, we show various examples that support this assertion. These
examples are only sketched to support our claim and the interested reader may refer
to the references given for the technical details.
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Fig. 13.4 Trajectory of a flock of 50 birds. Left plot the initial state where each bird has a randomly
chosen direction. Center plot the configuration after 300 iterations. Right plot after 900 iterations
of the transition function

Flocking Birds

In [18] the classical example of a simulation of a flock of birds has been considered.
The simulation is the direct implementation of a model of flocking birds proposed
by U. Wilensky and by the development of steering behaviors of boids (generic
simulated flocking creatures) invented by C. Reynolds [39].

Here, no creation nor destruction of birds happen, but the neighborhood structure
changes in time with the movements of the birds. This example uses the Delaunay
topological collection [32, 42]where the neighborhood structure is not built explicitly
by the programmer but is computed implicitly at run time using the positions of the
birds in aEuclidean space represented as labels of 0-cells in the collection. Figure13.4
illustrates three iteration steps of the simulation. The transformation corresponding
to the dynamics specifies three rules corresponding to the three behaviors described
by Wilensky: separation (when a bird is at close range of a neighbor, it changes
direction), cohesion (when a bird is too far from all its neighbors, it tries to join
the group quickly) and alignment (when the neighbors of a bird are neither too far
nor too close, the bird adjusts its direction following the average directions of its
neighbors).

Diffusion Limited Aggregation

Diffusion Limited Aggregation, or DLA, is a fractal growth model studied by two
physicists, T.A. Witten and L.M. Sander, in the 80s [57]. The principle of the model
is simple: a set of particles diffuses randomly on a given spatial domain. Initially one
particle, the seed, is fixed. When a mobile particle collides a fixed one, they stick
together and stay fixed. For the sake of simplicity, we suppose that they stick together
forever and that there is no aggregate formation between two mobile particles. This
process leads to a simple CA with an asynchronous update function or a lattice gas
automaton with a slightly more elaborated set of rules.
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Fig. 13.5 DLA on complex objects (topology and final state). On the left: a sphere with 18 parallels
and 24 meridians. On the right: a Klein’s bottle

The MGS approach enables a generic specification of such a DLA process which
works on various kinds of space [45]. Figure13.5 shows applications of the same
DLA transformation on two different topologies: it is an example of the polytypic [24]
capabilities of MGS.

Declarative Mesh Subdivision

Mesh subdivision algorithms are usually specified informally with the help of graph-
ical schemes defining local mesh refinements. For example, the Loop subdivision
scheme [28], working on triangular meshes, is described with the local rule

These specifications are then implemented efficiently in an imperative framework.
These implementations are often cumbersome and imply some tricky indices man-
agement. Smith et al. [38] asked the question of the declarative programming of such
algorithms in an index-free way that has been positively answered in [47] with the
MGS specification of some classical subdivision algorithms in terms of transforma-
tions (see Fig. 13.6).

Coupling Mechanics and Topological Surgery

Developmental biology investigates highly organized complex systems. One of the
main difficulties raised by the modeling of these systems is the handling of their
dynamical spatial organization: they are examples of dynamical systems with a
dynamical structure.

In [43] a model of the shape transformation of an epithelial sheet requiring the
coupling of a mechanical model with an operation of topological surgery has been
considered. This model represents a first step towards the declarative modeling of
neurulation. Neurulation is the topological modification of the back region of the
embryo when the neural plate folds; then, this folding curves the neural plate until
the two borders touch each other and make the plate becomes a neural tube (see
Fig. 13.7).
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Fig. 13.6 Results of the application of subdivision algorithms. From top to bottom: the Loop’s

algorithm, the Butterfly algorithm, the Catmull-Clark’s algorithm and the Kobbelt’s algorithm.

From the left to the right, the initial state then 3 iteration steps. These pictures have been generated

in MGS

Fig. 13.7 Simulation of a neurulation-like process in MGS: from the left to the right, a sheet of
epithelial cells is curving until the hems sew together to form a tube

Modeling the Growth of the Shoot Apical Meristem

Understanding the growth of the shoot apical meristem at a cellular level is a funda-
mental problem in botany. The protein PIN1 has been recognized to play an impor-
tant role in facilitating the transport of auxin. Auxin maxima give the localization of
organ formation. In 2006, Barbier de Reuille et al. investigated in [4] a computational
model to study auxin distribution and its relation to organ formation. The model has
been implemented in the MGS language using a Delaunay topological collection.
Figure13.8 shows the results of a simulation done in MGS of a model of meristem
growth.

Integrative Modeling

Systems biology aims at integrating processes at various time and spatial scales into
a single and coherent formal description to allow analysis and computer simulation.
Rule-based modeling is well fitted to model biological processes at various levels of
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Fig. 13.8 Results, at time steps 3, 18, 27, 35, 41 and 59, for the simulation of a virtual meristem
done by Barbier de Reuille in [3]. Red dots correspond to auxin and each primordium cell is shown
in a different color

Fig. 13.9 Results of an integrative model. Germinal cells are in dark gray and somatic cells in light
gray. a–c correspond to an initial population and its evolutions at logical time 43 and 62. Refer
to [48]

description. This approach has been validated through the description of variousmod-
els of a synthetic bacterium designed in the context of the iGEM competition [48],
from a very simple biochemical description of the process to an individual-based
model (see Fig. 13.9).

This model, as well as the previous one, aims at the modeling of an entire pop-
ulation (of cells, of bacteria) through an explicit representation of the individuals
with mechanical, chemical and biological (i.e., gene expression) behaviors, inte-
grated with the specification of entity/entity interaction and dynamic neighborhood
computation.

Algorithmic Problems

The use of MGS is not restricted to the modeling and simulation of complex systems.
Many other applications not given here have been developed. For example, purely
algorithmic applications include the Needham–Schroeder public-key protocol [31],
the computation of prime numbers using Eratosthene’s sieve, the normalization of
Boolean formulas, the computation of various algorithms on graphs like the com-
putation of the shortest distance between two nodes or the maximal flow, to cite a
few. Moreover, any computation described in an unconventional framework can be
programmed in MGS since the language unifies many models of computation as we
will see in Sect. 13.4.2. Detailed examples can be found on the MGS web page.4

4http://www.spatial-computing.org/mgs.

http://www.spatial-computing.org/mgs
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13.4 Generic Programming in Interaction-Oriented
Programming

While MGS was initially designed as a domain specific programming language ded-
icated to the modeling of dynamical systems with a dynamical structure, it allows an
elegant and concise formulation of classical algorithms (as illustratedwith the bubble
sort in Sect. 13.2.2). The main difference with other general-purpose programming
languages lies in its interaction-based style of programming. In this section, we out-
line the new perspectives on genericity opened by the interaction-oriented approach.

We advocate that the design of unconventional models of computation has an
impact not only in the study of alternative models of computation (with alternative
calculability and complexity classes) but may also impact questions raised in “clas-
sical programming languages”. This development offers also a link, investigated in
the next section, between the notion of data structure/traversal and the notion of
differential operators.

13.4.1 Polymorphism, Polytypism and Generic Programming

Genericity in a programming language is the crucial ability to abstract away irrel-
evant requirement on data types to produce, once and for all, a piece of code that
can be reused in many different situations. It is then a central question in software
engineering.

Several mechanisms have been proposed to support genericity. In Musser and
Stepanov’s approach [34], the fundamental requirements on data structures are for-
malized as concepts, a notionmore general than a type, with generic functions imple-
mented in terms of these concepts. The best known examples are the STL in C++ or
the Java Collection interface.

Let us take a look at the Java Collection interface. This interface is implemented
by all data containers of the Java standard API. Besides the usual container methods
(size, emptiness, membership, etc.), any Java Collection has to implement an iter-
ator over its elements to be compatible with the enhanced for loop syntax. Iterators
decouple data structure traversals from data types, which enables the definition of
the same algorithm operating on different data type.

This property has been formalized in type theory as polymorphism available in
many programming languages. For example, Parametric polymorphism [8] allows
the definition of functions working uniformly (i.e., the same code) on different types.
The uniformity comes from the use of a type variable representing a type to-be-
specified-later and instantiated usually at function application. For example, the
OCaml type declaration for “lists of something” is as follows:

type α list = Empty | Cons of α * α list

In this definition (specifying that a list is either empty or built from an element
prepended to a list), the type variable α can be instantiated by any types: α = int
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for a list of integers, α = string for a list of strings, α = β list for a list of lists of
something-abstracted-by-type-variable-β, etc. Any function acting on the structure
of lists independently of the content type has a polymorphic type. For example, the
classical map function applying some function f on each element of a list is defined
once and for all by:

let rec map f = function
| Empty -> Empty
| Cons (h, t) -> Cons (f h, map f t)

and is of type (α -> β) -> α list -> β list. This sole definition works for
any instance of type variables α and β.

We can go further by considering polytypism where the type of the container is
also abstracted. For example, consider the following type definition of binary trees:

type α tree = Leaf of α | Node of α tree * α * α tree

As for list, a map function can be defined on trees:

let rec map f = function
| Leaf e -> Leaf (f e)
| Node (l, e, r) -> Node (map f l, f e, map f r)

of types (α -> β) -> α tree -> β tree. Both map functions actually work the
same way: they transform all elements of type α in the structure by traversing it
recursively. This traversal can be specified by associating a combinator with each
constructors of the data type (Empty, Leaf, etc).

Generic programming as proposed in [23, 24] generalizes this idea by allowing to
program only one map algorithm (in our example, the map function is defined twice).
This approach is applicable for a class of types called algebraic data types (ADT).
Roughly speaking, ADT are specified inductively using the unit type, type variables,
disjoint union of types (operator | in the previous definitions), product of types
(operator *), composition of types, and a fixpoint operator. Generic programming
uses this uniformity to provide a way to express inductively polytypic algorithms for
ADT by associating a combinator with each of these data type constructions. Refer
to [23] for a detailed presentation.

13.4.2 From Data Structures to Topological Collections

In MGS, topological collections can be polymorphic in the sense mentioned above
since there is no constraint on the set of labels: the same cell space can be labeled
by integers, strings, or anything else [9]. In addition, a transformation relies on the
(local) notion of neighborhood which is constitutive of the notion of space without
constraining a particular (global) shape of space. In other words, the same trans-
formation can be used on any collection providing the programmer with a form of
polytypism.
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However, the spatial point of view goes beyond polymorphism and polytypism
as found in “classical programming languages”. The previous discussion makes
apparent that generic programming relies on abstracting away some information
on data type to keep the information relevant to data traversal. This can be explicit
through the notion of iterators in Java, or implicit through the notion of natural
homomorphism (combinator associated to a constructor) in ADT.

This information is alternatively expressed in term of space, where the notion
of (data-)movement find a natural setting. The spatial point of view provides both a
richer set of data structures than those described by the algebraic approach5 andmore
expressive mechanisms to express elementary movements (e.g., iterators impose an
ordering which can be detrimental).

In the following we investigate the idea that a data structure corresponds to a
topological collection with a specific kind of topology. The polytypism of MGS
transformations is presented together with some examples. In the next section, we
introduce a family of generic operators which are finally related with differential
operators considered in continuous computation.

Data Structures

In computer science, the notion of data structure is used to organize a collection
of data in a well organized manner. The need of structuring data is twofold: firstly,
programmers are interested in capturing in a data structure the logical relationship
between the data it contains. This is for example one of the primary idea behind
database tools like entity–relationship models, UML diagrams, or XML document
type definitions when used to specify how the represented objects are ontologically
related to each other (e.g., a book has an ISBN, a title, some authors, etc.). The data
structure becomes a model of some organization in the world.

Secondly, from a computational perspective, data structures are designed to effi-
ciently access the data. (In this respect, the art of database design consists inmodeling
consistently reality while being queried efficiently.) Algorithms are often expressed
as nested traversals of some structures. The choice of a data structure is then highly
coupled to the algorithm to be implemented. For example, the list structure defined
above allows a linear traversal of the data in order of appearance in the list, while the
tree structure allows the so-called prefix, infix and postfix traversals. In the object-
oriented programming paradigm, the iterator design pattern (mandatory for any Java
class implementing the Collection interface for example) can be understood as an
attempt to catch this notion of traversals.

MGS Collection Types

By confronting the concept of traversal with the concept of topological collection, it
is possible to retrieve the conventional notion of data structure in MGS. Themain idea
consists in extracting from each data structure a specific topology capturing the graph

5Incidentally ADT are restricted to tree-shaped structures while topological collections are able
to deal with a wider class of data structures; for instance, the generic handling of arrays, circular
buffers or graphs cannot be adequately done in the ADT framework.
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of its traversals: the nodes represent positions for storing the data and the edges are
defined so that two elements are neighbor in the collection (i.e., may interact) if they
are consecutive in some traversal of the data structure. Let us review some classical
data structures and their MGS interpretations. Each of them is associated with a
dedicated collection type corresponding to a specific (constrained) topology. Each
collection type comes with some syntactic facilities in the current implementation
of the language.

Sequences

As already said, such structures are linear, meaning that elements are accessed one
after the other. The associated topological structure is then a linear graph as the one
obtained in Sect. 13.2. These structures exhibit two natural traversals that we can
refer to left-to-right and right-to-left. Considering only one of these two traversals
leads to a directed structure similar to a linked list while considering both leads to
doubly linked list structures.

In its current implementation, MGS provides the programmer with two linear left-
to-right directed collection types: seq and array. They differ by the nature of the
underlying space; the former is a Leibnizian collection type where the structure is
generated by a specific relationship between the data (here the order of insertion)
while the latter isNewtonian6 where the structure is firstly specified (or allocated) and
then inhabited. The following example of MGS program illustrates this difference:

trans rem = { x / even (right x) => <undef> }

rem (1, 2, 3, 4, 5) � (2, 4, 5)
rem [| 1, 2, 3, 4, 5 |] � [| <undef>, 2, <undef>, 4, 5 |]

Transformation rem removes all labels of positions having an even number on its
right. The predicate right can be expressed as a straightforward expression involving
the generic comma operator “,”; it takes its specific meaning on sequence from the
underlying topology. In the case of a seq collection, the removal modifies the space
from a 5-node graph to a 3-node graph. In the case of an array collection, the
underlying space remains unchanged but the affected positions are left empty (i.e.,
without any label).

(Multi-)Sets

The main difference with linear structures is that sets are unordered collections, so
that when iterated, no order gets the priority. As a consequence, for any pair of
elements there exists at least one iteration making them neighbors. The obtained
topological structure is a complete graph.

6The qualifiers Newtonian and Leibnizian have been chosen after the names of I. Newton and G.W.
Leibniz who had completely different understanding of the concept of space: the former thought
space as a container, that is, an absolute space pre-existing to the bodies it contains; the latter
understood space as the expression of a relationship between bodies.
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In the current implementation of MGS, collection types set and bag are available:
bag collections allowmultiple occurrences of the same elementwhile set collections
do not.

Records

A record corresponds to a collection of data aggregated together in a single object.
Each data can be referred by a different field name. This is equivalent to a struct

construction in the C programming language. The elements of a record are not gen-
erally accessed one from the other (they are accessed from the whole record) leading
to consider an empty neighborhood between the data. The topological structure of
records is then a graph with no edge: each field is represented by an isolated vertex
labeled by its associated data.

Group Based Fields (GBF)

Algorithms on matrices often work by traversing data regularly by row and/or by
column. Forgetting what happens on the boundary, the induced topological structure
exhibits a very regular pattern where each element has four neighbors: its immediate
successors and predecessors on its row and column. Of course this reasoning can be
extended to any multidimensional arrays.

GBF are the generalization of multidimensional arrays where the regular structure
corresponds to the Cayley graph of an abelian group presentation. The abelian group
is finitely generated by a set of directions from an element to its neighbors (e.g.,
north, south, east and west for matrices) together with a set of relations between these
directions (e.g., north and south are opposite directions). GBF are a powerful tool that
allows the specification in few lines of complicated regular structures. Figure13.10
illustrates the specification of an infinite hexagonal grid using GBF.

1

3

4

2

a

c

b

Fig. 13.10 Infinite hexagonal grid generated by 3 directions a, b and c related by a + b = c. On
the right, a local view of the associated Cayley graph focused on the 4 positions marked in the grid
on the left. Each arrow represents the displacement from a position to another following one of the
directions or their inverses
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Unifying Natural Models of Computation

The previous paragraph shows that the notion of topological collection subsumes
a large variety of data structures. As a consequence, it appears that various natural
models of computation can be adequately described in the MGS framework simply
by choosing the right collection type and the right rule application strategy:

• Artificial Chemistry [2] corresponds to a spacewhere any two entitiesmay interact.
Wehave seen that this corresponds to a complete graph, hence to the set or bag col-
lection types. The application of transformation rules on these structures achieves
the same effect as multiset rewriting [10] (rewriting on associative-commutative
terms).

• Membrane Computing [14, 36] extends the idea of multiset programming by con-
sidering nested multisets (membranes) and transport between them. The corre-
sponding space can be represented as a multiset containing either ordinary values
and nestedmultisets. This example shows the interest to reflect the spatial structure
also in the labels, see [19]. The rule application strategy is usually the maximal-
parallel one.

• Lindenmayer Grammars [27] correspond to parallel string rewriting and hence to
a linear space and a maximal-parallel application strategy.

• Cellular Automata (CA) [55] and Lattice Gas Automata [50] correspond to
maximal-parallel rewriting in a regular lattice. Such a lattice can be easily specified
as a GBF collection type. For example the classical square grids with von Neuman
or Moore neighborhoods are defined in MGS by:

gbf NEWS = < N, E, W, S; W + E = S + N = 0 >
gbf Moore = < N, E, NE, SE; N + E = NE, E - N = SE >

13.4.3 Polytypism in MGS

Transformations allow the programmer to iterate over the neighbors of an element
(e.g., with the neighbors, faces and cofaces primitives) or over the pairs of
neighbor elements in a topological collection.

Since transformation patterns express interactions in terms of cells incidence in
full generality, the same pattern can be applied on any collection of any collec-
tion type, so that a transformation can be viewed as a polytypic computation in an
interaction-based style.

The following paragraphs present some examples of MGS polytypic transforma-
tions.

Map-Reduce in MGS

The MGS counterpart of the aforementioned polytypic map function can be imple-
mented as follows:

trans map f = { x => f x }
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In this declaration an extra-parameter f is expected so that map f is a transformation
applying f on each element of a collection. For example:

map succ (1,2,3,4,5) � (2,3,4,5,6)

In this example, f is set to the successor function succ so that the elements of the
collection are incremented by one.

In functional programming, the map function appears in conjunction with another
polytypic function,reduce. This function iterates over the elements of some structure
to build up a new value in an accumulator. It is parameterized by the accumulation
function. For example, reduce can be used to compute the sum of the elements of a
list of integers. The MGS counterpart of this function can be implemented as follows:

trans reduce op = { x, y => op x y }

This rule collapses two neighbor elements into one unique value computed from the
combination function op. Obviously this rule has to be iterated until a fixpoint is
reached to finally get the reduction of the whole structure. For example:

(reduce add) [fixpoint] (1,2,3,4,5) � (15)

sums up all the elements of a sequence. The application of the transfor-
mation (reduce add) is annotated by the qualifier fixpoint.

Bio-Inspired Algorithms

Numerous distributed algorithms are inspired by the behavior of living organisms.
For instance ant colony optimization algorithms use ants ability to seek the shortest
path between the nest and a source of food [12]. Such algorithms are often specified
as reactive mutli-agent systems where the individual behavior is defined indepen-
dently from the spatial organization of the underlying structure. In this respect, these
algorithms are polytypic and can be easily specified in MGS. We focus on two toy
but representative examples of such computations.

Random Walk

One of the key behaviors of agent-based distributed algorithms is a random walk
allowing agents to scatter everywhere in the space so that each place is visited at
least once by an agent with high probability. The expression of such a walk in MGS
is as follows:

trans walk agent empty = { p:agent, q:empty => q, p }

Transformation walk is composed of a simple rule specifying that if an agent has an
empty place in its neighborhood, it moves to that place leaving its previous location
empty. To get even more genericity the predicates for being an agent or an empty
place are given as parameters agent and empty. This rule is not deterministic since
a choice as to be done when several empty places surround the agent; in such a case,
one of these places is randomly chosen uniformly, ensuring no bias in the walk. This
transformation operates on any type of collection.
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Propagation

Another fundamental procedure consists in broadcasting some information in space.
This mechanism is at work in propagated outbreak of epidemics, in graph flooding
in networks or in the spread of fire in a burning forest. A simple MGS transformation
can implement this last example as follows:

trans fire on_fire to_fire to_ash = {
p:!on_fire / (neighbors_exists on_fire p) => to_fire p;
p:on_fire => to_ash p;

}

Two rules are given to (1) set into fire an unburnt place which is neighbor with a
burning one (primitive neighbors_exists checks for some neighbor of p where
predicate on_fire holds), and to (2) extinguish places in fire. Once again, the gener-
icity of this specification (especially of primitive neighbors_exists which visits
all the neighbors of an element whatever the collection type is) makes this transfor-
mation polytypic.

The genericity of these specifications allows the development of tools and tech-
niques operable in many different situations. For example, we have developed in [37]
the tracking of the spatial activity in such algorithms, leading to a generic optimized
simulation procedure usable with any collection type.

13.5 From Computation to Physics: Differential Calculus
in MGS

Cell spaces are defined in algebraic topology for a discrete (and algebraic) description
of spaces. Therefore, one can expect to find on these spaces the operators mathemati-
cians have imagined on more usual spaces, like differential operators. This is indeed
the case and the interested reader may refer to [11] for an introduction.

Topological collections are directly inspired by the notions of topological chain
and cochain built upon cell spaces, but with a weaker structure. In the previous
sections we have established a direct link between the notion of data structure and
the notion of topological collection, it is then tempting to investigate in the context
of data structures what a differential operator is. All the mathematical background
required to understand this relation is detailed in the Appendix.

In this section, we show how a set of operators can be derived as computation
patterns of MGS programs. These operators, which can be seen as movements of
data on data structures [15], inherit algebraic properties from differential calculus,
providing the programmer with the ability to express a program as a set of differential
equations.



330 A. Spicher and J.-L. Giavitto

13.5.1 Transport of Data

The main motivation of this section is to relate the formal definition of topological
collections to the discrete counterpart of differential forms as developed in [11].

As defined in Sect. 13.3.1, a topological collection C is a function associating
values from a set V with the cells of a cell space K . This structure is almost a
discrete form: a discrete form further constrains the set V to be equipped with a
structure of abelian group (i.e., with an addition operator +V ) and the cell spaceK
to be equipped with a structure of chain complex (i.e., with a boundary operator ∂).
Topological chains are the basic ingredient to define a boundary operator. As amatter
of fact, the boundary of a (n + 1)-cell is a n-chain, that is a function associating
integers with the n-cells of a cell space. These integers are used to represent the
multiplicity and the orientation of a cell in the complex. This operator is linearly
extended from cells to chains.

From now on, we consider that the set V of values of a topological collection is
an abelian group7 written additively +V , and that a boundary operator ∂ is defined
on its support cell space. Collections C are then forms. As functions on cells, they
can be linearly extended to n-chains of (K , ∂), so that:

C(n1.σ1 + n2.σ2 + · · · ) = n1C(σ1) +V n2C(σ2) +V . . .

where the σi are cells of K .
The application of a collection C on a chain c, usually written [C, c], leads to

consider a derivative operator d as the “adjoint operator” of ∂ defined by:

[dC, c] = [C, ∂c]

By duality, the same can be done to get a dual derivative operator d, called here
coderivative, from a dual boundary operator ∂ . Both operators are then related by
a correspondence operator ∗ analogous to the Hodge dual. All technical details are
given in Appendix.

The point is that the three operators d, d and ∗ act on topological collections
(forms), and can be defined as transformations parameterized by the group operator
+V and the boundary operators ∂ and ∂:

• the correspondence operator ∗ behaves like a map function and transforms the
value associated with a cell,

• the derivative operator d transfers values from cells to their cofaces, and
• the coderivative operator d transfers values from cells to their faces.

7In MGS, the set V of values is usually arbitrary with no meaningful addition. In such a case,
instead of working in V , one may consider the free abelian group 〈V 〉 finitely generated by the
elements of V . This group is in a way universal since any group on V can be recovered from an
homomorphism h : 〈V 〉 → V such that h(1.v) = v and h(g1 +〈V 〉 g2) = h(g1) +V h(g2).
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Fig. 13.11 Transport of values under the actions of differential operators: on the left, the derivative
operator where only some 1-cells are labeled; on the right, the dual derivative operator where only
the 2-cells are labeled (the action is represented on the primal mesh)

Figure13.11 illustrates these data movements. From the point of view of data move-
ments, the group operations can be interpreted as follows:

• Identity: the zero of V coincides with the absence of label. It can then be used to
deal with partially defined collection.

• Addition: is used to combine multiple labels moving to the same cell due to the
action of an operator. Examples of such collisions are pictured on Fig. 13.11. The
commutativity means that the order of combinations does not matter.

• Negation: this operator is essential to program the relative orientation8 between
cells and to get the nilpotence of the boundary operator (∂ ◦ ∂ = 0).

The three differential operators can straightforwardly be translated in MGS fol-
lowing the definitions given in Appendix. As an example, the derivative is defined
in MGS as follows:

trans derivative add mul zero inc = {
x => faces_fold (fun y -> add (mul (inc x y) y)) zero x

}

The transformation is parameterized by four arguments. The three first arguments
specify the considered abelian group structure9 over V , and function inc gives the
incidence number of a pair of cells (which defines the boundary operator). Transfor-
mation derivative works on each cell σ of a collection by summing up (add) all
the labels associated with the faces of σ (faces_fold) with respect to the relative
orientation between incident cells (inc).

13.5.2 Programs and Differential Equations

The previous operators are generic: they are polymorphic because they apply irre-
spectively of V (as soon as it is an abelian group) and polytypic because they apply

8Orientation is only a matter of convention. It is always possible to consider the opposite orientation
to change the sign of a value: for example, a negative flow labeling an edge represents a positive
flow going against the chosen orientation of the edge.
9Expression add v1 v2 evaluates the addition v1 +V v2 of two values, expression mul n v evaluates
the multiplication v +V · · · +V v︸ ︷︷ ︸

n times

of a value by an integer, and zero gives the identity element.
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on cell spaces of any shape. We qualify these operators as “discrete differential
operators” because they exhibit the same formal properties as their continuous coun-
terparts.

These basic operators can be composed to get more complex data transports.
By mimicking their continuous counterparts, they can be used as building blocs to
define more elaborated data circulation in the data structures, like gradient, curl,
divergence, etc. For example, we have proposed in [15] an MGS implementation
of the Laplace–Beltrami operator �, a general Laplacian operator, defined in our
notations by:

� = ∗  d ∗ d + d ∗ d∗

We have also shown that the straightforward translation of differential equations
results in effective MGS programs.

In the rest of this paragraph, we illustrate the approach on the modeling of two
classical physical phenomena: diffusion and wave propagation. However, the chal-
lenge at stake is not restricted to the generic coding of (the numeric simulation of)
physical models. We believe that the abstract spatial approach of computation, based
on the notion of interaction, opens the way to a new comprehension of algorithms
through the physical modeling of data circulation. To illustrate this idea, we present
in the last paragraph of this chapter an analysis of a system of differential equations
that exhibits a sorting behavior.

Programming of Differential Equations

Let us consider the modeling of two classical physical systems, the diffusion and the
wave propagation, given by the following equations:

U̇ = D�U V̈ = C2�V

whereD,C are respectively the diffusion coefficient and the wave propagation speed,
U, V stand for the collections to be transformed, and U̇, V̈ are their first and second
temporal derivatives respectively. The behavior of the corresponding MGS programs
depends on the parameterization chosen for the differential operators. Figure13.12
shows simulations where the differential operators are parameterized so that the
abelian group of labels corresponds to the real numbers under the usual addition, and
the boundary, coboundary and correspondence operators encode a classical square
grid with step dx. The temporal derivatives are interpreted using the forward differ-
ence (e.g., U̇(t) = U(t+dt)−U(t)

dt for some time t and duration dt).
With these parameters, the MGS programs coincide with the numerical resolution

of the equations using a finite difference method. Some applications of Sect. 13.3.2
(neurulation, meristem growth and the integrative model) can also be derived from
a model originally described in terms of differential equations.

More complex numerical schemes (equivalent or improved compared to the usual
finite element method in terms of error control, convergence and stability) can be
expressed in this framework as shown in [11, 51]. All these works rely on the under-
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Fig. 13.12 Simulations of a diffusion and a wave propagation in MGS from the straightforward
implementation of the differential equations: diffusion with coefficientsD = 10−2 and dt = dx = 1
on top line, from left to right at time t = 0, 1000, 3500 and10000;wave propagationwith coefficients
C = 5.10−3 and dt = dx = 1 on bottom line, from left to right at time t = 0, 1500, 3000 and 4500

standing of physical laws with a discrete interpretation of the differential calculus;
MGS lends itself to the implementation of these theories.

Furthermore, the genericity of the spatial point of view makes possible to encom-
pass, in the same computational formulation, different physical models of the same
phenomena. For example, we can change the nature of the labels in V from real
numbers to multisets of symbols. While the former corresponds to concentrations
in the previous setting, the later can be interpreted as individual particles. In this
setting, the Laplacian operator � expresses the jump of particles from a position
to some neighbor in the collection. A multiplication between two collections with
same support specifies reactions between particles. We find here the basic ingredi-
ents ofmembrane computing that we havementioned earlier in Sect. 13.4.2: diffusing
between membranes and reacting.

Subsuming different kinds of models is fruitful to get refined models of complex
systems. Another application consists in coupling different models relying syntacti-
cally on the same differential description. For example, we have been able to simulate
a 1D hybrid diffusion system partitioned into subsystems each governed by its own
diffusion model, either the Fick’s second law or a random walk of particles both
specified by the same generic equation but parameterized by a specific (V ,+V ).
The interface between two models is simply driven by the conversion laws between
the involved parameters (here particles and concentrations). See Fig. 13.13 for an
illustration.

Programming with Differential Equations

Continuous formalisms are sometimes used to describe the asymptotic behavior of
a discrete computation. As an example, we have been able in [44] to provide a
differential specification of population protocols, a distributed computing model [1],
allowing us to study the asymptotic behavior of such programs.

We further believe that the formulation of classical (combinatorial, discrete) com-
putations through differential operators acting on a data structure, is able to bring new
understanding on old problems and to make a bridge with the field of analog com-
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t = 0 t = 10

t = 20 t = 30

t = 40 t = 50

Fig. 13.13 Hybrid diffusion in 1D. The initial distribution is given by 1
2 (1 − cos( 2πxL )) for x ∈

[0,L]with L = 100. The system is divided into 4 parts: on intervals [0, 25] and [50, 75] the diffusion
is governed by the Fick’s second law (FL) solved by a finite differencemethodwith space stepΔx =
5 and time step Δt = 1; on intervals [25, 50] and [75, 100] the diffusion is governed by a discrete
uniform random walk (RW) with space step δx = 0.5 and time step δt = 0.1. The correspondence
between the two models is given by a unit of matter in FL for 104 particles in RW. The figures
give the states taken by the system at times t = 0, 10, 20, 30, 40 and 50 for a diffusion coefficient
D = 10

putation. In this perspective, a computation is seen as a dynamical system (see [17]
for an application in the field of autonomic computing).

To illustrate this point, we elaborate on an example introduced by R.W. Brockett
about the computational content of the systems of ordinary differential equations of
the form Ḣ = [H, [H,N]] where H and N are symmetric matrices and [·, ·] is the
commutator operator [6, 7]. It has been shown that by choosing appropriately N and
the initial value of H, the system is able to perform many combinatorial algorithms,
like sorting sequences, emulating finite automata or clustering sets of data.10

In the case of sorting, the system corresponds to a non-periodic finite Toda lattice,
a simple model for a one-dimensional crystal given by a chain of particles with

10http://hrl.harvard.edu/analog/.

http://hrl.harvard.edu/analog/
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nearest neighbor interaction. The equations of motion of a particle are given by:

{
ṗi = e(qi−1−qi) − e(qi−qi+1)

q̇i = pi
i ∈ [1..n]

where qi is the displacement of the ith particle from its equilibrium position, and pi is
its momentum. To integrate the system, one uses the following change of variables:

ui = −1

2
pi vi = 1

2
e(qi−qi+1)/2

giving the following system:

{
u̇i = v2i − v2i−1
v̇i = 2(ui+1 − ui)vi

i ∈ [1..n]

The behavior of this system is as follows: starting from an initial sequence of values
ui(0) (and small non-zero values for the vi(0)), the ui(t) asymptotically converge to
si where si is the ith value in the sorted sequence of the ui(0).

This system can be specified in the differential setting of MGS by:

{
U̇ = ∇(V 2)

V̇ = 2(∇U)V

where U and V are coupled topological collections defined on the same one-
dimensional cell space, and ∇ is a gradient-like operator inducing the direction
followed by the sort.

From this specification, many applications can be derived. Obviously the original
formulation can be retrieved when the underlying cell space is a sequence and labels
are real numbers. By understanding literally the specification as a usual system of
differential equations, the implementation computes the sorting of a continuous field.
In fact, the formulation can be interpreted in n dimensions giving raise to a fully
polytypic specification of sorting in several dimensions. By relying on genericity
and by switching the labels from numbers to sets of symbols, the system turns to
be a distributed sorting algorithm in the artificial chemistry style. See Fig. 13.14 for
illustrations.

13.5.3 Future Research Directions

The development presented here only scratch the surface of the subject and many
works remain to be done to investigate and to understand the contribution of the
differential formulation in MGS. For example, while the development of MGS has put
emphasis on the spatial structure induced by the interactions, the temporal aspects
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Fig. 13.14 Different applications of the Brockett’s analog sort in MGS. a presents the results
of an MGS simulation of the original system sorting the sequence [1000, 2000, 3000, 4000] into
[4000, 3000, 2000, 1000]. Time flows from left to right; each curve in a plot shows the evolution
of an element of the sequence. b–d show 3 runs of the same system in the artificial chemistry
interpretation.While the original system is deterministic, the chemical version is stochastic (relying
on the Gillespie rule application strategy) and exhibits a wide variety of trajectories; however almost
all runs converge to the correct sorted sequence (with more or less accuracy). e–f illustrate the sort
of continuous fields respectively in 1D (on the left, the space-time diagram of the sort; on the right,
states of the system after 0, 100, 1000 and 10000 steps of simulation) and 2D following the x-axis
(from left to right, states of the system after 0, 100, 200 and 3000 steps of simulation)



13 Interaction-Based Programming in MGS 337

have been relegated to the choice of the rule application strategy. In differential
calculus, time is considered homogeneously with space with the use of a temporal
derivative (written Ẋ in the previous differential equations) revealing the complex
and algebraic nature of time in computation. A future work must relate the dot
operator with the causal structure mentioned in Sect. 13.2 and revisit the concept of
rule application strategy in consequence. In the previous example, the transport of
data seems more effective to express patterning rather than structural evolution. The
handling of dynamical structures with the sole use of the MGS differential operators
remains an open question.

Appendix

This section introduces some elements of algebraic topology and discrete differential
calculus used in Sect. 13.5. Algebraic topology (and more especially homology)
extends the notion of cell space with an algebraic structure. The key ingredients of
this extension are the so-called topological chains and boundary operators.

Topological Chains

Given a cell spaceK and a non-negative integer n, topological chains of dimension
n (or n-chains) are the elements of the free abelian group Cn(K ) finitely gener-
ated by the n-cells of K . A chain c ∈ Cn(K ) can be understood as a function of
SK ↪→Z null everywhere but on a finite set of n-cells ofK . Consequently they can
be represented by finite formal sum of the form:

c = c(σ1).σ1 + · · · + c(σp).σp =
∑

σ∈SK
c(σ ).σ

where {σ1, . . . , σp} is the set of cells of K where c is not null.
Topological chains can be interpreted in various ways. They provide a mean to

count the cells of a cell space; the possibility to count cells negatively allows to
consider orientation of cells. Topological chains are sometimes defined with values
in an arbitrary group.11 Here we restrict ourselves to the group Z.

Boundary Operators

By definition, cell spaces cannot take into accountmulti-incidence, that is the number
of times a cell is incident to another. A solution [53] consists in considering the
incidence numbers iτσ for any pair of cells σ and τ , so that:

11The group of n-chains with values in an abelian group G is denoted Cn(K ,G). One can show
that Cn(K ,G) ∼= Cn(K ) ⊗ G where ⊗ denotes the tensor product of groups.
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∀σ ∂σ =
∑
τ<σ

iτσ .τ ⇒ ∂c =
∑

σ

c(σ )∂σ

Of course, iτσ = 0 if σ and τ are not incident, and iτσ can be negative to take orientation
into account. The operator ∂ is linearly extended to any chain of Cn(K ).

Homology uses the operator ∂ to study holes in a cell space. In such a case, the
operator is called a boundary operator and has to respect the nil-potent property:
∂ ◦ ∂ = 0, which can be interpreted as “the boundary of a boundary is empty” or “a
boundary has no boundary”. Such a boundary operator gives raise to a mathematical
structure called a chain complex:

C0(K )
∂←−−− C1(K )

∂←−−− . . .

Discrete Forms and Derivative

The discrete counterpart of differential forms coincides with the notion of cochain
[11]. The set of discrete forms of dimension n (or n-forms12) over a cell-spaceK with
values in an abelian group G consists of the group homomorphisms of Cn(K ,G) =
Hom(Cn(K ),G) from n-chains to the group G. This set inherits naturally the group
structure of Cn(K ) and its elements can be uniquely specified by the value of G
they associate with each cell ofK . Like chains, forms can be represented by formal
sums with a slight difference, the sum can be infinite. For example, the action [F, c]
of a n-form F on a n-chain c works as follows:

[g1 · σ1 + g2.σ2 + g3.σ3, 2.σ1 − 4.σ3] = 2g1 − 4g3

where the gi are elements ofG. This application is the discrete analogue of integration
of forms on some domain represented by a chain.

The derivative dF of a n-form F is then defined to implement a discrete Stokes’
theorem, that is, dF is the (n + 1)-form adjoint of the boundary operator with respect
to application:

∀c [dF, c] = [F, ∂c] ⇒ dF =
∑

σ

(∑
τ<σ

iτσ F(τ )

)
· σ

Informally the derivative dF associates with a cell σ the sum of the values associated
with the incident cells of σ in F with respect to the incident numbers. One can show
easily that d ◦ d = 0 leading to the mathematical structure of cochain complex used
in cohomology:

12We choose the term “form” instead of “cochain” in reference to the work of Desbrun et al. [11]
about a discrete counterpart of differential calculus. However our concern is more symbolic com-
pared to the numerical issues investigated in discrete differential calculus.
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C0(K ,G)
d−−−→ C1(K ,G)

d−−−→ . . .

Duality

Since a cell space is a partially ordered set, one may consider its inverse order. With
this respect, one associates with any cell spaceK a cell space K , called the dual of
K , as a formal copy ofK where the incidence relationship is reversed. By referring
by σ to the copy of σ in K , we get

∀σ, τ  σ ≺ τ ⇔ τ ≺ σ

When K is of dimension n, so does K and dim(σ ) = n − dim(σ ).
Like any cell complex, K can be equipped with a boundary operator ∂ and

its dual derivative operator d, so that, considering a well chosen correspondence
operator ∗ between the primal and dual forms, we get the following diagram:

. . .
∂←−−− Cp(K )

∂←−−− Cp+1(K )
∂←−−− . . .

. . .
d−−−→ Cp(K ,G)

d−−−→ Cp+1(K ,G)
d−−−→ . . .

∗
⏐⏐⏐	
�⏐⏐⏐ ∗ ∗

⏐⏐⏐	
�⏐⏐⏐ ∗

. . .
d←−−−− Cn−p(K ,G)

d←−−−− Cn−p−1(K ,G)
d←−−−− . . .

. . .
∂−−−−→ Cn−p(K )

∂−−−−→ Cn−p−1(K )
∂−−−−→ . . .

In this presentation, the choice of ∂ (i.e., of the incidence numbers iστ of K ) and
the correspondence operator ∗ (as well as the group G) are left as parameters since
it depends on the application. For example, while [53] chooses iστ = iτσ , [11] uses
iστ = −1dim(σ )iτσ . Moreover the correspondence operator takes an important place
in the discrete calculus of [11] as it corresponds to the discrete counterpart of the
Hodge operator.
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Chapter 14
Cellular Automata in Hyperbolic Spaces

Maurice Margenstern

Abstract The chapter presents a bit more than fifteen years of research on cellular
automata in hyperbolic spaces. After a short historical section, we remind the reader
what is needed to know from hyperbolic geometry. Then we sum up the results which
where obtained during the considered period. We focus on results about universal
cellular automata, giving the main ideas which were used in the quest for universal
hyperbolic cellular automata with a number of states as small as possible.

14.1 Introduction

The first cellular automaton in the hyperbolic plane was devised in 1999, in a join
paper with Kenichi Morita, see [42]. This paper strikingly showed the possibility to
solve NP-problems in polynomial time, a property which was anticipated by [48], a
paper the authors of [42] were not aware of. It is important to remark that in contrast
with [48], the paper [42] provided an explicit implementation of the process: namely,
the authors constructed a cellular automaton based on a tessellation of the hyperbolic
plane based on the regular convex pentagon with right angle: the pentagrid, see
Sect. 14.2.

In 2001, the author found a new, very easy way to implement cellular automata
in the hyperbolic plane. He found a coordinate system of the tiles of the pentagrid
which allows to find a path from the tile to a specific one fixed in advance and once
for all, the computation of the path being in a linear time in the size of the coordinate.

The results which where obtained from this point can be divided into four parts:
complexity results about computations performed with hyperbolic cellular automata,
see Sect. 14.3.2, universality results for this model of computation, see Sect. 14.4,
theoretical results about tilings in the hyperbolic plane and cellular automata in
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this setting, see Sect. 14.3.3, and a few possible applications in three directions, see
Sect. 14.3.4.

14.2 Hyperbolic Geometry: What to Know

In this section, we start with a very short look on the history of hyperbolic geometry,
see Sect. 14.2.1. Then, we present it through one of its most popular model, Poincaré’s
disc, see Sect. 14.2.2. Then we more precisely look at tilings in hyperbolic spaces,
see Sect. 14.2.3 and them at three of them, two ones in the plane, see Sect. 14.2.4 and
the last one in the space, see Sect. 14.2.5.

14.2.1 A Remarkable History

The history of hyperbolic geometry goes back to Euclid himself. It can be the concern
of a whole book. By the way, the author wrote a popularization book on the topic,
see [41], in French.

The cause of the history lies in the parallel axiom of Euclidean geometry. In his
Elements, see [4], Euclid remarks that some objects cannot be defined otherwise than
naming them in natural language. On the same line, he states several axioms in order
to fix obvious properties which cannot be proved without some circularity. The first
properties in Euclid’s line are simple properties which do not raise objection. His
last axiom says that in the plane, from a point P out of a line �, there is precisely
one parallel to � which passes through P. Euclid’s formulation is equivalent to the
just here formulated one but it is not that. It is a more complex statement, see for
instance [4, 41]. Later on, we shall call it Euclid’s axiom, EA for short. Around two
centuries after the writing of the Elements, Posidonius stated another property which
is equivalent to Euclid’s axiom. Still five centuries later, Proclus thought to have
proved Euclid’s axiom. In fact, he found a new property which is equivalent to EA.
This started a more than one thousand year search in order to prove EA from the other
axioms of the Elements. We have no room here to give the details of this history.
It is a very interesting one, both for the personalities of the discoverers of the new
geometry, also for the difficulties met by the discovery itself in order to be accepted
by the mathematical community. It should never be forgotten that science is made
by men and women and that the scientific adventure involves all human passions
alike any other adventure: the best ones as well as the worst ones. The history of
hyperbolic geometry gives a full illustration of that.

What can be concluded from this history? In short, the first thousand year gave
people the feeling that they were running along a circle. This was not the case. As
we know the end of the story, we can say that they found a lot of properties which
are equivalent in the Euclidean geometry but not in the new one. In the 17th century,
somebody tried a new direction: assume a property which negates EA, and try to
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find out a contradiction. If this try works, it provides us with a proof of EA. Still
two centuries were needed to reach the end of this new track. Around the end of the
first third of the 19th century, two men, independently of each other and almost at
the same time found out the end of the new path. It was not a proof of EA: it was a
new geometry, the hyperbolic geometry, as it was called much later. For reasons we
cannot tell here, the discovery became known to the world more than thirty years
later, around the beginning of the last third of the 19th century. And that time, people
understood what was the meaning of this new geometry: it was a proof that there
is no proof for EA. Because models of this geometry were found in the Euclidean
one. Accordingly, you can either accept EA or you can reject it. In fact, this splits
geometry into two parts: the Euclidean one, and the new one. Soon, a third geometry
appeared, again motivated by some aspects of the Euclidean geometry, the so called
elliptic geometry. A bit later, generalizations of these geometries and new geometries
appeared, transforming the initial book of geometry into a big collection of books.
The biggest part still belongs to Euclidean geometry. A smaller part is devoted to
hyperbolic geometry.

Before leaving history, note that it was the first time in the history of mathematics
that people met with something which cannot be proved. As at that time logic started
to leave its Middle-Age beginnings and to reach its mathematical basis, the discovery
of hyperbolic geometry, appeared to be a natural example of what is an independent
axiom. The way to prove EA gave rise to a whole method, then a realm of methods
gathered into what is now called model theory: the models of hyperbolic geometry
found in the second half of the 19th century were the first models of a geometry
where EA is false. The discovery of hyperbolic geometry was an actual revolution in
the scientific world. It had echoes in philosophy too. The wave risen by the discovery
is not over: the birth of computer science can easily be traced to it through the logical
path we just described, were an intermediate stage was the foundation crisis which
is presently dormant but not at all solved.1

14.2.2 Poincarés Disc

Poincaré’s models appeared in 1872. There are two of them which are image of each
other through what mathematicians call a conformal transformation. One model
is a half-plane of the Euclidean plane. The other model is in an open disc of the
Euclidean plane. We take this latter model for the following reason. Euclidean models
of hyperbolic geometry necessarily introduce distortions. In our familiar Euclidean
world we can only see a very small part of the hyperbolic plane. The disc model gives
a more clear image of this property. It is also the case because Poincaré’s models keep
angles, which means that the Euclidean angles between images of secant hyperbolic
lines are the same as the hyperbolic angles. Accordingly, Poincaré’s disc can be
viewed as a window over the hyperbolic plane, like a window in a plane flying in the

1Not on fashion problems are not necessarily uninteresting problems.
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Fig. 14.1 Poincaré’s disc.
The lines s, p, q and m pass
through A which lies out of �.
The line s cuts �, the lines p
and q are parallel to �. The
line m is non-secant with �
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air, which focuses on the point at which we look. The rest of the plane vanishes at the
border of the disc: the closer we are to this border, the further we are from the point
which we look at. Figure 14.1 illustrates a particular situation in this plane. In order
to understand it, let us say that the points of the hyperbolic plane are represented by
the points of the open disc whose border is the green circle on the picture of Fig. 14.1.
Lines of the plane are either traces in the disc of diametral lines or of circles which
are orthogonal to the border of the disc.

The figure illustrates a point A which lies outside a line � of the plane. The line s
passes through A and cuts � in the hyperbolic plane. The lines p and q have a common
point with � which is on the border of the disc. From our definition, such a point
does not belong to the hyperbolic plane. We say that a point of the border of the disc
is a point at infinity. Note that a line has two points at infinity and that two distinct
points at infinity define a single line. We say that two lines which pass through the
same point at infinity are parallel. As shown by Fig. 14.1, from a point A out of
a line � there are always two distinct lines which are parallel to � and which pass
through A. They are distinct: p passes through a point at infinity of � and q passes
through the other point at infinity of �.

For our sequel, we just need an additional property.

Theorem 1 Two lines of the hyperbolic plane are non-secant if and only if they have
a common perpendicular.

Also, we need to define a particular transformation: the reflection in a line.
Consider a line �. If � is represented by a diameter, the reflection in � is the Euclidean
one. If � is represented by a circle S which is orthogonal to the border of the disc, the
image of a point P by reflection in � is the inverse P′ of P with respect to the circle S.
More precisely, if C is the centre of S and r is its radius, then P, P′ and C are on the
same Euclidean line d, P and P′ are on the same side of d and CP · CP′ = r2. The
line � is called the axis of the reflection. The inversion keeps angles in the Euclidean
plane. It is the reason why Poincaré’s model also keeps the Euclidean angles. In the
hyperbolic plane, a finite product of reflections in lines is called an isometry. In
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fact, the isometries of the hyperbolic plane, alike those of the Euclidean plane, are
products of at most three reflections in lines.

14.2.3 Tilings

We specialize our look at hyperbolic geometry by focusing on tilings, especially on
tessellations. Here, we define a tessellation by the following process:

Algorithm 1 Construction process of a tessellation:
1. Fix a regular convex polygon P: its sides are equal, its interior angles are also

equal.
2. Replicate P by refection in its sides.
3. Recursively replicate the images in their sides.

Call copy of P, any image obtained in this process as well as P itself. We say that
the process constructed by Algorithm 1 defines a tessellation based on P if and only
if all the copies of P cover the hyperbolic plane and any two copies either coincide
or their interiors do not meet. We also say that P generates a tessellation. Note that
this definition holds in any geometry where the notion of isometry is defined.

In the Euclidean plane, up to similarities, there are three tessellations only: they
are based on a square, on an equilateral triangle or on a regular convex hexagon.
In the hyperbolic plane, the situation is very different. First, there is no similarity:
triangles with equal angles are equal. This fourth case of equality of triangles holds in
hyperbolic geometry, of course not in the Euclidean one. Second, there are infinitely
many tessellations based on a regular convex polygon. From a theorem of Poincaré
concerning triangles, tessellations based on a regular convex polygon can easily be
reduced to triangles, one easily proves the following property:

Theorem 2 (Poincaré 1882) Let P be a regular convex polygon of the hyperbolic

plane. Let p be the number of its sides and let
2π

q
be its interior angle. Then the

tessellation based on P exists if and only if

1

p
+ 1

q
<

1

2
. (14.1)

The theorem says that any regular convex polygon of the hyperbolic plane gen-

erates a tessellation: indeed, for any such polygon P with p sides and with
2π

q
as

interior angle, the inequality (1) holds. Usually, the tessellation generated by P is
denoted by {p, q}. Note that q is also the number of copies of P around a vertex of a
copy in the tessellation. Note that the inequality in (1) entails that there are infinitely
many different tessellations based on a regular polygon in the hyperbolic plane: they
are all different in shape. Remark that the tessellations of the Euclidean plane are
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obtained if we replace the inequality sign in (1) by the equality sign. Then we easily
check that there are only three solutions for the corresponding equation in p and q.

14.2.4 The Pentagrid and the Heptagrid

Now, we focus on two particular tessellations of the hyperbolic plane: the tes-
sellations {5, 4} and {7, 3} which we call pentagrid and heptagrid respectively
(Fig. 14.2).

Note that in (1), q ≥ 3. When q = 3, the smallest value for p is 7. Note that p = 6
is the case of the Euclidean regular hexagon. When q = 4, the smallest value for p
is 4. Here too, p = 4 corresponds to a Euclidean figure: the square. Accordingly, for
the considered angles, the values of p we have are the smallest ones. In some sense,
they are the first cases to be investigated. Another interest lies in the following. From
a theorem of Coxeter and Moses, see [3], the tessellation {p, q} is a Cayley graph
of a group of displacements of the hyperbolic plane when p is even. When p is odd
this may not be the case: the pentagrid is an example as shown in [38]. When both
p and q are odd, the heptagrid is an example that, again, this may be not the case as
shown in [38] too.

14.2.5 The Dodecagrid

In higher dimension, in the Euclidean plane, the cube and hypercube always generate
a tessellation. In the hyperbolic 3D-space, there are four tessellations generated by
a regular convex polyhedron, and there are five of them in the hyperbolic 4D-space
generated by a regular convex polytope. In the hyperbolic nD-space, for n ≥ 5, there
is no tessellation generated in a regular convex polytope.

Fig. 14.2 To left the pentagrid. To right the heptagrid. Both tessellations are represented in
Poincaré’s disc
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Fig. 14.3 Schlegel
representation of a
dodecahedron. In
Sect. 14.3.1, we shall see
how the same projection can
be used to represent the
dodecagrid itself
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We shall consider a tessellation of the hyperbolic 3D-space: we call it the dodeca-
grid, defined by the signature {5, 3, 4} of the generating dodecahedron: 5 means that
its faces are pentagon, 3 is the number of pentagons meeting at a vertex of the dodec-
ahedron, 4 is the number of dodecahedra which share an edge in the tessellation. It
is shown that the dodecahedron is the natural generalization to the hyperbolic 3D-
space from the regular convex pentagon in the same way as it is in the Euclidean
3D-space. However, in the Euclidean plane there is a single regular convex pentagon,
up to similarities. In the hyperbolic plane, there are infinitely many regular convex
pentagons. The dodecagrid is based on the dodecahedron whose faces are pentagons
of the pentagrid. Such a dodecahedron is called Poincaré’s dodecahedron. To rep-
resent the dodecagrid we use a central projection on a face of a dodecahedron called
Schlegel projection, as illustrated by Fig. 14.3.

Note that there is another tessellation of the hyperbolic 3D-space based on a regular
convex dodecahedron. The signature of this tessellation is {5, 3, 5}. Its faces are also
regular convex pentagons, three of them meet at a point on the dodecahedron, but this
time, five dodecahedra share an edge in the tessellation. Of course, the angles involved
in this dodecahedron are different from the angles of Poincaré’s dodecahedron. They
are smaller. Accordingly, the new dodecahedron is bigger than Poincaré’s one. For
this reason, it is called the big dodecahedron. A study of the big dodecahedron can
be found in [51].

14.3 Results on Hyperbolic Cellular Automata

In this section, we look at the implementation of cellular automata and at the results
which were established in this new frame. The implementation itself rests on an
important result, see Sect. 14.3.1. Very striking properties appeared in the field of
complexity theory in this context, see Sect. 14.3.2. Also striking results were obtained
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in the field explored in Sect. 14.3.3 about tilings in the hyperbolic plane and cellular
automata in general. The section is concluded by Sect. 14.3.4 listing three possible
applications.

14.3.1 Implementation of Cellular Automata in Hyperbolic
Spaces

In this sub-section, we shall investigate the implementation of cellular automata in the
hyperbolic plane, see Sect. 14.3.1.1, and then the implementation in the hyperbolic
3D-space, see Sect. 14.4.1. In Sect. 14.3.1.1 we investigate this implementation in the
pentagrid and in the heptagrid. In Sect. 14.4.1, we investigate it in the dodecagrid.

14.3.1.1 Implementation in the Pentagrid and in the Heptagrid

The definition of cellular automata is based on three principles of homogeneity:
homogeneity of space, of time, of programs. This is the reason why, most often, the
cells of a cellular automaton are tiles of a tessellation and, again for homogeneity
reason, of a tessellation based on a regular convex polygon. The homogeneity in time
together with the computational conditions involves a discrete time represented by
non negative integers. The homogeneity of programs says that each cell is dotted
with a copy of the same finite automaton. As in cellular automata in the Euclidean
plane, at each tick of the clock, the cell updates its own state depending on its sates
and on the states of its neighbours. This is also why cellular automata are based on
tessellations: the neighbourhood of a cell must be everywhere the same.

Once the tessellation is chosen, the first question is to locate the cells. This problem
is particularly easy to solve in the Euclidean tessellations of the plane. They have a
very easy system of coordinates. Just a look at it. Most often, when working on the
Euclidean plane, people use cellular automata on the square grid. In most papers, the
tiling is identified by Z

2. You will probably never find the explicit identification of the
square grid with Z

2. In fact, the square grid has no specially marked tile. However,
one of them must be identified with (0, 0), which is called origin. Then, one of its
neighbours must be identified with (1, 0). If you have an analogous watch, which is
not a very mathematically axiomatic object, you can fix which second neighbour of
the origin is identified with (0, 1). If you have no analogous watch, you choose2 the
neighbour of the origin which is identified with (0, 1): this is also a way to fix the
orientation.

Now, let us look at the same problem in the hyperbolic plane, first, in the pentagrid.
In [43], a first attempt to fix coordinates in the pentagrid was proposed together

with an important property: the bijection of a quarter of the pentagrid with a finitely

2Don’t worry: nobody will ask you how you proceed for this identification. Such a question has no
place in a serious, objective paper.
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Fig. 14.4 The bijection
between the Fibonacci tree
and a quarter of the pentagrid

generated tree. The bijection was not clearly proved in that paper. A better proof is
given in [17]. A definitely clear one, I hope so, is given in [40]. A new system of
coordinates is given in [12], and I systematically used it afterwards. This system is
based on the fact that the tree which is in bijection with the tessellation is connected
with the Fibonacci sequence, see Fig. 14.4.

The connection with the Fibonacci tree can be seen on the figure. We have two
kinds of nodes, white ones which have three sons, black ones which have two of them
only. Now, number the nodes from the root, level by level and, on each level, from
left to right, and call coordinate of the node the representation of its number in the
Fibonacci basis. Remember that each positive number is a sum of distinct Fibonacci
numbers and that this representation can be made unique by requiring it should be
the longest one. Then, it appears that for each node, if ν is its coordinate, exactly
one of its sons has ν00 as its coordinate. We cannot prove this property here, see for
instance [17]. We also cannot give details. We just mention that from this property,
there is an important corollary.

Theorem 3 (Margenstern 2001, see [12]) There is an algorithm which computes the
path in the Fibonacci tree from the root to a node from the coordinate of the node,
which is linear time with respect to the length of the coordinate.

Now, from this it is easy to extend this system of coordinate to the whole pentagrid.
Note that around a central tile, fixed once and for all, it is possible to place five quarters
exactly so that the union of the tiles exactly gives the pentagrid, with no overlapping.

The same can be done for the heptagrid for a central tile and seven sectors, see
Fig. 14.5. A striking property is that the bijection between the Fibonacci tree and a
quarter of the pentagrid also holds for the same tree and an angular sector of the
heptagrid, see [17]. It is not possible here to give more details than Figs. 14.5 and
14.6.

We can now go back to the location problem in the pentagrid, or in the heptagrid.
Fix a tile which will be the origin. Its neighbours are identified with the root of
the Fibonacci tree. One neighbour of the root is identified with the leftmost son of
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Fig. 14.5 To left splitting the pentagrid into a central tile and five quarters. To right splitting the
heptagrid into a central tile and seven sectors

Fig. 14.6 To left a sector of the heptagrid. Middle how to delimit a sector of the heptagrid. Mid-
points of edges of heptagons of the heptagrid lie on a line, the mid-point line. A sector is delimited
by two rays supported by mid-point lines. By definition, the heptagons which have at least five
vertices in the sector belong to the sector. To right the bijection between the Fibonacci tree and the
sector illustrated by the left-hand side picture

the root. A common neighbour to the root and to the leftmost son is identified as
the middle son of the root or, if we make use of an analogous watch, the middle son
comes just after the leftmost one while counter-clockwise turning around the root. As
the Fibonacci tree is used both for the pentagrid and for heptagrid, the just mentioned
sequence of three choices works for both the pentagrid and for the heptagrid. This
allows us to identify these tessellations with a big tree whose root is the central tile
and whose sub-trees rooted at the sons of the root are roots of copies of the Fibonacci
tree: five, seven of them for the pentagrid, heptagrid respectively. Now, we can see
that this identification with the Fibonacci tree is very close to the identification of
the Euclidean square grid with Z

2.
The method we used to study the heptagrid and the heptagrid can be generalized to

all tilings {p, q} of the hyperbolic plane. This was performed in [17] where references
to papers can be found. It is interesting to note that this method can be generalized to
more general situations. In particular, it was applied to a tessellation of the hyperbolic
3D space and to another one of the hyperbolic 4D space, again see [17]. Before
turning to the study of the dodecagrid in the hyperbolic 3D space, let us mention
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Fig. 14.7 Splitting of the dodecagrid: the three types of regions

another interesting property. We noticed that both the pentagrid and the heptagrid
can be made in bijection with a few copies of the Fibonacci tree. This property can
be generalized to all tilings {p, 4} and {p+2, 3} with p ≥ 5. For each p, these tilings
are in bijection with a few copies of the same tree which is associated with another
recurrence relation attached to some polynomial with integer coefficients, see [17].

14.3.1.2 Localization of Tiles in the Dodecagrid

Now, we turn to the implementation in the hyperbolic 3D-space. Basically, we shall
perform the same method as what we did in the pentagrid. However, the 3D-context
will strongly change many things.

Let us see how we can manage things.
Remember that in order to represent a dodecahedron D, we used the central

projection from a point of D onto the plane supporting one face F of D. We can
imagine that the centre C of the projection lies on the line which is perpendicular
to F and that it passes through the centre of the pentagon constituting F: we call such
a line the axis of F. Also, we can imagine that the face which is opposite to F lies in
between F and C.

We shall use this representation to give a dynamic representation of the dodecagrid
itself which is illustrated by Fig. 14.7.

Let us explain this representation. Look at the leftmost picture of the figure.
Faces 1 and 5 of the dodecahedron D are coloured in green: we say that they are
shadowed. The meaning is that we forbid the reflection of D in these faces. We also
forbid the reflection of D in face 0 whose supporting plane is the plane onto which
the projection is performed, see Fig. 14.3, so that face 0 is also shadowed. On the
other faces, we allow the reflection of D in its faces. This is illustrated by drawing the
projection on the dodecahedron reflected in the face i, sayDi, on the plane supporting
this face. Now, on Di, we have to shadow the faces which are on the same plane than
those which are already shadowed and we also must shadow a new one. Take, as an
example, faces 6 and 10. Face 6 has a face on the same plane as face 5 and another
one on the same plane as face 1. Moreover, faces 6 and 10 share a side s. In D6

and in D10, each dodecahedron has a single face which shares s, say G6 and G10

respectively. Now, by definition of the dodecagrid, s is shared by four dodecahedra
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in the tessellation. We have already identified three of them:D itself,D6 andD10. The
fourth one is either the reflection of D6 in G6 or the reflection of D10 in G10. In order
to obtain a bijection, we forbid one reflection by shadowing the corresponding face
and we force the other. On the illustration,we can see that we shadowed G10. Now,
we successively perform the construction of the Di’s in this order: 2, 3, 4, 10, 9, 8, 7,
6, 11. On faces 2 and 3, we can put a dodecahedron with three shadowed faces as D.
The, on faces 4, 10, 9, 8, 7 and 6, we can put a dodecahedron with four shadowed
faces as we have seen for D10. At last, on face 11, we can see that D11 must have six
shadowed faces. This gives us three types of regions of the hyperbolic 3D-space if we
consider the region which is the intersection of the half-spaces defined by the planes
supporting the shadowed faces, taking the half-space which contains the considered
dodecahedron. These regions are denoted by O, H, T illustrated by the pictures of
Fig. 14.7 in that order. The figure shows us that the decomposition of the regions
represented by D10 and D11 do not involve new regions. From this, we deduce the
possibility to construct a finitely branched tree which is in bijection with an eighth
of the hyperbolic 3D-space illustrated by the leftmost picture of Fig. 14.7. From this
figure, we easily derive the following rules for constructing the tree:

O → O2H6T H → OH6T T → H5T

This splitting improves the one which is given in [17]. There, four regions are
involved. However, both splittings are very similar: they are connected with the
same algebraic number β, the greatest positive zero of X2 − 8X + 1. Representing
a suitable numbering of the tree, the same basis for representing the numbers of the
nodes allows us to define coordinates. These coordinates, as in the pentagrid allow
us to compute a path from the node to the root. However, this computation is cubic
in the dodecagrid while it is linear in the α-grids.

In fact, for implementing cellular automata in the hyperbolic 3D, the model which
will be used allow us to devise a much simpler implementation based on the pentagrid.
We postpone this representation to Sect. 14.4.

14.3.2 Complexity Results

We can define the hyperbolic P-class as the set of cellular automata in the pentagrid
or in the heptagrid, which work in polynomial time. We denote it by Ph. Define the
hyperbolic NP-class as the set of cellular automatic which, given the solution of the
problem, checks the solution in polynomial time. Denote it by NPh.

The main complexity result is the following property.

Theorem 4 (Iwamoto-Margenstern-Morita-Worsch 2002) [7]For cellular automata
either on the pentagrid or in the heptagrid, we have Ph = NPh= PSPACE.

This result was anticipated by [48] who announced the possibility to solve NP-
problems in polynomial time in the hyperbolic plane. In [43], an explicit cellular
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Fig. 14.8 Simulation of
non-deterministic hyperbolic
cellular automaton by a
deterministic one

automaton in the pentagrid was given to solve 3-SAT in polynomial time in the
hyperbolic space. Note that the authors of [43] were not aware of [48] when their
paper appeared. The results contains a proof that a non-deterministic hyperbolic
cellular automaton can be simulated by a deterministic one in polynomial time, in
fact in cubic time, see [7]. The proof is illustrated by Fig. 14.8.

Theorem 4 makes us conjecture that the complexity hierarchy for cellular automata
in hyperbolic spaces is much reduced compared to the classical one. It is confirmed
by the following result:

Theorem 5 (Iwamoto-Margenstern 2003 [8]) For complexity classes of cellular
automata in hyperbolic spaces, we have the following inclusions:

DLOGh = NLOGh = Ph = NPh = PSPACE

� PSPACEh = EXPTIMEh = NEXPTIMEh = EXPSPACE

Note that since this time, no new result was obtained on this line. I just mention [10]
which makes more precise what was written in [48]. Also, a few people considered
necessary to include space considerations in the definition of the complexity classes
like Ph or DLOGh. There is no reason why this condition of space would be included
in the hyperbolic case and not in the Euclidean case. If we accepted such a distinction,
it would ruin a possibility to prove that P �= NP. Indeed, due to Theorem 4, a path
for a proof of P �= NP could be to prove, on the assumption of P = NP that we can
construct an isometric embedding of a part of the hyperbolic plane in the Euclidean
one, which is not possible.

14.3.3 Application to Undecidability Results

The localization technique mentioned in Sect. 14.3.1 allows us to tackle general
theorems about cellular automata as well as problems about tilings in general. The
first direction is dealt with in Sect. 14.3.3.1 while the second one is dealt with in
Sect. 14.3.3.3.
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14.3.3.1 General Properties About Cellular Automata
in Hyperbolic Spaces

In this sub-subsection, we mention the theorems which are the hyperbolic analogs
of famous theorems on cellular automata in the Euclidean square grid. The first
theorem concerns the general characterization of cellular automata themselves. For
this purpose, people consider the transformation induced by a cellular automaton on
the object which is called the space of configurations. We remind the reader that a
configuration is the set of states on all the cells of the cellular automaton at a given
instant. In the Euclidean square grid identified with Z

2, the space of configurations
is QZ

2
where Q is the finite set of states of the automaton. Now, if c ∈ QZ

2
, denote

by c(x, t) the state of the cell at x at time t. When we do not consider the time, simply
the state of the cell at x, we denote it c(x). Denote by f the local transition function:
it indicates how the cell at x changes its state depending on c(x + V ) which gives the
states of all cells in x + V , where V is a neighbour of the origin. This allows us to
define the global transition function F defined by F(c)(x) = f (c(x + V )). Clearly,
F is a mapping from c ∈ QZ

2
into itself. Hedlund’s theorem says that a mapping

from c ∈ QZ
2

into itself is the global function of a cellular automaton if and only if it
is continuous and it commutes with shifts. Remember that a shift is a mapping from
Z

2 into itself of the form x �→ x + v, where v is a fixed element of Z
2. More-Myhill

theorem characterizes the surjectivity of the global function of a cellular automaton
by saying that such a function is surjective if and only if it is injective on finite
configurations, where a finite configuration is the restriction of a configuration to a
finite subset of Z

2.
What can be said for cellular automata on the pentagrid or on the heptagrid?

Call α-grid the pentagrid, heptagrid, depending on whether α is 5, 7 respectively.

With the localization performed in Sect. 14.3.1, we the α-grid with Fα = 1+
α∪
i=1

F,

where F is the Fibonacci tree and where
α∪
i=1

F denotes the union of α copies of

the Fibonacci tree. It is easy to endow Fα with a metric which ignores what is at
large from the origin. We call this metric the discrete metric. Then we can define the
global function of a hyperbolic cellular on the α-grid as the function F defined on
QFα by F(c)(x) = f (c(V (x))), where V (x) is the neighbourhood of x. We say that
a cellular automaton on the α-grid is rotation invariant if and only if f (c(V (x)))
is not change if we replace V by V ρ where V ρ is obtained from V by a circular
permutation. Indeed, the neighbours of x different of x share an edge with x so that
they can be numbered from 1 to α by counter-clockwise turning around x, the side 1
being the side to the father of x. We say that the origin is the father of the root and
we fix once and for all the side 1 of the origin. Then a circular permutation of V
boils down to a circular permutation on [1 . . . α]. At last, a shift on Fα is induced on
this space by a shift in the α-grrid which leaves the grid globally invariant. Then we
have:
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Theorem 6 (Margenstern 2008 [18]) A mapping from QFα into itself is the global
function of a rotation invariant cellular automaton if and only if it is continuous on
QFα endowed with the discrete metrics and it commutes with the shifts.

Note the additional hypothesis of rotation invariance which is not required for the
Euclidean square grid.

It is interesting to remark that if the analog of Hedlund’s theorem almost holds in
the hyperbolic case, it is no more true for the More-Myhill theorem as stated by the
following theorems. In the statements, if X is a cellular automaton, FX is its global
function.

Theorem 7 (Margenstern-Kari 2009 [24]) There is a cellular automaton A on the
α-grid such that FA is injective but FA is not surjective. There is also a cellular
automaton B on the α-grid such that FB is surjective but FB is not injective.

Theorem 8 (Margenstern-Kari 2009 [24]) There is a rotation invariant cellular
automaton on the α-grid which is surjective but not injective even on finite configu-
rations.

Note that in Theorem 8 we assume the stronger hypothesis of a rotation invariant
cellular automaton. The existence of a rotation invariant cellular automaton C on the
α-grid such that FC which would be injective but FC would be not surjective is still
open.

14.3.3.2 Undecidable Problems About Cellular Automata

It is know that the injectivity of the global function of a cellular automaton on Z
2

is an algorithmically unsolvable problem. This was proved by Jarkko Kari in 1994.
The same question may be raised for cellular automata on an α-grid. We have the
following result:

Theorem 9 There is no algorithm to decide whether the global function of a cellular
automaton on the heptagrid is injective or not.

As in the Euclidean case, the proof is very complex. It relies on the possibility to
build a plane-filling path for the hyperbolic plane. Figure 14.9 shows us an origin-
constrained plane-filling path. The path illustrated by the figure starts from a fixed
in advance origin.

For the proof of Theorem 9, we need a path which fills infinitely many larger and
larger parts of the hyperbolic plane, crossing each tile exactly once: it is not needed
that the path fills the whole plane with this property, see [23]. An origin-constrained
path is not enough for that purpose, but the path constructed in [23] is enough for
proving Theorem 9.
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Fig. 14.9 An origin-constrained plane-filling path in the heptagrid

14.3.3.3 About Tiling Problems

An important application of the localization technique is the proof that the tiling
problem is undecidable for the hyperbolic plane. The tiling problem consists in the
following. We are given a finite set of tiles called the prototiles such that by copies of
the prototiles we can tile the plane. By copies we define which isometries are allowed
for producing a copy of a prototile. By tiling we also mean that if the sides bear
decorations, the decorations match when the supporting edges belonging to different
tiles coincide. We can solve the tiling problem if, for any set of prototiles we can say
whether or not it tiles the plane. By a theorem of Berger, see [1], the tiling problem of
the Euclidean plane is undecidable. In 1971, Robinson raised the same question for
the hyperbolic plane, see [49], giving a solution for the origin-constrained problem
in 1978: in the origin-constrained problem, the initial tile is given. This problem was
solved in [19], in 2008. In fact, the proof was already published in [15, 16] in 2007:

Theorem 10 (Margenstern 2007 [15, 16, 19]) The tiling problem is algorithmically
unsolvable for the hyperbolic plane.

Figure 14.10 illustrates the tiling which was used as a basis ingredient for the proof
of Theorem 10. Note that the proof we gave in [15, 16, 19] proves a little bit stronger
result: this algorithmic unsolvability result is established for the heptagrid. If it holds
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Fig. 14.10 The tiling which allowed us to prove the algorithmic unsolvability of the tiling problem
in the hyperbolic plane

for the heptagrid, a fortiori, it cannot hold for any tessellation of the hyperbolic plane
and, still a fortiori for any tiling of the hyperbolic plane.

The technique used to prove Theorem 10 allowed me to solve connected theorems:

Theorem 11 (Margenstern 2008 [20]) The finite tiling problem is algorithmically
unsolvable for the hyperbolic plane.

Theorem 12 (Margenstern 2009 [22])Theperiodic tilingproblem is algorithmically
unsolvable for the hyperbolic plane, also in its domino version.

Consider a finite set of prototiles T together with an additional prototile b with
b /∈ T which is called the blank. A tiling of the plane with copies of tiles in T ∩ {b} is
said finite if and only if there are only finitely many copies of tiles in T . Theorem 11
says that no algorithm can tell us for a given finite set of prototiles different from b
whether this set of prototiles provides us with a finite tiling of the hyperbolic plane or
not. The Euclidean case was formulated in [9] where it was proved algorithmically
unsolvable.

The periodic tiling problem is a bit different question. Consider a finite set of
prototiles T . A tiling of the Euclidean plane with copies of tiles in T is said periodic
if it is globally invariant under two independent shifts. It is not clear how to define the
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notion of periodicity in the hyperbolic plane. As many authors do, we shall consider
that a tiling of the hyperbolic plane is periodic if it is globally invariant under a
non trivial shift. Accordingly, Theorem 12 says that no algorithm can tell us for a
given finite set of prototiles whether this set of prototiles provides us with a periodic
tiling of the hyperbolic plane or not. The Euclidean case was proved algorithmically
unsolvable in [5].

14.3.4 Possible Applications

This section is a kind of tribute that nowadays scientists have to pay according to
the scientific policy of too many countries, especially those of the EU. It may be
a consolation for European scientists to know that the US policy is not very much
wiser than the European one. The author considers that this tribute has a braking
effect on the development of science. On the long run, this effect may kill science
itself. However, as people usually do when they have to pay tribute, they try to
counteract especially by humour. It is said that scientists like humour, even in a
scientific publication...

This is why we propose here three applications of the previous sections. Please
note that the content of this subsection is a consequence of the studies described
in the previous sections. It is not at all the opposite situation. And so, let us give
place to fantasy and humour! We shall successively see a hyperbolic colour chooser,
see Sect. 14.3.4.1, then how to communicate between tiles in a hyperbolic tessella-
tion, see Sect. 14.3.4.2 and we conclude by the presentation of three keyboards in
Sect. 14.3.4.3: a French, a Japanese and a Chinese ones.

14.3.4.1 A Hyperbolic Colour Chooser

The chooser we present here, allows the user to select a colour in a display where the
colours are dispatched according to their hue and then to their intensity in the hue,
see [2].

Figure 14.11 illustrates the display presented by the colour chooser. The hues are
distributed among the seven sectors which are displayed around the central cell in
the right-hand side picture of Fig. 14.5. Inside a sector, the colours are displayed
according to their intensity which decreases as we go towards the border of the
Poincaré’s disc. Figure 14.12 illustrates the working of the chooser. Thanks to a few
keys of the keyboard, the user may choose to travel in the heptagrid. He/she may
decide to go towards the border, going from a tile to one of its sons or, it may go to
one of the two neighbours of the tile on the same level of the tree or it may decide
to go back, to the father of the tile. As we indicated in the very beginning, we take
advantage of the Poincaré’s model in which the centre represents the point of the
hyperbolic plane at which we look at.
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Fig. 14.11 The colour chooser

Fig. 14.12 How to use the colour chooser: when the black tile disappears, an indicator allows the
user not to be lost. Pictures from [33]

Consequently, in the chooser colour, the chosen colour is always the one which
is in the central cell.

In Fig. 14.12, we can see that the selected hue is blue and that we select lighter and
lighter blue hues. Note that, symmetrically, the black tile moves towards the border.
At some point, this black tile may be not observable in our representation of the
Poincaré’s disc and then, the user might be lost. But, fortunately, when it disappears,
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an arrow appears on the border in order to allow the user to go back to this cell by
’pulling’ it back to the central position.

Note that we have chosen the heptagrid for the colour chooser. There are two
reasons for that. Seven sectors allow a bigger choice than five one. Moreover, for the
eye, heptagons look like very much like hexagons so that the grid itself looks like
closer to a honeycomb which is more pleasant.

14.3.4.2 Communication Between Cells in the Hyperbolic Plane

Now, let us turn to the communication between cells of the α-grid. We shall find
there two well known characters in many scientific papers: Alice and Bob. We find
them during a visit in the hyperbolic plane. They are on the heptagrid. Alice is a very
absent-minded person. She lost the coordinate of her friend. What to do? Fortunately,
the heptagrid was recently endowed with a message system, see [14] with an account
on a computer experiment, see [30]. Accordingly, she sends a message to all tiles.
When the message will reach Bob, he will answer giving its coordinate together with
a message.

The idea of the system is simple and it works both in the pentagrid and in the
heptagrid, so that we shall use the terminology of an α-grid. The hardware system
is based on the location tools we have described in Sect. 14.3.1.1. At the software
level, the system is equipped a system of coordinates based on the numbering of the
sides of a tile. In each tile, the sides are numbered from 1 to α, starting from 1 and
increasing while counter-clockwise turning around a tile. Accordingly, for each tile,
it is enough to fix which side is the side 1. For the central tile it is fixed once and for
all. For the other tiles, it is the side to the father in the Fibonacci tree associated to the
sector containing the tile, the father of the root being the central tile. To facilitate the
message system, each side receives two numbers: the number it has in each tile, as a
side is shared by exactly two tiles. The order of the numbers is that of the message.
Such a couple of numbers is called an arc. The sequence of arcs leading from a tile A
to another tile B is called the absolute address of B with respect to A.

The diffusion of the message proceeds as follows. The sender considers itself as
the central cell and dispatch the message to its neighbours. A tile which receives the
message also receives its absolute address with respect to the sender. It also receives
the information of its status in the tree associated to the sender which is called the
relative tree. Remember that the status of a node is black, white if it has two, three
sons respectively. This protocol allows the message to reach all tiles exactly once.

When a tile T wishes to reply to the message, it has its absolute address with
respect to the sender. By reversing each arc and the order of the arcs, T gets the
absolute address of the sender with respect to itself. He/she sends the replying mes-
sage together with the absolute address which is used to reach the sender and which
is transmitted to the sender as the absolute address of T with respect to the sender.
Figure 14.13 illustrates this process.
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Fig. 14.13 To left the position of Alice in the heptagrid with respect to the centre. Middle the
message sent by Alice reached Bob. To right Bob answered to Alice

Fig. 14.14 The French
keyboard. The letters are
displayed around the central
cell
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14.3.4.3 Hyperbolic Keyboards

In this sub-subsection, we shall see the application of a common idea. The idea is
to use the pentagrid in order to display the symbols of an alphabet which is used by
the user to create his/her messages. The pentagrid is used for several reasons. The
first one is that the tiles of the pentagrid are bigger than those of the heptagrid. This
spares the reader to some efforts in order to have precise movement of the hand on
the screen of a tablet or of a smart phone. The second reason is the specificity of the
language, this is particularly useful for the Japanese and for the Chinese keyboards.

A French Keyboard

The French keyboard is interesting in this regard that the performance of such a
keyboard are a bit higher than the traditional keyboard of a cell phone. It is illustrated
by Fig. 14.14.

On the figure, we can see that the basic five vowels are the immediate neighbours
of the central tile. The other letters are alphabetically displayed sector by sector,
counter-clockwise around the tile and, in each sector from left to right, and level by
level. If the motion of the central cell is performed by keys, the farthest letters are
reached in three strokes. Figure 14.15 illustrates the selection of the letter q which
appears in the central tile.

A Japanese Keyboard

The Japanese keyboard is based on the use of hiraganas and katakanas which are
syllabic alphabets used for the phonetic transcription of the Japanese language. More-
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Fig. 14.15 To left the keyboard in its idle position. Middle the target letter is in the sector headed
by o. To right the letter q is displayed

Fig. 14.16 The Japanese
keyboard: the hiragana
syllabic alphabet

over, traditionally, the display of these syllabic alphabet is based on the five vowels
of the Japanese language. A similar keyboard was realized with katakana signs.

In Fig. 14.16, we can see the display of the hiragana syllabic alphabet. We can
see that each sector of the pentagrid around the central tile is devoted to a vowel and
to the hiragana signs based on this vowel. Note that in each sector, the order of the
signs is the same and follows the traditional order.

Figure 14.17 illustrates the working of the keyboard. By pressing appropriate keys,
the right syllable is pulled onto the central tile, here ha. First, the vowel a is selected,
then the syllable ka and then, the syllable ha.

It was planned to also implement plates with kanji characters which would be
called from the hiragana or katakana keyboard, but this was never realized, see [47].

A Chinese Keyboard

With the Chinese keyboard, we use both α-grids. The situation is more complex than
in the Japanese keyboard as the phonetic representation is different and that we have
to produce Chinese characters. Note that in the figures we shall consider simplified
Chinese characters only. The syllables of the Chinese language are written with the
latin alphabet through a system called pin-yin. The heptagrid is used to display the
syllables, see [46], and Fig. 14.18.
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Fig. 14.17 Working of the Japanese keyboard. Leftmost picture the keyboard. Next pictures select-
ing the vowel a, then the syllable ka and, at last, the syllable ha
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Fig. 14.18 The display of the consonants and the vowels for the Chinese keyboard. Note the cell
with a, o and e in the display of the consonants

The left-hand side picture of the figure represents the syllables introduced by a
consonant, the right-hand side one represents the syllables introduced with a vowel.
Ounce a syllable is selected through the two plates of Fig. 14.18, a plate with the
Chinese characters corresponding to these syllables is displayed. Figure 14.19 dis-
plays two plates, one with the characters associated with the pin-yin men and the
other with the pin-yin shi.

On both plates, we observe the same convention. The Chinese language uses tones
for each syllable. There are four of them, in fact there is a five one when a syllable is
pronounced in a neutral tone. Accordingly, characters are grouped according to the
tone with which they are pronounced.

[b] The working of these keyboards is the same as for the Japanese keyboard.
In many cases, the distribution of tones for a given syllable is not uniform. As

can be seen on the right-hand side picture, there are more characters which are
pronounced shì, fourth tone, than with another tone.

14.4 Universal Hyperbolic Cellular Automata

In this last section, we look at a problem to which I devoted much time: looking after
universal cellular automata in hyperbolic spaces with a number of states as small as
possible. Now, in this search, we have to carefully look at the terms we use as the
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Fig. 14.19 Left-hand side the characters associated with the pin-yin men. Right-hand side the
characters associated with the pin-yin shi. On both pictures, note the representation of the tone
attached to each sector in the central tile

word universality is understood in sometime very different meanings. In this study,
inspired by the definition of universality for Turing machines, we shall distinguish
two types of universality: weak universality and strong universality. By strong
universality, we mean that the cellular automaton starts from a finite configuration:
all cells outside a large enough disc are in the quiescent state: as long as all the
neighbours of the cell and the cell itself are in this state, they remain in this state.
The quiescent states plays for cellular automata the role of the blank square for
Turing machines. Also, in strong universality, when the computation is completed, the
cellular automaton simply replicate the same configuration at each time after the end
of the computation: we say that the cellular automaton halts. In strong universality,
the simulating cellular automaton itself starts from a finite configuration, and if
the simulated computation halts on the considered input, the simulating cellular
automaton also halts when the simulated device halted. Weak universality keeps
the idea of simulating the computation of some computing device, but it relax the
constraint of finite initial configuration as well as that of halting when the simulated
computation halts. In particular, when the simulating cellular automaton halted, the
configuration is finite. However, the relaxation on finite initial configuration does
not mean that any initial configuration is accepted. Usually, the restriction means
that outside a large disc, or a large ball in nD-space with n ≥ 3, the configuration is
periodic. It is also accepted that the configuration of the simulating cellular automaton
goes on changing after the simulated computation halted. IN that case, it is simply
required that the halting of the simulated computation is signalized in some way.
Section 14.4.2 deals with strong universality, Sect. 14.4.3. deals with the weak one.
Section 14.4.2 deals with the pentagrid, the heptagrid and the dodecagrid at the same
time for a reason which will be clear in the sub-section. Section 14.4.3 deals with
weak universality. All the corresponding results are based on the implementation
of the same model of computation, see Sect. 14.4.3.1. Now, as the implementation
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of cellular automata in the dodecagrid is not based on the study we schematically
described in Sect. 14.3.1.2, we devote a sub-section for that purpose, see Sect. 14.4.1.

14.4.1 Implementing Cellular Automata in the Dodecagrid

The model we use in Sect. 14.4.3 is basically a planar model, see Sect. 14.4.3.1.
Its transfer into the dodecagrid will use the advantage of the addition of the third
dimension, but this will not induce deep transformation of the model which, in some
sense, remains basically planar. We shall discuss this point in Sect. 14.4.3.4.

Consequently, we shall use the localization tool for the pentagrid in order to locate
cells of the dodecagrid as, most of them will involve tiles for which a face lies on a
fixed plane �. Of course, the trace on � of the dodecagrid is a copy of the pentagrid.
Figure 14.20 illustrates how we proceed.

We fix a dodecahedron D0 and a face F0 of D0 and we call � the plane which
supports F0. Consider the set P of all dodecahedra which have a face on � and
which are on the same side of � as D0. Then we apply the central projection on each
dodecahedron of P, projecting the dodecahedron on its face on �. In this way, we
obtain the pictures of Fig. 14.20. The point is how to represent the tiles. The first idea
is to colour the tiles inside the face which is on �: this is illustrated by the left-hand
side picture of the figure, say Fig. 14.20L . But in this case, no additional information
can be given. The right-hand side picture of Fig. 14.20, say Fig. 14.20R gives another
way. We remark that two neighbouring dodecahedra of D share a face. Consider
for instance the central tile and its neighbour which is in the orange colour in the
Fig. 14.20L. The face is numbered 4 in the central tile of Fig. 14.20L. The same face
appears in the orange dodecahedron as the orange face which shares and edge with
the face 4 of the central tile. In Fig. 14.20R, we take advantage of this situation in

5
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2

1
6

10

9 8

711

Fig. 14.20 Two different ways for representing a pseudo-projection on the pentagrid. On the left-
hand side the tiles have their colour. On the right-hand side the colour of a tile is reflected by its
neighbours only
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Fig. 14.21 Propagation of the halting signal in theα-grids.Above the pentagrid.Below the heptagrid

order to represent the colour of a tile T by the faces of neighbouring dodecahedra in
contact with T . Accordingly, the orange colour appears on the face 4 of the central
tile of Fig. 14.20R while the yellow colour appears in the face which shares an edge
with face 4. This allows us to mention other neighbours as in Fig. 14.20R.

This representation allows us to use the very convenient coordinate system of the
pentagrid for the simulation of local parts of a cellular automaton in the dodecagrid.
We shall this more precisely in Sect. 14.4.3.4.

14.4.2 Strong Universality Results

The first ingredient of the result is the cellular automaton of [11] which works on
a line. However, the cellular automaton with 7 states indicated in that paper is not
strictly strongly universal. The point is that the initial configuration is not strictly
finite. With four additional states, as proved in [32], we obtain a strongly universal
cellular automaton L11 which starts from a finite configuration and which halts when
the simulated computation halts.

The idea of [32] is to implementL11 in the grids we consider in hyperbolic spaces.
This implementation is split into two parts. AsL11 is a cellular automaton on a line, we
first construct a segment of line which grows along a line as the computation proceeds.
This provides us with a cellular automaton P which propagates this linear structure.
Then, we merge P with L11 and we obtain what is proved in the following statement.
See the illustrations in the plane, Fig. 14.21, and in the 3D-space, Fig. 14.22.

Theorem 13 (Margenstern 2013 [32]) In each of the following tilings: the pentagrid
and the heptagrid of the hyperbolic plane and also the dodecagrid of the hyperbolic
3D-space, there is a deterministic, rotation invariant cellular automatonwith radius1
which has 10 states and which is strongly universal.
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Fig. 14.22 Propagation of the halting signal in the dodecagrid. In the dodecagrid, we need tow
additional lines under the plane � in order to construct the line. In each picture, the small pentagrid
represents the projections onto � of the dodecahedra which hang below that plane

The figures represent the moment when the simulated computation halts. A signal
passes to a part of the line where it reaches the end of the linear structure: this end
continues the construction until it is stopped by the green signal.

14.4.3 Weak Universality Results

As mentioned in the introduction to Sect. 14.4, all the computations we present in this
sub-section implement the same model which is sketchily described in Sect. 14.4.3.1.
Section 14.4.3.2 gives the general properties used to implement the railway model in
hyperbolic tessellations. Then Sects. 14.4.3.3–14.4.3.6 show the implementation of
the best result so far in the pentagrid, heptagrid, dodecagrid and the grid {11, 3}.

14.4.3.1 The Railway Model

The railway model was created by Ian Stewart, see [50] in the Euclidean plane.
There, the model simulates a Turing machine. In the papers I devoted to universality
of cellular automata in hyperbolic spaces, the model is a bit changed in order to
simulate a register machine. A full explanation can be found in [34].

The idea of the model is to mimic a railway circuit on which a single locomotive
is running. The railway consists of tracks which are segments and quarters of a circle
which are put together. The system also allows crossings and switches. The crossings
allow two tracks to cross each other. For the switches, there are three kinds of them.
Figure 14.23 illustrates them in a symbolic representation.
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Fig. 14.23 The three types of switches for the railway circuit, in symbolic notations. From left to
right fixed switch, flip-flop and memory switch

Fig. 14.24 The basic
element: the flip-flop is at W ,
the memory switch is at R

0 1

0

1

W

R

E

E0

E1

Let us explain the working of the switches. They all have a common structure:
three tracks abut a point, the centre of the switch and call them a, b and c. There
are two ways for crossing a switch. During an active passage, we also say active
crossing, the locomotive arrives to the centre through a and it leaves the switch either
through b or through c. The track though which the locomotive leaves the switch
is called the selected track. The passive passage, we also say passive crossing,
occurs in the opposite direction: the locomotive arrives from b or from c and it leaves
the switch through a. The fixed and the memory switches accept both crossings.
The flip-flop can be crossed actively only. In Fig. 14.23 there are two pictures for
each switch: each one corresponds to a different selected track. In a fixed switch,
as its name suggests it, the selected track is fixed once and for all. And so there
are two kinds of them. However, note that the combination of a fixed switch in one
direction with a crossing allows us to mimic the fixed switch in the other direction.
In the flip-flop, the selected track switches to the other direction after each passage
of the locomotive. In the memory switch, the selected track is that of the last passive
crossing by the locomotive.

Figure 14.24 shows us the basic element, see [50], which allows to construct a
circuit which simulates a Turing machine or, as we did, a register machine. It asso-
ciates a flip-flop with a memory switch. The element contains one bit of information
which is represented by a certain position of its flip-flop and of its memory switch.
The other position of both switch defines the other value. Figure 14.25 illustrates the
working of the element. The element can be crossed in four ways: depending on its
content and on the operation to be performed. Two operations can be done: reading
and rewriting. The reading is illustrated by the first row: as shown by the pictures,
the locomotive enters through the memory switch. As can be seen, the way followed
by the locomotive depends on which track is the selected one. Then, the locomotive
leaves the element without changing the switches.

The rewriting is illustrated by the second row of Fig. 14.25. As shown by the
picture, the locomotive enters through the flip-flop. Through a possible crossing and
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Fig. 14.25 The working of
the element. Upper row
reading the content of the
element. To left reading 0; to
right reading 1. Lower row
rewriting the content of the
element. To left rewriting 0
into 1; to right rewriting 1 to
0
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a fixed switch, the locomotive is led to the memory switch which it passively crosses,
taking the way which corresponds to value which is opposite to that of the way on
which it was sent by the flip-flop. From the working of the flip-flop and of the memory
switch, we can see that in this way, when the locomotive has left the memory switch,
the content of the element was changed to the opposite value. At last, just after the
memory switch, the locomotive is sent on the exit way by a suitable fixed switch: E
on the pictures of Fig. 14.25.

Combining such elements in appropriate structures, one can simulate a register
machine, for instance, see [34].

14.4.3.2 Hyperbolic Railway: General Features

In this sub-subsection, we provide the reader with some properties about the imple-
mentation of the railway circuit in hyperbolic spaces. Here, we give the mainlines
of these features which were used in all the implementations given in the next sub-
subsections. In each of them, we shall see further refinements about the general
features described in the present sub-subsection.

The first point is the implementation of the basic element described in
Sect. 14.4.3.1. In the Euclidean plane, the construction relies on the existence of
a grid which is the actual support of the structure. The circle arcs are there for
both aesthetic and technical results: real-life railways do not offer curves with sharp
angles. If we can at least locally transpose the structure of a grid, it will be possible
to implement the basic element. For this, the Fibonacci tree offers a simple solution:
the role of the verticals can be played by the branches of the tree while the role of the
horizontals can be played by its levels. The connection from verticals to horizontals
and conversely requires that the tracks follow paths which makes the sharpest angle
on the tiling. This constraint has to be respected: otherwise the tracks will never
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Fig. 14.26 Implementation of the basic element in the α-grid. The blue disc represents the crossing,
the grid one, a fixed switch, the orange one, a memory switch and the red one, a flip-flop. The small
green disc indicates the selected track of the fixed witch

go on the level, they will go further and further from the level and no cycle can be
constructed.

Once this constraint is observed, it is easy to implement the crossings and the
switches and to dispatch them as required in order to follow the pattern given in
Fig. 14.24. This is illustrated by Fig. 14.26 which can held either in the pentagrid or
in the heptagrid.

Another point has to be solved: the necessity to have parallel tracks. Depending
on the purpose of a parallel track, another branch of the tree can be used. The use of
another branch can also be used on a very little scale, the returning close the initial
track and then repeat the process as long as needed. The advantage is that if another
parallel is needed, the trick can again be repeated. We can also do a similar thing for
horizontals: a parallel track can be obtained by using a further level. In any case, a
parallel track is usually much longer than the initial track. Figure 14.27 presents to left
a toy register machine implemented as a railway system in the Euclidean plane and, to
right, its hyperbolic translation in the heptagrid. We can see the need of parallel tracks
and how they can be implemented in the heptagrid. This implementation also works
for the pentagrid and, hence for the dodecagrid as will be seen in Sects. 14.4.3.3–
14.4.3.5. It also works for the cellular automaton constructed in Sect. 14.4.3.6

14.4.3.3 In the Pentagrid

We start the implementation of the railway circuit by the pentagrid. We shall present
two implementations. One with many states, and then the presently best result. The
first result in the pentagrid presented a weakly universal cellular automaton with
22 states, see [6]. In that implementation, the locomotive was represented by two
contiguous cells travelling on the tracks. The front of the locomotive was green, its
rear was red, the track was blue. Each centre of a crossing or of the switches had a
specific colour.
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Fig. 14.27 To left a toy example of the railway implementation of a register machine in the
Euclidean plane. To right a sketchy implementation of the hyperbolic railway model in the heptagrid

Fig. 14.28 The basic motion of the locomotive

Here, we present a solution with less states, in fact 9 of them, see [45]. In this
implementation, the tracks are still in blue, and the locomotive is still represented by
two contiguous cells, a green one, the front, and a red one, the rear. A big difference
with the automaton of [6] is that the centre of a crossing or of a switch has no
special colour: it is blue as any cell of the tracks. The difference is made by the
neighbourhood of the centre. In Fig. 14.28, the left-hand side picture represents the
motion of the locomotive on the tracks. The right-hand side picture represents the
two types of tracks: first, the horizontal one and then, the vertical one.

Figures 14.29 and 14.30 represent the motion of the locomotive on these tracks.
On the horizontal tracks, the locomotive goes from right to left, see Fig. 14.29. On
the vertical ones, it goes from up to down, see Fig. 14.30. Of course, the motions in
opposite directions have been tested in both cases. However, we have no room to
display them here. The reader is referred to [34, 45]. At last, Fig. 14.31 shows us
the idle configuration of the crossing, the fixed switch, the flip-flop and the mem-
ory switch in this order, from left to right. By idle configuration, we mean a local
configuration where the locomotive is not present. From lack of room, we cannot
show the motion of the locomotive when it crosses the corresponding configurations.
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Fig. 14.29 Implementation of horizontal tracks in the pentagrid: from right to left

Fig. 14.30 Implementation of vertical tracks in the pentagrid: from up to down

Note that, the crossing needs four tests, depending from which track arriving to the
centre of the crossing the locomotive is arriving. The fixed switch needs three tests.
As already noticed, we may assume that the fixed switch always selects the left-hand
side track as it is the case in Fig. 14.31. As the flip-flop can be crossed actively only,
and as both idle configurations are required, we need two tests. At last, the memory
switch may be crossed both actively and passively, and there are two possible idle
configuration depending on which track is the selected one. This represents six tests.
We refer the reader to [45] for details, in particular for the rules of the automaton
which were checked by a computer program.
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Fig. 14.31 Implementation of vertical tracks in the pentagrid: from up to down

Fig. 14.32 The elements of the tracks. Leftmost picture the standard element. Second and third
pictures from left the element which allows to perform sharp turns. Fourth and fifth pictures,
illustration for a sharp turn

The best result for the pentagrid is a weakly universal cellular automaton with
five states, see [35, 36]. This cellular automaton takes advantage of the new ideas
introduced since the previous one with nine states.

Theorem 14 (Margenstern 2014 [35, 36]) There is a weakly universal cellular
automaton on the pentagrid with five states which is planar and rotation invariant.

The cellular automaton is planar as it always has infinitely many cycles of cells
which are not in the quiescent state. This means that the circuit can never be reduced
to a line. Without this restriction, it would be possible to construct a weakly uni-
versal cellular automaton on the pentagrid with two states which also would be
rotation invariant, see [26]. The implementation of the railway circuit for the proof
of Theorem 14 makes use of three new ingredients. Using what was used in a cel-
lular automaton of Sect. 14.4.3.4, the cells of the tracks are in a quiescent state. The
tracks are indicated by the neighbourhood of its cells. Also, the tracks of the circuit
are now one-way. This simplifies something for the fixed switch, but this entails
some complexification for the memory switch which is now split into two pars: the
passive, active switch, concerned by a passive, active crossing respectively of the
switch by the locomotive. The second ingredient is used by an automaton we quote
in Sect. 14.4.3.6. Our railway circuit borrows an element which belongs to motor-
way traffic. Indeed, we replace crossings by round-abouts. The one-way condition
is connected with the reduction of the locomotive to a single cell. As there is no
indication of the direction, this feature must be indicated by the neighbours of a cell.
The cells of the tracks are white as they are in the quiescent state. Their neighbours
which are not white are the milestones which indicate the track and its direction
(Fig. 14.32).
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Fig. 14.33 The new
crossing: the one-way tracks
from A and B intersect. We
have a three-quarters
round-about. The small disc
at f represents a fixed switch.
Discs 1, 2 and 3 represent the
check-points
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Fig. 14.34 The tracks. To
left, a vertical one. To right, a
horizontal one

The structure of the round-about is indicated by Fig. 14.33. The idea is that in a
round about, the continuation of the track which arrive at it is on the second track
which is met along the round about. As shown on Fig. 14.33, the round-about has
three check-points and a fixed switch which, in a passive way, allows the arriving
locomotive from one direction to enter the round-about and the locomotive arrives in
this way to the second check-point. If the locomotive arrives from the other direction,
it is directly sent on the first-check-point. Accordingly, it is needed to count up to
two in some way. Here, we perform this task by the colour. The locomotive is usually
green. When it arrives at a check-point for the first time, it is still green. At the check-
point, it is changed to red. When the locomotive arrives at the next check-point, as it
is red, it is both changed back to green and it is sent on the right track.

Figure 14.34 shows us how vertical and horizontal tracks look. From lack of room,
we cannot display the motion of the locomotive on such tracks. On each of one there
may be either a green or a red locomotive. Similarly, on the next figures, we do
not show the motion of the locomotive. It would require much pictures to test each
possibility.

Figure 14.35 shows the idle configuration of a check-point on a round-about, the
fixed switch and the flip-flop. Note that in a passive crossing, the same fixed switch
works for both tracks arriving at the centre.

Figure 14.36 illustrates the idle configurations of the memory switches. Remember
that there are two memory switches: the active and the passive ones. Also remember
that each one has two positions: one for selecting the left-hand side track, the other
for selecting the right-hand side one. We can remark that the active memory switch
looks very much like the flip-flop. Note that the active memory switch is passive: it
is not changed after the passage of the locomotive. The passive switch is active. It
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Fig. 14.35 To left the check-point of a round about. Second picture the fixed switch. Last pictures
the flip-flop. First, the selected track is to left, then it is to right

Fig. 14.36 The stable configuration of the active and passive memory switches.To left, the switches
selected the right-hand side track. To right, they selected the left-hand side track

Fig. 14.37 The organisation
of the memory switch

is changed after being crossed by the locomotive. But this change also triggers the
change of the active switch. Figure 14.37 illustrates the organisation of the connection
between the passive part of a memory switch with its active one. The figure shows that
the change of selection in a memory switch entails a delay. Now, we may assume that
the switches are distant enough so that the change is performed when the locomotive
reaches the next switch on its way.

The figures corresponding to the test of all the configurations illustrated by
Figs. 14.34, 14.35 and 14.36 are displayed in [36]. The rules for the automaton are
also all given there. They were checked by a computer program, which completely
proves Theorem 14.
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14.4.3.4 In the Dodecagrid

The first result for the dodecagrid was obtained in [13]: the automaton has five states.
This automaton is directly inspired by the one which works in [6] with this difference
that the centre of the crossings and the switches has the same colour as a standard cell
of the tracks. So it should be compared with the nine sates of [45] in the pentagrid. The
reason of this reduction is simple: in the 3D-space, either Euclidean or hyperbolic, it
is possible to replace the crossings by bridges. Accordingly, the crossings are simply
replaced by tracks thanks to the third dimension. The implementation of bridges is
not very difficult in the hyperbolic 3D space, see [13]. Somehow later, the number
of states was reduced to three of them, see [25]. Here, we present the best possible
result with two states, see [27, 29]. The states are called black and white, that latter
colour being the quiescent state.

The cellular automaton works with a locomotive reduced to one cell, this time
of the same colour as the milestones, necessarily the black colour. This entails
that the tracks are one-way. We know from Sect. 14.4.3.3 what it induces on the
memory switch and what it simplifies for the fixed switch. Of course, the active
memory switch and the passive one are implemented in a very different way from
that of Sect. 14.4.3.3. We shall use the conventions and the representation given in
Sect. 14.4.1 in the illustrations of this sub-subsection and in the further explanations.

Remember that most cells of the track have a face which is on the same plane �0

on which we perform the projection of each dodecahedron in the figures of this
sub-subsection.

Figure 14.38 illustrates the implementation of a vertical while Fig. 14.39 illustrates
the implementation of a horizontal. In both cases, a two-way track is implemented:
one track over �0 and one track below it. As shown in Fig. 14.38, the milestones of
the tracks mimic catenaries. Of course, if the way back is not needed, we keep the
way which is over �0. For this figure and for all the others of this section, we do not
show the motion of the locomotive which would require too much room.

Figure 14.40 illustrates the structure of a bridge. In the first row of the figure, the
leftmost picture gives us a global view of the bridge. The next two pictures show the
implementation of the pillars of the bridge. The second row of the figure illustrates
the look of both ends of the bridge. The bridge is built along the plane �1 which is
orthogonal to �0 and which supports faces of dodecahedra of the tessellation.

Figure 14.41 illustrates the implementation of the flip-flop and of the active mem-
ory switch. They are both active structures with a small different action. The left-hand
side picture represents the flip-flop. The active memory switch has globally the same
structure. The difference between these switches lies in their controller. In the left-
hand side picture, we can see a purple face on the central cell. It is the place of the
controller. On the right-hand half of the figure, we can see the controllers: first, that
of the flip-flop and then that of the active memory switch.

Figure 14.42 illustrates the passive switches. First, it gives an illustration of the
fixed switches: left- and right-hand side ones. As can be seen, they have the same
passive structure and the difference lies in the return path which is under the plane �0.
The other two pictures represent the passive memory switch. It looks like the fixed
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Fig. 14.38 A vertical track in the dodecagrid. To right below, a vertical cut of a dodecahedron;
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Fig. 14.39 A horizontal track in the dodecagrid

switches but, contrarily to them, it possesses a controller. The rightmost picture gives
us a global view of the memory switch. We can see the two parts, below the active
switch and above the passive one and, in orange, the path which goes from the passive
switch to the active one. In [27], the reader may find all the details concerning this
cellular automaton. In particular, the rules of the automaton are given. They have
been controlled by a computer program, allowing us to prove the following result.
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Fig. 14.40 Structure of a bridge in the dodecagrid. First row. To left, the global view. Then: the
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the bridge, both sides, projection on �1

3

2

1

5

4
9

8

7 6

1011

flip_flop

3

2

1

5

4
9

8

7 6

1011

memory

Fig. 14.41 Active switches. To left, the common structure of the switches. To right their controllers

Theorem 15 (Margenstern 2010 [27, 29]) There is a weakly universal cellular
automaton in the dodecagrid which is weakly universal and which has two states
exactly, one state being the quiescent state. Moreover, the cellular automaton is rota-
tion invariant and the set of its cells changing their state has infinitely many cycles
both in two perpendicular planes of the dodecagrid.
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Fig. 14.42 Passive switches. To left, the fixed switch. Middle, the passive memory switch. To right,
the connection between the two parts of the memory switch

Fig. 14.43 Stable configurations for the weakly universal cellular automaton on the heptagrid with
six states

14.4.3.5 In the Heptagrid

The first result in the heptagrid was [44] with a weakly universal cellular automaton
with six states:

Theorem 16 (Margenstern-Song [44]) There is a weakly universal cellular automa-
ton in the heptagrid which has six states. The automaton is rotation invariant and
the set of the cells which change their state has infinitely many cycles.

Figure 14.43 illustrates the stable configurations of the crossing and of the switches
for the cellular automaton of Theorem 16. This result was improved in [28] to a
cellular automaton with four states. But, recently, this result was improved in [37]:

Theorem 17 (Margenstern 2014 [37]) There is a weakly universal cellular automa-
ton in the heptagrid which has three states. The automaton is rotation invariant and
the set of the cells which change their state has infinitely many cycles.

The automaton which allows us to prove Theorem 17 makes use of new ingredients
which were found in the search of weakly universal cellular automata with two states,
we shall this in Sect. 14.4.3.6.

We have already met such an ingredient in Sect. 14.4.3.3. Now, we shall meet a
new one. The idea is to unify the working of the active switches. For this, we apply
the same idea as the one which allowed to split the active memory switch from the
passive one: this introduces a delay in a process which is performed within five steps
by the automata which have much more states. Here too, the idea is to count up to
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Fig. 14.44 The new round-about: a new control is appended to the already introduced check-points.
See the structure of the doubler in Fig. 14.47

L

RC

A

S

L

RC

S

Fig. 14.45 To left the flip-flop. To right the active memory switch

Fig. 14.46 The cells of the tracks

two to perform the working of the round-about. As we have three states, this cannot
be performed by a change of colour. We proceed as follows: before reaching the
first check-point on its way, the locomotive which arrives at a round-about meets a
doubler which duplicates the locomotive, see [37]. After the doubler, two contiguous
locomotives travel on the round-about. On the first check-point they meet the second
locomotive is killed. When a check-point is crossed by a single locomotive, it sends
it on the right way, performing the crossing (Fig. 14.44).

Figure 14.45 displays the active switches in a schematic way, showing the main
ingredients which are detailed in Fig. 14.47. Figure 14.46 shows us the elements of
the tracks. At last, Fig. 14.48 illustrates the passive switches: the fixed one and then
the passive one. Figures 14.46, 14.47 and 14.48 make use of the same symbolism
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Fig. 14.47 First row, from left to right the doubler and then the check-point. Second row, from
left to right the controller, with different visits and, rightmost picture, the fork

Fig. 14.48 Left-hand side the fixed switches, from the left and then from the right. It also works with
two locomotives. Right-hand side the passive memory switch. First: passage through the selected
track and then, passage through the non-selected track

to show the motion of the locomotive and its impact on the neighbouring cells. In
Fig. 14.46, we can see the three steps from the entrance into the central cell of the
element to its exit. The locomotive is about to enter the cell, it is in the neighbour
coloured with yellow, then the locomotive at the centre which is orange in the figure
and then, the locomotive is leaving the element: it is on the neighbour which is in
rose. In Fig. 14.47, we again apply this convention. However, in the doubler, the
colour switch from orange to mauve when the locomotive is doubled. In the second
check-point, the mauve colour indicates that two locomotives enter. The green cell
means that the considered cell flashed: it turned to white and then took back its colour.
This allowed the check point to kill the cells and to create a new locomotive which
appears in yellow at the centre of the check-point. The second row of Fig. 14.47, we
can see the working of the controller: when its centre is blue, it let the locomotive
cross the cell and go on its way, when it is read, it stops it. The next two pictures
indicate that when the appropriate signal arrives, the centre change its colour to the
opposite. The orange colour symbolizes the change from blue to red, the green one,
the change from red to blue. The convention in the fork is clear. The same conventions
are used in Fig. 14.48 for the passive memory switch when the locomotive arrives
through the non-selected track, see the rightmost picture. The connection from the
passive memory switch the active one is organized as in the cellular automaton of
Theorem 14, see Fig. 14.37.
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Fig. 14.49 To left the tiling {11, 3} in the Poincaré’s model. To right another representation of a
cell in the tiling {11, 3} and the same one together with its neighbours

Fig. 14.50 Organization of
the passive memory switch
with forks and sensors. Note
that the sensors are not
represented with the same
symbol as the controllers in
Fig. 14.45
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F1
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14.4.3.6 In the Grid {11, 3}

In this section, we give an account on the proof of the following result:

Theorem 18 (Margenstern 2015 [39]) There is a weakly universal cellular automa-
ton on the tessellation {11, 3} with two states which is rotation invariant and such
that the set of its cells we change during the computation has infinitely many cycles.

This result was anticipated by a similar statement in the tessellation {13, 3},
see [31]. This latter paper introduced the round-about structure with the doubler
and the check-points. However, the fork and the controller where devised in [37].
Accordingly, here we just mention the construction of the tracks and sketchily indi-
cate the working of the structures adapted to this specific tessellation. First, we have
to represent, at least locally, a few cells of the tessellation. In Fig. 14.49, the leftmost
picture represents the tiling in Poincaré’s disc. The next picture of the figure shows
us a symbolic representation which we shall use in this sub-subsection. The right-
most picture indicates the neighbours of the central cell which belong to the second
generation (Fig. 14.50).

In this new setting, we also change the passive memory switch: we introduce a new
device, the sensor: it is different from the controller of the active switch which stops
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the entry gate of the element and O indicates its exit gate
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1

2 3
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P

Q

Fig. 14.52 The use of elements of the tracks in order to define a track going from the cell P to the
cell Q

the locomotive when its centre is red. This is the reason while the sensor is illustrated
by a symbol which is different from that used for the controller in Fig. 14.45.

First, we indicate the implementation of the tracks, a mandatory step. Figure 14.51
illustrates the elements of the tracks. This figure, combined with Fig. 14.52, shows
how we can join any tile of the tessellation with another one by a tracks consisting
of the elements of Fig. 14.51. This rely on the fact that we can join any tile of the
tessellation to another one, see, for instance [17].

Next, we present the elements which implement fixed switch, the doubler, the
check-point, the fork, the controller and the sensor.

Figure 14.53 illustrates the fixed switch and the basic structures needed to imple-
ment the round-about: the doubler and the check-point. On this figure and on the
next ones of this sub-subsection, we can see colours which indicate the point where
the locomotive enters the configuration and the point from where it leaves it. The
conventions are the same as in Sect. 14.4.3.5.

Figure 14.54 makes two zooms on the check-point whose structure is a bit com-
plex. The first picture of Fig. 14.54 illustrates the situation when a single locomotive
arrives at the check-point. It is then sent to the cells which are around D on the figure.
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Fig. 14.53 Idle configurations. To left the fixed switch.Middle the doubler. To right the check-point
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Fig. 14.54 Leftmost and middle pictures the idle configuration of the checkpoint of the round-
about, zoom on D and then on E. Rightmost picture the idle configuration of the fork
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Fig. 14.55 To left the idle configurations of the controller in the active switches. To right the idle
configuration of the sensor for the passive memory switch

The second picture illustrates the situation when two contiguous locomotives arrive
at the check-point. Then the locomotive are killed and a new one is sent on the cells
around C, going to the next check-point on the round about.

The last picture of Fig. 14.54 illustrates the fork. We can see that two locomotive
are produced but they are sent in different directions.
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In Fig. 14.55, we can see the controller used in the implementation of the flip-flop
and of the active memory switch and the sensor of the passive memory switch. The
first picture of the figure shows us that when the cell C of the controller is black, it
stops the locomotive which enters the controller. The second picture shows us that
whenC is white, the controller let the locomotive cross it. The last picture of the figure
is the sensor of the passive memory switch. The light colour of the cell C indicates
that whether C is black or white, the locomotive crosses the sensor. Of course, when
it is black, the cells S is activated. The flash of S triggers a locomotive which is
sent to the active memory switch in order to change the signal of its controllers and
this locomotive is further duplicated by a fork in order to change the signal of the
other sensor of the passive memory switch. This second locomotive reaches the other
sensor at E. The flash of E makes C change to black.

Temporary Conclusion

As can be seen from the sections of the chapter, there is still much work ahead, both
for theoretical work and for applications.
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Chapter 15
A Computation in a Cellular Automaton
Collider Rule 110

Genaro J. Martínez, Andrew Adamatzky and Harold V. McIntosh

Abstract A cellular automaton collider is a finite state machine build of rings of
one-dimensional cellular automata. We show how a computation can be performed on
the collider by exploiting interactions between gliders (particles, localisations). The
constructions proposed are based on universality of elementary cellular automaton
rule 110, cyclic tag systems, supercolliders, and computing on rings.

15.1 Introduction: Rule 110

Elementary cellular automaton (CA) rule 110 is the binary cell state automaton with
a local transition function ϕ of a one-dimensional (1D) CA order (k = 2, r = 1) in
Wolfram’s nomenclature [57], where k is the number of cell states and r the number
of neighbours of a cell. We consider periodic boundaries, i.e. first and last cells of
a 1D array are neighbours. The local transition function for rule 110 is defined in
Table 15.1, the string 01101110 is the number 110 in decimal notation:
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Fig. 15.1 An example of CA rule 110 evolving for 384 time steps from a random configuration,
where each cell assigned state ‘1’ with uniformly distributed probability 0.5. The particles are
filtered. Time goes down

ϕ(1, 1, 1) → 0 ϕ(0, 1, 1) → 1

ϕ(1, 1, 0) → 1 ϕ(0, 1, 0) → 1

ϕ(1, 0, 1) → 1 ϕ(0, 0, 1) → 1 (15.1)

ϕ(1, 0, 0) → 0 ϕ(0, 0, 0) → 0

A cell in state ‘0’ takes state ‘1’ if both its neighbours are in state ‘1’ or left
neighbour is ‘0’ and right neighbour is ‘1’; otherwise, the call remains in the state
‘0’. A cell in state ‘1’ takes state ‘0’ if both its neighbours are in state ‘1’, or both
its neighbours are in state ‘0’ or it left neighbour is ‘1’ and its right neighbour is
‘0’. Figure 15.1 shows an evolution of rule 110 from a random initial condition.
We can see there travelling localisation: particles or gliders, and some stationary
localisations: breathers, oscillators or stationary structures.

15.1.1 System of Particles

A detailed description of particles/gliders discovered in evolutions of CA rule 110
is provided in [32, 36].1 Further, we refers to a train of n copies of particle A as An.

Figure 15.2 shows all known particles, and generators of particles, or glider guns.
Each particle has its unique features, e.g. slopes, velocities, periods, contact points,
collisions, and phases [33, 35, 37]. A set of particles in rule 110 is defined as:

1See also, http://uncomp.uwe.ac.uk/genaro/rule110/glidersRule110.html.

http://uncomp.uwe.ac.uk/genaro/rule110/glidersRule110.html
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Fig. 15.2 Types of particles discovered in rule 110
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Table 15.1 Properties of particles in rule 110

Structure Margins Velocity Lineal
volume

Left – Right

ems oms ems oms

er – 1 – 1 2/3 ≈
0.666666

14

el 1 – 1 – –1/2 = –0.5 14

A – 1 – 1 2/3 ≈
0.666666

6

B 1 – 1 – –2/4 = –0.5 8

B̄n 3 – 3 – –6/12 =
–0.5

22

B̂n 3 – 3 – –6/12 =
–0.5

39

C1 1 1 1 1 0/7 = 0 9–23

C2 1 1 1 1 0/7 = 0 17

C3 1 1 1 1 0/7 = 0 11

D1 1 2 1 2 2/10 = 0.2 11–25

D2 1 2 1 2 2/10 = 0.2 19

En 3 1 3 1 –4/15 ≈
–0.266666

19

Ē 6 2 6 2 –8/30 ≈
–0.266666

21

F 6 4 6 4 –4/36 ≈
–0.111111

15–29

Gn 9 2 9 2 –14/42 ≈
–0.333333

24–38

H 17 8 17 8 –18/92 ≈
–0.195652

39–53

Glider gun 15 5 15 5 –20/77 ≈
–0.259740

27–55

G = {A,B, B̄n, B̂n,C1,C2,C3,D1,D2,E
n, Ē,F,Gn,H, gunn}.

where n means that a structure of the particle can be extendible infinitely, the rest of
symbols denote types of particles as shown in Fig. 15.2. Table 15.1 summarizes key
features of the particles: column structure gives the name of each particle including
two more structures: er and el which represent the slopes of ether pattern (periodic
background). The next four columns labeledmargins indicate the number of periodic
margins in each particle: they are useful to recognize contact points for collisions.
The margins are partitioned in two types with even values ems and odd values oms
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which are distributed also in two groups: left and right margins. Column vg indicates
a velocity of a particle g, where g belongs to a particle of the set of particles G. A
relative velocity is calculated during the particle’s displacement on d cells during
period p. We indicate three types of a particle propagation via sign of its velocity.
A particle travelling to the right has positive velocity, a particle travelling to the left
has negative velocity. Stationary particle has zero velocity. Different velocities of
particles allow us to control distances between the particle to obtained programmable
reactions between the particles. Typically, larger particles has lower velocity values.
No particle can move faster than ver or vel . Column lineal volume shows the minimum
and maximum number of necessary cells occupied by the particle.

15.1.2 Particles as Regular Expressions

We represent CA particles as strings. These strings can be calculated using de Bruin
diagrams [31, 32, 34, 37, 55] or with the tiles theory [16, 33, 35, 37].2

A regular language LR110 is based on a set of regular expressions �R110 uniquely
describing every particle of G. A subset of the set of regular expressions

�R110 =
p⋃

i=1

wi,g ∀ (wi ∈ �∗ ∧ g ∈ G) (15.2)

where p ≥ 3 is a period, determines the language

LR110 = {w|w = wiwj ∨ wi + wj ∨ w∗
i and wi,wj ∈ �R110}. (15.3)

From these set of strings we can code initial configurations to program collisions
between particles [27, 36, 39].

To deriver the regular expressions we use the de Bruijn diagrams [31, 34, 55] as
follows. Assume the particle A moves two cells to the right in three time steps (see
Table 15.1). The corresponding extended de Bruijn diagram (2-shift, 3-gen) is shown
in Fig. 15.3. Cycles in the diagram are periodic sequences uniquely representing each
phase of the particle. Diagram in Fig. 15.3 has two cycles: a cycle formed by just
a vertex 0 and another large cycle of 26 vertices composed by other nine internal
cycles. The sequences or regular expressions determining the phases of the particle
A are obtained by following paths through the edges of the diagram. There regular
expressions and corresponding paths in Bruijn diagram are shown below.

I. The expression (1110)*: vertices 29, 59, 55, 46 determining An particles.

II. The expression (111110)*: vertices 61, 59, 55, 47, 31, 62 defining nA particles with a T3
tile among each particle.

2See a complete set of regular expressions for every particle in rule 110 in http://uncomp.uwe.ac.
uk/genaro/rule110/listPhasesR110.txt.

http://uncomp.uwe.ac.uk/genaro/rule110/listPhasesR110.txt
http://uncomp.uwe.ac.uk/genaro/rule110/listPhasesR110.txt
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Fig. 15.3 De Bruijn diagram calculating A particles (left) and space-time configuration of automa-
ton showing locations of periodic sequences produced (right)

Table 15.2 Four sets of
phases Phi in rule 110

Phases level one (Ph1) → {f1_1, f2_1, f3_1, f4_1}
Phases level two (Ph2) → {f1_2, f2_2, f3_2, f4_2}
Phases level three (Ph3)→ {f1_3, f2_3, f3_3, f4_3}
Phases level four (Ph4) → {f1_4, f2_4, f3_4, f4_4}

III. The expression (11111000100110)*: vertices 13, 27, 55, 47, 31, 62, 60, 56, 49, 34, 4, 9,
19, 38 describing the periodic background configurations in a specific phase.

Cycle with period 1 (vertex 0) yields a homogeneous evolution in state 0. The
evolution space in Fig. 15.3 shows different trains of A particles. The initial condition
is constructed following some of the seven possible cycles of the de Bruijn diagram
or a combination of them. In this way, the number of particles A or the number of
intermediate tiles T3 can be selected by moving from one cycle to another.

The alignment of the fi_1 phases is analysed to determine the whole set of strings
for every particle. We describe the form and limits of each particle by tiles. Then
a phase is fixed (in our case the phase fi_1) and a horizontal line is placed in the
evolution space bounded by two aligned T3 tiles. The sequence between both tiles
aligned in each of the four levels determines a periodic sequence representing a
particular structure in the evolution space of rule 110. All periodic sequences in a
specific phase are calculated, enumerating the phases for each particle or non-periodic
structure.

Table 15.2 represents disjoint subset of phases, each level contains four phases.
Variable fi indicates the phase of a particle, and the subscript j (in the notation fi_j)
indicates the selected set Phj of regular expressions. Finally, we use the next notation
to codify initial conditions by phases as follows:

#1(#2, fi_1) (15.4)

where #1 represents a particle according to Cook’s classification (Table 15.1) and #2

is a phase of the particle with period greater than four.
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15.2 Universal elementary CA

A concept of universality and self-reproduction in CA was proposed by von Neumann
in [54] in his design of a universal constructor in a 2D CA with 29 cell-states.
Architectures of universal CA have been simplified by Codd in 1968 [10], Banks in
1971 [7], Smith in 1971 [51], Conway in 1982 [8], Lindgren and Nordahl in 1990
[22], and Cook in 1998 [11].3 Cook simulated a cyclic tag system, equivalent to
a minimal Turing machine, in CA rule 110. In general, computation capacities are
explores in complex CA and chaotic CA [40].

15.3 Cyclic Tag Systems

Cyclic tag systems are used by Cook in [11] as a tool to implement computations in
rule 110. Cyclic tag systems are modified from tag systems by allowing the system
to have the same action of reading a tape in the front and adding characters at its end:

1. Cyclic tag systems have at least two letters in their alphabet (μ > 1).

2. Only the first character is deleted (ν = 1) and its respective sequence is added.

3. In all cases if the machine reads a character zero then the production rule is always null
(0 → ε, where ε represents the empty word).

4. There are k sequences from μ∗ which are periodically accessed to specify the current
production rule when a nonzero character is taken by the system. Therefore the period
of each cycle is determinate by k.

Such cycle determines a partial computation over the tape, although a halt con-
dition is not specified. Let us see some samples of a cyclic tag system working with
μ = 2, k = 3 and the following production rules: 1 → 11, 1 → 10 and 1 → ε. To
avoid writing a chain when there is no need to add characters, the 
k relation is just
indicated. For example, the 00001 
1
2
3
1
2 10 represents the relations 00001

1 0001 
2 001 
3 01 
1 1 
2 10. Each relation indicates which exactly sequence
μ is selected.

Cyclic tag systems tend to growth quickly which makes it difficult to analyse
their behaviour. Morita in [43, 44] demonstrated how to implement a particular halt
condition in cyclic tag systems given an output string when the system is halting, and
how a partitioned CA can simulate any cyclic tag system, consequently computing
all the recursive functions.

Similar to Post’s developments with tag systems, Cook determined that for a
cyclic tag system with μ = 2, k = 2, the productions 1 → 11 and 1 → 10, and
starting evolution with the state 1 on the tape, it is impossible to decide if the process
is terminal.

3A range of universal CA is listed here http://uncomp.uwe.ac.uk/genaro/Complex_CA_repository.
html.

http://uncomp.uwe.ac.uk/genaro/Complex_CA_repository.html
http://uncomp.uwe.ac.uk/genaro/Complex_CA_repository.html
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15.4 Cyclic Tag System Working in Rule 110

Let us see how a cyclic tag system operates in rule 110 [58]. We use a cyclic tag system
with μ = 2, k = 2 and the productions 1 → 11 and 1 → 10, starting its evolution
in state 1 on the tape. A fragments of the systems’ behaviour is shown below:

1 
1 11 
2 110 
1 1011 
2 01110 
1
2 11010 
1 101011 
2 0101110 
1
2 0111010

1
2 1101010 
1 10101011 
2 010101110 
1
2 010111010 
1
2 011101010 
1
2
110101010 
1 1010101011 
2 01010101110 
1
2 01010111010 
1
2 01011101010

1
2 01110101010 
1
2 11010101010 
1 101010101011 
2 0101010101110 
1
2
0101010111010 
1
2 01010111010 10 
1
2 0101110101010 
1
2 0111010101010 
1
2
1101010101010 
1 10101010101011 
2 010101010101110 
1
2 010101010111010 
1
2
01010 1011101010 
1
2 010101110101010 
1
2 010111010101010 . . .

We start with the expression 1(10)*. The cyclic tag systems moves (from the right
to the left) and adds a pair of bits. As soon as the expression 1(10)* appears again,
a number of relations selected in each interval in such a manner that the expressions
grow lineally in order of f1 = 2(n + 1).

If we take consecutive copies of 1(10)* with their respective intervals determined
by the number of j productions (represented as 
j

i), we obtain the following sequence:
1 
2

i 110 
4
i 11010 
6

i 1101010 
8
i 1101010 
10

i 110101010 
12
i 11010101010 
14

i
1101010101010 
16

i . . .. There are no states where to ‘0’ appear together.
Further, we show how to interpret particles and their collisions to emulate a cyclic

tag system in rule 110. We must use trains of particles to represent data and operators,
their reactions, transform and deletion of data on the tape. A schematic diagram,
where trains of particles are represented by lines, is shown in Fig. 15.4. The diagram
is explained with details in the next sections.

15.4.1 Components Based on Sets of Particles

A construction of the cyclic tag system in rule 110 can be subdivided into three parts
(Fig. 15.4). First part is the left periodic part controlled by trains of 4_A4 particles.
This part is static. It controls the production of 0’s and 1’s. The second part is the
center determining the initial value on the tape. The third part is the right, cyclic, part
which contains the data to process. It adds or removes data on the tape.

Set of particles 4_A4

The four trains of A4 particles are static but their phases change periodically. A
key point is to implement these components by defining both distances and phases,
because some choices of phases or distances might induce an undesirable reactions
between the trains of particles.

Packages defined by particles A4 have three different phases: f1_1, f2_1 and f3_1.
To construct the first train 4_A4 we must establish the phase of each A4. Let us assign
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3A4_4A 1Ele_C20Ele_C2 1BloP_Eb 1BloS_Eb0Blo_EbSepInit_EEb

Fig. 15.4 Schematic diagram of a cyclic tag system working in rule 110

Fig. 15.5 Set of particles 4_A4

phases as follows:

A4(f3_1)-27e-A4(f2_1)-23e-A4(f1_1)-25e-A4(f3_1),

see Fig. 15.5. Spaces between each train 4_A4 are fixed but the phases change. The
soliton-like collisions between the particles Ē occur:

{649e-A4(f2_1)-27e-A4(f1_1)-23e-A4(f3_1)-25e-A4(f2_1)-649e-A4(f1_1)-
27e-A4(f3_1)-23e-A4(f2_1)-25e-A4(f1_1)]-649e-A4(f3_1)-27e-A4(f2_1)-23e-
A4(f1_1)-25e-A4(f3_1)}*



400 G. Martínez et al.

9T3 5T3 7T39T3 9T3 7T3

Fig. 15.6 Set of particles 1Ele_C2 (left) and 0Ele_C2 (right)

If for every 4_A4 we take a phase representing the complete train, we can rename it
as:

{649e − 4_A4(F2) − 649e − 4_A4(F1) − 649e − 4_A4(F3)}∗

this phase change is important to preserve good reactions coming to the left side of
the system.

Set of particles 1Ele_C2 and 0Ele_C2

The central part is made of the state ‘1’ written on the tape represented by a train
of four C2 particles. A set of particles 1Ele_C2 represents ‘1’ and a set of particles
0Ele_C2 represents ‘0’ on the tape.

The left configurations in Fig. 15.6 shows the set of particles 1Ele_C2. We should
reproduce each set of particles by the phases fi_1. The phases are coded as follows:
C2(A,f1_1)-2e-C2(A,f1_1)-2e-C2(A,f1_1)-e-C2(B,f2_1). The first three particles C2

are in phase (A,f1_1) and the fourth particle C2 is in phase (B,f2_1). The distances
between the particles are 9T3-9T3-7T3. To determine the distances, we count the
number of tiles T3 between particles. Similarly, we obtain the distances 9T3-5T3-7T3

for the particles 0Ele_C2.

Set of particles 0Blo_Ē

The left part stores blocks of data without transformations in trains of E and the
particles Ē.

The set of particles 0Blo_Ē is formed by 12Ē particles as we can see in Fig. 15.7.
There must be an exact phase and distance between each one of the particles, other-
wise the whole system will be disturbed.

Set of particles 1BloP_Ē and 1BloS_Ē

To write ‘1’s we must use two set of particles—primary and standard.
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10 1 2 8 8 8 10 1 2 8 8

Fig. 15.7 Set of particles 0Blo_Ē

4 6 2 8 8 2 10 1 2 8 8

10 1 2 8 8 2 10 1 2 8 8

Fig. 15.8 Set of particles 1BloP_Ē (up) and 1BloS_Ē (down)

They are differences in distance between first two particles Ē, as shown in
Fig. 15.8. Both blocks produce the same set of particles 1Add_Ē. The main rea-
son to use both set of particles is because the CA rule 110 evolves asymmetrically
and therefore we need a double set of particles to produce values 1 correctly.

Set of particles SepInit_EĒ
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4 14 6,7 6 9 2 8

Fig. 15.9 Set of particles SepInit_EĒ

A leader component renamed as the set of particles SepInit_EĒ (see Fig. 15.9) is
essential to separate trains of data and to determine the incorporation of the data on the
tape. Its has a small but detailed code determining which data without transformation
would be added or erased from the tape, depending on the value that is coming.

Set of particles 1Add_Ē and 0Add_Ē

Figure 15.10 illustrates the set of particles 1Add_Ē and 0Add_Ē produced by two
previous different trains of data. A set of particles 1Add_Ē must be generated by the
set of particles 1BloP_Ē or 1BloS_Ē. This way, both set of particles can produce the
same element.

On the other hand, a set of particles 0Add_Ē is generated by a set of particles
0Blo_Ē. Nevertheless, we could produce Ē particles modifying their first two dis-
tances and preserving them without changing others particles to get a reliable reac-
tion. This is possible if we want to experiment with other combinations of blocks of
data.

If a leader set of particles SepInit_EĒ reaches a set of particles 1Ele_Ē, it erases
this value from the tape and adds a new data that shall be transformed. In other case,
if it finds a set of particles 0Ele_Ē, then it erases this set of particles from the tape
and also erases a set of unchanged data which comes from the right until finding a
new leader set of particles. This operation represents the addition of new values from
periodic trains of particles coming from the right. Thus a set of particles 1Add_Ē
is transformed into 1Ele_Ē colliding against a train of 4_A4 particles representing
a value 1 in the tape, and the set of particles 0Add_Ē is transformed into 0Ele_Ē
colliding against a train of 4_A4 particles representing a value 0 in the tape.

Table 15.3 shows all distances (in numbers of T3 tiles) for every. We can code the
construction of this cyclic tag system across phase representations in three main big
sub systems:

left: …-217e-4_A4(F2)-649e-4_A4(F1)-649e-4_A4(F3)-649e-4_A4(F2)-
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27 21 27

27 27 27

Fig. 15.10 Set of particles 1Add_Eb (up) and 0Add_Ē (down)

Table 15.3 Distances
between sets of particles

Set of particles Distance

1Ele_C2 9-9-7

0Ele_C2 9-5-7

1BloP_Ē 4-6-2-8-8-2-10-1-2-8-8

1BloS_Ē 10-1-2-8-8-2-10-1-2-8-8

0Blo_Ē 10-1-2-8-8-8-10-1-2-8-8

SepInit_EĒ 4-14-(6 or 7)-6-9-2-8

1Add_Ē 27-21-27

0Add_Ē 27-27-27

649e-4_A4(F1)-649e-4_A4(F3)-216e-

center: 1Ele_C2(A,f1_1)-e-A3(f1_1)-

right: SepInit_EĒ(C,f3_1)-1BloP_Ē(C,f4_1)-SepInit_EĒ(C,f3_1)-
1BloP_Ē(C,f4_1)-0Blo_Ē(C,f4_1)-1BloS_Ē(A,f4_1)-
SepInit_EĒ(A,f2_1)(2)-1BloP_Ē(F,f1_1)-SepInit_EĒ(A,f3_1)(2)-
1BloP_Ē(F,f1_1)-0Blo_Ē(E,f4_1)-1BloS_Ē(C,f4_1)-e-
SepInit_EĒ(B,f1_1)(2)-1BloP_Ē(F,f3_1)-e-
SepInit_EĒ(B,f1_1)(2)-217e-….
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The initial conditions in rule 110 are able to generate the serial sequence of bits
1110111 and a separator at the end with two particles. A desired construction is
achieved in 57,400 generations and an initial configuration of 56,240 cells. The
whole evolution space is 3,228,176,000 cells. See details [38].

15.4.2 Simulating a Cyclic Tag System in Rule 110

The cyclic tag system starts with the value ‘1’ on the tape, see Fig. 15.4. We show a
selection of snapshots of the machine working in rule 110 (see details in [38, 47]).
We show different sets of particles with coloured labels on the snapshot below.

Figure 15.11 shows the initial stage of the cyclic tag system with the state ‘1’ in
the tape. This data is represented by the set of particles 1Ele_C2. The snapshot shows
a central part of the machine and a train of A3 particles. We can see the first leader
in the set of particles SepInit_EĒ coming from the right periodic side.

The first reaction in Fig. 15.11 deletes the state ‘1’ on the tape. The set of particles
1Ele_C2) and the particles’ separator are prepared for next data to be aggregated. If
a set of particles 0Ele_C2 is encountered on the tape then data is not added to the
tape until another separator appears. The particles Ē left after the first production
are invisible to the system, they do not affect any operations because they cross as
solitons, without state modifications, the subsequent set of particles 4_A4.

In Fig. 15.12 we see a set of particles 1Ele_C2 constructed from a train of particles
4_A4. These particles have a very short life because quickly a separator set of particles
arrives. This separator erases the particles and prepares new data that would be
aggregated to the tape.

Figure 15.13 presents the construction of a set of particles 1Ele_C2. In this stage
of the evolution, we can see how data is aggregated, based on their values, before they
cross the tape. Similar reactions can be observed with the set of particles 0Ele_C2.

Figure 15.14 shows a set of particles 0Ele_C2 and its roles in the system. At
the top, a set of particles 1Add_Ē, previously produced by a standard component
1BloS_Ē, crosses a set of particles 0Ele_C2. A leader set of the particles deletes ‘0’
from the tape and all the subsequent incoming data. There are 1BloP_Ē, 0Blo_Ē and
1BloS_Ē set of particles in the illustrated sequence. The tile T14 is generated in the
process. This differences in distances between the particles determine a change of
phases which will lead to erasure of particles Ē, instead of production of particles C.
The reaction A3 → Ē is used to delete the particles.

Production rules in cyclic tag system specify that for the state ‘0’ the first element
of the chain must be erased and the other elements are conserved and no data are
written on the tape. If the state is ‘1’ the first element of the chain is deleted and 10
or 11 are aggregated depending of the k value. This behaviour is particularly visible
when a separator finds 0 or 1 and deletes it from the tape. If the deleted data is ‘0’,
a separator does not allow the production of new data. If the deleted data is ‘1’ the
separator aggregates new elements 11 or 10, which are modified at later stages of the
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Fig. 15.11 Initial stage of cyclic tag system in rule 110

system’s development. Using this procedure, we can calculate up to the sixth ‘1’ of
the sequence 011<1>0 produced by the cyclic tag system.

In terms of periodic phases, this cyclic tag system working in rule 110 can be
simplified as follows:

left: {649e-4_A4(F_i)}*, for 1 ≤ i ≤ 3 in sequential order
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Fig. 15.12 Constructing an element 1Ele_C2

center: 246e-1Ele_C2(A,f1_1)-e-A3(f1_1)

right: {SepInit_EĒ(#,fi_1)-1BloP_Ē(#,fi_1)-SepInit_EĒ(#,fi_1)-
1BloP_Ē(#,fi_1)-0Blo_Ē(#,fi_1)-1BloS_Ē(#,fi_1)}* (where
1 ≤ i ≤ 4 and # represents a particular phase).
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Fig. 15.13 Transformed data crossing the tape of values

These periodic coding will be very useful to design and synchronise three inter-
linked rings of 1D CA (cyclotrons) to make a ‘supercollider’.
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Fig. 15.14 Deleting a set of particles 0Ele_C2

15.5 Cellular Automata Supercollider

In the late 1970s Fredkin and Toffoli proposed a concept of computation based on
ballistic interactions between quanta of information that are represented by abstract
particles [53]. The Boolean states of logical variables are represented by balls or
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Fig. 15.15 Schemes of ballistic collision between localizations representing logical values of the
Boolean variables u and v
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Fig. 15.16 Representation of abstract particles in a 1D CA ring

atoms, which preserve their identity when they collide with each other. Fredkin,
Toffoli and Margolus developed a billiard-ball model of computation, with under-
pinning mechanics of elastically colliding balls and mirrors reflecting the balls’ tra-
jectories. Margolus proposed a special class of CA which implements the billiard-ball
model [24]. Margolus’ partitioned CA exhibited computational universality because
they simulated Fredkin gates via collision of soft spheres [25, 26]. Also, we consider
previous results about circular machines designed by Arbib, Kudlek, and Rogozhin
in [5, 20, 21]. Initial reports about CA collider were published in [28–30].

The following functions with two input arguments u and v can be realised in
collisions between two localizations:

• f (u, v) = c, fusion (Fig. 15.15a)
• f (u, v) = u + v, interaction and subsequent change of state (Fig. 15.15b)
• fi(u, v) �→ (u, v) identity, solitonic collision (Fig. 15.15c);
• fr(u, v) �→ (v, u) reflection, elastic collision (Fig. 15.15d);

To represent Toffoli’s supercollider [53] in 1D CA we use the notion of an idealised
particle p ∈ G (without energy and potential). The particle p is represented by a binary
string of cell states.

Figure 15.16 shows two typical scenarios where particles pf and ps travel in a CA
cyclotron. The first scenario (Fig. 15.16a) shows two particles travelling in opposite
directions; these particles collide one with another. Their collision site (contact point)
is shown by a dark circle in Fig. 15.16a. The second scenario demonstrates a beam
routing where a fast particle pf eventually catches up with a slow particle ps at a
collision site (Fig. 15.16b). If the particles collide like solitons, then the faster particle
pf simply overtakes the slower particle ps and continues its motion (Fig. 15.16c).
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Fig. 15.17 Particle collision in rule 110. Particle p−
B̄

collides with particle p−
G giving rise to three

new particles—p−
F , p+

D2
, and p+

A3 , and preserving the p−
B̄

particle—that are generated as a result of
the collision

Typically, we can find all types of particles in complex CA, including particles
with positive p+, negative p−, and neutral p0 displacements, and composite particles
assembled from elementary localizations. A sample coding and colliding particles is
shown in Fig. 15.17, which displays a typical collision between two particles in rule
110. As a result of the collision one particle is split into three different particles (for
full details please see [35]). The previous collision positions of particles determines
the outcomes of the collision. Particles are represented now with orientation and
name of the particle in rule 110 as follows: p+,−,0

G .
To represent particles on a given beam routing scheme (see Fig. 15.16), we do

not consider the periodic background configuration in rule 110 because essentially
this does not affect on collisions. Figure 15.18 displays a 1D configuration where two
particles collide repeatedly and interact as solitons so that the identities of the particles
are preserved in the collisions. A negative particle p−

F collides with and overtakes a
neutral particle p−

C1
. First cyclotron (Fig. 15.18a) presents a whole set of cells in state

1 (dark points) evolving with the periodic background. By applying a filter we can
see better these interactions (Fig. 15.18b).4 Typical space-time configurations of a
CA exhibiting a collision between p−

F and p−
C1

particles are shown in Fig. 15.18c.

4Cyclotron evolution was simulated with DDLab software, available at http://www.ddlab.org.

http://www.ddlab.org
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Fig. 15.18 A soliton-type interaction between particles in rule 110: a, b two steps of beam routing,
c exact configuration at the time of collision
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Fig. 15.19 Transition between two beam routing synchronising multiple reactions. When the first
set of collisions is done a new beam routing is defined with other set of particles, so that when the
second set of collisions is done then first beam returns to its original state

15.6 Beam Routings and Computations

We examine beam routing based on particle-collisions. We will show how the beam
routing can be used in designs of computing based-collisions connecting cyclotrons.
Figure 15.19 shows a beam routing design, connecting two of beams and then cre-
ating a new beam routing diagram where edges represent a change of particles and
collisions. In such a transition, new particles emerge and collide to return to the first
beam. The particles oscillate between these two beam routing indefinitely.

To understand how dynamics of a double beam differs from a conventional 1D
evolution space we provide Fig. 15.20. There we can see multiple collisions between
particles from first beam routing and trains particles. Exactly, we have that

p+
A , p+

A ↔ p−
B̄
, p−

B , p−
B

changes to the set of particles derived in the second beam routing:

p+
A4 ↔ p+

E , p+
Ē
.

This oscillation determines two beam routing connected by a transition of colli-
sions as:
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Fig. 15.20 Synchronisation of multiple collisions in rule 110 on a ring of 1,060 cells in 1,027
generations, starting with 50 particles from its initial condition

(p+
A , p+

A ↔ p−
B̄
, p−

B , p−
B ) → (p+

A4 ↔ p+
E , p+

Ē
), and

(p+
A4 ↔ p+

E , p+
Ē
) → (p+

A , p+
A ↔ p−

B̄
, p−

B , p−
B ).

We can see that a beam routing representation allows for a design of collisions
in cyclotrons. We employ the beam routing to implement the cyclic tag system in
the CA rings. A construction of the cyclic tag system in rule 110 consists of three
components (as was discussed in Sect. 15.4.2):

• The left periodic part, controlled by trains of 4_A4 particles. This part is static. It
controls the production of 0’s and 1’s.

• The centre, determining the initial value in the tape.
• The right periodic part, which has the data to process, adding a leader component

which determines if data will be added or erased in the tape.

Left periodic part is defined by four trains of A4 (Fig. 15.21c), trains of A4 have
three phases. The key point is to implement these components defining both distances
and phases, because a distinct phase or a distance induces an undesirable reaction.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i)

Fig. 15.21 The whole set of beam routing codification representing train of particles, to simulate
a cyclic tag system. Each global state represents every component (set of particles) described in
Sect. 15.4.1

The central part is represented by one value ‘1’ on the tape across a train of four
C2 particles. The component 1Ele_C2 (Fig. 15.21b) represents ‘1’ and the component
0Ele_C2 (Fig. 15.21a) represents ‘0’ on the tape. The component 0Blo_Ē is formed
by 12Ē particles. The construct includes two components to represent the state ‘1’:
1BloP_Ē (Fig. 15.21f) named primary and 1BloS_Ē (Fig. 15.21g) named standard.
A leader component SepInit_EĒ (Fig. 15.21d) is used to separate trains of data and
to determine their incorporation into of the tape.

The components 1Add_Ē (Fig. 15.21i) and 0Add_Ē (Fig. 15.21h) are produced
by two previous different trains of data. The component 1Add_Ē must be generated
by a block 1BloP_Ē or by 1BloS_Ē. This way, both components can yield the same
element. The component 0Add_Ē is generated by a component 0Blo_Ē (Fig. 15.21e).
For a complete and full description of such reproduction by phases fi_1, see [38].

To get a cyclic tag system emulation in rule 110 by beam routings, we will use con-
nections between beam routings as a finite state machine represented in Fig. 15.22.
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Fig. 15.22 Beam routing finite state machine simulating the cyclic tag system by state of cyclotrons
representation
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Transitions between beam routings means a change of state (transition function).
Initial state is represented by the component 1Ele_C2. A final state is not specified
because it is determined by the state of the computation, i.e., a halt condition. Com-
ponents 1Ele_C2 and 0Ele_C2 are compressed and shown as a dark circle, which
represents the point of collision. Both components are made of four C2 particles
being at different distances. When a leader component (SepInit_EĒ) is transformed,
given previous binary value on the tape, it collides with p0

? component, i.e., a p0
1 or p0

0
element. If p0

? is ‘0’, then a cascade of collisions starts to delete all components that
come with three particles successively. If p0

? is ‘1’ then a cascade of transformations
dominated by additional particles p0 is initiated, in order to reach the next leader
component. Here, we have more variants because pre-transformed train of particles
is encoded into binary values that are then written on the machine tape. If a com-
ponent of particles is 1BloP_Ē or 1BloS_Ē this means that such a component will
be transformed to one 1Add_Ē element. If a component of particles is 0Blo_Ē, then
such a component will be transformed to 0Add_Ē element. At this stage, when both
components are prepared then a binary value is introduced on the tape, a 1Add_Ē
element stores a 1 (1Ele_C2), and a 0Add_Ē element stores a 0 (0Ele_C2), which
eventually will be deleted for the next leader component and starts a new cycle in
the cyclic tag system. In bigger spaces these components will be represented just as
a point in the evolution space: we describe this representation in the next section.

15.7 Cyclotrons

We use cyclotrons to explore large computational spaces where exact structures of
particles are not relevant but only the interactions between the particles. There we
can represent the particles as points and trains of particles as sequences of points. A
3D representation is convenient to understand the history of the evolutions, number
of particles, positions, and collisions. Figure 15.23 shows a cyclotron evolving from
a random initial configuration with 20,000 cells. Three stages are initialised in the
evolution and the particles undergo successions of collisions in few first steps of
evolution. The evolution is presented in a vertical orientation rotated 90 degrees.
The present state shown is a front and its projection in three dimensions unveils the
history and the evolution. Following this representation we can design a number of
initial conditions to reproduce periodic patterns.5

Figure 15.24 shows a basic flip-flop pattern. We synchronise 16 particlespF ← pB,
the basic collision takes place for two pairs of particles, a pD1 particle and a train of
pA2 particles. The distance is determined by a factor of mod 14. A second reaction is
synchronised with pD1 ← pA2 to return back to the initial pF and pB particles. All 16
particles are forced in the same phase to guarantee an adequate distance, this distance
is fixed in 64 copies of 14 cells (ether). Finally eight collisions are controlled every
time simultaneously on an evolution space with 7,464 cells.

5The simulations are done in Discrete Dynamics Lab (DDLab, http://www.ddlab.org/) [59].

http://www.ddlab.org/
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Fig. 15.23 ECA rule 110 particles traveling and colliding inside a cyclotron in a evolution space
of 20,000 cells. A filter is selected for a better view of particles, each cyclotron initial stage in the
history (three dimensional projection) is restarted randomly to illustrate the complex dynamics and
variety of particles and collisions
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Fig. 15.24 Basic flip-flop oscillator implemented in a cyclotron with 7,464 cells in 25,000 gener-
ations. 16 particles pF ← pB were coded
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Fig. 15.25 Collider diagram

15.8 Collider Computing

A cyclic tag system consists of three main components. Each stage of computation
can be represented with a cyclotron. A synchronisation of these cyclotrons injects
beams of particles to a central main collider to obtain the collisions that will simulate
a computation. The periodic representations of left and right cyclotrons are fixed.
Diagram in Fig. 15.25 shows the dynamics of particles in a collider.

Left part Periodic area handle beams of three trains of four pA4 particles, travelling
from the left side with a constant velocity of 2/3. This ring has 30,640 cells, the
minimum interval between trains of particles is 649 copies of ether. Each beam of
pA4 can have three possible phases. The sequence of phases is periodic and fixed
sequentially: {649e-4A4(Fi)}∗, for 1 ≤ i ≤ 3 (Fig. 15.25 left area). Figure 15.26
shows a simulation of these periodic beams of 4pA4(Fi) particles.

Right part Periodic area handle beams of six trains of 12E’s particles (pEn , pĒ),
travelling from the right side with a constant velocity of −4/15. There are 12
particles related to a perfect square with 13,5002 possibilities to arrange inputs
into the main collider. Interval between 12 particles is mod 14. Figure 15.27
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Fig. 15.26 Three beams of 4pA4(Fi) particles. Simulation is displayed in a vertical position to get
a better view of particles’ trajectories



420 G. Martínez et al.

Fig. 15.27 A beam composed of six 12pEs particles. Simulation is shown in a vertical position to
get a better view of particles’ trajectories. Interval between first and last particles can be any number
mod 14
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Fig. 15.28 First stage of collisions of the cyclic tag system. Solitonic interactions take place 4pA4(F3)

and two pĒ particles. First symbol ‘1’ on the type is deleted (center). The first separator is read and
deleted

shows the whole set of 72 pEs particles. The set contains leaders and separator
components, and beams of particles that introduce ‘0’s and ‘1’s on the tape.

Center Initial state of particles starts with a ‘1’ on the type of the cyclic tag system.
Figure 15.28 shows the first stage of the collider. The system start with one ‘1’ in
the type (four vertical pCs particles), they are static particles that wait for the first
beam of pEs particles to arrive at the right side to delete this input and decode the
next inputs. In this process two solitons emerge, but they do not affect the system
and the first beam of 4pA4(F3) particles without changing their states.
Figure 15.29 shows how a second symbol ‘1’ is introduced in the collider. A leader
component is deleted and the second binary data is prepared to collide later with
the first beam of 4pA4(F3) particles. Finally, the second ‘1’ is represented for the
vertical particles, as shown at the bottom of Fig. 15.29.
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Fig. 15.29 This snapshot shows when a ‘1’ is introduced in the type. A second beam of 12 pĒ
particles is coming to leave just spaced four pĒ particles, these particles collide with one of 4pA4(F3)

particles. The result is four 4pCs particles at the bottom of the simulation that represent one ‘1’ in
the cyclic tag system type

Figure 15.30 shows how further symbols ‘0’ and ‘1’ are introduced in the system.
They are coded with pĒs particles. Before the current ‘1’ is introduced with 4pA4(F3)

particles, the next set of 4pA4(F3) particles is prepared in advance.
Figure 15.31 shows the largest stage of the collider’s working. A second beam of
4pA4(F1) arrives. More beams of pEs particles are introduced. Figure 15.32 displays
a full cycle of beams of pA and pEs particles. All operations are performed at least
once. The next set of particles is ready to continue with the next stage of the
computation.
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Fig. 15.30 This snapshot shows how a sequence of values ‘0’ and ‘1’ is precoded. You can see
sequences of ‘0’s and ‘1’s, and pEs particles travelling to from the left to the right

15.9 Discussion

The CA collider is a viable prototype of a collision-based computing device. It well
compliments existing models of computing circuits based on particle collisions [15,
18, 23, 42, 45, 56, 60]. How complex is our design? With regarding to time com-
plexity, rule simulates Turing machine a polynomial time and any step of rule 110
can be predicted in a polynomial time [46]. As to space complexity, left cyclotron in
the collider is made of 30,640 cells and the right cyclotron of 5,864 cells. The main
collider should have 61,280 cells to implement a full set of reactions; however, it is
possible to reduce the number of cells in the main collider, because the first train
of 4pA4(Fi) particles needs just 10,218 cells; and subsequent trains can be prepared
while initial data are processed. Thus, the simulated collider have just thousands of
cells not millions. The space complexity of the implemented cyclic tag systems has
been reduced substantially [11, 12, 58].
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Fig. 15.31 This snapshot shows from another angle how binary values are introduced in the cyclic
tag system. We can also see how a number of values are prepared to collide with beams of 4pA4(Fi)
particles at the end of simulation

What are chances of implementing the CA collider model in physical substrates?
A particle, or gliders, is a key component of the collider. The glider is a finite-
state machine implementation of a propagation localisation. A solitary wave, or an
impulse, propagating in a polymer chain could be a phenomenologically suitable
analog of the glider. A wide range of polymer chains, both inorganic and organic,
support solitons [1–3, 6, 9, 13, 14, 17, 19, 50, 52]. We believe actin filaments could
make the most suitable substrate for implementation of a cyclic tag system via linked
rings of CA colliders.
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Fig. 15.32 This evolution displays a full cycle of beams of pA and pEs particles. In this snapshot
we can see all necessary operations in the cyclic tag system: input values, deleting block of values,
particles like solitons, and the next stage of the collider

An actin filament is a double spiral helix of globular protein units. Not only actin
is a key element of a cell skeleton, and is responsible for a cell’s motility, but actin
networks is a sensorial, information processing and decision making system of cells.
In [4] we proposed a model of actin filaments as two chains of one-dimensional
binary-state semi-totalistic automaton arrays. We show that a rich family of travel-
ling localisations is observed in automaton model of actin, and many of the locali-
sation observed behave similarly to gliders in CA rule 110. The finite state machine
model has been further extended to a quantum cellular automata model in [48]. We
have shown that quantum actin automata can perform basic operations of Boolean
logic, and implemented a binary adder. To bring more ‘physical’ meaning in our
actin-computing concept we also employed the electrical properties of imitated actin
filaments—resistance, capacitance, inductance — and found that it is possible to
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implement logical gates via interacting voltage impulses [49]; voltage impulses in
non-linear transmission wires are analogs of gliders in 1D CA. Clearly, having just
actin is not enough: we must couple rings together, arrange physical initiation of soli-
tons and their detection, and solve myriad of other experimental laboratory problems.
That will be a scope of further studies.
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Chapter 16
Quantum Queries Associated
with Equi-partitioning of States
and Multipartite Relational Encoding
Across Space-Time

Karl Svozil

Abstract In the first part of this paper we analyze possible quantum computational
capacities due to quantum queries associated with equi-partitions of pure orthogonal
states. Special emphasis is given to the parity of product states and to functional
parity. The second part is dedicated to a critical review of the relational encoding of
multipartite states across (space-like separated) space-time regions; a property often
referred to as “quantum nonlocality”.

16.1 Unconventional Properties for Unconventional
Computing

At the heart of any unconventional form of computation (information processing)
appears to be some (subjectively and “means relative” to the current canon of knowl-
edge) strange, mind boggling, unexpected, stunning, surprising, hard to believe, fea-
ture or capacity of Nature. That is, in order to search for potentially unconventional
information processing, we have to parse for empirical patterns and behaviour as
well as for theoretical predictions which, relative to our expectations, go beyond our
everyday “classical” experience of the world. “Unconventional” always is “means
relative” and has to be seen in a historic context; that is, relative to our present means
and capacities which we consider consolidated and conventional.

For the sake of some example, take the transmission of data from one point to
another via satellite links or cables; or take (gps) navigation by time synchronization;
or take the prediction of all sorts of phenomena, including weather or astronomical
events. All these capacities appear conventional today, but would have been uncon-
ventional, or even magical, only 200 years ago.
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So what are the new frontiers? In what follows I shall mainly concentrate on some
quantum physical capacities which are widely considered as potential resources for
presently “unconventional” computation.

Before we begin the discussion, a caveat is in order. First, we should not get
trapped by inappropriate yet convenient formal assumptions which have no opera-
tional consequences. For instance, all kinds of “infinity processes” have no direct
empirical correspondence. In particular, classical continua abound in physics, but
they need to be perceived rather as convenient though metaphysical “completion” of
processes and entities which are limited by finite physical means.

We should also not get trapped by what Jaynes called Mind Projection Fallacy
[1, 2], pointing out that “we are all under an ego-driven temptation to project our
private thoughts out onto the real world, by supposing that the creations of one’s own
imagination are real properties of Nature, or that one’s own ignorance signifies some
kind of indecision on the part of Nature.” Instead we should attempt to maintain a
curiosity with evenly-suspended attention outlined by Freud [3] against “temptations
to project, what [the analyst] in dull self-perception recognizes as the peculiarities
of his own personality, as generally valid theory into science.”

The postulate of “true,” that is, ontological, randomness inNature is such a fallacy,
in bothwaysmentioned in the caveat: it assumes infinite physical resources (ormaybe
rather ex nihilo creation), as well as our capacity to somehow being able to “prove”
this—a route blocked by recursion theory; in particular, by reduction to the Halting
problem.

16.2 Quantum Speedups by Equi-Decomposition
of Sets of Orthogonal States

One of the mind boggling features of quantum information is that, unlike classical
information, it can “reside,” or be encoded into, the relational properties of multiple
quanta [4, 5]. For instance, the singlet Bell state of, say, two electrons is defined by
the following property (actually, two orthogonal spatial directions would suffice): if
one measures the spin properties of these particles along some arbitrary spatial direc-
tion, then the spin value observed on one particle turns out to be always the negative
spin value observed on the other particle—their relative spin value is negative—that
is, either of “+” sign for the first particle and of “−” sign for the second one; or
vice versa. The “rub,” or rather compensation, for this fascinating encoding of infor-
mation “across” particles appears to be that none of these individual particles has a
definite individual spin value before the (joint) measurement. That is, all informa-
tion encodable into them is exhausted by these relational specifications. This well
recognized capacity of quantum mechanics could be conceived as the “essence of
entanglement” [6].

Besides entanglement there is another capacity which is not directly related to
relational properties of multipartite systems; yet it shares some similarities with the
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latter: the possibility to organize elementary, that is, binary (or, in general, d-ary)
quantum queries resolving properties which can be encoded into (equi-)partitions of
some set of pure states. If such partitions are feasible, then it is possible to obtain
one bit (or, in general, dit) of information by staging such a single query without
knowledge in what particular state the quantized system is.

From a different perspective any such (binary or d-ary) observable is related
to a partial (i.e. incomplete) state identification [7–9]. Many of the fast quantum
algorithms discussed in the literature depend on incomplete state identification.

Note that, in the binary case, any complete state identification—that is, setting up a
complete set of quantum observables or queries capable to discriminate between and
“locating” all single states—could be seen as the dual (observable) side of what can
be considered an arbitrary state preparation for multipartite systems. This latter state
preparation also features entanglement by allowing appropriate relational properties
among the constituent quanta.

16.2.1 Parity of Two-Partite Binary States

For the sake of a demonstration of the “unconventional” quantum speedup achievable
through partial (incomplete) state identification, consider the four two-partite binary
basis states |00〉, |01〉, |10〉, and |11〉. Suppose we are interested in the even parity
of these states. Then we could construct a even parity operator P via a spectral
decomposition; that is,

P = 1 · P− + 0 · P+, with

P− = |01〉〈01| + |10〉〈10|,
P+ = |00〉〈00| + |11〉〈11|,

(16.1)

which yields even parity “0” on |00〉 as well as |11〉, and even parity “1” on |01〉 as
well as |10〉, respectively. Note that P− as well as P+ are projection operators, since
they are idempotent; that is, P2

− = P− and P2
+ = P+.

Thereby, the basis of the two-partite binary states has been effectively equi-
partitioned into two groups of even parity “0” and “1;” that is,

{{|00〉, |11〉}, {|01〉, |10〉}}. (16.2)

The states associated with the propositions corresponding to the projection opera-
tors P− for even parity one and P+ for even parity zero of the two bits are entangled;
that is, this information is only expressed in terms of a relational property—in this
case parity—of the two quanta between each other [4, 5].
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16.2.2 Parity of Multi-partite Binary States

This equi-partitioning strategy [7, 10] to determine parity with a single query can be
generalized to determine the parity of multi-partite binary states. Take, for example,
the even parity of three-partite binary states definable by

P = 1 · P− + 0 · P+, with
P− = |001〉〈001| + |010〉〈010| + |100〉〈100| + |111〉〈111|,
P+ = |000〉〈000| + |011〉〈011| + |101〉〈101| + |110〉〈110|.

(16.3)

Again, the states associated with the propositions corresponding to the projection
operators P− for even parity one and P+ for even parity zero of the three bits are
entangled. The basis of the three-partite binary states has been equi-partitioned into
two groups of even parity “0” and “1;” that is,

{{|000〉, |011〉, |101〉, |110〉},
{|001〉, |010〉, |100〉, |111〉}}. (16.4)

16.3 Parity of Boolean Functions

It is well known that Deutsch’s problem—to find out whether the output of a binary
function of one bit is constant or not; that is, whether the two outputs have even
parity zero or one—can be solved with one quantum query [11, 12]. Therefore it
might not appear totally unreasonable to speculate that the parity of some Boolean
function—a binary function of an arbitrary number of bits—can be determined by
a single quantum query. Even though we know that the answer is negative [13]
it is interesting to analyze the reason why this parity problem is “difficult” even
for quantum resources, in particular, quantum parallelism. Because an answer to
this question might provide us with insights about the (in)capacities of quantum
computations in general.

Supposewe define the functional parity P( fi ) of an n-ary function fi = (gi +1)/2
via a function gi (x1, . . . , xn) ∈ {−1,+1} and

P(gi ) =
∏

x1,...,xn∈{0,1}
gi (x1, . . . , xn). (16.5)

Let us, for the sake of a direct approach of functional parity, consider all the 22
n

Boolean functions fi (x1, . . . , xn), 0 ≤ i ≤ 22
n − 1 of n bits, and suppose that we

can represent them by the standard quantum oracle
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Ui (|x1, . . . , xn〉|y〉)
= |x1, . . . , xn〉|y ⊕ fi (x1, . . . , xn)〉 (16.6)

as ameans to copewith possible irreversibilities of the functions fi . Because fi ⊕ fi =
0, we obtain U 2

i = I and thus reversibility of the quantum oracle. Note that all the
resulting n + 1-dimensional vectors are not necessarily mutually orthogonal.

For each particular 0 ≤ i ≤ 22
n − 1, we can consider the set

Fi = { fi (0, . . . , 0), . . . , fi (1, . . . , 1)} (16.7)

of all the values of fi as a function of all the 2n arguments. The set

V = {Fi | 0 ≤ i ≤ 22
n − 1}

= {{ fi (0, . . . , 0), . . . , fi (1, . . . , 1)} | 0 ≤ i ≤ 22
n − 1

} (16.8)

is formed by all the 22
n+n Boolean functional values fi (x1, . . . , xn). Moreover, for

every one of the 22
n
different Boolean functions of n bits the 2n functional output

values characterize the behavior of this function completely.
In the next step, suppose we equi-partition the set of all these functions into two

groups: those with even parity “0” and “1,” respectively. The question now is this:
can we somehow construct or find two mutually orthogonal subspaces (orthogonal
projection operators) such that all the parity “0” functions are represented in one
subspace, and all the parity “1” are in the other, orthogonal one? Because if this
would be the case, then the corresponding (equi-)partition of basis vectors spanning
those two subspaces could be coded into a quantum query [7] yielding the parity of
fi in a single step.
We conjecture that involvement of one or more additional auxiliary bits (e.g.,

to restore reversibility for nonreversible fi ’s) cannot improve the situation, as any
uniform (over all the functions fi ) and non-adaptive procedure will not be able to
generate proper orthogonality relations.

We know that for n = 1 this task is feasible, since (we re-coded the functional
value “0” to “−1”)

fi P( fi ) fi (0) fi (1)
f0 0 −1 −1
f1 0 +1 +1
f2 1 −1 +1
f3 1 +1 −1

(16.9)

and the two parity cases “0” and “1,” are coded into orthogonal subspaces spanned
by (1, 1) and (−1, 1), respectively.

This is no longer true for n = 2; due to an overabundance of functions, the vectors
corresponding to both parity cases “0” and “1” span the entire Hilbert space:
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fi P( fi ) fi (00) fi (01) fi (10) fi (11)
f0 0 −1 −1 −1 −1
f1 0 −1 −1 +1 +1
f2 0 −1 +1 −1 +1
f3 0 −1 +1 +1 −1
f4 0 +1 −1 −1 +1
f5 0 +1 −1 +1 −1
f6 0 +1 +1 −1 −1
f7 0 +1 +1 +1 +1
f8 1 −1 −1 −1 +1
f9 1 −1 −1 +1 −1
f10 1 −1 +1 −1 −1
f11 1 −1 +1 +1 +1
f12 1 +1 −1 −1 −1
f13 1 +1 −1 +1 +1
f14 1 +1 +1 −1 +1
f15 1 +1 +1 +1 −1

(16.10)

16.3.1 Proper Specification of State Discrimination

The results of this section are also relevant for making precise Zeilinger’s founda-
tional principle [4, 5] claiming that an n-partite system can be specified by exactly
n bits (dits in general). The issue is what exactly is a “specification?”

We propose to consider a specification appropriate if it can yield to an equi-
partitioning of all pure states of the respective quantized system. That is, to give an
example, the parity of states could serve as a proper specification, but functional
parity in general (for more that two quanta) cannot.

16.4 Relativity Theory Versus Quantum Inseparability

Let us turn our attention to another “unconventional” quantum resource, which is
mostly encountered at (but not restricted to) spatially separated entangled states: the
so-called “quantum nonlocality;” and, in particular, on the paradigm shift of our
perception of physical space and time.

First, let us keep in mind that, in the historic perspective it is quite evident why
our current theory of space-time, relativity theory [14, 15], does not directly refer to
quanta: it was created when quantum mechanics was “unborn,” or at least in its early
infancy. Indeed, in 1905 it was hardly foreseeable that Planck’s self-denominated [16,
p. 31] “Akt der Verzweiflung” (“act of desperation”)—committed five years ago in
1900 for the sake of theoretically accommodating precision measurements of the
blackbody radiation—would be extended into one of the most powerful physical
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theories imagined so far. Therefore it should come as no surprise that all operational-
izations and conventions implemented by relativity theory, in particular, simultaneity,
refer to classical, pre-quantum, physics.

Besides its applicability and stunning predictions and consequences (such as,
for instance “E = mc2,” as well as the unification of classical electric and mag-
netic phenomena) the triumph of special relativity resides in its structural as well
as formal clarity: by adopting certain conventions (which were essentially adopted
from railroad traffic [17, 18] and are also used by Cristian’s Algorithm for data net-
work synchronization), and by fixing the speed of electromagnetic radiation for all
reference frames (together with the requirement of bijectivity), the Lorentz trans-
formations result from theorems of incidence geometry [19, 20]. Beyond formal
conventions, the physical content resides in the form invariance of the equations of
motion under such transformations.

In view of these sweeping successes of classical relativity theory it might not be
surprising that Einstein, one of the creators of quantum mechanics, never seriously
considered the necessity to adapt the concepts of space-time to the new quantum
physics. On the contrary—Einstein seemed to have prioritized relativity over quan-
tum theory; the latter one he critically referred to as [21, p. 113] “noch nicht der
wahre Jakob” (“not yet the true [final] answer”). Time and again Einstein came
up with predictions of quantum mechanics which allegedly discredited the (final)
validity of quantum theory.

In a letter to Schrödinger dated June 19th, 1935 [22, 23] Einstein concretized and
clarified his uneasiness with quantum theory previously published in a paper with
Podolsky and Rosen [24] (“written by Podolsky after many discussions” [22]). In
this communication Einstein insisted that the wave function of a subsystem A of
(entangled) particles cannot depend on whatever measurements are performed on its
spatially separated (i.e. separated by a space-like interval) “twin” subsystem B: in his
own (translated from German1) words: “The true state of B cannot depend on which
measurement I perform on A.” Pointedly stated, the “separability principle” asserts
that any two spatially separated systems possess their own separate real state [23].

The separability principle is not satisfied for entangled states [25, 26]; in particular,
if general two-partite state

|�〉 =
∑

i, j∈{−,+}
αi j |i j〉, with

∑
i, j∈{−,+}

|αi j |2 = 1

does not satisfy factorizability [12, p. 18] requiring α−−α++ = α+−α−+. That is,
if α−−α++ �= α+−α−+, then |�〉 cannot be factored into products of single particle
states.

Even in his later years Einstein was inclined to take relativistic space-time as the
primary framework; thereby prioritizing it over fundamental quantum mechanical
inseparability; in particular, when it comes to multipartite situations [23, 27].

1Einstein’s (underlined) original German text: “Der wirkliche Zustand von B kann nicht davon
abhängen, was für eine Messung ich an A vornehme”.
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16.5 Proximity and Apartness in Quantum Mechanics

In what follows we propose that, when it comes to microphysical situations, in par-
ticular, when entanglement is involved, the provenance of classical relativity theory
over quantum mechanics has to be turned upside down: while entangled quanta may
epistemically (and for many practical purposes [28]) appear “separated,” or “apart,”
or “distinct” to a classical observer ignorant of their relational properties (cf. earlier
discussion in Sect. 16.2) encoded “across these quanta,” quantum mechanically they
are treated holistically “as one.”

The pretension of any such observer, or the possibility to actually perceive entan-
gled quanta as being “spatially separated” (by disregarding their correlations) should
not be seen as a principal property, but rather as a “means relative” one.

For the sake of an example, take the two-particle singlet Bell state |�−〉 =
(1/

√
2) (| + −〉 − | − +〉), which, by identifying |−〉 ≡ (0, 1) and |+〉 ≡ (1, 0),

can be identified with the four-dimensional vector whose components in tuple form
are |�−〉 ≡ (1/

√
2)[(1, 0) ⊗ (0, 1) − (0, 1) ⊗ (1, 0)] = (1/

√
2)(0, 1,−1, 0). The

separability principle is not satisfied, since 0 · 0 �= 1 · (−1). So, from the point of
view of those entangled state observables, the quanta appear inseparable.

And yet, the same quanta can be perfectly localized and distinguished by resolving
them spatially. This situation—the occurrence of both inseparability and (spatial)
distinguishability – has caused a lot of confusion. This is particularly serious if one
of these distinct viewpoints on the quantized system, say, spatial separability and
locatedness of the particles, is meshed with the inseparability of the spin observables
when the latter ones are relationally defined. An yet, we might envision that, with
this dual situation we could get a handle on quantum inseparability (via encoding of
relational information) by spatially separated detectability of the quanta forming this
entangled state. Alas this is impossible, because the relational properties do not reveal
themselves by individual outcomes—only when all these (relational) outcomes are
considered together do the relational properties reveal themselves.

Of course, this would be totally different if it would be possible to wilfully force
any particular handle or side or component of the entangled state, thereby effectively
forcing the respective (relational property on the other handle or side or component.
So far, despite speculative attempts to utilize stimulated emission [29], there is no
indication that this might be physically feasible.

16.6 Summary

The first part of this chapter has been dedicated to quantum queries relating to prop-
erties which can be encoded in terms of (equi-)partitioning of states. We have been
particularly interested in the parity of products of binary states, and also in the par-
ity of Boolean functions; that is, dichotomic functions of bits. Thereby we have
presented criteria for the (non-) existence of quantum oracles.
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In the second part of this chapter we have argued that, instead of perceiving entan-
gled quanta in an a priori “space-time theater,” space-time is a secondary, derived
concept of our mind which needs to be operationally constructed by conventions
and observations. This is particularly true for multipartite entangled states, and their
spatio-temporal interconnectedness. Such an approach leaves no room for any hypo-
thetical inconsistency in quantum space-time, and nomind-boggling “peaceful coex-
istence” with relativity theory.
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Chapter 17
Solving the Broadcast Time Problem
Using a D-wave Quantum Computer

Cristian S. Calude and Michael J. Dinneen

Abstract We illustrate how the D-Wave Two quantum computer is programmed
and works by solving the Broadcast Time Problem. We start from a concise integer
program formulation of the problem and apply some simple transformations to arrive
at the QUBO form which can be run on the D-Wave quantum computer. Finally, we
explore the feasibility of this method on several well-known graphs.

17.1 Introduction

D-Wavemachines are “theworld’s first commercially available quantumcomputers.”
D-Wave Two is an adiabatic machine which operates on 512 qubits. Various teams
based in academia and major companies like Lockheed Martin, NASA, Google,
are exploring the computational capability of this machine as well as its potential
applications.

ProgrammingD-Wave is radically different fromprogrammingclassicalmachines,
like one’s traditional home computer. In this paper we use the Broadcast Time Prob-
lem, an NP-complete problem, to illustrate how to develop programs for the D-Wave
Two machine and how it operates. We start from a concise integer program for-
mulation of our optimization problem and, through several intermediate phases, we
convert it to the QUBO form, the formulation which can be run on the D-Wave
computer. Finally we explore the feasibility of this method on several well-known
graphs.
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17.2 Adiabatic Computing

Theadiabaticmodel of quantumcomputinguses thepropensity of physical systems—
classical or quantum—to minimize their free energy. Quantum annealing is free
energy minimization in a quantum system.

Its mathematical precursors are the Monte Carlo methods [1]—in which a prob-
lem is solved by generating repeated random samplings from a probability distrib-
ution, performing simple deterministic computations and aggregating the results—
and theMetropolis-Hastings algorithm—aMarkov chainMonte Carlomethod useful
when direct sampling is difficult [2]. In 1983 an analogy between minimizing the
cost function of a combinatorial optimization problem—solved efficiently with the
Metropolis-Hastings algorithm—and the slow cooling of a solid until it reaches its
low energy ground state was discovered in [3]. The proposed method—called sim-
ulated annealing [3, 4]—is very simple: substitute the cost for energy and run the
Metropolis-Hastings algorithm in a sequence of slowly decreasing temperature val-
ues, which makes the system progress through various energy states till, hopefully,
it finds a global optimal answer.

An adiabatic quantum computation (AQC) is an algorithm that computes an exact
or approximate solution of an optimization problem encoded in the ground state—its
lowest-energy state—of aHamiltonian (the operator corresponding to the total energy
of the system). The algorithm starts at an initial state HI that is easily obtained, then
evolves adiabatically, i.e. by slowly changing to the Hamiltonian HP . An example of
evolution is H = (1 − t)HI + t HP as the time t increases monotonically from 0 to
1. During the entire computation, the system must stay in a valid ground state. If the
system can reach its ground state we get an exact solution; if it can only reach a local
minimum, then we get an approximate solution. The slower the evolution process
the better the approximate (possibly exact) solution is obtained.

The adiabatic quantum computing model shares the same paradigm as simulated
annealing. The main difference is that simulated annealing is based on “thermody-
namic energy” and quantum annealing is based on “quantum fluxuations” during
a cooling process. One suggested advantage of quantum annealing is the ability to
“quantum tunnel” out of some local optimal states,1 as illustrated in Fig. 17.1.

AQC is based on theBorn–Fock adiabatic theorem [5]which accounts for the adia-
batic evolution of quantumstateswhen the change in the time-dependentHamiltonian
is sufficiently slow [6]:

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on
it slowly enough and if there is a gap between the eigenvalue and the rest of theHamiltonian’s
spectrum.

The quantum adiabatic computation model and the gate quantum computation
model—probably the most studied model of quantum computing—are polynomially
time equivalent [7].

1D-Wave Two is capable of using it.
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Energy Potential

State (position, charge, phase, etc.)

local min

global min

classical path

quantum path

Fig. 17.1 Annealing with quantum tunneling

17.3 D-Wave Computers

The D-Wave computers are produced by the Canadian company D-Wave Systems:
D-WaveOne (2011) operates on a 128-qubit chipset; D-Wave Two (2013)workswith
512 qubits [8]. D-Wave computers use quantum annealing to improve convergence
of the system’s energy towards the ground state energy of aQuadratic Unconstrained
Binary Optimization (QUBO) problem. QUBO is an NP-hard mathematical problem
consisting in theminimization of a quadratic objective function f (x) = xT Qx, where
x is a n-vector of binary variables and Q is a symmetric n × n matrix:

x∗ = minx
∑
i≥ j

xi Q(i, j)x j , where xi ∈ {0, 1}.

The computer architecture consists of qubits arranged with a host configuration
as a subgraph of a Chimera graph. A Chimera graph consists of an M × N two-
dimensional lattice of blocks, with each block consisting of 2L vertices (a complete
bipartite graph KL ,L ), in total 2MNL variables. TheD-WaveOnehasM = N = L =
4 for a maximum of 128 qubits. D-Wave qubits are loops of superconducting wire,
the coupling between qubits is magnetic wiring and themachine itself is supercooled.

To index a qubit we use four numbers (i, j, u, k), where (i, j) indexes the (row,
column) of the block, u ∈ {0, 1} is the left/right bipartite half of KL ,L and 0 < k < L
is the offset within the bipartite half. Qubits indexed by (i, j, u, k) and (i ′, j ′, u′, k ′)
are neighbors if and only if

1. i = i ′ and j = j ′ and [(u, u′) = (0, 1) or (u, u′) = (1, 0)] or
2. i = i ′ ± 1 and j = j ′ and u = u′ and u = 0 and k = k ′ or
3. i = i ′ and j = j ′ ± 1 and u = u′ and u = 1 and k = k ′.

Figure17.2 shows for L = N = 4 (and M > 2) the structure of an initial part of
a Chimera graph where the two half partitions of the bipartite graphs KL ,L (blocks)
are drawn horizontally and vertically, respectively. The linear index (qubit id of the
vertices) from the four tuple (i, j, u, k) is the value 2NLi + 2L j + Lu + k.
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Fig. 17.2 D-Wave architecture: a subgraph of a Chimera graph with L = N = 4

17.4 The Broadcast Time Problem

Broadcasting concerns the dissemination of a message originating at one node of
a network to all other nodes [9, 10]. This task is accomplished by placing a series
of calls over the communication lines of the network between neighboring nodes.
Each call requires a unit of time, a call can involve only two nodes and a node can
participate in only one call per time step.

A broadcast tree for a vertex v (called the originator) of an undirected graph G =
(V, E) is an implicit rooted tree based on a sequence V0 = {v}, E1, V1, E2, . . . , Et ,

Vt = V (of broadcast height t) such that each Vi ⊆ V , each Ei is an oriented subset
of E , and for every 1 ≤ i ≤ t : (1) each arc (u, w) in Ei has only the source u endpoint
in Vi−1, (2) no two arcs in Ei share a common endpoint, and (3) Vi = Vi−1 ∪ {w |
(u, w) ∈ Ei }.

The Broadcast Time Problem is the following: Given a connected graph G =
(V, E), originator v ∈ V and integer t , is there a broadcast tree Tv rooted at v with
the height of Tv at most t? This is a well-known NP-complete problem (see [ND49]
of [11]), even for graphs of maximum vertex degree 3 (see [12]). The optimization
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Fig. 17.3 The graph Q3 with broadcast time 3

version of this problem is approximable within O(log2 |V |/ log log |V |), but is not
expected to have a polynomial-time approximation scheme [13].

In the example shown in Fig. 17.3 (hypercube Q3) an optimal broadcast tree is
illustrated for the originator vertex 0.

The development of a quantum solution will be presented in a sequence of four
phases, which are described in Sects. 17.5–17.8. We summarize this general solu-
tion approach for Q3 in Sect. 17.9 before giving a detailed implementation of our
broadcast time solution for K2 in Sect. 17.10. Finally, we present some general exper-
imental results for several other small common graphs (Sect. 17.11) and concluding
comments (Sect. 17.12).

17.5 Integer Programming Formulation

In the first phase we present a simple formulation (i.e. polynomial-time reduction)
of the Broadcast Time Problem with the originator fixed2 at v = 0 as an Integer
Programming (IP) Optimization Problem (see [14]). The input is a connected graph
G = (V = {0, 1, . . . , n − 1}, E) representing a network with n = |V | vertices and
m = |E | edges. For the graph G, we use the following n + 2m + 1 variables:

• t is the required time to complete a broadcast,
• vi is the time in {0, 1, . . . , t} in which the vertex i ∈ V receives the message,
0 ≤ i < n,

• bi, j is a binary variable which is 1 if and only if the vertex i broadcasts to the
vertex j (for each {i, j} ∈ E).

The objective function for our optimization problem is min(t), or equivalently,
max(n − t).

Several families of constraints on the variables are now presented. First, the time
t must be at most n − 1:

2Solving the problem for other originators can be easily done by relabelling the vertices of the graph
or doing obvious modifications in the formulation below.
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0 ≤ t ≤ n − 1. (17.1)

Every vertex receives the message at a time step at most t :

0 ≤ vi ≤ t, for all i ∈ V . (17.2)

The originator vertex has no parent and every other vertex must have exactly one
parent in the broadcast tree:

∑
j 	=0

b j,0 = 0, (17.3)

∑
j 	=i

b j,i = 1, for all i ∈ V \ {0}. (17.4)

There are no broadcast cycles, that is for a child vertex, the informed time of the
parent must be strictly less than its message received time:

bi, j (1 + vi − v j ) ≤ 0, for all {i, j} ∈ E . (17.5)

Finally, every two child vertices { j, k} informed by the same parent i must occur
at different times:

bi, j + bi,k − (v j − vk)
2 ≤ 1, for all {i, j} ∈ E, {i, k} ∈ E with j 	= k. (17.6)

17.6 Binary Integer Programming Formulation

Next we convert all non-binary variables (in IP formulation) into binary variables.
The following simple procedure converts an integer constrained variable 0 ≤ x ≤ D
into a set of O(log D) binary variables x0, x1, . . . , xc representing its binary repre-
sentation:

x = x0 + 2x1 + 4x2 + · · · + 2cxc =
c∑

i=0

2i xi ,

where xi ∈ {0, 1} and 2c ≤ D < 2c+1. Each constraint of the form x ≤ D is replaced
by the following equivalent constraint:

c∑
i=0

2i xi ≤ D. (17.7)
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17.7 Linear Binary Integer Programming Formulation

Using standard techniques (e.g., see [15]) we convert the above quadratic binary IP
formulation into a linear formulation. Each occurrence of a product of two binary
variables xy is replaced by a newvariable zxy and the following two linear constraints:

0 ≤ x + y − zxy ≤ 1, (17.8)

−1 ≤ 2zxy − (x + y) ≤ 0, (17.9)

enforce zxy = xy.
We can reduce the number of “product” binary variables by observing that for

Eq. (17.5) we do not need to consider j = 0 and for Eq. (17.6) we can only consider
vertices j > 0 and k > 0 with a common neighbor.

Note that the above reduction was automated and the SageMixed Integer Program
Solver [16] was used to verify correctness of many small graphs [17].

17.8 QUBO Formulation

The first step to converting the current binary linear IP formulation to QUBO is to use
a “standard form,” where all inequalities are replaced with equalities by introducing
slack variables [14].

The next step is to build an equivalent QUBO of the IP formulation and add rules
to force all linear equation constraints to be satisfied when assigning 0/1 to the binary
variables. Consider a linear equality constraint Ck of the form

∑n
i=1 c(k,i)xi = dk for

xi ∈ {0, 1} with fixed integer constants c(k,i) and dk . This equation is satisfied if
and only if

∑n
i=1 c(k,i)xi − dk = 0, or equivalently, if 〈ck, x〉 − dk = 0, where ck =

(c(k,i), c(k,2), . . . , c(k,n)) and 〈ck, x〉 is the product of the vectors ck and x. If 〈ck, x〉 −
dk is not zero we need to have a penalty greater than the maximum feasible value of
t , which is n. Thus, we can construct the following QUBO that is equivalent to the
IP formulation of the Broadcast Time Problem:

x∗ = minx

(
t + n ·

∑
k

(〈ck, x〉 − dk)
2

)
, where xi ∈ {0, 1}.

Note first that the variable t is obtained from the variables used in Eq. (17.1)
of Sect. 17.5 and is added to the other QUBO entries in Q from the set of linear
constraints Ck . The QUBO constants for the binary variables representing t will
be powers of 2, as given by Eq. (17.7). Second, any term d2

k in the square terms
of (〈ck, x〉 − dk)2 which does not involve a variable xi can be ignored since those
additive terms are independent of any assignment of variables (i.e. we have a fixed
additive QUBO offset to the objective solution). Third, since variables xi are binary,
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we have x2i = xi and the constants for those terms are included in the main diagonal
entries of Q. Finally, the conversion from an arbitrary Broadcast Time Problem
instance to QUBO was automated [17].

17.9 Q3 Example

In this section we illustrate the quantum solution phases for Q3. In the first phase (IP
formulation) we get 33 integer variables (the variable t , eight variables of the type
vi , and 24 variables of the type bi, j ) and 65 quadratic constraints. These constraints
are shown in the appendix of this chapter.

The conversion to the binary formulation results in 51 (= 33 + 2 · 9) binary vari-
ables as we need three binary variables for each of the previous integer variables
t , v0, . . . , v7. The number of constraints stays the same but each gets expanded
with more variables. For example, x1 ≤ x0 becomes−x ′

0 + x ′
3 − 2x ′

1 + 2x ′
4 − 4x ′

2 +
4x ′

5 ≤ 0.
The next conversion (Sect. 17.7) produces 447 binary variables and 851 linear

constraints. Finally, the conversion toQUBOgenerated 999 slack variables, so in total
1446 binary variables: they represent the number of logical qubits for our QUBO
formulation. Full details for our phases 2 through 4 may be found in [17].

To be able to solve this QUBO problem on D-Wave we need one more step
to encode the theoretical problem on physical hardware (see [18]) which will be
illustrated in the next section with a feasible example for the D-Wave Two.

17.10 K 2 Example

We present both the final IP formulation (see Table17.1) and QUBO matrix Q (see
Table17.2) for the Broadcast Time Problem for the graph K2 of one edge. The total
number of binary variables is 22 (13 of them are slack variables) and the QUBO
offset is 12. When run on the D-Wave simulator [18] (without embedding onto the
hardware, which has limited qubit connections) we get this expected result:

answer={ ’energies’: [-11.0],

’solutions’: [[1,0,0,1,1,0,0,1,0,0,1,1,0,0,0,

0,1,0,1,0,0,0]] }

Whenwe add the offset 12 to theminimumenergy statewe get our expected broadcast
time of 1. We can also see that t = x1 = 1, b0,1 = x7 = 1 and b1,0 = x8 = 0, which
indicates a valid broadcast tree from the obtained solution x∗.

To actually run this QUBO instance on the D-Wave machine we need to find a
minor-containment embedding on the actual physical qubit hardware (the Chimera
graph). One valid heuristic is to map each logical qubit to a path of physical qubits.
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Table 17.1 Final Binary Integer Program for broadcasting in K2

Integer program constraints Comments

x0 + x1 = 1 x0 is objective variable t and x1 is a slack variable

−x0 + x2 + x3 = 0 x2 is vertex variable v0; Eq. (4)

−x0 + x4 + x5 = 0 x4 is vertex variable v1; Eq. (4)

x6 = 0 x6 is broadcast variable b1,0; Eq. (5)

x7 = 1 x7 is broadcast variable b0,1; Eq. (6)

x2 + x7 − x8 + x9 = 1 x8 is for product b0,1v0 with Eq. (10)

−x2 − x7 + 2x8 + x10 = 0 Equation (7) with (11)

x4 + x7 − x11 + x12 = 1 x11 is for product b0,1v1
−x4 − x7 + 2x11 + x13 = 0 Equation (7)

x4 + x6 − x14 + x15 = 1 x14 is for product b1,0v1
−x4 − x6 + 2x14 + x16 = 0 Equation (7)

x2 + x6 − x17 + x18 = 1 x17 is for product b1,0v0
−x2 − x6 + 2x17 + x19 = 0 Equation (7)

x7 + x8 − x11 + x20 = 0 Equation (8)

x6 + x14 − x17 + x21 = 0 Equation (8)

Table 17.2 Final QUBO matrix Q for broadcasting in K2

3 4 −4 −4 −4 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−4 0 2 4 0 0 8 8 −12 4 −4 0 0 0 0 0 0 −12 4 −4 0 0

−4 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−4 0 0 0 2 4 8 8 0 0 0 −12 4 −4 −12 4 −4 0 0 0 0 0

−4 0 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 8 0 8 0 4 0 0 0 0 0 0 0 −8 4 −4 −16 4 −4 0 4

0 0 8 0 8 0 0 0 −8 4 −4 −16 4 −4 0 0 0 0 0 0 4 0

0 0 −12 0 0 0 0 −8 16 −4 8 −4 0 0 0 0 0 0 0 0 4 0

0 0 4 0 0 0 0 4 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −4 0 0 0 0 −4 8 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −12 0 0 −16 −4 0 0 16 −4 8 0 0 0 0 0 0 −4 0

0 0 0 0 4 0 0 4 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 −4 0 0 −4 0 0 0 8 0 2 0 0 0 0 0 0 0 0

0 0 0 0 −12 0 −8 0 0 0 0 0 0 0 16 −4 8 −4 0 0 0 4

0 0 0 0 4 0 4 0 0 0 0 0 0 0 −4 −2 0 0 0 0 0 0

0 0 0 0 −4 0 −4 0 0 0 0 0 0 0 8 0 2 0 0 0 0 0

0 0 −12 0 0 0 −16 0 0 0 0 0 0 0 −4 0 0 16 −4 8 0 −4

0 0 4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 −4 −2 0 0 0

0 0 −4 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 8 0 2 0 0

0 0 0 0 0 0 0 4 4 0 0 −4 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 0 0 −4 0 0 0 2
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One such example is given below where our 22 logical qubits, labeled 0 to 21,
become 50 active hardware qubits on D-Wave Two’s Chimera graph with L = 4,
N = M = 8.

’embedding=’: [ 0=[224, 226, 228], 1=[230], 2=[276,

283, 284, 288, 292], 3=[290], 4=[227, 291, 348, 355,

356, 357], 5=[229], 6=[336, 338, 341, 347, 349], 7=

[293, 297, 301, 361], 8=[294, 296, 302], 9=[289], 10=

[300], 11=[298, 362, 365], 12=[359, 367], 13=[364],

14=[345, 351],15=[344], 16=[346], 17=[275, 277, 281,

285, 339], 18=[272], 19=[274], 20=[303], 21=[343] ]

This best energy solution of−11 is also obtainedwhenwe run it on an actual D-Wave
Two machine. This optimal answer occurs about 33% of the time for our trials of
about 1000 runs. In the other cases, the machine did not converge to the optimal
ground-state energy.

17.11 Experimental Results

We have produced QUBO representations of the Broadcast Time Problem for several
small commongraphs using the above IP formulation procedure. Tables17.3 and 17.4
summarize them for some small common graph families and known special graphs
(all graphs can be obtained from Sage [16, 17]). Recall that for non-symmetric
graphs we initiate the broadcast at vertex labeled 0, using the vertex labels given
by Sage’s adjacency lists. In these tables, columns 2 and 3 (Integer Variables and
Quadratic Constraints) indicate the size of the IP formulation presented in Sect. 17.5.
Next, columns 4 and 5 (Binary Variables and Binary Constraints) indicate the size
of the IP formulation given in Sect. 17.7. Finally, columns 6–8 (Slack Variables,
Logical Qubits and Chimera/Physical Qubits) indicate the size of the final QUBO
representation described in Sect. 17.8. Using this approach, the number of logical
qubits equals the number of binary variables plus the number of slack variables.

17.12 Conclusions

In this paper we have shown the process of converting a well-known combinatorial
optimization problem, the Broadcast Time Problem, to a QUBO form that can be
solved on an adiabatic quantum computer like the D-Wave Two. Our procedure of
using an integer programming formulation (e.g., standard polynomial-time reduc-
tion) can be easily applied to other hard problems. However, this straightforward
approach does require a large number of qubits for relatively small input graph
instances. Future work is required to reduce this overhead. One area of study is
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Table 17.3 Number of qubits required for some small graphs families
Graph Order Size Integer

variables
Quadratic
constraints

Binary
variables

Binary
constraints

Slack
variables

Logical
qubits

Chimera
qubits

C3 3 3 10 16 50 86 96 146 394

C4 4 4 13 21 74 131 146 220 662

C5 5 5 16 26 178 324 366 544 3258

C6 6 6 19 31 240 443 495 735 4164

C7 7 7 22 36 311 580 642 953

C8 8 8 25 41 391 735 807 1198

C9 9 9 28 46 778 1484 1608 2386

C10 10 10 31 51 944 1809 1948 2892

C11 11 11 34 56 1126 2166 2320 3446

C12 12 12 37 61 1324 2555 2724 4048

Grid2× 3 6 7 21 37 254 472 543 797 4306

Grid3× 3 9 12 34 65 832 1597 1816 2648

Grid3× 4 12 17 47 93 1414 2745 3084 4498

Grid4× 4 16 24 65 133 2420 4737 5252 7672

Grid4× 5 20 31 83 173 5537 10909 11815 17352

K2 2 1 5 7 9 15 13 22 47

K3 3 3 10 16 50 86 96 146 394

K4 4 6 17 33 94 171 202 296 1378

K5 5 10 26 61 248 469 606 854 7973

K6 6 15 37 103 366 713 981 1347

K7 7 21 50 162 507 1014 1482 1989

K8 8 28 65 241 671 1375 2127 2798

K9 9 36 82 343 1264 2591 4200 5464

K10 10 45 101 471 1574 3279 5588 7162

K2× 1=P2 3 2 8 12 36 59 64 100 170

K1× 2=S2 3 2 8 12 40 68 76 116 238

K2× 2=C4 4 4 13 21 74 131 146 220 662

K2× 3 5 6 18 32 192 353 414 606 4823

K3× 3 6 9 25 49 282 529 633 915

K3× 4 7 12 32 69 381 727 894 1275

K4× 4 8 16 41 97 503 973 1227 1730

K4× 5 9 20 50 129 976 1906 2432 3408

K5× 5 10 25 61 171 1214 2391 3124 4338

K5× 6 11 30 72 118 1468 2914 3896 5364

K6× 6 12 36 85 277 1756 3511 4804 6560

S2=K1× 2 3 2 8 12 40 68 76 116 238

S3 4 3 11 18 64 114 130 194 505

S4 5 4 14 25 164 301 354 518 3711

S5 6 5 17 33 226 423 501 727 5120

S6 7 6 20 42 297 564 672 969

S7 8 7 23 52 377 724 867 1244

S8 9 8 26 63 760 1471 1736 2496

S9 10 9 29 75 926 1803 2132 3058

S10 11 10 32 88 1108 2168 2568 3676
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Table 17.4 Number of qubits required for hypercubes and some other small known graphs
Graph Order Size Integer

variables
Quadratic
constraints

Binary
variables

Binary
constraints

Slack
variables

Logical
qubits

Chimera
qubits

Q1 = K2 2 1 5 7 9 15 13 22 47

Q2 = C4 4 4 13 21 74 131 146 220 662

Q3 8 12 33 65 447 851 999 1446

Q4 16 32 81 193 2564 5045 5860 8424

BidiakisCube 12 18 49 97 1432 2779 3124 4556

Bull 5 5 16 28 178 324 366 544 3523

Butterfly 5 6 18 33 192 353 414 606 5927

Chvatal 12 24 61 145 1540 3013 3604 5144

Clebsch 16 40 97 273 2708 5373 6628 9336

Diamond 4 5 15 27 84 151 174 258 742

Dinneen 9 21 52 142 994 1950 2552 3546

Dodecahedral 20 30 81 161 5515 10855 11645 17160

Durer 12 18 49 97 1432 2779 3124 4556

Errera 17 45 108 320 4480 8900 10890 15370

Frucht 12 18 49 97 1432 2779 3124 4556

GoldnerHarary 11 27 66 209 1414 2814 3792 5206

Grotzsch 11 20 52 118 1288 2508 2968 4256

Heawood 14 21 57 113 1894 3691 4100 5994

Herschel 11 18 48 101 1252 2429 2800 4052

Hexahedral 8 12 33 65 447 851 999 1446

Hoffman 16 32 81 193 2564 5045 5860 8424

House 5 6 18 32 192 353 414 606 4176

Icosahedral 12 30 73 205 1648 3257 4164 5812

Krackhardt 10 18 47 114 1088 2116 2548 3636

Octahedral 6 12 31 73 324 619 795 1119

Pappus 18 27 73 145 4514 8869 9575 14089

Petersen 10 15 41 81 1034 1995 2276 3310

Poussin 15 39 94 276 2446 4863 6152 8598

Robertson 19 38 96 229 5211 10287 11570 16781

Shrikhande 16 48 113 369 2852 5715 7508 10360

Sousselier 16 27 71 154 2474 4849 5452 7926

Tietze 12 18 49 97 1432 2779 3124 4556

Wagner 8 12 33 65 447 851 999 1446

to exploit the problem’s characteristics for a possible direct encoding into QUBO
form. Also substantial work is needed to reduce the blowup in embedding the logical
qubits to physical qubits, which is required for embedding into the target machine’s
architecture.

Acknowledgments This work was supported in part by the Quantum Computing Research Initia-
tives at Lockheed Martin. We thank A. Fowler for comments which improved the presentation.



17 Solving the Broadcast Time Problem Using a D-wave Quantum Computer 451

Appendix: Quadratic IP Formulation for Broadcasting in Q3

The output of our integer programming formulation from Sect. 17.5 with the hyper-
cube Q3 as input is given below.

x0 ≤ 7 (1) time t
x1 ≤ x0 (2) vertices v0 . . . v7 informed times ≤ t
x2 ≤ x0
x3 ≤ x0
x4 ≤ x0
x5 ≤ x0
x6 ≤ x0
x7 ≤ x0
x8 ≤ x0
x9 + x10 + x11 ≤ 0 (3) originator has no parent
x12 + x13 + x14 ≤ 1 (4) other vertices have one parent
x15 + x16 + x17 ≤ 1
x18 + x19 + x20 ≤ 1
x21 + x22 + x23 ≤ 1
x24 + x25 + x26 ≤ 1
x27 + x28 + x29 ≤ 1
x30 + x31 + x32 ≤ 1
x12 + x12 ∗ x1 − x12 ∗ x2 ≤ 0 (5) parent time less than child time
x15 + x15 ∗ x1 − x15 ∗ x3 ≤ 0
x21 + x21 ∗ x1 − x21 ∗ x5 ≤ 0
x9 + x9 ∗ x2 − x9 ∗ x1 ≤ 0
x18 + x18 ∗ x2 − x18 ∗ x4 ≤ 0
x24 + x24 ∗ x2 − x24 ∗ x6 ≤ 0
x10 + x10 ∗ x3 − x10 ∗ x1 ≤ 0
x19 + x19 ∗ x3 − x19 ∗ x4 ≤ 0
x27 + x27 ∗ x3 − x27 ∗ x7 ≤ 0
x13 + x13 ∗ x4 − x13 ∗ x2 ≤ 0
x16 + x16 ∗ x4 − x16 ∗ x3 ≤ 0
x30 + x30 ∗ x4 − x30 ∗ x8 ≤ 0
x11 + x11 ∗ x5 − x11 ∗ x1 ≤ 0
x25 + x25 ∗ x5 − x25 ∗ x6 ≤ 0
x28 + x28 ∗ x5 − x28 ∗ x7 ≤ 0
x14 + x14 ∗ x6 − x14 ∗ x2 ≤ 0
x22 + x22 ∗ x6 − x22 ∗ x5 ≤ 0
x31 + x31 ∗ x6 − x31 ∗ x8 ≤ 0
x17 + x17 ∗ x7 − x17 ∗ x3 ≤ 0
x23 + x23 ∗ x7 − x23 ∗ x5 ≤ 0
x32 + x32 ∗ x7 − x32 ∗ x8 ≤ 0
x20 + x20 ∗ x8 − x20 ∗ x4 ≤ 0
x26 + x26 ∗ x8 − x26 ∗ x6 ≤ 0
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x29 + x29 ∗ x8 − x29 ∗ x7 ≤ 0
x12 + x15 − sqr(x2 − x3) ≤ 1 (6) each child with different times
x12 + x21 − sqr(x2 − x5) ≤ 1
x15 + x21 − sqr(x3 − x5) ≤ 1
x9 + x18 − sqr(x1 − x4) ≤ 1
x9 + x24 − sqr(x1 − x6) ≤ 1
x18 + x24 − sqr(x4 − x6) ≤ 1
x10 + x19 − sqr(x1 − x4) ≤ 1
x10 + x27 − sqr(x1 − x7) ≤ 1
x19 + x27 − sqr(x4 − x7) ≤ 1
x13 + x16 − sqr(x2 − x3) ≤ 1
x13 + x30 − sqr(x2 − x8) ≤ 1
x16 + x30 − sqr(x3 − x8) ≤ 1
x11 + x25 − sqr(x1 − x6) ≤ 1
x11 + x28 − sqr(x1 − x7) ≤ 1
x25 + x28 − sqr(x6 − x7) ≤ 1
x14 + x22 − sqr(x2 − x5) ≤ 1
x14 + x31 − sqr(x2 − x8) ≤ 1
x22 + x31 − sqr(x5 − x8) ≤ 1
x17 + x23 − sqr(x3 − x5) ≤ 1
x17 + x32 − sqr(x3 − x8) ≤ 1
x23 + x32 − sqr(x5 − x8) ≤ 1
x20 + x26 − sqr(x4 − x6) ≤ 1
x20 + x29 − sqr(x4 − x7) ≤ 1
x26 + x29 − sqr(x6 − x7) ≤ 1
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Chapter 18
The Group Zoo of Classical Reversible
Computing and Quantum Computing

Alexis De Vos and Stijn De Baerdemacker

Abstract By systematically inflating the group of n×n permutation matrices to the
group of n×n unitary matrices, we can see how classical computing is embedded in
quantum computing. In this process, an important role is played by two subgroups of
the unitary groupU(n), i.e.XU(n) andZU(n).Here,XU(n) consists of alln×n unitary
matrices with all line sums (i.e. the n row sums and the n column sums) equal to 1,
whereas ZU(n) consists of all n × n diagonal unitary matrices with upper-left entry
equal to 1. As a consequence, quantum computers can be built from NEGATOR gates
and PHASOR gates. The NEGATOR is a 1-qubit circuit that is a natural generalization
of the 1-bit NOT gate of classical computing. In contrast, the PHASOR is a 1-qubit
circuit not related to classical computing.

18.1 Introduction

Often, in the literature, conventional computers andquantumcomputers are discussed
like belonging to two separate worlds, far from each other. Conventional computers
act on classical bits, say ‘pure zeroes’ and ‘pure ones’, by means of Boolean logic
gates, such as AND gates and NOR gates. The operations performed by these gates are
described by truth tables. Quantum computers act on qubits, say complex vectors,
by means of quantum gates, such as ROTATOR gates and T gates [1]. The operations
performed by these gates are described by unitary matrices.

Because theworld of classical computation and theworld of quantumcomputation
are based on such different science models, it is difficult to see the relationship (be it
analogies or differences) between these two computation paradigms. In the present
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chapter, we bridge the gap between the two sciences. For this purpose, a common
language is necessary. The common tool we have chosen is the representation by
square matrices and the construction of matrix groups.

18.2 Reversible Computing

The first step in bridging the gap between classical and quantum computation is
replacing (or better: embedding) conventional classical computing in reversible clas-
sical computing. Whereas conventional logic gates are represented by truth tables
with an arbitrary number wi of input columns and an arbitrary number wo of output
columns, reversible logic gates are described by truth tables with an equal number w
of input and output columns. Moreover, all output rows are different, such that the
2w output words are merely a permutation of the 2w input words [2–5]. Table18.1
gives an example of a conventional gate (i.e. an AND gate, with two input bits A and
B and one output bit R), as well as an example of a reversible gate (i.e. a TOFFOLI
gate, a.k.a. a controlled controlled NOT gate, with three input bits A, B, and C and
three output bits P , Q, and R). The reader may verify that the irreversible AND func-
tion is embedded in the reversible TOFFOLI function, as presetting in Table18.1b
the input C to logic 0 leads to the output R being equal to A AND B, as is highlighted
by boldface. In the general case, any irreversible truth table can be embedded in a
reversible truth table with w = wi + wo or less bits [6].

Table 18.1 Truth table of
two basic Boolean functions:
(a) the AND function, (b) the
TOFFOLI function

(a)

AB R

0 0 0

0 1 0

1 0 0

1 1 1

(b)

ABC PQR

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0
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The next step in the journey from the conventional to the quantum world, is
replacing the reversible truth table by a permutationmatrix. As all eight output words
0 0 0, 0 0 1, …, and 1 1 0 are merely a permutation of the eight input words 000, 001,
…, and 111, Table18.1b can be replaced by an 8 × 8 permutation matrix, i.e.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

An arbitrary classical reversible circuit, acting on w bits, is represented by a
permutation matrix of size 2w × 2w. In contrast, a quantum circuit, acting on w
qubits, is represented by a unitary matrix of size 2w × 2w. Both kind of matrices are
depicted by symbols with w input lines and w output lines:

U
.

Invertible square matrices, together with the operation of ordinary matrix multipli-
cation, form a group. The finite matrix group P(2w) consisting solely of permu-
tation matrices is a subgroup of the continuous group U(2w) of unitary matrices.
In the present chapter, we show a natural means how to enlarge the subgroup to
its supergroup, in other words: how to upgrade a classical computer to a quantum
computer.

18.3 NEGATORs and PHASORs

For the purpose of upgrading the permutation group P(n) to the unitary group U(n),
we introduce two subgroups [7–9] of U(n):

the subgroup XU(n)
consists of all n × n unitary matrices with all line sums (i.e. the n row sums
and the n column sums) equal to 1
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Fig. 18.1 Venn diagram of
the Lie groups U(n), XU(n),
and ZU(n) and the finite
groups P(n) and 1(n). Note:
the trivial group 1(n) is
represented by the bullet.

U(n)

XU(n)

P(n)

ZU(n)

and

the subgroup ZU(n)
consists of all n×n diagonal unitary matrices with upper-left entry equal to 1.

WhereasU(n) is an n2-dimensional Lie group,XU(n) is only (n−1)2-dimensional
and ZU(n) is only (n − 1)-dimensional. The two subgroups are quite distinct: their
intersection is the trivial group 1(n), consisting of a single matrix, i.e. the n × n unit
matrix. We note that all P(n) matrices are in XU(n). See Venn diagram in Fig. 18.1.

Why exactly these two groups? The reason becomes clear by looking at the case
n = 2. There exist only two classical reversible circuits acting on a single bit. They
are represented by the two P(2) matrices:

(
1 0
0 1

)
for the IDENTITY gate and

(
0 1
1 0

)
for the NOT gate. The latter is also known as the X gate. In contrast, there exists a 4-
dimensional infinity of quantumcircuits acting on a single qubit. They are represented
by the U(2) matrices.

In order to upgrade the group P(2), we construct a unitary interpolation between
its two permutation matrices. The interpolation

(1 − t)

(
1 0
0 1

)
+ t

(
0 1
1 0

)

is unitary if and only if t = (1− eiθ)/2, where θ is an arbitrary angle. We thus obtain
a 1-dimensional generalization of the NOT matrix:

the NEGATOR gate:

N (θ) = 1

2

(
1 + eiθ 1 − eiθ

1 − eiθ 1 + eiθ

)
,

where θ is an arbitrary angle.
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Because U(2) is 4-dimensional, we need some extra building block to generate the
full U(2). For this purpose, it suffices to introduce a second 1-dimensional subgroup
of U(2):

the PHASOR gate:

�(θ) =
(
1 0
0 eiθ

)
,

where θ is an arbitrary angle.

Analogously as the NEGATOR is the 1-dimensional generalization of the
(

1
1

)
matrix or X gate, the PHASOR can be considered as the 1-dimensional generalization
of the

(
1

−1

)
matrix, a.k.a. the Z gate. The two 1-dimensional subgroups XU(2) and

ZU(2) suffice to generate the whole 4-dimensional group U(2). We say: the closure
of XU(2) and ZU(2) is U(2). Indeed, an arbitrary matrixU from U(2) can be written
as a finite product of matrices from XU(2) and matrices from ZU(2):

U (α,ϕ,ψ,χ) = eiα
(

cos(ϕ)eiψ sin(ϕ)eiχ

− sin(ϕ)e−iχ cos(ϕ)e−iψ

)

= N (π) �(α + ϕ + ψ) N (π) �(α + ϕ − χ + π/2) N (ϕ) �(−ψ + χ − π/2).

We use the following symbols for the NEGATOR and PHASOR gates:

N (θ) and �(θ) ,

respectively. In the literature [5, 10–12], some of these gates have a specific notation:

N (0) = I

N (π/4) = W

N (π/2) = V

N (π) = X

N (2π) = I

�(0) = I

�(π/4) = T

�(π/2) = S

�(π) = Z

�(2π) = I .

In particular, the V gate is known as ‘the square root of NOT’ [13–16].
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18.4 Controlled NEGATORs and Controlled PHASORs

Two-qubit circuits are represented by matrices from U(4). We may apply either the
NEGATOR gate or the PHASOR gate from the previous section to either the first qubit
or the second qubit. Here are two examples:

�(θ)

N (θ) and ,

i.e. a NEGATOR acting on the second qubit and a PHASOR acting on the first qubit,
respectively. These circuits are represented by the 4 × 4 unitary matrices

1

2

⎛
⎜⎜⎝
1 + eiθ 1 − eiθ 0 0
1 − eiθ 1 + eiθ 0 0

0 0 1 + eiθ 1 − eiθ

0 0 1 − eiθ 1 + eiθ

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 eiθ

⎞
⎟⎟⎠ , (18.1)

respectively.
However, we also introduce more sophisticated gates: the so-called ‘controlled

PHASORs’ and ‘controlled NEGATORs’. Two examples are

N (θ)

• and �(θ) ,

i.e. a positive-polarity controlled NEGATOR acting on the first qubit, controlled by the
second qubit, and a negative-polarity controlled PHASOR acting on the second qubit,
controlled by the first qubit, respectively. The former symbol is read as follows: ‘if
the second qubit equals 1, then the NEGATOR acts on the first qubit; if, however, the
second qubit equals 0, then the NEGATOR is inactive, i.e. the first qubit undergoes
no change’. The latter symbol is read as follows: ‘if the first qubit equals 0, then
the PHASOR acts on the second qubit; if, however, the first qubit equals 1, then the
PHASOR is inactive, i.e. the second qubit undergoes no change’. The 4× 4 matrices
representing these two circuit examples are:

⎛
⎜⎜⎝
1 0 0 0
0 1

2 (1 + eiθ) 0 1
2 (1 − eiθ)

0 0 1 0
0 1

2 (1 − eiθ) 0 1
2 (1 + eiθ)

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝
1 0 0 0
0 eiθ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (18.2)

respectively.
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We now give two examples of a 3-qubit circuit:

N (θ) •
• and

• �(θ) ,

i.e. a positive-polarity controlled NEGATOR acting on the first qubit and a mixed-
polarity controlled PHASOR acting on the third qubit. The 8×8matrices representing
these two circuit examples are:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1

2 (1 + eiθ) 0 0 0 1
2 (1 − eiθ)

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1

2 (1 − eiθ) 0 0 0 1
2 (1 + eiθ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 eiθ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18.3)

respectively. In each of the expressions (18.1)–(18.3), we note the following proper-
ties:

• the former matrix has all row sums and all column sums equal to 1;
• the latter matrix is diagonal and has upper-left entry equal to 1.

Because the multiplication of two square matrices with all line sums equal to 1
automatically yields a third square matrix with all line sums equal to 1, we can easily
demonstrate that an arbitrary quantum circuit like

•
• •

• • ,

consisting merely of uncontrolled NEGATORs and controlled NEGATORs is repre-
sented by a 2w×2w unitarymatrixwith all line sums equal to 1, i.e. anXU(2w) matrix.
A laborious proof [17] demonstrates that the converse theorem is also valid: anymem-
ber of XU(2w) can be synthesized by an appropriate finite string of (un)controlled
NEGATORs.

Because themultiplication of two diagonal square matrices yields a third diagonal
square matrix and because the multiplication of two unitary matrices with first entry
equal to 1 yields a third unitary matrix with first entry equal to 1, we can easily
demonstrate that an arbitrary quantum circuit like

•
• •

• • ,
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consisting merely of uncontrolled PHASORs and controlled PHASORs is represented
by a 2w ×2w unitary diagonal matrix with first entry equal to 1, i.e. a ZU(2w) matrix.
It can easily be seen that the converse theorem is also true: any member of ZU(2w)
can be synthesized by an appropriate finite string of (un)controlled PHASORs.

We conclude that the study of NEGATOR and PHASOR circuits automatically
leads to the introduction of the two subgroups XU(2w) and ZU(2w) of the unitary
group U(2w).

18.5 The FUF Matrix Decomposition

While studying the properties of the XU and ZU groups, a pivotal role is played by
the n × n discrete Fourier transform, i.e. the following unitary matrix:

F = 1√
n

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωn−1

1 ω2 ω4 ω6 . . . ω2(n−1)

...

1 ωn−1 ω2(n−1) ω3(n−1) . . . ω(n−1)(n−1)

⎞
⎟⎟⎟⎟⎟⎠

,

where ω is the primitive nth root of unity, i.e. ei 2π/n . We have:

the FUF theorem: Any matrix X from XU(n) can be written as the following
product [17]:

X = F

(
1
U

)
F−1,

where

• F is the n × n discrete Fourier transform and
• U is a matrix from U(n − 1).

The proof is constructive, i.e. by computation of the matrix product, taking into
account the properties of the Fourier matrix. The relationship is a one-to-one map-
ping. In other words: with one X corresponds one U and with one U corresponds
one X . As a result, the group XU(n) is isomorphic to the unitary group U(n− 1) and
thus has (n − 1)2 dimensions. Here is an example from U(2) and XU(3):
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1√
3

⎛
⎝ 1 1 1
1 ω ω2

1 ω2 ω

⎞
⎠ 1

2

⎛
⎝ 2 0 0
0 −1 + i 1 + i
0 1 − i 1 + i

⎞
⎠ 1√

3

⎛
⎝ 1 1 1
1 ω2 ω
1 ω ω2

⎞
⎠

= 1

6

⎛
⎝ 4 + 2i −(

√
3 − 1) + i (

√
3 − 1)

√
3 + 1 − i (

√
3 + 1)

−(
√
3 − 1) − i (

√
3 + 1)

√
3 + 1 + 2i 4 + i (

√
3 − 1)√

3 + 1 + i (
√
3 − 1) 4 − i (

√
3 + 1) −(

√
3 − 1) + 2i

⎞
⎠ ,

where ω is the primitive cubic root of unity, i.e. ω = ei 2π/3 = − 1
2 + i

√
3
2 .

We have two special cases of the FUF theorem. The first involves a subgroup of
XU(n):

the subgroup CXU(n)
consists of all circulant XU(n) matrices.

For such matrices holds

the FZF theorem:
Any matrix C from CXU(n) can be written as follows:

C = FZF−1,

where

• F is the n × n discrete Fourier transform and
• Z is a matrix from ZU(n).

Similarly, we can write any ZU(n) as an FCF−1 product. These two relationships
constitute a one-to-one mapping between ZU(n) and CXU(n). The two (n − 1)-
dimensional groups thus are isomorphic. An example for CXU(4) and ZU(4) is

1

8

⎛
⎜⎜⎝

1 + i 7 + i −1 − i 1 − i
1 − i 1 + i 7 + i −1 − i

−1 − i 1 − i 1 + i 7 + i
7 + i −1 − i 1 − i 1 + i

⎞
⎟⎟⎠ =

1

2

⎛
⎜⎜⎝
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 (1 − i)/2

⎞
⎟⎟⎠ 1

2

⎛
⎜⎜⎝
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞
⎟⎟⎠ .
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The second special case of the FUF theorem is

the FXF theorem:
For any matrix X from XU(n), the following property holds:

F

(
1
X

)
F−1 =

(
1
X ′

)
,

where

• F is the (n + 1) × (n + 1) discrete Fourier transform and
• X ′ is a matrix from XU(n).

Proof of this theorem is quite simple. Suffice it to note two facts:

• F
(
1

χ

)
is a matrix with an upper row consisting of n + 1 entries all equal to

1/
√
n + 1, such that F

(
1

χ

)
F−1 is a matrix with an upper-left entry equal to 1;

• F
(
1

χ

)
F−1 is of the form F

(
1
U

)
F−1, and therefore an XU(n + 1) matrix, by

virtue of the FUF theorem.

Amatrix with these two properties is necessarily of the form
( 1

X ′
)
with X ′ amember

of XU(n).
For n = 2, the matrix X ′ is equal to the matrix X . For n > 2, usually, the matrix

X ′ is different from X . The relationship thus is a one-to-one mapping from XU(n)
to itself. We give an example from XU(3):

1

2

⎛
⎜⎜⎝
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ 1

2

⎛
⎜⎜⎝
2 0 0 0
0 1 i 1 − i
0 −i 1 1 + i
0 1 + i 1 − i 0

⎞
⎟⎟⎠ 1

2

⎛
⎜⎜⎝
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞
⎟⎟⎠ =

1

4

⎛
⎜⎜⎝
4 0 0 0
0 3 −1 − i 2 + i
0 −1 + i 2 3 − i
0 2 − i 3 + i −1

⎞
⎟⎟⎠ .

Note that here the Fourier matrices are of larger size than the XU matrices. A rela-
tionship like FXF−1 = X ′ with F , X , and X ′ of the same size does not hold.

18.6 The ZXZ Matrix Decomposition

A quite different theorem is
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the Z X Z theorem:
Any matrix U from U(n) can be written as follows [18, 19]:

U = aZ1X Z2 , (18.4)

where

• a is a member of U(1), i.e. a complex number with unit modulus,
• X is a member of XU(n), and
• both Z1 and Z2 are member of ZU(n).

The proof of the theorem is non-constructive and based on symplectic topology
[19].We note that the sum of 1 (number of parameters in a), n−1 (parameters in Z1),
(n − 1)2 (in X ) and n − 1 (in Z2) equals the dimensionality n2 of U(n):

1 + (n − 1) + (n − 1)2 + (n − 1) = n2 .

Thus the number of degrees of freedom in aZ1X Z2 exactly matches the number
of degrees of freedom in U . This might suggest that the decomposition is unique.
However, this is not true: unlike the FUF theorem, the Z X Z theorem is not a one-
to-one relationship. As an example, we give here the same matrix fromU(2) as in the
illustration of the FUF theorem. It has two (and only two) Z X Z decompositions:

1

2

(−1 + i 1 + i
1 − i 1 + i

)
= (−1)

(
1 0
0 i

)
1

2

(
1 − i 1 + i
1 + i 1 − i

)(
1 0
0 −1

)

= i

(
1 0
0 −i

)
1

2

(
1 + i 1 − i
1 − i 1 + i

) (
1 0
0 1

)
.

Usually a U(n) matrix has a discrete number of decompositions. But sometimes there
are as many as a noncountable infinity of decompositions, as is illustrated by another
U(2) matrix:

(
0 −i
i 0

)
= eiβ

(
1 0
0 ie−iβ

) (
0 1
1 0

) (
1 0
0 −ie−iβ

)
,

where the angle β is allowed to have any value.
Except in some special cases, no analytical method is known to find the Z X Z

decompositons of U . Only a numerical procedure is known. It yields one of the
solutions with an arbitrarily small error. Which solution is found, depends on the
starting conditions of the numerical algorithm [18].

We thus can conclude that any quantum computer looks like
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Z2 X Z1 eiα

,

i.e. the cascade of an overall phase factor, an input section consisting merely
of (un)controlled PHASORs, a core section consisting merely of (un)controlled
NEGATORs, and an output section consisting merely of (un)controlled PHASORs.

By combining the FUF , the Z X Z , the FZF , and the FXF theorems, we can
prove the following decomposition of an XU(n) matrix:

the CXC theorem:
For any matrix X from XU(n), the following property holds:

X = C ′
(
1
X ′

)
C ′′ , (18.5)

where

• X ′ is a member of XU(n − 1) and
• both C ′ and C ′′ are member of CXU(n).

Indeed:

X = F

(
1
U

)
F−1 = F

(
1
aZ ′X ′′Z ′′

)
F−1 = F

(
1
aZ ′

) (
1
X ′′

)(
1
Z ′′

)
F−1

= F

(
1
aZ ′

)
F−1F

(
1
X ′′

)
F−1F

(
1
Z ′′

)
F−1 = C ′

(
1
X ′

)
C ′′.

Because the Z X Z decomposition is not unique, also the CXC decomposition is not
unique.

By applying the CXC theorem again and again, we find the following decompo-
sition of an arbitrary element X of XU(n):

X = C ′
n

(
1
C ′
n−1

)
. . .

(
1n−3

C ′
3

) (
1n−2

C2

) (
1n−3

C ′′
3

)
. . .

(
1
C ′′
n−1

)
C ′′
n ,

(18.6)

where 1k is a short-hand notation for the k × k unit matrix, and where all C ′
k and all

C ′′
k are CXU(k) matrices and C2 is a CXU(2) matrix. We conclude: any matrix from

XU(n) can be decomposed as a product of 2n−2 matrices of the form
( 1n−k

Ck

)
. We

note that a similar reasoning is applicable to permutation matrices, i.e. to classical
computation. See Appendix 1.
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18.7 The U Circuit Synthesis

The phase factor a = eiα in the Z X Z product may be decomposed into two
NEGATOR circuits and two uncontrolled PHASORs. Indeed, if n = 2w, then n is
even. If n is even, then we note the following diagonal-matrix property:

diag(a, a, a, a, a, . . . , a, a)

= P0 diag(1, a, 1, a, 1, . . . , 1, a) P−1
0 diag(1, a, 1, a, 1, . . . , 1, a) ,

where P0 is the n × n (circulant) permutation matrix

⎛
⎜⎜⎜⎝

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
.
.
.

0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0

⎞
⎟⎟⎟⎠ ,

a.k.a. the cyclic-shift matrix, which can be implemented with classical reversible
gates (i.e. one NOT and w − 1 controlled NOTs [4, 20]). We thus can rewrite (18.4)
as a decomposition containing exclusively XU and ZU matrices:

U = P0Z0P
−1
0 Z ′

1X Z2 ,

where Z0 = diag(1, a, 1, a, 1, . . . , 1, a) is a ZU matrix which can be implemented
by a single (uncontrolled) PHASOR gate and where Z ′

1 is the product Z0Z1:

Z2 X Z ′
1 P−1

0 P0

Z0 .

Because both P0 and P−1
0 belong to XU(n), we conclude that any matrix from U(n)

can be synthesized by a cascade of XU(n) blocks and ZU(n) blocks. In group-
theoretical terms: the closure of XU(n) and ZU(n) is U(n). We note that this circuit
decomposition is not unique, because the Z X Z matrix decomposition is not unique.

In the next two sections, we will look in detail to the synthesis of the ZU block
and the XU blocks.

18.8 The ZU Circuit Synthesis

The decomposition of an arbitrary member of ZU(n) is straightforward. Indeed, for
even n, the matrix can be written as the following product of four matrices:
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diag(1, a2, a3, a4, a5, a6, . . . , an) =
diag(1, a2, 1, a4, 1, a6, . . . , 1, an) P0 diag(1, 1, 1, a3, 1, a5, . . . , 1, an−1) P−1

0 ,

where a j is a short-hand notation for eiα j . If n equals 2w, then the diagonal matrix
diag(1, a2, 1, a4, 1, a6, . . .) represents 2w−1 PHASORs, each controlled (w−1) times,
and the diagonal matrix diag(1, 1, 1, a3, 1, a5, . . .) represents 2w−1 − 1 PHASORs,
each controlled (w − 1) times. E.g. for w = 3, we obtain

• • • •
• • • • • •

• • �(α7) �(α5) �(α3) • • �(α8) �(α6) �(α4) �(α2) .

We thus have a total of 2w − 1 controlled PHASORs. According to Lemma 7.5 of
Barenco et al. [21], each multiply-controlled gate �(α) can be replaced by classical
gates and three singly-controlled PHASORs �(±α/2). According to De Vos and
DeBaerdemacker [7], each singly-controlled PHASOR�(β) can be decomposed into
two controlled NOTs and three uncontrolled PHASORs �(±β/2). We thus obtain a
circuit with a total of 9(2w − 1) uncontrolled PHASORs.

We conclude that any matrix from ZU(n) can be synthesized by a cascade of P(n)
blocks and ZZU(n) blocks. Here, ZZU(n) denotes the 1-dimensional subgroup of
ZU(n) consisting of all n × n diagonal unitary matrices with all diagonal elements
equal to 1, except the lower-right entry. It is isomorphic to ZU(2) and thus to U(1).

18.9 The XU Circuit Synthesis

Because of (18.6), the synthesis of an XU circuit is reduced to the synthesis of
matrices consisting of two blocks on the diagonal: a unit submatrix and a CXU
submatrix. We will call such matrices block-circulant, as they are composed of two
circulant blocks.

18.10 The CXU Circuit Synthesis

In spite of the fact that CXU(n) is isomorphic to ZU(n), its synthesis is not as
straightforward. The group ZU(n) is isomorphic to U(1)n−1. Therefore, the group
CXU(n) is equally isomorphic to the direct product U(1)n−1. The n − 1 generators
of ZU(n) are the matrices

gk =
⎛
⎝ 0k−1

1
0n−k

⎞
⎠ ,
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where 2 ≤ k ≤ n and 0 j is a short-hand notation for the j × j zero matrix. As an
example, we give here the two generators of ZU(3):

g2 =
⎛
⎝0 0 0
0 1 0
0 0 0

⎞
⎠ and g3 =

⎛
⎝ 0 0 0
0 0 0
0 0 1

⎞
⎠ .

For each set { j, k}, we have that the two generators g j and gk commute:

[g j , gk] = g j gk − gkg j = 0 .

That is exactly the reason why ZU(n) is a direct product of its n − 1 subgroups
isomorphic to ZZU(n) and thus to U(1). Each 1-dimensional subgroup is of the form

mk(θ) =
⎛
⎝ 0k−1

eiθ

0n−k

⎞
⎠ .

By Fourier conjugating the ZU(n) generators, we find the CXU(n) generators. They
look like:

gk = 1

n

⎛
⎜⎜⎜⎝

1 � �2 . . . �n−1

�−1 1 � . . . �n−2

...

�−n+1 �−n+2 �−n+3 . . . 1

⎞
⎟⎟⎟⎠ ,

where � is a short-hand notation for ω1−k . All n − 1 generators of CXU(n) equally
commute. Whereas in general a single generator g generates a 1-dimensional matrix
group given by thematrix exponentiationm(θ) = eigθ, in this particular case (because
of the property g2k = gk), the generated matrices have the simple expression

mk(θ) = 1n + (eiθ − 1)gk .

As an example, we give here the two generators of CXU(3):

g2 = 1

3

⎛
⎝ 1 ω2 ω

ω 1 ω2

ω2 ω 1

⎞
⎠ and g3 = 1

3

⎛
⎝ 1 ω ω2

ω2 1 ω
ω ω2 1

⎞
⎠ .

Each generates a 1-dimensional subgroup of CXU(3):

m2(θ) = 1

3

⎛
⎝ 2 + x ω2(x − 1) ω(x − 1)

ω(x − 1) 2 + x ω2(x − 1)
ω2(x − 1) ω(x − 1) 2 + x

⎞
⎠ and
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m3(θ) = 1

3

⎛
⎝ 2 + x ω(x − 1) ω2(x − 1)

ω2(x − 1) 2 + x ω(x − 1)
ω(x − 1) ω2(x − 1) 2 + x

⎞
⎠ ,

where x is a short-hand notation for eiθ.
The n × n matrices mk(θ) are a generalization of the 2 × 2 NEGATOR N (θ):

they are a unitary interpolation between the n × n unit matrix mk(0) and the n × n
generalized NOT matrix mk(π) = 1n − 2gk . We have only one 2 × 2 generalized
NOT, i.e. the classical NOT:

m2(π) =
(
0 1
1 0

)
;

we have two 3 × 3 generalized NOTs:

m2(π) = 1

3

⎛
⎝ 1 −2ω2 −2ω

−2ω 1 −2ω2

−2ω2 −2ω 1

⎞
⎠ and m3(π) = 1

3

⎛
⎝ 1 −2ω −2ω2

−2ω2 1 −2ω
−2ω −2ω2 1

⎞
⎠ ;

we have three 4 × 4 generalized NOTs:

m2(π) = 1

2

⎛
⎜⎜⎝

1 −i 1 i
i 1 −i 1
1 i 1 −i

−i 1 i 1

⎞
⎟⎟⎠ , m3(π) = 1

2

⎛
⎜⎜⎝

1 1 −1 1
1 1 1 −1

−1 1 1 1
1 −1 1 1

⎞
⎟⎟⎠ , and

m4(π) = 1

2

⎛
⎜⎜⎝

1 i 1 −i
−i 1 i 1
1 −i 1 i
i 1 −i 1

⎞
⎟⎟⎠ ;

etcetera.
By applying the KAK decomposition [22, 23] of U(3), it is proved in [17] that

any XU circuit can be decomposed into a cascade of

• uncontrolled NEGATORs,
• singly controlled V gates, and
• doubly controlled NOTs.

E.g. the above CXU(3) matrix m3(θ) has the following XU(3) KAK decomposition:

V0(θ0)V3(θ1)V2(θ2)V3(θ3) = V0(θ/2)V3(π − θ/2)V2(π)V3(0)

= 1

3

⎛
⎝ 1 + 2y 1 − y 1 − y

1 − y 1 + 2y 1 − y
1 − y 1 − y 1 + 2y

⎞
⎠ 1

3

⎛
⎝ 1 − 2c 1 + c + √

3 s 1 + c − √
3 s

1 + c − √
3 s 1 − 2c 1 + c + √

3 s
1 + c + √

3 s 1 + c − √
3 s 1 − 2c

⎞
⎠ 1

3

⎛
⎝ −1 2 2

2 −1 2
2 2 −1

⎞
⎠ ,
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where we follow the notations V0, V1, V2, and V3 of Appendix A of Reference [17]
and where c and s are short-hand notations for cos(θ/2) and sin(θ/2), respectively,
and y is c + is = √

x . Subsequently, we can apply to each of these three matrices
the XU(4) KAK decomposition. E.g. the rightmost matrix appears in the 2-qubit
block-circulant matrix

1

3

⎛
⎜⎜⎝
3 0 0 0
0 −1 2 2
0 2 −1 2
0 2 2 −1

⎞
⎟⎟⎠

with decomposition

V0(θ0)V3(θ1)V2(θ2)V3(θ3)V5(θ4)V3(θ5)V2(θ6)V3(θ7)V8(θ8)

= V0(0)V3(0)V2(7π/4)V3(0)V5(ϕ)V3(0)V2(π/4)V3(0)V8(0)

= 1

4

⎛
⎜⎜⎝
2 − √

2 2 + √
2

√
2 −√

2
2 + √

2 2 − √
2 −√

2
√
2

−√
2

√
2 2 − √

2 2 + √
2√

2 −√
2 2 + √

2 2 − √
2

⎞
⎟⎟⎠

1

3

⎛
⎜⎜⎝

1 −√
2 2

√
2√

2 1 −√
2 2

2
√
2 1 −√

2
−√

2 2
√
2 1

⎞
⎟⎟⎠ 1

4

⎛
⎜⎜⎝
2 + √

2 2 − √
2

√
2 −√

2
2 − √

2 2 + √
2 −√

2
√
2

−√
2

√
2 2 + √

2 2 − √
2√

2 −√
2 2 − √

2 2 + √
2

⎞
⎟⎟⎠ ,

where, this time, we follow the notations V0, V1, …, and V8 of Appendix B of
Reference [17] andwhereϕ is the angle π+Arccos(1/3). Thismatrix decomposition
leads to the circuit synthesis with

• six uncontrolled NEGATORs,
• six controlled V gates, and
• three controlled NOTs:

• W • W−1 • V V • W−1 • W •
V V • N (ϕ) • N (−ϕ) • V V ,

where W−1 = XVW = N (7π/4).
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Fig. 18.2 Hierarchy of the
Lie groups U(n), XU(n),
ZU(n), CXU(n), and ZZU(n)
and the finite groups P(n),
CP(n), and 1(n)

U(n)

XU(n) ZU(n)

CXU(n)

P(n) ZZU(n)

CP(n)

1(n)

18.11 Conclusion

With the help of truth tables, we have demonstrated that conventional Boolean com-
putation can be embedded in classical reversible computation.With the help of square
matrices, we have demonstrated that classical reversible computation is a subspace of
quantum computation. Classical reversible computing relates to quantum computing
like permutation matrices relate to unitary matrices. The permutation matrix group
P(n) forms a subgroup of the unitary matrix group U(n). The main leap from P(n)
matrices toU(n) matrices happens by interpolation between two ormore permutation
matrices, thus enlarging the finite group P(n) to the infinite group XU(n). Figure18.2
shows in detail the hierarchy of groups and subgroups, revealing the relationship
between the finite group P(n) and the infinite group U(n). The decomposition of a
given U(2w) matrix into ZU(2w) and CXU(2w) matrices leads to a w-qubit synthesis
of the U(2w) circuit with PHASOR and NEGATOR building blocks.

Appendix

For any matrix P from the group P(n), the following property holds:

P = C

(
1
P ′

)
,

where

• P ′ is a member of P(n − 1) and
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• C is a member of CP(n).

Here, CP(n) denotes the group of n × n circulant permutation matrices. It is a group
isomorphic with the cyclic group Zn , a finite group of order n. Remarkable is the
fact that here

( 1
P ′

)
is only multiplied to the left with a circulant matrix, whereas in

decomposition (18.5), the matrix
( 1

X ′
)
is multiplied both to the left and to the right

with a circulant matrix.
The decomposition algorithm is very straightforward: suffice it to choose C such

that it has the same leftmost column as the given matrix P . Subsequently, the matrix( 1
P ′

)
follows automatically by computing C−1P . Here follows an example from

P(4): ⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ .

By applying the theorem again and again, we find the following decomposition:

P = Cn

(
1
Cn−1

)
. . .

(
1n−3

C3

) (
1n−2

C2

)
. (18.7)

where all Ck are CP(k) matrices. We conclude: any n × n permutation matrix can
be decomposed as a product of n − 1 matrices of the form

( 1n−k
Ck

)
. We give an

example: ⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

Decomposition (18.6) is not a straightforward generalization of (18.7). This con-
stitutes an illustration of the fact that, in spite of an overall similarity between the
group P(n) and the group XU(n), literal translations from P(n) properties to XU(n)
properties sometimes fail [24].
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Chapter 19
Fault Models in Reversible and Quantum
Circuits

Martin Lukac, Michitaka Kameyama, Marek Perkowski,
Pawel Kerntopf and Claudio Moraga

Abstract In this chapter we describe faults that can occur in reversible circuit as
compared to faults that can occur in classical irreversible circuits. Because there
are many approaches from classical irreversible circuits that are being adapted to
reversible circuits, it is necessary to analyze what faults that exists in irreversible
circuits can appear in reversible circuit as well. Thus we focus on comparing faults
that can appear in classical circuit technology with faults that can appear in reversible
and quantum circuit technology. The comparison is done from the point of view of
information reversible and information irreversible circuit technologies. We show
that the impact of reversible computing and quantum technology strongly modifies
the fault types that can appear and thus the fault models that should be considered.
Unlike in the classical non-reversible transistor based circuits, in reversible circuits
it is necessary to specify what type of implementation technology is used as different
technologies can be affected by different faults. Moreover the level of faults and their
analysis must be revised to precisely capture the effects and properties of quantum
gates and quantum circuits that share several similarities with reversible circuits. By
not doing so the available testing approaches adapted from classical circuits would not
be able to properly detect relevant faults. In addition, if the classical faults are directly
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applied without revision and modifications, the presented testing procedure would
be testing for such faults that cannot physically occur in the given implementation of
reversible circuits. The observation and analysis of these various faults presented in
this chapter clearly demonstrates what faults can occur and what faults cannot occur
in various reversible technologies. Consequently the results from this chapter can be
used to design more precise tests for reversible logic circuits. Moreover the clearly
described differences between faults occurring in reversible and irreversible circuits
means that new algorithms for fault detection should be implemented specifically
for particular reversible technologies.

19.1 Introduction

Reversible circuit representation can be used to debug and test the correctness of the
hardware implementation. Unlike the non-reversible representation currently avail-
able for the CMOS VLSI, the reversible circuit representation is not commonly asso-
ciated with one particular technology. Classical irreversible circuits representation
is in general associated with a transistor based circuit technology while reversible
circuits can represent quantum technology (ion trap, NMR, cavity QED, quantum
optics), switch based technology, CMOS adiabatic or simply CMOS implementa-
tion of reversible circuits. Moreover, because quantum circuit model for true quan-
tum computer has not been constructed (as compared to currently available classical
desktops or supercomputers and in contrast to adiabatic quantum computers) multi-
ple technologies might be combined in one reversible computer to achieve the desired
functional reversibility and attractive power savings.

Thus when testing a particular reversible circuit one should specify not only what
technology is targeted but also what component of a general computer is considered.
For instance testing a reversible bus implemented in the switch technology will
require different tests than testing the attached reversible circuits that are using a
quantum optics implementation.

Currently there have been two distinct approaches to testing of reversible and
quantum circuits. On one hand the reversible community has been applying methods
used in classical circuits to test and evaluate reversible circuits on the functional
level [9, 10, 21, 22, 24, 26, 29–31]. On the other hand, the approach to test quantum
circuits with respect to the underlying technology has been exploring the possible
physical faults that can really occur in a reversible circuits [6, 13, 23]. Finally, some
researchers concluded that testing reversible circuits hardware from the functional
point of view is too simplistic [1].

An alternative to testing quantum and reversible circuits for faults, is to build
them as fault tolerant. This approach has seen a large momentum in both the theoret-
ical as well as in the engineering communities due to the fact that quantum—as the
main implementation technology of reversible circuits—is very noise sensitive and
subject to constant perturbations. Consequently, protocols intended to provide the
least noise logic operations and computational states have been devised [5, 13, 14,
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Fig. 19.1 Information in
transistor based circuits is
represented by discrete
values of voltage. The
information is propagated
from storage device to
storage device by using a
clock

TDI

TCK

TMS

Logic 0

Logic 1

Rising edge of TCK

20, 25]. However, not all faults can be captured by the fault tolerant implementation
of quantum circuits. In particular, faults that occur in real time and are caused by
environmental factors that are beyond the reasonable limit of fault tolerant imple-
mentations. Moreover, the fault tolerant implementation addresses the problem of
noisy gates and states in general while testing permits to determine the faults more
precisely and categorize them by type.

In this chapter we look closer at what types of faults one should be testing when
new testing methods for reversible circuits will be developed. We do not analyze
faults particular to quantum reversible circuits; starting from faults in information
reversible circuits (simulation of reversible circuits) we discuss what faults are worth
of testing and what faults are not useful when dealing with energy reversible circuits
technology. We show that for energy reversible implementation only certain faults can
appear. We also show that other faults exclusively available in information reversible
technology must be redefined in order to describe the features of quantum and other
energy reversible technologies. Thus, the main contribution of this chapter is a precise
characterization of faults that one should consider when designing algorithms for
energy reversible circuit testing such as implemented in quantum technologies.

The chapter is organized as follows. Section 19.2 describes the information repre-
sentation in both the information and energy reversible circuits. Section 19.3 shows
faults for information reversible technology while Sect. 19.4 describes the faults of
energy conservative circuits. Finally, Sect. 19.5 discusses the results and concludes
the chapter.

19.2 Information in Circuits

Classical information in currently available circuit technology is represented by a
voltage/current level. In binary circuits the logic value 0 is in general represented
by a low voltage and logic value 1 is represented by a high voltage (see Fig. 19.1
the curves “TDI” and “TMS”, respectively). Between two logic circuits, a clock is
connected to the registers that during each clock cycle propagates the signal from one
register, transfers the signal through a logic circuit and stores it in the next register.
Example of a clock signal is shown in Fig. 19.1 by the curve “TCK”.
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Fig. 19.2 Example of a
classical circuit on transistor
level implementing the
NAND logic gate

B
C

A

A B

Fig. 19.3 Example of a
classical circuit

B̄

C

A

B

B̄C

A ⊕ B
B̄C + (A ⊕ B)

The information is propagated in a switching circuit by a sequential/parallel turn-
ing on(off) of transistors in the circuit. For instance, Fig. 19.2 shows the universal
logic gate called NAND. It contains two n-MOS and two p-MOS transistors that will
produce a high output on C when any of the control signals A or B have value “0”.

Notice that transistor technology is inherently irreversible without additional over-
head because the input signals (A and B) only turn on (off) transistors that either
connect the power supply or the ground to the output wire C. Thus the energy form-
ing the output values is not the energy from the inputs. Circuits built from such
irreversible gates are usually represented using the gate level schema as shown in
Fig. 19.3.

19.2.1 Information Reversible Circuits

Using the transistor technology various reversible circuits implementations have been
proposed. One of the oldest is the dual line reversible circuit [8, 27, 28]. An example
of the implementation is shown in Fig. 19.4 which presents an information reversible
implementation of the CNOT (A ⊗ (A ⊕ B)) logic gate. This approach is using dual
lines (the inputs are always provided in double complementary values).

The circuit operates in such a manner that certain variables are used to turn on (off)
transistors or transmission gates allowing other signals to pass from input to output.
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B

B̄Q

Q̄

A

A

ĀĀ

Fig. 19.4 Example of information reversible circuit implementation of the A ⊕ B = Q using tran-
sistor technology. (The arrows across the switches indicate the state when the corresponding variable
is in state “1”)
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Fig. 19.5 The schematic diagram of a a Universal Reversible Cell (URC), bwith switches required
for connections with other URCs

For instance, the gate in Fig. 19.4 will close half of the switches if the variable A takes
value “1”and the other half if it takes value “0”. The result is then read from the output
lines Q and Q̄. Naturally, in order to ensure the information reversibility all signals
that control the switches must be also propagated to the outputs. Other existing
approaches to the implementation of information reversible logic circuits include
reversible circuits based on the principles of adiabatic charging and discharging [4],
information reversible CMOS Toffoli cell [17] as well as the MEMS implemented
reversible circuits [3, 12].

Another type of reversible circuit implementation in classical technology was
shown in [15] where a logically reversible circuit (information reversible) was sim-
ulated by CMOS cells that could either transmit or store information. In this model
the information is only logically retrievable while the energy is lost due to the CMOS
transistor implementation. Example of a reversible cell is shown in Fig. 19.5.
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Thus by information reversible circuits we mean any circuits that allow for infor-
mation reversibility without being energy reversible. This includes circuits that
use contemporary transistor technology but implement reversible circuits. These
approaches are in general intended to simulate and study properties of reversible
circuits. However, as the technology used is classical, these circuits are not energy
reversible. Consequently, we can define the Information Reversible Circuits.

Definition 1 (Information Reversible Circuits) These circuits represent a reversible
bijection, i.e. such function f : I → O for which inverse function f −1 : O → I
exists.

19.2.2 Energy Reversible Circuits

Definition 2 (Energy reversible circuits) The circuits in which the final energy state
ρ f permits to recover the initial energy state ρi are called energy reversible circuits.
An example is the adiabatic charging or quantum computational model.

In information reversible and energy conservative circuits such as implemented in
quantum technologies, information is represented using a single elementary particle
or a group of elementary particles such as photons, electrons, ions etc. In the infor-
mation reversibility the logic states are obtained by unitary transformations and the
energy states are obtained by discrete energy control signals. Unlike in non-quantum
computation, the quantum state is information reversible and energy conservative.
The information is represented in three dimensions by a qubit shown in Fig. 19.6. The
Bloch sphere shows that the quantum information state is represented as a vector in a

Fig. 19.6 Bloch sphere: a
symbolic representation of a
single qubit. Multiple qubits
cannot be represented in this
manner due to superposition
and entanglement
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Fig. 19.7 Example of an
implementation of the CNOT
gate using the Hadamard and
CZ quantum gates
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Fig. 19.8 Example of one
possible implementation of
the CNOT gate in the Ion
Trap technology
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Fig. 19.9 Example of
CNOT gate built using the
Ising model in NMR
technology
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3-dimensional space and specified by an amplitude and a phase. The manipulation of
the quantum state (quantum information) is done through a series of unitary rotations
on any of the three axes Rx , Ry and Rz .

The information reversibility and energy conservation is preserved theoretically
in quantum systems only up to the measurement.

Definition 3 (Quantum Destructive Measurement) (QDM) is a non-unitary oper-
ation, that when used on a quantum system described by state |τ 〉 it projects
Mτ =⊥ |ρ〉 to one of the orthonormal bases |ρ〉.
Practically this means that the measurement of a quantum state destroys the quantum
state and only the information captured by the projection remains known. This is
not problematic in most of the cases, but in the case of quantum entanglement the
measured qubits do not allow the recovery of their initial state once they have been
measured.

Quantum circuits are built from quantum non-permutative primitives that are
rarely equivalent to the reversible and permutative circuits building blocks.

For example, Fig. 19.7 shows the quantum realization of the CNOT logic gate
using the CZ (Controlled-Z) and the Hadamard quantum gates. The lines represents
quantum wires, qubits that carry quantum states that represent corresponding logic
states. Gates are in general single qubit rotations or conditional rotations. A single
qubit rotation is such a gate that will indiscriminately rotate a qubit independently
from what state it is in. A conditional rotation is such a logic gate that will rotate a
qubit if and only if the so called control qubit is set to a particular value. More details
on the principles of quantum circuits and quantum computing the interested reader
can for instance obtain from [19]. Another realization of the same gate is shown in
Fig. 19.8 where the Hadamard gates are replaced by the Pauli rotations around the y
of the qubit |B〉 [19].

Figure 19.9 shows the implementation of the CNOT gate using the Ising model
used in the NMR quantum computing [19].

A final example of implementation of a quantum circuit is shown in Fig. 19.10.
It is the Toffoli gate built using linear quantum optics which has been presented
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Fig. 19.10 Example of Toffoli gate built using Quantum Linear Optics (Copyright by APL)

|a〉
|b〉
|c〉
|0〉

|a〉
|b〉
|c〉
|q〉 = |āb̄c ⊕ (a ⊕ b)c〉 = |(ab)c〉

Fig. 19.11 Example of a reversible circuit

recently in [11, 18] and Fig. 19.10 boxes labeled with D represent single photons
detectors, BD1 and BD2 are beam displacers, GP glass plates, PBS and PPBS are
polarizing beam splitters and partially polarizing beam splitters and HWP and QWP
are half and quarter wave plates respectively.

Using reversible primitives such as shown in Figs. 19.7 to 19.10 logically reversible
circuits are built. An example of a logical reversible circuit representation is given in
Fig. 19.11. Each of the reversible gates is built using a set of quantum realizable gates
or a set of information reversible gates. Thus the logical primitives used to design
reversible circuits differ substantially from the component reversible gates (Toffoli,
CNOT, Fredkin, etc.).

19.2.3 Reversibility and Implementation

In the former section we presented examples of information and energy reversible
implementations of reversible logic circuits. We also showed that there are sev-
eral technologies that guarantee the logic reversibility while the energy reversibility
requires a technology that is reversible naturally. However we are looking at the
reversible circuits only from the logic side. Moreover the logic reversible side can be
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Fig. 19.12 a CNOT circuit,
b permutative matrix
representing the circuit |a〉

|b〉
|a〉
|b〉 if |a〉 = |0〉
or

|b̄〉 if |a〉 = |1〉
CNOT =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟

⎟

⎠

(a) (b)

hiding irreversible technology. In this section we have a brief look on the reversible
function representation and what it means to observe faults in reversible logic.

For instance, the information reversible technology shown in Fig. 19.4 would
be also energy reversible if the components and the power technology to which it
was connected were naturally reversible. Because this is not the case the illustrated
switch-based technology remains classified only as information reversible.

Consequently when talking about detecting faults in logically reversible circuits
it is required to consider what faults can actually appear in a reversible circuit.
Depending on the technology some faults might not be physically possible to appear
while others can be natural. Thus an analysis of what is possible and what is not can
help to design testing algorithms for reversible circuits.

Reversible functions are represented by permutative matrices. For instance,
Fig. 19.12a shows the circuit representing the CNOT gate and Fig. 19.12b shows
the matrix associated with it. The function implemented on the qubit |b〉 is Boolean
function EXOR: (a ⊕ b) if the input states are pure orthonormal states. Thus the
logic operation performed on the qubit |b〉 can also be written as |b〉 = |a ⊕ b〉 with
a and b being Boolean logic values.

The input information considered in this paper is strictly limited to pure states.
This means that any quantum or other state specified in various forms must always
have a Boolean equivalent. Here the information is represented in a vector form, for

instance |ab〉 = |11〉 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦. To apply the CNOT operation, a multiplication with

the permutative matrix representing the gate or the circuit is performed as shown in
Eq. 19.1.

|ab̄〉 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ (19.1)

A more complex reversible and also universal (logically universal) function—the
Toffoli gate—is shown in Fig. 19.13a. Figure 19.13b shows how a reversible function
is represented in a truth-tabular form. The inputs to the function are specified by letters
a, b, c. The output function, in this case f = c̄ iff a = b = 1 is shown in the columns
under headings a′, b′ and c′ in the table.
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Fig. 19.13 a The Toffoli
universal gate and b Toffoli
gate value table

(b)
abc

000
001
010
011
100
101
110
111

000
001
010
011
100
101
111
110

a′b′c′

|c′〉 = c′

|b′〉 = b′

|a′〉 = a′
(a)

|a〉 = a

|b〉 = b

|c〉 = c

19.3 Information Reversible Circuits Faults

The faults occurring in information reversible circuits are similar to the faults occur-
ring in transistor based circuits.

The permutative nature of the reversible function is only simulated in classical
circuit implementation but it is a natural property of truly information and energy
reversible circuits: an energy reversible circuit must implement a reversible function.
This means that while in the case of the circuits with only information reversibil-
ity the faults can affect the unitary and permutative property of reversible function
implementation, energy reversible technology always implement a reversible func-
tion unless special faults can exist.

19.3.1 Stuck-At Faults at the Output

The well known stuck-at faultmodel means that no matter what input signal is applied
to the wire or to the gate the output will be either constant 0 or constant 1. A stuck-at
fault is in general called Stuck-at-0 or Stuck-at-1 fault. In transistor based circuit this
means that the circuit behaves as if either the drain or the source were connected to
the output wire.

If a stuck-at fault occurs in a gate, it means that for any possible input combination
the output will be stuck at a value. There are two cases of the stuck-at fault that can
be observed. In the first case, the qubit can have its state dumped by a non-unitary
error resulting in the qubit to be always in a particular state.

CNOT with Stuck _ at _1(|b〉) =

⎛
⎜⎜⎝

0 0 0 0
1 1 0 0
0 0 0 0
0 0 1 1

⎞
⎟⎟⎠ (19.2)
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Fig. 19.14 Example of a
circuit affected by the stuck
at fault on a qubit

Z

Ry(π/2) Rx(π/2)

Rz(π/2)

Ry(−π/2)

Fault

For instance, the stuck-at-1 fault on the input qubit |a〉 in the CNOT gate from
Fig. 19.12b is shown in Eq. 19.2. The circuit for such a fault can be represented as
shown in Fig. 19.14 where the fault is simulated by a transformation on the qubit
before entering the logic state manipulation. This fault will be called state-fault for
the rest of the paper; the faulty qubit is independently changed to a stuck-at state and
thus becomes a constant value. Depending on the location of the fault in the quantum
gate, the output of the faulty qubit can be probabilistic or constant Fig. 19.2. Notice
that the stuck-at fault changed the unitary matrix to a non-unitary matrix; the resulting
function is not a reversible function. This is an important fact that limits the existence
of this fault to only information reversible circuits.

In particular observe that if the same logic operation as in Eq. 19.1 is applied using
the matrix from Eq. 19.2 the result would be as follows (Eq. 19.3).

⎡
⎢⎢⎣

0 0 0 0
1 1 0 0
0 0 0 0
0 0 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ = |ab〉 (19.3)

In the second case all qubits have their states changed by sometimes faulty inter-
actions in such a manner that the faulty qubit will not be observable stuck-at fault.

For instance, Eq. 19.4 shows a stuck-at-1 fault on the qubit |B〉.

CNOT with Stuck _ at _1(|a〉) =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ (19.4)

As shown in Eq. 19.4 the fault is now located on such a component of the circuit which
does not show the fault directly. Instead the unitary matrix can now be decomposed
to I ⊗ X).

19.3.2 Delay Faults

Delay faults occur when the timing specifications of a gate or a wire differ from the
timing exhibited during the usage. Such faults can result in more severe computational
faults due to the timing requirements of both classical synchronous and asynchronous
circuits. However, delay faults are not discussed here as they are required to be tested
using specific model of possible faults not considered here.
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Fig. 19.15 Example of
missing gate fault in a
reversible circuit

|a〉
|b〉

|a〉
|b〉

|ā〉
|q〉 = |b〉

|ā〉
|q〉 = |ā ⊕ b〉

19.3.3 Missing Gate Faults

A missing gate fault is a very general class of faults representing a problem resulting
in a circuit that produces an output consistent with its function as if one or more of its
component gates were missing. Missing gate faults change the values of the unitary
matrix but do not change its unitary property. For instance, consider removing the
CNOT gate from the circuit shown in Fig. 19.15.

The permutative unitary matrices representing the function before and after the
missing gate fault was inserted are as follows (Eq. 19.5).

f =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ f ′ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ (19.5)

19.3.4 Wrong Gate Faults

Similarly to missing gate fault the wrong gate fault represents a circuit that has the
same number of logic gates as the circuit specified but does not generate the correct
logic result. The matrices representing the function before and after the wrong gate
fault was inserted as follows (Eq. 19.6) (Fig. 19.16).

f =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ f ′ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ (19.6)
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Fig. 19.16 Example of
wrong gate fault in a
reversible circuit

|a〉
|b〉

|a〉
|b〉

|ā〉

|ā〉

|q〉 = |a ⊕ b〉

|q〉 = |ā ⊕ b〉

Fig. 19.17 Example of
bridging faults, a the original
circuit and b the circuit with
bridging fault that does not
alter the unitary property of
the circuit |c〉

|b〉
|a〉

|0〉
|c〉
|b〉
|a〉

|0〉

(a) (b)

19.3.5 Bridging Faults

The bridging faults are a super category of faults which describe any faults resulting
from a wrong connection between elements that should not be connected. Unlike
stuck-at faults, they can generate fan-outs, fan-ins missing controls in gates or other
faults affecting gate functionality. In some cases the bridging faults will alter the
permutative properties of the unitary matrix of the circuit but in many cases they
only alter the gate functionality.

An example of a bridging fault that can occur as a wrong bridging between two
terminals is shown in Fig. 19.17. Let |a〉, |b〉 and |c〉 be pure states (i.e. a, b and c
represent Boolean values). The original circuit from Fig. 19.17 produces the function
|q〉 = |(a ⊕ b)c〉. After the bridging fault indicated as a line with arrow in Fig. 19.17
the circuit produces |q〉 = |(a ⊕ b)ac〉 = |(1 ⊕ b)ac〉 = |ab̄c〉.

Notice that the bridging fault preserves the unitary property of the circuit. Let F
denote the Feynman gate and Tn denote the Toffoli gate with n controls, then the
original function shown in Fig. 19.17a is given by (I ⊗ T2) × (F ⊗ I ⊗ I ) while the
function with the bridging fault shown in Fig. 19.17b is given by T3 × (F ⊗ I ⊗ I ).
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19.4 Energy Reversible Circuits Faults

Energy reversible circuit technology includes but is not limited to quantum circuits
such as implemented in Ion Trap, Quantum Optics, NMR, cavity QED or solid state
implementations. Another approach to building quantum computers includes the
adiabatic computer as implemented by D-Wave [2, 7].

There are only two possible phenomenological faults (expressed by a faulty quan-
tum phenomena) in a truly quantum circuit: value fault and phase fault. Value fault
is a phenomenon that will generate a faulty output for a desired input. This is in
general a consequence of applying a wrong gate or a gate with some internal fault.
The second type is the phase fault and it represents a signal that carries a wrong
phase. Depending on the implementation of a quantum circuit, the value fault is as
crucial as the phase fault. Moreover, even if the circuit output is value oriented a
phase fault can result in a faulty value.

This can be observed in an implementation of CNOT that uses the circuit shown
in Fig. 19.18. Notice that if the gate in the middle, called Controlled-Z, changes
the output as shown in Eq. 19.7 the output magnitude value is correct but the phase
is modified. This has for consequence which the function that the entire circuit
from Fig. 19.18 implements is completely wrong since it would produce a two-input
identity gate rather than the CNOT gate. (Recall that Hadamard matrix is its own
inverse).

CZ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦ CZ ′ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (19.7)

19.4.1 Missing Gate Faults

Similarly to the information-only reversible circuits the missing gate fault is such
that one full gate is missing and the result is a circuit generating the incorrect result.
In quantum circuits, however, the basic gates used to implement reversible functions
are rarely directly realizable (Figs. 19.7 to 19.9). This means that while testing a
circuit design to output pure state representing logical values of a reversible circuit,
the probability of a logical primitive being completely missing is nearly 0. Rather,
component gates such as single qubit rotations or interactions could be missing
completely.

Fig. 19.18 Realization of
CNOT gate using
Controlled-Z and two
Hadamard gates H Z H|b〉

|a〉
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H Z H

(b) 1

|a〉
|b〉
|c〉

|a〉
|b〉
|c〉V V V †

(a) 2 31 2 3 4 5

Fig. 19.19 Two realizations of Toffoli gate. a Using the CV /CV †/CNOT gates, b using the CH/CZ
gates [16]

Consequently, the missing gate fault should be considered carefully as depending
on the implementation technology the gate itself can have specific meaning. For
instance, in quantum optics the missing gate fault means that a particular mirror,
splitter or wave plate has been forgotten. A wrong gate fault means that the used
components are wrong or the calibration of a non-linear medium has been incorrectly
set up. On the other hand, in ion trap technology, the missing gate simply means that
one or more laser pulses have not been performed.

Moreover, unlike in classical circuits, a missing gate fault thus simply modifies the
logical primitive without really making it disappear. Thus, a missing gate can result
in a loss of control or target qubit in a more complex gate. For instance, Fig. 19.19a
shows the implementation of a Toffoli gate using the CV/CV†/CNOT gates. This is
still not the truly quantum level as each of the gates is in general composed of smaller
quantum primitives. However, observe that if the CNOT gate (third from the left) is
missing the result is a CV gate controlled by qubit |a〉. Thus not only a control bit is
lost but the output of the obtained gate has become probabilistic. Depending on the
realization, the resulting probabilistic behavior will vary as the component quantum
primitives will be different.

19.4.2 Wrong Gate Faults

Both the missing gate and the wrong gate fault model should be considered on the
truly quantum level which depends on the implementation. As shown in the missing
gate faults both of these faults will only very rarely be in the same form as could be
found in a classical circuit. In a classical circuit each gate is built from transistors
that have fixed properties. In quantum reversible circuits each gate is similarly built
from a set of sub-gates that are single qubit rotations or two qubit interactions. The
difference between quantum and transistor-like implementation is that the change in
one of the components in a classical gate will generate a finite number of possible
faults while in quantum there is an infinite amount of possible probabilistic states.
A wrong gate means that a pulse of a wrong wavelength and of wrong duration has
been applied.
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Fig. 19.20 Example of
possible faults in the CNOT
gate implemented in Ion
Trap technology

A

B

A

A ⊕ B

Z

Rx(π/2) Ry(−π)

On one hand, the circuit from Fig. 19.8 can have some of its gates removed or
simply change the parameters of the angle of rotation. Each such change will result
in either a change in the gate output or in the gate simply performing the identity
operation (missing gate). This is shown in Fig. 19.20 where the left single qubit
rotation was changed from Ry to Rx and the right single qubit rotation had the
rotation angle changed.

On the other hand a fault in one of the transistors in a gate such as depicted in
Fig. 19.2 will result in either the gate being completely non functioning or producing
the wrong logical output.

The wrong gate faults can occur in both reversible or irreversible circuits. Most
important observation is that the missing or the wrong gate fault model will never
result in such an error that produces functions that cannot be implemented with the
available logic gates.

19.4.3 Bridging Faults

As shown in Sect. 19.3 it is not possible to have bridging faults in energy reversible
per se because such faults (similarly to stuck-at faults) would violate reversibility.
However, there are several faults arising from faults in interaction between qubits.
Quantum phenomenological faults such as those described in [6] can be considered
due to interaction problems. For instance, the lost phase fault is due to a problem of
applying the Controlled-Z gate to two qubits. If the gate does not rotate both qubits
as desired the result will be equivalent to a faulty gate. The result will be a gate that
is missing one or more if its component qubits (control or target).

A fault type that belongs to this category is called missing-control fault (also
called faded control fault) in which the quantum gate looses one or more of its
control bits. The missing control fault represents the fact that a logic gate such as
Toffoli, Fredkin or Feynman gate loses one or more controls and thus its functionality
is changed. While testing for missing control in Toffoli gates is logically sound in
quantum realized reversible circuits the result can be often misleading. Consider the
two Toffoli gates shown in Fig. 19.19.

Without specifying the realization, exclusively testing for the missing control
implies the following:

• if the Toffoli gate is realized as shown in Fig. 19.19a, a missing control of any of
the component gates will result in a partially probabilistic gate. This can be seen
if any of the two-qubit gates has its control removed. The partially probabilistic
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gate will result in a probabilistic behavior for some values of the qubits and will
work properly for others.

• if the Toffoli gate is realized as shown in Fig. 19.19b, a missing control will either
result in partially probabilistic gate or an Identity gate.

19.4.4 Granularity of Quantum Faults

One of the most important differences between testing classical faults and faults in
quantum circuits is the granularity. In classical circuits testing for logical faults is
adequate because the logical gates are used as components of the circuit. In quantum
circuits, however, testing for logical faults does not test directly for the components
of the circuit themselves but rather for macros composed of such components. The
result is that while testing for a missing control qubit, it is possible to determine in
which macro the missing qubit is located but does not allow to determine it precisely
enough for diagnosis as there can be multiple problems (multiple fault types or same
fault on multiple locations) leading to the same result.

The testing faults in reversible circuits should and must take into account the
viability of the faults under test. Reversible circuits can be implemented in various
technologies and testing such circuits for similar faults and from a similar point of
view as classical circuits might seem a good starting point but can lead to wrong
conclusions about the circuit testability. In particular, it should be noted that:

• Bridging faults represent a large category that can be described as interaction
faults: such faults are in general the result of problem of transmitting information
between two qubits.

• Missing gate and wrong gate faults should be considered on finer grain than directly
testing for faulty logical primitives such as Toffoli gates.

• There are no stuck-at faults. Such faults cannot exists because the principle of
stuck-at fault would violate the reversibility.

Finally, there are additional faults that exists in quantum circuits and systems:
the initialization and the measurement error. However, we did not discuss them on
purpose as they have no direct counter part when analyzing faults starting from
classical circuits. Moreover, in general initialization and measurement are not part
of the logical component of the circuit itself: they represent the ability to initialize
the circuit to desired inputs and read the generated outputs. Thus for the purpose of
logical analysis of quantum circuits we did not analyze this type of faults.

19.5 Conclusion

In this chapter we presented arguments and examples of faults that should and that
should not be tested in quantum realization of reversible circuits. In particular, we
showed that quantum circuits are very restricted as to the type of faults that can exist
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in such circuits. From the high level point of view, testing circuits for a disappearance
of a Toffoli gate or for faulty logic gate is not very meaningful as there is a much
larger possibility that such a gate will be faulty on more elementary, quantum level.
Such faults cannot be directly and exactly diagnosed while testing for logical faults
in permutative reversible circuits and require different methods.
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Chapter 20
A Class of Non-optimum-time FSSP
Algorithms

Hiroshi Umeo

Abstract Synchronization of large-scale networks is an important and
fundamental computing primitive in parallel and distributed systems. The synchro-
nization in cellular automata, known as the firing squad synchronization problem
(FSSP), has been studied extensively for more than fifty years, and a rich variety
of synchronization algorithms has been proposed. In the present chapter, we give
a survey on a class of non-optimum-time 3n-step FSSP algorithms for synchroniz-
ing one-dimensional (1D) cellular automata of length n in 3n ± O(log n) steps and
present a comparative study of a relatively large-number of their implementations.
We also propose two smallest-state, known at present, implementations of the 3n-
step algorithm. This chapter gives the first complete transition rule sets implemented
on finite state automata for the class of non-optimum-time 3n-step FSSP algorithms
developed so far.

20.1 Introduction

The synchronization in ultra-fine-grained parallel computational model of cellular
automata has been known as the firing squad synchronization problem (FSSP) since
its development, in which it was originally proposed by J. Myhill in the book edited
by Moore [10] to synchronize all/some parts of self-reproducing cellular automata.

In the present chapter, we give a survey on recent developments in a class of
non-optimum-time FSSP algorithms for one-dimensional (1D) cellular automata.
Here we focus our attention to the 1D FSSP algorithms having 3n ± O(log n) time
complexities and present a comparative study of a relatively large-number of their
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implementations. We also propose two smallest state implementations, known at
present, included in the same class of the algorithms. A class of the 3n-step FSSP
algorithms is an interesting class of synchronization algorithms among many variants
of FSSP algorithms due to its simplicity and straightforwardness and it is important
in its own right in the design of cellular algorithms. The first optimum-time FSSP
algorithm designed by Goto [4] uses a 3n-step algorithm in its synchronization phase.
This chapter gives the first complete transition rule sets implemented on finite state
automata for the class of non-optimum-time 3n-step FSSP algorithms developed so
far.

Specifically, we attempt to answer the following questions:

• First, what is the local transition rule set for those FSSP algorithms?
• Are all previously presented transition rule sets correct?
• Do these rule sets contain redundant rules? If so, what is the exact rule set?
• How do the algorithms compare with each other?
• Are there still any new implementations of the non-optimum-time FSSP algo-

rithms?
• What is the state-change complexity in those algorithms?

In Sect. 20.2 we give a description of the 1D FSSP and present a small overview
of some basic results on 1D FSSP algorithms. See Umeo [14] for details of the FSSP.
Section 20.3 gives a survey on non-optimum-time FSSP algorithms. We make imple-
mentations of those algorithms on a computer, check and compare their transition
rule sets.

20.2 A Class of 3n-Step FSSP Algorithms

20.2.1 Firing Squad Synchronization Problem

Figure 20.1 shows a finite one-dimensional (1D) cellular array consisting of n cells.
Each cell is an identical (except the border cells) finite-state automaton. The array
operates in lock-step mode in such a way that the next state of each cell (except
border cells) is determined by both its own present state and the present states of its
left and right neighbors. All cells (soldiers), except the left end cell (general), are
initially in the quiescent state at time t = 0 with the property that the next state of a
quiescent cell with quiescent neighbors is the quiescent state again. At time t = 0,
the left end cell C1 is in the fire-when-ready state, which is the initiation signal for
the array. The firing squad synchronization problem is to determine a description
(state set and next-state function) for cells that ensures all cells enter the fire state

Fig. 20.1 A one-
dimensional (1D) cellular
automaton

C1 C2 C4 Cn

...
C3
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at exactly the same time and for the first time. The set of states and the next-state
function must be independent of n.

A formal definition of the FSSP is as follows: A 1D cellular automaton M is a
pair M = (Q , δ), where

1. Q is a finite set of states including the following three distinguished states G, Q,
and F. G is an initial general state, Q is a quiescent state, and F is a firing state,
respectively.

2. δ is a next state function such that δ : (Q ∪ {∗}) × Q × (Q ∪ {∗}) → Q . The state
* /∈ Q is a pseudo state of the border of the array.

3. The quiescent state Q must satisfy the following conditions:

δ(Q,Q,Q) = δ(∗,Q,Q) = δ(Q,Q, ∗) = Q.

A 1D cellular automaton of length n,Mn, consisting of n copies ofM , is a 1D array
of M , numbered from 1 to n. Each M is referred to as a cell and denoted by Ci, where
1 ≤ i ≤ n. We denote a state of Ci at time (step) t by St

i , where t ≥ 0, 1 ≤ i ≤ n.
A configuration of Mn at time t is a function C t : [1, n] → Q and it is denoted
as St

1S
t
2 .... St

n. A computation of Mn is a sequence of configurations of Mn, C 0,
C 1, C 2, …, C t , …, where C 0 is an initial given configuration such that:

C 0 = G

n−1︷ ︸︸ ︷
Q, . . . ,Q. The configuration at time t + 1, C t+1, is computed by simulta-

neous applications of the next transition function δ to each cell of Mn in C t such
that:

St+1
1 = δ(∗,St

1,S
t
2),S

t+1
i = δ(St

i−1,S
t
i,S

t
i+1), 2 ≤ i ≤ n − 1, and St+1

n = δ(St
n−1,S

t
n, ∗).

A synchronized configuration of Mn at time t is a configuration C t , St
i = F, for any

1 ≤ i ≤ n.
The FSSP is to obtain an M such that for a certain time function T(n) (≥ 2n − 2)

and any n ≥ 2,

1. A synchronized configuration at time t = T(n), CT(n) =
n︷ ︸︸ ︷

F, . . . ,F can be com-

puted from an initial configuration C 0 = G

n−1︷ ︸︸ ︷
Q, . . . ,Q.

2. St
i �= F, for any t, i, such that 1 ≤ t ≤ T(n) − 1, 1 ≤ i ≤ n.

No cells fire before time t = T(n). We say thatMn is synchronized at time t = T(n)

and the function T(n) is a time complexity for the synchronization.

20.2.2 A Class of 3n-Step FSSP Algorithms

A class of 3n-step FSSP algorithms is an interesting class of synchronization algo-
rithms among many variants of the FSSP algorithms due to its simplicity and straight-
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Fig. 20.2 A space-time
diagram for a class of
3n-step FSSP algorithms and
their design parameters:
thread-width and Zone T in
the space-time diagram
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forwardness and it is important in its own right in the design of cellular algorithms.
Figure 20.2 shows a space-time diagram for the well-known 3n-step FSSP algorithm.
The synchronization process can be viewed as a typical divide-and-conquer strategy
that operates in parallel in the cellular space. An initial general G, located at left end
of the array of size n, generates two special signals, referred to as a-signal and b-
signal, which propagate in the right direction at a speed of 1/1 and 1/3, respectively.
The a-signal arrives at the right end at time t = n − 1, reflects there immediately,
and continues to move at the same speed in the left direction. The reflected signal is
referred to as r-signal. The b- and the r-signals meet at one or two center cells of the
arry, depending on the parity of n. In the case that n is odd, the cell C	n/2
 becomes a
general at time t = 3	n/2
 − 2. The general is responsible for synchronizing both
its left and right halves of the cellular space. Note that the general is shared by the
two halves. In the case that n is even, two cells C	n/2
 and C	n/2
+1 become the next
general at time t = 3	n/2
. Each general is responsible for synchronizing its left
and right halves of the cellular space, respectively.

Thus, at time

tcenter =
{

3	n/2
 − 2 n : odd

3	n/2
 n : even,
(20.1)
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the array knows its center point and generates one or two new general(s) G1. The
new general(s) G1 generates the same 1/1- and 1/3-speed signals in both left and
right directions simultaneously and repeat the same procedures as above. Thus, the
original synchronization problem of size n is divided into two sub-problems of size
	n/2
. In this way, the original array is split into equal two, four, eight, …, subspaces
synchronously. Note that the first general generated at the center G1 itself is syn-
chronized at time t = tcenter, and the second general G2 are also synchronized, and
the generals generated afterwards are also synchronized at its corresponding step. In
the last, the original problem of size n can be split into small sub-problems of size
2. In this way, by increasing the synchronized generals step by step, the initial given
array is synchronized. Most of the 3n-step synchronization algorithms developed so
far in Fischer [2], Herman [6], Minsky [9], Umeo, Maeda, and Hongyo [16], and
Yunès [22–24] are more or less based on the similar scheme. It can be seen that, by
measuring the length of the diagonal path of the b-signal with/without 1 step delay
at the center points at each halving iteration in the space-time diagram, the time
complexity T(n) for synchronizing n cells is T(n) = 3n ± O(log n).

A question is “How can we implement the synchronization diagram above in
terms of a small-state finite state automaton?”.

The three signals: a-, b-, and r-signals in the space-time diagram in Fig. 20.2 play
an important role in finding the center cell(s). A triangle area circled by these three
signals is also important in its implementation. We call the area zone T .

Fig. 20.3 A 15-state transition table of the Fischer [2] algorithm
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Fig. 20.4 Snapshots of the synchronization process of the Fischer [2] algorithm on 7, 14, and 20
cells, respectively

20.2.3 Complexity Measures and Properties
for Synchronization Algorithms

• Time Complexity
Any solution to the original FSSP with a general at one end can be easily shown
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Fig. 20.5 A 13-state transition table of the Minsky-McCarthy [9] algorithm

to require 2n − 2 steps for synchronizing n cells, since signals on the array can
propagate no faster than one cell per one step, and the time from the general’s
instruction until the final synchronization must be at least 2n − 2.
Theorem 1 (Goto [4]) The minimum time in which the firing squad synchroniza-
tion could occur is 2n − 2 steps, where the general is located on the left end.
Theorem 2 (Goto [4]) There exists a cellular automaton that can synchronize any
1D array of length n in optimum 2n − 2 steps, where the general is located on the
left end.

• Number of States
The following three distinct states: the quiescent state, the general state, and the
firing state, are required in order to define any cellular automaton that can solve
the FSSP. Note that the boundary state for C0 and Cn+1 is not generally counted as
an internal state in the study of the FSSP. Balzer [1] and Sanders [12] showed
that no four-state optimum-time solution exists. Umeo and Yanagihara [18],
Yunès [25], Umeo, Kamikawa, and Yunès [15], and Ng [11] gave several 5- and
4-state partial solutions that can solve the synchronization problem for infinitely
many sizes n, but not all, respectively. The solution is referred to as partial solu-
tion, which is compared with usual full solution that can solve the problem for
all cells.

Theorem 3 (Balzer [1], Sanders [12]) There is no four-state full solution that can
synchronize n cells.
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Fig. 20.6 Snapshots of the synchronization process of the Minsky-McCarthy [9] algorithm on 7,
14, and 20 cells, respectively

Yunès [25], Umeo, Kamikawa, and Yunès [15], and Ng [11] developed 4-state
partial solutions based on Wolfram’s rules 60 and 150. They can synchronize any
array/ring of length n = 2k for any positive integer k. Details can be found in
Yunès [25], Umeo, Kamikawa, and Yunès [15], and Ng [11].
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Fig. 20.7 A 10-state transition table of the Herman [6] algorithm

Theorem 4 (Ng [11], Umeo, Kamikawa, and Yunès [15], Yunès [25]) There exist
4-state partial solutions to the FSSP.

Concerning the optimum-time full solutions, Waksman [21] presented a 16-state
optimum-time synchronization algorithm. Afterward, Balzer [1] and Gerken [3]
developed an eight-state algorithm and a seven-state synchronization algorithm,
respectively, thus decreasing the number of states required for the synchronization.
Mazoyer [8] developed a six-state synchronization algorithm which, at present, is
the algorithm having the fewest states for 1D arrays.

Theorem 5 (Mazoyer [8]) There exists a 6-state full solution to the FSSP.

• Number of Transition Rules
Any k-state (excluding the boundary state) transition table for the synchronization
has at most (k − 1)k2 entries in (k − 1) matrices of size k × k. The number of
transition rules reflects a complexity of synchronization algorithms.

• Filled-In Ratio
To measure the density of entries in transition table, we introduce a measure filled-
in ratio of the state transition table. The filled-in ratio of the state transition table
A is defined as follows: fA = e/etotal, where e is the number of exact entries of
the next state defined in the table A and etotal is the number of possible entries
defined such that etotal = (k − 1)k2, where k is the number of internal states of the
table A .

• Symmetry versus Asymmetry
Herman [5, 6] investigated the computational power of symmetrical cellular
automata, motivated by a biological point of view. Szwerinski [13] and Kobuchi [7]
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Fig. 20.8 Snapshots of the synchronization process of the Herman [6] algorithm on 7, 14, and 20
cells, respectively

considered a computational relation between symmetrical and asymmetrical CAs
with von Neumann neighborhood. A transition table is said to be symmetric if and
only if the transition table δ : Q 3 → Q such that δ(x, y, z) = δ(z, y, x) holds, for
any state x, y, z in Q . A symmetrical cellular automaton has a property that the
next state of a cell depends on its present state and the states of its two neighbors,
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Fig. 20.9 A 7-state transition table of the Yunès [22] algorithm

but it is same if the states of the left and right neighbors are interchanged. Thus, the
symmetrical CA has no ability to distinguish between its left and right neighbors.

• State-Change Complexity
Vollmar [20] introduced a state-change complexity in order to measure the effi-
ciency of cellular automata, motivated by energy consumption in certain physical
memory systems. The state-change complexity is defined as the sum of proper
state changes of the cellular space during the computations. A formal definition
is as follows: Consider an FSSP algorithm operating on n cells. Let T(n) be syn-
chronization steps of the algorithm. We define a matrix C of size T(n) × n (T(n)

rows, n columns) over {0, 1}, where each element ci,j on ith row, jth column of the
matrix is defined:

ci,j =
{

1 Sj
i �= Sj−1

i

0 otherwise.
(20.2)

The state-change complexity SC(n) of the FSSP algorithm is the sum of 1’s ele-
ments in C defined as:

SC(n) =
T(n)∑
j=1

n∑
i=1

ci,j. (20.3)

Vollmar [20] showed that �(n log n) state-changes are required by the cellular
space for the synchronization of n cells in 2n − 2 steps. Gerken [3] presented an
optimum-time �(n log n) minimum-state-change FSSP algorithm.

Theorem 6 (Vollmar [20]) �(n log n) state-change is necessary for synchronizing
n cells in 2n − 2 steps.

Theorem 7 (Gerken [3]) �(n log n) state-change is sufficient for synchronizing n
cells in 2n − 2 steps.
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Fig. 20.10 Snapshots of the synchronization process of the Yunès [22] algorithm on 7, 14, and 20
cells, respectively
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Fig. 20.11 A 7-state transition table of the Yunès [22] algorithm

20.2.4 A Brief History of the Developments of the 3n-Step
FSSP Algorithms and Their Implementations

The 3n-step algorithm is a simple and straightforward one that exploits a parallel
divide-and-conquer strategy based on an efficient use of 1/1- and 1/3-speed of signals.
After Minsky and McCarthy (See Minsky [9]) gave an idea for designing the 3n-
step synchronization algorithm, Fischer [2] also presented a 3n-step synchronization
algorithm, yielding a 15-state implementation, respectively. Herman [6] implemented
the 3n-step algorithm in terms of 10-state finite state automaton. Yunès [22] developed
two seven-state synchronization algorithms. His algorithms were interesting in that
he decreased the number of internal states of each cellular automaton by extending the
width of signal threads in the space-time diagram. Umeo, Maeda, and Hongyo [16]
presented a 6-state 3n-step algorithm. Afterward, Yunès [25] also presented a 6-state
3n-step algorithm.

20.3 Implementations of the 3n-Step FSSP Algorithms

The non-optimum-time 3n-step FSSP algorithms that we discuss in this chapter are
as follows:

• Fischer [2] algorithm,
• Minsky-McCarthy [9] algorithm,
• Herman [6] 10-state algorithm,
• Yunès [22] 7-state algorithm,
• Umeo-Maeda-Hongyo [16] 6-state algorithm,
• Yunès [25] 6-state algorithm,
• Two 6-state algorithms proposed in this chapter, and
• Umeo-Yanagihara [18] 5-state algorithm.
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Fig. 20.12 Snapshots of the synchronization process of the Yunès [22] algorithm on 7, 14, and 20
cells, respectively

In this section, we examine the state transition rule sets for these FSSP protocols
developed so far above. A transition rule is expressed in a usual 4-tuple style: W X Y
→ Z which represents the state transition rule that an automaton in currently in state
X, with its left neighbor in state W and the right neighbor in state Y will enter state Z at
the next step. The state “*” that appears in the state transition table is a border state for
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Fig. 20.13 A 6-state transition table of the Umeo, Maeda, and Hongyo [16] algorithm

the left and right end cells. It is noted that, according to the conventions in FSSP, the
border state “*” is not counted as the number of states for the synchronizer. We have
tested the validity of those tables for any array of length n such that 2 ≤ n ≤ 500. It
reveals that all of the rule tables tested in this chapter include no redundant rules.

20.3.1 Fischer Algorithm: A1

Fischer [2] firstly presented an idea for synchronizing any 1D array in non-optimum-
time. We implemented a space-time diagram (Fig. 1 in Fischer [2]) for the synchro-
nization in terms of a finite state automaton with 15 states. The set Q of the internal
states for the Fischer’s algorithm is Q = {G, Q, A, B, C, a, b, c, R, L, X, Y, Z, K,
F}, where the state G is the initial general state, Q is the quiescent state, and F is
the firing state, respectively. The table itself, consisting of 188 4-tuple rules, is con-
structed newly in this chapter. See Fig. 20.3. The readers can find that the table is very
sparse in a sense that each table has many empty entries. The filled-in ratio of the
implementation is fFischer[2] = 188/14 × 15 × 15 = 5.9 (%). The time complexity
for synchronizing any array of length n is 3n − 4. Figure 20.4 shows some snapshots
of the synchronization process of the Fischer’s algorithm on 7, 14, and 20 cells. The
thread width of the a-, b-, and r-signals implemented is one, respectively.

20.3.2 Minsky–McCarthy Algorithm: A2

Minsky and McCarthy (See Minsky [9]) also presented an idea for designing the 3n-
step synchronization algorithm. Yunès [22] gave an implementation of the algorithm
for 14 cells in terms of a 13-state finite state automaton. Figure 20.5, consisting of 138
rules, is the transition table constructed in this chapter based on Fig. 2 in Yunès [22].
The set Q of internal states for the Minsky-McCarthy algorithm is Q ={I, Q, A,
B, C, a, b, c, R, L, X, Y, F}, where the state I is the initial general state, Q is
the quiescent state, and F is the itfiring state, respectively. The filled-in ratio of
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Fig. 20.14 Snapshots of the synchronization process of the Umeo, Maeda, and Hongyo [16] algo-
rithm on 7, 14, and 20 cells, respectively
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Fig. 20.15 A 6-state transition table of the Yunès [25] algorithm

the implementation is fMinsky-McCarthy[9] = 138/12 × 13 × 13 = 6.8 (%). The time
complexity for synchronizing any array of length n is 3n + O(log n). Figure 20.6
shows some snapshots of the synchronization process of the Minsky–McCarthy [9]
algorithm on 7, 14, and 20 cells, respectively. Note that the thread width of the three
signals implemented is one.

20.3.3 Herman’s 10-State Algorithm: A3

Herman [6] also gave a 10-state implementation for the 3n-step synchronization
algorithm. Figure 20.7, consisting of 155 rules, is the transition table constructed
in this chapter based on Herman [6] (Figs. 3, 4, and 5 in Herman [6]). The set Q
of the internal states for the Herman [6] algorithm is Q ={I, S, J, U, W, R, X, V,
G, F}, where the state I is the initial general state, S is the quiescent state, and F
is the firing state, respectively. The filled-in ratio of the implementation is fHerman[6]

= 155/9 × 10 × 10 = 17.2 (%). The time complexity for synchronizing any array of
length n is 3n + O(log n). Figure 20.8 shows some snapshots of the synchronization
process of the Herman [6] algorithm on 7, 14, and 20 cells, respectively. Note that the
thread width of the a-, b-, and r-signals implemented is two, respectively. Herman [6]
is the first paper which introduced wider threads to describe those signals, yielding
the decrease of the number of states required.

20.3.4 Yunès Seven-State Algorithm: A4

Yunès [22] presented two 7-state implementations for the 3n-step FSSP algorithms
and decreased the number of states required. The set Q of internal states for the
first Yunès algorithm is Q ={G, Q, A, C, d, Z, F}, where the state G is the initial
general state, Q is the quiescent state, and F is the firing state, respectively. The
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Fig. 20.16 Snapshots of the synchronization process of the Yunès [25] algorithm on 7, 14, and 20
cells, respectively
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Fig. 20.17 A 6-state transition table of the new algorithm

following Fig. 20.9, consisting of 134 rules, is the transition table. The filled-in ratio
of the implementation is fYunès[22] = 134/6 × 7 × 7 = 45.6 (%). The time complexity
for synchronizing any array of length n is 3n + O(log n). Figure 20.10 shows some
snapshots of the synchronization process of the Yunès [22] algorithm on 7, 14, and
20 cells, respectively. Note that the width of the signals implemented is two. Note
that Yunès [22] also represented a-, b-, and r-signals as threads of width 2, thus
decreasing the number of states to seven.

Yunès [22] also gave a different 7-state implementation for the 3n-step FSSP
algorithm. The set Q of internal states for the Yunès algorithm is Q ={G, Q, A, C,
d, Z, F}, where the state Z is the initial general state, Q is the quiescent state,
and F is the firing state, respectively. The following Fig. 20.11, consisting of 134
rules, is the transition table. The filled-in ratio of the implementation is fYunès[22]

= 134/6 × 7 × 7 = 45.6 (%). The time complexity for synchronizing any array of
length n is 3n + O(log n). Figure 20.12 shows some snapshots of the synchronization
process of the Yunès [22] algorithm on 7, 14, and 20 cells, respectively. Note that
the width of the signals implemented is also two. A major difference between these
two implementations is a center marking for each splitting.

20.3.5 Umeo, Maeda, and Hongyo’s 6-State Algorithm: A5

Umeo, Maeda, and Hongyo [16] presented a 6-state 3n-step FSSP algorithm. The
implementation was quite different from previous designs. The setQ of internal states
for the algorithm is Q ={P, Q, R, Z, M, F}, where the state P is the initial general
state, Q is the quiescent state, and F is the firing state, respectively. The following
Fig. 20.13, consisting of 78 rules, is the transition table. The filled-in ratio of the
implementation is fUmeo, Maeda, and Hongyo[16] = 78/5 × 6 × 6 = 52.0 (%). The time
complexity for synchronizing any array of length n is 3n + O(log n). Figure 20.14
shows some snapshots of the synchronization process of the algorithm on 7, 14
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Fig. 20.18 Snapshots of the synchronization process of the new 6-state algorithm on 7, 14, and 20
cells, respectively

and 20 cells, respectively. Umeo, Maeda, and Hongyo [16] improved the seven-
state implementation developed by Yunès [22]. The number six is the smallest one
known in the class of 3n-step synchronization algorithms. An important key idea is
to increase the number of cells being active during their computation in the zone T ,
shown in Fig. 20.2. The width of the thread is unbounded. It is seen that the algorithm
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Fig. 20.19 A transition table of a new 6-state O(n2)-state-change implementation

has O(n2) state-change complexity. The algorithm can be extended to a new non-
trivial symmetrical six-state 3n-step generalized FSSP algorithm. See Umeo, Maeda,
and Hongyo [16] for details.

20.3.6 Yunès 6-State Algorithm: A6

Yunès [25] presented a 6-state implementation for the 3n-step FSSP algorithm. His
implementation is based on wider threads. The set Q of the internal states for the
Yunès [25] algorithm is Q = {A, Q, B, C, D, E}, where the state A is the initial
general state, Q is the quiescent state, and E is the firing state, respectively. The
following Fig. 20.15, consisting of 125 rules, is the transition table. The filled-in ratio
of the implementation is fYunès[25] = 125/5 × 6 × 6 = 69.4 (%). The time complexity
for synchronizing any array of length n is 3n + O(log n). Figure 20.16 shows some
snapshots of the synchronization process of the Yunès’s algorithm on 7, 14, and 20
cells, respectively. Note that the width of the a- and r-signals implemented is two,
but for the b-signal is a combination of two and three.

20.3.7 A New 6-State Algorithm: A7

Here we present a new 6-state implementation for the 3n-step algorithm. The set Q
of internal states for the algorithm is Q ={Z, Q, A, C, d, F}, where the state Z is the
initial general state, Q is the quiescent state, and F is the firing state, respectively. The
following Fig. 20.17, consisting of 114 rules, is the 6-state transition table. The filled-
in ratio of the implementation is fThis chapter = 114/5 × 6 × 6 = 63.3 (%). The time
complexity for synchronizing any array of length n is 3n + O(log n). Figure 20.18
shows some snapshots of the synchronization process of the algorithm on 7, 14, and
20 cells, respectively. Note that the width of the implemented a-signal is three and
those for the b- and r-signals are two.
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Fig. 20.20 Snapshots of the synchronization process of a new 6-state O(n2)-state-change imple-
mentation
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Fig. 20.21 A transition table of the 5-state Umeo and Yanagihara [18] algorithm

20.3.8 A New 6-State Algorithm: A8

We also present a new 6-state O(n2)-state-change implementation for the 3n-step
FSSP algorithm. The implementation is quite similar to the algorithm A5. The set Q
of internal states for the algorithm is Q ={L, Q, G, M, X, F}, where the state L is the
initial general state, Q is the quiescent state, and F is the firing state, respectively.
The following Fig. 20.19, consisting of 100 rules, is the transition table. The table is
nearly symmetric. The filled-in ratio of the implementation is fThis Chapter = 100/5 ×
6 × 6 = 55.6 (%). The time complexity for synchronizing any array of length n is
3n + O(log n). Figure 20.20 shows some snapshots of the synchronization process
of the algorithm on 7, 14, and 20 cells, respectively. The state-change complexity is
O(n2).

20.3.9 Umeo-Yanagihara 5-State Algorithm: A9

Umeo and Yanagihara [18] presented a 5-state implementation for the 3n-step
FSSP algorithm. The solution is a partial one that can synchronize any array of
length n such that n = 2k, k = 1, 2, 3, ..., . The set Q of internal states for the
implementation is Q ={R, Q, S, L, F}, where the state R is the initial general state, Q
is the quiescent state, and F is the firing state, respectively. The following Fig. 20.21,
consisting of 125 rules, is the transition table. The filled-in ratio of the implemen-
tation is fUmeo and Yanagihara[18] = 67/4 × 5 × 5 = 67.0 (%). The time complexity for
synchronizing any array of length n is 3n − 3. Figure 20.22 shows some snapshots
of the synchronization process of the algorithm on 8, 16, and 32 cells, respectively.
Note that the state change complexity is O(n2).

20.3.10 State-Change Complexity

Concerning the state-change complexity, the following theorems are established.
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Fig. 20.22 Snapshots of the synchronization process of the 5-state Umeo and Yanagihara [18]
algorithm on 8, 16, and 32 cells, respectively
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Theorem 8 The non-optimum-time algorithms developed by Fischer [2], Minsky–
McCarthy [9], Herman [6], Yunès [22], Yunès [25], and a new 6-state algorithm in
this chapter have O(n log n) optimum state-change complexity for synchronizing n
cells in 3n ± O(log n) steps.

Theorem 9 The non-optimum-time algorithms developed by Umeo–Maeda–
Hongyo [16], a new one in this chapter, and Umeo–Yanagihara [18] have O(n2)

state-change complexity for synchronizing n cells in 3n ± O(log n) steps.

20.4 Discussions

We have given a survey on a class of non-optimum-time FSSP algorithms for one-
dimensional (1D) cellular automata, focusing our attention to the 1D FSSP algorithms
having 3n ± O(log n) time complexities. Here, we present a Table 20.1 based on a
quantitative comparison of non-optimum-time synchronization algorithms and their
transition tables discussed above.
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Chapter 21
Universality of Asynchronous Circuits
Composed of Locally Reversible Elements

Jia Lee

Abstract Reversible computing reflects a fundamental law of microscopic physics,
which usually attempts to develop an equivalence between the global reversibility
and local reversibility in computational systems. Hitherto the equivalence assumes
implicitly that the underlying systems are synchronously timed. Alternative systems
include the delay-insensitive circuits, a special type of asynchronous circuits, of
which the operations are robust to arbitrary delays involved in the transmissions
of signals. This chapter aims at exploring the universal input and output behavior of
delay-insensitive circuits composed by reversible elements, with the globally non-
reversible behavior arising from the locally invertible operations.

21.1 Introduction

Local reversibility reflects a fundamental law of physics at microscopic scale, which
in general is likely insufficient to ensure the macroscopic reversibility in physical
systems [8]. Nevertheless, logical reversibility potentially promises to develop com-
puters with zero power consumption [1], and is also a precondition for quantum
computation [4]. For this reason, extensive efforts have been made to facilitate the
constructions of reversible computingmodels, such as reversible cellular automata [9,
11], reversible logical circuits [5, 6], billiard-ball models [3, 17] and quantum com-
puters [4, 10].

Since reversibility, in general, is connected with determinism, the dynamical
behavior of a reversible model can be drawn as a linear graph without branching,
where each vertex represents a global state of the model, and each arrow pointing
from a vertex to another expresses a global transition via which the former state
can be transformed to the latter. In this case, a valid equivalence between the global
reversibility and local reversibility not only provides an efficient way to test for
the reversibility of a computational model, but also can substantially reduce the
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construction of the inverse of a reversible model to direct reversing the model’s
local function that is invertible [18]. The inverse of a reversible model is also
reversible which can exactly exhibit the time-reversed dynamics of the original
model.

However, the equivalencebetweenglobal and local reversibility implicitly assumes
that the underlying reversible model is synchronously timed, i.e., each global transi-
tion comprises the local transitions of all elements that are performed in lock step in
accordance with a central clock signal. Removal of central clocksmay lead tomodels
that can work in asynchronous timings. Delay-insensitive (DI) circuits are one of the
most typical examples of asynchronous models, in which signals may be subject to
arbitrary delays but without violating the external input and output behavior of the
circuits, thereby no need a central clock to synchronize the local operations of circuit
elements or transmission of signals.

As microscopic physical processes are asynchronous in nature, it makes sense
to investigate the reversibility at local and global levels in asynchronous models [2,
15, 20]. Local reversibility can be defined on primitive elements in DI-circuits [13,
18], each of which takes the same number of input and output lines. In spite of the
randomness associated with asynchronous operations, local reversibility in logical
elements can directly lead to the global reversibility in a DI-circuit composed of
such elements, provided that both the circuit as well as all elements process at most
one signal at any time [13, 14, 16], i.e., they are serial. Accordingly, every serial
DI-circuit composed of serial reversible elements exhibits linearity in its graph of
all configurations, though each transition between a pair of configurations may take
even unpredictable time due to the lack of central clocks.

A more general and practical case allows multiple signals to be processed simul-
taneously by reversible elements as well as the circuits composed of them. In such a
case, the concurrency among signal transmissions tends to cause forking and merg-
ing of paths in the graph of all possible states of a DI-circuit, whereby the global
behavior of the circuitmight be regarded as incompatiblewith the reversibility of con-
ventional logical circuits. This chapter demonstrates that locally reversible elements
can be used to construct the whole class of DI-circuits, with the universality emerg-
ing from the concurrency among reversible operations at local level. As microscopic
physical interactions are inherently asynchronous, the emergence of non-reversible
global behavior from reversible local operations in DI-circuits might be consistent
with the macroscopic consequence of microscopic reversible dynamics in physics.

Section21.2 gives definitions on local reversibility in delay-insensitive circuits.
Section21.3 describes the constructions of DI-circuits using locally reversible ele-
ments. This chapter finishes with the conclusion given in Sect. 21.4.

21.2 Delay-Insensitive Circuits and Reversible Elements

A delay-insensitive (DI) circuit is a modular system with a finite number of input
and output lines that interface with the outside world. Communications between the
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circuit and the outside world are done via exchanging signals through the input and
output lines. Signals are one-valued and are denoted by a token on a line.

A DI module can be formalized as (I,O,�, λ,R) where I and O are finite sets
of input and output lines (I ∩ O = ∅), respectively. � is a finite set of the states of
the module, as well as λ being the initial state (λ ∈ �). Also, R ⊆ (2I\{∅}) × � ×
(2O\{∅}) × � is a finite set of transitions. For any γ ⊆ I , δ ⊆ O, and s, s′ ∈ �, a
transition γ ; s → δ; s′ ∈ R corresponds to a situation in which the module, when
in state s with one signal on each input line Ii ∈ γ , will be activated to assimilate a
signal from Ii, produce a signal on each output lineOj ∈ δ, and finally switch its state
to s′. A module’s operation, therefore, depends merely on the combination of input
signals, rather than on the arrival order of the signals or on their timings of arrival.

Keller [12] formulated several operating conditions for DI-circuits, under which
the external input and output behavior of any circuit composed of DI modules can be
characterized itself as a DI module, i.e., the circuit is delay-insensitive. In particular,
one of Keller’s conditions prohibits more than one signal to appear on an intercon-
nection line simultaneously. Thus, when two successive signals appear on an input
line of a DI module, there must be at least one signal on an output line of the module
in response to the first signal, before the next signal is put on the same line.

Assume a DI module (I,O,�, λ0,R). The module is called conservative if each
transition γ ; s → δ; s′ in R satisfies |γ | = |δ|, i.e., no transition results in the
increment or decrement of the number of input signals. Every conservativeDImodule
can be realized using a DI-circuit composed by a fixed set of primitive DI modules
(elements), as given in Fig. 21.1, i.e., these elements are universal [15, 19].

(a) (b) (c)

Fig. 21.1 a 2 × 2-SJoin = ({a0, a1, b0, b1}, {cij | 0 ≤ i, j ≤ 1} ∪ {d0, d1}, {λ}, λ, Rs22):
Assume i, j ∈ {0, 1}. A signal arriving on input line ai, together with a signal arriving on line
bj , are assimilated and result in one signal on each of the output lines cij and dj . b Arbiter =
({c, a0, a1}, {b0, b1,Ack}, {ε, 0, 1}, ε, RA): Assume i ∈ {0, 1}. When the element is in state ε,
a token arriving on input line ai changes the state to i, and results in an output token on line Ack.
When the element is in state i, an input token on line c changes the state to ε, and gives rise to
a token on output line bi. Moreover, when the state of the element is ε, simultaneous arrivals of
signals on a0 and a1 are allowed, and in that case only one of them (may be chosen arbitrarily) is
processed. The signal on a0 or a1 that was not assimilated keeps pending on the same input line
until the element’s state reverts to ε. c Merge = ({I0, I1}, {O}, {λ}, λ, RM ): A signal arriving on
input line I0 or I1 is assimilated and gives rise to an output signal to line O
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A serial DI module is a special type of conservative modules in which each
transition γ ; s → δ; s′ ∈ R satisfies |γ | = |δ| = 1. Moreover, let

θ1 = γ1; s1 → δ1; s′1
θ2 = γ2; s2 → δ2; s′2

be any two transitions in R (θ1 and θ2 may be the same). The module is called
deterministic if

s1 = s2 ∧ γ1 ⊆ γ2 =⇒ θ1 = θ2.

Moreover, the module is reversible if it is deterministic and conservative, and

s′1 = s′2 ∧ δ1 ⊆ δ2 =⇒ θ1 = θ2.

Thus, each transition of a reversible DI module does not overlap on the left-hand
side or on the right-hand side with any other transitions. It can be verified that the
2 × 2-SJoin and Arbiter in Fig. 21.1 are reversible elements, whereas the Merge is
serial but not reversible.

Figure21.2 gives some typical reversible elements [13, 15, 18] that can be used
to construct the whole class of conservative DI-circuits, as we will show in the next
section, including the non-reversible Merge in Fig. 21.1c.

21.3 Constructing Conservative Delay-Insensitive Circuits
by Reversible Elements

Because the DI-modules given in Fig. 21.1 are capable of constructing all conserva-
tive DI-circuits, universality of the reversible elements in Fig. 21.2 can be shown by
decomposing each module into the elements. For this purpose, Fig. 21.3 illustrates
the construction of an 2×2-SJoin in Fig. 21.1a using the RE, CDE and Join elements.

To verify how the construction in Fig. 21.3 works, suppose that the 2 × 2-SJoin
receives two signals with one on input line ai and another one on input line bj
(i, j ∈ {0, 1}). In this case, the signal from input line ai changes the state of the CDE
A to i and results in a signal to an input line of the Join. Likewise, the signal from
input line bj changes in turn the states of the RE R0j and R1j from V to H, after which
it will change the CDEB’s state to j and be transferred to the Join. The Join, therefore,
outputs a signal back to each of the CDEs A and B. As a result, the CDE B reverts
its state from j to 0 and generates a signal on the output line bj of the construction.
In addition, the CDE A reverts its state from i to 0 and transfers a signal to the CDE
Ri0, which will eventually change the states of the R0j and R1j to V and give rise to a
signal on output line cij of the 2 × 2-SJoin.

The inverse of an reversible DI module can be obtained by simply exchanging the
input and output lines of the module, as well as the left-hand and right-hand sides
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(a)

(b) (c)

(d)

Fig. 21.2 Reversible DI modules and their respective sets of transitions. a RE (Rotary Element)
= ({n, s, e,w}, {n′, s′, e′,w′}, {V ,H}, V , RRE): The local states H and V are displayed by hor-
izontal and vertical bars, respectively. Roughly speaking, when a token comes from a direction
parallel to the bar, then the token will pass straight through to the opposite output line without
changing the direction of the bar. When a token comes from a direction orthogonal to the bar, the
token will be deflected to the right and rotate the bar 90◦. b CDE (Coding-Decoding Element) =
({C0,C1,D}, {D0,D1,C}, {0, 1}, 0, RCD): Assume i ∈ {0, 1}. When the element is in state 0, a
token arriving on input line Ci updates the state to i, and gives rise to a token on output line C. A
token arriving on input line D reverts the state to 0, and results in a token on output line Di if the
element is in state i. c Join = ({I0, I1}, {O0,O1}, {λ}, λ, RCJ ): Two signals, with one arriving on
input lines I0 and another one arriving on line I1, are assimilated and produce one signal on each of
the output linesO0 andO1. dMultiplexer = ({S0, S1, I0, I1}, {T0,T1,O0,O1}, {ε, 0, 1}, ε, RML):
Assume i ∈ {0, 1}. When the module is in state ε, a signal arriving on input line Si changes the state
to i and gives rise to an output line on line Ti. When the module is in state i, a signal arriving on
input line Ii is processed and gives rise to an output signal on line Oi; in this case, the state of the
module is changed to ε. When the state is ε, simultaneous arrivals of a signal on each of the input
lines S0 and S1 are allowed. In this case, only one of the two signals (may be arbitrarily chosen)
is processed, whereas the other signal that was not assimilated keeps pending on the line until the
module reverts to state ε

of each transition. Obviously, the inverse of an RE in Fig. 21.2a is still an RE. The
cases for other reversible elements in Fig. 21.2 are the same. A remarkable feature of
the DI-circuit in Fig. 21.3 is that reversing the directions of each interconnection line
in the construction, and replacing each element with its inverse, directly give rise to
the inverse of an 2 × 2-SJoin. This feature also carried over to the construction of
an Arbiter (Fig. 21.1b) via the reversible elements: CDE and Multiplexer, as shown
in Fig. 21.4. In particular, when a signal arrives on each of the input lines a0 and
a1 at the same time, the Multiplexer in the construction will arbitrate between them
so as to allow only one signal to be processed at a time, whereas the other signal is
left waiting on the corresponding input line of the Arbiter. This behavior, therefore,
reveals the arbitrating ability of the Arbiter’s construction in Fig. 21.4.
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Fig. 21.3 Construction of
2 × 2-SJoin using RE, CDE
and Join. Initially, all CDEs
are in state V

Fig. 21.4 Construction of
Arbiter using CDE and
Multiplexer

The Merge in Fig. 21.1c is the simplest and most typical DI module that is not
reversible. This module is serial and works as a fan-in element, such that a signal
arriving on either input line I0 or I1 is transferred to the output line O. In particular,
a Merge can not be realized by the use of only serial reversible elements, such as
the RE in Fig. 21.2a [15, 18]. Hence, reversible elements that are able to process
multiple input signals must be employed. Figure21.5 shows a circuit scheme for
constructing aMerge out of theCDE,TJoin andMultiplexer, inwhich two signals that
are assigned initially play a key role in accomplishing the non-reversible functionality
of aMerge [15]. For simplicity, assume a signal arrives on an input line Ii of theMerge
in Fig. 21.5with i ∈ {0, 1}. The input signal, togetherwith a pending signal to the Join
μi, is processed by μi and results in two signals running around in the construction.
The resulting signals change the states of the Multiplexer and both of the CDEs to i,
and eventually give rise to a signal appearing on the output line O of the Merge, and
another signal being left in the circuit. After that, the latter signal will revert both
CDEs as well as the Multiplexer to their initial states respectively, and finally return
to an input line of the Join μi and wait there until a new signal is received from the
input line Ii of the construction.
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Fig. 21.5 Construction of Merge using CDE, Join and Multiplexer. A signal, denoted by a black
blob, is assigned in advance on an input line of each of the Joins μ0 and μ1

As soon as a DI-circuit outputs all signals in response to a valid set of inputs, the
circuit must get ready to receive new input signals [12]. The DI-circuit, therefore,
must be stabilizedbefore actually processing the new inputs.A straightforwardway to
accomplish this is to ensure that the circuit contains no signal on any interconnection
line in the absence of any input signal, for example, as the constructions of an 2× 2-
SJoin and Arbiter given in Figs. 21.3 and 21.4, respectively. The lack of additional
signals to be assigned initially on some interconnection lines, however, may probably
bring the difficulty in designing a conservative DI-circuit to conduct some intended
tasks [15]. In the case of using additional signals, there is always an identical number
of signals to be left in the circuit, after every valid set of input signals is processed
and gives rise to corresponding output signals.

As mentioned above, after a signal appears on the output line O, a signal may
run around within the DI-circuit in Fig. 21.5, i.e., the construction is not stabilized.
To cope with such a situation, a Multiplexer as well as its connected four Joins
are employed in the construction of a Merge [15]. As a result, as soon as an input
signal results in a signal on output line O, the Multiplexer and the Joins enable the
Merge’s construction in Fig. 21.5 to receive a new signal from either of its input lines,
and prevent the new input from being actually processed before the construction is
stabilized.

Because the 2×2-SJoin, Arbiter andMerge modules in Fig. 21.1 are universal for
the whole class of conservative DI-circuits [15, 19], all constructions in Figs. 21.3,
21.4 and 21.5 demonstrate that any arbitrary conservative DI module can be decom-
posed into a DI-circuit composed merely of the reversible elements: RE, CDE, Join
andMultiplexer. Asynchronous operations of the reversible elements, therefore, tend
to actually boost their constructability and computing power [15].

The RE and CDE can be substituted for each other, because either of them can be
constructed from the other [13, 14]. In addition, both of them can be decomposed
into a pair of mutually reversed elements, as given in Fig. 21.6. Called RT and IRT,
these elements have simpler functionality than CDE and RE, and take a minimal
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(a) (b)

Fig. 21.6 aRT (ReadingToggle) = ({T ,R}, {T0,T1}, {0, 1}, 0, 	RT ):When the element is in state
0 (or 1), a token arriving on input lineT changes the state to 1 (resp. 0), and results in a token on output
line T0 (resp. T1); a token arriving on input line R does not change the state and gives rise to a token
on output line T0 (resp. T1). b IRT (Inverse Reading Toggle) = ({T0,T1}, {T ,R}, {0, 1}, 0, 	IRT ):
When the element is in state 0 (or 1), a token arriving on input line T1 (resp. T0) changes the state
to 1 (resp. 0), and results in a token on output line T ; a token arriving on input line T0 (resp. T1)
does not change the state, and gives rise to a token on output line R

(a)

(b)

Fig. 21.7 a Construction of RE using RT, IRT and CDE (reprinted from [13], c©Springer). b
Construction of CDE using RT and IRT

number of input and output lines. Figure21.7 illustrates the constructions of an RE
and CDE using RT and IRT [13], in accordance with which the RT, IRT, Join and
Multiplexer are capable of realizing any arbitrary conservative DI-circuit, thereby
forming a universal set of reversible elements.



21 Universality of Asynchronous Circuits … 531

21.4 Conclusion

Logical reversibility promises in principle the possibility of computers with zero dis-
sipation, by preventing entropy loss during computation [1]. Likewise, asynchronous
operations tend to reduce power consumption and energy dissipation, by keeping all
idle elements in a sleeping state [7]. Thus, it makes sense to include the reversibility
into asynchronous systems. This chapter provided definitions on local reversibility
in delay-insensitive circuits, and showed that local reversibility, in general, is unable
to ensure the global reversibility in DI-circuits. On the contrary, reversible elements
are capable of constructing any arbitrary DI-circuit, i.e., they are universal [15]. It
is well known that local reversibility reflects the time-reversible nature of micro-
scopic dynamics of particles and fields. Macroscopic physics, however, are likely to
exhibit non-reversibility as described by the Second Law of Thermodynamics [8].
Hence, the emergence of universal global behavior from reversible local operations
in DI-circuits might be consistent with the macroscopic consequence of microscopic
reversible dynamics in physics.
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Chapter 22
Reservoir Computing as a Model
for In-Materio Computing

Matthew Dale, Julian F. Miller and Susan Stepney

Abstract Research in substrate-based computing has shown that materials contain
rich properties that can be exploited to solve computational problems. One such
technique known as Evolution-in-materio uses evolutionary algorithms to manipu-
late material substrates for computation. However, in general, modelling the com-
putational processes occurring in such systems is a difficult task and understanding
what part of the embodied system is doing the computation is still fairly ill-defined.
This chapter discusses the prospects of using Reservoir Computing as a model for
in-materio computing, introducing new training techniques (taken from Reservoir
Computing) that could overcome training difficulties found in the current Evolution-
in-Materio technique.

22.1 Introduction

Biological organisms vastly outperform classical/conventional computing paradigms
in many respects, from possessing inherent fault-tolerance to constructing highly
parallel machines. Much of this is achieved by exploiting physicality and by sharing
and distributing computational effort throughout the spatial system. As such, they
exploit physical interactions through feedback with the real-world, utilising features
such as their own morphology.

Many of these systems comprise relatively simple elements that emerge and coa-
lesce into more complex, but robust, structural layers across different scales. Such
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grounding properties (and many more) have enabled these complex systems to thrive
and evolve, adapting and co-evolving in real-time with their local ecosystem.

The conventional vonNeumann computing architecture, although expertly refined
over time, poses some fundamental inefficiencies. For example, classical comput-
ers require the transformation between high-level languages to low-level machine
code, a process that requires layers of conversion through a compiler stack, making it
computationally costly, slow, and highly susceptible to faults and errors. These sys-
tems typically succumb to many issues in speed, from both an inability to deal with
concurrent computations and the bottleneck created by the transfer of data between
separate memory and processing entities. Because of these architectural weaknesses
other intertwined discrepancies arise, such as an increase in power consumption,
system size, and top-down design complexity.

Unconventional computing tries to address someof these limitations by attempting
to provide alternative architectures and systems that typically exploit the underlying
physics andmany-scale interactions of the real-world.Many forms of unconventional
systems have been explored in recent years. For example, quantum computing is one
such system, where two-state quantum bits, typically described by electron or photon
spin/polarisation, can be exploited to perform large numbers of parallel computations
(i.e. 2no.of qubits). This is achieved through the principles of superposition, enabling a
qubit to be in both states simultaneously (see [104] for a review). Another example is
reaction-diffusion computing [2], which performs computation through local chem-
ical reactions and diffusion. By using chemical processes, the system can execute
highly parallel computations, performed by the complex interactions of propagated
waves of information caused by local disturbances. Physarum polycephalum (slime
mould) is currently under investigation as an excitable, reaction-diffusion medium
that could form the basis of a programmable amorphous biological computer [3,
123].

For the purpose of this chapter we discuss research into configurable in-materio
systems (typically on the nanoscale),with the intention of identifying a computational
model that could suit and conform to many in-materio systems.

This chapter begins with an introduction to the concepts of material computa-
tion with a brief mention of the criticality hypothesis (Sect. 22.2). Next, the field of
Evolution-in-materio as a current investigation into the theory of material computa-
tion is reviewed, discussing its methodology and current research (Sect. 22.3). Reser-
voir Computing and its potential as an in-materio model is examined in Sects. 22.4
and 22.5. To further aid in identifying “good” reservoirs some evaluation tech-
niques are highlighted in Sect. 22.6. Lastly, an argument is made in Sect. 22.7 to
the possible benefits reservoir computing could have on the design of computational
substrates.
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22.2 Material Computation

This section discusses some of the principal concepts of material computation, such
as some informal definitions, the role critical dynamics has in complexity and where
it may fit within other computing paradigms.

Material computation is defined to be a computational process that occurs in a
sufficiently complex dynamical system realised in the form of a physical material
substrate.

This definition relies on the idea that matter contains physical information and that
systems of collective matter can dynamically modulate and redistribute information
to change state; therefore, implied here, to perform some form of computation. A
simple example of this would be the physical process in which the state or phase of
matter changes in relation to energy, which could (loosely) in some sense be viewed
as a computational mechanism.

Stepney et al. [111] provide a more contextual definition of material computation
as: “computation directly by physical and chemical processes of a complex sub-
strate, with little or no abstraction to a virtual machine”. From this definition we
can categorise material computation as an analogue process that utilises physical
constructs, the tangible medium itself, and meta-processing to do computation. This
“physicality” may be defined and observed as the structural topology, characteristic
behaviours and information processing associated with the many-scale interactions
occurring in that system.

As a concept, material computation is still in its developmental or conceptual
stage, with early experiments supporting, or working in tandem with, current digital
technology to form hybrid, and potentially very powerful, machines. A configurable
substrate can be used to transfer some of the computational burden from the digital
system to the material [111]. As such, the material can endow the system with
many of the properties and advantages of analogue systems, such as speed and
concurrency, in a device where memory and processing are not separable. To achieve
this, engineers attempt to exploit processes and behavioural phenomena that naturally
occur, properties that are governed directly by the underlying physics and chemistries
of the substrate.

Exploiting computation directly from materials offers many potential advantages
over classical systems where the computation performed does not depend so much
on the details of the materials used. As a paradigm, substrate computing potentially
offers vast amounts of computational power by capitalising on the massive paral-
lelism and natural constraints of these rich systems. Such properties are suggested to
have the potential to provide solutions “for free”, or at least computationally cheaper,
and provide a rich explorable state space, aligning computation to particular trajec-
tories [108].

Much of the current interest in material computation is to abstract a model (or
models) of computation from what the substrate does naturally. It has been proposed
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that the first step to producing a potential unified theory of material computation, i.e.
a theory that better understands what computation is and how it occurs in materials,
should take place in “primitive” (un-evolved) substrates, where the general princi-
ples are in plain sight [108]. After this, material computation could emerge with
some supportive reasoning to a better understanding of computation in biological
substrates.

22.2.1 The Effects of Criticality on Complexity

It is hypothesised that there is a critical state in which a system can exhibit maximal
computational power, and therefore where maximal complexity can be acquired,
labelled a region near (or at) the edge of chaos [60]. This concept may have a direct
relationship to material computation, whereby a material can exhibit “richness” [75],
and therefore be exploitable, by operating close to or within this region.

This edge of chaos represents the transitional border between ordered dynamics,
where perturbations to the system quickly fade and the system settles, and chaotic
behaviour, where perturbations significantly affect long-term stability and the system
becomes unpredictable. This critical landscape can be observed by looking at the
systems trajectory in the phase space bymonitoring the convergence towards or away
from a steady state, and thus highlighting a system’s sensitivity to initial conditions.
Both behaviours are thought to be necessary to gain maximal complexity, using
some ordered behaviour to maintain memory, and some chaotic behaviour to enable
processing.

Langton [60] observed the effects and advantages of systems working in this
transitional region, using cellular automata. At a critical point, Langton observed
that a cellular automaton could optimally perform computations, imitating complex
life-like behaviour. Earlier, Packard [86] observed another unique property: that
genetic algorithms tend to evolve populations in these critical regions, suggesting that
adaptability was therefore optimised close to the edge of chaos. Similar conclusions
are proposed and demonstrated in neural networks, where vast computational power
and capability in this region is described through network connectivity. Bertschinger
and Natschläger [11] demonstrate these relationships in input-driven networks, by
accurately determining the position of the critical line with respect to structural
parameters.

It has also been suggested that living neural networks support the “criticality
hypothesis”. Beggs [9] discusses this notion by looking at how the power-law distri-
bution of neuronal avalanche sizes (a cascade of bursts of activity) suggests operation
near a critical point. Beggs further explains, that the implications of these avalanche
size distributions implies that information transmission, information storage, com-
putational power and stability could all simultaneously optimise at the edge of
chaos.
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22.2.2 Configuration and Structure

Conventional programs and algorithms represent idealised mathematical objects,
irrespective of their underlying hardware. In a physical system (say a biological sys-
tem) computation is embodied, behaviourmaynot be completely captured by a closed
mathematicalmodel.As such, trying to program these embodied systems requires dif-
ferent techniques. The programming andmanipulation ofmaterials requires (to some
extent) a complex understanding of the properties and interactionswithin that system.
We therefore require either some convoluted top-down “programming” approach (in
the traditional sense) or an alternative mechanism (e.g. through training, learning
or evolution). Whichever method is applied, this “program” would alter the details
of system in a controlled manner, for example, using controlling fields that affect
structure and dynamics.

22.3 Evolution-In-Materio

Evolution-in-materio (EIM) is a term coined by Miller and Downing [75] to refer to
the means by which a physical system, a complex material, could be manipulated by
computer controlled evolution (CCE) to perform useful computation.

The idea of using unconstrained evolution as a search method in physical media is
deep rooted in the field of Evolvable Hardware (EH) [34, 36]. Most evolved config-
urations in EH lead to digital products or components later embedded into physical
artefacts. For example, evolving simulated models and optimisation programs, or,
designing a physical system that can be manufactured after evolution; like antennas
[65], robots [64, 90] or chemical systems made of oil droplets [35].

Miller argues that Evolution-in-materio sits between full embodiment and the
realised evolved EH solutions described above [76]. In this form, physical artefacts
are configured (or conceptually created) during the process and assessed/controlled
by simulated Darwinian evolution. This can also be seen in some EH systems, but,
typically such systems are limited to constrained silicon hardware, e.g. electronic
circuits evolved on Field Programmable Gate Arrays (FPGA) [43]. EIM relies on
a hybrid analogue/digital architecture where the evolutionary process (encapsulated
on a digital computer) controls the writing/reading of physical signals to/from an
analogue material. As such, the directed search tries to exploit the dynamics of the
material by evaluating the performance of individual test configurations. Physical
realisations are therefore embodied in the search process but evaluated externally.
A system that operates in this manner is theoretically very powerful, allowing the
manipulation of physical properties which are hitherto unknown.

An early example of EIM can be found in Thompson’s work with FPGAs [114].
Thompson attempted to evolve a frequency discriminator by allowing evolution to
reconfigure circuit elements on the FPGA. In the process, he discovered that evolution
had in fact used subtle electrical variations in the underlying material to form a
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solution. It was only made evident when evolved configurations no longer solved
the problem when moved around the FPGA and when areas not directly involved
somehow contributed to the overall operation. Thompson’s work led to an explosion
of interest [36, 76]. Miller and Downing [75] label this work as a “starting point”
for the exploration of intrinsic evolution as a means by which to exploit the natural
properties of materials for computation.

22.3.1 Computation in Liquid Crystal

Miller and Downing [75] discuss several interesting materials that could possess the
desired characteristics needed for both computation and evolution. These include,
liquid crystal, conducting and electro-active polymers, voltage controlled colloids,
nanoparticle suspensions and irradiated or damaged semiconductors [75]. These
materials are exploited using a device that can alter the material’s function through
configuration parameters (discrete signals), using a configurable analogue processor
(CAP) (see Fig. 22.1).

Liquid Crystal (LC) has a number of advantages for readily applying the the-
ory. LC contains several key features including, wide availability, addressable using
digital voltages, exhibits emergent behaviour, has a unique mesomorphic structure
between ordered and disordered, and can relax to an initial base state. Harding and
Miller [39] adopt liquid crystal as a basis material and construct a bespoke platform
to solve multiple computational problems. The hardware houses a liquid crystal dis-
play (LCD) and an array of dynamically selectable input/output connections to both
the LCD and external measurement devices. They demonstrate liquid crystal as an
efficient evolvable material where relatively small numbers of generations can pro-
duce effective solutions. Over the course of their investigation the LC system has
been applied to three separate tasks; tone discrimination [39], creating logic gates
[41] and a real-time robot controller [40].

Fig. 22.1 Configurable
Analogue Processor (CAP):
using an evolutionary guided
search the material is
reconfigured to solve some
computational task through
applied input signals [75]
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Harding and Miller found that a rich substrate of liquid crystal supplied many
more exploitable properties compared to conventional silicon hardware (i.e. Thomp-
son’s FPGA). This in turn increased the diversity of solutions, thus increasing its
evolvability. Harding and Miller’s work demonstrated the advantages of emergent
design by configuring intractable characteristic properties with no knowledge of their
existence. But, the experiments also raised other fundamental questions on applying
techniques from the Evolution-in-materio paradigm. For example, the length of time
needed to “program” materials, i.e. how long does the search need to be and what
constraints are there when transitioning into the physical world? what are the diffi-
culties in defining the boundaries of the system under evolution, i.e. what is actually
doing the computation? and what effects come with non-isolated systems embedded
in a physical environment? is the system/evolution utilising environmental conditions
and sources of noise? and what are the affects on system/solution reproducibility?
what are the consequences of varying conditions on replicating the solution? Many
of these questions and more are discussed in [76].

22.3.2 NASCENCE Project: Carbon Nanotube Substrates

As part of the European FP7-ICT research project NASCENCE1 (NAnoSCale Engi-
neering for Novel Computation using Evolution) further materials were considered,
along with a new bespoke hardware platform [15]. The present hardware iteration,
known as the Mecobo board [70], forms another hybrid hardware architecture to
integrate digital computers with experimental materials. The system interfaces with
materials placed onmicro-electrode arrays (MEA) (Fig. 22.2) using a similar premise
to Harding and Miller’s liquid crystal system, the CAP.

The substrates currently under analysis consist of Single-Walled Carbon Nan-
otubes (SWCNT) mixed with either a polymer or liquid crystal. Another substrate
consisting of randomly-dispersed gold nanoparticles is also under investigation, but
requires temperatures of less than a few Kelvin to function. The polymer/LC mix-
tures disperse the nanotubes into randomstatic networks, forming varying connection
topologies and conductive pathways, possibly forming something akin to a random
electrical circuit. Carbon nanotubes are used as they can exhibit either metallic or
semi-conducting behaviour and contain other unique properties (e.g. ballistic con-
duction, thermal conductivity, self-assembly via van der Waals forces), whilst the
mixing material is believed to create isolating regions, forming an insulator between
elements and creating network structure.

A number of recent investigations have demonstrated the capabilities of SWCNT/
polymer mixtures, in particular Poly-methyl-methacrylate (PMMA) and Poly-butyl-
methacrylate (PBMA), as a potentially rich, evolvable and ubiquitous substrate.
These investigations include: solving classification and optimisation problems such
as frequency classification [78]; classifying various data instances [23, 80]; solving

1NASCENCE homepage: nascence.no.
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Fig. 22.2 Micro-electrode array used in the NASCENCE project to contain, stimulate and record
activity in a carbon nanotube-based substrate. Computer controlled evolution is used to select active
electrodes and mode (i.e. record or stimulate)

small numbers of cities instances of the travelling salesman problem (TSP) [22]; and
applied to the (NP-hard) bin packing problem [79]. Early evidence highlights and
supports the plausibility and potential of the methodology, but, in some respects it
still lacks competitive results and still exhibits some of the issues raised at the end
of Sect. 22.3.1.

PBMA appears to show greater stability than PMMA. The electrical percolation
threshold of PBMA is said to occur around a concentration of 1% (w.r.t. polymer
weight), forming a useful mixture of short and long-conductive pathways. After this,
adding more nanotubes to the mixture is said to provide a negligible computational
advantage as a suitable network appears to already exist. Although, interestingly,
higher concentrations do demonstrate more non-linear current-voltage (I-V) behav-
iour in comparison. At less than 1%, the nanotube networks become fairly sparse
and are argued to have reduced computational performance (and potentially more
linear properties) [74]. The PMMA polymer was investigated towards the beginning
of the NASCENCE project (see [56]) and is reported to have a percolation threshold
between 0.17 and 0.70% in the literature, as explained in [74], but more importantly,
a direct comparison is difficult to make between the two polymers as they come
under different polymer groups, i.e. contain different chain lengths.

Investigations into SWCNT/liquid crystal mixtures has shown some promise, for
example, non-linear I-V behaviour appears to be more prominent. It has also been
demonstrated that conductivity and orientation can be changed by an in-plane electric
field. But, LC has been shown to experience a longer configuration time, in-terms
of LC molecule and SWCNT alignment, due to LC molecules being smaller than
SWCNT ribbons, and associated relaxation times. Other issues include; Long-term
stability and reconfigurability, and the exact role of the liquid crystal in nanotube
alignment [121].
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New engineering technologies, adaptations in the search method (or fitness cri-
teria), changes in hardware (number of electrodes, different pitch sizes, etc.) and
new materials could all have a significant effect on the field. The key components
to the success of EIM lay in improvements to the fabrication of materials and the
interfacing system used for stimulation and observation. This early work has also
only highlighted one of many means of “programming” a material via evolution
(i.e. through discrete voltage inputs). Other controlling fields, or even a combination
of fields, could be utilised to manipulate/configure different materials—hopefully
further separating the distinction between configuration and input signals. The ideal
scenario for this field would be to pave the way for cheap, small, easily reconfigured
and manufactured, multi- or single-purpose standalone computational devices.

22.4 Reservoir Computing

22.4.1 What Is Reservoir Computing?

Reservoir Computing is the unification of three individually conceived methods for
creating and training artificial recurrent neural networks (RNN): Echo State Net-
works (ESN) [44], Liquid State Machines (LSM) [72] and the Backpropagation-
Decorrelation (BPDC) on-line learning rule [105].

A typical RNN model consists of a system of three layers: an input layer, a hid-
den layer (the core network), and an output layer (see Fig. 22.3). The hidden layer
contains processing elements (neurons) that are interconnected through weighted
synapses (connection weights). The input and output layers are connected to the hid-
den layer, again through weighted synapses. Variations on the types of connectivity,
e.g. feedback from the output to hidden layer or input layer to output layer, depends on
the task and method. For simplicity, we examine a simple input-to-hidden-to-output
system encompassing a recurrent network in the hidden layer.

Fig. 22.3 A typical
three-layer recurrent neural
network. The input and
output layer are connected to
the hidden layer via
weighted connections. The
connections between
neurons in the hidden layer
are also weighted
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When driven by an input, neurons activate, propagating information through the
network to other neurons through varying connection strengths. The presence of
recurrent connections can produce self-sustained activations, preserving a dynamic
memory in the network’s internal state. Networks such as this have been shown to
be theoretically very powerful and can be both Turing equivalent [53] and good
universal approximators of dynamical systems [30]. However, making the most of
RNNs comes at a price, as they suffer from many training difficulties, such as the
computational expense of updating large networks, bifurcation points, and sometimes
falling into inescapable local optima when using gradient-descent.

Reservoir Computing offers an alternative training technique. It reduces the com-
putational cost and removes the problem of degenerative gradient information that
leads to poor convergence. Also, the concepts of reservoirs go beyond traditional
neural networks and encompass (to some extent) more general dynamical systems.
Evidence of this can be seen in the following implementations: in electronic circuits
[95, 98], a bucket of water [28], Gene Regulation Networks (GRN) of E. coli bacte-
ria [24, 52], deoxyribozyme oscillators (referred to as “DNA reservoir computing”)
[33] and a cat’s primary visual cortex [81].

22.4.2 Reservoir Types

There are many “flavours” of reservoir, originating from two separate research fields
of machine learning and computational neuroscience. The first focuses on train-
ing dynamical systems for temporal learning tasks using artificial recurrent neural
networks. The second aims at realistically modelling the computational properties
of neural microcircuits. We give a summary of the two main branches of RC, and
reservoirs in unconventional hardware. For more types and variations see [68].

22.4.2.1 Echo State Network

The Echo State Network (ESN) is a discrete-time neural network constructed from a
sparse, random collection of analogue neurons (Fig. 22.4). The typical neuron model
employeduses the sumof itsweighted inputs, applied to a sigmoid function (generally
a hyperbolic-tangent), to give the neuron state x(n) at time n. The state activations
x(n) of these neurons are termed as echo states [44], i.e. echoes of the input history.
To propagate and hold this history the network requires the echo state property, or
more generally speaking, a fading memory. The property itself is provided by the
characteristic dynamics of the system.

In ESNs, different scaling parameters, and in particular the spectral radius ρ(.),
influence these dynamics. These parameters fundamentally alter and control the
amount of memory and non-linearity present in the system. The ρ(.) parameter is
used to scale the weight matrix W so that the largest absolute eigenvalue satisfies
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Fig. 22.4 Echo State Network: A random, static, recurrent network of sigmoidal neurons. The
input driven system projects u(n) into the reservoir network. Each node possesses a one-to-one
weighted connection to all inputs (viaWin), outputs (viaWout ) and other nodes (viaW ). The extra
input (labelled “1” in the figure) is provided as a bias Wbias . Training occurs on the output weights
Wout (in relation to reservoir states x(n)) by reducing the error between y(n) and ytarget (n) [66]

ρ(W ) < 1 (typically, but not always; see [68]). Within this region the echo state
property is said to be assured.

Another variant of the ESN model is the leaky-integrator neuron model, using a
neuron that possesses some form of memory of previous activations. These neurons
contain a leaking rate, or decay parameter α, which can control the speed of the
reservoirs update dynamics (Eq.22.1).

As Jaeger [44] describes, each neuron acts like a digital low-pass filter enabling
a discrete network to approximate the dynamics of a continuous network (variations
and uses can be seen in [44, 66, 68]). Dynamical systems have a natural time-scale;
understanding the time-scale on which the input is changing compared to the time-
scale of the system dynamics can be difficult. The leaky parameter α helps control
and mediate any differences in input time-scales.

Putting together these components gives the neuron state update equation:

x(n) = (1 − α)x(n − 1) + α f (Winu(n) + Wx(n − 1)) (22.1)

22.4.2.2 Liquid State Machine

The Liquid State Machine (LSM) model arose as a method for defining the compu-
tational properties and power of neural microcircuits, “an alternative to Turing and
attractor-based models in dynamical systems” [71]. The LSM model represents a
competitive model for describing computations in biological networks of neurons.
The LSM attempts to model cortical micro-columns in the neocortex, structured in
cortical layers of randomly created spiking neurons based on a spatial embedding.
Among other things, it has been described as a possible process used by mammalian
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brains in speech recognition [27] and has been verified for cortical microcircuits in
the primary visual cortex [81] and the primary auditory cortex [54].

Networks based on LSM use continuous streams of data (spike trains) to achieve
real-time computations. Maass [71] has argued that classical models cannot handle
real-time data streams based on spike trains. Unlike ESNs, they are generally more
adaptive systems, supporting additional advanced readout features such as parallel
perceptrons [72], although, in many cases, a linear readout is preferred.

Investigations using Liquid State Machines has highlighted the potential for more
abstract unconventional applications, for example, pattern recognition using a phys-
ical medium (water) [28], and imitating LSMs in E. Coli [52].

22.4.2.3 Unconventional Hardware: Single Non-linear Dynamical Node
with Delayed Feedback

Recent experimental applications of reservoir computing in optoelectronics and pho-
tonics [6, 61, 87] have demonstrated a new way of constructing a pseudo-reservoir
system. Using delay systems theory, a system can imitate the characteristics of a
recurrent network without being one. Delay systems represent a class of dynamical
systems which incorporate non-linear systems with some form of delayed feedback
and/or delayed coupling.

The key feature of this new RC flavour is to replace a physical network of nodes
(often large in size) with a single non-linear node and a delay line. The delay system
mimics a large interconnected network by creating a topology of virtual nodes in the
delay line. This is achieved by applying time-multiplexing techniques on the input,
i.e. through a combination of sample-and-hold operations mixed with an additional
input mask. The sample-and-hold operation creates a stream I (t) which defines
the state update determined by the delay τ in the feedback loop. An additional
mask M is created to represent coupled weights between stream I (t) and the virtual
nodes. The matrix M was initially randomly created at first, motivated by the random
connectivity in reservoirs; but later optimised masks were proposed [7].

The number of virtual nodes in the system is defined by N equidistant points sep-
arated in time (θ = τ/N ) along the delay interval τ . The resulting time-multiplexed
input sequence becomes J (t) = M × I (t)which is then fed into the non-linear node
(Fig. 22.5). Once the system has updated after time τ , the output nodes access the
states in the delay line using

∑N
i=1 wi x(t − N

τ
(N − i). For more detail on the mask-

ing process see the supplementary information provided for [6, 7].
The single non-linear node scheme has many interesting implications for design-

ing hardware reservoir computers. A clear advantage is that the overall architecture
needed is very simple. But using a delay loop implies a serial process (in contrast to
the parallel feeding of nodes in RC). Therefore, the speed of information processing
depends on the state update given by time τ . A few suggestions have been given
to compensate for such discrepancies and to increase computational capability, e.g.
adding additional delay lines (increasing memory capacity) and finding an optimal
number of nodes that can reasonably be implemented physically: adding more nodes
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Fig. 22.5 a Single non-linear node with delayed feedback. A new system derived from delay
systems theory where virtual nodes are created in the delay loop τ to represent the hidden layer.
The number of virtual nodes N is separated by time θ given by θ = τ/N , b time-multiplexing of
the input stream I (t) (sampled from discrete u(k) or continuous time u(t)) and a randomly created
mask M that creates the input sequence J (t). J (t) is then added to the delayed state of the reservoir
x(t − τ) before being fed back into the non-linear node [6]

will decrease τ , but having too many nodes is physically impractical given the hard-
ware involved. Future work using this technique looks promising and could produce
some ultra-high-speed computing solutions for specific tasks.

22.4.3 Reservoirs and Kernels

A reservoir can be interpreted as possessing kernel-like properties. A kernel acts as
a pre-processor, embedding input data into a vector space known as a feature space.
It is understood in many statistical machine learning methods that combining this
feature space with a simple linear discriminant algorithm can enable the learning of
complex non-linear functions.

In kernel methods this is achieved by projecting the input space u(n) into a high-
dimensional (possibly infinite-dimensional) feature space x(n) without paying the
price of its explicit computation, referred to as the kernel trick [92]. A kernel can
therefore be expressed as the expansion function x(u(n)). However, there are two sig-
nificant differences between reservoirs and kernels: reservoirs do explicitly compute
the input transformation, i.e. do not possess the kernel trick; and kernels are typically
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ill-equipped to handle temporal signals. To tackle temporal tasks the learned func-
tion x(.) requires some form of memory of previous inputs. Reservoirs solve this
by utilising the network’s recurrent topology, which creates memory by retaining
previous state activations. The final expansion function of the reservoir can therefore
be represented as x(n) = x(x(n − 1), u(n)).

Reservoirs use this pre-processing technique tomap temporal features of the input
into a spatially defined feature map (the network). The desired features can then be
extracted, or combined, in a linear fashion to create the output y(n):

y(n) = Wout x[u(n)] (22.2)

whereWout ∈ R
Ny×Nx , and Ny, Nx are the number of output nodes and internal nodes

respectively.
This enables reservoirs to tackle many temporal and dynamic real-world tasks not

possible using simple non-temporal kernels. Equation (22.2) also implies the system
contains a clear separation between the reservoir and the linear readout, separating the
training procedure from the hidden layer, i.e. onlyWout is trained. As such, the kernel
representation offers a much faster and better converging mechanism compared to
other RNNmodels, as it does not suffer from vanishing gradients. This representation
also classes reservoirs as powerful adaptive filters. For more information on kernels
see [100].

22.4.4 Reservoirs and Criticality

To design an optimal reservoir one should find a good trade-off between: (i) the
transformation of the input that optimally boosts the linear classifiers capability, later
referred to as the “quality” of the kernel; and (ii) a sufficiently-long (fading) memory
based on the input history. These two properties often conflict; to obtain a use-
ful memory requires ordered behaviour and a rich transformation requires dynamic
behaviour. Legenstein and Maass [62] have shown that optimal reservoirs tend to
experience the best trade-offs at a critical point near the “edge of chaos”.

Dynamic networks are said to exhibit emergent criticality and self-organising
properties [110]. A novel example of this can be seen [10], where a self-organising
structure of carbon nanotubes evolves to produce maximum entropy given a strong
applied electric field. Moreover, it has been observed that dynamic networks can
self-organise into critical regions where they can perform interesting computations.

These systems are characterised by motion in the phase space described as trajec-
tories or state transitions. A trajectory may converge towards (i.e. be attracted to) a
stable or unstable steady state; an attractor. Attractors vary from point—apoint in the
state space that attracts trajectories into its basin—to strange and chaotic—attracting
trajectories, but inside diverge exponentially. These systems are very robust, small
perturbations in the trajectory will tend to converge towards the same attractor. But,
both external inputs and parameter changes in the system can drastically alter the
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shape of the phase space. Such changes may perturb a trajectory, moving or “clamp-
ing” the system between different attractor basins. As a result, clamping may even
create, remove or change existing attractors and thus alter the initial phase space
created by the natural dynamics of the system [109]. The overall dynamics of the
system can therefore, to some extent, be controlled.

As discussed in Sect. 22.2, certain critical regions have been identified to display
interesting properties for computation (e.g. maximum complexity and performance).
Although the reasons for maximised performance is not entirely understood, a series
of quantitative measures have been used to observe the effects of phase transition on
computational capability.

Early measurements of dynamics in reservoir-like systems can be found in [11]
where, using a similar technique to Derrida and Pomeau [26], dynamic behaviour is
measured using the Hamming distances between two output states. By observing a
growth in the distance between states it can be determined that chaotic behaviour is
present; a decrease in distancewould indicatemoreorderedbehaviour. This concept is
similar to computing the characteristic Lyapunov Exponent for a dynamical system
(see Sect. 22.6.2.2), with both measures analysing the sensitivity to differences in
initial conditions.

Bertschinger and Natschläger [11] highlight two fundamental properties required
for these networks: a fading memory and a “network mediated” separation. A fading
memory is indicative of an ordered phase (memory) with some dynamics (fading).
The same property is found in both Liquid State Machines and Echo State Networks,
referred to as the “echo state property” in the latter. This allows the readout function
to use information from recent inputs and derive functions of those inputs from the
network state. Network mediated separation is deemed fundamentally important for
input time-series networks, with similarities to the separation property in LSMs (see
[72]). The property requires (ideally a large) diversity in network states that is the
result of differences in inputs alone, allowing characteristic features to be identified
in the input, and that any changes in state should not directly be a result of chaotic
dynamics which could produce the same phenomena. As such, this property enables
a readout function to respond effectively to any variation in the inputs.

Legenstein and Maass [63] propose two critical elements that characterise the
computational capabilities of a complex dynamical system (cortical neural microcir-
cuits in this case). These newmeasures, or properties, are proposed becauseLyapunov
exponents are only useful for analysing a systems dynamics, and are not necessarily
helpful in predicting good parameter regions that create high computational perfor-
mance. These measures are the kernel-quality and the generalisation-capability. The
kernel-quality refers to the linear separation property found in kernels (Sect. 22.4.3).
An empirical measure of this property is achieved by examining the complexity of
functions that can be carried out on the inputs that boost the classification power of a
subsequent linear layer. The generalisation-capability quantifies a system’s capability
to generalise any learned behaviour to a new input.

Boedecker et al. [13] extend these ideas to ESNs, and create a general frame-
work for direct and localised measurements for each neuron. Boedecker et al. give
measurements indicating the memory of each neuron and the transfer of informa-
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tion between each neuron. This work highlights some interesting and relevant points
for all systems: a network does not necessarily need to be at the edge of chaos to
do computation, the measured region where a system is at the edge of chaos is not
universal for all tasks, and a critical state may maximise computational capabilities,
but, such criticality may also be unnecessary or detrimental to certain tasks.

22.4.5 Training Reservoirs

This section describes the training procedure and some of the available techniques
one can use to train both the linear outputs and the reservoir itself. The two meth-
ods for training linear readouts described here are: “off-line” batch-mode training,
using simple linear or ridge regression techniques (done once all reservoir states are
collected into matrix X for training length T ), and “on-line” training, often gradient
descent-based,RecursiveLeast Squares algorithm (a useful extensive investigation of
RLS-type training is shown in [57]). We then describe some pre-processing training
techniques that can be used on the reservoir itself, methods that have been identified
as useful in creating tailored/optimal reservoirs.

There are many training techniques available in this diverse field. Here we just
discuss methods perceived as “classical” training methods. For more examples of
training techniques see [47, 66, 68].

22.4.5.1 Off-Line Training

Reservoirs are traditionally trained in a supervised manner where the temporal input
u(n) and coupled target output ytarget (n) are provided. Given a desired output the
system can learn input-output behaviour by minimising the error (Eq. 22.3) between
system output and desired output.

E(y, ytarget ) =
√

1

T

∑T
t=1(y(n) − ytarget (n))2

σ 2(ytarget (n))
(22.3)

To evaluate if the learned behaviour generalises accordingly, new input data is tested
and the error between the two are again compared.

Reservoir computers are conceptually viewed as recurrent neural networks incor-
porating the three-layered topology of Nx hidden nodes (neurons), Nu inputs and Ny

outputs. As discussed in Sect. 22.4.2, variations on how these are implemented are
also possible, but, essentially the system still adheres to the same structural layers.

The general update state equations for most systems are defined in Eqs. (22.4) and
(22.5) for, discrete time n = 1, . . . , T , internal state x(n) and output y(n):

x(n) = f (Winu(n) + Wx(n − 1) + W f by(n − 1) + Wbias) (22.4)
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y(n) = f out (Wout [x(n); u(n)]) (22.5)

The function f is commonly represented by a sigmoid, typically a hyperbolic tan-
gent. In echo state networks this represents a basic tanh neuron, but varies depending
on the application. In other networks, f can be designed to form linear nodes, thresh-
old logic gates or spiking neurons. In regards to the output y(n), f out may also be a
non-linear function (sigmoid) but tends to be identity in most cases.

Theweightmatrices; inputweightsWin ∈ R
Nu×Nx , reservoir/hidden layerweights

W ∈ R
Nx×Nx and feedback weights (from the output to the reservoir, if needed)

W f b ∈ R
Nx×Ny are all drawn randomly from a uniform distribution at creation and

remain static. The output weight matrix Wout ∈ R
Ny×(Nx+Nu) includes weights for

the inputs as they act as additional states (hence the concatenation of [x(n); u(n)]).
Typically, the W matrix forms a sparse network with many of the weights set to
zero, the other Win and W f b matrices can either be dense or sparse. Additional
scaling parameters might also be applied to the matrices to govern properties such
as non-linearity, stability and global dynamics. Techniques that can optimise/adapt
each matrix (on-line or pre-processing) will be discussed later in the section.

The bias Wbias can be used to counteract training issues and large weights by
adding noise, acting as a regularisation parameter, or to push the tanh neuron to a
particular state, creating a smoothing effect.

Applying feedbackW f b can be useful, or detrimental, to certain tasks. Some tasks
might not be learnt to a reasonable degree without feedback, or, certain systems may
require dynamics beyond what is supplied by the driven input to construct a suitable
output. Adding feedback comes with its own risks, feedback will ultimately change
the stability of the system and requires adaptations in the training procedure. It is
often advised only to use feedback when necessary. For more information see [66].

The off-line technique is completed in one training cycle T after the system has
computed all states for the given inputs. It provides a very fast training mechanism
as it essentially computes a linear model given by the known output Y , collected
reservoir states X and desired output Y target :

Y = Wout X (22.6)

The collected statematrix X ∈ R
Nx xT is createdwhen the input u(n) is run through

the reservoir states x(n). To avoid initial transients created by an initial zero state
x(0), a section at the beginning of the training sequence is discarded in the state
matrix X . Essentially, the system goes through a “warming-up” process where states
bounce around rather than returning to the equilibrium output, i.e. the system is too
chaotic to retrieve any useful information about the input.

Given Eq. (22.6), we can find the optimal weights that minimise the error between
y(n) and ytarget (n) by solving the overdetermined system:

Y target = Wout X (22.7)
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Equation (22.7) can be solved for Wout using linear regression. The simplest
method is to use Ordinary Least-Squares (Eq.22.8), but typically this method suc-
cumbs to stability issues when inverting (XXT ).

Wout = Y target XT (XXT )−1 (22.8)

Lukoševičius [66] recommends using either ridge regression (regression with
Tikhonov regularisation β) (Eq.22.9) or the Moore–Penrose pseudo-inverse
(Eq.22.10). Ridge regression is a stable and effective solution and is generally
advised. Adding a regularisation parameter counteracts the problems of producing
very large outputweights, which often indicates very sensitive and unstable solutions.

Wout = Y target XT (XXT + β I )−1 (22.9)

where I is the identity matrix and β the regularisation parameter.
Setting β = 0 gives the same method for solving linear regression in Eq. (22.8).

It is therefore recommended to use a logarithmic scale for selecting β where it never
reaches zero [68].

The pseudo-inverse is applied in some cases typically because it is straightforward
to implement in certain programming environments (e.g. MATLAB). However this
comes at a price. The pseudo-inverse method is computationally expensive for large
matrices of X and typically overdetermined. However, in most cases the network is
made up of relatively small matrices and over-fitting depends on the difficulty of the
task.

Wout = Y target X+ (22.10)

22.4.5.2 On-Line Training

Some tasks require an on-line training method that adapts with time, minimising the
error at each time step. This implicitly turns Wout into an adaptive linear combiner.
The Recursive Least Squares (RLS) algorithm (Eq.22.11) ismore commonly applied
as it overcomes the severely impaired convergence performance of the Least Means
Square (LMS) algorithm [46].

E(y, ytarget , n) = 1

Ny

Ny∑
i=1

n∑
j=1

λn− j (yi ( j) − ytargeti ( j))2 (22.11)

Using RLS comes at a cost: the number of weights is quadratic rather than linear,
and it can still be numerically unstable in some cases.Other powerful on-linemethods
may be useful to a practitioner, particularly in the presence of feedback connections,
such as Backpropagation-Decorrelation (BPDC) [105].
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The RLS training procedure is described here, derived from [25]. First, set the
error forgetting parameter λ close to but less than one; the forgetting parameter
controls the contribution of previous samples. Next, initialise the autocorrelation
matrix ρ(0) = I/δ, with δ being a small constant and I the identity matrix. At each
time step compute the output weights using the following steps:

Step 1: Calculate the reservoir state x(n) and output signal y(n) for input u(n).
Step 2: Calculate the error between target output ytarget (n) and system output

given previous output weights:

e(n) = ytarget (n) − Wout (n − 1)x(n) (22.12)

Step 3: Update the gain vector K (n):

K (n) = ρ(n − 1)x(n)

λ + xT (n) ρ(n − 1)x(n)
(22.13)

Step 4: Update the autocorrelation matrix ρ(n):

ρ(n) = 1

λ
[ρ(n − 1) − K (n)xT (n) ρ(n − 1)] (22.14)

Step 5: Assign new output weights Wout (n) using (22.12) and (22.13):

Wout (n) = Wout (n − 1) + K (n)e(n) (22.15)

For more readout training methods including feedback training (such as FORCE
training), supervised, unsupervised, reinforcement learning, etc. consult the excellent
review [68] and practical aid [66].

22.4.5.3 Adaptation and Pre-training

Adaptive reservoirs, ones that change weights or configuration, are inspired by nat-
ural adaptation in biological neurons. These adaptive processes are the result of
persistent changes in a neuron’s electrical properties, governed by unsupervised
local adaptation rules often referred to as Intrinsic Plasticity (IP). These rules repre-
sent a homeostatic mechanism in which neurons self-modify their intrinsic activity
(i.e. excitability). Using such learning rules has shown to increase robustness and
performance when pre-training reservoirs [96, 106]. For an overview of recent inves-
tigations including both local and global adaptation schemes, see [67, 68].

In classical RC, reservoirs are generated randomly, hence the performance of each
reservoir varies on creation. Reservoir computing boasts its training performance on
the separation between the reservoir and readout. The readout training, at its core, is
quite inexpensive, allowing the possibility of other formsof reservoirpre-training, i.e.
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generating reservoirs deterministically for each task. Even a crude experiment such
as selecting a reservoir which produces the smallest error from a pool of randomly-
created reservoirs highlights the advantages of pre-training. Evolutionary algorithms
are a potential search strategy for pre-training.

Investigations using evolutionary optimisation for pre-training are well docu-
mented. Many strategies have been attempted, including evolving topologies (i.e.
network size), weight matrices (such asWin,W,W f b), global parameters (e.g. spec-
tral radius), connection density, adapting slopes of the activation function f (.) and
even training wout when no target signal is available. Other interesting methods
include EvoLino—evolving hidden connections to gradient-based long-short term
memory (LSTM) RNNs [91] and using Neuro-Evolution of Augmented Topologies
(NEAT) as a meta-search algorithm for evolving ESNs [20] (the “related work”
section also discusses other neuro-evolution methods for constructing ESNs). All of
these methods have shown great potential, highlighting the performance increases
and optimisations reservoir pre-training can create for specific tasks. Pre-training
and adaptation appears to be one of many key branches under investigation in the
field of reservoir computing.

22.5 Modelling Materials with Reservoir Computing

Any high-dimensional dynamical systemwith an observable state x(n) that is a result
of input u(n) could form the basis of a reservoir according to [68]. This implies
that any material that can exhibit sufficient dynamics and a fading memory could
therefore, theoretically, be adopted as a reservoir.

Given that reservoir computing is based on artificial recurrent neural networks, one
implementation route would be to design hardware substrates modelled on simplified
neural network-like structures, e.g. large coupled networks of non-linear elements
with varying densities of connectivity. Using this structural model, semi-isolated
regions of activity may form exploitable meta-states for the trainable readout. Var-
ious implementations of hardware-based artificial neural networks have existed for
some time; see [77] for a review of HNNs. More recently, there has been increased
popularity towards applying memristive components to neuromorphic circuits, see
[58] (a review CMOS/memristor hybrids) and [101].

Kulkarni and Teuscher [59], among others, have examined and demonstrated
reservoir networks built from memristor devices. Memristors appear to be ideal
components for building reservoirs: they exhibit non-linear properties and maintain
amemory of previous inputs. In theKulkarni andTeuscher experiment, simulated cir-
cuits are randomly-created from networks of memristors, then a subsequent readout
layer is trained using a genetic algorithm to solve some computational task. Other
simulated memristor reservoirs include: simple-cycle reservoirs [16] i.e. memris-
tive networks that form nodes instead of analogue neurons (see [88]), training more
realistic volatile memristor models [19], and variation-tolerant reservoirs [17].
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Fabricating random, highly-interconnected networks and devices from nanoscale
switching elements is a challenging task. At these scales, features of self-assembly
and self-organisation are essential: characteristics that might only be achievable
through unconventional methods and materials. Konkoli and Wendin [55] provide a
brief review of some non-CMOS devices and discuss the suitability of the RC model
on such unconventional devices. These devices include, molecular electronic net-
works, memristor networks, and other substrates outlined as part of the SYMONE
project [122]. At present, the SYMONE project is investigating networks of organic
transistors (NOMFETs) and self-assemblednetworks of gold nanoparticles that could
feature functionalised memristive junctions [55].

Two examples that demonstrate physical, in-materio reservoir computing systems
are silicon-based photonic chips (based on nanophotonic crystal cavities) [29, 117],
and Atomic Switch Networks (ASNs) [103, 112, 113].

The photonics chip primarily exploits the propagation of light through silicon.
Inside these chips are photonic crystals that remove the propagation of certain fre-
quencies of light, known as the band gap. Adding a line defect to a crystal produces
a photonic crystal waveguide, effectively a process by which light is forced between
the defect. Cavities are then created along the line defect to create an optical “res-
onator” which traps light, increasing the power inside the resonator. These resonators
then form a optical reservoir which can be trained and manipulated using different
types of readouts, e.g. [117] creates a linear system, and the non-linearity is added at
the readout through the inherent non-linearity of the measuring equipment. Methods
such as this propose an interesting optical alternative to hardware-based reservoir
computing.

The atomic switch network approach focuses on the electrical and chemical prop-
erties of a material. These networks attempt to mimic the vast complexity, emer-
gent dynamics, and connectivity of the brain. Highly-interconnected networks are
constructed by bottom-up self-assembly of silver nanowires. Through a triggered
electro-chemical reaction, coated copper seed nucleation sites spawn large quanti-
ties of silver nanowires of various lengths, from nano- to millimetre scale. Large
random networks are formed, creating crossbar-like junctions between nanowires,
andwhen exposed to gaseous sulphur create Ag|Ag2S|Ag nanoscalemetal-insulator-
metal (MIM) junctions. Applying external activation (a bias voltage) to these junc-
tions creates a temporary resistance drop, leading to functional memristive junctions
called Atomic Switches. Applying this construction and functionalisation process
the ASN method offers some unique properties, such as scalability and practicality
in creating highly-complex nanoscale substrates.

The emergent behaviour and dynamics of ASNs can be observed through fluctu-
ations in network conductivity, a result of spontaneous switching between discrete
metastable resistance states, where locally excited regions cause cascading changes
in resistance throughout the system. As such, the non-linear responses to resistive
switching are reported to result in higher harmonic generation (HHG), also suggested
as a useful measure for quantitatively evaluating reservoir dynamics [103].

A clear advantage of the ASN technique is that it allows some degree of regu-
lation in fabrication and further control through “resistance control” training [113].
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For example, varying the parameters of the nucleation sites (copper seeds) can alter
the network structure and therefore the substrates dynamics. The relative size, num-
bers and pitch of copper seeds can determine the length of wires, forming distant
connections or confining spatial regions to dendrite-like structures, thus ultimately
defining the density of connections [103].

ASNs appear to be natural candidates for reservoir computing, producing a high-
dimensional recurrent network that does not require the manipulation of individual
elements. ASNs have been applied to one derived RC task; the waveform genera-
tion task [103, 113]. This is a simple analogue task which measures a reservoir’s
ability to construct a desired output waveform from an independent input waveform
using network generated harmonics. For example, given an input sine-wave, can a
trained reservoir construct a sawtooth, square-wave, or any other periodic function
at the output (essentially a Fourier series task using harmonic analysis). These initial
experiments have proven ASNs to be capable reservoirs and has also highlighted
HHG as a potential metric for evaluating reservoir properties.

22.6 Evaluating the Characteristics of Reservoirs

Creating a random reservoir (in simulation at least) is fairly straightforward, but
designing one with the right properties, using the large parameter space available, is
a challenging task. In many cases parameter selection is done by hand, through trial
and error, and with expert knowledge of the desired characteristics. So how can we
better understand and evaluate reservoirs?

One approach is to simplify its construction. In doing so, one could provide amore
theoretical understanding of whatmakes reservoirs useful/successful. Reference [88]
explores this idea by addressing three issues: (i) what is the minimal complexity of
topology and parameters that produce comparable performance to standard models?
(ii) what degree of randomness is needed to construct competitive reservoirs? and
(iii) how do completely deterministic reservoirs compare? These are good questions
for understanding underlying RC principles, but may be impractical to investigate
given an already created (maybe static) physical substrate. Instead, we desire more
experimental quantitative measures that individually describe the reservoir and its
qualities as an efficient kernel.

Determining, or evaluating, reservoir quality and performance can be achieved in
two ways, either through direct measurement of performance on a given task, or by
cumulatively assessing individual properties of the reservoir. Using the latter method
provides a mechanism in which performance could be partly predicted for any task.
As [82] explains, a good reservoir that scores well in all properties may be able to
facilitate the process of “learning transfer”, where the reservoir can be trained to
some objective function that will increase its capability without seeing any output
task. The objective function, in the mentioned case, measures how well a reservoir
(an LSM) separates different classes of inputs into different reservoir states. As such,
it was shown that improving separability and instilling an adaptive balance between
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chaotic and ordered behaviour (through changes in structure) a reservoir can increase
its performance across different artificial problems.

In this section we discuss some of the measures proposed in the reservoir com-
puting literature, accompanied by a variety of different benchmark tasks used to
assess performance. Such measures and benchmarks may be an effective method for
evaluating the potential of substrate-based reservoirs.

22.6.1 Kernel Quality and Separation

22.6.1.1 Kernel Quality

Kernel quality evaluates a reservoir’s ability to produce diverse and complex map-
pings (functions) of the input stream u that can consequently increase the classifica-
tion performance of a linear decision-hyperplane [62].

Kernel quality, also known as the linear separation property, was first introduced
by Legenstein and Maass [62], along with an accompanying metric referred to as
the generalisation capability of a reservoir. The two properties are closely coupled
and can be measured using a similar ranking mechanism. The first, kernel quality,
measures a reservoir’s ability to produce diverse reservoir states given significantly
different input streams. The second measures the reservoir’s capability to generalise
given similar input streams with respect to a target function. Both measurements
can be carried out using the method in [18], by computing the rank r of an n × m
matrix M , with the two methods differing only in the selection of m input streams
ui , . . . , um , i.e. input streams being largely different or of similar type/class.

The rank is assessed as follows; Given the input stream ui the reservoir state
vector xui of length n is collected to form each column in the matrix M . The rank r
of each matrix is then estimated by Singular Value Decomposition (SVD). Büsing
et al. [18] explains that a good reservoir should possess a high kernel quality and
a low generalisation rank, and also identify a correlation in the measurement to
the reservoir’s dynamics. For example, reservoirs in ordered regimes produce low
ranking values in both measures, and in chaotic regimes produces high values in
both measures. A similar connection is also observed in [21], where the Lyapunov
exponent and the kernel quality strongly correlate.

22.6.1.2 Class Separation

Class separation is a metric that corresponds directly to different classes of input
stimuli. Demonstrations of class separation can be found in [21, 31, 82]. Separation
is measured as the average distance between resulting states, once again, given the
assumption that significantly different inputs should generate significantly different
reservoir states. To calculate separation requires the division of the input and state
vectors into discrete classes; [31] provides an alternative measure characterised on
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the original assumption. For example, given two different input vectors u j (n) and
uk(n) the euclidean distance between inputs should be large and positive, as described
by D:

D := ‖u j (n) − uk(n)‖ (22.16)

If the reservoir exhibits a good separation property the reservoir states (x j (n) and
xk(n)) should increase in distance, or be equal to the original distance:

D ≤ ‖x j (n) − xk(n)‖ (22.17)

which can be represented as the ratio:

‖x j (n) − xk(n)‖
‖u j (n) − uk(n)‖ ≥ 1 (22.18)

This simplified measure has been extended [31] into Separation Ratio Graphs to
produce a visual representation of separation and the phase transition of correlated
dynamic behaviour (see Fig. 22.6).

Konkoli and Wendin [55] offer another comparable method for identifying reser-
voir quality in memristor networks. This metric is again based on the assumption
that quality can be measured by observing the reservoir’s ability to generate different
dynamic states at the output. In this case, it is observed bymeasuring the dissimilarity
between output states and a linear combination of the inputs, i.e. determining if the
non-linear frequency response of a network cannot be approximated by a linear mix-
ture of delayed inputs. Dissimilarity is measured in the Fourier space (ω) between
outputs o(n) and a linear combination of the time shifted inputs z(n), given by:

Fig. 22.6 Separation Ratio
Graph [31]. Graphical
representation of the phase
transition between chaos and
order. Systems in the target
zone are said to possess both
a good separation property
and ideal dynamic behaviour
to produce optimal reservoirs
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δ = ‖ o(ω) − z(ω)‖
‖o(ω)‖ (22.19)

A large dissimilarity (large δ) is ideal in a reservoir as it describes a complex projec-
tion of the input. A small δ on the other handmay simply describe a linear propagation
of the input, highlighting the absence of richness in the reservoir.

22.6.2 Quantifying Dynamics

Producing a reservoir with rich dynamics is evidently desirable, but how can we
quantify dynamical behaviour? how can we pin-point the critical region at the edge
of chaos? In the literature, there are several prominent themes in classifying and
measuring dynamics, including observation of trajectories and attractor behaviour,
internal scaling of input-driven activity, memory and retention, and higher-harmonic
generation, particularly in reservoirs comprising resistive switches.

22.6.2.1 Spectral Radius

In Echo State Networks, the spectral radius ρ(.) (the largest absolute eigenvalue)
of the internal weight matrix W is used to determine and control reservoir dynam-
ics [44]. The parameter ρ globally scales the internal weights, moving the system
between different regimes, altering the non-linearity and impulse response of the
reservoir. Effectively, the scaling parameter alters the internal time-scales of the
system, providing the echo state property.

Parameter selection of the spectral radius is typically centred around a value of
one; smaller than one is attributed to a stable regime (a fading response to input
stimuli), if larger than one, a system will typically be unstable, causing undesirable
interference to new inputs.

22.6.2.2 Lyapunov Exponents

A popular measurement for criticality, or chaotic behaviour, in a reservoir is the
empirical estimation of the Lyapunov exponents (LE) for a dynamical system [11,
21, 31, 63, 118]. To calculate the Lyapunov Exponents, and quantify a system’s
criticality, we measure the divergence between two close trajectories due to some
small perturbation. For example, if an orbit is close to an attractor, in an ordered phase,
small changes should dissipate over time. In a chaotic phase, an applied change will
diverge exponentially from an orbit, persisting or increasing over time.

Gibbons [31] provides a simple approximation of the largest (maximal) Lyapunov
exponent (derived from [89]), as the largest tends to dominate. Various formats and
interpretations exist in calculating different Lyapunov Exponents due to different
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approximation methods (see [51, 63, 118]). For example, Verstraeten et al. [118]
examines the local Lyapunov spectrum and the Jacobian of the reservoir, suggesting
performance can be better predicted by the maximum of the minimal Lyapunov
Exponent. Boedecker et al. [13] takes a similar approach to Gibbons, estimating the
mean exponential rate of divergence of the trajectories for an n-dimensional phase
space.

A system with a maximal Lyapunov exponent λ ≈ 0 is somewhere near the edge
of chaos. A chaotic system is present at λ > 0 and an ordered, or sub-critical, system
at λ < 0.

Another suggested measure of criticality is the measure of instantaneous entropy
of reservoir states, defined as theaverage state entropy (ASE) in [85].ApplyingRényi
quadratic entropy, one can measure the distribution of instantaneous amplitudes in
reservoir states, providing some measure of the “richness” of dynamics. The entropy
measurement is associatedwith an expectation that increased diversity of amplitudes,
i.e. increased spread of amplitudes away from some concentrated point, will increase
the readout’s ability construct the desired response.

22.6.2.3 Memory Capacity

Measuring the short-termmemory capacity of a reservoir was first outlined by Jaeger
[45] as a quantitative measurement to observe the echo state property (fading mem-
ory). To determine the memory capacity of a reservoir we simply measure howmany
delayed versions of the input u(n − k) the outputs can recall or recover with preci-
sion. As Jaeger describes, using the equation in (22.20), we can measure memory
capacity by how much variance of the delayed input can be recovered, summed over
all delays [45]. This is carried out by training individual output units to recall the
input at time k with the maximum capacity MC of an N node reservoir typically
bounded by its size, i.e. MC ≤ N .

MC =
∞∑
k=1

MCk =
∞∑
k=1

cov2(u(n − k), y(n))

σ 2(u(n))σ 2(y(n))
(22.20)

This measurement has direct connection to the dynamic behaviour of a system.
It can be helpful in identifying the boundaries between static structure that provides
memory, and the point of complex dynamics that gives us processing. As such, one
might expect a chaotic system to lose information regarding previous inputs at a
faster rate and a more ordered regime to increase (to some extent) input retention.

22.6.2.4 Harmonic Generation

The generation of higher harmonics in Atomic Switch Networks has been iden-
tified as a technique for examining emergent behaviour and network connectivity
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[103, 113]. In ASNs, higher harmonic generation (HHG) is attributed to the non-
linear frequency response of the system due to both input amplitude and mem-
ristive “hard” switching behaviour. To examine HHG, one can plot the frequency
response of the system, which can be used to identify connectivity and system
dynamics, i.e. changes in network response (an on-set of HHG) is typically due to
an increase in “hard” switching memristive connections past a percolation threshold
[103]).

22.6.3 Evaluation Through Benchmark Tasks

As ameans of direct assessment, we canmeasure performance of reservoirs and their
subsequent readouts by applying them to specific tasks. Reservoir computing (and
neural networks as awhole) possesses an abundance of benchmark tasks, from simple
classification and time-series prediction to robot navigation [5, 25] and non-linear
channel equalisation [87, 88].

In this section we discuss benchmark tasks that are the most prevalent in the
reservoir computing literature.

22.6.3.1 Waveform Generation

This task requires a rich transformation of a temporal input waveform (a periodic
signal) to create an entirely new waveform. It is based on Sillin et al. [103]’s phys-
ical adaptation of Jaeger’s [47] sine-wave generator task and is linked directly to
Fourier series/analysis. The task is to train the system to produce three different
waveforms, given an input sine wave. In [103, 113], this is achieved by applying a
10Hz input sine-wave (at one electrode in the ASN) to produce a 10Hz square-wave,
and sawtooth, and a 20Hz sine-wave at the output (y(n)), via the combination of
other weighted electrode readings (e.g. recorded states x(n)). The task is said to
be an excellent precursor to testing potential reservoir substrates on more difficult
temporal problems [103], as it highlights an abundance of temporal features (phase
shifts, delays, harmonic generation, recurrence etc.).

A similar task is the continuous-time multiple superimposed oscillator (MSO)
task. In this benchmark, the reservoir’s role is to predict the evolution of, and generate
a superposition of, two or more sinusoidal waves with different frequencies.

s(t) = sin(ω1t) + sin(ω2t) (22.21)

whereω1 = 0.2 andω2 = 0.311. The task has been demonstrated in photonics exper-
iments [29] and other non-traditional reservoirs [107].
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22.6.3.2 Time-Series Prediction and Generation

Two prominent benchmark tasks in reservoir computing are Non-linear Auto-
regressiveMovingAverage (NARMA)dynamical systemmodelling and theMackey–
Glass chaotic time-series prediction task.

The NARMA task originates from Atiya and Parlos [8]’s work on training recur-
rent network; its goal is to evaluate a reservoir’s ability to model an nth order, highly
non-linear dynamical system where the system state depends on the incoming input
as well as its own history. The challenging aspect of the NARMA task is that it
contains long-term dependencies created by the nth order time-lag. Typically, the
benchmark is carried out on 10th and 30th ordered systems [6, 46, 47, 106].

A description of the 10th ordered task is as follows; Given white noise u(n) from
a uniform distribution of interval [0, 0.5], the reservoir should predict an output y(n)

close to the target y(n + 1), calculated by:

y(n + 1) = 0.3y(n) + 0.05y(n)

( 9∑
i=0

y(n − i)

)
+ 1.5u(n − 9)u(n) + 0.1

(22.22)
Mackey–Glass chaotic time-series prediction is another common benchmark,

where the system is trained to predict one time-step into the future (for examples see
[44, 49, 118]).

The system is described by the Mackey–Glass delay differential equation:

ẏ(n) = αy(n − τ)/(1 + y(n − τ)β) − γ y(n) (22.23)

As [44] explains, parameters for the MG task are typically set to α = 0.2, β = 10
and γ = 0.1 with the parameter τ set to 17 to produce a mildly chaotic attractor: the
system has a chaotic attractor for τ > 16.8.

Other time-series prediction benchmarks are summarised in [88], including pre-
dicting laser activations in the Santa Fe Laser dataset (originally used in [50]), pre-
dicted next output in the Hénon Map dataset, and IPIX Radar and Sunspot series
datasets.

22.6.3.3 Classification Tasks

Simple classification problems are wide and varied in the field of machine learning,
some of which can be seen in both the RC and EIM literature. For example, typical
tasks for EIM are tone and frequency discriminators, and Iris and Lenses dataset
classification [38, 78, 80]. Examples in reservoir computing include, signal classifi-
cation (discriminating between two waveforms) [87], various n-bit parity problems
[11, 25, 94, 97] and other time-independent classification tasks [4].

Possibly the most adopted classification task in RC involves the recognition of
isolated digits from multiple speakers [61, 87, 88, 93, 96, 119, 120]. Taken from a
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subset of the T146 speech corpus dataset, the task uses a total of 500 speech fragments
collected from five different participants listing the digits zero to nine (repeated
ten times). The reservoir interprets these speech fragments through a preprocessing
filter in the form of a digital model of the human cochlea. Linear classifiers are then
trained to be sensitive to individual digits, with a final classification being made on
the temporal mean of the output. Performance on the task is measured using cross-
validation by calculating the number of misclassified digits using the Word Error
Rate (WER).

Reservoir computing is said to be very competitive to, or outperform, many of the
state-of-the-art approaches on these tasks.

22.6.4 Material Properties and Considerations

In order to perform material computation we require some ability to manipulate and
control certain aspects of physical structure and behaviour. To observe such effects
requires a means of observation and measurement. In the two examples presented
(ASNs and EIM), we have discussed one method by which this can be achieved,
through the application and recording of electrical voltages to amicro-electrode array.
There are other possible methods, for example: optical stimulus/measurement and
other stimuli across the electromagnetic spectrum (e.g. optoelectronic and photonic
reservoirs); image recognition for observation (e.g. a method also used in Fernando
and Sojakka [28]’s bucket of water); control and observation through magnetic fields
(e.g. manipulating ionised gases or observing nuclear magnetic resonance (NMR)
[108]); chemical excitation and reaction (e.g. reaction-diffusion computers and slime
mould [1, 2]).

There are many physical properties and considerations that require discussion
when talking about using any novel material for computation. Here we focus on four
key factors that possess some relevance to substrate-based reservoirs: (i) a means
by which to observe network connectivity and activity, (ii) assuring non-linearity is
present in the system, (iii) methods for modelling activity and behaviour, and (iv)
the impact of environmental factors.

22.6.4.1 Network Connectivity and Activity

The computational capability of a material is often directly related to conductivity
and the density of connections inside it. Variations in these concentrations can have
an adverse or favourable effect on conductivity and task performance. For example, to
optimise anASNone can control the densities of silver nanowires [103].Massey et al.
[74] identify a similar relationship, where nanotube concentration directly alters the
conductivity and computational performance of SWCNT/PBMA composites.

How can we measure connectivity in materials and analyse distributed activity?
One possible method is demonstrated in [112], where ultra-sensitive infra-red (IR)
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Fig. 22.7 Infrared image of carbon nanotube/polymer mixture. Infrared has been identified as a
useful method for observing current flow and local regions of activity in both EIM and ASNs [73]

imaging is used to help identify network conductivity and behaviour in ASNs. IR
imaging was used to observe and measure possible dominant conductive pathways
and identify the activity of local regions to stimulus by thermal emission. Similar
experiments have also been carried out on carbon nanotube/polymer substrateswithin
the NASCENCE project (see Fig. 22.7).

Other forms of network observation include: observation of power-law scaling
in the power spectral density [103], optical microscopy such as examining struc-
ture through an optical microscope (an example can be seen in Fig. 22.8 with a
SWCNT/LC substrate), electron microscopy and scanning-probe microscopy such
as scanning electron microscopy (SEM) [32] and scanning-force microscopy (SFM)
[14], observing current flow in polymer substrates by electron-beam-induced-current
(EBIC) [37], investigating structural properties using Fourier transform infrared and
Raman spectroscopy (FTIR) (a method used to observe the interaction of molecules
in liquid crystal/SWCNT composites in [121]), and other absorption and emission
spectroscopy techniques [99].

22.6.4.2 Non-linearity

Non-linearity within a material can be measured through current-voltage (I-V) char-
acteristics. In ASNs, non-linearity is observed by the presence of pinched hysteresis
curves as a function of input amplitude (produced by applying slow voltage sweeps).
This non-linear I-V characteristic is said to be the result of changing switch behaviour
(in this case towards a “hard-switching” regime) and increased harmonic generation
[103].
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Fig. 22.8 Image of SWCNT/LC behaviour to voltage stimulus, observed through a microscope.
Observation at this scale shows detail in the complexity of local interactions and carbon nanotube
alignment to electric fields [73]

Similar I-V measurements have also been used in both SWCNT/PBMA and
SWCNT/LC composites proposed in the NASCENCE project [74, 121].

22.6.4.3 Modelling

Simulating the internal properties of specific materials would be desirable, but it is
typically impractical to create an exact representation of one individual material.
Instead, we could use an abstraction, a model, of what the material is doing. Some
methods that model specific features of the system, and others that are potential
accompaniments to the reservoir model, include: the modelling of electron transport
using a Monte Carlo approach, percolation visualisation for electrode pathways,
Voronoi diagrams for visualising electrode activity [102], Volterra series andWiener
series models, using Random Boolean Networks as a model, abstract neural net-
works for modelling global activity, NARMAX (non-linear autoregressive moving
average model with exogenous inputs) modelling, and using Cellular Automata as a
reservoir/substrate model [83, 84].

22.6.4.4 Environment and Noise

The local environment, thermal noise, other noise related fluctuations and quantum
effects are tangible concerns in the physical domain. Sensitive systems require good
isolation and compensation techniques to reduce the effects of both internal and
external noise. Effectively, the systems susceptibility to noise will determine its
robustness and adaptability. In many cases, noise and unwanted variability could be
filtered using conventional techniques, but requires some care in implementation (i.e.
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does not impede on the boundaries of the system or unduly affect what is doing the
computation). Evolution-in-materio on the other hand has been found to exploit such
external influences. Using an evolutionary search in physical systems has shown an
uncanny ability to utilise strange characteristics that are clearly attributed to external
influences. For example, Bird and Layzell [12]’s evolvable motherboard was directly
influenced by local laboratory equipment in producing evolved oscillators.

22.7 Feedback Design: Designing Substrates to Be Good
Reservoirs

Beyond simply applying the reservoir model, could we utilise some of its highlighted
features to aid in the design of in materio systems?

Often the difficulty in designing and engineering computational substrates is
knowing what range of features are necessary, or even exploitable. Some aspects of
the physical system are unknown. There are clearly some attributes that are desirable
(for evolution at least): reconfigurable, input-driven, reproducible, some stability,
etc. Can we use known computational phenomena from reservoir computing to help
reduce the search space of suitable materials? Could the abstract model guide mate-
rial design, and in return, serve to create a more realistic and efficient model? This
could create a virtuous feedback-loop in design, where new novel materials can be
evaluated for computational capability and reservoir quality.

Going further, could multiple smaller reservoirs reproduce the overall dynamics
of a larger network? As stated in [66], a powerful extension of ESN consists of
many small ESNs in parallel, where an averaged output has drastically improved
performance, but, at a price in terms of memory capacity, i.e. fewer nodes typically
equals less memory. Another approach would be to use multiple reservoirs to over-
come hardware limitations, such as the number of electrode contacts available. These
networked reservoirs could, as a by-product, provide increased robustness (further
distributing computation) and added variability in states, i.e. promote a good overall
separation property. Additionally, such systems could be constructed from various
materials, each with different kernel properties and time-scales, allowing a global
weighting system or trainingmethod (possibly backpropagation) to optimally choose
which material to use for certain tasks. Moreover, this could lead to a more generic
reservoir network suitable to multiple tasks.

Hierarchical reservoirs represent an up-and-coming, possibly highly advanta-
geous, avenue worth pursuing [68]. A hierarchical system attempts to overcome
some of difficulties found in classical reservoirs such as scalability, learning com-
plex intelligent tasks and working with multiple time-scales simultaneously. Some
early examples of these architectures can be found in [48] where high-level reservoirs
extract features from low-level ones using a “feature-voting” system. Another can be
seen in a system comprised of decoupled sub-reservoirs with inhibitory connections
[124] where the inhibitory connections predict the activation of sub-reservoirs. Other
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examples include, hierarchically clusteredESNsand the impact substructures haveon
stability [51], increased performance on speech recognition tasks [115] and acoustic
modelling [116], and a hierarchical architecture used for hand-writing recognition
to sort delivery parcels [69].

22.8 Conclusion

We believe that reservoir computing can be used as a stepping stone to modelling
and training the currently somewhat static in structure in-materio systems. Reservoir
computing is considered mostly on the basis that the systems themselves may not be
able to undergo “on-line” training/adaptation (manually or autonomously). Thus, the
material is perceived as an initially-configurable black-box, or a suitably rich kernel,
removed from the final training process.

The reservoir method provides many advantages when dealing with unknown or
intractable properties, but, it is also limited by the complexity of the task it is required
to learn. For example, a good reservoir requires a high-dimensional expansion of the
input that can be exploited by a subsequent readout layer. This implies that for more
complex tasks the reservoirmay require an exponential growth in exploitable features
from an exceptionally large feature space, which itself is potentially impractical, or
at least very difficult to extract useful features from. Harnessing these features then
becomes a significant challenge when implemented in a physical device. Standard
artificial neural networks try to overcome this problem by building the required
non-linear features internally. This is achieved through internal training, which is
traditionally achieved through backpropagation.

To apply backpropagation in a physical system requires a material to contain the
right attributes for internal training andmanipulation, however. A recent example of a
physical system that does use error-backpropagation as a training method is demon-
strated in [42]. The experiment and implementation is carried out on an acoustic
system, using the propagation of sound waves between a speaker and microphone,
and on an electro-optical system, harnessing the reciprocal transmission of light
through an optical circuit. This experiment provides a unique insight into backprop-
agation applied to physical systems and presents a potentially competitive alternative
to digital neural networks.

The research areas discussed in this chapter, if combined, provide a rich avenue to
explore. Reservoir computing presents us with a convenient theoretical model. It also
provides some indication ofwhat properties are required to increase the performance:
the right dynamic criticality, good kernel projection, etc.

Optimisation and pre-training can improve performance in reservoirs, by allowing
a reservoir to be pre-set with some properties that effectively increase the perfor-
mance of themain training process. Evolution as a formof pre-training in the physical
domain may provide a crucial and efficient technique for manipulating/configuring
matter into suitable reservoirs, e.g. through structural alignment/deformation, or cre-
ating rich local regions of varying activity.As is described in theEvolution-in-materio
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doctrine, evolution may be the best practical technique to exploring and exploiting
properties that are currently intractable or hitherto unknown, properties that could
produce the most interesting and competent physical reservoirs.
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66. Lukoševičius, M.: A practical guide to applying echo state networks. In: Neural Networks:
Tricks of the Trade, pp. 659–686. Springer, Heidelberg (2012)

67. Lukoševicius, M., Jaeger, H.: Overview of reservoir recipes. Technical report 11, Jacobs
University Bremen (2007)
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Chapter 23
On Reservoir Computing:
From Mathematical Foundations
to Unconventional Applications

Zoran Konkoli

Abstract In a typical unconventional computation setup the goal is to exploit a given
dynamical system, which cannot be easily adjusted or programmed, for information
processing applications. While one has some intuition of how to use the system, it
is often the case that it is not entirely clear how to achieve this in practice. Reservoir
computing represents a set of approaches that could be useful in such situations. As a
paradigm, reservoir computing harbours enormous technological potential which can
be naturally released in the context of unconventional computation. In this chapter
several key concepts of reservoir computing are reviewed, re-interpreted, and synthe-
sized to aid in realizing the unconventional computation agenda, and to illustratewhat
unconventional computationmight be. Some philosophical approaches are discussed
too, e.g. the strongly related implementation problem. The focus is on understanding
reservoir computing in the classical setup, where a single fixed dynamical system is
used: To this end, mathematical foundations of reservoir computing are presented, in
particular the Stone-Weierstrass approximation theorem, with a mixture of rigor, and
intuitive explanations. To make the synthesis it was crucial to thoroughly analyze
both the differences and similarities between Liquid State Machines and Echo State
Networks, and find a common context insensitive base. The result of the synthesis
is the suggested Reservoir Machine model. The model could be used to analyze
how to build unconventional information processing devices and to understand their
computing capacity.

23.1 Introduction

In a typical information processing setup a reservoir computing device implements
a mapping F from the space of time series input data � to the space of time series
output data �′,
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F : � → �′ (23.1)

The computation is performed in the on-line mode: At each time instance the pre-
viously “seen” time series is “inspected” by the device and an output is assigned.
In signal engineering such an object is referred to as a filter. As the time instance
moves, an input data series is converted into the output data series.

The term “reservoir computing” describes a related set of ideas for performing
computation with non-linear dynamical systems as filters. Surprisingly, despite the
fact that the idea originates from a solid mathematical background, the theory of
reservoir computing is still phenomenological in many ways. There are essentially
two perspectives that emphasize the use of either a class of systems or a single system.
These perspectives are strongly related, and in the literature are often treated as one
concept. This can cause a great deal of confusion since implicit context dependent
assumptions are frequently made. For example, when envisioning applications, one
often assumes the one-system perspective and, yet, when discussing the expressive
power of the same system the other perspective is assumed (without rigorous jus-
tification). This is one of the reasons why the theory of reservoir computing is still
phenomenological.

In the following, the distinction between the two perspectives will be kept explicit.
The one-system setup will be referred as the classical setup of reservoir computing,
since this perspective is often (implicitly) assumed in the literature when applications
are discussed:

A reservoir computer consists of a dynamical system, a reservoir, and an
interface that extracts the information stored in the internal states of the system,
a readout layer. If the configuration space of the system is complex enough,
various inputs to the system can drive the system to different regions of the con-
figuration space, which represents computation. The result of the computation
is extracted by the readout layer.

As a paradigm, reservoir computing addresses the natural question whether and
under which conditions an arbitrary system can be used for advanced information
processing applications. The outcome depends on which choices are available, e.g.
whether it is possible to choose among many systems or, if only one system is avail-
able and how adjustable it actually is. The key foundation of the reservoir computing
field is an insight that this indeed can be done, regardless of the perspective assumed.
If the following conditions are met the reservoir computer could be used to compute
in principle anything1:

1While such machines are expected to be able to implement a broad class of information processing
tasks, they are not Turing universal. There is no obvious way of establishing that such machines
have infinite expressive power, at least not in the strict sense of the word. For example, one would
have to provide a construct to realize a universal Turing machine using reservoir computing. The
abstract concepts such as “the tape” or “the reading head” are not easily realized in this context.



23 On Reservoir Computing: From Mathematical Foundations … 575

The properties that guarantee that the system can be used for reservoir
computing are usually referred to as (i) the separability, (ii) the echo state, and
(iii) the fadingmemory property. Such systemare referred to asgood reservoirs.
Further, the readout layer should possess the (iv) the approximation property.

The goal will be to re-interpret the above requirements by adopting a practical
point of view assuming that the aim is to actually construct a reservoir device from
a given dynamical system. This classical scenario is ubiquitous in unconventional
computation.

The Promise of Reservoir Computing

As a paradigm, reservoir computing might have an enormous technological poten-
tial. Property (iv), the approximation property, might be hard to realize for readout
layer implementations that are not done in-silico. However, properties (i-iii) appear
generic. Many systems might exhibit such behaviors.2 Should this be really true, the
idea of reservoir computing could have enormous practical implications for a range
of information processing technologies.

It is possible that there are many systems that can be used for advanced
information processing in the reservoir computing context, but are simply over-
looked since they have never been studied that way.

However, it is not yet clear whether the field of reservoir computing can live up to
its technological promise. There are two pertaining issues. First, to verify rigorously
whether the system of interest (a reservoir) has properties (i–iii) is a highly non-
trivial task. This is a serious obstacle towards understanding which systems might
be used for reservoir computing. Second, the theory of reservoir computing has not
been developed enough.

The requirements (i–iii) cannot be expressed in clear engineering terms
since they are a direct translation of the related mathematical formulations
which are simply impractical for engineering applications. This is another
reason why the theory of reservoir computing appears phenomenological. It
is necessary to understand and re-interpret the existing reservoir computing
mathematical background to bridge towards the engineering side.

A brute-force strategy for finding suitable reservoir systems is to simply start
checking for every conceivable system whether the properties exist. Eventually, by

2For example, systems with the dynamics that is (a) chaotic-like or input sensitive (to ensure the
separation property), or (b) with some sort of friction or energy dissipation (to ensure the echo state
or equivalently the fading memory property).
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studying many such systems one should be able to generalize and gain an under-
standing of which systems might have such properties. The main problem with the
strategy is that it is in general very hard to judge whether an arbitrary system has
indeed the required properties. There are several reasons for that. From the strict
mathematical point it is possible to rigorously define when the system possess the
separation property. However, despite the presence of the mathematical rigor, the
validity check is not straight forward since there is simply no universal procedure
for performing the check in practice. Further, when engineering reservoir comput-
ing systems, one can ask: how much should the system separate inputs? Is there a
tolerance range (a resolution) which is acceptable? In general, the issues related to
accuracy, tolerance to damage or noise, have not been extensively addressed in the
reservoir computing literature.

The goal of this chapter is to provide the necessary overview of key mathematical
concepts, and take them as a starting point to develop a suitable theory and the
related strategies for building reservoir computing systems, which could provide
some generic guidance for the related engineering efforts. Several practical principles
will be discussed throughout the text. The text is organized as follows.

• A brief history of reservoir computing is presented in Sect. 23.2, together with
some key mathematical concepts. The section contains a discussion about the two
most common up to date implementations of the idea: Liquid State Machines and
Echo State Networks.

• Section23.3 contains the definition of the Reservoir Machine concept. The defin-
ition is a mathematical formalisation of what reservoir computing in the classical
setup is. The relatedmathematical concepts serve as the foundation for the analysis
in the sections that follow.

• The technological promise of reservoir computing is discussed in two subsequent
Sects. 23.4 and 23.5, each inspired by two different perspectives:

– Section23.4 contains a discussion on the relationship between reservoir com-
puting and philosophy of computation, and in particular the implementation
problem.

– Section23.5 analyzes the mathematical foundation of reservoir computing, the
Stone-Weierstrass approximation theorem. This section contains a formal math-
ematical background that is necessary for understanding reservoir computing
on one hand, and understanding how to build reservoir computers on the other.
The section also contains some examples of how the theorem can be used.

• Section23.6 contains a discussion of how the technological potential of reservoir
computing could be realized in practice. It contains a set of practical guidelines
that, if adhered to, could enable us to build powerful reservoir computers.

• The concluding Sect. 23.7 contains a brief discussion of several key theoretical
concepts that one should learn to command (understanding, implementation, and
exploitation). If we are able to do that, the “prophecy” of reservoir computing
might be fulfilled.
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23.2 A Brief History of Reservoir Computing

Reservoir computing was independently suggested in [1, 2] and [3–5]: These studies
introduced the concepts of Liquid State Machines (LSMs) and Echo State Networks
(ESNs) respectively. Both focused on explaining some specific features of neural
network dynamics. TheLSMandESNconceptswere further developed and exploited
thereafter, e.g. as discussed in the reviews [6, 7].

After being initially suggested, the concept has been exploited in a range of appli-
cations. The web-site [8] dedicated to reservoir computing contains an excessive list
of references. Since this book chapter is not a review paper the reader is directed
to these sources for additional information. To illustrate the flexibility of the con-
cept, a few more recent examples that exploit different reservoirs can be mentioned:
reservoirs made of memristor networks have been considered in for pattern recogni-
tion [9, 10] or harmonics generation [11], photonic systems as reservoirs have been
discussed in [12–14], etc. For a more detailed discussion on various reservoirs that
have been considered please see [15] and references therein. The field seems to be
exploding and reviewing all possibilities that have been investigated in the literature
is out of the scope of this book chapter.

Surprisingly, since the original publications, three are very few studies that address
the fundamental (conceptual) side of the problem. For example, one might wonder,
what are the limits of reservoir computing? or what is the computing capacity of such
devices? and ultimately, how to increase it? A few examples of such studies can be
found in [12, 16–20] but there seems to be a gap in the literature, as this fundamental
side of the problem is not attracting extensive attention. In particular, there seem to
be a lack of interest in themathematical foundations of reservoir computing, which is
strange given that these play a prominent role in formulating the concept. One of the
goals of this book chapter is to remedy this situation by re-visiting the mathematical
foundations of reservoir computing.

For historical reasons, in the literature, the reservoir computing concept is assumed
to be synonymous with Liquid State Machines and Echo State Networks. Despite
being related, these two models emphasize slightly different perspectives. The LSM
model is formulated for a class of systems, while the ESNmodel emphasizes the clas-
sical (one system) perspective. Both approaches assume a strict separation between
the dynamical system (the reservoir) and the readout layer (the interface), where the
reservoir carries the full burden of computation.

Liquid State Machine(s)

Liquid State Machine is a model of computation with, in principle, the expressive
power of the Turing machine. The expressive power follows directly from the use
of the Stone-Weierstrass approximation theorem and the assumption that there is
whole class of devices (machines) to choose from that implement the assumptions of
the theorem. The Stone-Weierstrass approximation theorem strongly emphasizes the
concept of the algebra of functions. In some sense, the LSMmodel is the most direct
implementation of the Stone-Weierstrass approximation theorem in the context of
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time series information processing. This is exactly the reason why one assumes the
existence of a class of machines (the base filters) that realize an algebra of continuous
filters.

Echo State Network(s)

The echo state network approach strongly adopts the classical perspective of reservoir
computing with a focus on a chosen dynamical system. The concept was suggested
to be able to explain the observation that random networks can be made to perform
computation by using a somewhat “lighter” training procedure. This insight is a result
of numerous numerical investigations of recurrent neural networks. The background
to the echo state network idea is the realization that it is not necessary to train the full
network, but only a smaller part consisting of the outer (interface) layer of neurons.
To train the interface part it is sufficient to use very simple methods, e.g. the linear
regression or similar.

Are These Two Approaches Similar?

In the literature no formal distinction is made between the two approaches, which
might seem rather confusing: Strictly speaking the two perspectives are not identical.
However, there is a deep connection between the two perspectives due to the fact that
a single complex dynamical system can harbor many smaller subsystems. If these
small subsystems are coupled, their dynamics will be also complex. In this way
a single complex system can implicitly represent a class of smaller “mini/micro-
reservoirs”. A typical example is an artificial neural network with many neurons or
groups of neurons.

23.3 One-System Reservoir Computing: Reservoir
Machine

The classical reservoir computing setup, where the goal is exploit a single dynamical
system for computation, can bemathematically formalized as follows. The dynamical
system is normally referred to as a reservoir R. The reservoir needs to be equipped
with a readout layerψ, which is used to probe the states of the reservoir. The reservoir
and the readout layer define a reservoir device.

To be able to describe information processing features in exactmathematical terms
the phrase reservoir (computing) machine will be used to indicate that a reservoir
has been assigned a readout layer (possibly optimized for a specific information
processing task). Mathematically, a reservoir machine M is an ordered pair that
consists of the reservoir and a readout layer

M = (R,ψ) (23.2)
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In this construction the only variable (adjustable) part of the machine is the readout
layer ψ. From the engineering perspective a key challenge is to actually construct a
suitable readout layer ψ and train (adjust) it. If the readout layer is simple in some
sense, it should be easily trainable.3

23.3.1 Reservoir R

A reservoirR is a dynamical system that evolves in time and can respond to external
inputs. The input is assumed to exert a direct influence on the internal (microscopic,
mesoscopic, or macroscopic) degrees of freedom of the reservoir. For theoretical
modeling, the time variable t can be both discrete, t ∈ Z, or continuous, t ∈ R,
depending on which type of dynamics seems more appropriate.

The input consists of time data series. Formally, a data series u is a mapping

u : R → U or u : Z → U

that assigns to each time instance t a value taken from a set U. Typically, the set
U is taken to be a bounded subset of R

n , e.g. a point in the set is given by u ≡
(u1, u2, . . . , un) where each ui ∈ [umin, umax] is taken from an interval on the real
line; umin, umax ∈ R. The time variable can be used to “index” all values in the series
by evaluating u(t). Further, let

x ∈ S

denote an internal degree of freedom (a state) of the reservoir, where S denotes
the space of all possible states of the system. The variable x could be treated as an
observable: It does not necessarily have to represent amicroscopic degree of freedom,
like a position of a molecule. It could be also a variable like the temperature, or the
concentration profile.

The dynamics of the system is governed by an evolution operator that describes
how the internal state of the system x(t) changes in time under the influence of the
external input u(t). A typical continuous model is stated as

dx(t)

dt
= H(x(t), u(t)) ; t ∈ R (23.3)

and a typical discrete model is given by

xt = H(xt−1, ut ) ; t ∈ Z (23.4)

3Naturally, this cannot be taken for granted as the computational simplicity does not necessarily
imply that the system is easily adjusted in engineering terms.
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where H(x, u) denotes a multi-variable function that governs the dynamics of the
system. To make the notation simpler the same symbol H has been used in both
equations.

Note the difference in notation for the continuous and the discrete time dynam-
ics, e.g. u(t) versus ut , and x(t) versus xt . In the following the symbols q(t) with
q ∈ {x, u} will be used when discussing both continuous and discrete systems. The
symbols qt with q ∈ {x, u} will be used exclusively for discrete systems.

The machine performs computation by changing its internal state under the influ-
ence of the input. The internal state of the system at each time instance depends on
the whole history of previous inputs. In signal engineering, such a system is referred
to as a filter. It maps input time series u(t) into another times series x(t). Thus the
reservoir can be seen as an implementation of the filter

u → x = R(u) (23.5)

where the individual sequence values can be inspected as x(t) = R(u)(t).4 The same
symbol is used to denote the physical reservoir and themapping (the filter) it realizes.

23.3.2 Readout-Layer ψ

Every reservoir is expected to be equipped with a readout layer ψ. The readout layer
should not process information in any substantial way. It should be only used to
assess the information stored in the dynamical system.

What is the complexity ofψ thatwe can allow and still be able to claim thatψ is not
doing any substantial computation? This is of course a complicatedmathematical and
philosophical problem. Please see [21] for a possible answer to this question. In the
reservoir computing context it is naturally resolved by claiming that the computation
should be done instantaneously. The readout function should not be a filter in the
strict engineering sense. The function per se should not accumulate any memory. It
should only “see” history through x .5 Mathematically, these principles are expressed
as follows. The readout layer is used to extract the output of computation o(t), i.e.
by “inspecting” the value of x(t) at each time instance t :

o(t) = ψ(x(t)) (23.6)

The symbol ψ(x) denotes a multi-variable function that provides a mathematical
description of the readout layer.

4Note that it would be wrong to use R(u(t)).
5For complex systems, x(t) is expected to contain a very long list of values and, in principle, a lot
of history could be stored in x .
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23.3.3 Reservoir Machine as a Model of Computation

The Filter Implemented by the Machine M

Taken together, each machineM realizes the related function (filter) F that maps an
input sequence u into the output sequence o:

u → o = F(u) (23.7)

The values of these sequences can be inspected at each time instance t as o(t) =
F(u)(t) ≡ ψ(R(u)(t)).6 In what follows no formal distinction will be made between
the machine and the filter it implements, andM will be used in place of F except in
situations when a confusion might arise.

Configurability of the Readout Layer Generates a Class of Machines

It will be useful to considers a collection of all machines that are obtained from a
fixed but otherwise arbitrary reservoir R and all possible readout layers:

M = {M ≡ (R, ψ) : ψ ∈ �} (23.8)

The collection of machines M is generated by the reservoir and will be referred
to as a programmable reservoir machine. Once a particular readout layer has been
chosen (engineered) it will be referred to as a programmed reservoir machine, or
just a reservoir machine. Thus Reservoir Machine can be viewed as a model of
computation. It is clearly not a universal model of computation. Its computing power
comesmostly from the reservoir, which is “frozen”: In the LSM construct it is always
allowed to choose among different reservoirs. In the ESN model, this is sometimes
allowed, and sometimes forbidden. In the Reservoir Machine model it is always
forbidden.

23.4 The Technological Potential of Reservoir Computing:
Lessons from Philosophy of Computation

Hilary Putnam suggested a construction of how to use any object to implement
any finite state automaton [22]. The statement is a paradox: even a rock should
be able to compute anything. The recent advances in understanding the relatively
novel approach to information processing, the reservoir computing paradigm, seem
to indicate that this seemingly absurd idea is not without merits.

6Note that here we do not use ψ(R(u))(t). That would be incorrect, given the assumption that the
readout layer ψ should not accumulate any information from the past. The notation �(x) implies
that � acts as a filter, which is clearly not the case according to the definition.
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23.4.1 Putnam’s Construction

Understandingwhich dynamic properties guarantee information processing ability is
a highly complex problem.As an example, to appreciate the difficulties associatewith
the problem, consider the following example. Can a rock compute? An engineer’s
answer would very likely be “no”, which is also the common intuitive expectation.
Interestingly, a philosopher’s answer is “yes”. This begs a question: Which one is
correct? Probably both.

One of the key issues that the philosophy of mind tries to address is whether
the human brain implements an automaton. If yes, then different states of mind are
just different states of the automaton, e.g. as summarized in [23]. As a response
to this thesis Hilary Putnam [22] provided a construction through which it can be
shown that even a simple object as a rock can be made to implement any finite
state automaton. This rather absurd conclusion was the very reason why Putnam
considered the construction. He used it to show that the notion of computation needs
to be restrained when discussing philosophy of mind. Clearly, just the ability to
compute cannot be used to define what a mind is. In this context, the notion of
computation is simply too broad, as any object seems to be able of performing it.
Nevertheless, the statement is a paradox that illustrates an important principle, and
a way of thinking about computation, and especially unconventional computation.

23.4.2 A Thought Experiment

Putnam’s construction and the reservoir computing idea are strongly related. What
would happen if Putnam’s idea were taken out of context and applied in the context
of reservoir computing? Assume that the goal is to use the rock as a reservoir. Note
that Putnam’s rock is taken grossly out of context, but such a possibility can be
envisioned, and servers the purpose of illustrating an important point.

The Rock can Compute but an Auxiliary Interface must be Used

Putnam’s construction has been criticized from many angles (cf. [24–26] and ref-
erences therein). The most common argument against the construction states that
to implement a complex automaton on a rock, large auxiliary equipment would be
needed. At the end, the actual computing would be done by the auxiliary equipment
and not by the rock. This is certainly a valid argument and extremely useful for
understanding the reservoir computing idea.

Rock can be used for computation in principle, but this is hard to achieve in
practice. This particular line of criticism against Putnam’s construction indicates
that when discussing computing ability of a dynamical system, it is very important
to distinguish between the system per se and the interface that the system might be
equipped with to achieve information processing.
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The Interface is Equally Important as the Reservoir

This further implies that it is very important to understand how to interface the system
properly, and how to mathematically describe the interface and gauge its computing
power versus the computing power of the system. This line of reasoning has been
explored in [21] which contains an example of how these ideas can be formalized.
Interpreted in this vein, the thesis of reservoir computing states implicitly that the
interface cannot be too complex. This is exactly the reasonwhy either a simpler linear
readout algorithm or an easily trained perceptron networks is used as the interface in
the context of reservoir computing. Clearly, by using an auxiliary equipment the rock
could be turned into the system that has the desired properties, but this equipment,
very likely, will never be classified as a “simple readout layer”.

How to Judge Whether a Given System has the Key Properties?

The properties seem so generic that it seems reasonable to assume that many physical
systems can perform computation, even the systems which were not specifically
designed by humans for that purpose. In that sense the original construction by
Putnam has some practical relevance. This connection between Putnam’s paradox
and the idea of reservoir computing has been already pointed out in [27]. The rock
is certainly not one of these systems. From the reservoir computing perspective, a
rock cannot compute, as it lacks these key properties.7

23.5 The Technological Potential of Reservoir Computing:
Lessons from Mathematics

The problem of a suitable approximation is probably as old as mathematics itself. In
the particular case that deals with the problem of approximating an arbitrary function
with a fixed class of functions, the approximation problem has a solution with a
surprisingly elegant formulation. The theorem is one of the foundations of reservoir
computing, and the structure of the theorem will be discussed in the following.
An attempt will be made to present a deeply mathematical subject by emphasizing
intuitive reasoning.

The theorem is normally referred to as the Stone-Weierstrass approximation
(SWA) theorem (SWAT). Behind the simple formulation of the theorem hides an
enormous application potential. The theorem has been used frequently in both math-
ematics and engineering to analyse approximation properties (the computing capac-
ity) for plethora of systems. It is somewhat surprising that is has not been used
excessively in unconventional computation too.

7Note that this statement might be an oversimplification. For example, imagine that there is simple
readout layer that can access the internal states of the rock. Then the rockmight still have the desired
properties.
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First, the theorem will be stated in its most general abstract form. The initial
abstract formulation is useful when proving the theorem and, most importantly, it is
useful for analysing unconventional computation applications, as will be illustrated
in the following sections. Perhaps one of the reasons why the theorem has not found
its way into unconventional computation is that it is very likely incomprehensible
to somebody not versed in advanced analysis. Accordingly, the abstract formulation
will be augmented by discussing the key components of the theorem to provide
more intuitive formulations and facilitate its use in the unconventional computation
context. Second, a version of the theorem will be provided as used by engineers.
Third, while being an extremely useful tool, the theorem has its limitations, which
will be discussed too.

A note on notation: In this section various metric spaces are discussed. Naturally,
the most important “metric” space of interest is the space of input sequences�.8 The
elements of this space should be labeled by the symbol u. However, in this section
a temporary change of notation is made, to make the connection with the existing
mathematical literature more explicit: It is a custom to label elements of a metric
space by using the symbol x .9

23.5.1 A Rigorous Mathematical Formulation
of the Theorem

Theorem 1 (Stone-Weierstrass—the first version) Let A be an algebra of continu-
ous functions that map from a compact metric space � to the set of real numbers R.
Let elements ofA separate points, and let there be a constant function in the algebra.
Let C(�, R) denote the set of all continuous functions that map from � to R. Then,
A is dense in C(�, R).

Some of the concepts used in the above formulation of the theorem are explained
below. The explanations that follow are not provided solely to educate the reader
regarding the theorem per se, but they are essential for understanding the reservoir
computing idea, and for practical applications of the theorem. In particular, from the
discussions that follow it should be clear which mathematical properties a physical
system must possess that would render it useful for computation. Later on, these
abstract mathematical properties will be discussed from a practical point of view
(e.g. when building such devices). Several examples will be provided that illustrate
how these mathematical concepts might manifest themselves in applications.

Definition 1 When does the set of functions form an algebra? Formally, this is
stated as follows. Let A and � be as in the theorem above. The set of functions

8Here the quotation marks are used since � is not a metric space for any norm. To turn it into a
metric space a special norm has to be used, as discussed later.
9The reader can substitute u in place of x whenever in doubt regarding howmathematical statements
discussed in this section relate to the discussion on reservoir computing contained in other sections.
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A = {a|a : � → R} forms an algebra when for any pair of elements a, b ∈ A, the
combinations a + b, ab, and wa with w ∈ R are also in A, where (a + b)(x) ≡
a(x) + b(x), (wa)(x) ≡ wa(x), and (ab)(x) ≡ a(x)b(x) for every x ∈ �.

An algebra of functions is a slight extension of the concept of the vector space of
functions. In addition to the usual vector operations (the addition and multiplication
by a constant), to form an algebra, the set of functions needs to be closed with regard
to the pairwise multiplication operation as well.10 Further, it is somewhat surprising
that the presence of a constant function is explicitly required. An example will be
provided later on to illustrate why this property is important.

This closure property is an important property of an algebra that makes
it useful for analysing expressive power of the algebra (e.g. it approximation
power, in the mathematical sense of the word), and for analysing unconven-
tional computing devices (e.g. their computing capacity).

Definition 2 What does it mean for an algebra to separate points? Let A and � be
as in the theorem above. Algebra of functions A separates points if for every two
elements x1, x2 ∈ � that are different, x1 �= x2, an element in the algebra g can be
found such that g(x1) �= g(x2).

This is another important property of the algebra that is necessary for approximation
purposes. Note the particular form of the requirement. For example, it is not required
that two distinct elements from the algebra are found such that g1(x1) �= g2(x2), or
such that g1(x1) �= g2(x1) and g1(x2) �= g2(x2). The condition used in the definition
is a rather mild in the sense that it is not too restrictive on the algebra.

The separation property should be checked for a given pair of points, one
at a time. Once the pair has been fixed, the user of the theorem needs only to
find an element in the algebra that will satisfy the condition. In principle, if
different pairs of points require different elements is of no concern. However,
there must be enough elements in the algebra: The real difficulty is in checking
that this can be done for every pair of points. Later on, it will be shown that
this transforms into an important engineering requirement.

Definition 3 What does it mean thatA is dense inC(�, R)? By definition, it means
that Ā = C(�, R), where the symbol Ā denotes the closure of the algebra A. The
closure of A is defined as the smallest closed set that contains A.

For someone without a background in point-set topology this statement might not
make much sense. Thus alternative more intuitive definition will be provided.

10Note that we do not require that the set is closed with respect to the composition operation a ◦ b
with (a ◦ b)(x) = a(b(x)). In here, ab does not refer to a ◦ b.
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Definition 4 Intuitively, one should think of Ā as the set of all functions that can
be approximated by elements in A. Now it becomes clear that the statement Ā =
C(�, R) implies that under the assumed conditions the algebra can approximate any
function.

Thus there are two definitions of the closure, as the smallest closed set containing
A and as a set of functions that can be approximated by elements in A. To see that
they are equivalent requires a bit of work.

First, it is necessary to assume thatA forms a metric space. For any two elements
a and b in A one must be able to compute the distance between these two elements
ρ(a, b). Any algebra of continuous functions supports the natural sup norm metric,

ρ(a, b) ≡ sup
x∈�

|a(x) − b(x)| (23.9)

This is a very sensitive measure of similarity, as the difference is checked at every
point. With the ability to measure the distance between any two elements one
can define what a convergence is by using the standard arguments: A sequence
a1, a2, a3, . . . , an, · · · of elements in A converges to a∗ if for every ε > 0, an index
n(ε) exists such that n > n(ε) guarantees that ρ(a∗, an) < ε.

Second, ifA is a metric space, its closure Ā can be defined as the set of all possible
limits that can be obtained by considering all converging sequences made by using
elements from A,

Ā ≡ {a∗| lim
n→∞ an = a∗, an ∈ A} (23.10)

This is a rigorous theorem in mathematics. It is not obvious, and it requires some
thinking to show that this is true (regardless of the fact that the proof consists of few
lines [28]). The statement above implies that if a function f is in Ā, then for every
ε > 0 there is an element a in A such that

|a(x) − f (x)| < ε (23.11)

The approximation is uniform, it holds for every x ∈ �. Equation (23.11) follows
from the definition of convergence and (23.10). For any f ∈ Ā a convergent sequence
{an}n=0,∞ can be constructed. Take the first element in the sequence for which
ρ(an, f ) < ε. This element defines the a in the equation above.

The above formulation of the SWA theorem does not feature the interface (the
readout layer). However, the interface that is used to read internal states is an impor-
tant part of the device. Alternatively, to emphasize the presence of the interface the
following formulation of the theorem might be more useful.

Theorem 2 (Stone-Weierstrass—the second version) Let B be an algebra of con-
tinuous functions that map from a compact metric space � to the set of real numbers
R. Let elements of B separate points. Let P denote the algebra of multivariate poly-
nomials with d variables. Let C(�, R) denote the set of all continuous functions that
map from� toR. Then, for every accuracy requirement ε > 0, and every continuous
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function f ∈ C(�, R) elements b1, b2, . . . , bd ∈ B and the polynomial p ∈ P can
be found such that | f (x) − p(b1, b2, . . . , bd)(x)| < ε for every x ∈ �.11

This formulation is the one that is often used in the context of reservoir computing,
since in some situations this formulation is more practical. Note that in the above
statement of the theorem there are less restrictions on the algebra since only separation
property is required, no constants are needed. The constants are, of course, included
in the algebra of polynomial functions.

Further, the two versions of the theorem point to the issue that was discussed pre-
viously. How to balance the computing power of the reservoir, versus the computing
power of the interface? For example, one might focus on linear interfaces instead,
then the question is whether a linear combination of d elements in A can be found
in place of a in Eq. (23.11), e.g. a(x) = ∑d

i=1 wiai (x). As ε is made smaller the
number of elements d that have to be taken in the weighted sum are expected to
increase.

In brief, the Stone-Weierstrass approximation theorem states that if an alge-
bra of continuous functions that maps from a compact metric space � to real
numbers separates points and contains constant element 1, then it can approx-
imate any continuous function on � uniformly.

Proof The proof of the SWA theorem is a constructive proof, and can be found
in many textbooks, e.g. cf. [29]. It usually extends over several pages of text (if all
concepts are defined from scratch). The proof will not be presented in here. However,
a few interesting steps, from the reservoir computing perspective, will be commented
upon. These will be returned to later in the text, but from a more engineering-like
perspective.

The proof of the theorem outlines a procedure (an algorithm essentially) of how
to approximate an arbitrary continuous function using the elements in the algebra.
As one goes through the procedure it is important to check that every step in the
algorithm is valid, which is ensured by the assumed conditions in the theorem. More
specifically, the recipeworks by showing that any f ∈ C(�, R) can be approximated
at two arbitrary points, and exploiting this fact to show than a uniform approximation
can be found everywhere. For this procedure to work, the following requirements
must be met:

• The two point approximation procedure discussed above: This is the reason why
the presence of the constant function in the algebra is important. It is needed to
show that any continuous function can be approximated at any two points by the
elements from the algebra by exploiting a linear-like interpolation and requiring
thatw11(x) + w2g(x) = f (x) at x = x1, x2 where 1 denotes the constant function.

• All functions of the algebra must map from a compact domain. This is used to
claim that various parts of the domain can be covered by a finite number of open

11Here naturally, the expression p(b1, b2, . . . , bd )(x) is interpreted as p(b1(x), b2(x), . . . , bd (x)).
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sets. This step is necessary to be able to cover all � space by patches where the
pairwise approximations work well.

• The algebra property, in particular the closure with regard to multiplications, is
used to show that Ā forms a lattice (in the mathematical sense of the word), i.e.
that min and max operations are possible on functions. These are used to switch
to different functions when the patches are changed to stay ε-close to the target
function. 
�

23.5.2 A Few Application Examples of the Theorem

To illustrate the power of the theorem several applications of the first version of the
theorem will be illustrated. Each example was chosen to illustrate a particular aspect
of the theorem.

The use of the theorem can appear at odds with its formulation, in the
sense that it is hard to build an intuition of what is going on behind the scenes
when the conditions of the theorem are being checked. The examples below
illustrate the fact that the procedure of checking for the separation property lies
completely outside of the theorem, and is a challenging problem on its own.

Example: All Polynomials on a Finite Interval� = [0, 1]
Consider all continuous functions on a finite interval � = [0, 1], and an algebra of
polynomials on that interval. The goal is to see whether it is possible to approximate
any continuous function on the interval by using polynomials. It is a well-known
result that this is possible (the Weierstrass approximation theorem). It is straight
forward to show this using the SWA theorem. The set of all polynomials clearly
forms an algebra. The algebra contains a constant element (in fact infinitely many
such elements). The algebra also separates points, since any linear polynomial, e.g.
p(x) = x , works for every pair of points.

Example: The First Ten Legendre Polynomials (Defined on� = [−1, 1]
This set does not form an algebra. For example, the product of the tenth polynomial
with itself is not in the algebra. This algebra cannot approximate all functions since
it is not closed with respect to the multiplication operation.

Example: Polynomials without Constant Term on a Finite Interval� = [0, 1]
Note that every such polynomial vanishes at x = 0. It can be shown that such poly-
nomials can approximate all continuous functions on � that vanish at the origin.
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However, such polynomials cannot approximate all continuous functions on �. This
example illustrates why the presence of the constant function 1 in the algebra is
important.

Example: An Algebra of Predicate Based Functions on the Interval� = [0, 1]
Assume that all functions in the algebra are defined by using logical predicates.
Every predicate is a Boolean formula that features x and some constants. For
example, a predicate function could be the Boolean expressions π1(x) = x > 1,
π2(x) = sin2(x) + cos(x) == 0, or π3 = π1(x) ∧ π2(x). Let the elements in the
algebra a be defined by considering all possible predicate functions. Each predicate
function defines the algebra element as a(x) = 0 (1) when π(x) = F (T) where F
and T stand for false and true logical values. Can this algebra be used to approximate
all continuous functions on the interval? Unfortunately, the theorem cannot be used
since this algebra of functions is not continuous. Clearly, in the present form, the
theorem has its limitations.

Example: Polynomials on� = (−∞, t] with t ∈ R

In this case the domain is not compact. The theorem cannot be used. It does notmatter
which algebra of functions is considered. We shall return later on to this example
when the fading memory property will be discussed.

23.6 Realizing the Technological Potential:
From Mathematical Concepts to Practical
(Engineering) Guidelines

How to build reservoir computers with powerful information processing abilities?
The elegance of the LSM formalism is an illustration of how the SWA theorem can
be used to understand the expressive power of a class of machines. How can one do
the same in the classical reservoir computing setup? when only one system can be
used to build a reservoir computer.

Motivated by the LSM and ESN setups it is tempting to consider two options: (i)
build a class of dynamical systems that can be combined, or (ii) use a sufficiently
complex single dynamical system.12 Both approaches have its merits. The success
of the CMOS technology is strong evidence in favor of the first approach. The key
technological feature of the CMOS paradigm is that one can exercise full control
of the construction process, down to the tiniest component that contributes to the
overall information processing ability of the system. However, this control cannot
be often exercised in the context of unconventional (natural) computation, where
one can only control some selected parts of the system but not all its components.

12Used in this way, the LSM and ESN concepts are taken slightly out of context. They were
introduced as models of computation, a tools to study specific features of neural network dynamics.
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For example, in molecular computing it is very challenging to control individual
molecules. For unconventional computing applications the secondoption seemsmore
relevant. Accordingly, the following text emphasizes the classical (one-) reservoir
computing paradigm.

This section discusses how to bridge from the abstract mathematical context of
the SWA theorem towards a more engineering like setup when the goal is to build
an actual device, a reservoir machine. This is done by carefully analyzing how the
conditions of the SWA theorem can be met for an arbitrary reservoir machine, and
how these conditions can be engineered in practice. This section is not meant to be
a historical overview of the reservoir computing method (though a part of the text
follows the historical development of the field), but rather aims to provide a synthesis
of it from a practical point of view.

If one were to interpret the Stone-Weierstrass theorem in a broader, more
engineering like context, it would appear that the following reasoning and the
resulting hypothesis seem feasible: If a physical system can realize an algebra
of functions that separate points, then it should be possible to use the system
to compute in principle anything. It is possible that both requirements are
naturally realized by physical systems at microscopic level, and for complex
systems at even higher levels (meso-, macro-scales). The hypothesis is that
the technological potential of reservoir computing can be indeed “released”:
Provided there are readout layers that can resolve such microstates, there are
no a priori reasons why powerful reservoir computing devices could not be
realized.

The possibility that the hypothesis is actually true is too important to be ignored.
It might change the way we think about information processing and have profound
impact on information processing engineering. It is important to understand whether
this agenda can be realized in practice, and if not, where the limitations are. This
section is an interpretation of the SWA theorem in the technological context of
reservoir computing in the classical setup. The goal is to provide a set of broad
guidelines of how reservoir computers could be engineered and which requirements
should be met in order to turn them into powerful information processing devices.
Some open problems are pointed out too.

23.6.1 Existence of the Filter

The first and the most important question is whether any dynamical system realizes
a filter. This cannot be taken for granted since the system has to be started from an
initial state, and decidingwhether the initial state matters or not is a highly non-trivial
issue. The echo state property and the fading memory property have been suggested
specifically to address this issue.
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23.6.1.1 The Fading Memory Requirement

To be able to use a system as a filter, in the on-line computation context, the present
state of the system should be weakly dependent on distant inputs. Many dynamical
systems found in nature often equilibrate, and have the potential to act as filters.
But there are also systems that do not equilibrate easily, e.g. chaotic systems. It is
important to be able to distinguish these two classes of systems. There are several
ways of formalizing mathematically the condition that the dynamics is insensitive to
the initial condition. The most common definition is as follows.

Definition 5 (Fading memory) For reservoirs with the fading memory property, the
dynamics of the reservoir should not be influenced by a too distant past. Two input
time series that differ in the distant past should lead to roughly the same output:
For every u and ε > 0, there exist a δ(u, ε) > 0 and an interval [t0 − T, t0] such
that |(Fu)(t0) − (Fv)(t0)| < ε for every input v that is δ-close to u on that interval;
|u(t) − v(t)| < δ for t ∈ [t0 − T, t0].
Note that this resembles the definition of continuity at a point (not uniform continu-
ity). It was shown that the systems with fading memory have unique steady states
(that lock-onto the input, for a proof see section X I I I , Theorem 6, in [30]).

Fading Memory Leads to a Special form of Continuity

Interestingly, the fading memory property ensures some useful mathematical proper-
ties of the filter realized by the system. Since� is the space of infinite time series it is
not automatically compact. The Arzelà-Ascoli theorem states that to make the space
of functions compact, one would have to, at least, limit the time frame by considering
only a finite time window t ∈ [t0 − τ, t0]. However, there are two immediate prob-
lems, what should one choose for the reference (computation) time t0 (the reference
issue) and the interval length τ (the length issue)?

The compactness problem can be solved as follows. If the distance between two
time series is defined by using the weighting functions construct, which tend to favor
more recent values in time,

ρ(t)(u, v) ≡ sup
k≤t

w(t − k)|u(k) − v(k)| (23.12)

where w(k) → 0 with k → ∞, then the space � with this metric is compact.
Interestingly, once the compactness is in place, the fading memory ensures that

the mapping realized by the filter is continuous. Any filter with fading memory is
continuous in the metric ρ(t):

ρ(t)(u, v) < δ ⇒ |(Fu)(t) − (Fv)(t)| < ε (23.13)
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This result was stated as a theorem in [31].13 This has been also used as an alternative
definition of fading memory (e.g., see section I I I , the definition 3.1 in [30]).

23.6.1.2 The Echo State Property

The echo state property is a result of a direct attempt to deal with the filter existence
issue. In echo state networks the present state of the network is an “echo” of the input
history. The initial state of the system can be forgotten if the system has been exposed
to the input for a sufficiently long time. The rest is a mathematical formulation of
the idea.

Historically, it has been realized that the echo state property is crucial if the
network can be trained by adjusting its output weights only. Quoting from [32]:

For the supervised learning algorithmswhich are usedwith Echo StateNetworks (Edit: citing
the original technical report [4], and a later review [7]) it is crucial that the current network
state xk is uniquely determined by any left-infinite input sequence u−∞, . . . , uk−1, uk .

Such behavior guarantees that the on-line computation is possible, i.e. that the dynam-
ics of the system does not depend on the initial state of the device. The original
definition of the echo state property is as follows [5].

Definition 6 (Echo state, discrete dynamics) Assume a fixed time instance t . Let
q[−∞ : t] ≡ (. . . , qt−2, qt−1, qt ) denote a left infinite sequence obtained by trun-
cating (. . . , qt−1, qt , qt+1, · · · ) at t . For any input u[−∞ : t] that has been used to
drive the system (for an infinitely distant past until the time t), and for any two tra-
jectories x[−∞ : t] and x ′[−∞ : t] that are consistent with the dynamic mapping
(23.4),14 it must be that xt = x ′

t .

Figure23.1 is a graphical illustration of this property. The echo state property is
equivalent to stating that there exists an input echo function E such that if the system
has been exposed to the infinite input sequence, its current state is given by

xt = E(. . . , ut−2, ut−1, ut ) (23.14)

This notation is somewhat uncomfortable since it involves a function with an infinite
list of arguments. However, the statement implied by Eq. (23.14) is useful from
an engineering perspective, this particular definition emphasizes the existence of a
filter. The original Definition 6 is more suitable for mathematical analysis, e.g. for

13Note that the key property is the fading memory. The particular definition of the metric is “for
free” (it can be always made). There is a nice alignment with the assumptions of the SWA theorem:
the domain of the mapping implemented by the filter� should be compact, and the mapping should
be continuous. Then the filter realized by the reservoir maps from a compact metric space and is
continuous. These properties are useful for establishing the expressive power of the filter.
14The consistency is expressed as requiring that for a given sequence x it is true that xk =
H(xk−1, uk) for every k. The same must hold for the other sequence, i.e. x ′

k = H(x ′
k−1, uk) for

every k.
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The input depicted is arbitrary but fixed otherwise.

This is situation is not allowed to occur for systems with echo state property.
If an input is found, and this situation occurs, the system does not have the
echo state property.

This situation must hold if the system has the echo state property.
The depicted situation is the one stated (required) by the definition.

An example of the situation not required by the definition, though this can happen
accidentally. It is not required that the two trajectories that are compatible with the
input are identical. This can happen, but this is not required by the definition.

(a)

(b)

(c)

(d)

Fig. 23.1 An illustration of the echo state property (backward-oriented perspective). Panel a
Depicts a fixed but otherwise arbitrary input. For a given input, panels b–d depict various situ-
ations. The definition of the echo state specifies exactly which situation is allowed or forbidden. A
much more intuitive, the forward-oriented definition, is illustrated in Fig. 23.2

identifying whether the system has such a property. An alternative (and equivalent)
definition is listed in the appendix that might be even better suited to that end.

There are systems for which the echo state function E does not exist, and a few
examples will be provided (assuming the discrete dynamics). The examples are
chosen to illustrate that instead of (23.14) the following expression should be used
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xt = E(. . . , ut−2, ut−1, ut |x) (23.15)

where x denotes the initial state of the system in the infinite past. The initial state can
exert an influence on the dynamics for an infinitely long time. Several systems that
behave like that are listed below:

Example 1

As the first negative example, consider the system with the discrete dynamics that
strongly depends on the initial condition:

H1(x, u) = x (23.16)

The system “remembers” the initial condition forever. In fact it is insensitive to the
input which is a rather special case. This system does not exhibit the echo state
property since it is possible that two separate trajectories exist for a given input u.15

Example 2

The following example exhibits a less trivial dynamics, where the system can be
influenced by the input:

H2(x, u) = x + λ tanh u (23.17)

This mapping resembles a discrete version of the random walk where the spatial
increment at each time step depends on the input received by the walker. The input
is wrapped by the tanh function just to limit the size of individual steps, which is
controlled by λ. Note that for any choice of λ the initial state in the infinite past
influences the dynamics.

Example 3

As the last example, consider any system that has at least two quasi16 stable states
with two (or more) basins of attraction. The key feature of the dynamics is that for
“weak” inputs the system never crosses the basins of attraction. Transitions from
one basin of attraction to the other can only happen under the influence of “strong”
inputs. For strong inputs it is not true that (A) for two sequences of states x and x ′
that are consistent with the dynamics it follows that (B) xt = x ′

t . Note that the echo
state Definition 6 requires A ⇒ B. It is possible to find trajectories where A is true
but B is false leading to A � B.17 Thus the system under consideration does not
exhibit the echo state property.

15Note that such a pair of trajectories can be found for any input. For example, consider two
trajectories that started from x0 and x ′

0 with x0 �= x ′
0 in the infinite past.

16Here the term “quasi” indicates that the states are easily “disturbed” by the external input.
17It is sufficient to consider two initial conditions that start from different basins of attraction.
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23.6.1.3 Summary of the Existence Issue

It is clear that the fading memory and echo state properties are strongly related.
It has been proved that if a system has the echo state property then it also has the
fading memory property [5]. A version of the (likely18) proof that the fading memory
implies echo state can be found in [30] (Sect. 8.2, Theorem 6). However, despite
being strongly related, both concepts do emphasize slightly different aspects of the
problem. For example, the fading memory definition emphasizes the possibility to
perform on-line computation, while the echo state property emphasizes the existence
of the time invariant filter.

The main problem with both definitions is that it is hard to check whether a given
system has either of these. There are some results regarding the existence of the echo
state property for a particular class of dynamic functions H(x, u) [3–5]. Clearly,
from the above discussion one can see that it is very hard to make generic statements
regarding the systems which exhibit these properties. Such analysis has to be done
for every system of interest.

23.6.2 The Expressive Power of Reservoir Machine

The notion of the expressive power of the reservoir is important for realizing the
advocated technological goals. While it is clear that the echo state mapping exists,
provided the specific requirements are met, it is less clear what one can actually do
with such devices. If we knew which features of the device influence it expressive
power, we would have a theory for building powerful reservoir computers, and we
would also understand the limits of the approach.

For discrete reservoirswith the echo state property the input echo function involves
an infinite list of arguments. If the system has natural relaxation time (or past for-
getting time) τ∗ then this limits the number of arguments: Instead of (23.14) the
following description of the filter might be closer to the truth,

x(t) ≈ E∗(ut−τ∗ , . . . , ut−2, ut−1, ut ) (23.18)

For such systems, how do we realize filters with very short or very long list of
arguments? Both situations are problematic. For example, assume that the goal is
to realize a filter that takes only the two immediate inputs, o(t) = (Fu)(t), that
should be trained to return the sum (Fu)(t) = u(t − 1) + u(t). It is not at all clear
how to get rid of the dependence on the remaining inputs further away in the past.
Filtering longer signals is equally problematic since it is not clear where the distant

18 “Likely” is emphasized due to the following. First, the proof assumes continuous dynamics. Can
it be generalized to discrete dynamics? Second, the proof does not lead straightly to Definition 5,
but to a continuous formulation of the echo state that is possibly equivalent to the original echo
state definition.
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information should be stored. To realize both scenarios would likely require more
powerful reservoirs, but there is only one reservoir to choose from.

In the following a brief summary of what is known about the expressive power of
liquid state machines and echo state networks is discussed. The expressive power of
Reservoir Machine is discussed after that.

23.6.2.1 Lessons from the Past: The Expressive Power of LSM and ESN

A lot of research effort has been spent to understand which dynamic properties of
the system can guarantee the echo state property. Much less effort has been spend
on understanding how to exploit such a property if it exists. This is still an open
problem.

LSM is indeed Turing universal (in the fading memory sense), but only provided
that a whole class of machines is considered (the base filters). Not surprisingly, this
class should have exactly the same properties as the ones stated in the second version
of the SWA theorem. In fact, the LSM model originated from a direct application of
the second version of the SWA theorem on filters.

In contrast to LSM, in the literature there seems to be a lack of precision in
stating the expressive power of ESN, and possibly some misconceptions. This very
likely results from using the work by Maass et al. on LSM in imprecise way without
specifying the context properly (e.g. one system, or a class of systems). For example,
consider the following quote from [33]:

Universal computation and approximation properties. ESNs can realize every nonlinear filter
with bounded memory arbitrary well. This line of theoretical research has been started and
advanced in the file of LSM (Edit: quoting the LSM work by Maass et al. [1] and [34])

In the quote, there are several important assumptions that are implicit. Consider a
few examples of what might go wrong if such a claim were made without specifying
a proper context.

For example, the first implicit assumption is that one should consider a class of
networks, and not a single system (network). The second implicit assumption is that
this class should have the properties required by the SWA theorem, be an algebra
and separate points (which sould be proven, however). These implicit assumptions
are very fragile since their validity is context sensitive. Let us discuss each in turn.

The ESN idea, by construction, emphasizes the use of a fixed network, and in
this classical setup the quote is most certainly incorrect (as will be explained later
on). But, if the network is complex, then it might implicitly harbor a class of smaller
subsystems (see Sect. 3.1 in [5] for an illustrative neural network example). In that
sense, the assumption that possibly a large class of echo state mappings is available
for a single system is justified. However, while these subsystems might exhibit the
echo state property (i.e. realize a set of filters), do these subsystems form an algebra?
In fact, they very likely do not form an algebra since the number of elements is finite.
But should one worry about it, i.e. is it necessary to require that they do? e.g. as in the
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LSM model. Subsystems might exhibit some separation features, but most certainly
not the exact separation property.

Another strongly related misconception regards the issue of the expressive power
of the classical reservoir computer (since it is often associatedwith the ESN concept).
It is implicitly assumed that RC has an infinite computing power, e.g. as in the
following quote from [7]:

Modeling capacity. RC is computationally universal for continuous-time, continuous-value
real-time systems modeled with bounded resources (including time and value resolution
(Edit: quoting the work by Maass et al. [35] and [36])

This is simply not true a priori for the same reasons as discussed above. If one-system
is used as a reservoir, a great caution should be exercised in making such a claim.
The main motivation behind suggesting the Reservoir Machine model was to make
these issues explicit so that they can be rigorously addressed. Understanding the
expressive power of the model is a highly non-trivial and still an open problem, as
discussed below.

The SWA theorem states clearly which properties a collection of filters must
possess if used in the information processing context: realize an algebrawith constant
element that separate points, the algebramust realizemappings fromacompact space.
In the following, each of the requirements of this generic theorem will be revisited
an interpreted in practical (engineering) terms.

23.6.2.2 The Burden of Realizing an Algebra Can Be Taken
by the Readout Layer

The key lesson from the SWAT is that machines M should form an algebra in some
sense. Do they, and can we engineer them in such a way in the context of unconven-
tional computation?

At this stage the mathematical concept of an algebra needs to be converted into
an engineering one. The requirement that the collection of machines described by
Reservoir Machine forms an algebra implies that they can be combined in some way,
or adjusted, to obtain new, hopefullymore powerful, machines. Any twomachinesM
andM′ might be combined into a largermachineM�M′ to compute another function
(filter). Here the symbol � denotes an engineering operation on the machines. The
filter being realized this way should be exactly the one that is obtained by applying
the algebraic operations on the respective output values o(t) and o′(t), as o(t)o′(t).

The above considerations put some constraints on how the engineering operation
should be implemented

u(t) → (M�M′)(u)(t) = ψ(R(u)(t))ψ ′(R(u)(t)) (23.19)

Note that the reservoir is not changing. Only the readout function is allowed to
change. Conceptually, the only freedom we have when designing new machines is
to combine their readout layers. Mathematically, the engineering challenge can be
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represented as
M�M′ ≡ (R, ψ)�(R, ψ ′) = (R, ψ �ψ ′) (23.20)

A direct comparison between (23.19) and (23.20) shows that if we can design
a new readout layer ψ ′′ such that ψ ′′(x) = ψ(x)ψ ′(x) for every x ∈ S then it is
possible to engineer an algebra of machines. In the similar way it can be shown that
engineering the vector space operations, multiplication by scalar w�M or addition
M + M′, can be transferred to the readout layer.

23.6.2.3 Engineering the Readout Layer ψ

The preceding discussion shows that the first technological requirement towards
building a reservoir machine is to ensure that the set of readout layers � forms an
algebra that can be realized. Of course, for in-silico implementations that is not an
issue, but in any other setup it has to be addressed explicitly.

The readout layer, or the interface, is one of the key concepts of the reservoir com-
puting. Intuitively, since the goal is to use the system as is, any auxiliary equipment
that has to be added onto the system to turn it into an information processing unit
should be as simple as possible. Typically, when performing mathematical analysis
the readout function ψ is assumed to be a multivariate polynomial or even a simple
linear polynomial. How complex the readout layer should be?

Again, this is an instance where the SWA theorem needs to be reinterpreted
in an engineering context. The second version of the SWA theorem indicates that
any class of functions which have the universal approximation property will do.19

However, this might be an unnecessarily strong requirement. In the literature, several
implementations of the readout layer have been suggested ranging from a simple
linear readout towards a more complicated simple perceptron network. An extensive
list of various readout layers can be found in [7] (in Sect. 8).

The question is why should one engineer more complex readout layers if
simpler ones will do? and what is the simplest readout layer that can be used?
To answer these questions is an extremely challenging problem that has been
grossly overlooked in the literature.

Since the reservoir is frozen, and all the burden of the algebraic properties rests
on the readout layer, it is clear that the required complexity of the readout layer is
conditioned on the complexity of the dynamics of the reservoir. It is hard to make
generic statements without knowing what the reservoir looks like in a bit more detail.
Understanding this interplay is still an open problem. There is simply no available
theory that could be used to address the issue.

19Multivariate polynomials have this universal approximation property. Any function that behaves
in the same way can be used instead.
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From the practical point of view, it is implicit in the construction that such readout
needs to be constructed, and it should be kept be kept as simple as possible. The
computing that can be done by the reservoir should not be done by the readout layer.
To understand how much of the burden needs to be put on the readout layer one
should really start from basics, i.e. the first (abstract) version of the SWA theorem,
as discussed below.

23.6.2.4 Separating Points with One Reservoir Is Problematic
but Still Possible

The algebra of machines does not automatically satisfy the requirements of SWAT
for one obvious reason. There is only one reservoir to choose from. However, it is
possible that complex reservoirs can be used to implement such an algebra.

A Problem

Let us see whether the algebra of reservoir machines separates points. For every pair
of time series u and v we must find a reservoir machine M such that M(u)(t) �=
M(v)(t) where t stands for the observation (reference) time. This is the place where
the construct with a single reservoir breaks: in contrast to the LSM model, there are
simply no reservoirs to choose from, only one is available. What choices can one
actually make? In principle, there are two. First, while a single system cannot exhibit
infinite “separation” power, it might exhibit some if it is complex enough, i.e. if it
contains many components that are “addressable”. Second, by assumption, there is
a class of readout layers to choose from. However, by construction, these cannot
contribute to realizing the separation property. Thus, strictly speaking, there is only
one choice to be made, one has to “dig” into the system.

A Possibility

If complex enough, the reservoir could be divided into smaller parts: A truly complex
reservoir with many components realizes many filters, where the number of filters is
equal to the number of microscopic components N :

x ≡ (x1, x2, . . . , xi , . . . , xN ) (23.21)

where each component realizes one filter

u → xi (u) (23.22)

This possibility has been already pointed out in [5] (Sect. 3.1). For example, for a
discrete system it implies that input echo functions (filters) exist, such that
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x (1)
t = E(1)(. . . , ut−2, ut−1, ut )

x (2)
t = E(2)(. . . , ut−2, ut−1, ut )

· · ·
x (i)
t = E(i)(. . . , ut−2, ut−1, ut ) (23.23)

· · ·
x (N )
t = E(N )(. . . , ut−2, ut−1, ut )

Thus, possibly, there is a very large class of mappings to choose from.

The filters realized by such sub-systemsmight or might not form an algebra.
However, this feature is not an engineering requirement: The readout layer
carries the burden of realizing an algebra! What is important is that all these
filters separate points: In some sense all these filters should be “different”.

The output of the computation is given by

o(t) = ψ(x1(u)(t), x2(u)(t), . . . , xi (u)(t), . . . , xN (u)(t)) (23.24)

At this stage it is important to formalize what a sub-system might be, i.e. what the
variables xi actually represent. In this context, the concept of observable in statistical
physics is extremely useful, and in particular the observables that are relevant for
information processing as discussed in [21]. Such observables could be referred
to as “information processing observables”. While formalizing (23.24) in terms of
information processing observables would make the discussion more complete it
would also make it a bit more technical. We just leave it at claiming, as in the
reservoir dynamics Sect. 23.3.1, that xi does not necessarily describe microscopic
degrees of freedom but can also refer to features on larger scales.

In practice, it might be hard to access all subsystems (even if they are not micro-
scopic). From the engineering point of view, a more reasonable assumption is that
the readout layer will have only access to a limited number of components. Thus the
equation for the output should read instead

o(t) = ψ(xi1(u)(t), xi2(u)(t), . . . , xid (u)(t)) (23.25)

where it has been assumed that the readout layer can only access d components.
The multiple (i1, i2, . . . , id) denotes a particular choice of component filters being
indexed. In practice the number of accessible filters will be such that d � N .
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One Should Resist the Temptation to Divide into too Many Parts

It is tempting to increase N by considering smaller and smaller systems. This would
make the collection of the filters generated by the subsystems very large and increase
the resolution of the algebra. Note that this is somewhat equivalent to the assumption
that x describes microscopic states. It also strongly parallels Putnam’s construction
(the assumption that everymicro-state is accessible). However, there is a fundamental
problem with realizing such an agenda. The dynamics becomes noisy.

For observables that refer to very small sub-systems the dynamic laws expressed in
(23.3) and (23.4) do not longer apply. For such systems a noise term should be added
in the equations of motion. For example, it is a well-known fact that the dynamics
of a single molecule in the sea of solvent molecules kept at a finite temperature
should be modelled by using a stochastic differential equation. For observables that
are microscopic in nature one would have to assume the following dynamical law

dx(t)

dt
= H̃(x(t), u(t)) + η(t) (23.26)

where η is a stochastic variable with a given mean and a finite variance and H̃
indicates that H needs to be modified for the effects of friction. For example, the
form of the noise that describes experiments that involve diffusion is 〈η(t)〉 = 0
and 〈η(t)η(t ′)〉 = γ δ(t − t ′) where δ(t) denotes the Dirac delta function and γ is a
temperature dependent parameter.

The Expressive Power of a Reservoir Machine is Limited

Without knowing more details about the component filters xi (t); i = 1, 2, . . . , N , it
is impossible to make further progress. This is exactly the reason why one-reservoir
construct is hard to analyze. However, it is clear that if the component filters separate
inputs, and if the readout functions can approximate sufficiently well, then it should
be possible to tune the reservoir machine towards arbitrary information processing
task, but there are clearly limits to what can be computed. The expressive power of
a programmable reservoir machine is not infinite.

23.7 Conclusions

Perhaps it is fair to say that reservoir computing is more an insight about computing
than an approach to computing. The insight is about the possibility to use an arbi-
trary dynamical system for computation without elaborate re-configuring (training)
procedures. In this chapter the existing problems with realizing this classical setup
were discussed, together with what could be done to address these problems, and
what could be gained by doing so. The three big questions that were addressed were:
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Which features of the construct are hard to engineer? How to engineer such features
in principle? What is the expected technological impact of such devices?

In this classical setup, reservoir computing is also a “call” to studydynamical
systems, and in particular unconventional computation, in a new way. The
Reservoir Machine concept was suggested to make this point of view explicit.

In the literature Echo State Networks and Liquid State Machines are often treated
as one concept. Admittedly, they are strongly related but they are not identical.
Any interpretation of these concepts is strongly context dependent, as illustrated in
the text. This lack of clarity might obscure further progress, and the goal was to,
first, point out the key differences between the concepts and then, second, provide
a synthesis of the ideas they represent. This was done in the context of the classical
setup of reservoir computing. The Reservoir Machine concept is the result of the
attempted synthesis.

Reservoir Machine has been introduced to emphasize the fact that, ulti-
mately, in the worst case scenario, one is facing the problem of using a fixed
dynamical system for computation with a very little freedom of tuning the
system. This worst case scenario is ubiquitous in situations when in-silico
solutions are not possible, and in particular in the context of unconventional
computation.

The explicit formulation of Reservoir Machine established a clear starting point
for the analysis of several aspects of the problem: The mathematical foundation of
reservoir computing, the SWA theorem, has been re-interpreted to provide strate-
gic guidelines for building powerful unconventional reservoir machines and to aid
in understanding their computing power. The most important observations are as
follows.

1. There is a strong connection between Putnam’s construction and the reservoir
computing idea in the classical setup. Putnam’s construction addresses nearly the
same problem.20 The notion of the microscopic degree of freedom and the ability
to access such states is crucial to establish the connection. This line of thinking
puts a clear emphasis on the need to understand how to build good readout layers.
This aspect of the problem should be given a serious consideration. While being
extremely “passive” in mathematical terms, in the engineering sense the readout
layer is as important as the reservoir.

2. It has been shown that, in the Reservoir Machine setup, the readout layer takes the
burden of realizing the algebra, while the reservoir takes the burden of separating

20It is tempting to argue that the separation property being emphasized in reservoir computing is, in
some sense, related to Putnam’s requirement of non-periodic behavior and the idea of the internal
dial [24].



23 On Reservoir Computing: From Mathematical Foundations … 603

points. This is in contrast with Liquid State Machines where base filters realize
an algebra and the readout layer plays a somewhat passive role. The interplay
between the formal requirement to realize an algebra and the requirement that the
algebra separates points should be understood better.21

3. Given that one can build powerful readout layers, it is important to be aware of the
fact that making the sub-systems too small results in noisy dynamics. It is possible
that for some applications the presence of noise is not an issue, and might even
be desirable, but in majority of cases noise is probably a nuisance. In general, the
effects of noise in the reservoir computing setup still need to be understood.

4. There seems to be no theory of reservoir computing that might be directly rele-
vant for engineering applications. The Reservoir Machine construct provides an
illustration of how to approach the problem of constructing such a theory.22

Perhaps the suggested reservoir machine model could be taken as a starting point
for constructing a theory that is relevant from a practical point of view, as it clearly
points out the relevant set of issues. There are several options for constructing a better
theory of reservoir computing.

1. The SWA theorem might not be particularly useful in the engineering context,
after all. The theorem is simply an existence statement. It states that an approxi-
mation can be found under given conditions. It does not address the accuracy or
tolerance issues, or gives any bounds. One might try to constructs and prove a
completely different version of the SWA theorem, in a form that is more useful
for engineers.

2. The second option is to re-work some ingredients of the existing theorem towards
a more engineering like setup. For example, the separation property seems to be
crucial. The separation property is a mathematical formulation of an intuitive
understanding that the system must have some “resolution power” (of inputs).
It could be useful to re-phrase the separation criterion in less absolute terms
by, e.g., requiring not strict separation of inputs, but separation up to a certain
accuracy (resolution).23

21Intuitively, one expects that the expressive power of the algebra is strongly related to the “richness”
of the algebra, provided such a concept can be defined, e.g. by using the number of sub-filters as a
measure. The readout layer is not the source of that richness and, yet, takes the burden of realizing
the algebra. This is a result of the systematic analysis that has been undertaken, and should be taken
as such.
22A lot has been achieved since the reservoir computing concept has been originally suggested.
However, there are many issues that are still open, as pointed out throughout the text. For example,
in the classical setup, reservoir computing does not have the universal computing power, not even
in the fading memory (on-line computation) sense. There is still no sufficient understanding of the
expressive power of reservoir computing in the classical (reservoir machine) setup. The understand-
ing provided by the use of SWA theorem is an important first step (e.g. LSM and ESN studies) but
to understand the computing capacity of a reservoir machine we clearly need a much better theory
of reservoir computing.
23To a mathematician, an interesting question, perhaps, might be: given that a class of functions
forms an algebra and separates inputs up to a certain accuracy, is there any way to characterize a
class of functions that can be represented that way? Which types of theorems could be proven?
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3. The third option is to further explore and refine the fading memory and the echo
state concepts, despite the fact that, perhaps, they are the part of the reservoir
computing theory that has been mostly developed and investigated. For one
thing, the equivalence between the two concepts has been proven, but under very
specific conditions. It should be clear from the presented discussion that these
concepts are strongly related. Accordingly, it is surprising that the equivalence
has not been proven under more generic conditions.

To conclude, as a technological platform, the single reservoir perspective featured
in Reservoir Machine should be less restrictive when it comes to practical implemen-
tations. Admittedly, it is also less expressive, but might have a larger technological
impact. It seems that the envisioned reservoir machine technology might solve com-
plicated unconventional information processing problems. As an illustration of how
the Reservoir Machine concept can be applied in the context of material compu-
tation (e.g. for building material machines) see [15]. Reservoir Machine might be
suitable as a platform for improving the existing, and realizing new unconventional
computing scenarios. It is perfectly possible that important information processing
applications can be realized by using relatively simple reservoirs, since not all rele-
vant information processing tasks are complicated.24 For example, one can envision
plethora of applications of reservoir computing in situations where in-silico realiza-
tion is not feasible, e.g. in medical sensing applications when bio-compatibility is
an issue rather than the computing capacity. This suggests that while reservoir com-
puting machines might be used for high-performance computing, their natural zone
of application is very likely elsewhere. Such machines could be used for the infor-
mation processing tasks that require deep integration of the information processing
equipment and biological systems.

Acknowledgments This work was supported by Chalmers University of Technology and by the
EuropeanCommission under the contracts FP7-FET-318597 SYMONE andHORIZON-2020-FET-
664786 RECORD-IT.

Appendix

An Alternative Echo State Property Definition

Intuitively, the following definition of the echo state property might be easier to
understand. [5] The following notation is useful to rephrase the original definition
in the ambience of this chapter. Let xt = R(u|xn)(t) denote the configuration of

24For example, consider the problem of on-line time series data analysis and pattern recognition.
This is typical example where the separation property is not a strong requirement. What is needed is
that only particular input patterns drive the system to a different regions of the configuration space
when compared to the background input. It is possible that relatively simple reservoir machines
could handle such tasks.
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Fig. 23.2 An illustration of the state contracting property. Any pair of trajectories start aligning if
one waits long enough. For example, for a fixed pair of initial conditions the trajectories after time
h can be both “covered” with the black box by moving it vertically. Note that the height of the box
δh is fixed beforehand and depends only on h. Likewise, if one waits a bit longer, until t = n + h′
with h′ > h then the size of the box becomes smaller. Note that the gray box is smaller than the
black box. There is always a tendency for each pair of curves to start aligning. The more one waits
the more aligned they become. a The desired behaviour for any pair of trajectories. b The behavior
must hold for any input

the system that was at time n in state xn and that has been exposed to the input
u after that, during the time interval [n : t] ≡ (n, n + 1, n + 2, . . . , t − 2, t − 1, t).
To emphasize that the system has been exposed to the input during h time steps we
write R(u|xn)(n + h). Further, let ‖xt − x ′

t‖S denote the distance between any two
elements xt and x ′

t in S for arbitrary t .25

Definition 7 (state contracting) The network is uniformly state contracting iff there
exists a null sequence26 of bounds δh with h = 0, 1, 2, . . . ,∞ such that for every
input sequence u and every pair of initial conditions xn, x ′

n ∈ S the chosen pair of
trajectories approach each other, i.e. ‖R(u|xn)(n + h) − R(u|x ′

n)(n + h)‖S < δh .

25The notation is implicitly suggesting that S is a vector space but this need not be the case. This
form is used to make such expressions more readable.
26A null sequence is a sequence of positive numbers that converges to zero.
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Note that, in contrast toDefinition 6, this definition does not feature anyknowledge
of an infinite past. For example, there is no need to know what the input looked
like in the interval (−∞ : n) ≡ (. . . , n − 3, n − 2, n − 1). Accordingly, the above
definition is easier to understand since it is “forward oriented” and more aligned
with the human intuition of how dynamic systems behave. Figure23.2 is a graphical
representation of this property. It describes a system that equilibrates in some sense,
i.e. by “locking” onto the input.

The fact that the definition above is equivalent to Definition 6 was proven rig-
orously in the original publication by Jaeger from 2001 [4]. Note that Figs. 23.1
and 23.2 are different. They depict a priori genuinely different behaviors. Thus a
mathematical proof that these two behaviors are equivalent was indeed necessary.
The above definition might be more useful if one wants to check whether a given
physical system has the echo state property.
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Chapter 24
Computational Properties of Cell Regulatory
Pathways Through Petri Nets

Paolo Dini

Abstract The paper develops a Petri net model of a negative feedback oscillator,
Case 2a from Tyson et al. (Curr. Opin. Cell Biol. 15, 221–231, (2003), [48]), in order
to be able to perform the holonomy decomposition of the automaton derived from
its token markings and allowed transitions for a given initial state. The objective is to
investigate the algebraic structure of the cascade product obtained from its holonomy
components and to relate it to the behaviour of the physical system, in particular to
the oscillations. The analysis is performed in two steps, first focusing on one of its
component systems, the Goldbeter–Koshland ultrasensitive switch (Case 1c from
Tyson et al. Curr. Opin. Cell Biol. 15, 221–231, (2003), [48]), in order to verify the
validity of its differential model and, from this, to validate the corresponding Petri
net through a stochastic simulation. The paper does not present new original results
but, rather, discusses and critiques existing results from the different points of view of
continuous and discrete mathematics and stochasticity. The style is one of a review
paper or tutorial, specifically to make the material and the concepts accessible to
a wide interdisciplinary audience. We find that the Case 2a model widely reported
in the literature violates the assumptions of the Michaelis–Menten quasi-steady-
state approximation. However, we are still able to show oscillations of the full rate
equations and of the corresponding Petri net for a different set of parameters and
initial conditions. We find that even the automata derived from very coarse Petri nets
of Case 1c and Case 2a, with places of capacity 1, are able to capture meaningful
biochemical information in the formof algebraic groups, in particular the reversibility
of the phosphorylation reactions. Significantly, it appears that the algebraic structures
uncovered by holonomy decomposition are a larger set than what may be relevant
to a specific physical problem with specific initial conditions, although they are all
physically possible. This highlights the role of physical context in helping select
which algebraic structures to focus on when analysing particular problems. Finally,
the interpretation of Petri nets as positional number systems provides an additional
perspective on the computational properties of biological systems.
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24.1 Introduction

This paper builds on the research of the BIOMICS project,1 whose main objective
is to map the spontaneous order-construction ability of biology to computer science
in the form of a new model of computation that we call Interaction Computing
(IC). The paper provides a brief summary of the conceptual framework for IC as
motivation for what has turned out to be a very challenging effort in interdisciplinary
theory construction involving biology, physics, mathematics and computer science
that, at this point, is only partly completed. The paper does not contain new or
original research results in any of the disciplines it touches, but develops an in-
depth critique and comparison of some of the models and methods used in these
different disciplinary domains for the analysis of two cellular pathways. Thus, the
paper is in part a review of some systems biology work and in part a contribution
to interdisciplinary dialogue that we hope will motivate further research towards the
realization of IC.

By spontaneous order constructionwe refer to ontogenetic processes rather than to
phylogenetic, evolutionary processes, even though the former clearly evolved from
the latter. The motivation comes from Stuart Kauffman’s observation that natural
selection by itself does not seem powerful enough to explain the bewildering variety
of complex life forms we observe, and that some other source of order must be at
play ([25]: Preface). The order construction ability of biological organisms appears
to depend on their ability to maintain “dynamically stable” behaviour in the presence
of external inputs and internal propagation of signals andmaterials at multiple scales.
The ability of biological organisms to react to external signals in a meaningful and
useful way is a consequence of coevolution with the environment itself, implying that
not any environment will do. Adami and co-workers expressed this in an alternative
way through the concept of physical complexity, i.e. the “coding” of the environment
into at least one part of the DNA [1, 2]. From the viewpoint of statistical physics self-
organization can be understood as theminimization of free energy,which is consistent
with the open-system architecture the above description implies. The ‘self’ in self-
organization ismerely the fall towards equilibriumof a system that is continually kept
away from equilibrium by a flow of high-free energy nutrients. That is, in biology
equilibrium is death.

In our view, therefore, self-organization depends on open systems interacting with
a compatible environment in such away that the inputs keep them away from thermo-
dynamic equilibrium, but also that they remain within a dynamically stable range of
possible behaviours. Furthermore, the interactions relate also to the components inter-
nal to the system, whose number can change at run-time depending on the needs of
the moment [38]. Although the concept of ‘dynamical stability’ has not been defined
mathematically and formally, yet, we assume it is related in some way to invariant or
conserved properties of the non-linear system comprising the organism and, in some
cases, also its environment. This explains the reliance on algebraic methods and

1http://www.biomicsproject.eu.

http://www.biomicsproject.eu
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theories in BIOMICS research. The point is that, since algebraic structure underpins
order in physics and since its tell-tale symptom—symmetry—is routinely used as a
“compass” in the development of mathematical models of physical phenomena, we
wonder what computational properties such symmetry may map to. The challenge
so far has been, however, that whereas uncovering conserved quantities in physical
systems is often relatively straightforward, doing so in biological systems is rather
more difficult.

The focus in the BIOMICS project has been on cellular pathways as a useful
starting point given the wealth of pathways available for study at various levels of
detail and accuracy, and of analytical, numerical, and stochastic methods to study
their mathematical models. This paper focuses on the systems biology perspective
as advanced by Uri Alon [3] and John Tyson,2 who advocate a modular approach
whereby cell metabolic and regulatory pathways are understood to be built up by sim-
pler buildingblocks ormodules, justifying an emphasis on the latter before attempting
to understand the global behaviour of the former.

24.1.1 Biological Background

The paper builds on BIOMICS report D1.1.2 [11] and focuses on the analysis of
Case 2a from [48], a system of three ordinary differential equations (ODEs) that
model the Cyclin mitotic oscillator as a negative feedback oscillator with limit cycle
behaviour. Cyclins are proteins whose concentration regulates various phases of the
cell cycle. The type at the root of the Case 2a model is Cyclin B and it is associated
with mitosis, the splitting of the nucleus and of the chromosomes it contains into
two identical copies at the end of the cell division process. Strictly speaking, for
mitosis to take place only one oscillation in Cyclin B concentration is required. The
mechanism by which Cyclin B is created and depleted, however, has been modelled
by a system of equations that can as well start over at the end of the first oscillation,
even though in nature this does not happen (at least, not until the same point in the
next cell cycle is reached, minutes or hours later). As a result, periodic oscillations
can be observed in the model.

The model provided in [48] was originally proposed by Goldbeter in 1991 [21],
based on experimental work by Félix et al. [16] where the presence of a negative
feedback loop had been postulated. Such a loop is set up through the interaction of
three reactions:

• Cyclin B is produced in response to a signal connected to the overall cell cycle.
• The production of Cyclin triggers, after some concentration threshold is reached, the phos-

phorylation of a cyclin-dependent kinase, named ‘cdc2’ for ‘cell division cycle protein
2’. This intermediate process is also modelled by Tyson et al. as Case 1c, and was already
analysed in BIOMICS report D1.1.1 with the method of Lie groups [9].

2http://mpf.biol.vt.edu/lab_website/.

http://mpf.biol.vt.edu/lab_website/
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• When the phosphorylated cdc2 kinase reaches another threshold it, in turn, activates the
phosphorylation of a Cyclin protease that accelerates the degradation of Cyclin B, thereby
ending the first oscillation. This third sub-system is another copy of the Case 1c system.

Negative feedback is one of the main examples of stability in a dynamical system
that is achieved through the interaction between different sub-systems rather than
through the structure of a single component (such as the return force of a spring in
a spring-mass system). What makes this system and other similar regulatory cycles
of the cell interesting is their autonomous character, which appears to originate
from their being embedded in a hierarchy of other regulatory dynamical processes
connected to one another by various feedbacks at the same scale andbetweendifferent
scales. For example, this Cyclin oscillator is itself embedded in, and triggered by, the
cell cycle. Thus, systems such as Case 2a, which is the result of combining 3 sub-
systems, can be seen as a recursive step in the construction of a model of dynamic
biological structure (i.e. whose size as measured by the number of states or number
of subsystems is not constant) as a nested hierarchy of regulatory and metabolic
systems. The foundational work towards the formalization of such a hierarchy is
presented in [38].

We draw a distinction between ‘dynamical’, a term used in dynamical systems the-
ory, a sub-discipline of physics and mathematics, and ‘dynamic’, which is associated
with computer science. Whereas the former indicates the study of the relationship
between forces (causes) and motion (effect)—as opposed to, for example, just the
formal description of motion as in kinematics—the latter indicates more generally
any system or effect that depends on time in some way. Although ‘dynamical stabil-
ity’ has not been definedmathematically, yet, we believe it to be intimately associated
with non-linear behaviour.As a consequence, both the ‘dynamical’ and the ‘dynamic’
concepts are important to BIOMICS and are discussed in this paper.

24.1.2 Petri Nets

Although it is possible to derive a finite-state automaton directly from a given
metabolic or regulatory pathway (see, for example, [14]), in this paper we rely exclu-
sively on Petri nets to effect this mapping. Petri nets have been a reliable and widely
used analytical and modelling tool in systems biology for many years [45, 50]. We
emphasize that Petri nets are not the ideal modelling tool for arriving at IC, since
they tend to model systems in a monolithic way. As will be discussed in Sect. 24.5,
Abstract State Machines (ASMs) [4] are much better-suited for this purpose. Since
ASMs can be seen as generalizations of Petri nets and since Petri nets have been used
very successfully to model (bio)chemical reactions, however, they are an ideal step-
ping stone in the development of a bridging theory between biology and computer
science.

Petri nets are bipartite graphs of ‘places’ and ‘transitions’. Each place corresponds
to a chemical species and can hold an integer number of ‘tokens’ which represent
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discrete quanta of the species in question. In some modelling contexts one token can
represent a single molecule of that species, and in this paper we will rely on both
interpretations.Adistribution of tokens over the (ordered) places of a givenPetri net is
called a ‘marking’. Each transition corresponds to a chemical reaction in a particular
direction (i.e. a single arrow in a chemical reaction equation). Places and transitions
are connected by directed arcs whose weights correspond to the stoichiometry of the
reaction being modelled. If the weight of each of the arcs feeding a transition is less
than or equal to the number of tokens in the place from which that arc departs, the
transition is ‘enabled’. When an enabled transition ‘fires’ tokens disappear from the
places from which the arcs depart, according to the weights of the arcs in question;
and tokens appear in the places on the other side of the transition that fired, again
according to the weights of the outgoing arcs. As long as the weights respect the
stoichiometry, conservation of mass in the different atomic elements will be satisfied,
but Petri nets aremore abstract and their definition does not itself require conservation
of mass—so some care must be exercised when modelling physical systems.

As a given transition fires, the distribution of tokens over the places of the Petri
net changes. With these definitions, the construction of the corresponding finite-state
automaton is straightforward [13], i.e. each marking of a Petri net is a state of its
corresponding automaton. We use the GAP [47] package pn2a [12] to generate the
automaton composed of all the states reachable from a given initial state or, in some
cases, all the possible states of a given Petri net.

Using mass-action kinetics, it is straightforward to draw the Petri net correspond-
ing to a given system of chemical reactions in a way that respects the different rate
constants as well as the stoichiometry [45]. At the same time, the same chemical
reactions can be used to derive the ordinary differential equations (ODEs) for the
time rates of change of the various chemical species, also using mass-action kinet-
ics. Based on Gillespie’s work [19, 20], we know that the token distributions in the
places of a Petri net over a fixed time window, calculated with a stochastic simulation
method and averaged over r runs, converge to the numerical solution of the corre-
sponding system of ODEs as r → ∞. However, it is a known fact that ODE models
derived from mass-action kinetics cannot describe systems with low copy numbers
or when particles mix poorly. While the Petri net approach advocated here does not
suffer from the poor mixing (by construction), the low copy number problem might
be still an issue. In this context, it might be possible to use ODE models, but these
have to be extended in a special way to account for the presence of noise and low
copy numbers. For an example of how this can be done see [26–30] and references
therein. Although in this paper we do not address this point in detail, we do point out
where a generalization based on stochastic methods appears to be necessary to obtain
more accurate ODE-based systems biology models. We use our own stochastic sim-
ulation method coded in Mathematica, based on [44], which has been verified with
the program Netbuilder [6] and was previously utilized for a similar problem [8].
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24.1.3 Computational Motivation

The motivation for studying this problem is to see whether the dynamical properties
of the biological system chosen can be related to the computational properties of
its discrete, finite-state automaton model. This can be understood in two conceptual
steps of increasing abstraction. First, we construct a Petri net of the system and regard
the places of the Petri net as the digits of a positional number system whose base is
the capacity of the Petri net (assumed constant for all places).3 Each number in such
a system is given by a different marking of the Petri net, so that transitions between
markings can be seen as elementary addition and subtraction operations.

Second, this then prepares the ground for a much more abstract conceptual and
formal step, i.e. the study of the algebraic properties of the same finite-state automa-
tonmodel through its holonomy decomposition [51], whichwas inspired by themore
general Krohn–Rhodes theorem [31]. To calculate the holonomy decomposition we
use the GAP-based [47] software package SgpDec [15]. Although the proof of the
holonomy (or of the Krohn–Rhodes) theorem provides one form of “understanding”,
and arguably the deepest possible, from an applied perspective it is useful to focus
on any computational properties that the algebraic structure might uncover. Here we
encounter a significant challenge, since either theorem provides complete structural
information about a cascade of machines4 that emulates the original automaton, but
does not provide any dynamic information about possible algorithms such a cascade
might compute. This is not surprising, given the generality of the result: if the cascade
emulates the original automaton, clearly it can emulate any of its algorithms. How-
ever, it leaves unanswered the biologically, physically, and computationally inter-
esting question whether or not the observed behaviour of the system the automaton
models is related in any way to the algebraic structure of that automaton.

Furthermotivation for this question is providedwhenwe dig deeper intowhat kind
of structure the holonomy theorem uncovers. As discussed more fully in [42], each
component of the decomposition is either a set of irreversible resets5 or a group of
(by definition invertible) permutations, both acting on subsets of states. The fact that
in the decomposition of any automaton the number of groups is usually much smaller
than the number of (sets of) irreversible transformations matches our experience of
biological systems,with reversible processes and symmetries providing a “backbone”
of ordered structure aroundwhich open-systemdissipative and entropic processes are
organized. In computing, too, we find mostly irreversible processes such as memory

3More precisely, if the capacity of the Petri net is 3, for example, meaning that each place can hold
up to 3 tokens, then the base is 3 + 1 = 4 since the absence of tokens in a given place corresponds
to a 0 digit for that place. So for a constant-capacity Petri net the base for this scheme is always
given by the capacity +1.
4Either theorem shows thatmore than one cascade ofmachines can emulate the same automaton, i.e.
the decomposition is not unique. Uniqueness up to isomorphism is only guaranteed in the analogous
and immensely simpler case of the decomposition of finite groups, known as the Jordan–Hölder
theorem of elementary finite group theory.
5A reset is a constant map from two or more states to a single state.
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overwrites interspersed with some symmetry, but we are still far short of being able
to emulate the spontaneous order-construction ability of biology.

The irreversible resets and reversible groups acting on subsets of states as estab-
lished by the holonomy theorem can be further decomposed into two-states resets
(flip-flops or 1-bit memory resets) and simple non-abelian groups (SNAGs), thus
recovering the more fundamental Krohn–Rhodes theorem [31]. Since flip-flops and
SNAGs cannot be decomposed further, they play an analogous role in the decom-
position of automata to the role that prime numbers play in the factorization of the
integers—hence the ‘prime decomposition’ name of the theorem.

Focusing for convenience on holonomy decomposition, the question of its com-
putational significance for a given automaton has been discussed many times previ-
ously (see for instance [8, 34–36, 42]) but only some partial conclusions have been
reached so far. For example, in the 3-Queens puzzle presented and analysed in detail
in [42], the higher levels of the decomposition embody the history of previousmoves,
whereas the lowest level encodes the number of queens on the board for the current
state. This paper aims to add to that discussion by invoking an intriguing perspective
that was proposed by Rhodes in the 1960s [40] and according to which either kind of
decomposition is referred to as a ‘coordinatization’ of the given problem. This term
makes sense when viewed from the physics or engineering perspectives, where it is
well-known that the choice of variables canmake a huge difference in the complexity
of its mathematical model, and therefore also in whether a solution can be found or
not.6 The fact that automata decompositions by Krohn–Rhodes theory are not unique
does not give much reassurance in how easy or difficult the best coordinatization of
a problem might be. However, it still makes it possible to relate this rather abstract
theory to the first conceptual step in our discussion, above. Namely, the holonomy
decomposition of an automaton can be interpreted as an “expansion” of its states
into an abstract generalization of a positional number system of variable base, again
implying that a change of state of a physical system can be viewed as an elementary
“addition” in this abstract positional “number” system.

The computationalmotivation, therefore, is to seewhether algebraic properties can
provide a bridge between dynamical and algorithmic behaviour of the same system as
modelled through the different viewpoints of continuous and discrete mathematics,
and to use the coordinatization or number system perspective as a guide and formal
context for this exploration. The paper reports on the partial progress achieved so
far towards the analysis of Case 2a. Namely, whereas Case 2a is too large for the
discrete algebraic analysis, this could be performed for Case 1c. Since no conclusive
general results have been found so far by relating these different views of the system,
they should be seen mainly as insights of pedagogical relevance for further study and
that may help students and interdisciplinary researchers relate physical behaviour to
computational behaviour at different levels of abstraction.

6The search for the right variables of a problem was vigorously pursued in the empirical discipline
of hydraulics and hydrodynamics in the 19th Century, which led to method of similarity analysis
which was then later shown to be a branch of group theory. In other words, looking for the right
variables of a problem and looking for its symmetries are often one and the same problem.
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24.1.4 Overview

The paper summarizes the analysis of Case 1c and Case 2a, which D1.1.1 [9] and
D1.1.2 [11] provide in full detail. For Case 2a we encountered a problem in that
the ODEs used in [48] (originally derived in [21]) are not an accurate model of the
biochemistry for the physical concentrations reported in [48]. These equations were
derived using the Michaelis–Menten (MM) approximation, but the numerical values
of the variables reported for this system in [48] violate the conditions of validity of
this approximation. Since the MM approximation is very commonly used in systems
biology, a significant amount of effort was therefore spent investigating its limits
of validity, in an attempt to gauge the quality of the approximation afforded by the
model used in [48] and, secondly, to understand its relationship to the Petri net model
of the same system.

The limits of the validity of the MM approximation were investigated for the
simpler Case 1c system. We found that the quasi-steady-state (QSS) approximation
used in [48] to derive the three Case 2a ODEs can be significantly improved by
employing the ‘total QSS’ approximation, or tQSS [5]. The tQSS ODEs are more
complex algebraically than the QSS version, but still simpler as a dynamical system
than the full rate equations for this problem. Since the Petri net models can be related
directly to the full rate equations, if follows that for Case 2a the discrete behaviour
can only be compared to the solution of the full rate equations or, at most, of the
tQSS model, but certainly not to the model provided by [48].

The paper then goes on to analyse the full Case 2a problem with a Petri net
that builds on the insights gained in the Case 1c analysis. We do not replicate the
linear stability analysis of Case 2a, which can be found in [11] and which does
not offer any surprises: the Lyapunov exponent is negative, compatibly with stable
limit-cycle behaviour. Finally, the paper uses the Petri nets of the two systems to
obtain the corresponding automata. We find that even a very coarse Petri net with
places of capacity 1 (whose markings correspond to binary numbers whose number
of digits equals the number of places of such a net) is able to capture meaningful
biochemical information. Significantly, it appears that only a very small subset of
the algebraic structures found through holonomy decomposition corresponds to the
behaviour normally observed for this reaction.

24.2 Case 1c

In preparation of the analysis of Case 2a fromTyson et al. [48], this section analyses a
system that is formally identical to Case 1c, which was already analysed numerically
and analytically via Lie groups in BIOMICS report D1.1.1 [9]. This is the Goldbeter
and Koshland’s (G–K) ultrasensitive switch [23], which has been analysed exten-
sively since it was first published in 1981 [7, 22, 24, 48].
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Although a Lie symmetry was found that integrates the differential equation for
this system, there are two reasons for not reporting that result in this paper. First, the
equation we integrated is the form given by Tyson et al. and implied by Goldbeter
and Koshland, which relies on the MM approximation. Since Case 2a violates the
conditions required by this approximation, the analysis of Case 1c subject to this
approximation is not relevant to Case 2a. Second, in the application of the Lie group
method the last step involves the inversion of a function t(y) to obtain the desired y(t),
where t is time and y is the dependent variable of the ODE in question. The function
t(y) given by the symmetry we found for this problem is not invertible analytically,
meaning that we could not find a full analytical solution in closed form even for Case
1c under the MM approximation.

Therefore, in the first part of the paper we examine the simplifying assumptions
commonly made for MM systems as they apply to Case 1c. The careful retrac-
ing, discussion, and double-checking of the derivations that is presented in detail in
[9, 11] and summarized here is a consequence of some minor inconsistencies that
we found in some of these publications [7, 48].7

After a recap of Petri nets, Sect. 24.2.1 provides some context for the problem
being studied in the form of background on the analysis of the two coupled enzy-
matic reactions from the literature and within BIOMICS. Section24.2.2 explains the
two main approximations for this system, the Michaelis-Menten quasi-steady-state
approximation and the ‘total quasi-steady-state’ approximation. In order to show their
effects in detail, Sect. 24.2.2.1 derives both approximations for the single-enzyme
system. The next two Sects. 24.2.2.2 and 24.2.2.3, do the same for the 2-enzyme
system, and Sect. 24.2.3 presents a comparison between the various models and the
stochastic Petri net simulations for Case 1c.

24.2.1 Problem Context

The G–K switch [23] is based on the following two coupled enzymatic reactions for
the phosphorylation and dephosphorylation of a protein Y :

[Y ] + [X] a1�
d1

[YX] k1−→ [Yp] + [X]

[Yp] + [Z] a2�
d2

[ZYp] k2−→ [Y ] + [Z],
(24.1)

where the subscript ‘p’ indicates the phosphorylated state, X and Z denote the
enzymes for the forward and backward reactions, respectively, ai is the ‘associa-
tion’ rate constant, di is the ‘dissociation’ rate constant, and ki is the ‘catalysis’ rate
constant. Other symbols often used for these constants are shown in Table24.1. In

7One of these inaccuracies is present in our own work: it appears in [9] and was explained and
rectified in [11].
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Table 24.1 Some of the common symbols for the Michaelis-Menten chemical reaction rate con-
stants

Notation 1 Notation 2 Notation 3 Notation 4 Etc.

Association rate a k+ k1 k1 . . .

Dissociation rate d k− k−1 k2 . . .

Catalytic rate k kcat k2 k3 . . .

this paper we use consecutive number subscripts such as Notation 4 (but not neces-
sarily starting at 1) because it makes it easier to relate the chemical reaction equations
to the Petri net diagrams.

As discussed in D1.1.1 [9], the switch behaviour refers to the rapid rise in con-
centration exhibited by the phosphorylated variable Yp when the ratio of the total
concentration of the forward enzyme XT to the reverse reaction enzyme ZT increases
beyond a certain threshold. The so-called signal-response curve is a steep sigmoid
when the enzymes are saturated, i.e. when their concentration is much smaller than
the substrate’s. The signal-response curve corresponds to a family of steady-state
responses for this system, since the total amounts of enzyme are constant for any
one analysis, but it is useful to think of this system as a module in a larger system
in which one or both of the enzymes are synthesized by some other module. This
is precisely what Case 2a does, where the switch-like behaviour serves to amplify
the growth of the compounds in the downstream modules, which are arranged in a
closed loop. The result is a sustained oscillation or limit cycle—at least in the case
of the ODE model used in [48] for Case 2a.

However, in the analysis of Case 2a, we found that the Petri net does not oscillate
for the same initial conditions and parameter values that cause the ODE system to
oscillate, and exhibits a damped rather than sustained oscillation for a different set
of values (shown and discussed below). This is worrying, because it implies that
the oscillation may be an artifact that partly depends on the approximations made
to arrive at the Case 2a ODEs. This is what motivated a careful analysis of the
approximations that have been developed for these kinds of systems, especially in
light of the fact that they are widely used in systems biology [17, 39].

Figure24.1 shows the Petri net corresponding to this example. We constructed
this Petri net starting from the diagram presented by Nabli et al. [33] to model the
Michaelis-Menten reaction. Starting from the rate equations obtained fromEq. (24.1)
and retracing the derivation outlined by Goldbeter and Koshland [23], in D1.1.1 [9]
we showed how to derive the single ODEwhich in [48] appears as Case 1c (although
with different variable names). The full rate equations derivable fromEq. (24.1) using
mass-action kinetics and corresponding to Fig. 24.1 are:

Ẋ = −k1XY + (k2 + k3)[YX] X(0) = XT (24.2)
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Fig. 24.1 Petri net of two coupled enzymatic reactions catalyzing phosphorylation and dephos-
phorylation of a protein Y . This system is one component of the more complex Case 2a system

Ẏ = −k1XY + k2[YX] + k6[YPZ] Y(0) = 0 (24.3)

˙[YX] = k1XY − (k2 + k3)[YX] [YX](0) = 0 (24.4)

Ż = −k4ZYp + (k5 + k6)[YpZ] Z(0) = ZT (24.5)

Ẏp = k3[YX] − k4ZYp + k5[YpZ] Yp(0) = YT (24.6)

˙[YpZ] = k4ZYp − (k5 + k6)[YpZ], [YpZ](0) = 0 (24.7)

where we have dropped most of the square brackets for notational expediency since
all variables are assumed to be in units of molar concentration (moles/unit volume).
For the enzyme-substrate complexes we do retain the square brackets, to distinguish
them from the product of the two species they are composed of.

Using the notation used here, Eq. (3.128) in [9], which we derived from the above
rate equations, takes the following form:

Ẏp = k1XT
Y

km1 + Y
− k2ZT

Yp
km2 + Yp

, (24.8)

where the subscript ‘T ’ (or ‘t’ in Fig. 24.1) indicates total amount (in this case of
each enzyme), and the MM constants are given by

kmi = di + ki
ai

, i = 1, 2. (24.9)
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The same constants are shown in Fig. 24.1 in terms of the notation of that figure,
where the subscript of each rate constant equals the number of the corresponding
transition.

Correcting a minor oversight in Tyson et al.’s paper [48] that is discussed in depth
in [11], the ODE for Yp that should have been used for Case 1c in [48] is

Ẏp = k1XT
YT − Yp

km1 + YT − Yp
− k2ZT

Yp
km2 + Yp

, (24.10)

whichwe use in the rest of this report.We now discuss briefly the two approximations
of the full rate equations (24.2)–(24.7) found in the literature and used to arrive at
Eq. (24.10) (QSS) and to an intermediate system (tQSS).

24.2.2 Assumptions and Approximations

In the derivation leading up to Eq. (24.10) the same two assumptions usually used
to derive the MM equation are made. The first is the ‘standard’ quasi-steady state
(QSS1) assumption, namely that the rate of change of the enzyme-substrate complex
is zero. Referring to Fig. 24.1, thismeans that the “outflow”, (k2 + k3)[YX], equals the
“inflow”, k1XY ; and likewise for the reverse (dephosphorylation) reaction. The sec-
ond assumption is not generally considered part of QSS but we introduce it explicitly
here because the form of the ODEs used for Case 1c and Case 2a in [48] requires it.
The assumption is that the amount of substrate-enzyme complex is so small relative
to the amount of substrate to be negligible (QSS2).

The justification forQSS1 depends on the requirement that the enzyme is saturated,
i.e. that the concentration of substrate is much higher than the enzyme concentration.
Clearly the same condition also renders QSS2 valid. In fact, under this condition the
available enzymes will be quickly sequestered by the substrate to form the complex,
after which it (the complex) will not be able to vary much since, as soon as it splits
into a product plus enzyme (catalytic reaction) or back into a substrate plus enzyme
(dissociation reaction), the enzyme will quickly be sequestered again by some other
substrate molecule.

Segel [46] rationalized QSS1 in terms of the different time-scales at which the
different reactions of theMMsystemprogress. Thatworkwas further developed a few
years later by Borghans et al. [5] who introduced a better approximation, called the
total quasi-steady state (tQSS) approximation. The QSS1 and tQSS approximations
were then examined in detail again by Tzafriri [49], and a few years later by Ciliberto
et al. [7], who discuss specifically the G–K [23] ultrasensitive switch.

Interestingly, in their formulation of the model corresponding to the QSS approx-
imation Ciliberto et al. [7] do not make use of the second assumption. As a conse-
quence, their QSS model is different from the form normally found in the literature.
Therefore, we now analyse in detail the QSS and tQSS approximations as they apply
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to the single-enzymeMM system before discussing these approximations for the full
rate equations (24.2)–(24.7) of the 2-enzyme G–K ultrasensitive switch.

24.2.2.1 QSS and tQSS Approximations for the Single-Enzyme
Reaction

QSS Derivation. In the standard MM derivation, the rate equations for the substrate
and the enzyme-substrate complex are:

Ẋ = −k1XY + (k2 + k3)[YX] X(0) = XT (24.11)

Ẏ = −k1XY + k2[YX] Y(0) = YT (24.12)

˙[YX] = k1XY − (k2 + k3)[YX] [YX](0) = 0 (24.13)

Ẏp = k3[YX] Yp(0) = 0 (24.14)

Adding (24.11) and (24.13) leads to the conservation law for the enzyme:

XT = X + [YX]. (24.15)

Adding (24.12)–(24.14) leads to the conservation law for the substrate:

YT = Y + [YX] + Yp. (24.16)

Assuming that (QSS1)

˙[YX] = 0 (24.17)

in (24.13), leads to the familiar MM expression for the complex:

[YX] = XT
Y

km + Y
, (24.18)

such that (24.14) becomes

Ẏp = k3XT
Y

km + Y
. (24.19)

Differentiating (24.16) and making use of the first assumption (24.17) again leads to

Ẏ = −k3XT
Y

km + Y
, Y(0) = YT . (24.20)

This is all that’s needed for the model of the MM system with the standard QSS1
approximation. However, if we want to calculate the time-evolution of the phospho-



622 P. Dini

rylated product, then we need to express (24.19) in terms of Yp only. Solving for Y
from (24.16) does not work since [YX] appears on the right-hand side (see below),
so we introduce the second assumption, QSS2. If [YX] is negligible compared to YT ,
then from (24.16) we have

Y = YT − Yp (24.21)

such that the MM time-evolution of the product under QSS1 + QSS2 can be found
by integrating:

Ẏp = k3XT
YT − Yp

km + YT − Yp
, Yp(0) = 0. (24.22)

Following [46] or [5, 11] shows that the most stringent condition to guarantee the
validity of the QSS approximation is

�Y

YT
= ε = XT

YT + km
� 1. (24.23)

tQSS Derivation. An intuitively accessible derivation of the tQSS approximation
can be obtained by noting that when [YX] is not negligible we can use (24.16) to
eliminate Y from (24.18) in favour of Yp and [YX]:

[YX] = XT
YT − Yp − [YX]

km + YT − Yp − [YX] , (24.24)

which leads to a quadratic for [YX]:

[YX]2 − (km + XT + YT − Yp)[YX] + XT (YT − Yp) = 0. (24.25)

Its solution is:

[YX] = 1

2
(km + XT + YT − Yp)

− 1

2

√
(km + XT + YT − Yp)2 − 4XT (YT − Yp), (24.26)

where we have used the negative branch of the square-root [5]. This expression
for [YX] is the analogue for the tQSS approximation of Eq. (24.18) for the QSS
approximation.8 In fact, we can now use (24.26) in (24.14) to obtain the ODE that
corresponds to the tQSS approximation:

8Strictly speaking, for theQSS2 assumption, since bothQSS and tQSS rely on theQSS1 assumption.
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Ẏp = k3
1

2
(km + XT + YT − Yp)

− k3
1

2

√
(km + XT + YT − Yp)2 − 4XT (YT − Yp). (24.27)

We can see where the name ‘tQSS’ comes from by following Borghans et al. [5],
who derive (24.27) by introducing a new variable:

Ŷ = Y + [YX], (24.28)

which lumps together the variable that changes on a fast time-scale ([YX]) and one
of those that changes on a slow time-scale (Y ) in such a way that the total substrate
Ŷ cannot be depleted by the formation of the complex. As explained by Borghans
et al. ‘Because the validity of the classical QSSA depends strongly on negligible
initial depletion of substrate [...], this simple variable change is expected to have an
important effect’ [5].

Because the new approximation that ensues involves the total amount of substrate,
it was dubbed ‘total QSS’ or tQSS.9 Using (24.15) and (24.28), Eqs. (24.12) and
(24.13) become

˙̂Y − ˙[YX] = −k1(XT − [YX])(Ŷ − [YX]) + k2[YX] Ŷ(0) = YT (24.29)

˙[YX] = k1
[
(XT − [YX])(Ŷ − [YX]) − km[YX]

]
[YX](0) = 0. (24.30)

Adding,

˙̂Y = −k3[YX] Ŷ(0) = YT . (24.31)

It is worth noting that so far we have only introduced a new variable but have not
changed the character of the equations. The functions Y and [YX] obtainable from
the solution of (24.31) and (24.30) are no different from those obtained with the full
rate equations (24.11)–(24.14).

Setting (24.30) equal to zero (as for QSS1) we obtain a quadratic in [YX]:

[YX]2 − (km + XT + Ŷ)[YX] + XT Ŷ = 0, (24.32)

whose solution is

[YX] = 1

2
(km + XT + Ŷ) − 1

2

√
(km + XT + Ŷ)2 − 4XT Ŷ , (24.33)

9Confusion may be caused by the use of ‘total’ in the name of this approximation to indicate only
Y + [YX], whereas in (24.16) we used YT for all the species that involve Y in some way. The former
is a subjective choice for the name of a variable that makes sense in reactions where the product is
actually a different molecule rather than recognizably the same molecule in a phosphorylated state,
as here.
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Note that, using (24.16),

YT − Yp = Y + [YX] = Ŷ , (24.34)

such that (24.33) is the same expression as (24.26). Substituting (24.33) into (24.31)
we obtain:

˙̂Y = −k3
1

2
(km + XT + Ŷ)

+ k3
1

2

√
(km + XT + Ŷ)2 − 4XT Ŷ , Ŷ(0) = YT , (24.35)

fromwhose solution [YX](t), Y(t), and Yp(t) can be recovered using (24.33), (24.28),
and (24.34), respectively. Differentiating (24.34) makes it clear that (24.35) is the
same ODE as (24.27).

There is one remaining point to be clarified, in that the initial condition for Eq.
(24.35) is inconsistent with the value of [YX] given by (24.33) at t = 0, which is not
zero when Ŷ = YT . This can be explained by noting that the initial condition for the
ODE (24.35) is derivable from the full rate equations under the change of variable
(24.28) and is therefore correct. It is (24.33) that is an approximation which, although
better than the QSS equivalent (24.18), gets worse the closer one gets to t = 0.

Figure24.2 shows a comparison of the solution found with the full rate equations
with these two approximations. As the conditions approach the requirement (24.23)
the QSS1 and tQSS approximations converge to the exact solution.When the enzyme
concentration is of the samemagnitude as the substrate’s, on the other hand, the tQSS
approximation does a little better. Figure24.3 shows the same trend for theYp product,
for which the QSS2 assumption was also used in order to arrive at Eq. (24.22).

Fig. 24.2 Numerical solution of the time evolution of the substrate, enzyme, and substrate-enzyme
complex for the single-enzymeMichaelis-Menten system for two different initial enzyme/substrate
ratios. Left ε = XT/(YT + km) = 0.5. Right ε = XT/(YT + km) = 0.1667. Solid full rate equations
(Eqs. (24.12)–(24.14)); dashed QSS1 approximation (Eq. (24.20)); dot-dashed tQSS approximation
(Eq. (24.35)). k1 = 10, k2 = 5, k3 = 5, km = 1, YT = 1
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Fig. 24.3 Numerical solution of the time evolution of the phosphorylated product for the
single-enzyme Michaelis-Menten system for two different initial enzyme/substrate ratios. Left
ε = XT/(YT + km) = 0.5. Right ε = XT/(YT + km) = 0.1667. Full rate equations: Eqs. (24.12)–
(24.14); QSS1 + QSS2: Eq. (24.22); tQSS: Eq. (24.27). k1 = 10, k2 = 5, k3 = 5, km = 1, YT = 1

24.2.2.2 QSS Approximation for Coupled 2-Enzyme Reactions

For the 2-enzyme ultrasensitive switch, the ODE for Yp that corresponds to the
QSS1 + QSS2 approximation, shown above as Eq. (24.10), is obtained by using
(24.21) in (24.8). This ODE corresponds to Fig. 24.1 and Eq. (24.1), but only as long
as (24.23) is true. Since in Case 2a the concentrations of the enzymes are not much
smaller than the concentrations of the substrates, this approximation is clearly not
justified. It was because of the fact that the Case 2a system of ODEs relies on both
the QSS assumptions when clearly neither is justified that the problem of verifying
the Petri net of Fig. 24.1, which corresponds to the full rate equations (24.2)–(24.7),
became more challenging than it had seemed at first.

Ciliberto, Capuani and Tyson [7] cite the above form of the Goldbeter and
Koshland ODE for Yp (Eq. (24.10)) but then, oddly, use a different form for what they
call the QSS approximation of the full rate equations (24.2)–(24.7). Their derivation
can be reconstructed as follows. Starting with the following equation for the conser-
vation law of the substrate,

YT = Y + [YX] + Yp + [YpZ], (24.36)

which is obtained by adding (24.3), (24.4), (24.6), and (24.7), it can be used to
eliminate Y from the equation for the [YX] complex,

[YX] = XT
Y

km1 + Y
= XT

YT − [YX] − Yp − [YpZ]
km1 + YT − [YX] − Yp − [YpZ] , (24.37)

as we did above for (24.18) to obtain (24.24). However, if Yp is eliminated from the
corresponding equation for [YpZ],

[YpZ] = ZT
Yp

km2 + Yp
, (24.38)
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also using (24.36), the resultwill be a systemof two simultaneousquadratic equations
each involving both complexes [YX] and [YpZ], whose explicit solution does not
appear possible. Therefore, Ciliberto et al. eliminated just Y but kept (24.38) as it
is. In fact, their QSS model appears to model tQSS in the forward direction (for Y )
and QSS in the backward direction (for Yp). The result is more accurate than QSS
as generally defined (i.e. Eq. (24.10)) but less accurate than tQSS. The governing
equations are algebraic except for the ODE for Yp:

X = XT − [YX] (24.39)

Y = YT − [YX] − Yp − [YpZ] (24.40)

[YX] = 1

2

{
(km1 + XT + YT − Yp − [YpZ])

−
√

(km1 + XT + YT − Yp − [YpZ])2 − 4XT (YT − Yp − [YpZ])
}

(24.41)

Z = ZT − [YpZ] (24.42)

Ẏp = k3[YX] − k6[YpZ] (24.43)

[YpZ] = ZT
Yp

km2 + Yp
, (24.44)

where the initial condition for Yp is the same as for Eq. (24.6). The initial values for
the other variables are given by substituting Yp(0) = YT in the algebraic equations
shown.

To make sure we understand the approximations discussed so far, Fig. 24.4 shows
a comparison between the solution to the full rate equations and the system above.
In reference to the switching behaviour, this example corresponds to the very middle
of the switch, i.e. to the case S = XT/ZT = 1. Thus, at equilibrium the product Yp
is neither high nor low. Most of the solution curves calculated with Ciliberto et al.’s

Fig. 24.4 Comparison of the numerical solutions of the time evolution of all the variables of the G–
K switch (Case 1c) as calculated with the full rate equations (24.2)–(24.7) (solid) and the Ciliberto
et al.’s [7] system (24.39)–(24.44) (dashed). k1 = 25, k2 = 0.25, k3 = 1, k4 = 25, k5 = 0.25,
k6 = 1, km1 = 0.05, km2 = 0.05,Y(0) = 0,X(0) = XT = 1, [YX](0) = 0,Yp(0) = YT = 4,Z(0) =
ZT = 1, [YpZ](0) = 0
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system are close to the exact solution from the full rate equations, as wemight expect
given that the ratio ε1 = XT/(YT + km1) = ε2 = ZT/(YT + km2) = 1/4.05 = 0.247.
The curves for [YX] and, to a much smaller extent, Y start negative, which is a bit
worrying. However, any approximation that relies on the QSS1 assumption in some
way is not expected to be accurate in the initial transient region of the system’s
response. Finally, the fact that Eq. (24.36) is satisfied by both solutions is easy to see
as t → ∞ (1 + 1 + 1 + 1 = 4).

Figure24.5 shows a comparison of three sets of solution curves, for a completely
different set of parameters: the full rate equations (24.2)–(24.7), Ciliberto et al.’s [7]
system (24.39)–(24.44), and the standard QSS1+ QSS2 ODE (24.10).

This example is interesting because the values of the km constants in the two direc-
tions are different. In the forward direction, ε1 = XT/(YT + km1) = 20/(50 + 1) =
0.392; in the backward direction, ε2 = ZT/(YT + km2) = 200/(50 + 100) = 1.333,
so we would expect the QSS approximations not to be very accurate, especially in
the backward direction. This example corresponds to the OFF position of the switch,
with XT/ZT = 1/10, as can be seen by the low equilibrium value of Yp. The curves
corresponding to the QSS approximation are significantly different from the exact
(full rate equations) solution in the approach to equilibrium, although with the excep-
tion of the curve for Y they converge to the correct values. Ciliberto’s et al.’s solutions
similarly show significant deviations in the initial transient region, especially [YX]’s
initial negative value, but they all converge to the correct equilibrium values. The
gross inaccuracy of the QSS Y curve is simply a consequence of the QSS2 assump-
tion, embodied in Eq. (24.21), and was probably the motivation for using the tQSS
approximation in the forward direction.

Fig. 24.5 Comparison of the numerical solutions of the time evolution of all the variables of the G–
K switch (Case 1c). The full rate equations (24.2)–(24.7) are compared to the standardQSS1 +QSS2
approximation from (24.10) and to theQSSapproximation (24.39)–(24.44) from [7],which amounts
to QSS1 only in our notation and from which we have taken the initial conditions and parameter
values: k1 = 0.1, k2 = 0.05, k3 = 0.05, k4 = 0.0009, k5 = 0.005, k6 = 0.085, km1 = 1, km2 = 100,
Y(0) = 0, X(0) = XT = 20, [YX](0) = 0, Yp(0) = YT = 50, Z(0) = ZT = 200, [YpZ](0) = 0
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The last plot, on the bottom right, is a ‘phase diagram’ because it involves only
the dependent variables. The curves are parametrized by time, with t = 0 on the
right end of both curves shown and the common equilibrium point on the far left.
The black curve is the exact solution, whereas the blue curve is the solution obtained
with Eqs. (24.39)–(24.44). The latter shows how the QSS approximation models
the fast initial transient as a discontinuous vertical jump, followed by a gradual
descent towards equilibrium, increasingly approaching the exact solution. The same
diagram in Ciliberto et al.’s article [7] shows that the time-steps of these two curves
are not uniform, with the solution spending most of the time on the far left, which is
consistent with the other diagrams in this figure. Interestingly, the curve for Ciliberto
et al.’s solution is indistinguishable from the one for the QSS solution, which is why
only one of them is drawn here. The reason can be surmised by looking at the plot
immediately above the phase diagram: here we can see that even though the two
solutions (dashed and long-dashed) for [YpZ] and Yp are different, their ratios appear
also to the naked eye to be very similar.

We now derive the ODEs for the tQSS approximation of the rate equations (24.2)–
(24.7) for the chemical reaction equations (24.1).

24.2.2.3 tQSS Approximation for Coupled 2-Enzyme Reactions

The power of the tQSS approximation developed by Borghans et al. [5] can now be
appreciated better. Define

Ŷ = Y + [YX] = YT − Ŷp (24.45)

Ŷp = Yp + [YpZ] = YT − Ŷ , (24.46)

where YT is given by (24.36). As in the derivation that led to ODE (24.35) for the
single-enzyme reaction, if we set ˙[YX] = 0 and ˙[YpZ] = 0, we get the quadratics

[YX]2 − (km1 + XT + Ŷ)[YX] + XT Ŷ = 0 (24.47)

[YpZ]2 − (km2 + ZT + Ŷp)[YpZ] + ZT Ŷp = 0, (24.48)

which are now decoupled and from which we can therefore obtain the functions for
the complexes:

[YX] = 1

2
(km1 + XT + Ŷ) − 1

2

√
(km1 + XT + Ŷ)2 − 4XT Ŷ , (24.49)

[YpZ] = 1

2
(km2 + ZT + Ŷp) − 1

2

√
(km2 + ZT + Ŷp)2 − 4ZT Ŷp. (24.50)

Replicating the derivation of Eq. (24.35), the two ODEs for the tQSS approximation
are obtained as
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˙̂Y = −k3[YX] + k6[YpZ] Ŷ(0) = 0 (24.51)

˙̂Yp = −k6[YpZ] + k3[YX] Ŷp(0) = YT . (24.52)

Substituting (24.49) and (24.50) into Eqs. (24.51) and (24.52) gives two coupled

ODEs for ˙̂Y and ˙̂Yp. The remaining two equations for the tQSS approximation are
just the conservation laws for the two enzymes:

XT = X + [YX] (24.53)

ZT = Z + [YpZ]. (24.54)

The tQSS model used by Ciliberto et al. [7] looks different but in fact is the same as
the above. The difference is that instead of using the ODE for Ŷ , Eq. (24.51), they
use the conservation law, Eq. (24.36). This is equivalent since adding (24.51) and
(24.52) gives (24.36) after an integration step. The rest of Ciliberto et al.’s equations
for the tQSS model are the same as the above.

Finally, (24.44) is indeed a QSS and not a tQSS approximation, which can be
seen by substituting Yp + [YpZ] for Ŷp in (24.48):

[YpZ]2 − (km2 + ZT + Ŷp)[YpZ] + ZT Ŷp = 0

[YpZ]2 − (km2 + ZT + Yp + [YpZ])[YpZ] + ZT (Yp + [YpZ]) = 0

−km2 [YpZ] − Yp[YpZ] + ZTYp = 0

[YpZ] = ZT
Yp

km2 + Yp
,

which is the same as (24.44).10 In other words, Ŷp hides a “piece” of [YpZ], and
the “remainder” of this variable happens to satisfy a quadratic. When this piece is
released, the function for [YpZ] reverts to (24.44). In fact, (24.44) is the origin of
the negative values for [YX] and Y in the transient region, under the model (24.39)–
(24.44), if we trace its effect through the other equations of that model.

Figures24.6 and 24.7 show that the tQSS approximation is practically indistin-
guishable from the exact solution. The plots are shown to different magnifications
to make it easier to see the very slight difference between the curves. The details of
the [YpZ] are not visible in Fig. 24.7b, but its behaviour is practically a mirror image
of Z about 0.5.

Figure24.8 shows a comparison between the solutions to the full rate equations
and the QSS equations, as in Fig. 24.5, and the tQSS equations (24.45)–(24.50).
Consistently with the different values of the QSS test (24.23) in the two directions,
the agreement in the forward direction is significantly better than in the backward
direction.

10As expected, the same result is obtained by substituting Yp + [YpZ] for Ŷp in (24.50).
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Fig. 24.6 Comparison of the numerical solutions of the time evolution of all the variables of the
G–K switch (Case 1c) as calculated with the full rate equations (24.2)–(24.7) (solid) and the tQSS
approximation (24.49)–(24.54) (dashed). The plot on the right shows the same data but only in the
first second, to show how tQSS approximates the rapid decrease in Yp by a discontinuous jump at
t = 0. k1 = 25, k2 = 0.25, k3 = 1, k4 = 25, k5 = 0.25, k6 = 1, km1 = 0.05, km2 = 0.05, Y(0) = 0,
X(0) = XT = 1, [YX](0) = 0, Yp(0) = YT = 4, Z(0) = ZT = 1, [YpZ](0) = 0

Fig. 24.7 Same conditions as previous figure but at greater vertical and horizontal magnification
to show the level of accuracy of the tQSS approximation in the transient region

Fig. 24.8 Comparison of the numerical solutions of the time evolution of all the variables of the G–
K switch (Case 1c). The full rate equations (24.2)–(24.7) are compared to the standardQSS1 +QSS2
approximation from (24.10) and to the tQSS approximation (24.49)–(24.54). k1 = 0.1, k2 = 0.05,
k3 = 0.05, k4 = 0.0009, k5 = 0.005, k6 = 0.085, km1 = 1, km2 = 100,Y(0) = 0,X(0) = XT = 20,
[YX](0) = 0, Yp(0) = YT = 50, Z(0) = ZT = 200, [YpZ](0) = 0
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24.2.3 Petri Net and Numerical Analysis Results

As a first step in verifying the stochastic simulation of the Petri net of Fig. 24.1,
Fig. 24.9 shows that the conservation laws are satisfied.

Figure24.10 shows a comparison of the stochastic simulation of the Petri net of
Fig. 24.1 with the numerical solution of the full rate equations (24.2)–(24.7), for
S = 0.5. The curves shown in the left diagram are the distributions of tokens for
the 6 places of this Petri net, averaged over 1000 runs over the same time window
and starting from the same initial conditions. They all show a rapid transient and
they all reach equilibrium. The agreement with the numerical solution of the full
rate equations is quite good, especially in the equilibrium region. The only variable
that deviates a little from the numerical solution, which we take as the correct or
‘exact’ solution here, is the equilibrium value of Yp, which is a bit higher than 0
in the Petri net simulation. The reason is that since we are using discrete tokens to
model concentration occasional transitions of tokens into the Yp place will cause its
average value over many runs to be greater than zero. The substrate concentration is
4, whereas the X and Z enzymes have initial values of 1 and 2, respectively, yielding

Fig. 24.9 Verification of the conservation laws in the stochastic simulation of the Petri net of
Fig. 24.1, averaged over 1000 runs and for S = 0.5. Initial conditions: (X,Y , [YX],Yp,Z, [YpZ]) =
(1, 0, 0, 4, 2, 0)

Fig. 24.10 Comparison of the Stochastic simulation averaged over 1000 runs of the Petri net of
Fig. 24.1 (left) and the numerical solution of the full rate equations (24.2)–(24.7) (right). S = 0.5;
initial conditions: (X,Y , [YX],Yp,Z, [YpZ]) = (1, 0, 0, 4, 2, 0)
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a value for the signal S of 0.5. The value of ε = 1/4.05 = 0.247 from Eq. (24.23) is
not so small, and yet the agreement of the Yp curve (dark green) with the lowest, red
curve in Fig. 3.15a of D1.1.1 [9] is pretty good.

Figures24.11 and 24.12 show two more cases for the same system, for S = 1.0
and S = 2.0. Also here the behaviour is as expected and qualitatively consistent
with the numerical solution of D1.1.1. There is a noticeable mismatch in the rate
at which Y and Yp reach equilibrium. It is not clear how this can be accounted for.
One possibility is that the observed discrepancy is caused by the usual mismatch
between the simulation and the ODE approach when particle copy numbers are low.
See [26–30] for further explanation of the effect.

The next set of Figs. 24.13, 24.14 and 24.15 compares the tQSS approximation
to the QSS approximation. Whereas the tQSS approximation is almost identical to
the full system of rate equations (24.2)–(24.7), the QSS does quite poorly, especially
for Y , as we already saw above. It seems, therefore, that to validate the Petri net for
a set of chemical reactions one should use either the original rate equations or the
tQSS approximation, but not the QSS. This would seem to be particularly important
when the amount of enzyme is of the same order of magnitude as or larger than the
substrate.

Fig. 24.11 Comparison of the Stochastic simulation averaged over 1000 runs of the Petri net of
Fig. 24.1 (left) and the numerical solution of the full rate equations (24.2)–(24.7) (right). S = 1.0;
initial conditions: (X,Y , [YX],Yp,Z, [YpZ]) = (1, 0, 0, 4, 1, 0)
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Fig. 24.12 Comparison of the Stochastic simulation averaged over 1000 runs of the Petri net of
Fig. 24.1 (left) and the numerical solution of the full rate equations (24.2)–(24.7) (right). S = 2.0;
initial conditions: (X,Y , [YX],Yp,Z, [YpZ]) = (2, 0, 0, 4, 1, 0)
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Fig. 24.13 Comparison of the tQSS (left) and theQSS (right) approximations of Eqs. (24.2)–(24.7).
S = 0.5; initial conditions: (X,Y , [YX],Yp,Z, [YpZ]) = (1, 0, 0, 4, 2, 0)

Fig. 24.14 Comparison of the tQSS (left) and theQSS (right) approximations of Eqs. (24.2)–(24.7).
S = 1.0; initial conditions: (X,Y , [YX],Yp,Z, [YpZ]) = (1, 0, 0, 4, 1, 0)

Fig. 24.15 Comparison of the tQSS (left) and theQSS (right) approximations of Eqs. (24.2)–(24.7).
S = 2.0; initial conditions: (X,Y , [YX],Yp,Z, [YpZ]) = (2, 0, 0, 4, 1, 0)

These results show that the best approximation is tQSS, and that the Petri net
matches the full rate equations. Thus, in the remainder of the paper we will rely on
the full rate equations, and we will use the Petri net with some confidence that it does
model the physics of the problem. A somewhat surprising finding, however, is that
our faith in the full rate equations is only justified if the number of molecules is large.
For small numbers, the Petri net simulations turn out to be the more “physical”.
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24.3 Case 2a

Tyson et al. took this system from [21]. Both models have the same problem, in that
both use the QSS approximation without satisfying the assumptions upon which it
is based. As a consequence, the full rate equations for the same parameters and a
compatible set of initial conditions do not show oscillations, and the same applies to
the Petri net model. Using a different set of parameters, the numerical solution of the
full rate equations shows weakly damped oscillations. The verification of the Petri
net is not as convincing as for Case 1c since it can’t reproduce the same amplitude of
the oscillations as the numerical solution’s. It appears that this may be caused, again,
by the mass-action assumption and will require further analysis in future work.

24.3.1 Full Rate Equations and Petri Net

Figure24.16 shows the Case 2a pathway, which was first modelled by Goldbeter [21]
based on the empirical work of Félix et al. [16].

The analysis begins with the chemical reaction equations. These are not given
in [48] but are easily inferrable from the pathway and a knowledge of the Case 1c
2-enzyme reaction:

S
k1−→ [X] (24.55)

[Rp] + [X] k′
2−→ [Rp] + (X depleted) (24.56)

[Y ] + [X] k3�
k4

[YX] k5−→ [Yp] + [X] (24.57)

[Yp] + [Z] k6�
k7

[ZYp] k8−→ [Y ] + [Z] (24.58)

[R] + [Yp] k9�
k10

[RYp] k11−→ [Rp] + [Yp] (24.59)

[Rp] + [W ] k12�
k13

[WRp] k14−→ [R] + [W ], (24.60)

Fig. 24.16 Pathway of the Cyclin (X) oscillator [21] or Case 2a [48]
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where S is the ‘signal’ which controls the rate of production of X, and the presence
of Rp accelerates the depletion of X, Eqs. (24.55) and (24.56). Y and R are proteins
being phosphorylated to produce Yp and Rp. X and Z act as enzymes for the forward
and backward reactions for Yp, (24.57) and (24.58), and Yp and W serve the same
purpose for the reactions for Rp, (24.59) and (24.60).

The corresponding rate equations are:

Ẋ = k1S − k′
2XRp − k3XY + (k4 + k5)[YX] (24.61)

Ẏ = −k3XY + k4[YX] + k8[YPZ] (24.62)

˙[YX] = k3XY − (k4 + k5)[YX] (24.63)

Ẏp = k5[YX] − k6ZYp + k7[YpZ] − k9YpR + (k10 + k11)[RYp] (24.64)

Ż = −k6ZYp + (k7 + k8)[YpZ] (24.65)

˙[YpZ] = k6ZYp − (k7 + k8)[YpZ] (24.66)

Ṙ = −k9YpR + k10[RYp] + k14[RpW ] (24.67)

˙[RYp] = k9YpR − (k10 + k11)[RYp] (24.68)

Ṙp = k11[RYp] − k12WRp + k13[RpW ] (24.69)

Ẇ = −k12WRp + (k13 + k14)[RpW ] (24.70)

˙[RpW ] = k12WRp − (k13 + k14)[RpW ]. (24.71)

The Petri net that can be derived from either set of equations is shown in Fig. 24.17.

Fig. 24.17 Petri net corresponding to the full rate equations of the negative feedback oscillator
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24.3.2 Comparison with Tyson et al.’s Case 2a Model

It took a long time and many attempts to arrive at this Petri net. As discussed in the
previous section, much effort went into establishing and validating the Petri net for
one of the components of the Case 2a system, the ultrasensitive Goldbeter–Koshland
(G–K) switch [23]. The main problem was that the Petri net shown in Fig. 24.17 just
wouldn’t oscillate using the parameters and initial values provided by Tyson et al.
[48]. We now briefly retrace these steps.

Tyson et al.’s Case 2a is given as the following set of equations

Ẋ = k0 + k1S − k2X − k′
2RpX (24.72)

Ẏp = k5X(YT − Yp)

Km3 + YT − Yp
− k8Yp

Km4 + Yp
(24.73)

Ṙp = k11Yp(RT − Rp)

Km5 + RT − Rp
− k14Rp

Km6 + Rp
. (24.74)

As we showed in the previous section, the ODEs for Yp and Rp in this set can be
derived from the full rate equations (24.61)–(24.71) using the QSS (QSS1 + QSS2)
approximation in both directions for each module. We can see that X plays the same
role in the ODE for Yp as S did for Case 1c. Similarly, Yp, in turn, plays the role of the
enzyme in the ODE for Rp. However, in order to make these equations dimensionally
consistent, the total amount of reverse enzyme in the second and third equations (Z
and W in the full rate equations) must be assumed to have concentration equal to 1.
The numbering of the rate constants has been changed to match the more general full
rate equations model. On the other hand, the numbering of the Michaelis-Menten
constants Kmi has been left unchanged since they do not appear explicitly in the full
rate equations model.

Table24.2 lists all the parameters relevant to the two models. The constants of the
full rate equations model were chosen to match the corresponding constants in the
Tyson et al. model and so that the Michaelis-Menten constants Kmi , also shown in
the table, would come out with the same values (see Fig. 24.17 for the expressions
used to calculate them). We should point out that the degradation constant k2, which
equals 0.01 in Tyson et al.’s model, was set equal to 0 in the full rate equation model.
This is because numerical analysis showed that its presence or absence did not make
any difference to the solutions, but adding another transition to the Petri net would
have made the automaton, to be analysed in a later section, even more complex.

Some additional difficult modelling choices had to be made. Referring to
Fig. 24.16, we can see that the action of the species X and Yp, which serve as enzymes
in the forward reactions for Yp and Rp, respectively, are drawn as dotted arrows rather
than continuous arrows. This means ‘promotion’ of the reaction the arrow points to
by the presence of the compound the arrow starts from,11 and does not necessarily

11Or could mean inhibition if the dotted line ends with a flat segment instead of an arrow.
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Fig. 24.18 Numerical solution of the negative feedback oscillator according to the Tyson et al.
Case 2a ODE model [48], Eqs. (24.72)–(24.74)

imply mass flow. However, since we had already verified and validated the Petri
net for Case 1c in the previous section, using the same “wiring” seemed justified.
Indeed, the arrows issuing, for example, from t4 and t5 replenish X, consistently with
enzymatic reactions.

The action of Rp on t2, on the other hand, was not as straightforward. The best
behaviourwas obtained by introducing two arcs between them, in opposite directions.
In this manner two desired effects are obtained:

• An increase in the concentration of Rp increases the probability of t2 firing, consistently
with the effect of a promotor.

• While the firing of t2 has the desired effect of depletingX , the arrow pointing back towards
Rp replenishes it. Therefore Rp is not depleted when this transition fires, consistently with
the semantics of the dotted promotion arrow and with the absence of the term −k′

2XRp in
Eq. (24.69).

Figure24.18 shows the numerical solution of the Tyson et al. Case 2a model,
according to Eqs. (24.72)–(24.74). There is a slight inconsistency in [48]: the initial
condition for Rp is stated as Rp(0) = 1. However, the plot of the numerical solution
provided in this article shows an initial value of Rp(0) = 0.1, approximately. We
were not able to obtain exactly the same plot for the three solution curves as shown
in this reference; however, with Rp(0) = 0.5 Fig. 24.18 is very close. The figure also
shows the phase-space trajectory, with the expected limit cycle.

Figure24.19 shows the numerical solution of the full rate equations for the same
parameter values and initial conditions, given in Table24.2. Unfortunately, the solu-
tion curves are totally different and do not show any oscillations at all. Or, rather, the
response seems heavily overdamped.

Such a mismatch between these models is not surprising given that the parameters
and initial conditions used by Tyson et al.’s model violate its assumptions. The
implication is that the oscillations that this model generates for these parameter
values and initial conditions are artifacts of the approximation and are not physical.
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Fig. 24.19 Numerical solution of the negative feedback oscillator according to the full rate equa-
tions, Eqs. (24.61)–(24.71)

Fig. 24.20 Verification of the conservation laws of the negative feedback oscillator as calculated
with the stochastic Petri net simulator. As expected X is not conserved

However, it still makes physical sense that the stacked components of Case 2a should
oscillate, as long as there is some time delay between them. Therefore, it seemed
that some combination of parameters and initial conditions should work. This is in
fact what we found, although not in as clear-cut a way as we would have wished.

Figure24.20 shows that the conservation laws are respected, so the implemen-
tation appears to be correct. Unlike Case 1c, the “enzyme” X in this case is not
conserved, but neither do we expect it to be since it is being created and destroyed
at different rates by t1 and t2.

After many attempts working with the numerical solution of the full rate equa-
tions we finally found a combination of parameters and initial conditions that gave
convincing oscillations, as shown in Fig. 24.21, although they are weakly damped.
The turning point that allowed finding this response was the realization that bio-
chemical oscillations, being based on 1st-order and not 2nd-order systems, are not
characterized by an equilibrium position in the centre of the oscillation, an inertia
that overshoots equilibrium, and a return force that brings the mass back towards
equilibrium. There is no inertia, and it is not accurate to talk about a “return force”.
Rather, we posit that the behaviour of either of the 2-enzyme G–K components can
be characterized as follows:

• Something akin to “equilibrium” appears to exist (or in any case can be arbitrarily defined)
in the dephosphorylated state of the protein (either Yp or Rp, the argument applies to
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Fig. 24.21 Damped oscillation response of the negative feedback oscillator using the full rate
equations (top) and a stochastic simulation of the Petri net shown in Fig. 24.17, averaged over 3000
runs (bottom). The parameters and initial conditions used are listed in Table24.2

both).12 Therefore, referring to Fig. 24.17, this state can be visualized as being “on the
left” rather than “in the centre” of the oscillation, i.e. with Y “full” and Yp “empty”.

• The system (meaning bothG–Kcomponents) should have a very fast return action towards
the “equilibrium” dephosphorylated state. As discussed by Goldbeter and Koshland [23],
this steep ‘ultrasensitive’ behaviour is achieved when the enzyme is saturated with sub-
strate (QSS conditions) and the Michaelis-Menten constant Km is very small, e.g. 0.01.

• A property of such a system that introduces something analogous to a delay is to make the
forward (phosphorylation) action much slower, i.e. not ultrasensitive. This is achieved by
makingKm fairly large (3 orders of magnitude larger than the reverseKm in our example).

Figure24.21 also shows the result of the stochastic simulation of the Petri net,
averaged over 3000 runs. The oscillations are visible, but much more damped than
the full rate equations solution. At first we thought that a possible cause for this
‘washed out’ behaviour of the oscillations in the stochastic simulation was that the
onset of oscillations takes place at some point after the system is started. If this
occurrence signals the loss of stability of the system, it is possible that the stochastic
simulation is not as sensitive at picking up loss of stability as other features of the
dynamics. However, the behaviour of the other variables in the same initial region is
captured very well compared to the oscillations that occur later. Therefore, the fault
lies elsewhere.

12Rather than a statement of biochemistry, this should be seen as a dynamical systems interpretation
of the observed behaviour.
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According to Konkoli’s work [26–30], the reason is that the mass-action assump-
tion, upon which the full rate equations are based, breaks down for small numbers
of molecules. Therefore, the stochastic simulation shows the correct behaviour and
the fault lies with the ODE solution, whose marked oscillations are not “physical”.

A simpleway to test this claim is to compare the full rate equations to the stochastic
simulation for a larger system, i.e. a system with more molecules. This is shown in
Figs. 24.22 and 24.23,where the initial conditions are changed slightly to obtainmore
marked oscillations in the ODE solution and then multiplied by 10 without changing
the rate constants (see Table24.2). In Figs. 24.24 and 24.25 the initial conditions are
then multiplied by 10 again. In this case, although the two sets of solution curves
share the same geometric features, the frequency of the oscillations as calculated by
the ODE model is markedly higher. For all these cases the ‘correct’ solution is the
stochastic, but the ODE solution improves the larger the system becomes, supporting
the claim.

For the purposes of this paper it is not necessary to derive the tQSS approximation
for this system since we already know that it is at best as accurate as the full rate
equations. Rather, we now switch to the discrete analysis of these systems.

Fig. 24.22 Response of the negative feedback oscillator using the full rate equations (top) and a
stochastic simulation of the Petri net shown in Fig. 24.17, averaged over 1000 runs (bottom). The
parameters and initial conditions used are listed in Table24.2
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Fig. 24.23 Expanded vertical scale for Fig. 24.22, to resolve the variables with smaller values

Fig. 24.24 Response of the negative feedback oscillator using the full rate equations (top) and a
stochastic simulation of the Petri net shown in Fig. 24.17, averaged over 500 runs (bottom). The
parameters and initial conditions used are listed in Table24.2. As shown in [44], a higher number
of tokens leads to shorter stochastic time-steps; thus, for this simulation there were approximately
1,000,000 time-steps over the time-window shown and for each of the 500 runs, requiring approx-
imately 116h of CPU time on a 2.7GHz MacBook Pro Intel Core i7 in total to run the simulation
(our Mathematica code only uses one core)
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Fig. 24.25 Expanded vertical scale for Fig. 24.24, to resolve the variables with smaller values

24.4 Discrete Analysis of Case 1c and Case 2a

In this section we start analysing discrete models of the systems analysed in the pre-
vious sections. The emphasis is on Petri nets as a bridge between the continuous and
the discrete views of these systems. We should clarify that we are just beginning to
figure out how to extract structural and dynamical information from the discretized
finite-state automaton corresponding to a biochemical system, based on its hierarchi-
cal (Krohn-Rhodes or holonomy) decomposition. Whether or not this information
can be obtained any other way is not yet clear, nor how useful it is from a com-
putational point of view. The reasons for this—and what could be done to address
the challenge—are slowly becoming apparent the more we work with ASMs [4],
and are discussed at the end of this section. Before we can compare different views
on the modelling of continuous and discrete dynamical systems, however, we need
to develop some understanding of the kind of information that each view provides.
This section aims to give a sense of the kind of information that algebraic automata
theory provides, and how it might be related to some of the physical properties of
the systems discussed in the previous sections. We first provide a brief conceptual
summary of holonomy decomposition.

24.4.1 Holonomy Decomposition

Asdiscussed in detail and through several examples in [10, 42], the holonomydecom-
position (HD) of an automaton is visualized by means of the ‘skeleton diagram’.
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However, the skeleton diagram is only a shorthand of the algebraic structure of an
automaton understood as its HD. Here we can only provide a telegraphic summary
of its main properties.

• The skeleton, obtained with the GAP [47] program SgpDec [15], shows the holonomy
[51] rather than the Krohn-Rhodes [31] decomposition of an automaton.

• The HD involves a loop-free cascade of permutation-reset automata rather than of simple
non-abelian groups (SNAGs) and (banks of) 2-state resets (flip-flops).

• Permutation groups can be decomposed using the Jordan-Hölder theorem into a compo-
sition series involving SNAGs, and constant maps (resets) can similarly be decomposed
into 2-state resets. Since SNAGs and 2-state resets cannot be further decomposed, the HD
can be regarded as an intermediate step to the full decomposition of an automaton into
its ‘prime’ components. However, it is conceptually easier to think about the HD, and the
only available implementation [15] was developed for the HD.

• More precisely, the HD of an automaton is a multi-stage wreath product between two
“orthogonal" classes of transformation semigroups, i.e., permutation groups and con-
stant maps or resets. As such, it is a loop-free hierarchy of so-called permutation-reset
automata13 acting on image sets of the state set of the original automaton in the form
of macro-states of decreasing size (increasing resolution) as one progresses down the
hierarchy to the singletons at the bottom.

• These image sets are called ‘tiles’, but in the sense of roof tiles rather than bathroom tiles
since they can overlap on one or more states.14

• At any one level of the decomposition there are usually many isomorphic copies of a
given group or set of constant maps, so they are arranged in equivalence classes.

• In the skeleton diagram, the presence of a group at a given level and acting on tiles at one
or more levels below is indicated by drawing the equivalence class as a long rectangle
with dark background, whereas the equivalence classes associated with the constant maps
(and trivial groups, i.e. identities) have a white background.

• The skeleton diagram shows only one of the isomorphic copies of a permutation group or
constant map, which is called the ‘representative’ (in analogy with coset representatives
from group theory). The tiles that are the images of a given representative and upon which
the group or constant map acts are called ‘tiles of the representative’ or ‘rep-tiles’.

• In the skeleton diagram, the rep-tiles can be recognized because they are image sets of the
representative they come from and they are joined to it by a solid (or sometimes dotted)
line.

• A dotted line from a representative to one of its rep-tiles indicates a ‘Garden of Eden’
state, meaning a state which once left can never be recovered (revisited) by the system.

• Although the HD is a much larger computational object than the original automaton,
one of its sub-structures, the ‘cascade product’, emulates the behaviour of the original
automaton.

• A cascade of permutation-reset automata is composed by one representative from each
equivalence class and the (macro)states upon which it acts (rep-tiles). Together, the rep-
resentatives and their rep-tiles form the ‘holonomy components’.

The appeal of the HD analysis is that it identifies reversible groups among (usually
many more) sets of irreversible constant maps—both kinds of objects as subsemi-

13A permutation-reset automaton is an automaton whose action is either a permutation of the state
set or a constant map or reset (i.e. a map from the state set to a single state).
14This metaphor is due to Attila Egri-Nagy.
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groups of the semigroup of an automaton. A drawback is that the HD is not unique,
a point to which we return at the end of this section. Be that as it may, the objective
here is to achieve some insight into the physical—and computational—interpretation
of the groups, when they occur. This is because the presence of groups suggests that
some quantities are being conserved. BIOMICS started from the assumption that
when such structures occur in automata derived from biological systems they (the
groups) may have something to do with the biological systems’ self-organizing prop-
erties. As a final ‘health warning’, it helps to distinguish in our mind the algebraic
view, forwhich the action is on thewhole state set, from the physical or computational
view, for which the action is sequential from one state to the next.

24.4.2 Single Component: The Coupled 2-Enzyme System

We start with one of the three components of the Case 2a oscillator, i.e. Case 1c from
[48], shown in Fig. 24.26 along with the automaton generated from its markings. The
skeleton diagram shows the presence of two groups, C3 and C2.

This system is interesting because it allows us to compare easily physical behav-
iour to group action. However, this is not as straightforward as we might expect. For
example, the skeleton diagram in Fig. 24.26 tells us that one of the components of the
holonomy cascade is a permutation group that consists of a group C2 acting on states

Fig. 24.26 Analysis of a Capacity-1 discrete model of the 2-enzyme Goldbeter–Koshland ultra-
sensitive switch [23] (Case 1c in [48]). Top row Petri net showing biochemical species as place
names; table showing how Petri net markings map to the states of the automaton; Petri net with
explicit place numbering to facilitate the interpretation of the markings. Bottom row automaton and
skeleton diagrams generated by SgpDec [15]; automaton using a visualization of the markings and
indicating the two opposite directions of the enzymatic reactions
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Table 24.3 Action of individual transitions making up C2 element to permute states 1 and 2

Starting
state

t6 t1 t4 t3 Ending state

Action on
state 1

1 1 1 2 2 2

Action on
state 2

2 3 4 4 1 1

1 and 2. From a physical point of view, the natural inference is that this action is
related to the formation and the dissociation of the enzyme-substrate complex [YX].
However, the transitions between these two states are effected by different arrows
and, therefore, cannot result from the action of C2. In fact, in the permutation group
C2 acting on a set of two states, the non-identity element permutes the states, but here
t4 only moves 1–2, it does not affect 2; similarly, t5 moves 2–1 but does not affect 1.

Rather, the algebraic ‘pool of reversibility’ [40] that the presence of this group
implies is related to the physical reversibility of the enzymatic reactions. In other
words, the permutation action is effected through a roundabout sequence of transi-
tions: the word provided by SgpDec for permuting states 1 and 2 involves t4 but not
t5, and is actually t6t1t4t3.15 As discussed in [10] and proved in [13], the only way
to obtain permutation of states in an automaton generated from a Petri net without
inhibition arcs is to allow ‘mute’ transitions—in other words, to treat input symbols
to the automaton that are not relevant to the current state as equivalent to anAssembly
language NOP or to the identity mapping. Table24.3 shows the action of this group
element on states 1 and 2.

We should note that there are actually 6 isomorphic copies of C2 acting on 6
different pairs of singleton states (4 choose 2 = 6). Of these, {1, 2} and {3, 4} have a
similar physical interpretation. Another pair of states that is permuted is 1 and 3, by
the word t1t4t6t3. The physical significance in this case is that 1 and 3 are the opposite
ends of the oscillation of the G–K switch when it is embedded in the Case 2a system.
In the present case, i.e. when the system is on its own, it does not oscillate, but each
state is reachable from the other. The action of C3 is rather more complicated given
that now what is permuted is 3 objects, each of which is a set of 2 states, as shown
by the skeleton diagram.

Going on to thewhole automaton shown in the lower-right corner of Fig. 24.26, the
visualization of the states as place markings makes it possible to “see” the chemical
reactions as the system moves from one state to the next along the sequence t1t3t4t6.
From a dynamical systems point of view, this sequence of reactions corresponds
to the system starting with a maximum concentration of substrate, moving to the
opposite extreme of zero substrate and maximum phosphorylated protein, and then
coming back to the starting point. Of course, since there is no analogue of inertia or a
“spring” return force in this 1st-order system the oscillation is actually not possible,
but the reversibility appears to be captured by the algebraic analysis.

15Transformation semigroup elements composed of Petri net transitions are normally assumed to
act on the left. This is done so that a string of transitions can be written and read from left to right.
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A more fruitful point of view is to focus on the fundamental properties of groups,
i.e. their association with symmetries. Paraphrasing Ian Stewart, (a) a symmetry is an
invertible transformation that preserves some aspect of the structure of a mathemati-
cal object; and (b) it is easily proven that the set of all such symmetries always forms
a group. The converse is what we need here: the presence of a group always implies
that something is being conserved. Referring again to the lowest level of the skeleton
shown in Fig. 24.26, in transitioning from State 1 to State 2, and vice versa, it appears
that Places 1, 2, and 3 are not affected by these transformations. So the “state” of
these three places is the invariant. Between States 1 and 3, on the other hand, the
two enzymes and the two complexes (Places 1, 3, 5, and 6) remain constant. At the
level above, we find that the rep-tiles shown preserve only the substrate, i.e. Place 2.
The isomorphic copy of this action that corresponds to States {2, 3, 4} preserves the
phosphorylated protein Yp. The remaining two tiles {1, 2, 3} and {1, 3, 4} are similar
in preserving Places 1 & 3 and 5 & 6, respectively. The expectation is that for more
complex systems, and in particular for integrable systems of ODEs, the quantities
preserved may provide more insight into their dynamics. The task, then, will be to
see whether the invariants of the Lie symmetries may be physically related to the
invariants of the discrete automata models of the same systems.

Figure24.27 shows the automaton that is generated when allowing for all possible
initial conditions. For this system, the result is 11 different and disjoint automata
(rather than a single large automaton), only one of which corresponds to the case

Fig. 24.27 Bottom disconnected automata generated using all possible initial conditions Capacity-
1 discrete model of the 2-enzyme Goldbeter–Koshland ultrasensitive switch [23] (Case 1c in [48]);
top holonomy components; right state numbering
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just analysed in Fig. 24.26. The figure also shows the map of the markings to the
state numbers. Since in this case we are analysing the global automaton and since
all the places in this Petri net of 6 places had capacity 1, each place can only have
zero or 1 token, so the total number of states is simply 26, and the mapping is just the
binary representation of the state numbers. The state numbering changes with each
analysis, so state 1 in the previous example does not correspond to state 1 in this
example, and similarly for the others. Finally, the figure also shows the holonomy
components of the global automaton.

In this case the skeleton diagram is very large indeed and cannot fit in a single A4
page, so the holonomy components are a useful shorthand. Each component shown
corresponds to an equivalence class whose size is not shown, i.e. each component
corresponds to a class representative (picked arbitrarily by SgpDec). The plain
number 6 at the top level, for example, means (1) that the top component is a set of
resets and identity maps (because the component is shown as a simple integer), and
(2) that the set of resets acts on a set of 6 ‘points’. In other words, the permutation-
reset automaton at the top level of the cascade consists in a set of 6 elements of the
semigroup (and trivial groups or identities) that act as resets, i.e. that map a set of
6 points to itself by constant maps. The 6 ‘points’ are actually subsets of the state
set, also known as ‘macrostates’ in computer science. Although not relevant for the
emulation of the original automaton, these 6 rep-tiles are obtained as image-sets of
the set of all 64 states of this automaton under the action of 6 different elements of
the semigroup of the automaton on the whole state set (these maps are not the same
as the resets, which are relevant to the emulation function of the cascade).

In the lower levels we can see many more integers next to each other at the
same level. Each such integer indicates a different equivalence class, and other sets
of as many rep-tiles that also map to themselves through resets and identities. In a
holonomydecomposition the only other possibility for the components of the original
automaton is the presence of permutation groups. The first such group is seen at Level
11, and it is denoted as (3,C3), indicating the C3 cyclic group acting on 3 rep-tiles.

Figure24.28 shows a visualization of one of each of the different types of automa-
ton shown in the previous figure. This helps us see that of all these types only the one
we have just seen in Fig. 24.26 is clearly related to this physical problem, although
it is not the only one that is physically feasible. For example, the automaton at the
top-right of Fig. 24.28 is not likely to be observed for this problem because two of
the states show that Y and Yp are full at the same time. However, with such a coarse
resolution it is not possible to distinguish between the case where both species have
maximum concentration and the case where they are both at 0.5 concentration. This
latter case corresponds to S = 1 in Case 1c, i.e. in the equilibrium state of the switch
in the middle of the sigmoid curve, which is certainly feasible. The same system
with greater capacity would need to be analysed to see what concentration levels
these places actually have. The largest automaton has the same problem for one of
its states. The two small automata are both physically plausible, but their dynamics
are not very interesting.

Figure24.29 shows the analysis of the Capacity-2 version of the Petri net for this
system, i.e. where each place can hold zero, 1 or 2 tokens. For the initial condition
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Fig. 24.28 Visualization of some of the automata shown in Fig. 24.27. The automaton at the top-left
is the same as that shown in Fig. 24.26

Fig. 24.29 Visualization of the automaton corresponding to the Petri net shown in Fig. 24.26 for
Capacity-2 places. The automaton is comprised of the 9 states that are reachable from the initial
state, shown as State 1. Places with two tokens are shown explicitly, places with 1 token are black,
empty places are white. The “oscillation” between Yp and Y that is shown in Fig. 24.26 applies
also in this higher-resolution automaton, following the outer states in the clock-wise direction from
State 1
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((p1, p2, p3, p4, p5, p6) = (2, 0, 0, 2, 1, 0)), shown in the figure as State 1, only 8
states are reachable of a possible 36 = 729. These are all physically plausible states,
as can be easily verified by following the visualization in the figure. The states
are arranged in a way to highlight that the “oscillation” between the two extremes
(Yp = 2,Y = 0) (State 1) and (Yp = 0,Y = 2) (State 7) corresponds to traversing
the automaton around its outer states in the clockwise direction, just as in Fig. 24.26.
Other paths (state traces) are also admissible. Finally, the holonomy components
show a similar structure to the lower-resolution, Capacity-1 case just analysed.

The algebraic regularities of this discrete structure apply to a much larger set of
states. However, some of these are not necessarily helpful or meaningful in a specific
applied context. For example, it is certainly possible physically for both Y and Yp
to be at maximum concentration simultaneously, but it is not likely to be observed
in situations where this pathway acts like a switch or is part of an oscillator. This
highlights the importance of physical context in “making sense” of the algebra.

24.4.3 Negative Feedback Oscillator (Case 2a)

In this section we analyse the automaton derived from the simplest possible Petri
net model of the full Case 2a system, applying the insights gained in the previous
section to find a possible interpretation for at least some aspects of its algebraic
structure. Figure24.30 shows the automaton generated by SgpDec [15] along with
a possible 3-Dvisualization. This is done to highlight how the state transitions defined
as transformations between Petri net markings correspond to movements along the
independent dimensions ofRn, where n is the number of transitions. Sowhat is shown
here is a 3-D projection of an object in R14 (actually R13 since t2 is not firing in this
specific case), which however is already much more expressive than the normal 2-D
automaton representation.

Figure24.31 shows the same automaton but with the additional visualization of
the token markings. The number key for the Petri net places at the bottom of this
figure refers to the columns of the states-markings table on the left and to the geom-
etry of the Petri net for this system as shown in Fig. 24.17. Figure24.32 shows the
holonomy components for this system. The cascade product has 76 levels. We notice
the presence of some large groups in the higher levels: D12, S7 and S6.

If we allow t2 to fire, the automaton acquires 10 additional states, as shown in
Fig. 24.33. It is worth noting that 16 of the new set of 26 states are identical to the
previous case, as are the transitions between them. This demonstrates how adding
a transition adds a dimension to the space of the automaton and creates a larger
automaton that is a superset of the original. On the other hand, adding capacity to a
place changes the number of states along a particular dimension, without changing
the dimension of the space in which the automaton is embedded. Thus, the resolution
of the discretization increases.

Figure24.34 shows the same automaton but with the visualization of the Petri
net markings corresponding to each state. This helps us see the chemical processes
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Fig. 24.30 3-D visualization of the automaton generated by SgpDec [15] for the
Case 2a Petri net with Capacity 1 and t2 disabled. State 9 is the starting state:
{X,Y , [YX],Yp,Z, [YpZ],R, [YpR],Rp,W , [WRp]} = {1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0}
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Fig. 24.31 Markings-to-states mapping and visualization of the same automaton as in the previous
figure, this time using the token visualization of each state. The number key at the bottom refers to
the places shown in Fig. 24.17. Transition numbers are drawn near the head of the respective arrows
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Fig. 24.32 Holonomy components of the decomposition of the automaton shown in Figs. 24.30
and 24.31
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Fig. 24.33 3-D visualization of the automaton generated by SgpDec [15] for the Case 2a Petri net
with Capacity 1. State 19 is the starting state: {X,Y , [YX],Yp,Z, [YpZ],R, [YpR],Rp,W , [WRp]} =
{1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0}
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Fig. 24.34 3-D visualization of the automaton generated by SgpDec [15] for the Case 2a Petri net
with Capacity 1, with Petri net visualization. The key is provided to help relate the column numbers
of the place markings with the relative locations of the places in the Petri net. State 19 is the starting
state: {X,Y , [YX],Yp,Z, [YpZ],R, [YpR],Rp,W , [WRp]} = {1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0}

corresponding to different paths followed along the arrows. As the arrows define
transitions, these are essentially different “algorithms” (see D3.3.2 [10]). As in the
previous figure, different shading is used for the states to highlight the depth of the
figure. Thus, darker states are in the back vertical plane, light gray in the middle
plane, and white states in the front. This representation of the automaton allows us
to see the oscillations of the individual components. In particular, movement along
each dimension is associated with a different chemical process. These state traces
are not all linear because we are dealing with a fairly drastic projection onto R

3:

• Starting at State 19, if we move into the page horizontally towards the darker states, i.e.
towards States 18 and 20, then we are following the dephosphorylation reaction that starts
with Rp and ends with R. This is Eq. (24.60). Note that this same reaction is enacted by
all triplets of states that are parallel to these three.

• Starting with the same State 19, if we move vertically down from the “roof” to the
“basement” of the house, then we are enacting Eq. (24.58), the dephosphorylation of Yp.
Again, this same process applies to all vertical triplets of states. It is important to note
that both this and the previous bullet involve a reversible step and an irreversible step, just
like the original chemical equations.

• If we start at State 25, move diagonally up to State 9, and then up again to State 19, we
are following the phosphorylation of Y , Eq. (24.57).

• Equation (24.55) is modelled by moving towards the left between the “front” of the house
on the far right and the plane just to the left of it, or from States 8, 9, or 10 towards 21,
22, or 23.
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• The bright green arrows in the front plane, on the other hand, model both Eqs. (24.55)
and (24.56).

• Finally, Eq. (24.59) is “on the roof”: States 20, 17, 19 (or 7, 4, 6), replicating the triangular
pattern of Eq. (24.57).

This modelling effort has been successful, so far, in that it has yielded an automa-
ton that is easily interpretable in terms of the Petri net and of the original chem-
ical reactions. The individual oscillations of the second and third components are
modelled by going around the two kinds of triangles: (19, 15, 25, 9, 19) for R and
(19, 18, 20, 17, 19) for Y . The effectiveness of these diagrams is apparently a conse-
quence of the fact that three dimensions are sufficient for drawing any graph of any
topology without crossing arcs.

Unfortunately, it was not possible to generate the HD of the larger automaton,
as the computer ran out of its 64GB of RAM after reaching the 99th level of the
decomposition. So although this case could be run on a supercomputer with much
larger RAM, it is better to focus first on simpler problems the analytical solution of
whoseODEsystems canbe found explicitly (with e.g. Lie groups), so as to try to relate
the groups observed in the HD to any invariants in the solution of the corresponding
ODE systems. A potentially fruitful direction of analysis, for example, will be to
examine one or more of the first integrals of the fully integrated differential systems,
since the solution curves, by definition, are level sets of such quantities, which are
functions of the dependent variables and time. Knowing which functions of the
dependent variables are conserved along solutions may give us valuable explanatory
insights in the dynamics of these systems.

Fig. 24.35 Top row, left automaton from Fig. 24.26. Middle markings of the Petri net shown in
Fig. 24.26 interpreted as expansions in a number system given by its places and with base equal
to its capacity +1. Right same numbers expressed in base 10. Bottom row permutations (1 2) and
(1 3) are shown as the action of words composed of transitions on these two subsets of states
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24.4.4 Petri Nets as Number Systems

We now look again at the Petri net for the Case 1c system, this time interpreting the
states as numbers in a positional number system defined by the places of the Petri
net itself, and transitions as elementary addition and subtraction operations between
these numbers. Figure24.35 shows that, if we treat each place as a bit in a base-2
number, with position of each bit given by the place number given in Fig. 24.26, each
state can be interpreted as a number whose decimal expansion is also given in the
figure. Transitions then become additions and subtractions as shown. Figure24.35
also shows the two permutations discussed earlier in this section, of states 1 & 2
and 1 & 3.

24.5 Discussion and Conclusions

The starting assumption of the BIOMICS project was that the order-constructing
behaviour of biological systems could be captured mathematically through appro-
priate formalization of the relevant physical laws. Although the analysis we could
perform of Case 2a, the negative feedback oscillator, was limited, we were able
to establish the accuracy of the continuous and discrete models of Case 1c, the
Goldbeter-Koshland ultrasensitive switch, and uncovered some algebraic structure
in the latter.

The situation at this point appears to be that there is structure, but no preferred
dynamics: i.e., no preferred “direction” of time-evolution from a state of disorder
to a state of order. To be fair, the systems we have been able to analyse so far have
perhaps been too simple to be able to exhibit such sophistication in their behaviour.

At an epistemological level, it seems worthwhile to explore the deeply interest-
ing idea of Rhodes’s that the Krohn-Rhodes (or the holonomy) decomposition of
an automaton as a loop-free cascade of simpler machines can be thought of as an
“expansion”, for each automaton state, into an abstract generalization of the con-
cept of positional number system, where each level in the cascade corresponds to a
position in such system. This raises the question of the ontological primacy of the
concept of ‘state’ vs. that of ‘number’. An initial discussion is provided in [8], where
it is shown how, for example, each digit in a binary number is simply a binary counter
that acts as a submachine at that position or level in the binary expansion of a given
number. In this paper we have shown how also the global marking of a Petri net can
be seen as a p-digit number in base c + 1, where p is the number of places and c is the
capacity of the Petri net, assumed equal for all places. Although this representation
of the system does not explain anything we did not already know, hopefully it makes
it easier to relate to Rhodes’s much more general abstract number system idea.

Put in these terms, the problem of modelling biological behaviour becomes
“merely” one of encoding it into such an abstract number system. But computer
science is familiar with this process, and it is called programming, with the support
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of a compiler. We are back at the starting point, therefore, of whether mathematical
structure derived from physical law can in some way and to some extent replace top-
down engineering thinking in the creation of computational systems that are able to
perform useful tasks compatibly with an “order construction design pattern” based
on formalized structural and dynamical biological properties.

Although no conclusive way to encode ordered biological behaviour into compu-
tational systems has so far been found, in the BIOMICS project we have begun to
work with the Abstract State Machines (ASM) software engineering framework [4].
It is helpful to think of ASMs as abstract and much more powerful generalizations
of Petri nets. For example, in place of the functions that determine the numbers of
tokens for each place, any (dynamic) function at all can be defined; more importantly,
the output of one ASM can be used as the input of another, enabling interaction; the
‘abstract state’ of an ASM is somewhat analogous to the global marking of a Petri
net, and a state trace is a sequence of such abstract states; an algorithm or program
for an ASM is analogous to the rules according to which a given Petri net transi-
tion is enabled to fire or not; and so forth. Most importantly, ASMs are based on a
rigorous mathematical and logic foundation, a fact that suggests that it will be rela-
tively straightforward to map the formalization of conserved quantities in biological
systems to suitable function definitions for a set of interacting ASMs, via category
theory and coalgebraic specification [37, 38, 41, 43].

In principle, what ASMs enable is the definition of data structures that “fit” the
problem at hand ‘like a glove’. The result of using ASMs for requirements specifi-
cation and iterative refinement, therefore, is not only a reliable software application
but also a more natural and easier programming task. But this property of modelling
frameworks is very well-known in physics, and is related to the search for the most
appropriate variables for a given problem. For example, the governing equations for
the flow in a circular pipe are much easier to work with when expressed in cylindrical
than in rectangular coordinates. Carrying this idea further leads to thewell-developed
field of dimensional and similarity analysis, which is a sub-field of (Lie) group theory
[32]. Dimensional and similarity analysis systematize the derivation of the dimen-
sionless formof a given problemby expressing it in terms of dimensionless groupings
of variables. Such dimensionless groupings are necessarily invariant with respect to
changes of units, which is in fact the condition used to derive them. Crucially, these
groupings (obtainable through the Buckingham PI Theorem, for example [18]) are
not unique, and may have different impacts on the ease with which the solution to
a given problem is obtained. Since there is no general procedure to find the best
configuration, some trial and error, intuition, and experience are required.

The result of applying this kind of analysis to empirical data is often to collapse
multiple curves onto a single relationship. This useful property, discovered by empir-
ical scientists and engineers in the 19th Century, was later shown to be part of Lie
group theory, for example in the reduction of a partial differential equation (PDE) to
an ODE. The point is that the search for algebraic invariants usually simplifies the
mathematical models of physical problems and makes their solution possible. This is
a very broad statement that applies to most of theoretical physics, to the point that it
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has become part of the language of physics itself and is no longer a very remarkable
thing to say.

However, the field of computer science is still relatively young and could in prin-
ciple benefit from such an algebraic perspective. The search for a formal connection
between the symmetry structure of non-linear dynamical systems and the algebraic
structure of the HD of the finite-state automata derived from the same biochemical
systems was in fact was the main motivation behind the development of the BIO-
MICS project. Interestingly, although the Jordan-Hölder decomposition of a group
is unique up to isomorphism, holonomy (or Krohn-Rhodes) decomposition is not,
meaning that some ‘encodings’ are likely to be more expressive/useful than others.

With the above considerations in mind, therefore, it appears that the best HD for
a given problem is not discernible from the algebraic structure alone, since many
possible such decompositions are possible for a given automaton. If we can find
a way to relate the continuous (Lie) and discrete (HD) algebraic structures of a
given problem we may be able to use the former to guide the selection of the latter.
Although, as discussed in D1.3.1 and D1.3.2, this is looking harder than we had
originally envisaged, some input from physics still seems plausible in some way, as
discussed at the beginning of this section. In themeantime, the research is developing
the theoretical (coalgebraic and category theory) perspective further, to link ASMs,
automata, and biological systems together functorially.

In conclusion, although no new and original results have been presented in this
paper, we hope that the comparison of formalisms and methodologies discussed
will make it easier for systems biologists, mathematicians, physicists, and computer
scientists to continueworking together on the very challenging problemof Interaction
Computing.
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Chapter 25
Kernel P Systems and Stochastic P Systems
for Modelling and Formal Verification
of Genetic Logic Gates

Marian Gheorghe, Savas Konur and Florentin Ipate

Abstract P systems are the computational models of membrane computing, a com-
puting paradigm within natural computing area inspired by the structure and behav-
iour of the living cell. In this chapter, we discuss two variants of this model, a
non-deterministic case, called kernel P (kP) systems, and a stochastic one, called
stochastic P (sP) systems. For both we present specification languages and associ-
ated tools, including simulation and verification components. The expressivity and
analysis power of these natural computingmodels will be used to illustrate the behav-
iour of two genetic logic gates.

25.1 Introduction

Membrane computing is a computational paradigm, within the more general area of
natural computing [32], inspired by the structure and behaviour of eukaryotic cells.
The formal models introduced in this context are called membrane systems or P
systems. After their introduction [27], membrane systems have been widely investi-
gated for computational properties and complexity aspects, but also as a model for
various applications [28]. Many different variants of P systems have been introduced
and studied, mainly due to the many theoretical challenges induced by them, but
also motivated by the need to model different problems. Most of these variants of P
systems consider key features of the biological cell as part of the computational mod-
els introduced. In this respect, they deal with either simple bio-chemical elements

M. Gheorghe (B) · S. Konur
School of Electrical Engineering and Computer Science, University of Bradford,
Bradford BD7 1DP, UK
e-mail: m.gheorghe@bradford.ac.uk

S. Konur
e-mail: s.konur@bradford.ac.uk

F. Ipate
Department of Computer Science, University of Bucharest, Str. Academiei nr. 14,
010014 Bucharest, Romania
e-mail: florentin.ipate@ifsoft.ro

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
DOI 10.1007/978-3-319-33924-5_25

661



662 M. Gheorghe et al.

(called objects) or more complex molecules like DNA strands which are codified as
strings. Specific molecules like catalysts, activators and inhibitors are also utilised
by the models. Chemical interactions within compartments and transmembrane reg-
ulations are represented by rewriting rules and communication rules, respectively.
Various biological entities, like, cells, tissues, as well as specialised cells, such as
neurons, are described in the membrane systems framework by cell P systems, tissue
P systems, and neural P systems, respectively. The combination of these features
leads to a rich set of variants of P systems. A thorough presentation of the theoretical
developments is provided in [28], whereas various applications of this computing
paradigm in modelling problems from various areas, including computer science,
graphics and linguistics, can be found in [8]. More recently, it has been applied to
systems and synthetic biology [12], optimisations and graphics [18] and synchro-
nisation of distributed systems [10]. Some of the future challenges of the field are
presented in [16]. The most up-to-date information on P systems can be found on its
website [26].

Every membrane system consists of a set of compartments linked together in
accordance with certain well-defined system structures, e.g., tree and graph in the
case of cell P systems and tissue (or neural) P systems, respectively. Some systems
have a static structure, others have a dynamic one. Each compartment contains a
multiset of elements, either simple objects or more complex data, strings. These
are either transformed or transferred between neighbour compartments, due to some
rules which are specific to each compartment. A membrane system appears to be
a computational model of a distributed system, where the structure of the system,
the types of objects and transformations matter and collaborate in order to express a
certain computation.

Membrane computing has been an umbrella for the proliferation of different vari-
ants of membrane systems. Not only studies investigating relationships between
different classes of P systems, but also software tools supporting them have been
considered. The best known tool that covers the most used P system models has a
specification language, known generically as P–Lingua [25], which provides ade-
quate syntax for each of the variants of P systems supported. P–Lingua aims to keep
the syntax as close as possible to the original models and provides a simulation
platform for all these models and a consistent user interface environment, called
MeCoSim [24].

An alternative approach has been considered, by defining a more general mem-
brane system model, allowing to relatively easily specify the most utilised P system
models. This model is called kernel P systems (kP systems). A revised version of the
model and the specification language can be found in [14] and its usage to specify
the 3-colouring problem and a comparison to another solution provided in a similar
context [9], is described in [15]. The kP systems have also been used to specify and
analyse, through formal verification, synthetic biology systems [21, 22].

Kernel P systems are supported by a software framework, kPWorkbench [1, 2],
which integrates a set of related simulation and verification methodologies and tools.

All these classes of P systems dealwith non-deterministic behaviour, but in various
circumstances, especiallywhenbiological systems are considered, stochastic systems
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are more appropriate. In this respect several variants of stochastic P systems have
been introduced and utilised to model various problems in systems and synthetic
biology [12]. A variant which is also supported by a simulation and verification
environment is based on Gillespie approach for executing the system [17]. The tool
and some applications are presented in [6].

In this work, we utilise kP systems and stochastic P systems (based on Gillespie
approach), together with the corresponding software platforms developed, in order
to model and verify certain properties of biological systems. The novelty of the
approach is given by (a) the methodology that combines quantitative and qualitative
analysis; (b) the modular way of specifying systems very close to the their informal
descriptions; and (c) by the power of the verification method, relying on model
checking techniques, which combines various approaches in order to adequately
check the desired properties.

The chapter consists of five sections. Section25.2 introduces the basic concepts
related to kernel P systems and stochastic P systems. Section25.3 introduces theAND
and OR logic gates. Section25.4 discusses the model described by using stochastic
P systems and the modules associated with them. In Sect. 25.5 it is presented the
verification methodology combining quantitative and qualitative analysis. Finally,
Sect. 25.6 draws conclusions.

25.2 P Systems—Basic Definitions

The reader is assumed to be familiar with basic elements of membrane computing,
e.g., from [28]. Some basic concepts utilised in the sequel will be introduced. Let
A be an alphabet. An word with elements from A is a sequence containing these
elements. The set of all words over A is denoted by A∗; λ denotes the empty word
and A+ = A \ {λ}. Amultisetw over A is a mapping, w : A −→ N andw(a), a ∈ A,
defines the number of occurrences of a in the multiset. In the sequel a multiset will
be defined by a word where the order of the elements is not considered.

In this sectionwewill introduce twoP systemmodels, a non-deterministic version,
called kernel P systems, and a stochastic one, called stochastic P systems.

25.2.1 Kernel P Systems

A kP system is made of compartments placed in a graph-like structure. Each com-
partment Ci , 1 ≤ i ≤ n, has a type ti = (Ri , σi ), ti ∈ T , where T represents the set
of all types, describing the associated set of rules Ri and the execution strategy,
σi , of that compartment. In the sequel, we will present a simplified version of kP
systems—for the full definition we refer to [13].
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Definition 1 A kernel P (kP) system of degree n is a tuple

k� = (A, μ, C1, . . . , Cn, i0),

where A is a finite set of elements called objects; μ defines the membrane structure,
a graph, (V, E), where V are vertices indicating compartments, and E edges; Ci =
(ti , wi ), 1 ≤ i ≤ n, is a compartment of the system consisting of a compartment
type, ti ∈ T , and an initial multiset, wi over A; i0 is the output compartment where
the result is obtained.

Each rule r may have a guard g denoted as r {g}. The rule r is applicable to
a multiset w when its left hand side is contained into w and g is true for w. The
guards are constructed using multisets over A and relational and Boolean operators.
For example, rule r : ac → c {≥ a3∧ < b5} can be applied to the current multiset,
w = a5b4c, as it includes the left hand side of r , i.e., ac and the guard condition is
satisfied by w—there are at least 3 a′s and no more than 5 b′s.

In the sequel, we will present the types of rules utilised by kP systems. In the
more general definition of such systems, see [13], there are two main types of rules,
rewriting and communication rules and structure changing rules. The later set of rules
is meant to be used when the structure of system, involving both compartments and
links, is changing. In this work, we will be using only rewriting and communication
rules and the definition below will deal with these types of rules.

Definition 2 A rewriting and communication rule has the form: x → y {g}, in com-
partment li , where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, a j ∈ A
and t j indicates a compartment type from T—see Definition 1—with instance com-
partments linked to the current compartment; if a link does not exist (the two compart-
ments are not in E) then the rule is not applied; if a target, t j , refers to a compartment
type that has more than one instance connected to li , then one of them will be non-
deterministically chosen;

Each compartment has an execution strategy for its set of rules that can be defined
as a sequence σ = σ1&σ2& . . .&σn , where σi denotes an atomic component of the
form:

• ε, means empty execution strategy—an analogue of a skip instruction;
• r , a rule from the set Rt (the set of rules associated with type t), describes the fact
that if r is applicable, then it is executed; otherwise, the compartment terminates
the execution thread for this particular computational step and thus, no further rule
will be applied;

• (r1, . . . , rn), with ri ∈ Rt , 1 ≤ i ≤ n, describes a non-deterministic choice within
a set of rules; one and only one applicable rule will be executed, if such a rule
exists, otherwise this is simply skipped;

• (r1, . . . , rn)
∗, with ri ∈ Rt , 1 ≤ i ≤ n, indicates that the rules {r1, . . . , rn} are exe-

cuted iteratively an arbitrary number of steps;
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• (r1, . . . , rn)
	, ri ∈ Rt , 1 ≤ i ≤ n, represents themaximally parallel execution of a

set of rules. If no rules are applicable, then the execution proceeds to the subsequent
atom in the chain.

We introduce now the concept of a configuration of a kP system of degree n
as being an n-tuple K = (u1, . . . , un), where ui is a multiset in compartment Ci ,
1 ≤ i ≤ n. The initial configuration is K0 = (w1, . . . , wn). Starting from K0 and
using rules from R1, . . . , Rn in accordance with the execution strategies σ1, . . . , σn ,
one gets a sequence of configurations. The process of getting a configuration from
another one is called transition. A computation of � is a sequence of transitions
starting fromK0. If the sequence is finite then this leads to a halting computation and
the result is read out from i0. In applications one can consider partial computations
and the result is not always restricted to only one single compartment.

We present now an example of a kP system with two compartments by using
first the notations introduced so far and then its transcription in a machine readable
language, called kP–Lingua [11].

Example 1 There are two types t1 = (R1, σ1), and t2 = (R2, σ2), where R1 = {r1,1 :
bb → (a, t2) {≥ b2}; r1,2 : b → (b, t1)(b, t1)}, R2 = {r2,1 : a → (c, t1)(c, t1)} and
σ1 = (r1,1, r1,2), σ2 = (r2,1). One can notice that rule r1,1 has a guard that requires
at least 2b’s to be present in the current multiset. The execution strategies, σ1 and σ2,
are non-deterministic choices. The kP system of degree 2 is given by

k�1 = ({a, b, c, d}, μ, C1, C2, 1),

where μ is a graph with two vertices, C1, C2, and an edge between them. The two
components are given by C1 = (t1, w1), C2 = (t2, w2), where w1 = d2b, w2 = d.
The initial configuration of the system isK0 = (d2b, d). The only possible transition
allows only the rule r1,2 to be applied in C1 and consequently the next configuration
is K1 = (d2b2, d). In this configuration, one can use in C1 either r1,1 or r1,2 (both
are applicable) and nothing in C2; hence, one gets either K′

2 = (d2b3, d) or K′′
2 =

(d2, da), respectively. From K′
2 one can continue with either r1,1 or r1,2 in C1 and

nothing in C2. InK′′
2 one can only use r2,1 in C2 leading toK′′

3 = (d2c2, d), which is
a final configuration and we obtain a halting computation with the result in C1, d2c2.

This example written in kP-Lingua is:

type t1 {

choice {

>= 2b : 2b -> a(C2) .

b -> 2b .

}

}

type t2 {

choice {

a -> {2c}(C1) .



666 M. Gheorghe et al.

}

}

C1 {2d, b} (t1) - C2 {d} (t2) .

Above, t1,t2 denote two compartment types, which are instantiated as C1,C2,
respectively. C1 starts with the initial multiset 2d,b and C2 starts with d. The rules
of C1 are chosen non-deterministically, only one at a time—this is achieved by the
use of the key word choice. The first rule is fired only when its guard becomes true.
This rule also sends an a to the instance of t2 that is linked. In the type t2, there is
only one rule to be fired, which happens only when there is an a in the compartment
C2.

25.2.2 Stochastic P Systems

In the case of stochastic P systems, constants are associated with rules in order to
compute their probabilities. The precise definition is given below. It refers to a class
of P systems, called tissue P systems, where the system structure is defined as a graph
of components—a precise formal definition can be found in [28].

Definition 3 A stochastic P (sP) system is a model consisting of a tissue P system

s P = (O, L , μ, M1, . . . , Mn, R1, . . . , Rn)

where O is a finite set of objects, called alphabet, denoting the entities involved
in the system; L is a finite set of labels naming compartments; μ is a membrane
structure composed of n ≥ 1membranes defining the regions or compartments of the
system and their connections, forming an arbitrary graph; Mi = (li , wi ), 1 ≤ i ≤ n,
is the initial configuration of the compartment or region defined by the membrane i ,
where li ∈ L is the label of the compartment and wi ∈ O∗ is a finite initial multiset
of objects; Ri = {r i

1, . . . , r i
mi

}, 1 ≤ i ≤ n, is a set of multiset rewriting rules, of the
form: r i

k : [x →ck y]li , where x and y aremultisets of objects (y might be empty) over
O , representing the molecular species consumed and produced in the corresponding
molecular interaction occurring in the compartment labelled li . An application of a
rule of this form changes the content of the membrane with label li by replacing the
multiset x with y. The stochastic constant ck is used by the Gillespie algorithm [17]
in order to compute the probabilities associated with the rules.

In each compartment of the sP system the execution strategy is based on Gillespie
algorithm. Similarly to kP systems, one can define configurations, transitions and
computations. Partial computations are also widely used in this context.

The model of the sP systems has been considered as the basis of the Infobiotics
Workbench [6] where this is extended with some modularity features allowing a
more flexible specification of a system. Each module has a name and some attributes
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associated with it. We do not provide the full formal definition of these modules
(for a formal approach see [6, 31]), but we prefer to introduce them through some
examples utilised later in this work.

The unregulated gene expression module, whereby some genes are expressed
constitutively and independently of transcription factors is defined by the module:

Un Reg({G, R, P}, {c1, c2, c3, c4}){
G →c1 G + R;
R →c2 R + P;
R →c3;
P →c4}

This module describes the process of transcribing the gene G into its correspond-
ing mRNA, R, which in turn is translated into a protein P . The mRNA and the
protein can be degraded. The propensities of these processes are determined by the
stochastic coefficients ci , 1 ≤ i ≤ 4. Some variants of this might appear when more
than a protein is involved. The module has the form:

Un RegM({G, R, P1, P2}, {c1, c2, c3, c4, c5, c6}){
G →c1 G + R;
R →c2 R + P1;
R →c3 R + P2;
R →c4;
P1 →c5;
P2 →c6}
When it is assumed that the protein is obtained in one step from the gene, the module
is:

Un RegS({G, P}, {c1, c2}){
G →c1 G + P;
P →c2}

One can also describe the process of complex formation, when two molecules M1

and M2 form a more complex molecule M1 · M2 and this might be reversible. The
module is:

Comp({M1, M2}, {c1}){
M1 + M2 →c1 M1 · M2}

A negative regulation of a gene, when a repressor protein R binds reversibly to
the gene G preventing it to produce any protein, is given by:

Neg({R, G}, {c1, c2}){
R + G →c1 R · G;
R.G →c2 R + G}
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25.2.3 Tools

The specifications written in kP-Lingua are supported by a software platform,
kPWorkbench, which integrates a set of tools and translators that bridge several
target specifications that we employ for kP system models, written in kP-Lingua.
kPWorkbench permits simulation and formal verification of kP system models
using several simulation and verification methodologies and tools.

The Infobiotics Workbench (IBW) is an integrated software suite of tools to per-
form in silico experiments for sP models in systems and synthetic biology [6]. This
software platform includes simulators and tools for formal verification of stochastic
models.

The IBW tool is aimed at providing support for quantitative (stochastic) analysis
of systems, whereas kPWorkbench is meant to help with qualitative analysis. In
this respect, systems are specified within IBW, by usingmodularity features and then
analysedwith the existing tools of this environment. For qualitative analysis these are
then automatically translated into a non-deterministic version of the system which
is then analysed within the kPWorkbench environment.

25.3 Genetic Logic Gates

Genetic logic gates have been considered in various papers, including [4, 30, 34],
using various synthetic biology tools, amongst them GEC [29], Eugene [5] and
Proto [3]. In [23, 33], we have studied two basic logic gates, AND and OR, using
the IBW tool for quantitative analysis and kPWorkbench for qualitative one. Here,
we provide a summary of our results.

The genetic parts and designs of these gates are proposed by Beal et al. [4]. Both
gates use two inducers, aTc and IPTG, as input and use GFP as output. aTc and
IPTG disable the activities of TetR and LacI proteins, respectively.

Figure25.1a illustrates the genetic design of an AND gate, which receives two
input signals: aTc and IPTG. In this system, the transcription factors LacI and
TetR are expressed by a gene controlled by the same promoter. The aTcmolecules
repress TetR, and IPTG molecules repress LacI, to prevent them from inhibiting
the production of GFP by binding to the corresponding promoter which up-regulates
the expression of GFP. If both IPTG and aTc are set to high, then neither LacI nor
TetR can inhibit the GFP production.

Figure25.1b illustrates a genetic OR gate, comprising two mechanisms. Each
mechanism leads to the production of GFP, when it is activated. The first mechanism
is repressed by LacIwhile the second is repressed by TetR. Therefore, GFP can be
produced from the former when IPTG is set to high and from the latter when aTc
is set to high.

The stochastic model, in each of the two cases, consists of an sP system with
one compartment and a set of stochastic rules, governing the kinetic and stochas-
tic behaviour of the system. The rewriting rules and the kinetic constants (taken
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Fig. 25.1 Beal et. al.’s genetic devices functioning as an AND and OR gate (taken from [33]). a
AND gate. b OR gate

from [4]) of the devices are described in the Table25.1 (a) AND and (b) OR of the
Appendix.

In the next section we will show how the two gates are modelled by using the
modular approach provided by the sP systems and available as part of the IBW
specification component.

25.4 Modelling with sP Systems

The sP systems model utilised for each of the two logic gates consists of a one com-
partment system and an alphabet of objects including all the species and molecules
that appear in the two sets of reactions listed in Table25.1 (a) AND and (b) OR of the
Appendix. For expressing the behaviour of each of these systems we will be using
modules as they are supported by the IBW environment. These specifications are
also automatically translated into non-deterministic kP systems and made available
to kPWorkbench.

The AND logic gate fully described by the reactions listed in Table25.1 (a) AND
can be specified usingmodules in amanner thatmaps better the informal specification
above. The rules r1, r2, r3 and r10, r11, r12 can be embedded into a moduleUn RegM
which expresses the fact that the transcription factors LacI and TetR are expressed
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by a gene, but also that the mRNA and the transcription factors degrade. Each of
the reactions r4 and r5 expresses a complex formation, whereby the aTc molecules
repress TetR, and IPTG molecules repress LacI, respectively. These are captured
by Comp modules. The fact that LacI and TetR inhibit the GFP production (rules
r6a, r6b and r7a, r7b) is captured by two modules describing this negative regulation,
Neg. Finally, the GFP production (rules r8, r9) is defined by a moduleUn RegS. The
complete specification of the AND logic gate using modules is:

Un RegM({gene_LacI_TetR,mLacI_TetR,LacI,TetR}, {k1, k2, k3, k12,
k10, k11})
Comp({LacI,IPTG}, {k4})
Comp({TetR,aTc}, {k5})
Neg({LacI,gene_GFP}, {k6a, k6b})
Neg({TetR,gene_GFP}, {k7a, k7b})
Un RegS({gene_GFP,GFP}, {k8, k9})
The OR logic gate is very similar to AND with respect to modelling modules. The
first three lines, using modules Un RegM and Comp twice are the same. As the OR
gate uses two mechanisms to produce GFP then the two Neg modules of the AND
gate are replaced by

Neg({LacI,gene_GFP1}, {k6a, k6b})
Neg({TetR,gene_GFP2}, {k7a, k7b})
and finally, the Un RegS of the AND gate is replaced by two Un RegS modules
responsible for producing GFP.
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Fig. 25.2 GFP expression in the AND (left) and (OR) gate over time for the aTc/IPTG input
combinations low-low, low-high, high-low, and high-high (taken from [33]). Error bars denote the
standard deviations of 100 statistically independent samples
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Having the systems implemented by using modules one can run various simu-
lations with IBW environment and check their behaviours. The trajectories of both
gate dynamics for the four different input combinations of low and high aTc and
IPTG concentrations are shown in Fig. 25.2. The graphs presented show that the
gates quickly approach a steady state with output concentrations. These show that
the models implement the desired Boolean logics. Apart from simulations revealing
various aspects of the systems’ behaviour the tools discussed earlier provide more
insights into the system by revealing certain properties or relationships between
different components. All these will be investigated in the next section.

The translation of the sP system into a kP system is obtained automatically by
removing the kinetic coefficients of the former. The kP system obtained can be
executed in kPWorkbench by using the execution strategy corresponding to non-
deterministic choice. The simulation of such a non-deterministic system does not
bring any new information about the model, but this specification is useful for the
formal verification performed in the next section.

25.5 P Systems Verification

In this section we briefly present a methodology for verifying P systemmodels using
model checking approaches. This has been developed by looking at quantitative
and qualitative results whereby various model checking tools have been used to
investigate properties of different types [20, 22]. In this work we will be illustrating
the use of two model checkers, Prism [19] for quantitative analysis and NuSMV [7]
for qualitative aspects; they are part of the IBW and kPWorkbench platforms,
respectively. They can be directly called from these platforms and the queries can be
formulated in a natural language format [6].

In standard logic gates, any voltage value above a threshold value, such as 3V, is
considered as 1. Since there is no such a standard value for genetic Boolean gates,
we propose a threshold for this particular design. To analyse the behaviour of the
genetic devices formally, we verify the following property using Prism:

“What is the likelihood that GFP eventually exceeds the threshold T hr at
time t?”

which is expressed in a probabilistic logic (CSL) as

P=?
[
Ft GFP ≥ T hr

]
.

This query returns different results for different parameter values. For example, if
we consider the OR gate, it returns 1 for T hr = 100, t = 1000, and aTc = IPTG =
1000.

When models are built, especially when these are complex, with many species
and interactions, it is essential that one can verify their correctness. In many cases
there are chains of reactions leading to certain results and it is important to check
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dependabilities and the way they influence certain results. In our case, both logic
gates show certain dependabilities. For instance, one can check that GFP is not
present initially in the system, but it will eventually appear. One can verify whether
GFP will finally appear in the system, by using the following statement in NuSMV:

“There are pathways in the system that eventually lead to the production of GFP”

EF (GFP > 0).

This property, expressed in CTL, is true, as expected.
We now show how one can check that a certain sequence of events must or might

appear in a chain of reactions. This is illustrated by the relationship between the
production of LacI and TetR and the complex formation of LacI.IPTG and
TetR.aTc, respectively. We illustrate now the chain of events triggered by LacI
by using a CTL formula in NuSMV:

“Always the LacI production might eventually lead to the complex
LacI.IPTG.”

AG (LacI > 0 ⇒ EF LacI.IPTG > 0)

This property is true, as expected.

25.6 Conclusions

In this paper,we have shownhowan unconventional computing paradigm,membrane
systems, is utilised to model and analyse various systems, especially biological sys-
tems. In particular, we have considered kP systems and stochastic P systems, together
with the corresponding software platforms developed, in order to model and verify
certain properties of biological systems.

Our approach is novel in the sense that our methodology (i) combines quantitative
and qualitative analysis; (ii) is a modular way of specifying systems, (iii) employs
simulation methods to analyse system dynamics and (iv) integrates various verifica-
tion methods to adequately check the desired properties.

We are currently working on the next versions of IBW and kPWorkbench tools
by incorporating more methods for specifying, modelling, simulating and verifying
biological systems.
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Appendix: Table

Table 25.1 (a) AND gate by Beal et al. (taken from [33]) and, (b) OR gate by Beal et al. (taken
from [33])

(a)

r0a
k0a→ IPTG k0a ∈ {0, 1000}

r0b
k0b→ aTc k0b ∈ {0, 1000}

r1 gene_LacI_TetR
k1→ gene_LacI_TetR + mLacI_TetR k1 = 0.12

r2 mLacI_TetR
k2→ mLacI_TetR + LacI k2 = 0.1

r3 mLacI_TetR
k3→ mLacI_TetR + TetR k3 = 0.1

r4 LacI + IPTG
k4→ LacI-IPTG k4 = 1.0

r5 TetR + aTc
k5→ TetR-aTc k5 = 1.0

r6a gene_GFP + LacI
k6a→ gene_GFP-LacI k6a = 1.0

r6b gene_GFP-LacI
k6b→ gene_GFP + LacI k6b = 0.01

r7a gene_GFP + TetR
k7a→ gene_GFP-TetR k7a = 1.0

r7b gene_GFP-TetR
k7b→ gene_GFP + TetR k7b = 0.01

r8 gene_GFP
k8→ gene_GFP + GFP k8 = 1.0

r9 GFP
k9→ k9 = 0.001

r10 LacI
k10→ k10 = 0.01

r11 TetR
k11→ k11 = 0.01

r12 mLacI_TetR
k12→ k12 = 0.001

(b)

r0 − r5 Same as the rules r0 − r5 of the AND gate above

r6a gene_GFP1 + LacI
k6a→ gene_GFP1-LacI k6a = 1.0

r6b gene_GFP1-LacI
k6b→ gene_GFP1 + LacI k6b = 0.01

r7a gene_GFP2 + TetR
k7a→ gene_GFP2-TetR k7a = 1.0

r7b gene_GFP2-TetR
k7b→ gene_GFP2 + TetR k7b = 0.01

r8 gene_GFP1
k8→ gene_GFP1 + GFP k8 = 1.0

r9 gene_GFP2
k9→ gene_GFP2 + GFP k9 = 1.0

r10 − r13 Same as the rules r9 − r12 of the AND gate
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27. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
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Chapter 26
On Improving the Expressive Power
of Chemical Computation

Erik Bergh and Zoran Konkoli

Abstract The term chemical computation describes information processing setups
where an arbitrary reaction system is used to perform information processing. The
reaction system consists of a set of reactants and a reaction volume that harbours all
chemicals. It has been argued that this type of computation is in principle Turing com-
plete: for any computable function a suitable chemical system can be constructed that
implements it. Turing completeness cannot be strictly guaranteed due to the inherent
stochasticity of chemical reaction dynamics. The computation process can end pre-
maturely or branch off in the wrong direction. The frequency of such errors defines
the so-called fail rate of chemical computation. In this chapter we review recent
advances in the field, and also suggest a few novel generic design principles which,
when adhered to, should enable engineers to build accurate chemical computers.

26.1 Introduction

Chemical computers could be used to achieve energy efficient wireless information
processing on small scales. This type of computation can be potentially useful for
many technological applications. The idea to use chemical reactions for information
processing has been around for quite some time. The concept has been explored from
many different angles [1–24].

In a chemical computer, the information about the state of the computation is
represented as a collective state of a collection of molecules. The most important
property of a chemical computer is that the motion of molecules (transport) occurs
spontaneously, even when the reactor is not stirred. In principle, once a system
has been prepared, the chemical computer needs no power to operate, apart from
the obvious thermodynamic requirement that it has to operate in a finite (room)
temperature. This implies that the state of the computer changes without any external
influence, and no explicit wiring is needed.
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The transport of reactants is powered by thermal fluctuations of the surrounding
solvent. Reacting molecules move by diffusion with the diffusion constant given by
D ∼ kBT/ηwhere kB is theBoltzmann constant,whileT andη denote the temperature
and the viscosity of the solvent respectively. Reactions happen spontaneously when
reacting molecules are close enough. The energy for a reaction comes either from
the thermal motion of the surrounding solvent molecules, or is already stored in the
electronic states of the reacting molecules.

Since particles can move by diffusion another key advantage of a chemical com-
puter is that there is no need to implement wires to carry information across the
device. This is in a sharp contrast with the traditional silicon-based solutions where
correct wiring at small scales is a serious issue. In the standard setup the information
carrier is the electrical charge and its motion needs to be directed by using conducting
materials.

Several specific applications of a chemical computer have been demonstrated
in the context of unconventional computation. [25] The main drive behind these
developments was not to build a copy of, or to mimic, the standard silicon solutions
(which heavily rely on the use of the vonNeumann architecture). Instead, the goalwas
to findways of using the chemistry in its natural setup, to perform the so-called natural
computation, without elaborate auxiliary engineering. A few cases demonstrated in
the laboratory deal with a chemical computer implementation of the Vornoi diagram
problem, or the skeletonisation problem. There are numerous examples in nature how
chemical computation is used to realize information processing. A typical example
is bacterial chemotaxis where the intracellular chemistry is used to modulate the
motion of the bacteria towards the food or away from the poison, or various gene
regulation mechanisms.

Several attempts have beenmade to achieve a rigorousmathematical formalisation
of the concept of a computing chemical reaction system. The goal is to ignore exper-
imental details and emphasize instead the relevant information processing features
of a chemical reaction system. A range of various calculi have been developed to that
end. [26–28] Such generic (and often very abstract) formulations are useful when
the reaction system of interest is very large, i.e. when it involves many reactions and
reactant types, and when there is a need for automation and re-use of models. These
formulations are often meant to be used in two ways, to analyze chemical computers
in a generic but rigorous mathematical way, or to exploit the formality of the descrip-
tion to build involved and highly optimised simulation tools. It is fair to say that,
so far, majority of the activity in the field has dealt with the later. These approaches
will not be discussed. Instead, the focus will be on discussing the approaches that
specifically focus on understanding chemical computation per se. In particular, one
very important issue that can be analyzed using a rigorous mathematical formulation
is the property of the Turing universality.

What can one compute using the chemical computer? Several recent studies have
addressed the question [21, 24, 29–31]. The main conclusion from these studies
is that the chemical computation is Turing complete in principle. However, unpre-
dictable errors in the computation can occur. The origin of such errors is the inherent
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stochasticity of chemical reaction dynamics, which originates from thermal motion
of the solvent.

While the motion of the solvent molecules servers the purpose of powering the
computer it also leads to occurrence of errors in chemical computation. It is impos-
sible to separate the two. The frequency of such errors defines the so-called fail rate
of computation (or just the fail rate). If we can build a theoretical model to explain
what controls the fail rate, we will be able to build chemical computers that would
make very few errors.

Formally, the fail rate is defined as the fraction of runs during which the error
occurs (assuming the the computation can be repeated infinitely many times). In
this context a run should be thought of as a dynamical process where the chemical
computer changes its state from the time it has been prepared, to the time when its
stops, i.e. when the outputs can be inspected.

In this chapter several features of chemical reaction dynamics will be discussed
with the goal of understandinghow they can influence the intrinsic stochastic behavior
of the chemical computer, and ultimately the fail rate. Based on the analysis of several
examples, a few design principles will be suggested that could be adhered to when
constructing chemical computers.

The fail rate has been investigated in the well-mixed chemical reactor setup. The
main conclusion from these studies is that the fail rate increases with the number of
particles in the system. This is a serious issue. For example, imagine a computer that
makes much more mistakes when programs with long execution time are being run
on it.

The present study aims to further explore the fail rate in much more detail in order
to understand how to remedy the above problem and understand how it depends on
some generic engineering aspects of building a chemical computer. Specifically, the
focus is on understanding how the spatial, or temporal noise, affects the fail rate. Any
attempt tominiaturize chemical computers for advanced bio-compatible applications
will necessarily result in the following situations: (a) there might be many reactant
types but very few copies of each, and (b) external stirringwill not be possible. Thus it
is highly prudent to understand how these features make an influence on the fail rate.
Note that from the technical point of view, these regimes (low particle numbers and
weak stirring) are the ones that are hardest to analyze. Several pedagogical examples
are discussed in [32] (a review article where spatially extended kinetics is discussed)
or [33] (study of the effects related to low particle numbers). An attempt has been
made to present an intrinsically technical subject using intuitive yet mathematically
rigorous constructs.

The text is organized as follows. First some important properties of the diffusion
controlled chemical reactions will be reviewed. The goal will be to point out the most
important features that are relevant for information processing. Second, the Bare
Bones programming language will be discussed. The language is Turing universal
with an advantage that any Bare Bones program can be implemented as an (abstract)
chemical computer. The key element of the language is the while loop. It will be
explained how the loop can be implemented using chemical reactions. Third, the
fail rate of the several loop implementations will be investigated in detail, e.g., by
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analysing its dependence on the topology of the chemical reaction network, the speed
of the reactant transport versus the speed of reactions, the number of reactants in the
device, etc.

26.2 Fluctuation-Dominated Kinetics Essentials

There are twomajor types of noise, spatial noise, and temporal noise. This distinction
is not always made explicitly in the literature, but it will be used throughout this
chapter. Kinetics is said to be fluctuation-dominated when the presence of noise is
overwhelming so that the classical chemical kinetics cannot be used to explain the
observed experimental behavior.

The dynamics of chemical reaction systems is intrinsically noisy. This noise can-
not be controlled since it is an integral part of the dynamics. The classical (mass
action) kinetics formulation is extremely practical and straightforward to use, and it
appears as an integral part of many software modeling applications.

The equations of classical chemical kinetics are never exact. These equations do
not contain information about the intrinsic chemical noise that is always present in
the system. The mass action law formulation can be only used to describe (i) the
so called well-stirred chemical reactor and (ii) systems with many particles in the
reaction volume.

In practice, this means that the theoretical predictions obtained by using the mass
action law agree with experimental results only if the special conditions (i) and (ii)
are met. In such situations, noise is present but it never influences the dynamics.
However, there are situations when this is not true. The influence of noise can be so
strong, so that the theoretical predictions obtained by using the mass action law are
qualitatively different from the ones observed in experiments.

Temporal noise is also being referred to as intrinsic noise. Even if the chemical
reactor is well-stirred, the chemical reaction dynamics can be stochastic if there are
very few particles in the system. A well-stirred chemical reactor is often described as
having a dimension zero (d = 0). In electronics, this type of noise is referred as shot-
noise, but this term will not be used in here. It can be shown that when the number
of particles is large then such noise disappears. However, for some systems with
few particles inside the reactor, the mass action law predictions are qualitatively
wrong when compared to experiments (or simulations). Typical examples are bi-
stable systems. For a review of these topics cf. [33, 34] and references therein.

By spatial noise we mean inhomogeneities in the way particles are distributed
in space. Such inhomogeneities always occur spontaneously but are smeared out by
either external mixing or the internal motion of the fluid around the reacting parti-
cles. However, when there is no external mixing, and when the intrinsic transport
of reactants is relatively slow when compared to the speed of the reactions in the
system, the inhomogeneities can persist for a very long time. Spatial noise can have
an enormous influence on the dynamics of the system. It can render any form of mass
action law kinetics qualitatively incorrect, even if there are many particles in the sys-
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tem. Systems where this happens are said to exhibit fluctuation dominated kinetics.
Conversely, if the transport of reactants is fast the effects of noise are negligible.
Such reaction systems are often described as well-mixed.

Traditionally, in the special case when spatial noise plays a dominant role, and
the system cannot be described by using the mass action law, one talks about fluc-
tuation dominated kinetics. The typical trademark of such behavior is that particle
concentration is not uniform.

As an illustration of a system that exhibits fluctuation dominated kinetics, consider
a reaction system where particles A diffuse in space with the diffusion constant D,
and react on contact with a reaction rate λ as A + A → P. Assume that the product
molecule P does not have any influence on the dynamics of the system (there is
no back-reaction). Further, assume that initially the particle concentration c(r, t) is
spatially homogeneous (no spatial dependence of the concentration): c(r, t = 0) =
c0, where r denotes a position in space, and t denotes time.

In this situation a typical use of themass action lawwould be to assume (correctly)
that the particle concentration stays homogeneous is space in average, c(r, t) = c(t),
and then use the mass law equation for the A + A reaction

dc(t)

dt
= −λc(t)2 (26.1)

to show that
c(t) = c0

1 + λc0t
(26.2)

This very simple expression conveys several important messages, but not all of them
will be discussed in here. The only reason why the equation above is shown is to
illustrate how the mass action law kinetics, or classical chemical kinetics, can fail to
describe reality. This is best seen by inspecting the t → ∞ limit of the expression,
the so-called asymptotic solution, which behaves as c(t) ∝ 1/t. Experiments show
that indeed in this time regime the concentration stays homogeneous in average, but
the mass action prediction is qualitatively wrong in low spatial dimensions [35].

For example, in one dimension (e.g. the particles are forced to move in a nar-
row cylinder) the correct result is c(t) ∝ 1/

√
t. Note that qualitative difference for

very large times. Thus the reaction A + A exhibits fluctuation dominated kinetics in
one dimension. The same occurs for two dimensions (e.g. all reactants move on the
surface) where the correct asymptotic behavior is given by c(t) ∝ t/ ln t. In three
dimensions (reactants move in a finite volume) the mass action law provides quali-
tatively correct description. In three dimensions the dynamics of A + A reaction is
not fluctuation dominated. For a review of these topics cf. [32, 35] and references
therein.

In the following the two types of noise discussed above will be jointly referred to
as spatio-temporal noise, and the term fluctuation dominated kinetics will be used to
describe the systems for which both types of noise are important.
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The goal will be to investigate fail rate for the systemswith both low copy numbers
and inefficient particle mixing. Further, an attempt will be made to systematically
exploit such features to gain an understanding of how to build the most accurate
chemical computers.

26.3 Catalytic Particle Computer as a Bare Bones
Programing Language Implementation

The Bare Bones programming language is Turing complete: it can theoretically
describe any computable mathematical function as shown by Brookshear and
Brylow [36]. The language is suitable for chemical implementation in the sense
that any Bare Bones program can be implemented using a suitable chemical reaction
system.

A program in the Bare Bones programming language consists of the description of
variables v1, v2, etc., and a list of statements being either DECREASE vi, INCREASE
vj, or a while do loop construct, while(v �= 0)...endwhile. These statements can be
arranged in a list, even nested, and are expected to be executed in a well-defined
order. Below is a Bare Bones program performing x = u + v − w.

while(u �= 0)

INCREASEx, DECREASEu

endwhile

while(v �= 0)

INCREASEx, DECREASEv

endwhile

while(w �= 0)

DECREASEx, DECREASEw

endwhile

To implement such program using a chemical computer it is necessary to trans-
form it into a form that is more suitable for chemical implementation. Liekens and
Fernando [31] suggested the so called catalytic particle computer as a way to imple-
ment Bare Bones programs. The catalytic particle computer is a particular imple-
mentation, a chemical model, of a Bare Bones program. The model consists of an
abstract description of how a chemical machine can be implemented in principle.
The specification contains the list of reactant types, and the chemical reactions that
simulate the execution of the Bare Bones program.

As the Bare Bones program implementation executes it passes through different
states. The state of the execution is encoded using chemicals, e.g. S1, S2, S3, . . . , Sn,
and observing their quantities (copy numbers)

c(1) ≡ (#S1, #S2, #S3, . . . , #Sn) (26.3)
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For example, in the initial state of the program c(1) = (11, 02, 03, . . . , 0n), in the next
state of the execution e.g. c(1) = (01, 12, 03, . . . , 0n), etc. where 1i (0i) indicates that
1 (0) occurs at a position i in the list.

Likewise, variable values v1, v2, . . . , vm are encoded as copy numbers of the
respective chemicals V1,V2, . . . ,Vm,

c(2) ≡ (#V1, #V2, #V3, . . . , #Vm) (26.4)

Taken together, the configuration state of the system

c = c(1) ∪ c(2) (26.5)

encodes the state of the computation, where the symbol ∪ denotes the list concate-
nation.

As an illustration, the Bare Bones program indicated above can be represented as
follows:

S1 : while(u �= 0)

INCREASEx, DECREASEu

endwhile

GOTO S2
S2 : while(v �= 0)

INCREASEx, DECREASEv

endwhile

GOTO S3
S3 : while(w �= 0)

DECREASEx, DECREASEw

endwhile

The aboveprogramcode is implementedutilizing catalytic particles as inFig. 26.1.

In the depicted chemical implementation S1, S2 and S3 represent the particles making
up the states S1, S2, and S3 while catalyzing the creation or conversion of the different
particles: U, V, W and X. Here and in the following, the particles are named using
capital letters, and their respective copy numbers are denoted by using lower-case
letters, e.g. u, v,w and x.

26.4 Mathematical Formalization of the While Loop

Thewhile loop construct is themost important element of the language. The catalytic
particle computer implementation described previously is one of many possibilities.
In the following other implementations will be discussed.
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Fig. 26.1 The catalytic particle computer implementation of the Bare Bones program calculating
u + v − w. The result of the computation is encoded in the final number of X molecules. Note the
presence of the state particles which catalyze the chemical reactions. When the condition stated
above an arrow is fulfilled, the state particle is allowed to undergo the indicated unimolecular
reaction (to the next state)

Fig. 26.2 An implementation of the ‘CLEAR v’ command. A process in the box transforms state
S0 to state S1, and converts every particle V to a particle R

To make the forthcoming discussion easier it is necessary to formalize the while
loop concept mathematically. This is done in Eq. (26.6) where the symbol F denotes
the mathematical operator that acts on the configuration space of state vectors c and
converts a predefined set of copy numbers as shown. This is illustrated in Fig. 26.2.

⎛
⎝ #V [begin]
#R[begin]

S0

⎞
⎠ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v
0

#S1[begin]
#S2[begin]

...

#Sn[begin]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

F→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
v

#S1[end]
#S2[end]

...

#Sn[end]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡
⎛
⎝#V [end]
#R[end]

S1

⎞
⎠ (26.6)

As an example, consider the while loop implementation suggested by Liekens
and Fernando. The list of chemical reactions is shown in Eq. (26.7):

S0 + V
k1→ S0 + R (26.7)

S0
k2→ S1

The state particle S0 is catalyzing the reaction of particle V to R until there are
no V particles left and S0 changes to S1 representing another state. This represents a
while-loopwith the condition that v is non-zero. In the following, this implementation
will be referred to as the minimal while loop implementation. The respective F for
this case is given by
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⎛
⎜⎜⎝

v
0

s0[begin] = 1
s1[begin] = 0

⎞
⎟⎟⎠ F→

⎛
⎜⎜⎝

0
v

s0[end] = 0
s1[end] = 1

⎞
⎟⎟⎠ (26.8)

Note that in (26.8) states S0 and S1 are encoded with two copy numbers (#S0, #S1)
as S0 ≡ (1, 0) and S1 ≡ (0, 1).

26.5 The Fail Rate Concept

Since the while loop construct is the key element of the Bare Bones programming
language the chance that the error occurs during its execution is of particular impor-
tance. This probability will be heavily analyzed in the following.

The only way the while loop execution can fail is that the reaction that leads to
the next step of the execution (the one just after the while loop) happens too soon.
When this happens molecules V will still be in the system. This would classify as a
‘run-time’ error, that could propagate further and cause all sorts of inconsistencies
in the program execution.

For example, due to the stochastic nature of chemical reactions it is not possible to
prevent the second reaction in (26.7), though the first reaction might be much faster.
This is illustrated in Fig. 26.3 where arrows represent different reaction pathways.
Thus due to the presence of stochastic effects there is a chance that the loop ends
prematurely. To analyse the probability that this happens, it is necessary to investigate
the probabilities that each reaction will occur, given that the configuration of the
system is known.

These probabilities can be computed by using the standard techniques from the
theory of Poisson processes [37]:

P(S0 + V
k1→ S0 + R) = k1v

k1v + k2
(26.9)

Fig. 26.3 The pathway topology of the minimal while loop implementation in Eq. (26.7) is shown.
From state S0 the system either converts one V particle to R, or changes directly to state S1 (which
would be an error provided this happened when v �= 0)
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P(S0
k2→ S1) = k2

k1v + k2
(26.10)

FromEq. (26.9) it is straightforward to calculate the probability P of not finishing the
loop by using the probability of the opposite event, i.e. the probability P̄ that there is
no error during the loop execution. Due to the independence of the reaction events P̄
is given as the product of probabilities that loop performs without error during each
iteration (given by Eq.26.9 for each v = V0,V0 − 1, . . . , 2, 1).

P = 1 −
v0∏
v=1

k1v

k1v + k2
= 1 − v0!�( k2k1

+ 1)

�( k2k1
+ v0 + 1)

(26.11)

26.6 Strategies for Identifying Good Designs

Once the fail rate formula is known it can be used to theoretically analyze fail rate
and suggest feasible design on pure theoretical basis. To be able to identify good
designs it is essential to have an accurate fail rate formula.

There are many effects that can influence fail rate and to account for them all is
rather challenging. It is equally important to be critical of the results. For a given
formula it is important to understand under which assumptions it has been derived.
For example, Eq. (26.11) has been derived under the assumption of the so calledwell-
mixed regime where the mixing time is considerably faster than the typical reaction
time. The analysis of this formula has been performed by Liekens and Fernando [31].
It can be seen immediately that P → 0 for k1/k2 → ∞. This shows that to reduce
the chance that the chemical computer makes an error the first design rule is that
chemical reactions should be used where k1 
 k2. This can be achieved in two ways
by making k1 as large as possible, or by making k2 as small as possible. The second
alternative results in a problem, as discussed by Liekens and Fernando [31]. The
duration of the loop execution (the run-time of the loop) becomes infinitely long
when k2 → 0. This suggests that designs with k1 
 k2 and k2 sufficiently large are
more practical. The question is whether this conclusion holds when other effects are
considered.

There are many features that are known to exert influence on kinetics, e.g. reactor-
size, reactor-shape, diffusivity and the initial distribution of particles. All these fea-
tures can be used to achieve better designs (fast and accurate computation) and it
is therefore of great interest to understand how they affect the fail rate. Note that
even if not exploited explicitly, ignoring these parameters can cause enormous errors
when theoretically analyzing the performance of a chemical computer designs (for
eventual experimental implementations).

In the following two fail rate shaping features of the system dynamics will be
investigated (1) the influence of the speed of mixing is analysed through by mod-
ification of the diffusion constants (large diffusion constants corresponding to fast
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mixing) and (2) the effects of the while-loop reaction network topology (analyzed by
investigating the fail rate for several explicit reaction schemes). Before embarking on
analysing these effects, the next section summarizes the reaction schemes considered
in this work.

26.7 Reaction Network Topologies

In Sect. 26.6 it was shown that the choice of the kinetic (reaction rate) parameters
can be exploited to achieve a good performance (with low fail rates). This is by no
means the only aspects that can be changed to optimize the performance.

In this section various while loop realization have been suggested, each detailed in
a separate subsection.All reaction schemeswere chosen based on the expectation that
they should improve the accuracy of the related chemical computer implementation,
i.e. result in lower fail rates.

In the following the terms ‘reaction network topology’ or ‘reaction system topol-
ogy’ will be used when the goal is to emphasize the structure of the reaction network,
i.e. how various reactions couple together. All reaction system topologies comply
with the template specified in Eq. (26.6) and can be seen as an implementation of the
while-loop operator F. For example, the minimal while loop implementation in Eq.
(26.7), shown also in Fig. 26.3, is the simplest possible implementation of the while
loop that complies with the template.

26.7.1 Sequential System

To achieve less random and more controlled state transition, the reaction topology is
changed so that the change of state is governed by a chain of reactions.

It is assumed that a cluster of S0 needs to be formed before the next step is allowed
to happen. The critical number of S0 particles that needs to be accumulated will be
denoted as ν. By assumption, particles S0 are collected (adsorbed) by a particle P
sequentially. This is illustrated in Fig. 26.4, and shown explicitly in Eq. (26.12).

Fig. 26.4 An illustration of the sequential topology dynamics. An example with ν = 3 is depicted.
The process involves three S0 particles: First the P0 particle reacts with a S0 particle creating a P1
complex. This P1 complex then adsorbs another S0 particle resulting in a new complex P2. When
this P2 complex adsorbs yet another S0 particle, the complex with ν S0 particles is finally converted
into the S1 particle. This indicates that the state of the computation has changed
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S0 + V
k1→ S0 + R

Pn + S0
k2→ Pn+1 (26.12)

Pν−1 + S0
k3→ S1

The F mapping for this case is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v
0

s0[begin] = ν

p0[begin] = 1
p1[begin] = 0
p2[begin] = 0

· · ·
pν−1[begin] = 0
s1[begin] = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
v

s0[end] = 0
p0[end] = 0
p1[end] = 0
p2[end] = 0

· · ·
pν−1[end] = 0
s1[end] = 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26.13)

A similar mechanism is used in various gene regulation mechanisms in the living
cell. Normally, a relatively large cluster of molecules needs to aggregate at specific
parts of DNA before genes can be expressed. The required pre-clustering effectively
lowers the reaction rate, which indirectly favours larger k1/k2 ratios. However, it is
not at all clear whether such assumption holds when spatial aspects of the dynamics
are taken into account.

26.7.2 Feedback System

A further improved control of the transition to the next state can be achieved if the
exit-reaction (to the next step) is inhibited by any existing V particle.

An implementation of this idea is shown in Eq. (26.14). The system in Eq. (26.12)
has been extended with a reaction where the Pn complex decays into its components
every time the complex encounters a V particle. Then, it decays into one P and n S0
particles, and hence the chain of the reactions that leads to the necessary accumulation
of S0 particles must be redone. The reactions leading to a state-change are illustrated
in Fig. 26.5 where also a branch has been incorporated where the particles collapses
due to an encounter with a V particle. The F mapping for this case is given by
Eq. (26.13).

S0 + V
k1→ S0 + R

Pn + V
k2→ P + nS0 + V (26.14)

Pn + S0
k3→ Pn+1

Pν−1 + S0
k4→ S1
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Fig. 26.5 An illustration of the feedback system dynamics with ν = 3. The process is identical to
that in Fig. 26.4 with the only difference being that every P complex can decay under the presence
of a V molecule. For example, the P2 particle instead of reacting with a S0 particle encounters a V
particle causing it to decay into a P0 particle and two S0 particles. This forces the system to redo
the chain of reactions hence delaying the state change which is of interest when there are remaining
V particles

26.7.3 Delayed Feedback System

A problem with the feedback system in Eq. (26.14) is that when Pn collapses the
resulting particles are in the same position making it likely for the particles to
quickly react back together. To avoid this, the system is extended further, as shown in
Eq. (26.15). The reaction systems features a new particle, Sr . When Pn disintegrates,
instead of n S0 particles, n Sr particles are created. The Sr particles must then decay
into S0 before they can react with P. While this is happens, the particles will also
diffuse away from each other. Our expectation is that this inhibits the particles to
instantly react back together.

S0 + V
k1→ S0 + R

Pn + V
k2→ P + nSr + V

Pn + S0
k3→ Pn+1 (26.15)

Pν−1 + S0
k4→ S1

Sr
k5→ S0

The F mapping for this case is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v
0

s0[begin] = ν

p0[begin] = 1
p1[begin] = 0
p2[begin] = 0
sr[begin] = 0

· · ·
pν−1[begin] = 0
s1[begin] = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
v

s0[end] = 0
p0[end] = 0
p1[end] = 0
p2[end] = 0
sr[end] = 0

· · ·
pν−1[end] = 0
s1[end] = 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26.16)
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Note that this particular topology exploits explicitly the spatial aspects of the dynam-
ics. Here, the diffusion of Sr particles is used as a delay mechanism to ensure more
accurate transition.

26.8 Methods

The fail rate for the implementations discussed in the previous section has been
analyzed numerically using simulation techniques. An analytic, or semi-analytic,
investigation might be possible but this would likely complicate the discussions that
follow by making it much more technical. This section summarizes how the fail
rate was computed, which simulation technique was used, and how the simulation
parameters were prepared.

26.8.1 The Fail Rate Computation

To model the dynamics of the system it is possible to use off-lattice or on-lattice
simulations techniques. Both have their respective merits and problems. In principle
there is no difference between off-lattice and on-lattice simulations provided they
are matched appropriately. In the following, for the reasons of the simplicity of
implementation, and numerical efficiency, the on-lattice paradigm was used.

The dynamics of each chemical system is modelled by assuming that particles
move on a lattice with spacing between lattice sites given by h. Each site is assumed
to be the centre of a small well-mixed chemical reactor with volume hd , where d is
the dimension of the system. Particles move among these volumes, and react within
each volume. By assumption, each particle can jump and when two or more particles
meet on the same lattice site they can react. The probabilities of these events are
governed by their respective rates. The content of each lattice site and the reaction
rate values determine which reactions are possible. Each rate describes a Poisson
process [37]. The initial condition is prepared by placing each particle on the lattice
at random.

The simulations were performed using the version of the Gillespie’s algorithm
suggested in [38]. The algorithm works as follows. Each lattice point has a vector of
copy numbers assigned to it representing the number of particles of each species at
that point. Rates for all events were calculated for each lattice point based on the copy
numbers, with events referring to the diffusion and reaction processes. The process
to occur is chosen as follows. Based on the rates a table with probabilities for the
occurrence of eachprocess is constructed.Computationally, this is themost expensive
step during the algorithm execution. A process is chosen at random according to the
weights specified by the table. When the copy numbers of a lattice point is changed,
the rates is updated based on the new copy numbers, and the time is updated. In such a
way it is possible to obtain a trajectory through the configuration space of the system.
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Every trajectory requires a separate simulation. All simulations are performed on a
PC with a 64-bit 3.30 GHz 8 core AMD with 16 GB RAM.

Numerically, the fail rate is computed by examining the fraction of runs that
resulted in an error:

f = Nerror

Ntot
(26.17)

whereNtot denotes the total number of runs andNerror the number of runs that resulted
in an error. To obtain good statistics many such runs are repeated. The simulation
is stopped when the state is changed: Then there can either be no V particles left
(v = 0), or there can still be remaining V particles (an error has occurred).

26.8.2 The Units Used in Simulations

Toobtain agreementwith off-lattice dynamics, it is necessary to choose the simulation
parameters in a very special way. In what follows all parameters will be specified
using an arbitrary set of units. The physical (experimental) time texp will be expressed
in theunits of arbitrary time interval τ , texp = tτ and thephysical lengthwill expressed
in the units of lattice spacing h, lexp = lh. The bulk diffusion constant (experimentally
measurable parameter) can be expressed as

Dexp = D0
h2

τ
(26.18)

D0/τ denotes the rate which with a particle jumps from the current node to a specific
neighbouring node. The experimental reaction rates are defined as

kexp = k
hd(ω−1)

τ
(26.19)

where ω is the overall stoichiometric coefficient of the reaction (e.g. the sum of the
exponents in the mass action law). For example, for unary reactions ω = 1 and for
binary reactions ω = 2. Note that t, l, D0, and k are dimensionless. From here on, to
simplify the notation, we express all quantities in units of τ and h and use t instead
of texp, k instead of kexp, etc.

By construction, a lattice simulation is less accurate than the off-lattice simulation.
They agreewhen the number of lattice sites becomes infinite. Thuswhen studying this
type of convergence for lattice simulations while keeping the measurable quantities
constant, i.e. Dexp and kexp, it is necessary to carefully adjust the parameters used in
simulations.

For example, assume that the number of lattice sites is increased in the simulation
by a factor α (while keeping the experimental parameters constant). This amounts
to scaling the lattice spacing h by the factor α−1 (follows from h = lexp/l ∼ 1/l
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and l ∼ α). Further, from Eq. (26.18) one sees that D0 scales with α2 (follows from
D0 = τDexp/h2 ∼ h−2), and from (26.19), in a similar way, one concludes that
k ∼ αd(ω−1). Note that the reaction rate for a unary reaction does not scale, while
the rate for a binary reaction scales with αd . For example, doubling of the number
of lattice sites would correspond to choosing α = 2: D0 would have to be increased
four times, D0 → 4D0, unary reaction rates would be left unchanged, and binary
reaction rates would have to be increased by the factor 2d . The intuitive explanation
is that as the size of the lattice site is decreased, the particles must jump more often
to maintain the same overall displacement, and since particles do not meet that often
(they can be placed on more sites), once they do meet they should react with a larger
reaction rate to maintain the initial speed of reaction.

26.9 Results

While reading this section, it is very important to follow the chronological order
of the presentation. The presentation is organised around the key hypotheses, or
simply results, which were formulated after careful analysis of the simulation data
and further generalizations.

R1: Any form of poor-mixing makes the fail rate orders of magnitude higher than
what would be predicted by using the assumption of a well-mixed reaction
volume.
This can be seen by comparing the fail rates for the situations with good and
bad mixing (Sect. 26.9.1). As a reference, a k1/k2 ratio was chosen that results
in very few errors for well-mixed system, ca. 1ppm. The effects of poor mixing
increase the fail rate by orders of magnitude, from 1ppm to the values in the
range 40–100%, depending on the dimensionality of the system and howmany
particles need to be consumed.

R2: Even if the mixing is poor, the minimal while loop implementation can still
be significantly improved by using the topology of the sequential reaction net-
work. In this way, the fail rate can be roughly halved (Sect. 26.9.2, paragraph
‘The sequential system’).
As an example, the fail rate can be reduced from 100% to 60% in one dimen-
sion, which is the most pathological case where the worst mixing is expected.

R3: The fail rate can be even reduced further using the feedback system topology,
and the rate can be lowered roughly by half (Sect. 26.9.2, paragraph ‘The feed-
back system’).
For example, in the most pathological dimension (d = 1) the fail rate can be
further reduced from 60% to roughly 20%,which is a remarkable achievement.
By using the delayed feedback system a further decrease is possible, but the
reduction is not that dramatic, though it can be significant in some situations.
For example, in one dimension, when many loop cycles need to be performed,
the reduction is from the fail rate value of 20% to barely 10%.



26 On Improving the Expressive Power of Chemical Computation 693

R4: The time it takes thewhile loop to complete its cycles is changingwhen different
topologies of the implementation are considered (Sect. 26.9.3). In general, more
complex topologies lead to longer execution times. However, a typical increase
in the program execution time is not dramatic (e.g. no orders of magnitude
difference). This suggests that the gain in accuracy comes at a balanced increase
in the program execution time.

26.9.1 The Effects of the Mixing Speed

In order to investigate the effects of space, the fail rate of the minimal while loop
implementation described in Sect. 26.5 was studied for two cases, one with k1/k2 =
10 and one with k1/k2 = 106. This was done in one (d = 1), two (d = 2) and three
(d = 3) dimensions.

In the simulations, the total number of lattice sites was kept constant, 100 cells,
for all dimensions. Thus the lattice sizes were as follows: 100 cells for d = 1, 10×10
cells for d = 2, and 5 × 5 × 4 cells in d = 3. Periodic boundary conditions were
assumed. The following values for the diffusion constants were used: D0 = 100,
1000 and 10000 for d = 1, 2, 3 respectively. For every simulation set ten thousand
simulations were performed (Ntot = 10000) and the error-rate was calculated as
described earlier, i.e. by monitoring the number of runs Nerror that resulted in an
error (the runs that did not successfully transform all V particles to R before exiting
the while-loop).

Figure26.9 depicts how the fail-rate of the minimal while-loop implementation
in Eq. (26.7) depends on the spatial aspects of the dynamics. Here, the simulations
were performed with k1/k2 = 10 to make the overall error large. The analysis of
Fig. 26.9 shows that the speed of mixing can have a strong influence on the fail rate.
For example, in panel (a) one sees that the fail-rate curve strongly differs from the
curve that describes the well-mixed result, even for very large diffusion constant
values with D0 = 10000 for d = 1. Panels (b) and (c) suggest that the spatial effects
are weaker for dimensions d = 2, 3 since all curves are closer.1

The reason behind the higher fail-rate for lower D0 or lower dimensions can be
explained as follows. Figure26.6 is an illustration of the most important principles. It
shows a snapshot of the dynamics where the occupancy of each lattice site is shown.
The typical features that signal the fluctuation dominated kinetics are explicit.

Once a particle V has been converted it leaves a void that needs to be filled by
the diffusion. There is always a depletion zone around the molecule S0, the so called
cavity. If the diffusion is slow, this cavity is long-lived. Further, it is a well-known
result that in higher dimensions these cavities do not have such a strong influence on
the kinetics [32]. Thus the effect should be less pronounced in higher dimensions or
for larger diffusion constants (e.g. see Fig. 26.7).

1The results for d = 2,3 only qualitative since the results are not fully converged with respect to the
size of the lattice. This analysis is illustrated briefly in Fig. 26.18.
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Fig. 26.6 An illustration of the (spatial) fluctuation dominated kinetics. Snapshots from one dimen-
sional simulations of the minimal while loop-system implementation in Eq. (26.7). A green oval
symbolizes that the position is occupied by one or several V particles, the red oval denotes the S0
particle, and white colour stands for empty sites. Panel a depicts the so-called well-mixed system.
The rate of diffusion is significantly greater than the reaction rate. This causes an equal distribution
of V particles in space. When the S0 particle consumes an V particle, the other neighbouring V
particles quickly fill the void. In panel b the reaction rate is significantly higher than the rate of
diffusion. Note a void of V particles around the S0 particle. If a V particle comes in contact with
the S0 particle it instantaneously reacts and because of the low rate it takes longer time for the
neighbouring V particles to fill the void

In panel (a) is there a high degree of mixing giving a homogeneous distribution
of V particles. In panel (b) is there a low degree of mixing causing a lowering of
the concentration of V particles around the S0 particles. The same is visualized in
Fig. 26.7 for two dimensions.

For comparison, Fig. 26.8 shows the fail-rate of an identical systems to that
described above but with with k1/k2 = 106. This is a more natural choice of
the parameters since it should lead to lower fail rates. Indeed, when compared
to the Fig. 26.9 all curves are shifted downwards. The shift of the reference curve is
the largest (orders of magnitude larger). The curve for the well-mixed system almost
coincides with the abscissa in the graph, while other curves move only slightly. The
reference curve has not been plotted since it is so small that it cannot be seen.

This analysis suggests that the natural choice for reaction rate parameters has a
drawback. While the natural adjustment of the reaction rates leads to a low reference
fail rate, the effect from weak mixing that has the opposite effect (it tends to increase
the fail rate) is much more pronounced. There is a competition between these two
effects, and the effect of weak-mixing dominates. This suggests that the fail rate of
naturally tuned system is much more sensitive to the speed of mixing. The relative
increase in the fail rate (when diffusion constant is lower) is much bigger for this
system.

The results for k1/k2 = 106 and k1/k2 = 10 are similar in the sense that the chance
of failure increases for weak mixing, e.g. for low values of the diffusion constant the
fail rates tend to be generally larger. This can be seen from Table26.1. For example,
in one dimension with D0 = 10000, the fail-rate is 0.21 for k1/k2 = 106. The
corresponding value for k1/k2 = 10 is 0.51. As expected, the fail rate is lower for the
k1/k2 = 106 case, assuming everything else the same. However, in relative terms,
the effect of weak-mixing is much more pronounced for the natural choice: e.g. the
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Fig. 26.7 Same as Fig. 26.6
but for two dimensions.
Green circles represent a
position occupied by one or
more V particles with a
darker tone indicating a
higher number of V
particles. Panel a shows
well-mixed conditions with a
homogeneous concentration
over the domain while panel
b shows conditions with low
rate of diffusion with a
distinct drop in concentration
of V particles around the S0
particle

fail rates for k1/k2 = 10 and k1/k2 = 106 are 0.40 and 5.2 × 10−6 respectively
for the well-mixed systems, but the respective differences in the fail rates from the
weak-mixed systems are much larger: note a jump from the fail rates in d = 0 from
0.4 to the d = 1 fail rates of 1, 0.93 etc. on one hand, and the respective jumps
from 5.2 × 10−6 to 1, 0.88 on the other. This holds uniformly across all considered
(physical) dimensions.2

In brief, the above analysis suggests that the effects of space play an important
role when the reaction rate parameters are tuned as suggested in [31], i.e. when k1/k2

2We believe that the f2 values for d = 2 and d = 3 should be actually a bit higher due to lack of
convergence for two (d = 2) and three (d = 3) dimensions with respect to the number of sites
(cells) in the lattice.
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Fig. 26.8 The fail rate of the
minimal while-loop
implementation in Eq. (26.7)
with k1/k2 = 106 plotted
against the initial number of
V particles v0. Blue is
simulations for D0 = 100,
red is D0 = 1000 and green
is D0 = 10000. Panel a
shows results for simulations
in one dimension, panel b for
two dimensions and panel c
for three dimensions

is chosen as large as possible. Further, even for very large diffusion constants the
effects of finite mixing speed seem to decide on the value of the fail rate. The spatial
features of the dynamics need to be taken into account when analysing the behavior
of the fail rate.

26.9.2 The Effects of the Reaction Topology

The fail rates of the several extensions of theminimalwhile loop implementation have
been investigated numerically. In order to reduce the number of parameters, most
of the reaction rate parameters were set to very high values, around 106, to achieve
the diffusion-controlled limit. This is a standard procedure used in these types of
simulations (see e.g. [32] and references therein). The remaining parameters were
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Fig. 26.9 The fail rate of the
minimal while-loop
implementation in Eq. (26.7)
with k1/k2 = 10 plotted
against the initial number of
V particles v0 for various
diffusion constants (each
data point represents an
average over 10000 runs)
and dimensions: panel a for
d = 1, b for d = 2, and c for
d = 3. The blue curves are
for D0 = 100, red for
D0 = 1000, and green for
D0 = 10000. The black
(dashed) curves depict the
analytic fail rate from Eq.
(26.11) representing the
D0 → ∞ limit

chosen to ensure that the average duration of the loop execution (to be also referred as
the mean loop-execution time) is 1 (in units of τ ) when v0 = 1, and in a well-mixed
regime (zero-dimensional case). This was done to get a fair comparison between the
topologies. The kinetic constants used for the simulations are all stated in Table26.2.

Besides the fail-rate, we also recorded the mean loop execution time of the while-
loops that did not result in an error. The diffusion rate was set to D0 = 1 for all
particles. The simulations were performed on 16 cells in one and two dimensions,
on a 1 × 16 and a 4 × 4 domain. For every system simulations were performed
for ν = 1, 2, 3, 4. Note however that the three topologies: sequential, feedback and
delayed are identical for ν = 1. The fail-rate was calculated from an ensemble of
10000 simulations.
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Table 26.1 Selected fail rate values with v0 = 100

d D f1 (k1/k2 ∼ 1) f2 (k1/k2 ∼ ∞)

0 ∞ 0.40 5.2 × 10−6

1 100 1 1

1 1000 0.93 0.88

1 10000 0.51 0.21

2 100 0.78 0.64

2 1000 0.47 0.10

2 10000 0.41 0.01

3 100 0.64 0.40

3 1000 0.42 0.05

3 10000 0.41 0.006

A side by side comparison of fail rates is shown for two systems with k1/k2 = 10 (the f1 column)
and k1/k2 = 106 (the f2 column). The second choice (to the right) is referred to as a natural choice:
it has been suggested that this choice leads to lower fail rates [31]

Table 26.2 The values of the kinetic parameters used in the simulations of the different reaction
topologies

Topology k1 k2 k3 k4 k5

Minimal implementation 106 1

Sequential ν = 1 106 1 1

Sequential ν = 2 106 1.5 1.5

Sequential ν = 3 106 1.83 1.83

Sequential ν = 4 106 2.08 2.08

Feedback ν = 2 106 106 1.5 1.5

Feedback ν = 3 106 106 1.83 1.83

Feedback ν = 4 106 106 2.08 2.08

Delayed ν = 2 106 106 106 106 0.29

Delayed ν = 3 106 106 106 106 0.265

Delayed ν = 4 106 106 106 106 0.225

All parameters are expressed in arbitrary units, as discussed in Sect. 26.8.2

26.9.2.1 The Sequential System

Figure26.10 depicts how the fail rate depends on the initial number of V particles, v0,
for the sequential system.When compared to theminimalwhile loop implementation,
the sequential system achieves a lower fail rate. Note that the effect is genuine. For
example, it is likely possible that the overall effect of the auxiliary reactions is only
to re-normalize the effective rate of the reaction S0 → S1 which could make the ratio
k1/k2 larger. However, this is not the case since, as discussed above, a care has been
taken to tune the reaction parameters to ensure that the duration of the while loop
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Fig. 26.10 The fail rate of
the sequential system plotted
against initial number of V
particles v0 in the regime of
poor mixing. The different
colored solid curves
represent different values ν

and the dashed black curve
represent the system in Eq.
(26.7). Panel a shows the
results for simulations in one
dimension and panel b for
two dimensions

execution is always equal to one. This implies that the effective reaction rate for the
S0 → S1 reaction is not changed. An increase in ν leads to lower fail rate for all v0.

26.9.2.2 The Feedback System

Figure26.11 shows similar results for the feedback-system. The fail rate also
decreases with an increasing number ν as for the sequential system. It should be
noted that the fail rate for the feedback system is lower from the one for the sequen-
tial system.

26.9.2.3 The Delayed System

The results for the delayed system are plotted in Fig. 26.12. As for the previous two
topologies, the delayed system shows a lower fail-rate with increasing ν. However,
there are some subtle differences. The delayed system is better for all v0 except
for very small v0 values. The differences in the fail rate are not that large but do
exist, at least for d = 2. This behavior could be caused by the lack of convergence
with respect to the number of lattice size, but it could be also a genuine effect. This
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Fig. 26.11 Solid curves
depict the fail rate of the
feedback system plotted
against initial number of V
particles v0. The dashed
curves are the fail rate for the
sequential system included
for comparison. The different
colors represent different ν
values. Panel a shows the
results for simulations in one
dimension and panel b for
two dimensions

Fig. 26.12 Solid curves are
the fail rate of the delayed
system plotted against initial
number of V particles v0.
The dashed curves are the
fail rate for the feedback
system included for
comparison. The different
colors represent different
values ν. Panel a shows the
results for simulations in one
dimension and panel b for
two dimensions
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example suggests that, in general, the performance for two different topologies might
differ depending on the values of v0. This in turn implies that it could be possible to
optimize the loop topology for various regions.

26.9.2.4 A Summary of Key Findings

Amaximum fail-rate with respect to v0 can be observed for the delayed system seem-
ingly increasing with ν. This maximum is more flagrantly seen in two dimensions.
Again, this effect as well can be caused by the lack of convergence. However, it is
likely genuine since only relative comparisons are made across different values of
v0. This suggests a possibility to fine tune while loop implementations to a particular
range of v0.

The feedback and the delayed system can exit the while-loop prematurely despite
the the feedback from V particles. What causes these systems to exit prematurely is
visualized with snapshots from simulations of the delayed system. In Fig. 26.13 are
snapshots from simulations in one dimension and in Fig. 26.14 from simulations in
two dimensions.

26.9.3 Running Time

Figure26.15 shows the mean of the while-loop duration time, in units of τ , of a
successful while loop for v0 = 1 for the sequential system. The reason for focusing

Fig. 26.13 Snapshots from simulations of the feedback system in one dimension. Green represent
a position occupied by one or several V particles and red represent a position occupied by a S0
particle and black represent the position of the P particle. Panel a depicts a situation when the
system cannot exit the while-loop easily since there are V particle surrounding all S0 particles. The
P particle cannot collect each S0 without encountering which would force it to release its load of
S0 particles. Panel b shows a dangerous situation which can arise when all S0 particles are in the
same cavity (of V particles). Then it is possible for the P particle by entering the cavity to collect all
S0 particles without encountering a V particle. This would cause the system to exit the while-loop
even though there are remaining V particles. This is an example of how the effects of fluctuation
dominated kinetics can affect the fail rate at low dimensions
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Fig. 26.14 Snapshots from
simulation as in Fig. 26.13
but in two dimensions with
identical color coding. In
panel a it is impossible for
the particle P to collect all S0
without encounter V
particles and decay. In panel
b, however, there are few V
particles left making it
possible for the P particle to
collect all S0 by going
around the remaining V
particles. This of course
would make the system
prematurely exit the
while-loop. Again, this is an
additional illustration of the
fact that the effects of
fluctuation dominated
kinetics can exert a strong
influence on the computation

on v0 = 1 is that very few while-loops were successful for greater v0 (which requires
an enormous amount of runs to obtain a reasonable statistics).

The mean time grows moderately with ν and is larger in the lower dimension.
This is expected, since particles do not meet as often due to the recurrence of random
walks in low dimensions. As a comparison, the related mean duration time for the
minimal while-loop implementation was about 1.43 for d = 1 and 1.56 for d = 2.3

(No graphs shown). It is important to point out again that the reaction rate parameters
were chosen to ensure that the mean time is 1 for d = 0 for every implementation

3The same problem with few successful while-loops arises. The specified numbers are for v0 = 1.
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Fig. 26.15 The mean time
for successful while-loop
runs for the sequential
system with initial number of
V particles v0 = 1 plotted
against ν. Panel a shows the
results for simulations in one
dimension and panel b for
two dimensions

topology. Thus all observed changes are caused by spatial dynamic effects. In general,
we noticed that the inclusion of spatial effects affects the mean execution times of
considered implementation topologies very differently (e.g. compare the previously
mentioned mean time values 1.43 and 1.56 with the ones observed in Figs. 26.15,
26.16, and 26.17).

The dependence of the mean time on v0 is illustrated in Fig. 26.16 for the feedback
system. By inspecting themean time data values in Figs. 26.15 and 26.16 (for v0 = 1)
one sees that the mean times are slightly longer for the feedback system. The reason
is that in the feedback system every Pn complex can decay into n S0 particles and the
aggregation process of assembling Pn again needs to be restarted, which consumes
overall time. The results for the delayed systemare similar to the ones for the feedback
system, as shown in Fig. 26.17.

In general, the mean execution time for all three topologies grows with v0. This is
expected since conversion of each V particles adds a small contribution to the total
duration time. There are differences that are worth discussing. The mean execution
time increases with increasing ν for small v0. Very likely, for higher ν there are more
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Fig. 26.16 The mean time
for successful while-loop
runs for the feedback system
plotted against initial number
of V particles v0. The
different curves represent
different values of ν. Panel a
depicts results for d = 1 and
panel b depicts results for
d = 2

intermediate steps that take more time. Interestingly, for high v0 the pattern seems to
be reversed. There, larger ν produce lowermean times.We believe that this somewhat
counterintuitive anomaly has to do with the effects of fluctuation dominated kinetics.

Our hypothesis is that for low v0 the the process that takes the longest time (the
rate limiting step) is the formation of the final Pν complex. In the opposite situation
when v0 is high, the rate limiting step is conversion of all V particles. For larger ν

values there are more catalytic sites performing the conversion, which shortens the
execution time.

In brief, the above analysis suggests that the mean duration time of a while loop
implementation does depend on the details of the topology. The dimensionality of
the system clearly also plays a role. In some cases are there much more differences
between the data for different dimensions than for different topologies.
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Fig. 26.17 The mean time
for successful while-loop
runs for the delayed system
plotted against initial number
of V particles v0. The
different curves represent
different values of ν as
indicated in the legend. Panel
a d = 1, panel b d = 2

26.10 Conclusions

This chapter reviewed the Bare Bones programming language and a generic chemical
implementation by Liekens et al. [31]. The Bare Bones programming language is
Turing complete in principle: Any algorithm that can be represented as a Turing
machine can be transformed into the corresponding Bare Bones program, which in
turn can be implemented using a suitable chemical system by following the recipe
suggested in [31].

The while loop construct is the most important part of the language. Any chemical
implementation of the while loop is bound to be imperfect. Due to the inherent
randomness of chemical reactions, there is always a chance that an error in the
computation occurs.

The unavoidable occurrence of such errors is the reason that chemical computers
are not Turing universal in the strict sense of the word. The Turing completeness of
any chemical computer hinges on our practical ability to reduce the chance that such
errors occur. For practical reasons it is extremely important to understand this error.
If we could make a theoretical model that could help us understand how to control
(minimize) the frequency of such errors it would be possible to build accurate chem-
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ical computers. This would enable a range of important technological applications
targeting various bio-compatible information processing scenarios, e.g. in medicine
or biotechnology.

As an illustration of which types of investigations are necessary, a few possible
improvements of the minimal while loop implementation have been investigated in
detail. The dynamics of several chemical implementations of the while loop has been
simulated. The simulation data were used to analyze the fail rate of the loop and its
typical duration time.

The goal of this investigation was to suggest a way of identifying suitable design
strategies for building accurate chemical information processing devices. This was
done in two stages. First, a thorough investigation has been performed regarding the
influence of the spatial aspects of the dynamics on the fail rate. This was followed by
an investigation of how the reaction topology influences the fail rate. The focus was
not on understanding or optimizing the reaction rate parameters (which would have
been amuch easier task). Instead, amuchmore complicated issue has been addressed,
regarding how the structure of the chemical reaction system topology affects the fail
rate. In doing so, an attempt was made to ensure that a fair comparison was made
between different while loop realizations. Thus simulation parameters were carefully
chosen to ensure that all while-loop realizations would have a mean time equal to τ

in zero dimensions.
The suggested idea to explicitly minimize the fail rate by varying specific design

features of a chemical computer seems feasible in the sense that it is possible to draw
generic conclusions regarding the optimal designs by studying a limited number
of cases. As a proof of the concept, several topological features of the chemical
reaction network were varied. It is possible to exploit various topologies to improve
the performance in terms of lowering the fail rate. Thismakes the program run longer,
possibly in a balanced way.

The list below contains the final suggestions for efficient design principles for
while-loop implementations:

• An implementation that uses the delayed feedback topology seems to exhibit the
lowest fail rate. The feedback topology is the second best. The sequential topology
comes after that, followed by the minimal while loop implementation.

• The fail rate depends also on the range of v0 considered. The dependence differs for
different implementation topologies. This in turn implies that it could be possible
to optimize the loop topology for various regions of v0.

• Increase in the degree of cooperative binding, ν, leads to lower fail rates. Thus
implementation with higher degrees of cooperativity should in general have lower
fail rates.

• Themean duration time of a while loop implementation does depend on the details
of the topology. The observed increase in the program execution time is less than
tenfold (no order ofmagnitude increase) for considered topologies. However, there
are examples (not shown) where the increase can be much more dramatic (several
orders of magnitude).
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• The dimensionality of the system clearly plays a role. There are much more differ-
ences between the fail rate data for different dimensions than for different topolo-
gies in some cases. It seems that the fail rate and the execution time increase with
lowering the dimensionality, but due to the convergence problems this is only stated
as a hypothesis. Given the hypothesis holds, extremely low dimensions should be
avoided.

• There are typical features that strongly relate to the emergence of fluctuation
dominated kinetics which can be exploited to improve the execution runtime.

On the method side, the focus was on using simulation techniques. However, it is
possible to perform similar investigation using analytic or semi-analytic techniques.
These would very likely provide additional insights to the already established bulk
of knowledge.

The reaction systems that were analysed were chosen based on the intuition. As
it comes to exploring various possibilities to optimize the experimental design we
barely scratched the surface: in principle, the data shows that everything matters
(the order of the cooperativity, the effects of fluctuation dominated kinetics, the
distinct copy number dependencies). From the practical point of view, it would be
useful to make the suggested procedure more automatic. This could be done by
implementing search algorithms in the space of reaction topologies, or other features
such as the form of the reaction volume, that comply with the structure of the while
loop semantics.While this could be hard to do for various reasons, e.g. there is a large
number of auxiliary parameters that can be adjusted (e.g. reaction rates or diffusion
constants), the potential benefits could be enormous.

Acknowledgments This work has been supported by Chalmers University of Technology. A part
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Appendix: Convergence Tests

We studied how the number of lattice sites affects the simulation data. Extensive
convergence tests were performed which consisted of analyzing how the graphs
presented in this section change when the number of lattice sites is increased. A few
examples are shown in Fig. 26.18.

The conclusions are as follows. For one (d = 1) the convergence has been
achieved and these results are quantitative. The results for two (d = 2) dimensions
are only qualitative. To obtain better results, the lattice size should be increased. This
could not be done due to the usual hardware limitations. In these types of simulations
the CPU speed is the most limiting factor.
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Fig. 26.18 Convergence
tests of the fail rate versus
number of nodes. The
system is a minimal while
loop implementation with
k1/k2 = 106 and v0 = 1. On
the x-axis is the length in
nodes of the domain. In
panel a is the convergence
test for one dimension, this
yields that the x-axis also
correspond to the total
number of nodes. Panel b
corresponds to two
dimensions with the total
number of nodes then being
the x-axis value squared.
Panel c consequently
corresponds to three
dimensions. Since the
domain used has been
5 × 5 × 4 for three
dimensions, the total number
of nodes is the x-axis value
cubed times a factor 0.8 due
to the non-symmetry
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Chapter 27
Conventional and Unconventional
Approaches to Swarm Logic

Andrew Schumann

Abstract We consider two possible ways of logical formalization of swarm
behaviour: the conventional way by classical automata and the unconventional one
by labelled transition systems coded by p-adic integers. Swarm intelligence is one
of the directions in emergent computing. We show that the computational complex-
ity of conventional way connected to implementations of Kolmogorov–Uspensky
machines, Schönhage’s storagemodificationmachines, and random-accessmachines
on swarms is very high. The point is that computable functions can be simulated by
swarm behaviors with a low accuracy, because of the following two main features:
(i) in swarms we observe the propagation in all possible directions; (ii) there are
some emergent patterns. These features cannot be defined conventionally by induc-
tive sets. However, we can consider swarms in the universe of streams which is
permanently being expended and can be coded by p-adic numbers. In this universe
we can define functions and relations for the algorithmization of swarm intelligence
in an unconventional way.

27.1 Introduction

In bio-inspired computations there are many researches focused on swarm intelli-
gence and different formalizations of swarm behaviours [6, 16, 38]. An intelligent
swarm behaviour is demonstrated not only by animal groups, but also by groups of
insects or even bacteria. For example, it was discovered experimentally that swarms
of social insects [10] can solve complex computational problems in searching for
food and in transporting sources and information due to massive-parallel behaviour
with labour divisions.

Themajority of researches in swarm intelligence are concentrated on algorithms in
simulating and modelling swarms: the Particle Swarm Optimization (PSO) [18], the
Bacterial Foraging Optimization Algorithm (BFOA) [21], the Artificial Bee Colony
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(ABC) [14], the Cuckoo Optimization Algorithm (COA) [22], the Social Spider
Optimization (SSO) [7], the Ant Colony Optimization (ACO) [9], etc. These mod-
els combine different mathematical tools including probability theory to propose
artificial swarms.

In this paper we try to formulate swarms as labelled transition systems with
the same set of labels (events, or actions): direction, splitting, fusion, repelling
(Sect. 27.2). Then we show that these labelled transition systems can implement
Kolmogorov–Uspensky machines, Schönhage’s storage modification machines, and
random-access machines, but with a low accuracy because of emergent patterns
which occur if we have many states of appropriate transition system (Sect. 27.3).
Then we propose p-adic arithmetic and logic to formalize emergent patterns of
swarms (Sect. 27.4).

To sum up, we offer a general logical approach to swarm intelligence.

27.2 From Emergent Computing to Swarm Computing

In conventional logic circuits some electrical properties of transistors are used. In
particular, the voltage is managed to be in only one of two states: high (if the voltage
runs the range from 2.8 to 5.0V) or low (if the voltage is in the range from 0 to 0.8V).
The high state of voltage means ‘1’ or logical true. The low state means ‘0’ or logical
false. Then the power of the circuit, P , is expressed as follows:

P = Pstatic · Pdynamic,

where Pstatic = VCC · ICC and Pdynamic = [(Cpd + CL) · V 2
CC · f ] · NSW , VCC is a

supply voltage (V), ICC is a power supply current (A), Cpd is a power dissipation
capacitance (F), CL is an external load capacitance (F), f is an operating frequency
(Hz), NSW is a total number of outputs switching.

The main idea of electric devices based on electrical properties of transistors is
that the Boolean logic can be implementedwith a very high accuracy. In this logic any
complex logic expression is considered a composition of logical atoms (i.e., of simple
logical propositions). In other words, there are no emergent phenomena. Let us recall
that the emergence is detected, when new patterns of a highly structured collective
behavior appear and these patterns cannot be reduced to a linear composition of
simple subsystems.

Notably, emergent phenomena are key phenomena in all self-organizing systems
such as collective intelligent behaviors of animal groups: flocks of birds, colonies of
ants, schools of fish, swarms of bees, etc. Emergence is observed in the economy as
well: macroeconomic fluctuations, traffic jams, hierarchy of cities, motion picture
industry andmass protest behavior [20]. There are attempts to formalize the notion of
emergence by algorithmic complexity theory. However, the Kolmogorov complexity
function is not computable. There is no way to define the emergence by minimum
linear compositions. Wolfram proposed a more useful approach in a mathemati-
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cal definition of emergency [39]. He showed that the behavior of one-dimensional
cellular automata is divided into the following four cases:

• there are limit points of the system, i.e. we obtain a homogeneous state of the
system;

• there are limit cycles of the system, i.e. we obtain separated periodic structures;
• there are chaotic attractors, i.e. we face chaotic patterns;
• there are complex localized structures.

In the last case we deal with an emergent phenomenon in the true sense. On the basis
of the Wolfram’s approach the so-called emergent computing has developed. In this
kind of computing (i) the computation process is distributed over a set of parallel
and autonomous processing units; (ii) each unit computes locally and can interact
directly only with a small number of other units; (iii) there is a consistency among
the processing units; (iv) there are more outputs, than inputs.

One of the most studied instance of emergent computing is represented by swarm
computing [6, 18]. This computing is based on labor division in animal groups. Any
swarm as a result of collective behavior, such as birds flocking or fish schooling,
is a self-organizing system, where, on the one hand, each unit responds to local
stimuli individually and, on the other hand, all together they accomplish a global
task (transporting, eating, self-protecting, etc.).

There were proposedmany swarm algorithms to simulate the behavior of insect or
animal groups [7, 9, 14, 18, 21, 22]. In thePSO [17, 18] it is assumed that the particles
(agents) know (i) their best position ‘local best’ (lb) and (ii) their neighborhood’s
best position ‘global best’ (gb). The next position is determined by velocity. Let xi (t)
denote the position of particle i in the search space at time step t , where t is discrete.
Then the position xi is changed by adding a velocity to the current position:

xi (t + 1) = xi (t) + vi (t + 1),

where vi (t + 1) = vi (t) + c1r1(lb(t) − xi (t)) + c2r2(gb(t) − xi (t)) and i is the
particle index, c1, c2 are acceleration coefficients, such that 0 ≤ c1, c2 ≤ 2, r1, r2 are
random values (such that 0 ≤ r1, r2 ≤ 1) regenerated every velocity update.

One of the possible PSO algorithms can be exemplified by the bird flocking [23,
24]. In flocks ‘local best’ and ‘global best’ of birds are defined by the following three
rules: (i) collision avoidance (birds fly away before they crash into one another); (ii)
velocity matching (birds fly about the same speed as their neighbors in the flock);
and (iii) flock centering (birds fly toward the center of the flock as they perceive it).
So, the position of a bird i at time t is given by its placement xi at time t − 1 shifted
by its current velocity vi . This vi is determined by the rules (i)–(iii).

All the algorithms PSO, BFOA, ABC, COA, SSO, ACO are used to simulate
swarms of different insects or animals. Let us try to answer the question, whether
swarms can be considered an unconventional computer, i.e. whether swarms can
calculate.
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Each swarm is a natural transition system

T S = (S, E, T, I ),

where:

• S is the non-empty set of states;
• E is the set of events;
• T ⊆ S × E × S is the transition relation;
• I ⊆ S is the set of initial states.

Any transition system is a labeled graph with nodes corresponding to states from
S, edges representing the transition relation T , and labels of edges corresponding to
events from E .

Let us consider some examples.

27.2.1 Ant Colony Transitions

Any ant colony is a swarm of ants localized first at the nest. This nest can be regarded
as an initial state of ant colony transitions. Then ants use a special mechanism called
stigmergy to build up all transitions. Stigmergy (stigma+ ergon) means ‘stimulation
by work’. This mechanism has the following steps [9]:

• At first ants are looking for food randomly, laying down pheromone trails.
• If ants find food, they return to the nest, leaving behind pheromone trails. So there
is more pheromone on the shorter path than on the longer one.

• Ants prefer to go in the direction of the strongest pheromone smell. As a conse-
quence, the concentration of pheromone is so strong on the shorter path, that all
the ants prefer this path (it is experimentally proven in [9]).

Thus, stigmergy allows ants to transport food to their nest in a remarkably effective
way. Food localizations are considered new states and ant roads to food places are
regarded as transitions. Let Pant = {n} be an initial state of ant transitions (i.e.
the nest), Aant = {a1, a2, . . . , a j } be a set of food pieces (attractants) localized at
different places, Vant = {r1, r2, . . . , ri } be a set of ant roads. So the ant colony
transition system, T Sant = (Sant , Eant , Tant , Iant ), can be defined as follows:

• σ : Pant ∪ Aant → Sant assigning a state to each original point of the ant colony
as well as to each attractant;

• τ : Vant → Tant assigning a transition to each ant road;
• ι : Pant → Iant assigning an initial state to the nest.

Each event of the set of events Eant is assigned to ant transitions in accordance with
the following types of ant expansion:

• direction (the ants move from one state/attractant/initial point to another state/
attractant),
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• fusion (the ants move from different states/attractants to the same one state/
attractant),

• splitting (the ants move from one state/attractant/initial point to different states/
attractants),

• repelling (the ants stop to move in one direction).

The system T Sant can be used to solve the Travelling Salesman Problem [9]
formulated as follows: given a list of cities and the distances between each pair of
cities, we must to define the shortest possible route that visits each city exactly once
and returns to the origin city. This problem is NP-hard. Let Pant be considered the
origin city, Aant be a set of all other cities, and Vant be a set of all connections between
cities. The Travelling Salesman Problem can be solved, because the ants lay down
pheromone trails faster on the shortest path so that the shortest path gets reinforced
with more pheromone to attract more future ants. As a result, pheromone trails on
the edges between cities depend on the distance: more shorter, more attracting. This
allows ants to find shorter tours of cities.

27.2.2 Bee Colony Transitions

A bee colony is another example of swarm intelligence [15]. The bee nest is an
initial state of bee colony transitions. Any bee colony exploits a mechanism called
waggle dance to optimize the food transporting to the nest. This mechanism is as
follows. In the nest there is an area for communication among bees. At this area the
bees knowing, where the food source is precisely, exchange the information about
the direction, distance, and amount of nectar on the related food source by a waggle
dance. The direction of waggle dancing bees shows the direction of the food source in
relation to the Sun, the intensity of the waggles is associated to the distance, and the
duration of the dance shows the amount of nectar. Due to this form of communication
the bee colony transitions are built up by the following steps [14]:

• There are two kinds of bees: employed and unemployed. Employed bees know
exactly, where a particular food source (nectar) is, and visit just this source. Unem-
ployed bees do not know and seek a food source. The unemployed bees are divided
into the following two groups: scouts and onlookers. A scout bee carries out search
for new food sources without any guidance. An onlooker bee follows the instruc-
tion of a waggle dancing bee and visits the food source for the first time. An
employed bee visits this source many times. So the first step in constructing the
bee transporting system is in sending scout bees.

• Then onlookers are sent.
• At the next step the food source is exploited by employed bees.
• An employed bee tests if the nectar amount of the new food source is higher than
that of the previous one. If it is so, the bee memorizes the new place and forgets
the old one. If the nectar amount decreased or exhausted and the employed bee
dos not know a new place, this bee become an unemployed bee. So at this step
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the employed bees exchange the nectar information of the food sources to change
their decision.

Assume that Pbee = {n} is an initial state of bee transitions (i.e. the bee nest),
Abee = {a1, a2, . . . , a j } is a set of food sources (attractants) localized at different
places, Vonlooker = {r1, r2, . . . , rk} is a set of onlooker bee roads, and Vemployed =
{r1, r2, . . . , rl} is a set of employed bee roads. Then the bee colony transition system,
T Sbee = (Sbee, Ebee, Tbee, Ibee), can be defined thus:

• σ : Pbee ∪ Abee → Sbee assigning a state to each original point of the bee colony
as well as to each attractant;

• τ : Vonlooker ∪ Vemployed → Tbee assigning a transition to each bee road;
• ι : Pbee → Ibee assigning an initial state to the bee nest.

In the set of events Ebee there are the following types of labels for transitions:

• direction (the onlooker or employed bees move from one state/attractant/initial
point to another state/attractant),

• fusion (the onlooker or employed bees move from different states/attractants to
the same one state/attractant),

• splitting (the onlooker or employed bees move from one state/attractant/initial
point to different states/attractants),

• repelling (the onlooker or employed bees stop to move in one direction).

The systemT Sbee, ifweuse onlyVemployed as a set of roads, can solve theTravelling
Salesman Problem, also. Thereby, Pbee is examined as the origin city, Abee is a set of
all other cities, and Vemployed is a set of all connections between cities. The point is
that the greater the number of iterations in sending onlooker or employed bees, the
higher the influence of the distance in attracting the bees to appropriate food sources.
As a result, the shorter distance seems to be more attracting for employed bees.

There is another NP-hard problem that can be solved by T Sbee, the so-called
GeneralizedAssignment Problem formulated as follows: there are a number of agents
and a number of tasks, each agent has a budget and each task assumes some cost and
profit; we must find an assignment in which all agents do not exceed their budget and
total profit of the assignment is maximized. In the case of the bee colony, the bees
are regarded as agents, the nectar sources as tasks, the amount of nectar as profit,
and the distance as cost. Hence, in this interpretation the bee colony can solve the
Generalized Assignment Problem.

27.2.3 Escherichia Coli Transitions

The complex group behavior can be observed in the bacterium life also. For instance,
Escherichia coli bacteria form swarms in semisolid nutrient medium [8, 36]. In these
swarms with high bacterial density, large-scale swirling and streaming motions of
thousands or millions of cells are observed.
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Let us suppose that Pone E .coli = {n1, n2, . . . , nm} is a set of initial states of
Escherichia coli transitions, Aone E .coli = {a1, a2, . . . , a j } is a set of attractants (nutri-
ent gradients), Vone E .coli = {r1, r2, . . . , rk} is a set of paths for each Escherichia coli
bacterium. Then the Escherichia coli transition system,

T Sone E .coli = (Sone E .coli , Eone E .coli , Tone E .coli , Ione E .coli ),

can be defined in the following manner:

• σ : Pone E .coli ∪ Aone E .coli → Sone E .coli assigning a state to each original point of
the Escherichia coli population as well as to each attractant;

• τ : Vone E .coli → Tone E .coli assigning a transition to each path of each Escherichia
coli bacterium;

• ι : Pone E .coli → Ione E .coli assigning initial states to initial positions ofEscherichia
coli bacteria.

There are the four types of labels for transitions in the set of events Eone E .coli :

• Direction: the Escherichia coli bacterium moves from one state/attractant/initial
point to another state/attractant presented by a nutrient gradient. This locomotion
is carried out by a set of tensile flagella which move in the counterclockwise
direction helping the bacterium to swim very fast.

• Tumbling: the Escherichia coli bacterium can tumble to change its swim direction
in the future. It is a Brownian motion of the bacterium. The tumbling is achieved
by the flagella moving in the clockwise direction. In this direction each flagellum
operates relatively independently of the others.

• Repelling: the Escherichia coli bacterium stops to move in one direction, because
it avoids noxious environment.

• Repropuction: the health bacterium splits into two bacteria while the least healthy
bacteria die.

In semisolid nutrient medium Escherichia coli bacteria make swarms: they become
multinucleate andmove across the surface in coordinated packs. However, swarms of
Escherichia coli are not attracted by chemotaxis [8]. Their dynamics can be explained
only mechanistically by collisions with neighbors. This means that Escherichia coli
swarms can be simulatedmathematically (by hydrodynamic interactions) on the basis
of T Sone E .coli , but these swarms are not intelligent.

So we can add a set EE .coli swarm of swarming transitions defined mathematically
to the transition system T Sone E .coli . There are the following four kinds of maneuvers
during swarming [8, 36]:

• Forward motion: When the majority of Escherichia coli bacteria swim in the same
way, their swarm moves forward.

• Lateral motion: Because of collisions with neighboring cells or motor reversals
there is a lateral motion in a swarm with propulsion angles of >35◦.

• Reversals: Reversals occur every 1.5 s and require about 0.1 s for completion, but
they do not have a large impact on the average cell behavior.
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• Stalls: When the bacteria pause, their flagella continue to spin and pump fluid over
the agar in front of the swarm. As a result, stalls occur at the swarm edge.

Hence, Escherichia coli swarms do not calculate.

27.2.4 Paenibacillus Vortex Transitions

Notice that there are bacteria with intelligent and successful swarming strategies
such as Paenibacillus vortex [5]. These strategies help Paenibacillus vortex bacteria
to carry out a cooperative colonization of new territories. When Paenibacillus vortex
is inoculated on hard agar surfaces with peptone, it develops complex colonies of
vortices. When it is inoculated on soft agar surfaces, it organizes a special network of
swarms with intricate internal traffic. In contrast to Escherichia coli, the Paenibacil-
lus vortex swarms are sensitive to chemotaxis (attractants). As a consequence, the
Paenibacillus vortex network is built up on the basis of interactions between swarms
allowing them to transport nutrients, spores and other organisms [12, 34].

Let Pone P.vortex = {n1, n2, . . . , nm} be a set of initial states of Paenibacillus
vortex transitions, Aone P.vortex = {a1, a2, . . . , a j } be a set of attractants (nutrient
gradients), Vone P.vortex = {r1, r2, . . . , rk} be a set of paths for each Paenibacillus
vortex bacterium. Then the Paenibacillus vortex transition system, T Sone P.vortex =
(Sone P.vortex , Eone P.vortex , Tone P.vortex , Ione P.vortex ), is as follows:

• σ : Pone P.vortex ∪ Aone P.vortex → Sone P.vortex assigning a state to each original
point of the Paenibacillus vortex population as well as to each attractant;

• τ : Vone P.vortex → Tone P.vortex assigning a transition to each path of each Paeni-
bacillus vortex bacterium;

• ι : Pone P.vortex → Ione P.vortex assigning initial states to initial positions of Paeni-
bacillus vortex bacteria.

The four types of labels for transitions in the set of events Eone P.vortex :

• direction: the Paenibacillus vortex bacterium moves from one state/attractant/
initial point to another state/attractant presented by a nutrient gradient;

• tumbling: the Paenibacillus vortex bacterium can tumble for a while;
• repelling: the Paenibacillus vortex bacterium stops to move in one direction, as it
avoids some chemical concentrations;

• repropuction: the health bacterium splits into two bacteria.

Paenibacillus vortex bacteria can be organized in swarms. The locomotion in a
swarm can be explained hydrodynamically by collisions among the bacteria and
by the boundary of the layer of lubricant collectively generated by them. However,
interactions among swarms can be considered intelligent. Each swarm has a snake-
like formation. It looks for food and can cross each other’s trail. When food is
detected, swarms change their direction. The Paenibacillus vortex swarms can split
and fuse in accordance with topology of nutrients.
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So, for these swarms we can propose another transition system

T SP.vortex swarm = (SP.vortex swarm, EP.vortex swarm, TP.vortex swarm, IP.vortex swarm),

where

• σ : PP.vortex swarm ∪ AP.vortex swarm → SP.vortex swarm , where PP.vortex swarm =
{n1, n2, …, nl} is a set of initial states of Paenibacillus vortex swarm transitions
and AP.vortex swarm = Aone P.vortex is a set of attractants (nutrient gradients). The
function σ assigns a state to each original point of the Paenibacillus vortex swarms
as well as to each attractant;

• τ : VP.vortex swarm → TP.vortex swarm , where VP.vortex swarm = {r1, r2, …, rk} is a
set of paths for each Paenibacillus vortex swarm. The function τ is to assign a
transition to each path of each Paenibacillus vortex swarm;

• ι : PP.vortex swarm → IP.vortex swarm is to assign initial states to initial positions of
Paenibacillus vortex swarms.

Each event of the set of events EP.vortex swarm is assigned to swarm motions
according to the following types of maneuvers:

• direction: the Paenibacillus vortex swarm moves from one state/attractant/initial
point to another state/attractant,

• fusion: the Paenibacillus vortex swarms move from different states/attractants/
initial points to the same one state/attractant,

• splitting: the Paenibacillus vortex swarm moves from one state/attractant/initial
point to different states/attractants (for the experimental details see [11]),

• repelling: the Paenibacillus vortex swarm stops to move in one direction if it faces
a repellent.

As we see, the Paenibacillus vortex transition system T SP.vortex swarm can solve
the Travelling Salesman Problem, too.

27.2.5 Conclusion: Towards Physarum machines

In the project Physarum Chip Project: Growing Computers From Slime Mould [3,
4, 31] supported by FP7 we are going to design an unconventional computer on
plasmodia of Physarum polycephalum. Notice that Physarum polycephalum is a
one-cell organism whose plasmodia behave as a swarm organizing a network for
transporting sources and information. In order to simulate Physarum polycephalum
networks we have proposed Physarumsoft [33], a software tool for programming
Physarum computing and simulating Physarum expansions.

Taking into account the fact that any plasmodium can be considered a typical
intelligent swarm,we can usePhysarumsoft for demonstrating computational powers
of different swarms: ant colonies, bee colonies, and Paenibacillus vortex swarms.
Indeed, let
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T SP.polycephalum = (SP.polycephalum, EP.polycephalum, TP.polycephalum, IP.polycephalum)

be a transition system for plasmodia and this system is defined standardly. Let
f be a mapping from SP.polycephalum to S� and from IP.polycephalum to I�, where
� ∈ {ant, bee, P.vortex swarm}. Assume that all transitions denoted by −→ are
the same for all T SP.polycephalum , T Sant , T Sbee, T SP.vortex swarm . For example, we
have the same direction, fusion, splitting, and repelling. The function f is a homo-
morphism if and only if

• for all s ∈ (SP.polycephalum ∪ IP.polycephalum), if s −→ s ′, for some s ′ ∈
SP.polycephalum , then f (s) −→ f (s ′);

• for all s ∈ SP.polycephalum , if f (s) −→ t , for some t ∈ S�, then there exists
s ′ ∈ SP.polycephalum with s −→ s ′ and f (s ′) = t .

If f : SP.polycephalum ∪ IP.polycephalum → S� ∪ I� is a homomorphism as well as
f −1 : S� ∪ I� → SP.polycephalum ∪ IP.polycephalum is a homomorphism, then f is an
isomorphism. So, for any T S�, where � ∈ {ant, bee, P.vortex swarm}, there is an
isomorphism from SP.polycephalum to S� and from IP.polycephalum to I�. This means
that it is enough to study the Physarum machine T SP.polycephalum to know computa-
tional properties of different swarms: ant colonies, bee colonies,Paenibacillus vortex
swarms, etc.

According to our previous study of T SP.polycephalum we know that it is impossible
to define Physarum transitions as atomic acts [30, 32]. For instance, under the same
conditions, the plasmodium can follow splitting or direction, fusion or direction, etc.
Nevertheless, with a low accuracy we can implement some conventional algorithms
in T SP.polycephalum .

Notice that T SP.polycephalum cannot be defined as an inductive set because of the
absence of atomic acts. Let us define (i) the universe U of all transitions defined
in T SP.polycephalum and (ii) functions, F , which take one or more elements from
U as arguments and return an element of U . The universe is defined inductively
(hence, it is an inductive set) if there is a base set B ⊆ U such that unboundedly
repeated compositions of F on B cover the wholeU . So, we assume that B contains
atomic acts (transitions). All functions f ∈ F are defined inductively if (i) each f
is defined on B; (ii) for each f we have f (a1, a2, . . . , an) = f (b1, b2, . . . , bn) for
a1, a2, . . . , an ∈ U and b1, b2, . . . , bn ∈ U iff ai = bi for i = 1, . . . , n; (iii) each
f has a range which is disjoint from the ranges of all other functions in F and from
B. A function h is called recursive if (i) h(a) is defined for all a ∈ B; (ii) for each
f ∈ F the value of h( f (a1, a2, . . . , an)) is defined in terms of h(a1), …, h(an).
In the very next section we will show how we can consider fragments of U such

that there are some recursive functions in them.
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27.3 Conventional Logical Approach to Physarum
Machines

It is known that, theoretically, Turing machines, Kolmogorov–Uspensky machines
[19, 37], Schönhage’s storage modification machines [26, 27], and random-access
machines [35] have the same expressive power. In other words, the class of functions
computable by thesemachines is the same. For the first timeA. Adamatzky [2] exper-
imentally showed that the Physarummachine T SP.polycephalum can be represented as
a kind of Kolmogorov–Uspensky machines. Hence, we can implement conventional
algorithms in T SP.polycephalum .

27.3.1 Physarum Kolmogorov–Uspensky Machines

Let us show that T SP.polycephalum can be considered a Kolmogorov–Uspensky
machine. LetΓ = SP.polycephalum∪IP.polycephalum be an alphabet, k = |EP.polycephalum |
a natural number. We say that a tree is (Γ, k)-tree, if one of nodes is designated and
it is called root and all edges are directed. Each node is labelled by one of signs of Γ

and each edge from the same node is labelled by different numbers {1, . . . , k} (so,
each node has not more than k edges).We see that by this definition of (Γ, k)-tree, the
plasmodium grows from the one active zone (so, we simulate the expansion from the
one nest of ants or bees, or from the one inoculation of Paenibacillus vortex swarms),
where all attractants are labelled by signs of Γ and protoplasmic tubes (roads of ants
or roads of bees) are labelled by numbers of {1, . . . , k}. Thus, T SP.polycephalum (as
well as T Sant , T Sbee, or T SP.vortex swarm) can be represented as a (Γ, k)-tree.

(Γ, k)-Physarum complex is any initial finite digraphwhich is connected (i.e. each
vertex is accessible from the initial one by a directed path), each node is labelled by
one of signs of Γ , and each edge from the same node is labelled by different numbers
{1, . . . , k}. The set of all vertices of (Γ, k)-Physarum complexU is denoted by v(U ).

The r -neighborhood of (Γ, k)-complex is represented by a (Γ, k)-complex which
consists of edges and vertices of initial complex that are accessible from initial vertex
by a directed path that is not longer than r . Notice that r can be arbitrary. Any
property of (Γ, k)-complex which is dependent just of r -neighborhood is called r -
local property of (Γ, k)-complex. Hence, we can ever project Physarum transitions
(using attractants and repellents) for inducing different numbers r and appropriate
local properties.

Definition 1 A program of Physarum Kolmogorov–Uspensky machine is any r -
local action transforming some (Γ, k)-complexes of growing plasmodia into other
(Γ, k)-complexes of growing plasmodia:

U → 〈W, γ, δ〉,
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where U,W are (Γ, k)-Physarum complexes, γ is a mapping from v(U ) to v(W ),
δ is an injection from v(U ) into v(W ). The algorithm of transformation complexes
S → S∗ is as follows [19, 37]:

• r -Neighborhood of complex S is the same as of U .
• v(S′) = v(S\U ) ∪ v(W ).
• If b ∈ U , a ∈ S\U , there is 〈a, b〉 in S and γ(b) is defined, then 〈a, γ(b)〉 is an
edge in S′ with the same number as 〈a, b〉.

• If a ∈ U , b ∈ S\U , there is 〈a, b〉 in S and δ(a) is defined, then 〈δ(a), b〉 is an
edge in S′ with the same number as 〈a, b〉 (due to injectivity of δ we have different
numbers for different edges from the same vertex).

• The initial vertex of W is an initial vertex of S′ and we delete in S′ all vertices
(with appropriate edges) which are not accessible from the initial one. In this way
we obtain S∗.

The simpler version ofKolmogorov–Uspenskymachines is represented bySchön-
hage’s storage modification machines [26, 27].

27.3.2 Physarum Schönhage’s Storage Modification
Machines

These machines consist of a fixed alphabet of input symbols, Γ = SP.polycephalum ∪
IP.polycephalum , and amutable directedgraphwith its arrows labelledby EP.polycephalum

denoted by X for short. The set of nodes Γ , identifying with attractants, is finite.
One fixed node a ∈ IP.polycephalum is identified as a distinguished center node of the
graph. It is the first active zone of growing plasmodium (also associated with the
one nest of ants or bees, just one inoculum of Paenibacillus vortex swarms). The
distinguished node a has an edge x such that xγ(a) = a for all γ ∈ X . That is,
all pointers from the distinguished center node point back to the center node. Each
γ ∈ X defines a mapping xγ from Γ to Γ in accordance with directions of growing
plasmodium; xγ(b) is the node found at the end of the edge starting at b labelled by
γ. Each word of symbols in the alphabet Γ is a pathway through the machine from
the distinguished center node. For example ABBC would translate to taking path A
from the start node, then path B from the resulting node, then path B, then path C .
With respect to the word ABBC , the plasmodium moves.

Schönhage’s machine modifies storage by adding new elements and redirecting
edges. Its basic instructions are as follows:

• Creating a new node: new W . The machine reads the word W , following the path
represented by the symbols ofW until the machine comes to the last symbol in the
word. It causes a new node y associatedwith the last symbol ofW to be created and
added to X ; its location in relation to the other nodes and pointers is determined
byW . IfW is the empty string, this has the effect of creating a new center node a,
linked to the old a. For example, new AB creates a new node that is reached by
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following the B pointer from the node designated by A. The growing plasmodium
from active zone A to active zone B corresponds to this word AB. Adding a new
node B means adding a new attractant denoted by B.

• A pointer redirection: set W to V . This instruction redirects an edge from the
path represented by word W to a former node that represents word V . If W is
the empty string, then this has the effect of renaming the center node a to be the
node indicated by V . Notice that set W to V means removing nodes and the edges
incident to W\V . So, we can remove some attractants denoted by W\V .

• A conditional instruction: if V = W then instruction Z . It compares two paths
represented by words W and V and if they end at the same node, then we jump to
instruction Z else continue. This instruction serves to add edges between existing
nodes. It corresponds to the splitting or fusion of Physarum polycephalum.

Definition 2 A program of Physarum Schönhage’s storage modification machine is
any action transforming sets X of nodes for growing plasmodia with the alphabet Γ
into other sets X ′ of nodes for growing plasmodia with the same alphabet Γ which
carries out by instructions new W ; set W to V ; if V = W then instruction Z .

27.3.3 Physarum Random-Access Machines

In random-access machines there are registers (defined as simple locations with
contents (single natural numbers) labelled by signs of X = {1, 2, . . . , k}, where
k = |EP.polycephalum |. In case of Physarum polycephalum, the alphabet

Γ = SP.polycephalum ∪ IP.polycephalum

consisting of nodes (attractants) for growing plasmodia can be represented as set of
registers. Their contents is defined by the number of protoplasmic tubes located at
the place of appropriate register (i.e. by the number of protoplasmic tubes linked to
this node). For example, [γ] means ‘the contents of register with location γ ∈ Γ ’.
So, [γ] may be equal to 3. Then the node γ has three edges.

Instructions of Physarum random-access machines copy the contents of one reg-
isters and deposit them into other without destructing or changing registers. To do
so we need repellents which stimulate plasmodium active zones to leave attractants.

Definition 3 A program of Physarum random-access machine is any action trans-
forming contents of registers from X for the growing plasmodium with the alphabet
Γ into other contents of the same registers in Γ for the growing plasmodium which
carries out by the following instructions:

• Clear the content of register γ (set it to zero): CLR([γ]). All active zones are
leaving γ due to repellents.

• Increment the contents of register γ: I NC([γ]). The intensity of repellents at γ

decreases.
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• Decrement the contents of register γ: DEC([γ]). The intensity of repellents at γ

increases.
• Copy the contents of register γ j to register γk leaving the contents of γ j intact:
CPY ([γ j ], [γk]). Using the Physarum transition, called direction, we can transmit
active zones located at γ j to add them to active zones located at γk .

• If register γ contains zero then jump to instruction Z else continue in sequence:
J Z([γ], Z).

• If the contents of register γ j is equal to the contents of register γk then jump to
instruction Z else continue in sequence: J E([γ j ], [γk], Z).

Notice that in PhysarumKolmogorov–Uspensky machines and Schönhage’s stor-
agemodificationmachines, the key role in computationmodels belongs to attractants,
but in Physarum random-access machines, this role belongs to repellents.

27.3.4 Conclusion: Problems of Conventional Approach

Unfortunately, the computational complexity of implementations Kolmogorov–
Uspensky machines, Schönhage’s storage modification machines, and random-
access machines on the Physarum polycephalummedium is so high. The point is that
not every computable functions can be simulated by plasmodium behaviors properly
(the more bit function the higher complexity in its computation):

• first, the motion of plasmodia is too slow (several days are needed to compute
simple functions such as 5-bit conjunction, 3-bit adder, etc., but the plasmodium
stage of Physarum polycephalum is time-limited, therefore there is not enough
time for realizations, e.g., of thousands-bit functions);

• second, the more attractants or repellents are involved in designing computable
functions, the less accuracy of their implementation is, because the plasmodium
tries to be propagated in all possible directions and we will deal with indirected
graphs, cycles, and other problems;

• third, the plasmodium is an adaptive organism that is very sensitive to environ-
ments, therefore it is very difficult to organize the same laboratory conditions for
calculating the same k-bit functions, where k is large;

• fourth, the plasmodium has a free will and can make different decisions under the
same conditions;

• fifth, the plasmodium follows emergent patterns which are fully eliminated in
conventional automata such as Kolmogorov–Uspensky machines, although these
patterns are natural for occupying many attractants.

Thus, swarm intelligence can be reduced to conventional automata, but with very
low accuracy.
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27.4 Unconventional Logical Approach to Physarum
Machines

In swarm behaviours we can observe the two main features: (i) the propagation in
all possible directions; (ii) some emergent patterns. These features show that the
swarm dynamics cannot be represented as inductive sets. Hence, the dynamics of
swarms is out of conventional tools of computing if we take into account the features
mentioned above. We face there streams which refer to mathematical objects which
can be generated just as non-well-founded sets [1]. There are some theories of these
objects such as coalgebra [13] and coinductive calculus of streams [25]. The universe
of these objects is permanently being expended and can be coded by p-adic numbers
[28].

27.4.1 p-Adic Universe for Physarum Machines

Let us take a set of edges, X = {0, 1, . . . , p − 1}, where p − 1 = |EP.polycephalum |,
from each node. The set of alphabet Γ = SP.polycephalum ∪ IP.polycephalum is identified
with attractants. Hence, we have assumed that at each step of plasmodium propa-
gation there are not more than p − 1 neighboring attractants which can be directly
occupied. This means that our universe is p-adic and the plasmodium transition sys-
tem can be coded by p-adic integer. Let us remember that the set of p-adic integers
is denoted by Zp and each p-adic integer n ∈ Zp has the following meaning:

n =
∞∑
i=0

ai · pi ,

where ai ∈ {0, 1, . . . , p − 1}, and the following notation:

n = . . . aiai−1 . . . a1a0.

For each transition s −→ s ′, the state s ′ ∈ Γ is called the child of s ∈ Γ . For
each two transitions s −→ s ′ and s ′ −→ s ′′, the state s ′′ ∈ Γ is called the grandchild
of s ∈ Γ . Let us consider just strings γ0 γ1 . . . γk , where γ1 is a grandchild for γ0,
γ2 is a grandchild for γ1, …, γk is a grandchild for γk−1. Let each string γ0 γ1 . . . γk

have a numeric value [γ0 γ1 . . . γk] ∈ Zp which is defined as follows:

• Let [γ0] denote an integer ≤ p − 1 for the node γ0 ∈ X . This integer is equal to
the number of children for γ0. If γ0 has no grandchildren, then its value is coded
by a p-adic integer . . . 0000[γ0], see Figs. 27.1, 27.2 and 27.3.

• Let [γ0] and [γ1] denote some integers ≤ p − 1 for the nodes γ0, γ1 ∈ X , where
γ1 is a grandchild of γ0. The integer [γ0] is equal to the number of children for
γ0 and the integer [γ1] is equal to the number of neighbours for γ1 occupied by
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Fig. 27.1 At each step of plasmodium propagation, there are only two attractants which can be
occupied. At the first time step the plasmodium expansion is coded by the 3-adic integer …000001

Fig. 27.2 At each step of plasmodium propagation, there are only three attractants which can be
occupied. At the first time step the plasmodium expansion is coded by the 4-adic integer …000002

the plasmodium. If γ1 has no grandchildren, then the value of γ0 γ1 is coded by a
p-adic integer . . . 0000[γ1][γ0].

• …
• Let [γ0], [γ1],…, [γk] denote some integers≤ p−1 for the nodes γ0, γ1, . . . , γk ∈

Γ , respectively, where γ1 is a grandchild of γ0, γ2 is a grandchild of γ1, …, γk

is a grandchild of γk−1. The integer [γ0] is equal to the number of children for
γ0, the integer [γ1] is equal to the number of neighbours for γ1 occupied by
the plasmodium, …, the integer [γk] is equal to the number of neighbours for
γk occupied by the plasmodium. If γk has no grandchildren, then the value of
γ0 γ1 . . . γk is coded by a p-adic integer . . . 0000[γk] . . . [γ1][γ0]. See Fig. 27.4.
Evidently that according to this definition if in the string γ0 γ1 . . . γk each γi

(0 ≤ i ≤ k) has no neighboring attractants occupied by the plasmodium, then
[γ0 γ1 . . . γk] = 0 ∈ Zp and if in the string γ0 γ1 . . . γk each γi (0 ≤ i ≤ k)
has all neighboring attractants occupied by the plasmodium, then [γ0 γ1 . . . γk] =∑k

i=0(p − 1) · pi ∈ Zp. The strings [γ0 γ1 . . . γk] = 0 are called non-empty.
Let us analyze the case when we have two strings γ0 γ1 . . . γk and γ0 γ′

1 . . . γ′
m

started from the same state γ0. Suppose that γik (0 ≤ ik ≤ k) and γ′
im
(0 ≤ im ≤ m)
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Fig. 27.3 At each step of plasmodium propagation, there are not more than four attractants which
can be occupied. At the first time step the plasmodium expansion is coded by the 5-adic integer
…000002

Fig. 27.4 At each step of plasmodium propagation, there are not more than four attractants which
can be occupied. At the time step t > 0 the plasmodium expansion is coded by the 4-adic integer
…00000232
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have some neighboring attractants occupied by the plasmodium. This means that
we face a splitting of the plasmodium at the node γ0. Assume that there is not
more splitting for nodes from γ0 γ1 . . . γk and γ0 γ′

1 . . . γ′
m and only γ0 γ1 . . . γk and

γ0 γ′
1 . . . γ′

m are non-empty. Then the transition system is coded by the set

{[γ0γ1 . . . γk], [γ0γ
′
1 . . . γ′

m]}.

Another similar situation is observed whenwe have two strings γ0 γ1 γ2 . . . γk and
γ0 γ1 γ′

2 . . . γ′
m started from the same state γ0 and with the splitting at the node γ1. If

only γ0 γ1 γ2 . . . γk and γ0 γ1 γ′
2 . . . γ′

m are non-empty, then the transition system is
coded by the set

[γ0γ1γ2 . . . γk], [γ0γ1γ
′
2 . . . γ′

m].

Let Aγ0 be a set of all strings started from γ0 and this set be coded by [Aγ0 ], a set of
p-adic integers obtained for each string from Aγ0 . Now we can define compositions
of two sets Aγ0 and Aγ′

0
, where γ0 = γ′

0:

• If no strings from Aγ0 have joint nodes with some strings from Aγ′
0
, then we have

Aγ0,γ
′
0
= Aγ0 ∪ Aγ′

0
and this system is coded by [Aγ0 ] ∪ [Aγ′

0
].

• If some strings from Aγ0 have joint nodes with some strings from Aγ′
0
, then we

have Aγ0,γ
′
0
= Aγ0 + Aγ′

0
and this set contains all strings started from γ0 and started

from γ′
0. The system Aγ0,γ

′
0
is coded by [Aγ0,γ

′
0
].

By induction, we can define sets Aγ0,γ
′
0,...,γ

′′
0
.

Notably, the plasmodium expansion is time dependent. So we can consider sets
At

γ0,γ
′
0,...,γ

′′
0
at t = 0, 1,…Let us define logical operations over the same sets At

γ0,γ
′
0,...,γ

′′
0

with different t :

conjunction At=k
γ0,γ

′
0,...,γ

′′
0
∧ At=l

γ0,γ
′
0,...,γ

′′
0
: Notice that strings from At=k

γ0,γ
′
0,...,γ

′′
0

and

At=l
γ0,γ

′
0,...,γ

′′
0
, where k = l, are the same, but they can be coded by different p-

adic integers at t = k and t = l. Let us consider each string γ0 γ1 γ2 . . . γm .
Let [γ0 γ1 γ2 . . . γm]k be a p-adic numerical value of γ0 γ1 γ2 . . . γm at t = k and
[γ0 γ1 γ2 . . . γm]l be a p-adic numerical value of γ0 γ1 γ2 . . . γm at t = l. Then we
define min([γ0 γ1 γ2 . . . γm]k, [γ0 γ1 γ2 . . . γm]l) digit by digit:

min(. . . 000γm,k . . . γ2,kγ1,kγ0,k; . . . 000γm,l . . . γ2,lγ1,lγ0,l) =

. . . 000min(γm,k, γm,l) . . .min(γ2,k, γ2,l)min(γ1,k, γ1,l)min(γ0,k, γ0,l).

The set At=k
γ0,γ

′
0,...,γ

′′
0
∧ At=l

γ0,γ
′
0,...,γ

′′
0
contains such minimum for each string.

disjunction At=k
γ0,γ

′
0,...,γ

′′
0
∨ At=l

γ0,γ
′
0,...,γ

′′
0
: Let us consider each string γ0 γ1 γ2 . . . γm .

Let [γ0 γ1 γ2 . . . γm]k be a p-adic numerical value of γ0 γ1 γ2 …γm at t = k
and [γ0 γ1 γ2 …γm]l be a p-adic numerical value of γ0 γ1 γ2 …γm at t = l. Then
we define max([γ0 γ1 γ2 . . . γm]k, [γ0 γ1 γ2 …γm]l) digit by digit:

max(. . . 000γm,k . . . γ2,kγ1,kγ0,k; . . . 000γm,l . . . γ2,lγ1,lγ0,l) =
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. . . 000max(γm,k, γm,l) . . .max(γ2,k, γ2,l)max(γ1,k, γ1,l)max(γ0,k, γ0,l).

The set At=k
γ0,γ

′
0,...,γ

′′
0
∨ At=l

γ0,γ
′
0,...,γ

′′
0
contains such maximum for each string.

negation ¬At=k
γ0,γ

′
0,...,γ

′′
0
: Let us define the universe �γ0,γ

′
0,...,γ

′′
0
as a set of all possible

strings started from the nodes γ0, γ′
0, …, γ′′

0. A numerical value of each string
γ0 γ1 . . . γm from �γ0,γ

′
0,...,γ

′′
0
is maximal: [γ0 γ1 . . . γm] = ∑m

i=0(p − 1) · pi . Then
¬At=k

γ0,γ
′
0,...,γ

′′
0
= �γ0,γ

′
0,...,γ

′′
0
∩ At=k

γ0,γ
′
0,...,γ

′′
0
and it is coded by a set of p-adic integers∑m

i=0(p−1)· pi −[γ0 γ1 γ2 . . . γm]k for each string γ0 γ1 γ2 . . . γm ∈ ¬At=k
γ0,γ

′
0,...,γ

′′
0
.

By using this logic we can define an expansion strategy of the plasmodium on
γ0 γ1 γ2 . . . γm in the universe Aγ0,γ

′
0,...,γ

′′
0
:

S(γ0γ1γ2 . . . γm ∈ Aγ0,γ
′
0,...,γ

′′
0
) =

k=m∧
k=0

∞∑
t=0

(max([γk]t , [γk]t+1)) · pi .

S(Aγ0,γ
′
0,...,γ

′′
0
) = {S(γ0γ1γ2 . . . γm) : γ0γ1γ2 . . . γm ∈ Aγ0,γ

′
0,...,γ

′′
0
}.

27.4.2 p-Adic Valued Probability Measures

We know that Aγ0,γ
′
0,...,γ

′′
0

⊆ �γ0,γ
′
0,...,γ

′′
0
. Assume, Aγ0,γ

′
0,...,γ

′′
0
is finite and the cardi-

nality |Aγ0,γ
′
0,...,γ

′′
0
| is equal n. Let n be written in a p-adic form. Now, let us define

the so-called p-adic cardinality, �Aγ0,γ
′
0,...,γ

′′
0
�, as follows:

�Aγ0,γ
′
0,...,γ

′′
0
� =

∑
γ0 γ1 γ2... γm∈Aγ0 ,γ′

0 ,...,γ′′
0

S(γ0 γ1 γ2 . . . γm)

n

Evidently, �Aγ0,γ
′
0,...,γ

′′
0
� ≤ ��γ0,γ

′
0,...,γ

′′
0
� even if Aγ0,γ

′
0,...,γ

′′
0

= �γ0,γ
′
0,...,γ

′′
0
, as for

each γ0 γ1 γ2 . . . γm ∈ �γ0,γ
′
0,...,γ

′′
0
, S(γ0 γ1 γ2 . . . γm) = ∧k=m

k=0

∑∞
t=0(max([γk]t ,

[γk]t+1)) · pi = ∑∞
t=0(p − 1) · pi = −1. Thus,

��γ0,γ
′
0,...,γ

′′
0
� = −1

Suppose that Aγ0,γ
′
0,...,γ

′′
0 ,...

is infinite. We can define the p-adic cardinality,
�Aγ0,γ

′
0,...,γ

′′
0 ,...

�, in the following manner:

�Aγ0,γ
′
0,...,γ

′′
0 ,...

� = max
γ0 γ1 γ2... γm∈Aγ0 ,γ′

0 ,...,γ′′
0 ,...

S(γ0γ1γ2 . . . γm).
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Let � be a set of all strings including infinite ones. Then

S(�) = {S(γ0γ1γ2 . . . γm . . . ) ∈ Zp : γ0γ1γ2 . . . γm · · · ∈ �}

and
��� = max(S(�)) = −1.

Definition 4 For any Aγ0,γ
′
0,...,γ

′′
0
⊆ �γ0,γ

′
0,...,γ

′′
0
and Aγ0,γ

′
0,...,γ

′′
0 ...

⊆ �, a p-adic valued
probability measure, P(Aγ0,γ

′
0,...,γ

′′
0
) and P(Aγ0,γ

′
0,...,γ

′′
0 ...

), is defined as follows:

• P(Aγ0,γ
′
0,...,γ

′′
0
) = �Aγ0 ,γ′

0 ,...,γ′′
0
∩�γ0 ,γ′

0 ,...,γ′′
0
�

��γ0 ,γ′
0 ,...,γ′′

0
� and P(Aγ0,γ

′
0,...,γ

′′
0 ,...

) = �Aγ0 ,γ′
0 ,...,γ′′

0 ,...∩��
��� .

• P(�γ0,γ
′
0,...,γ

′′
0
) = 1, P(�) = 1, and P(∅) = 0.

• if Aγ0,γ
′
0,...,γ

′′
0
⊆ �γ0,γ

′
0,...,γ

′′
0
and Bγ0,γ

′
0,...,γ

′′
0
⊆ �γ0,γ

′
0,...,γ

′′
0
are disjoint, i.e.

inf(P(Aγ0,γ
′
0,...,γ

′′
0
), P(Bγ0,γ

′
0,...,γ

′′
0
)) = 0,

then P(Aγ0,γ
′
0,...,γ

′′
0
∪ Bγ0,γ

′
0,...,γ

′′
0
) = P(Aγ0,γ

′
0,...,γ

′′
0
) + P(Bγ0,γ

′
0,...,γ

′′
0
). Otherwise,

P(Aγ0,γ
′
0,...,γ

′′
0
∪ Bγ0,γ

′
0,...,γ

′′
0
) = P(Aγ0,γ

′
0,...,γ

′′
0
) + P(Bγ0,γ

′
0,...,γ

′′
0
)−

inf(P(Aγ0,γ
′
0,...,γ

′′
0
), P(Bγ0,γ

′
0,...,γ

′′
0
)) = sup(P(Aγ0,γ

′
0,...,γ

′′
0
), P(Bγ0,γ

′
0,...,γ

′′
0
)).

All these equalities hold for infinite sets Aγ0,γ
′
0,...,γ

′′
0 ,...

and Bγ0,γ
′
0,...,γ

′′
0 ,...

, also.
• P(¬Aγ0,γ

′
0,...,γ

′′
0
) = 1− P(Aγ0,γ

′
0,...,γ

′′
0
) for all finite Aγ0,γ

′
0,...,γ

′′
0
⊆ �γ0,γ

′
0,...,γ

′′
0
, where

¬Aγ0,γ
′
0,...,γ

′′
0

= �γ0,γ
′
0,...,γ

′′
0
\Aγ0,γ

′
0,...,γ

′′
0
. P(¬Aγ0,γ

′
0,...,γ

′′
0 ,...

) = 1 − P(Aγ0,γ
′
0,...,γ

′′
0 ,...

)

for all infinite Aγ0,γ
′
0,...,γ

′′
0 ,...

⊆ �, where ¬Aγ0,γ
′
0,...,γ

′′
0 ,...

= �\Aγ0,γ
′
0,...,γ0,...′′ .

• Relative probability functions P(Aγ0,γ
′
0,...,γ

′′
0
|Bγ0,γ

′
0,...,γ

′′
0
) ∈ Qp and P(Aγ0,γ

′
0,...,γ

′′
0 ,...

|
Bγ0,γ

′
0,...,γ

′′
0 ,...

) ∈ Qp are defined as follows:

P(Aγ0,γ
′
0,...,γ

′′
0
|Bγ0,γ

′
0,...,γ

′′
0
) = P(Aγ0,γ

′
0,...,γ

′′
0
∩ Bγ0,γ

′
0,...,γ

′′
0
)

P(Bγ0,γ
′
0,...,γ

′′
0
)

,

where P(Bγ0,γ
′
0,...,γ

′′
0
) = 0 and

P(Aγ0,γ
′
0,...,γ

′′
0
∩ Bγ0,γ

′
0,...,γ

′′
0
) = inf(P(Aγ0,γ

′
0,...,γ

′′
0
), P(Bγ0,γ

′
0,...,γ

′′
0
)).

All these equalities hold for infinite sets Aγ0,γ
′
0,...,γ

′′
0 ,...

and Bγ0,γ
′
0,...,γ

′′
0 ,...

, too.

27.4.3 Relations and Functions on p-Adic Valued Strings

Let us consider only sets with non-empty strings:
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Aγ0,...,γ
′
0
= {γ0γ1γ2 . . . γm : [γ0γ1γ2 . . . γm] =

m∑
i=0

[γ
i
] · pi ∧ [γ

m
] = 0}.

Then the set Rn(Aγ0,...,γ
′
0
, . . . , Bγ′′

0 ,...,γ
′′′
0︸ ︷︷ ︸

n

) ⊆ P(�)n is called n-ary relation on p-

adic valued strings.
We can define some unusual relations such as vertical equivalence R‖:

R‖(Aγ0,...,γ
′
0
, Bγ′′

0 ,...,γ
′′′
0
) i f and only i f P(Aγ0,...,γ

′
0
|Bγ′′

0 ,...,γ
′′′
0
) > 0.

The vertical equivalence has the following properties:

• identity: R‖(Aγ0,...,γ
′
0
, Aγ′′

0 ,...,γ
′′′
0
) for any Aγ0,...,γ

′
0
⊆ �, as

P(Aγ0,...,γ
′
0
|Aγ0,...,γ

′
0
) > 0;

• symmetry: if R‖(Aγ0,...,γ
′
0
, Bγ′′

0 ,...,γ
′′′
0
), then R‖(Bγ′′

0 ,...,γ
′′′
0
, Aγ0,...,γ

′
0
) for any

Aγ0,...,γ
′
0
, Bγ′′

0 ,...,γ
′′′
0

⊆ �, since from P(Aγ0,...,γ
′
0
|Bγ′′

0 ,...,γ
′′′
0
) > 0 it follows that

P(Bγ′′
0 ,...,γ

′′′
0
|Aγ0,...,γ

′
0
) > 0.

• supertransitivity: if R‖(Aγ0,...,γ
′
0
,Cγ′′′′

0 ,...,γ′′′′′
0

), then there exists Bγ′′
0 ,...,γ

′′′
0
for any

Aγ0,...,γ
′
0
, Cγ′′′′

0 ,...,γ′′′′′
0

⊆ � such that R‖(Bγ′′
0 ,...,γ

′′′
0
,Cγ′′′′

0 ,...,γ′′′′′
0

) and R‖(Aγ0,...,γ
′
0
,

Bγ′′
0 ,...,γ

′′′
0
), because from P(Aγ0,...,γ

′
0
|Cγ′′′′

0 ,...,γ′′′′′
0

) > 0 it follows that there exists
Bγ′′

0 ,...,γ
′′′
0
such that P(Bγ′′

0 ,...,γ
′′′
0
|Cγ′′′′

0 ,...,γ′′′′′
0

) > 0 and P(Aγ0,...,γ
′
0
|Bγ′′

0 ,...,γ
′′′
0
) > 0.

Notably that the supertransitivity is a feature of p-adic valued probabilities. In
real probabilities with values in the interval [0, 1] of real numbers the conditional
probability P(A|B) > 0 defines a standard equivalence relation (called by us hor-
izontal equivalence) that gives a partition of � into disjoint subsets. In particular,
P(A|B) > 0 satisfies the transitivity: if P(B|C) > 0 and P(A|B) > 0, then
P(A|C) > 0. In case of p-adic valued probabilities we have no partition in accor-
dance with the horizontal equivalence relation. Nevertheless, we can build a partition
of P(�) in accordance with the vertical equivalence relation:

P(�) =
⋃

Aγ0 ,...,γ′
0
⊆�

{Aγ0,...,γ
′
0
: R‖(Aγ0,...,γ

′
0
, Bγ′′

0 ,...,γ
′′′
0
)},

where {Aγ0,...,γ
′
0
: R‖(Aγ0,...,γ

′
0
, Bγ′′

0 ,...,γ
′′′
0
)} is a class of vertical equivalence.Notice that

this partition is not exclusive: two classes of vertical equivalences can be intersected.
We can prove the proposition that a union of two vertical equivalences is a vertical

equivalence.
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Let 	 and 
 be two binary relations on p-adic valued strings. Then their compo-
sition 	 ◦ 
 is defined as follows:

	 ◦ 
 = {〈Aγ0,...,γ
′
0
, Bγ′′

0 ,...,γ
′′′
0
〉 : 〈Aγ0,...,γ

′
0
,Cγ′′′′

0 ,...,γ′′′′′
0

〉 ∈ 	 and 〈Cγ′′′′
0 ,...,γ′′′′′

0
,

Bγ′′
0 ,...,γ

′′′
0
〉 ∈ 
 for some Cγ′′′′

0 ,...,γ′′′′′
0

∈ �}.
Also, we can define a diagonal relation in A:

1A = {〈Aγ0,...,γ
′
0
, Aγ0,...,γ

′
0
〉 : Aγ0,...,γ

′
0
∈ A},

and an inverse relation:

	−1 = {〈Aγ0,...,γ
′
0
, Bγ′′

0 ,...,γ
′′′
0
〉 : 〈Bγ′′

0 ,...,γ
′′′
0
, Aγ0,...,γ

′
0
〉 ∈ 	}.

A relation	 is a function fromA toB if and only if	◦	−1 ⊇ 1A and	−1◦	 ⊆
1B.

Formal theories of these functions are proposed in [30]. Reversible logic gates on
the basis of non-linear group theory are proposed in [29].

27.5 Conclusions

In any intelligent swarmbehaviour there are emergent patterns that cannot be reduced
to linear combinations of subsystems. Therefore conventional algorithms such as
Kolmogorov-Uspensky machines have very low accuracy of their implementations
on swarm systems (Sect. 27.3). Nevertheless, we can define a p-adic valued logic
that can describe a massive-parallel behavior of swarms (Sect. 27.4).
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Chapter 28
On the Inverse Pattern Recognition Problem
in the Context of the Time-Series Data
Processing with Memristor Networks

Christopher Bennett, Aldo Jesorka, Göran Wendin and Zoran Konkoli

Abstract The implementation problem deals with identifying computations that
can be performed by a given physical system. This issue is strongly related to the
problem of describing a computing capacity of the system. In this chapter, these
issues have been addressed in the context of on-line (real-time) pattern recognition
of time series data, where memristor networks are used in the reservoir computing
setup to perform information processing. Instead of designing a network that can
solve a particular task, an inverse question has been addressed: Given a network
of a certain design, which signals might it be particularly adept at recognizing?
Several key theoretical concepts have been identified and formalised. This enabled
us to approach the problem in a rigorous mathematical way: The problem has been
formulated as an optimization problem, and a suitable algorithm for solving it has
been suggested. The algorithm has been implemented as computer software: For a
given network description the software produces the time-dependent voltage patterns
(signals) that can be best recognized by the network. These patterns are found by
performing a directed random search in the space of input signals. As an illustration
of how to use the algorithm, we systematically investigated all networks containing
up to four memristors.
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28.1 Introduction

Unconventional or natural computation refers to computing with structures that do
not naturally implement Boolean logic. Instead, their information processing abilities
are based on particular aspects of their dynamics [1]. The act of computation is often
based on rather complex and non-linear dynamics. While some a priori guiding
principles are known about how such devices can be built in a few selected areas of
application, it is far from clear how to achieve a specific functionality in general. It
is even not clear what the computing capacity of such a device would be. This study
takes a pragmatic view on these matters. There are technological limitations to what
can be built with given hardware and to what can be achieved with these devices.

The conceptual problem of optimizing a device design towards a particular func-
tionality is challenging, but often doable, and has been frequently addressed in the
literature. However, we wish to address an inverse problem: given a device, what can
it compute?

There are numerous philosophical discussions about this so-called implementa-
tion problem (cf. [2] and references therein). For example, it has been argued that
even a simple object as a rock can implement any finite state automaton. However,
the suggested implementation can be (and has been) criticised on the grounds that
the auxiliary hardware necessary to implement an automaton is doing all the compu-
tation, and not the rock. To resolve this issue a more precise version of the problem
has been formulated, the natural computability problem and a way of solving it, as
presented in [3]. The formulation emphasizes practical aspects of implementing a
computation: The natural computation can be identified by balancing the costs of
implementing the computation with the complexity of the function being computed.
The present study adopts a similar approach. The emphasis on practical aspects is
expected to help in identifying key conceptual issues that need to be defined in order
to solve the generic questions.

In the following, a rather complicated philosophical issue is addressed by studying
a concrete example. We specifically focused on the problem of pattern recognition.
This is a well-defined computing task with many applications. Likewise, a well-
defined but potentially computationally powerful class of devices has been chosen as
information processing substrate. The goal is to identify suitable pattern recognition
tasks for memristor networks in the context of on-line (real-time) time series pattern
recognition. Thus the key question is: Which patterns are naturally recognized by
memristor networks without any additional auxiliary equipment? This question is
naturally addressed in the context of reservoir computing paradigmwhich emphasises
computing capabilities of the device per se. In the following the problem will be
referred to as the inverse pattern recognition problem.
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28.2 Reservoir Computing

The key idea behind the reservoir computing (RC) paradigm is that the system
performs computation naturally without any specific training. The computation is
performed automatically as the system changes states. The only component that is
trained is an easily adjustable read-out layer. This is the only auxiliary equipment
that is allowed.

It is clear that not every system can perform information processing in such a
way. A set of criteria has been formulated that a good reservoir computer must
satisfy. In 2002, Maass et al., put forth a computational model called the Liquid State
Model (LSM) to describe the information processing capability of neural circuits in
real time, in contradistinction to traditional, feed-forward artificial neural networks
(ANNs) thatmust be trained over time [4]. They demonstrated that despite its inability
to train or alter weights, a simple alterable readout layer can nonetheless parse an
extremely non-linear signal input by using the already high dimensional transient set
of states (so-called Liquid State) of the reservoir. Independently, Jaeger et al. derived
a similar formulation (Echo State Network or ESN), which originally concerned
harnessing non-linearity within ANNs [5]. Hereafter, these computing models are
referred to as the Reservoir Computing (RC) paradigm.

The idea of exploitingmemristor networks in the context of reservoir computing is
not new. Thework byKulkarni and Teuscher [6] has demonstrated that pattern recog-
nition is possible using memristor networks. Note that in [6] the network structure
has been optimized for a fixed task, whereas we aim to find answers to precisely the
opposite question by exploiting the paradigm of reservoir computing, where the only
permitted auxiliary equipment is the easily trained linear readout layer. This layer
is rather passive and is not doing any substantial computation. It simply extracts the
information processed by the system. An attempt to address a similar set of issues
has been made in [7].

28.3 Methods: Formalising the Recognition Problem

28.3.1 Choosing an Initial State x0

Formally, one should distinguish between the off-line and on-line (real-time) com-
putation. For example, assume that a signal that needs to be recognized starts at t0,
has a duration τ , and ends at tf = t0 + τ . Without any loss of generality it will be
assumed that t0 = 0. It is clear that prior to the occurrence of the signal the system
could be in any state x0. In the off-line computation the initial state of the system
could be used as a training parameter which, interestingly, has not been discussed
much in the literature, despite being suggested [8]. In the context of on-line (real-
time) pattern recognition any initial state is possible in principle, and the initial state
depends on the history of the system for t < t0. In the context of reservoir comput-
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ing this issue is solved by requiring the “fading memory” property (the distant past
is successively “forgotten” by the system). Instead of investigating how all possible
histories influence the initial state, it will be simply required that the system performs
pattern recognition in the interval [t0, t0 + τ ] equally well for all x0. This is a rather
strong requirement since not all initial states x0 might be actually relevant.

28.3.2 The Role of the Background

The history of the system can be defined as a set of patterns that the reservoir has
been continuously exposed to until time t0. These will be referred to as background
patterns. A signal that can be recognized by the device is termed a task (signal).
Since the history decides the x0, it is clear that the task signal and the background
signals are closely related and, in some sense, inseparable. In the following, this
task-background duality will be accounted for explicitly by keeping a separate lists
of task and background signals. The set of background signals will be clearly defined
and made explicit.

The full set of signals is not countable, but if a sampling strategy is used, this
is not a major problem. We always work with finite subsets of signals, each having
some pre-determined cardinality which is always maintained. Such sets are con-
structed iteratively by replacing the task signals with better candidates, until some
convergence criteria are met.

28.3.3 Measuring the Total Quality of Recognition: δ

The quality of the pattern recognition is quantified as follows. Assume the set of
signals contains a set of tasks, the rest being background

B ≡ {uα;α = 1, 2, . . . ,B} (28.1)

where B (base functions) denotes the number of signals considered.What should one
choose for base functions? In principle, this set should contain all possible signals.
The number of base functions should be as large as possible. However, for practical
purposes to demonstrate the approach we focus on several pre-defined classes of
signals, e.g. the Legendre polynomials, or square waves. A typical base function
Assume that there is a finite set of initial states of the system and these are ordered
and numbered as

S = {xμ
0 ;μ = 1, 2, . . . , S} (28.2)

where S (states) counts the total number of initial states considered. Each signal
drives the system (memristor values) from its initial state into the final state
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xα,μ

i = Ti(τ |xμ
0 , uα) (28.3)

where the function T describes the dynamics of the system, and specifies how each
memristor value (the reservoir configuration space)

C(t) = {xi(t); i = 1, 2, . . . ,D} (28.4)

changes in time under the influence of an external signal uα . Note that

xμ
0 ≡ C(t = 0) (28.5)

D (dimensionality) denotes the number ofmemristors in the network and corresponds
to the dimensionality of the configuration space of the reservoir.

From the information processing point of view such a system is a device that
realizes an abstract mapping F from the space of input signals to real numbers:
Depending on the initial condition of the device μ, each input signal uα is converted
into a real number Fμ(uα) as

Fμ(uα) =
D∑
i=1

wix
α,μ

i − K; ∀μ,∀α (28.6)

Note the presence of the initial condition index. If the initial condition of the device
cannot be controlled then one must allow for the possibility that these values dif-
fer even if the device is always exposed to the same input uα . Ideally, for on-line
computation, the outcome of the computation should depend weakly on the initial
condition. However, this cannot be taken for granted.

The pattern recognition is implemented in the standard way where the goal is
optimize the device to compute a predefined classifier function f . This function is
defined by listing explicitly how each uα maps to a predefined value fα ≡ f (uα) for all
α. Values for fα are user defined, e.g. in our software implementation if a pattern uα

is to be recognized fα = 1, otherwise fα = 0. The goal is to minimize the differences

�α,μ[f ] ≡ Fμ(uα) − fα (28.7)

The only quantities that can be adjusted in the weighted sum (28.6) are weights wi

and the offset K . These parameters can be exploited by a device design engineer to
improve its performance.What works against such efforts is the fact that many initial
conditions are possible. Likewise, the device might respond to various patterns uα in
a strongly unbalanced way. For example, while the error can be made small for some
patterns it might be intrinsically large for others. Thus, in strict mathematical terms
the differences �α,μ should be made as small as possible for every initial condition
xμ
0 and input pattern uα . The optimization of the weights and the shift factor should
be performed in such a way that the recognition works uniformly well across all
initial conditions and input signals.
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Let δf denote the smallest typical error of realising a mapping f across all input
signals and initial conditions:

δ2f = 1

S
minw,K

∑
α,μ

(
�α,μ[f ])2 (28.8)

Equation (28.8) is an instance of the standard least squares optimization problem; a
consequence of not using the standard non-linear wrapper function in (28.6). Since
the solution to the least squares problem is widely known, formulas for w and K are
not explicitly stated. Both can be readily computed form the values for xα,μ

i and fα .
The optimized weights and the shift factor will be denoted by w∗ and K∗

28.3.4 Measuring the Quality of Recognition for Individual
Signals and Signal Sets: δα and δ(B)

It is practical to separate different contributions to the typical error as

δ2f = 1

S

∑
α,μ

(
δα,μ[f ])2 (28.9)

which defines δα,μ[f ] as �α,μ[f ] computed with optimized weights.

δα,μ ≡ (
�α,μ

)
w=w∗,K=K∗

(28.10)

The separation of contributions is useful since the signal specific error δα(B) can be
defined as a typical recognition error across all initial conditions (e.g. here defined
as a generalized average)

δα(B) ≡
(〈

δ2α,μ

〉
μ

)1/2 =
(
1

S

∑
μ

δ2α,μ

)1/2

(28.11)

In the discussions that follow, this ability to compare accuracy of various signals in
a natural way will be extremely important. Note that δα(B) depends on the whole
base set. For example, if uβ with β �= α were replaced by a new signal, the value for
δα(B) might change. The total recognition error for a given base set B is naturally
expressed as

δ(B) =
(∑

α

δα(B)2

)1/2

(28.12)

The parameters B and S should be taken as large as possible since this improves
the accuracy of numerical results. In principle, these parameters should be taken
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infinitely large.However, it is clear that due to the practical limitations of the computer
hardware, the parametersB and S cannot be arbitrarily large. The questions are which
values are reasonable, and most importantly, how does the error behave as these
parameters increase? The error has been defined per initial state, since during the
device operation, the device will always start from one state. Furthermore, when
the S → ∞ limit is taken, the space of initial conditions is sampled more densely,
since all memristance values are bound: x ∈ [xmin, xmax]. As B is increased it is much
more challenging to understand the trend of the total error, as the input signals are
not bound by default. An advantage of the present formulation is that the computing
capacity of different types of networks can be compared. It is sufficient to keep the
values for B and S constant when the comparison is done.

28.4 The Sampling Algorithm

The algorithmic ideas presented in the previous section can be used to address the
implementation problem or the natural computability problem rigorously. If the algo-
rithm is implemented, it can be run on a computer to suggest a natural input signal.
Note that it would be extremely hard to use analytic approaches to implement the
algorithm.

The algorithm has been implemented as follows. The input to the algorithm must
consist of the description of the memristor device, and the output consists of the
list of patterns which can be recognized together with the associated background.
The device description is used to define the mapping function T which defines the
dynamics of the network.

At each iteration step of the algorithm, a list of the base input patterns is stored.
This list is divided in two parts, a list of signals that are recognized, and the list of
signals that are not. The user must specify howmany slots should be allotted for each.
In our numerical examples the number of background slots was chosen larger than
the number of task slots. For a given list the recognition error is computed for each
base function. This information is used to decide which signals to keep and which to
regenerate. It is expected that after a sufficient number of iterations the signals that
are recognized should differ clearly from the background signals. Some of the key
elements of the sampling algorithm are detailed in the following subsections.

28.4.1 Memristor Networks

To construct amemristor network a set of nodes is given and connected bymemristive
links. Each link ismodelled by assuming that thememristance x changes according to
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Fig. 28.1 Simple
symmetrical memristor
threshold model. Function
f (V) describes how
memristance changes with
applied voltage

ẋ(t) =
{
f (V(t)) xmin ≤ x(t) ≤ xmax

0 x(t) < xmin or x(t) > xmin
(28.13)

whereV denotes the voltage difference on the respective nodes that the link is bridging
and

f (V) = b ∗ V + (a − b)

2
(|V + Vth| − |V − Vth|) (28.14)

which is the standard form used in the literature. In the following x is expressed in
ohm, and f in (Fig. 28.1) in ohm/sec. The f (V) in the equation above should not be
confused with f (u) (the classifier function introduced earlier).

This model is a good first-order approximation for a variety of simple, bipolar
memristor media [9] and has already been used successfully to study computational
performance and complexity ofmemristor networks [10]. For eachmemristor link the
user defines the following set of parameters: Vth, a, and b. To compute the mapping
function for such a model the MENES software has been used [11].

28.4.2 The Turning Power (TP) Concept

By far the biggest challenge was how to choose signals when sampling. Given a
signal, it was not entirely clear which part is definitive for the evolution of the
system. Consider an extreme example of a very long, flat signal, with a large voltage
spike at its end. In this case, only the last part of the signal will be definitive upon
the final state of memristive values, and the signal could be substantially compressed
to the length of just this final pulse. In this way, length τ alone does not capture
the strength of the signal. Then, the question becomes what is a correct length and
strength of a signal that can “move” the system in the most efficient way. To answer
this question rigorously, we have introduced the concept of “turning power”.

Turning power corresponds to the largest change of a memristance possible under
a pulse duration. In studying this change, it is important to consider all possible
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sub-intervals of the pulse [t1, t2] ⊂ [0, τ ]. Over an interval from [t1, t2], one could
calculate the turning power as the total voltage-controlled effect on memristance.
Thus for a given signal

turning power ∼ max0≤t1<t2≤τ |x(t2) − x(t1)| (28.15)

where here and in the following the symbol ∼ indicates that the right hand side of
the equation is an estimate of the turning power. Namely, this quantity is only valid
for a single memristor (e.g. for a particular initial state), and challenging to define
properly on the network level: the voltage difference experienced by every individual
memristor is a complicated function of applied voltages. Instead, we suggest a related
definition, that is less precise but signal specific:

TP[V ] ≡ max0≤t1<t2≤τ

∣∣∣∣
∫ t2

t1

f (V(t))dt

∣∣∣∣ ∼ max0≤t1<t2≤τ

∣∣∣∣
∫ t2

t1

V(t)dt

∣∣∣∣ (28.16)

In strict mathematical terms, the TP represents a functional on the space of input
(voltage) signals. An intuitive understanding of this equation is as follows.

The TP value distinguishes between the signals that are strongly oscillating and
the signals that do not change sign. For example, imagine the following two input
types. First, imagine a series of many alternating spikes each with roughly the same
surface under the curve. Alternatively, assume that the spike series is re-ordered,
by collecting the spikes with strictly positive and negative voltages in two groups
where, e.g. the group with positive voltages arrives first. Neither signal type will
change the memristance value much. However, the first signal type will not change
thememristance value for intermediate times, while the second signal type will cause
substantial changes at the time instances where the series of positive and negative
spikes end. The second signal type will have larger TP. Note that the TP value
cannot distinguish between a strictly positive signal that is very broad and the related
signal that is very narrow but with the same surface under the curve. For information
processing purposes, these signals are virtually identical (provided their respective
timings are not playing a role).

28.4.3 Signal Construction Algorithm

As an input to our signal searching engine, the user must supply the following para-
meters: (i) Signal time length τ . (ii) the number of slices nslices in the V(t) graph.
This measures the complexity of a signal. (iii) The number of steps nsteps that the
MENES simulator uses for integration.1 (iv) A global voltage scale Vtr, necessarily
Vtr>Vth, that specifies the voltage range of each signal: |V(t)| ≤ Vtr. (v) The num-

1As a general rule of thumb, we used nsteps that were 2–3 times larger than nslices so as to allow the
integrator to capture all features in the signal.
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ber of possible voltage values in the range Vvalues, and maximum turning power TP.
Prior to every run, a certain target vector f is given, and a total simulation time is
specified.2 Once the pool of base signals is defined, individual candidate signals are
spawned as follows. At each slice, one value of possible discrete voltages is chosen
at random. Then the whole list is interpolated into spike pulses using the lowest order
interpolation, producing step-like functions.

The random search implementation: For a given set of base functionsB the indi-
vidual recognition errors δα with α = 1, 2, . . . ,B are computed. The worst among
the recognized signals is replaced, i.e. the one with the largest δα . This defines a
new set of base functions B′. If δ(B) > δ(B′) then the new set replaces the old,
B′ → B, and the process is repeated.

28.5 Results

28.5.1 Confirming Configuration Space Separation:
One-Memristor Case

We preliminarily tested whether input signals uα(t) can drive the memristance x(t)
into separate regions of configuration space S by using the simplest possible case:
a single memristor. The corresponding configuration space is one-dimensional and
the segregation is easy to visualize regardless of which initial condition is used. This
might be much harder to do for higher dimensional spaces.3

We sampled the initial state space by using S = 6, 11, and 21 values uniformly
separated in the one-dimensional interval [xmin, xmax]. The boundaries were always
included. The analysis of Figs. 28.2, 28.3 and 28.4 indicates that the segregation
of states does indeed happen. The signals depicted were spawned automatically by
the algorithm. In all figures memristance values are driven into different regions
of the configuration space by the task and the background signals, regardless of
the initial condition. Every initial memristance value progressively “locks on” to a
signal. In addition to varying the number S of possible resistive values at t = 0, we
also gradually increased the number of features nslices from 5, to 10, and finally 15.
The respective number of integration steps nsteps was 20, 40, and 60. In all graphs the
turning power was set to TP = 10. The signals are classified nearly perfectly: δ = 0
over the set f = {1, 0, 0}.

In Fig. 28.2 the signal searching algorithm allows for only relatively simple pulses
since nslices = 5. Indeed, visual inspection of the signals in panels b, d, and f confirms

2For instance, a typical use case of the code would be: the user could select τ = 7s digital pulse of
Vvalues = 7, nslices = nsteps = 10, and TP = 20 (e.g. in volts), specify f = {1, 0, 0}, and instruct the
code to run for 10min, and see what signals were best recognized by her chosen system over time.
The code will return three signals. The first one can be recognized well against the remaining two.
3Already for a twodimensional configuration space thismight be problematic if the initial conditions
are sampled uniformly in the whole region.
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Fig. 28.2 The single memristor network: memristance values (panels a, c, and e) and signals (uα ,
panels b, d, and f) selected by the algorithm. The first row (the a–b panel pair) and the bottom
two rows (panel pairs c–d and e–f) correspond to the signal being recognized and the background
signals respectively. The number of allowed features in signal sampling algorithm is nslices = 5, and
the number of starting points is S = 6. The detailed list of parameters used in the random search is
given in the appendix

this. The signal being recognized (panel b) steers the network’s states (panel a)
towards a larger value of approximately x ≈ 7, while other background signals steer
the initial memristance values towards opposite values of x ≈ 1 (panels c and e).
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Fig. 28.3 The singlememristor network:memristance values (panels a, c, and e) and signals (panels
b, d, and f) selected by the algorithm. Same as in Fig. 28.2 with a difference that the number of
allowed features in signal sampling algorithm is higher (nslices = 10). The detailed list of parameters
used in the random search is given in the appendix

Since S = 6, we observe 6 different colored lines in the figures each representing a
different history that begins from one of the possible initial starting points.

Once the signals have been identified, it is possible, but not always easy, to under-
stand why these particular signals have been selected: The alternating spikes of b
cause the network to “lock on” them: all lines in panel a merge together quite quickly.
Conversely, the strong concluding negative pulses of d and f push the network to its
final resting states of x ≈ 1. To quantify the time evolution property of a signal, we
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Fig. 28.4 The one memristor network: The signals being classified (panels b, d, and f) and the
configuration space (panels a, c, and e). Same as in Figs. 28.2 and 28.3 but with yet higher number
of features nslices = 15 and more possible starting states S = 21, explaining the density of lines

introduce t* as the time after which the network “locks on” completely: e.g. t* = 0.8
(panel a), 2.9 (c), and 3.8 (e). In the examples all initial memristance values are
merging, since the signals have relatively large turning power of TP = 10.

In the intermediate case of more complex and feature-rich input signals (S =
11 and nslices = 10, as shown in Fig. 28.3), all key features of Fig. 28.2 are clearly
visible again. There are neatly separated concluding memristive values between (a)
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at x ≈ 1 and (c, e) at x ≈ 10. However, the lock-on time is larger, in particular for
the recognized function (t� = 3.9). As in Fig. 28.2 it is always the largest positive
(as in d and f) or negative (b) concluding signal features which seem to be definitive.

Figure28.4 depicts the results of the analysis of the most complex signal search.
There are 21 starting conditions (histories) as well as 15 different regions in the
signal functions. Although there is still a clear separation between the ending values
of (a) at x ≈ 9 and (c, e) at x ≈ 1, the convergence is now happening quite late, at
almost the last moment; t� = 4.8, 4.7, and 4.9 for signals (b, d, f) respectively. At
this number of features, it becomes difficult to determine why the first signal pulse
is recognized so well against the second two.

The analysis of Figures28.2, 28.3 and 28.4 provides hints with respect to the main
question posed in this work. The signals that can be efficiently recognized by a single
memristor have to be strong enough to “lock” the value of the memristance onto the
input signal before the signal ends (to ensure that t� < τ ). The initial values of the
memristance have to be “forgotten” in order to be driven by a signal progressively.
This progressive convergence is especially visible in Fig. 28.4. Two classes of signals
are distinguished, the ones that are predominantly positive, or negative, towards the
end of the signal duration.

Finally, we have already seen that strong signal segregation is possible with even
the simplest possible memristive system, which is encouraging. This is evidence to
support the claim that memristors function well, naturally, as a binary classifier, and
are a candidate building block for hardware instantiations of reservoir computing
principles. In the following sections the tolerance to increasing initial conditions
will be further explored for multi-memristor networks.

28.5.2 Multi-memristor Networks

We programmed in 17 different pre-defined network topologies for in depth analysis;
their exact configurations are shown in Figs. 28.5 and 28.6. Although these topolo-
gies are pre-set, the user is allowed to define parameters for the operation of the
individual memristor model devices. Once defined, this “model” is then propagated
along the whole network. Previous work by Burger and Teuscher has evaluated the
effect of device variation in crossbar (i.e. mesh) memristor networks similar to ours,
and concluded that a certain degree of variation actually improves computational
performance [12]. At the moment such variation is not considered.

28.5.2.1 Small Networks (Fig. 28.5)

We explored the set of smaller networks, defined as consisting of 4 nodes and less.
Using an arbitrary indexing system, the network indices (NIs) are as follows:NI = 1–
2 point to the one-memristor systems, NI = 3–6 are variants of two memristors in
series, NI = 7–10 are variants of two memristors in parallel, NI = 11 is a case of
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Fig. 28.5 Illustration of the smallermemristor reservoirs used in our numerical studies.An arbitrary
indexing system was used (in the range 1–13), as explained in the text. In general, networks with
larger numbers of memristors appear later in the list

three memristors in series and similarly NI = 12 with four in series, and finally
NI = 13 corresponds to a network with four memristors in parallel (equivalent to the
‘1-Xbar’ or diamond motif depicted in Fig. 28.6).

Figure28.7 shows the recognition error as a function of the network index NI. At
each data point the signal searching algorithm was executed with typically hundreds
of iterations. Further, for each network several analyses were performedwith varying
S. The coloured lines connect data points belonging to different networks with a
given number of initial conditions used. The figure suggests that, in general, the
one-memristor and two memristor-in-parallel systems outperform the other systems
dramatically: the effective TP is larger (smaller) for memristors coupled in parallel
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Fig. 28.6 Some of larger memristor networks used in numerical studies are depicted in panels
a, b and c. These illustrate the key principles of how the networks are constructed. Nodes to be
connected are placed on a regular two-dimensional grid (the n-Xbar architecture). Only nearest
neighbours are connected. Panel d depicts the how the number of nodes and links scales with an
Xbar index n. Due to the rapidly increasing number of components only a subset of these networks
has been analysed

Fig. 28.7 Recognition
performance over small
networks depicted in
Fig. 28.5. The following was
used for every data point:
f = {1, 0, 0}, TP = 9,
τ = 5s (with 20 integration
steps)
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(series). Furthermore, increasing the number of initial conditions is not deleterious,
as curves with different colours roughly follow each other. Due to the combinatorial
increase in the number of initial conditions possible for each network, this space
could not be sampled uniformly. Each initial condition has been chosen at random.

28.5.2.2 Larger Networks (Fig. 28.6)

Some of the larger networks were studied in the final part of our work. The first three
are visible in panes a, b, and c of Fig. 28.6. The diamond (a), alternately ‘1-XBar’, is
by far the most important because it is ubiquitous: the feed-forward diamond shape
is a frequently occurring design pattern not only in biological neural networks, but
electronic circuit architectures [13]. In general, n-degree cross-bar networks are often
realized experimentally.

28.5.2.3 Larger Networks: Legendre Patterns

As a calibration test for our larger networks we investigated a given pre-defined
set of patterns in order to investigate some specific aspects of the classification. In
particular, in reservoir computing performance evaluation, the ability of a network to
recognize linear and strongly non-linear inputs alike is an important criterion; there
is often considered to be a direct trade-off between non-linear mapping capability
and raw memory capacity of the system [14]. The Legendre Polynomial set provides
a perfect litmus test, since it combines both relatively simple functions at the lower
orders with rather complex heavily-nonlinear ones at the higher orders. The first ten
functions were chosen (Fig. 28.8).

We tested this training set on all the larger memristor model reservoirs from
1-Xbar listed in Fig. 28.6d (4 memristor links), up through 5-Xbar (60 memristor
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Fig. 28.8 The first ten Legendre Polynomials normalized over the time interval 0 ≤ t ≤ τ = 2 (in
the unit of seconds)
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Fig. 28.9 Representation of
reservoir recognition
performance with gradually
increasing initial conditions.
Panel a the case of the
diamond network; b the
3-XBar; c the 5-Xbar. The
colors and line styles match
with Fig. 28.8. Five pools of
initial conditions have been
used, with increasing number
of initial conditions S, as
indicated in the legends.
Each set is indexed by the
ICS variable that marks the
abscissa of the graphs
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links). Every network is run as a reservoir being optimized to select every one of the
Legendre polynomials: the task vectors f were chosen as {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, and so on.

Results of the numerical analysis are shown in Fig. 28.9 for the diamond network
(panel a), the 3-Xbar (b), and 5-Xbar (c). Each individual curve describes the recogni-
tion error of a particular recognition task. (The colors and line styles match the ones
used in Fig. 28.8 to indicated which Legendre polynomial is being referred to.) The
horizontal axis refers to various sets of initial conditions. These are indexed using
a progressive indexing system, where the sets are sorted according to the number
of initial conditions used. The set index ICS ranges from 1 (relatively small subset
of initial conditions) to 5 (relatively high subset). Precisely, these indices represent
S = 1, 10, 20, 50, 100 initial conditions for 2-Xbar up to 5-Xbar. Since the diamond
network (1-Xbar) only has a total set of 16 such conditions, the indices in the diamond
case represent S = 1, 4, 8, 12, 16.

The recognition error (δ) that is computed per initial condition, saturates towards
an upper limit (less than one). This average recognition error does not scale up
with the number of initial conditions. The error per initial condition is bound. It
seems, however, that the initial condition-bound deterioration takes longer on the
larger network- but only for some tasks (e.g. the solid line at the bottom of panel C,
which corresponds to the first Legendre Polynomial). In fact, this first polynomial is
recognized well relative to the other tasks in all three test networks.

28.5.2.4 Large Networks: Varying Turning Power

We investigated how a given network’s recognition error varies over a spectrum
of turning power values, as shown in Figs. 28.10 and 28.11. These graphs provide
an overall snapshot of recognition performance for a given network (at a given
functional target f ). In each case (model network), we consider the same random
subset of initial conditions to ensure that we can draw analogous conclusions about
overall recognition performance.

For the diamond network we ran a series of super-simulations across the turning
power spectrum, and with a range of increasing simulation times (number of itera-
tions) to allow formore signal search at each slice (Fig. 28.10). In general, the turning
power of the sampled signals quickly allows the network to begin to generate func-
tions that are sufficiently strong to achieve a lock onto the signal. Roughly, around
TP = 20 the network reaches a reduced-error regime with δ = 0.1 − 0.2. Yet, there
is lot of noise noise (variation), with many peaks of poor performers, and valleys
of excellent performers that approach perfect recognition. As one might expect, the
curves smooth out and become less noisy as the algorithm has more time to search
the signal space properly. The black graph in the figure, with the largest time of
8min, is a near average of all the others.

We also ran turning power gradient simulations for several other large networks
from 2-XBar to 5-Xbar. The simulation results are displayed in Fig. 28.11. Again, the
recognition error decreases with increasing turning power, as is expected. However,
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Fig. 28.10 The dependence of the recognition error on the turning power TP. Each line represents
a different super-simulation of the diamond network. For every value of TP the pattern sampling
algorithm has been run, with gradually increasing simulation time (and equivalently the number of
iterations during the random search procedure). To make for an accurate benchmarking of δ, in all
cases S = 8

Fig. 28.11 Same as in
Fig. 28.10 but for different
networks. Each line
represents a separate
memristor reservoir exposed
to the iterative
signal-searching algorithm
under a gradually easing
turning power constraint. In
all cases S = 50
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it does not reduce as observed in the nearly perfect recognition (δ = 0) achieved with
some of the smaller network model system cases and the diamond network. There
seems to be a “floor” to recognition potential: δ > δmin with δ = 0.375 for 2-Xbar,
δmin = 0.36 (3-Xbar), 0.35 (4-Xbar), and 0.28 (5-Xbar). Most likely these values
exist since only finite parts of the vast functional space of the input signals can be
sampled.

28.6 Conclusion

We have suggested a formal approach to address an inverse pattern recognition prob-
lem: given a definedmemristor network, which patterns can it recognize best? This is
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a special version of the more general implementation and the natural computability
problems. As such, it should be easier to address.

A rigourous algorithmic approach has been formulated to solve the inverse pattern
recognition problem. The problem has been solved in a rigorous mathematical way
since the solution is presented as a minimization problem on the space of input pat-
ternswith appropriate constraints. The algorithm is generic and easily implementable
in any computer language.

The algorithmworks by sampling the infinite space of input signals and identifying
the signals that can be classified well. The quality of the recognition is expressed
as a recognition error δ where δ = 0 describes a perfect recognition. Several key
challenges have been addressed in the process.Webelieve that these are rather generic
for similar types of problems. The greatest challenges are to (i) meaningfully sample
the infinite configuration space of input signals, (ii) compare different input signals,
and (iii) analyse the signals that the algorithmproduces (signal semantics). To address
these issues the turning power (TP) concept has been suggested, and formalized as
a functional on the space of input signals: any input signal can be assigned a turning
power value which can be used to rigourously assign a semantics for the signal.

The examples of single memristor response illustrates the remarkably complex
concept of configuration space separation. By increasing the number of features nslices
progressively, more complicated functions (signals) are introduced into the total pool
of base functions. For more complex signals the fading memory of the network may
be overwhelmed if the network is too simple. Due to the bipolar properties of the
signals at the end of their duration, classification was possible.

The analysis of the recognition of individual Legendre polynomials by larger
networks provided two key results. As expected, recognition deteriorates as the
total number of initial conditions increases. However, the recognition error satu-
rates towards an upper limit (less than one). This implies that these networks, and
likely memristor crossbars in general, have the potential to perform real-time com-
putational tasks.

The analysis of how the recognition error varies with the turning power for larger
networks revealed that larger crossbar networks with more nodes tend to perform
better recognition. In particular, the (largest) 5-Xbar network seems to out-perform
the others for some turning power values.

The results are encouraging, and ourwork can be improved in severalways. Larger
sets of base signals should be explored to obtain better statistics to understand classes
of task and background signals (rather than individual signals), though this is rather
hard to do due to the standard computer hardware limitations. The sampling algorithm
is rather elementary, genetic algorithms could be utilized. One future challenge is
to gain enough understanding to generalize and expand the turning power concept.
In particular, assigning some semantics to a spawned set of signals seems to be
rather challenging. In this context, the turning power concept is a first attempt to
formalize how a signal should be analyzed. In cases of off-line computing, it would
be interesting to understand if and to what extent the choice of an initial condition
can be used as a training parameter, and how the initial conditions can be selected
by applying a particular set of input patterns. For on-line computation, which is very
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likely the most challenging, understanding of how to sample the initial conditions
in the most efficient way is desired. These and other generic questions are left for
future analysis.

Acknowledgments This work has been supported by the European Commission under contract
FP7-FET-318597 SYMONE, and by Chalmers University of Technology.

Appendix

Parameters Used in Simulations

For the sake of completeness and reproducibility, the full set of parameters used in
the simulations is given here. In all network examples each memristor was defined
by the same set of parameters: a = 1 ohmvolt−1 sec−1, β = 10 ohmvolt−1 sec−1,
xmin = 1, xmax = 10. The memristor threshold voltage Vth, and the so called training
voltage Vtr are both in volts. The specific choice of parameters that are unique for
each figure are listed below. The quantities specify time duration are always given in
seconds unless specified otherwise. The turning power is always given in volts. The
number of initial conditions used can be inferred from S = nbits + 1:

• Figure28.2: τ = 5, nbits = 5, nslices = 5, nsteps = 20, Vvalues = 5, Vth = 1, Vtr =
2.5, f = {1, 0, 0}, TP = 10, simulation time (simtime) = 1min. Iterations com-
pleted, 480, the best recognition error δ = {0., 1.38 ∗ 10−16, 1.38 ∗ 10−16}.

• Figure28.3: τ = 5, nbits = 10, nslices = 10, nsteps = 40, V values = 5, Vth = 1, Vtr =
2.5, f = {1, 0, 0}, TP = 10, simtime = 1min. Iterations completed: 137, δ =
{4.3 ∗ 10−16, 2.2 ∗ 10−16, 2.2 ∗ 10−16}.

• Figure28.4: τ = 5, nbits = 20, nslices = 20, nsteps = 80, Vvalues = 5, Vth = 1, Vtr =
2.5, f = {1, 0, 0}, TP = 10, simtime = 5min, δ = {0., 2.64 ∗ 10−16, 2.64 ∗
10−16}.

• Figure28.6: τ = 5, nslices = nsteps = 40, Vvalues = 5, Vth = 1, Vtr = 2.5, f =
{1, 0, 0}, TP = 9, simtime = 15min, nbits = {1, 2, 3, 4, 5}, progressively. Itera-
tions per hardware vary from 1000 in one memristor, low nbits, to around 50 in
diamond, high nbits.

• Figure28.9: τ = 2, nbits = 1, nsteps = 20. Please recall, this input is set and not
searched so no further parameters required by pattern recognition algorithm;Vth =
1, Vtr = 2.5.

• Figure28.10: τ = 5,nbits = 1, f = {1, 0},nslices = 5,nsteps = 15,Vvalues = 5,Vth =
2, Vtr = 4. Simtime varies 0.5, 1, 2, 4, 8 and for each iterations per slice are
approximatively 20, 50, 80, 200, 500. Initial conditions for each set at S = 8.

• Figure28.11: τ = 5, nbits = 1, nslices = nsteps = 10, f = {1, 0}, Vth = 2, Vtr = 4,
Vvalues = 5, simtime = 2min. Initial conditions for each set at S = 50. Iterations
vary from approx 150 per slice (2-XBar), to approx 20 per slice (5-Xbar).
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Chapter 29
Self-Awareness in Digital Systems:
Augmenting Self-Modification with
Introspection to Create Adaptive,
Responsive Circuitry

Nicholas J. Macias and Lisa J.K. Durbeck

Abstract The question of augmenting self-modification with introspection to
create flexible, responsive digital circuitry is discussed. A specific self-configurable
architecture—the CellMatrix—is introduced, and features that support introspection
and self-modification are described. Specific circuits and mechanisms that utilize
these features are discussed, and sample applications that make use of these capa-
bilities are presented. Conclusions are presented, along with comments about future
work.

29.1 Introduction

“Your visions will become clear only when you can look into your own heart. Who looks
outside, dreams; who looks inside, awakes.” [6]

The relevance of Dr. Jung’s quote to the human experience seems clear: one must
be self-aware to achieve their full potential to “awake” rather than merely to dream.
But what might this mean in different contexts: say, in the context of human-made
systems?

Self-awareness has been defined by Stephen Franzoi as “…a psychological state
in which one takes oneself as an object of attention” [5]. Christopher Jamison further
differentiates this from simple introspection, stating “Introspection is only looking
at me, whereas self-awareness involves considering how I interact with the world
around me” [7]. Under these definitions, it may be interesting to ask if human-made
systems can be, in some sense, self-aware.
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Looking at digital electronics, one may ask if such circuitry has the necessary
mechanisms for any form of self-awareness. In analyzing this question, it may be
useful to classify digital circuits as falling into five different classes.

The first class (Class I systems) contains pure digital logic: collections of logic
gates, wired together to perform certain operations. In this class, digital circuits can
perform algorithmic computations: simple state machines exhibit this behavior.

Class II digital circuitry is circuitry whose structure can be changed. For example,
fuse-programmed PLAs have a given initial configuration, but their behavior can be
modified (once) by a programming operation that changes the connectivity of the
internal elements [1].

The third class extends the notion of configurable hardware to re-configurable
hardware: devices whose wiring can be modified multiple times. A field-
programmable gate array (FPGA) exemplifies this class of hardware systems [8].
In this class, circuitry can be tailored to a particular situation. For example, in a
software-defined radio (SDR) system, the hardware which encodes/decodes an audio
signal according to one standard can be re-wired to change that coding as the device
moves to a different geographic region (where a different coding standard is used) [3].
While Class III circuitry is in some ways more powerful than circuitry from Classes
I and II, it requires an additional component, typically a CPU/memory system (e.g.
a PC) to generate configuration information for modifying the device. This works
well in many situations, but the PC which is generating the configuration strings is
fundamentally separate from the hardware that’s being modified (Fig. 29.1). In this
sense, the PC is not “taking itself as an object of attention,” nor is the FPGA. Rather,
the PC is considering the FPGA. This misses Franzoi’s criteria for self-awareness.

The fourth class of digital circuitry adds the ability of circuitry to self-modify. An
example of this would be an FPGA containing a multitude of programmable planes,
each configured for a different situation, and a small supervisor which chooses which
plane to use based on sensory input. Continuing the example above, circuits for
different types of cellphone codings could be stored in the device, and a monitor
could analyze incoming signals, determining the coding, and selecting the proper

Fig. 29.1 FPGA being
configured by an external
device. Here the source and
object of the configuration
are fundamentally different
from each other External PC

FPGA

Configuration
Commands
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FPGA
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HARDWARE

FPGA
CONFIGURATION

SAVED
CONFIGURATIONS

Fig. 29.2 A multi-plane FPGA. Several configurations can be developed and saved in a configu-
ration memory, and then swapped into the actual configuration memory being used by the FPGA

hardware configuration plane (Fig. 29.2). In Class IV, the device is (in some sense)
considering itself as an object of attention, since it effectively chooses how to change
its digital circuitry based on the results of other pieces of digital circuitry inside itself.
This situation is thus arguably one step closer to self-awareness. There is still a key
element missing though: the ability to introspect, in the sense of analyzing oneself
and making decisions that haven’t been pre-wired. Choosing one of several pre-
configured circuits based on which one of several possible results comes from an
analysis algorithm doesn’t “feel” the same as performing a general analysis and
synthesizing new circuitry on-the-fly.

With Class V digital circuitry, introspection becomes a central element in the
behavior of digital circuits. Circuitry processes information about its own configu-
ration in the same way that it processes other data, and the results of that processing
can be used to change or create new digital circuits as easily as changing an output
from one value to another. Circuitry in this class is thus able to consider itself as
an object of attention, including analyzing how its own circuitry is interacting with
other connected circuits, and making decisions about changing its own configuration
in response.

This paper discusses Class V circuitry, and describes specific examples of how
this combination of introspection and self-modification fosters the implementation
of unique and powerful circuits.
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29.2 Background

The two key characteristics of Class V reconfigurable devices are:

1. the ability of circuits to analyze other circuits configured within the device; and
2. the ability of circuits to modify other circuits configured within the device.

These two features mean that the system can analyze and modify itself. The
system used for this research is the Cell Matrix [14]. The Cell Matrix was developed
in 1986, in part as a way to explore these two aspects of digital circuit design.
One of the original goals was to build-in self-modification as an intrinsic piece of
the architecture. By also allowing circuits to analyze other circuits, it was hoped that
systems could be designed thatwould, for example, read from a library of sub-circuits
and synthesize circuits elsewhere in the matrix by placing and connecting those
sub-circuits. A second requirement for the system was that it should be extremely
fine-grained: composed of a collection of simple cells that, while limited in their
individual behavior, could be assembled into arbitrarily-complex circuits. In support
of this idea, the third requirement of the system was a high degree of scalability: in
particular, connecting two matrices together on their edges should result in a larger
matrix, without requiring any changes to either of the pre-existing matrices.

Figure29.3 shows a simplified view of a single cell within a Cell Matrix. This
cell is a 4-sided device, with each side having a single input and a single output.
The device is purely combinatorial: the values of the four outputs are determined
completely by the contents of a 64-bit truth table memory, as shown in Table29.1.

Fig. 29.3 Simplified view of a Cell Matrix cell. The four outputs are determined by the four inputs,
which specify a single row in the 16 × 4 truth table (“TT”)

Table 29.1 Truth table for a simplified 4-sided cell

Nin Sin Win Ein Nout Sout Wout Eout

0 0 0 0 D3 D2 D1 D0

0 0 0 1 D7 D6 D5 D4

0 0 1 0 D11 D10 D9 D8

0 0 1 1 D15 D14 D13 D12

… …

1 1 1 1 D63 D62 D61 D60

Each of the four outputs are completely determined by the combination of the four inputs
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Fig. 29.4 D flip-flop implemented with two cells. The cell on the left echoes its eastern input
(LOAD = 0) or copies its western input (D) to its eastern output (LOAD = 1). The eastern cell (on
the right) re-circulates its western input to its western output, while also copying that input to its
eastern output (Q)

By loading the appropriate pattern of 1s and 0s into the truth table memory, a cell
can be configured to perform any four combinatorial functions of four inputs (i.e.,
wires, 1-bit adder, 2-1 selector, basic logic gates, etc.). The combination of 64 bits
(D0, D1, D2, . . . , D63) thus completely defines the behavior of a cell. Collections of
cells are used to implement more complex function, including those with a sense of
state. For example, Fig. 29.4 shows a D flip-flop implemented with two cells. When
LOAD = 1 the D input is fed into the cell on the right, whereas when LOAD = 0 the
output from the cell on the right is recirculated back by the cell on the left.

The cell shown in Fig. 29.3 does not include a mechanism for loading bits into
the cell’s truth table. The addition of a second set of lines—the C (or “control”)
lines—adds this capability. Figure29.5 shows a complete cell with these extra lines
included. Each side now has two inputs (C and D) and two outputs (C and D). The
truth table doubles in size, as shown in Table29.2.

Now, the combination of 128 bits (D0, D1, D2, . . . , D127) completely specifies
the behavior of the cell. While the cell has 8 outputs, those output values are still

Fig. 29.5 A more-complete view of a Cell Matrix cell, showing both C and D inputs and outputs.
The D inputs are used to select a row from the cell’s 128-bit (16×8) truth table, in order to generate
its 8 outputs. The C inputs are used to place the cell in configuration mode (“C mode”), wherein its
truth table can be read or written by a neighbor
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Table 29.2 Truth table for a complete 4-sided cell

DNin DSin DWin DEin CNout CSout CWout CEout DNout DSout DWout DEout

0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 1 D15 D14 D13 D12 D11 D10 D9 D8

0 0 1 0 D23 D22 D21 D20 D19 D18 D17 D16

0 0 1 1 D31 D30 D29 D28 D27 D26 D25 D24

… …

1 1 1 1 D127 D126 D125 D124 D123 D122 D121 D120

Each of the eight outputs are completely determined by the combination of the four inputs

selected based on only 4 inputs (the D inputs); the C inputs have a special function,
and are not involved in the selection of a truth table row.

Instead of being inputs into the truth table evaluation, the C inputs are used to
control the writing and reading of a cell’s truth table, as follows:

• If all of a cell’s C inputs are 0 then the cell is said to be inD (or “data”)mode. In this
mode, the cell’s outputs are derived from the truth table, using a row determined
by the cell’s 4 D inputs.

• If any of a cell’s C inputs are 1 then the cell is said to be in C (or “control”) mode.
In this mode, the cell’s outputs on each side depend on whether or not that side’s
C input is 1 or 0:

– if the C input is 0 on a given side (called an “inactive side”), then that side’s D
output is 0, and its D input is ignored;

– if the C input is 1 on a given side (called an “active side”), then that side’s D
output is determined by a bit of the cell’s current truth table. Additionally, that
side’sD input isOR’dwith theD inputs on all other active sides, and the resulting
bit will replace the truth table bit that’s being presented on the D output(s).

In the case of two adjacent cells (“SOURCE” and “TARGET,” as shown in
Fig. 29.6), SOURCE can interrogate TARGET’s truth table as follows:

1. SOURCE asserts its own C output to its east, which asserts TARGET’s C input
from its west;

Fig. 29.6 An example of cell analysis. The cell on the left (“SOURCE”) is examining the truth table
of the cell on the right (“TARGET”) by controlling TARGET’s C input and monitoring TARGET’s
D output
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2. TARGET will present a bit of its truth table to its D output on its west; and
3. SOURCE reads its D input from the east, which contains that truth table bit.

Cells map inputs to outputs asynchronously: that is, as soon as a cell’s inputs
change, its outputs will change according to the cell’s truth table, without regard to
any sort of synchronizing clock. In contrast, there is a system-wide clock used for C
mode operations. Specifically:

• when a cell enters C mode, an internal (per cell) bit counter is reset to 0;
• the truth table bit indexedby this counter is presented to the appropriateDoutput(s);
• on the rising edge of the system clock, the appropriate D inputs are OR’d, and the
resulting bit is saved internally;

• on the falling edge of the system clock, the saved bit it loaded into the truth table
at the position indexed by the bit counter; the bit counter is incremented; and the
new bit now indexed by the bit counter is sent to the appropriate D output(s).

This process continues as long as the cell remains in C mode.
In this way, the SOURCE cell in Fig. 29.6 can completely read the TARGET

cell’s truth table by simply asserting its own C output, and repeatedly reading its
D input each time the system clock ticks low. Assuming it outputs 0’s on its D
output, the TARGET cell’s truth table will be filled with all 0’s after 128 clock ticks.
Figure29.7 shows a slightly different configuration by which the SOURCE cell can
non-destructively read the TARGET cell’s truth table. Figure29.8 shows a further
modification, in which a third cell (“DEST”) is also placed in Cmode, and configured
to be a clone of the SOURCE cell.

Fig. 29.7 Non-destructive read of a cell. The SOURCE cell re-circulates the truth table as it’s read
from the TARGET cell, so that TARGET’s truth table is unchanged by the reading

Fig. 29.8 Non-destructive cell replication. SOURCE reads TARGET’s truth table, and simultane-
ously refreshes TARGET’s truth table while also configuring DEST’s truth table to be a copy of
TARGET’s. This effectively makes DEST a clone of TARGET



766 N.J. Macias and L.J.K. Durbeck

To create a Cell Matrix, cells are tiled in a 2-dimensional array, with each cell
connected to four adjacent cells (one on each side), as shown in Fig. 29.9. This allows
each cell to be potentially interrogated and/or modified by four neighbors; and also
allows each cell to potentially interrogate and/or modify those same neighbors. It’s
important to note that this is the full extent of the direct control any cell has over other
cells within the matrix. Of course, to be useful, cells must be able to interact with
more than just a few immediately-adjacent cells. This takes place via intermediary
cells. For example, one cell X may communicate directly with a neighboring cell
Y , and may configure Y to allow X to control one of Y ’s neighbors Z (Fig. 29.10).
This type of multi-cell control is typical of circuits built on the Cell Matrix. Several
specific examples are presented in the next section.

Fig. 29.9 A two-dimensional 6× 6 Cell Matrix. Each cell communicates only with its immediate
neighbors. Edge cells are accessible from outside the matrix
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Fig. 29.10 Non-adjacent cell configuration. Cell X is using its neighbor (Y) to configure non-
adjacent cell Z

The limitation of nearest-neighbor communication is a key benefit to the architec-
ture, since it allows the system to scale nicely. Connecting two matrices along their
edges results in a larger matrix. This has important implications for manufacturing
large Cell Matrices, especially with techniques that employ self-assembly [15, 16].

While a 2D matrix is more-easily explained and analyzed than a 3D one, the
architecture itself is agnostic to dimensionality and interconnection topology. One
can also implement, for example, a 2Dmatrix with 3-sided cells, or a 3Dmatrix with
4-sided cells. The most common 3D implementation is using 6-sided cells (cubes)
[11], though research is ongoing using 8- and 14-sided cells [18]. Higher dimen-
sionalities are also possible, though scalability of the matrix is generally impaired at
higher dimensions, as the matrix generally can’t be extended without modifying the
interconnection network in already-assembled sub-matrices.

29.3 Approach

In this section, several examples are presented of Cell Matrix circuitry that can be
used for introspection and modification of digital circuits.

29.3.1 Multi-channel Wires

The first example of a modification circuit is a multi-channel wire [10, 14]. This is a
circuit that can be used to establish and exercise control over a remote area of cells.
Figure29.11 shows a wire with three channels:

• The ProgramChannel (“PC”), which is used to control a target cell (“*”)’s D input;
• the Control Channel (“CC”), which is used to control a target cell’s C input; and
• the Break Channel (“BRK”), which is used to carry additional C or D information.

Each channel consists of a number of single cells. Figure29.12 shows the details
of the cells comprising the PC and CC channels. As can be seen, sending a 1 or 0
down PC causes the same value to be sent to the target cell’s D input. The PC is
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Fig. 29.11 A three-channel wire, used for controlled access to a remote cell (“*”). Each channel is
a 1× n collection of n single cells. The PC is used to control *’s D input, and CC is used to control
*’s C input. BRK is an auxiliary line, generally used to break or retract the wire

Fig. 29.12 Details of the cells comprising the PC and CC. A wire of length 2 is shown. The PC
always transmits data to the D input of the Target Cell. The CC transmits a signal from cell to cell;
at the end of the channel, the CC also transmits a 1 to the PC head cell’s southern D input, which
the PC head cell transmits to the target cell’s C input

usually bi-directional, so that the target cell’s D output is delivered through the PC
to its own western output.

Similarly, sending a 1 or 0 down the CC drives the target cell’s C input. The
operation of this channel is more complicated than that of the PC. The CC employs a
feedback signal to determine where the head of the wire is. Each PC/CC pair works
together to route a signal to the previous pair’s CC cell. Any CC cell receiving this
signal simply routes its western D input to its eastern D output; but in the absence
of this signal, the CC cell routes its western D input to its northern D output, which
the PC then uses to drive the target cell’s western C input. The final effect of this
mechanism is that in a line of PC/CC cells (running west-to-east), the easternmost
pair acts differently from the other cells, working together to control the target cell’s
mode. It’s assumed here that the cell to the south of the target cell is empty (or at
least is sending a 0 to its western D output). If that is not the case, then this cell must
be pre-cleared before extending the wire.

By building a chain of PC andCCcells, placed side-by-side as in Fig. 29.12 (which
shows a wire of length 2), one set of cells can thus control a non-adjacent cell’s C
and D inputs and read its D output. This allows circuity in one region of the matrix to
interrogate and modify remote cells, provided a multi-channel wire exists between
the source and the target cell. This leaves the question: how does one construct a
multi-channel wire?
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Fig. 29.13 Construction of an initial PC/CC pair. In each sub-figure, the cell being configured is
indicated in bold. First a the control circuit configures the northern cell so that it can be used in b
to configure the southern cell as a CC cell. In c the northern cell is reconfigured, this time as a PC
cell. After these steps, a wire of length 1 has been built

The answer is that a multi-channel wire can be used to construct a multi-
channel wire. By beginning with access to a single pair of cells, one can build an
initial PC/CC pair in three steps, as shown in Fig. 29.13:

1. in (a), the top cell is configured so as to allow configuration of the lower cell;
2. in (b), the lower cell is configured as a CC; and
3. in (c), the top cell is configured as a PC.

Note that only access to the northernmost cell’s C and D inputs is required. Since
that cell is used to configure the cell to its south, no direct access is required to that
southern cell.

This is called a “wire-building sequence,” or simply a “sequence.” A sequence
is generally any collection of configuration operations, typically where certain cells
are alternately configured and then used to configure other cells. Later, sequences of
sequences (“super-sequences”) will be used for more complex configuration opera-
tions, such as configuring 2D or 3D regions of cells.

Given an initial wire of length 1, the above steps can be repeated, since the control
circuit now has access to the non-adjacent target cell (Fig. 29.14). Once access is
available to that new target cell, it can of course be used to configure yet another
PC/CC pair, and so on. In this way, wires of arbitrary length can be built, thus
allowing access to remote regions of the matrix. Note that the key to performing
this wire extension is the feedback path in the CC cell. Following the third step in
the above sequence, the PC sends a 1 into the CC, which then feeds it back to the
previous stage’s CC, which thus ceases acting as the final cell (“head cell”) in the
wire, and simply routes its western D input to its eastern D output. This is the basic
mechanism by which wire extension is possible.

Figure29.15 shows a circuit for turning a wire. In this case, a wire that was
extending from west to east is now turned to the south. This 2 × 2 circuit works
effectively the same as the simple PC/CC pair, but the feedback path is modified
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Fig. 29.14 Once a wire of
length 1 has been
constructed, the Control
Circuit can use it to configure
a non-adjacent Target Cell.
By repeating the steps shown
in Fig. 29.13, the Control
Circuit can extend the wire to
a length of 2. This extension
can be repeated as many
times as needed to make
wires of arbitrary length

Fig. 29.15 Circuit for
turning a 2-channel wire.
The PC and CC control the
Target Cell. The wire can
now continue to extend to
the south

slightly, so as to allow the feedback 1 signal to be presented following the final
configuration step. Constructing a corner is a 12-step process: details can be found
in [10, 14].

The use of a BRK line is sometimes useful for interrupting a wire, as shown in
Fig. 29.16. In this example, a wire of length 4 has been constructed, granting access
to the target cell marked “*”. However, two cells of the BRK line have also been
constructed adjacent to the 2-channel wire. The leftmost cell simply routes D from
west to east; but the second cell of the BRK line routes its western D input to its
northern C output. Thus, if a 1 is sent down the BRK line, it will clear the second cell
of the control channel. The effect of this is to interrupt the feedback from the second
PC cell, thus causing the first CC cell to become the new head CC cell (which in turn
causes the first PC cell to become a head cell as well). This effectively causes the cell
marked “+” to become the new target cell of the wire. This mechanism can thus be
used to restore control to a prior location after a wire has been extended. This may
be used, for example, in a bootstrap super-sequence [11].
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Fig. 29.16 Example of a break line. The PC/CC pair initially give access to the target cell (“*”).
By asserting the BRK line, the second CC cell can be cleared, changing the location of the target
cell to the cell marked “+”

Fig. 29.17 A breakable
wire. The BRK channel is
dynamic: whatever its
length, the rightmost cell
will route its western D input
to its northern C output, thus
clearing the CC cell above it.
This changes the wire’s
target cell to be the cell
directly above the end of the
BRK line. The target cell can
then be configured to clear
the last cell on the BRK line,
thus retracting it

In some cases, rather than simply breaking a wire, it may be desirable to back a
wire up one step. Figure29.17 shows a retractable wire: a circuit to allow a wire to
be retracted, one cell at a time. This is useful for synthesizing a circuit in reverse:
extending awire, configuring the target cell, then backing up one step and configuring
the new target left in the wire’s wake, and so on.

The key to a retractable wire is the dynamic BRK line. Instead of a line of cells
that simply route data from one side to the other, each cell of this BRK line actively
determines whether it is the last cell in the channel: if not, it simply routes data from
west to east; but if it sits at the end of the wire—i.e., if there is no BRK cell to its
right—then it routes data from the west into the C output to the north.

The wire is extended in the usual way: the target cell (in front of the easternmost
PC cell) is configured to build a new BRK cell, then a new CC cell, and finally a new
PC cell. This allows the wire to be extended as far as desired. To back the wire up,
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the BRK signal is activated to clear the head CC cell, which moves the target cell
back one spot. The new target is then configured to clear the current head BRK cell.
This allows the target to be configured, but leaves the BRK line ready to clear the
previous stage of the wire, thus allowing further retraction of the wire.

29.3.2 Multi-headed Wires

The above circuits are used to configure a single target cell at a time. However,
modified versions allow parallel configuration of multiple target cells, as shown in
Fig. 29.18. In this figure the PC and CC inputs drive the D and C inputs, respectively,
on a series of target cells (marked “*”). Such a wire (with multiple heads) is called
a “Medusa Wire,” and allows multiple targets to be configured simultaneously. Of
course, since there is only a single PC/CC pair delivering information to each target
cell, all target cells will be configured identically. However, identical circuitry built
near each target cell can be used to effect non-identical synthesis by using techniques
such as local indexing (discussed at the end of this section).

AMedusawire is not easily extended in the samemanner as a single-headedmulti-
channel wire. However, a multi-channel wire below the Medusa wire can be used to
synthesize the Medusa. And once built, the Medusa wire allows configuration of a
line of identical circuits. Since the Medusa wire itself is a line of identical circuits,
it follows that the Medusa wire can be used to build another Medusa wire (directly
below the original). Similarly, that Medusa can be used to build a 3rd copy, and so
on (as shown in Fig. 29.19). A column of additional control circuitry is also built

Fig. 29.18 A multi-headed Medusa wire. The PC and CC control access to the D and C inputs of
multiple target cells (each labeled “*”)

Fig. 29.19 Medusa wires built from Medusa wires. In this example, M0 was built first (sequen-
tially), and then used to build M1 in parallel. M1 was then used to build M2 in parallel. This process
can be repeated for more-efficient configuration of a region of cells
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along the left edge of the assembly, to route the PC/CC signals to all Medusa wires.
While the first wire—assuming it contains n heads—takes O(n) steps to build, the
second wire takes O(1), as does the third, fourth, and so on. This allows n2 heads to
be configured in O(n) steps.

By themselves, these heads have limited purpose if they’re only used to build
more Medusa wires. In practice, this 2D plane of Medusa heads might be used to
configure a 2D plane of target cells above the Medusa plane (up the Z axis in a 3D
Cell Matrix, for example). This utilizes a modified Medusa head circuit, which can
be switched between multiple operating modes.

Alternatively, a scheme such as shown in Fig. 29.20 can be used. In (a), a single-
headed multi-channel wire has been built, and as it was extended, it was used to
synthesize the pieces of a Medusa wire (“MED0”). MED0 is a multi-headed wire
that configures regions to its north or south, depending on the value of a direction
signal. In (b), MED0 is used to synthesize a 1D collection of 2D target circuits to its

Fig. 29.20 Parallel build of
target circuits and new
Medusa wires using Medusa
wires: a a standard
two-channel wire has been
used to build Medusa wire
MED0; bMED0 configures
the region to the north into a
row of desired target circuits;
c MED0 configures the
region to the south into a
new Medusa wire MED1; d
MED1 configured a second
target region; e a third
Medusa (MED2) is
configured; and f MED2
configures a third target
region



774 N.J. Macias and L.J.K. Durbeck

north (for example, pieces of a finite-element analysis system [19]). In (c) MED0 is
directed south to configure a newMedusa wire (“MED1”) to its south. In (d), MED1
configures regions to its north, creating another row of target circuits. In (e), MED1
configures a new wire “MED2” to its south, and in (f) MED2 configures a third row
of target circuits to its north. This process repeats, configuring (in parallel) new rows
of target cells, leading again to an efficient initialization of n2 regions of target cells
in O(n) time steps. For simplicity, the target regions are shown as being thin, but in
practice taller regions can be configured by placing the Medusa wires further to the
south.

29.3.3 Analysis of Cells: Intrinsic Operations

The above techniques and circuits are useful for synthesis or modification of circuits
within the Cell Matrix. Another useful task is the analysis of circuits or states within
the Cell Matrix. The simplest example of this is responding to outputs from neigh-
boring cells. Since each cell’s outputs are directly connected to the inputs of any
neighboring cells, each cell automatically responds to its neighbors outputs accord-
ing to its own truth table configuration.

Amore interesting example is a cell that reads another cell’s truth table, by assert-
ing the target cell’s C input and reading that cell’s D output. This is also a basic
cell-level operation within the matrix. Once read, a cell’s truth table can be stored
(perhaps in another cell’s truth table memory, or in a larger structure composed of
many cells acting in concert as, say, a shift register). Truth tables that have been read
can be compared to templates (useful for reverse-engineering dynamically-built cir-
cuits); analyzed for patterns (to examine the results of, say, random generation of
configuration strings); rotated (to build a new circuit that faces a different direction);
combined with other truth tables (to breed two configuration strings in a genetic
algorithm [17]); and so on.

29.3.4 Circuits and Techniques for Testing Single Cells

Moving away from intrinsic cell-level operations, one can create test circuits and
test patterns. Figure29.21 shows a simple arrangement whereby one cell—called the
source (“SRC”)—may test a target cell (“*”). A basic test is to load the truth table
for the equation DataWestOut ← WestIn (abbreviated DW = W ) into the target cell,
and then examine the target’s D output as the SRC sends 0’s and 1’s into the target.
The expected behavior is that the target echoes back whatever value the SRC sends.
This can detect errors where the target’s DWout is stuck-at-1 or stuck-at-0 (or where
there’s a problem configuring the target at all).

Next, the target cell be configured with the equation DW =!W (e.g. an inverter),
and the above test repeated. This test can detect shorts between the target’s DWin and
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Fig. 29.21 Simple cell-testing arrangement. “SRC” is able to load test patterns into “*,” send values
to *’s D input, and monitor its response on *’s D output

DWout . Additional tests can be used to check other aspects of the target’s D mode
behavior (though each of these tests is also to some degree checking the target’s
configurability).

C mode can be more-thoroughly tested by loading different bit patterns into the
target’s truth table memory, and immediately reading back those patterns (without
letting the target leave C mode). If the test pattern reads correctly, then the SRC
knows that the target’s memory can successfully store the given test pattern (and
can also successfully enter C mode, index bits in the truth table, and so on). By
using different patterns (all 0’s; all 1’s; alternating 1’s and 0’s; alternating groups of
1’s and 0’s, arranged so that each physical row of the truth table’s memory stores
complementary values; and so on), different possible failure modes can be tested.

As an example, consider Fig. 29.22 which shows a potential layout for the 128
bits of a truth table inside a cell. Here, the memory is physically arranged as a 16×8
array of single-bit memories. For this example, assume there is a defect involving
the 6th cell on the 3rd and 4th rows, whereby their outputs are shorted together. This
defect will cause those cells to report the same value as each other. If we attempt to
load the memory with the pattern

1111111100000000111111110000000011111111000000001111111100000000
the boldfaced bits will be read-back as the same value as each other, which will
indicate to the testing circuit that there is a problem in the memory storage sub-
system.

29.3.5 Testing Regions of Cells

After exercising a cell’s capabilities sufficiently-enough to determine that the cell is
usable, that cell can then be used to test additional cells. This is a process similar to
bootstrapping a 2D region of cells: first one cell is tested; then a second cell; then
these cells are configured as a wire, and used to test a 3rd and 4th cell, which are
used to extend the wire, and so on. As more cells are tested (and found to be good),
more control can be exercised over the region being tested [4].

In any defect-testing system, there is always a concern that the test circuitry itself
may be defective. In the case of an introspective, self-modifying system such as
the Cell Matrix, these concerns are largely obviated, since the test circuitry is not a
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Fig. 29.22 Example of
memory defects inside a
16 × 8 truth table. Here,
there is a short between the
3rd and 4th rows, in the 6th
cell on each row. This can’t
be detected by loading all 0’s
or all 1’s, but would show up
when loading a repeating
pattern of 8 0’s followed by
8 1’s

pre-existing, hardwired system, but rather is constructed, cell by cell, as each cell is
subjected to fault testing and found to be working correctly. Thus, if a cell is found
to be defective, it is simply not used in constructing the test circuit (of course, there
are extreme edge cases, such as if every cell along the outer perimeter of the matrix
is defective, in which case there is no way to reach any internal cells). If a wire is
being built, and encounters a defective cell, the wire can be backed-up two steps, and
a corner built to move down past the defective cell, and so on.

Testing can also be done from different sides, as shown in Fig. 29.23. Since wires
can be bent and turned, a cell being tested can be approached from different sides,
to allow testing of the I/O lines on all sides of a cell.

Note that it is generally not feasible to test a system for every possible failure
mode. For example, there are 2128 possible ways to arrange a 4-sided cell’s memory,
and numerous possible present states inside a cell’s circuitry. While these are too
numerous for exhaustive testing, it may be possible to test many of the states in
which a cell is expected to actually operate. For example, due to the layout of cells
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Fig. 29.23 Interrogating a cell from different sides. By making a series of turns, a multi-channel
wire can access a target cell (“*”) from different sides. This provides a greater testing capability,
since I/O lines on each side can be examined

within a circuit, it may not be possible to interrogate the cell from (say) its eastern
edge. In that case however, it’s likely that the circuit that’s being builtmay not actually
use the cell’s eastern edge, in which case an I/O error associated with that side may
not be relevant to the expected operation of the circuit being constructed.

29.3.6 Isolating Defects

The above techniques are primarily concernedwith fault detection: identifyingwhen
one or more cells are defective and may potentially impair the behavior of a circuit
built with those cells. An additional consideration arises given the possibility that
a defective region of cells could inadvertently affect nearby cells in an undesirable
way. Since cells can configure other cells, and cause those cells to configure still other
cells, it’s theoretically possible (though unlikely under normal circumstances) that a
defective cell could alter the configuration of nearby (or even remote) non-defective
cells. To prevent such a situation, one can construct circuits (from non-defective
cells) that isolate defect-free regions of cells from regions containing defects. One
such circuit is called a “Guard Cell.” A guard cell employs a second cell, as shown
in Fig. 29.24. The middle cell is the guard cell, but it is controlled by the cell on
its left, which is simply placing the guard cell into C mode. Under the Cell Matrix
architecture, when a cell is in C mode, it is unable to assert any of its C outputs.
Since the guard cell is built from a non-defective cell, the guard cell is guaranteed to
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Fig. 29.24 Example of a guard cell. The two cells on the left work together to prevent the rightmost
cell (“?”) from being able to affect the cells on its left. Since the middle cell is always in C mode,
it can never assert its own C outputs, and thus can’t be used by cell “?” to configure other cells

Fig. 29.25 A line of guard
cells acts collectively as a
guard wall, which protects
one region of the matrix (to
the left of the wall shown
here) from the behavior of
another region (immediately
to the right of the wall
shown here)

be outputting C = 0 on all sides. Thus it is impossible for the defective cell (marked
“?”) to use the guard cell to configure other cells.

A line of guard cells constitutes a “GuardWall” (Fig. 29.25); and a closed perime-
ter of guard cells (Fig. 29.26) creates a “Guard Ring” that isolates a region of cells
from the rest of the matrix.

29.3.7 Auto-Location Within the Matrix

Another use of introspection is in determining ones location within a collection of
identical cells. Since parallel-configuration techniques such as Medusa wires lead to
the creation of a number of identical sub-circuits, these circuits don’t intrinsically
have any identifying information that can be used to self-identify as being distinct
from other circuits. Such self-identification is an important first step in subsequent
differentiation of the matrix into heterogeneous components.

Figure29.27 shows a line of identical circuits, each containing an increment unit.
Each circuit receives—either in parallel or as a serial stream—an integer from the
circuit on the left; adds one to it; and sends the incremented value to the circuit on its
right. Assuming the leftmost circuit is receiving all 0’s from its left (either because
it is adjacent to a region of unconfigured cells, or because it is at the edge of the
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Fig. 29.26 A closed ring of guard cells creates a guard ring, which isolates the behavior of cells
(labeled “?” here) inside the ring from the rest of the matrix

matrix), that circuit’s X value will be 0, while the circuit to its right will see X = 1;
the next circuit to the right will see X = 2; and so on. This generated value of X
effectively tells each circuit what column it sits in. Similar circuitry can be used in the
Y direction to allow cells to determine which row they occupy in a 2D collection of
identical circuits. Given such positional information, circuits can then differentiate
into pieces of a larger target circuit according to the shared circuit map. The circuits
can also dynamically determine an optimal configuration for a target circuit based
on available resources [13].

The above scheme can be simplified to let cells determine whether or not they
are adjacent to an edge of the matrix. Circuits can read from (as in Fig. 29.28 for
example) the north, and output a signal (1) to the south. If placed top-to-bottom,
each circuit will read a 1 from the north, except the circuit placed at the very top of
the matrix. Repeating this in different orientations, circuits can in this way identify
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Fig. 29.27 A line of identical circuits that can locate themselves within the matrix. Each circuit
(which is a collection of cells operating as a single unit) receives an integer from the left, increments
it, and outputs the incremented value to the right. The leftmost circuit will be the only one receiving
a 0 (assuming it’s either at the edge of the matrix, or is adjacent to a region of cells that is not
participating in this behavior). Every circuit will receive a unique value of X from its neighbor
(provided enoughbits are used in transmitting the integer). This allows circuits to identify themselves
with a unique index relative to all other circuits in the collection

Fig. 29.28 Detecting the northern edge of the matrix. Even though each cell is configured identi-
cally, only one cell (the northernmost one) will receive a 0 on its northern input. This allows cells
to identify when they are located at the top edge of the matrix

the boundaries of the matrix. A different scheme is to simply build a multi-channel
wire, constructing a simple feedback test circuit in front of the wire as it extends
(Fig. 29.29). While this arrangement is normally used for fault detection, it will also
indicate where the end of the matrix is, since attempts to configure a feedback cell
(“F”) will fail beyond the edge of the matrix. By repeating this analysis on multiple
rows, one may determine the location (and shape) of the matrix’s edge. Note that this
edge may be the physical edge of the matrix, but if a region of cells are defective,
this will define the effective edge of the matrix.

Fig. 29.29 Another example of edge detection in the matrix. A two-channel wire is grown to the
right. At each step, a feedback cell (“F”) is configured; a test ping is sent; and an echo is detected.
The echo detection will fail when the wire has reached the rightmost edge of the matrix (since there
is no cell available for building the feedback cell). This allows a circuit to determine the horizontal
width of the matrix. A similar technique can be used to determine the matrix’s height
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29.4 Applications

The above sections have covered some basic underlying mechanisms that support
self-analysis and self-modification. This section presents examples of digital circuits
that utilize introspection to drive self-modification. These specific applications them-
selves are not necessarily “killer apps” for this technology. The goal is to present a
set of examples illustrating ways in which this technology can be used to achieve
unique, potentially interesting behaviors.

Four examples are presented:

1. An overflow-proof counter. This illustrates the use of self-modification to handle
specific, expected conditions.

2. An autonomous circuit-scrubbing system. This system employs extensive self-
modification, but also utilizes self-analysis of circuit configurations, to develop a
system that can repair soft errors.

3. A system for parallel synthesis of circuits, including detection and avoidance of
defective regions. This illustrates the use of introspection and self-modification
to work around hard errors.

4. A system for detection of mis-oriented cells in a Cell Matrix: a system that
adapts-to and works-with hard errors.

29.4.1 An Overflow-Proof Counter

Figure29.30 shows a simple ripple-carry counter based on negative edge-triggered
toggle flip flops. The counter is driven by the clock input on the right, and as each
stage flips from 1 to 0, it toggles the next stage to its left. The configuration shown
is a 3-bit counter, which counts from 000 to 111 before overflowing and returning to
000.

Figure29.31 shows the same circuit extended by adding a fourth flip flop to the
left. Adding this additional stage changes the circuit to a 4-bit counter. Such an
extension requires no additional changes to the pre-existing circuit; the change is
made only on the leftmost edge, by feeding the current counter’s MSB into the new
stage’s clock input.

Fig. 29.30 Basic 3-bit ripple-carry counter. Each T flip flop toggles when the prior bit changes
from 1 to 0. After 8 ticks, this counter overflows from 111 to 000
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Fig. 29.31 By simply adding a 4th flip flop to the left of the MSB, the counter is now extended to
a 4-bit counter, and can count to 1111 before overflowing to 0000

When implemented on a Cell Matrix, a toggle flip flop requires only three cells,
using the configuration show in Fig. 29.32. The middle cell includes a pair of 1-bit
multiplexers which select either their 0 or 1 input (based on the value of the S input).

The top and bottom cells provide a feedback path, while the middle cell receives
the incoming clock and alternates the bit that’s circulated among the cells. The
bottom cell delivers the flip flop’s Q output, which is also sent from the middle cell’s
left edge. This allows a new stage to be added by simply placing it adjacent to the
prior rightmost stage (assuming those cells aren’t already being used for some other
purpose).

Fig. 29.32 3-cell
implementation of a T flip
flop. The clock is applied to
the middle cell’s eastern D
input. The flip flop’s output
(Q) is sent to the bottom
cell’s southern D output. It’s
also copied to the middle
cell’s western D output,
where it can be applied to the
clock of another T flip flop
positioned directly to its left.
The “S” blocks in the middle
cell are one-bit multiplexers



29 Self-Awareness in Digital Systems … 783

Fig. 29.33 An expanding counter. In addition to an n-stage ripple counter (comprised of n T flip
flops), there is a set of circuitry located below each flip flop. This circuitry determines if the two
MSBs of the count are 11, and reports that fact to the main control circuit (via Build Control’s “GO”
input); it also routes build commands from Build Control to the edge of the flip flop collection,
allowing Build Control to construct a new flip flop (in the dashed region). This allows the counter
to grow in size dynamically, as necessary to prevent overflow

Figure29.33 shows a toggle flip flop-based counter with additional hardware to
allow it to automatically build more stages as the count increases. Below each flip
flop is an overflow-detection circuit with three functions:

1. it contains an edge detection circuit to determine if it is located below either of
the two leftmost flip flops;

2. it contains simple logic to determine—if it is located below either of the two
leftmost flip flops—whether each of those flip flops is currently outputting 1; and

3. it contains a piece of a two-channel wire which can be used to configure cells to
the left of the leftmost flip flop.

Figure29.34 shows the details of this overflow-detection circuit.
The logic in step 2 above is fed through the collection of circuits to the state

machine located to the right of the flip flop assembly.When the GO input is triggered
(raised from 0 to 1), the state machine begins generating supersequences. Those are
sent down the two-channel wire (function 3 described above), and cause the synthesis
of a new flip flop and overflow-detection circuit to the left of the current assembly.
Once the flip flop has been built, the wire itself is reconfigured to extend it another
stage and re-build a new corner at the leftmost edge, thus preparing for the next future
build operation.

Since the build is triggered when the leftmost two bits are both 1, it happens when
the counter has reached approximately 75% of its maximum value. As long as the
build can be completed in less time than it takes the counter to count the remaining
25% of its maximum value, the build will finish before the counter overflows, i.e., a
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Fig. 29.34 Overflow-
detection circuitry. The
lower cell determines if it is
at the leftmost-edge of the
collection, and outputs a 1 to
the north if so. The upper
cell uses this 1 signal, along
with the counter bit from
above and from the right, to
determine if an overflow is
going to occur soon. The
resulting “OFLOW” signal is
routed from west to east
through these same cells (via
the OR gate). This upper cell
also routes the current stage’s
data to the western cell

new flip flop will be present before it needs to operate in order to maintain the correct
count. This circuit thus implements an overflow-proof counter.

Of course there are some details to be noted here. The first is that this is a ripple
counter, and may not be suitable for counting to extremely large values. The design,
however, can be easily modified to create a synchronous output. Likewise, preset and
clear inputs can be incorporated, as well as other embellishments; the basic design
of the expanding element remains essentially the same.

This scheme assumes there are available cells on the left of the counter. One may
ask, if there are free cells there, why not just pre-configure them to be counters, rather
than waiting until they are needed? The answer is that one may not know ahead of
time how large a counter is needed. Until those extra cells on the left are used for the
counter, they are available for use by other circuits. This raises another question: what
happens if the circuit tries to expand, but some other circuit is using the needed cells?
The answer is that something must be relocated: either the circuit currently using
the needed cells, or the counter itself. This may seem a daunting managerial task,
but it is in many ways no different from how a typical memory management system
works in a modern operating system. This raises the possibility of implementing a
hardware management system, perhaps incorporating constructs similar to virtual
memory, paging, swapping, and so on.

This technique thus makes good use of self-modification to respond to detected
conditions in the environment (in this case, the approach of an overflow condition). In
this case, “introspection” is limited to analysis of the system’s state. The next example
introduces a circuit that uses self-analysis of its own memory configuration.
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29.4.2 Triple Redundancy with Autonomous Defect
Scrubbing1

A simple defect detection and correction technique is to use triple redundancy [9],
where three independent copies of a digital circuit operate simultaneously. Assuming
defects are relatively rare, i.e., if there is a high likelihood that only one circuit will
fail at a time, one can compare the states of the three copies, and in the case of
a discrepancy, the majority state is taken to be correct. While relatively simple to
implement, a triple-redundant system is only useful for detecting a single defect.
Once one of the three copies is corrupt, the system now has only two pristine copies,
which does not allow determination of a majority state if one of those remaining
circuits becomes corrupt.

Some errors are transient—for example, a momentary voltage spike in the output
of a logic gate—and will disappear shortly after they appear. Their effect, how-
ever, may be longer-lasting, particularly if they occur in part of a memory circuit.
If they occur in the configuration memory of a reconfigurable device, their effect
may become permanent (until the system is reconfigured). While reconfigurable
systems are potentially well-suited to using triple redundancy (since, by employing
a sufficiently-large device, there may be enough space to make three copies of the
target circuit, and to incorporate the necessary mechanisms for voting), they suffer
from this particular vulnerability in the event of a configuration memory upset [2].

On a substrate that allows analysis of configured circuitry, one can implement a
circuit that does more than simply compare three copies of a circuit. One can actually
compare three copies of the circuit’s configuration memory, and, upon determining
that there is a bit error somewhere, correct that error to restore the circuit to pristine
condition.

Figure29.35 shows a system that uses these concepts to mitigate memory upset-
related faults. C1 C2 and C3 are three copies of the target circuit. Each block labeled
“Wire Head” contains the circuitry for a small multi-channel wire, which can be
used to build longer multi-channel wires. The control circuit (“CTRL”) directs these
wire-building operations, extending these wires across the top of each circuit (C1–
C3). As the wires extend, the configuration memory of the cells along the top of
each circuit is read and conveyed to the control circuit. The control circuit per-
forms a bit-by-bit comparison of the three configuration strings, checking to see
whether all three strings agree. In the case of a discrepancy, the majority bit value is
taken to be correct. As the wires extend across the circuits, the control circuit stores
these (corrected) configuration strings in the block labeled “Storage,” until the wires
reach the rightmost edge of the circuits. At this point, the storage circuit contains
a (presumably) pristine copy of the configuration memory for the top row of the
circuits. Next the wires are de-constructed (with the end of the wire moving from the

1This work was supported by DOE/LANL under subcontract 90843-001-04 with the Regents of
the University of California.
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Fig. 29.35 Overview of
triple-redundancy system.
The CTRL circuit guides the
construction of three wires
which scan three copies
(C1–C3) of the target circuit.
By comparing the truth
tables in each copy’s cells,
temporary upsets in the truth
table memories can be
detected and corrected by the
CTRL circuit

rightmost edge back to the initial position at the Wire Head), and the stored config-
uration information is used to re-build perfect circuitry in its wake.

Following the above operations, the controller builds wire from each wire head
to the south, turns counter-clockwise 90 degrees, and begins to move across the next
rows of circuits C1–C3, again reading, voting, saving, and finally re-building their
configuration memories. This process is repeated, until the entire circuits have been
“scrubbed” using this technique. In the end, any upsets in the configuration memory
of a circuit should have been corrected.

Figures29.36a–d illustrate the first row of this build process. The process illus-
trated in these figures is repeated in all three circuits C1–C3 (from Fig. 29.35). In
Fig. 29.36a, the circuit is intact, and the three cells marked “*” are about to be exam-
ined via a set of three three-channel wires. In Fig. 29.36b three cells in the upper-left
of the circuit have been read, and are now a part of the extended wire. In Fig. 29.36c,
thewire has been extendedmost of theway across the top of the circuit. Figure29.36d
shows the state of the circuit after the entirety of the top three rows have been read.
Those rows are now completely overwritten with the wire itself, but the configuration
of the original cells are stored in the repair circuit’s storage elements (“Storage” in
Fig. 29.35). Moreover, if there were errors in any of the configuration memories that
were read, they should have been corrected before those configurations were stored.

In Fig. 29.37a, the wire has been retracted one step to the left, and the configu-
rations of the original cells have been repaired in the wire’s wake. In (b), more of
the top rows have been repaired, as the wire continues to retract. Finally, in (c), the
entire top three rows have been restored to their intended configuration. Moreover,
since this operation occurs in parallel in each of the three circuits C1 C2 and C3, all
three copies are repaired simultaneously.

In Fig. 29.38, the wire head has moved down three cells, and is ready to repeat
the above steps on the next three rows of the circuit. This repeats until the entire 2D
circuit has been repaired.



29 Self-Awareness in Digital Systems … 787

Fig. 29.36 Initial steps of cell repair. In figure a the cells marked “*” are about to be read. In b the
original cells have been replaced with the wire, which is now ready to read the new cells marked
“*”. If c most of the top three rows have been read and replaced with wire. In d the entire top three
rows have been read and replaced with wire. The overwritten cells’ definitions are stored in the
block marked “Storage” in Fig. 29.35

Fig. 29.37 Retraction of the wire. In figure a the shaded cells have been replaced with the original
(if undamaged) or repaired versions of the original cells. In b thewire has been retracted further, with
more of the original circuit replaced/repaired. In c the entire top 3 rows have been repaired/replaced
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Fig. 29.38 After the top row
has been replaced/repaired,
the initial wire moves south 3
spots, and the above process
repeats. This continues until
the entire 2D region has been
replaced/repaired

The above process works fine, provided that there is not an upset in the same
bit position of the configuration memory for two or more cells in the same position
of the circuit. For a 4-sided cell, each cell’s configuration memory has 128 bits.
Figure29.39 shows a condition under which this scrubbing process will not work.
In the indicated cell in circuit C1, one particular bit has an upset. If the same bit in
the same cell in, say, circuit C2 also has an upset, then the majority vote on that bit
will fail. Provided that condition does not occur, the scrubbing process will be able
to restore the correct configuration.

In any systemwhere circuitry is used to test or repair other circuitry, onemust deal
with the possibility that the test circuit itself may incur a defect. This present strategy,
while not immune from this consideration, presents a relatively small opportunity for
such critical defects: the wire heads, control and storage circuits must be defect-free.
Of these, only the storage circuits have a size that increases with target circuit size:
however, this is an order O(

√
n) situation: for an n × n target circuit, we need to

protect a storage area whose size is O(n) (since we are only processing one row of
the target circuits at a time). For an extension of this technique to 3D circuits, the
critical region’s size is O( 3

√
n).

One remaining issue is that while the scrubbing operation is underway, all 3
circuits are unusable. This may be acceptable, if the circuits are used infrequently,
and the scrubbing is used to keep themclean in-between runs.An alternative approach
is to keep 6 copies of the circuit, in two sets (A and B) of 3, and to alternate between
a live circuit and a circuit-under-repair. A and B are each a complete fault-tolerant
triple-redundant implementation of the target circuit, complete with its own copy of
this scrubbing circuitry. While copy A is being used as a live circuit (with one of its
three circuits pre-chosen to be the actual live circuit), copy B is being scrubbed. Once
copy B is clean, it can become the live circuit, and copy A can be scrubbed. This
alternation continues as long as the circuits are being used, and scrubbing occurs
whether or not there are any errors present.

This technique thus combines self-analysis and self-modification to provide a
reliable method of detecting and correcting defects in the configuration memories of
a target circuit’s cells. By continually detecting and repairing errors, the configuration
memories aremaintained in pristine condition; and by keeping them in this condition,
they continue to be usable for detecting and repairing errors.
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Fig. 29.39 A condition from
which the system cannot
recover. If a defect occurs in
exactly the same bit of the
same cell in two of the three
copies of the circuit, the
scrubbing mechanism will
incorrectly modify the third
copy to also be defective

29.4.3 Fault-Tolerant Detection and Isolation of Defects2

The Cell Matrix does not include any pre-existing circuitry for configuring a region
of cells with a given set of configurations. While this may seem like a disadvantage
of the architecture, its advantage over a hardwired configuration mechanism is that it

2This work was supported by NASA under contract NAS2-01049.
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Fig. 29.40 Configuration of
a single cell with a
multi-channel wire

offers a great deal of flexibility in how the system is configured. This section explores
two particular ways in which this flexibility can be used:

1. custom bootstrap circuits can be built for performing massively-parallel config-
urations; and

2. regions can be tested for defects before being configured.

Recall that a cell’s configuration can be written by any adjacent cell (if that
adjacent cell asserts one of the target cell’s C inputs). Figure29.40 shows a simple
configuration example. “*” indicates the target cell which is being configured. This
circuit employs a multi-channel wire: PC is used to send data to the target cell’s
D input; CC is used to assert the target cell’s C input; and BRK is used to convey
a secondary data signal. Circuitry located near the beginning of the wire (the end
labeled “PC” “CC” and “BRK”) is responsible for generating bitstreams into the PC
and CC inputs so-as to configure the target cell appropriately.

Using this setup, the target cell can be configured to configure other cells in the
vicinity, which allows the wire to be extended, bent, retracted, broken, and generally
manipulated so as to allow the configuration of a region of cells near the initial target.
Let us call the time required to configure a particular region of cells τ .

Figure29.41 shows a similar setup, except that the channel now has two heads,
and thus configures two target cells in parallel. In the setup shown, since the heads
are situated 5 cells apart from each other, it’s assumed a region no wider than 5 cells
is being configured below each head. Note that aside from the extra propagation
delay (arising from the longer path to the second target), configuring two regions
like this takes the same time as configuring one region.

Figure29.42 shows a further-modified setup (for simplicity, the multi-channel
wire is now represented with a single line). In this case, there are multiple target
cells (each at the end of an arrowhead). If there are n such heads, then n regions will
be configured in parallel. While the configuration of these targets is thus relatively
efficient (O(1) for configuring n regions), one must consider the cost of building the
wire itself, which is O(n). Thus, to configure n regions is still an O(n) process.

However, once an entire row of targets can be configured in parallel, it’s possible
to configure n regions in time τ . Those configurations can be used to create a new
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Fig. 29.41 A two-headed wire. The two target cells labeled “*” can each be configured at the same
time

Fig. 29.42 A multi-headed wire. Each target cell “*” is configured at the same time

multi-headed wire below the initial wire, which can then be used to configure another
n regions in time τ . Thus, in time τ we can configure one region; after nτ we can
configure n regions; after (n + 1)τ we can configure 2n regions, and so on. After
(2n − 1)τ we will have configured n2 regions (Fig. 29.43).

Fig. 29.43 Once an initial row has been configured (sequentially), it can be used to configure
a second row in parallel. That row can configure a 3rd row, and so on, with each row being
configured in a fixed amount of time (independent of the length of the row). The entire region can
thus be configured in O(n2) time
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Fig. 29.44 Three-dimensional Medusa circuit. After configuring a plane of identical circuits, those
circuits can configure a second plane in a fixed amount of time (independent of the dimensions of
that plane). The entire 3D region can thus be configured in O(n3) time

This process can be further extended to support parallel 3D bootstrapping. If each
configured region is built to allow configuration of cells in the Z axis, the circuit now
allows configuration of n2 regions in one additional timestep τ (Fig. 29.44). Target
cells are again denoted with “*”.

After another timestep τ , this newly-configured collection of n2 circuits can be
replicated again in the Z axis, creating another n2 regions. Continuing for another
O(n) steps, and entire 3D collection of n3 regions can be configured in (3n − 2)τ
timesteps. Configuring n3 regions thus takes a total time of O(n) steps. Table29.3
summarizes these results.

This is one example of a “Medusa System.” In general, a Medusa system is one
that employs multiple heads to configure multiple regions in parallel, particularly
with the goal of accelerating the configuration as it runs. The above example is a first
introduction to a Medusa system, but a modified algorithm is actually more useful.
By utilizing a different (but still accelerating) configuration order, we can incorporate
fault detection and isolation into a parallel bootstrap system. Figure29.45 shows the
first 5 steps of this modified Medusa scheme. In this (and the next two figures),
each square represents a collection of cells corresponding to a multi-cell region to
be configured. At the end of the entire build process, all regions will be configured
identically.
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Table 29.3 Number of regions configured versus total configuration time

Number of Configured Regions Total Time

1 τ

2 2τ

3 3τ

… …

n nτ

2n (n + 1)τ

3n (n + 2)τ

4n (n + 3)τ

… …

n2 (2n − 1)τ

2n2 (2n)τ

3n2 (2n + 1)τ

… …

n3 (3n − 2)τ

The initial configurations proceed with linear time complexity, whereas the middle set of config-
urations accelerates to O(

√
n). The final set of configurations is O( 3

√
n), which is also the time

complexity for the entire process

The build beginswith the configuration of a single region. The next 4 steps proceed
as follows:

1. the first region configures a second region to its east;
2. those two regions configure two regions to their south (resulting in 4 configured

regions);
3. the two westernmost regions configure two regions to their west (resulting in 6

configured regions); and
4. the three northernmost regions configure three regions to their north (resulting in

9 configured regions).

Continuing this way, after each pair of successive builds, the number of configured
regions grows from k2 to (k+1)2. This is thus also anO(

√
n)process (and can again be

extended into 3D for an O( 3
√

n) process). Whereas the prior Medusa system grows
first in one dimension, and then in the second, this system grows symmetrically
from the middle, extending outward evenly in all directions. This is essential for
incorporating fault handling into the system.

To detect faults, test patterns are applied in the region(s) which are being con-
figured. Figure29.46 shows a sequence of steps for parallel, fault-tolerant config-
uration of a 3 × 3 collection of multi-cellular regions. Steps which don’t result in
any new configurations (i.e., testing regions to the west from a westernmost cell) are
not shown. In Fig. 29.46, the regions at the end of the arrowheads are being tested.
Assuming the tested regions are found to be operating correctly, they are configured
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Fig. 29.45 First 5 steps of
an increasingly-parallel build
system. In each step, the
arrow(s) show where the next
build will occur. Note that all
steps require the same
amount of time to complete

as new additions to theMedusa system, and are subsequently used for further parallel
test/configuration operations.

Figure29.47 shows how this process runs in the presence of a fault. Here, a 3× 3
layout of multi-cell regions is shown. The shaded regions have already been tested
and configured; arrows indicatewhich adjacent regions are being tested (and, if found
to be defect-free, configured). The region marked with a “*” contains a defect in at
least one of its cells. Dark lines surrounding that defective region indicate guard
walls, which are circuits within the adjacent defect-free regions that act to isolate the
defective region from non-defective regions.

The following description concentrates on the detection and isolation of defective
regions. To make use of this process for the construction of useful target circuitry,
the target circuit is either built from elements contained within the testing circuitry
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Fig. 29.46 Sequence of steps for parallel fault detection. Each square is a multi-cellular region.
Shaded areas represent already-tested-and-configured regions. Arrows point to regions being tested
and configured. In this example, there are no defects present in the region

itself, or a post-testing synthesis step reconfigures the collection of regions, using
the test results to avoid defective cells.

The process begins with one initial region (in the upper-left corner) being con-
figured. That region then tests the region of cells to its east ((a) in Fig. 29.47). Upon
finding that region defect-free, it is configured as another piece of the collective test-
circuit. Those two regions then test—in parallel—the regions to their south as shown
in (b). The region on the left passes the tests, but the region on the right contains a
defect, and fails one or more of the tests. A guard wall is activated in response to
this, as illustrated by the heavy line to the north of the defective region in (c). The
next tests—to the west and north—are not shown, as there are no cells to test in those
directions.

In (c), non-defective regions now test to the east, resulting in the discovery of
one good region (in the upper-right of the 3 × 3 area), as well as re-discovery of
the defective region in the middle, causing a guard wall to the west of that region
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Fig. 29.47 Sequence of steps for parallel fault detection and isolation. Each square is a multi-
cellular region. Shaded regions are already tested and configured. Arrows indicate which regions
are being tested and configured. The regionmarked “*” contains a defect, which the system attempts
to detect and isolate. Bold lines indicate guard walls, which work to isolate the defective region.
Steps a–i show how the algorithm proceeds

to be activated (the heavy line in (d)). In (d), testing occurs to the south, resulting
in configuration of two additional defect-free regions (seen in (e)). Note that the
middle region of the upper row will attempt to re-test the defective region, but the
guard-wall blocks all signals from entering or leaving that region, and thus those
tests fail quickly.

In step (e), testing to the west does take place, with the only effect being the
activation of a guard wall to the east of the defective region. The results of this are
seen in (f), where the defective region is now surrounded on three sides by guard



29 Self-Awareness in Digital Systems … 797

walls. (f) also shows testing to the east, resulting in discovery of a 7th defect-free
region, which in (g) will test to the north, and thus activate the final guard-wall around
the defective region as shown in (h). Finally, one more test to the east leads to the
final configuration shown in (i). As can be seen, the 8 defect-free regions have been
identified and used in the establishment of a guard-wall surrounding the defective
region in the middle.

As described above, this process as shown is only testing the 3 × 3 collection
of regions, but in practice this is a preamble to subsequent synthesis of a parallel
target circuit using these pre-tested regions. Further steps could then be used if
differentiation of the regions is desired, as described in [12].

29.4.4 Detection of and Adaption to Cell-Level Orientation in
a Disoriented Matrix3

One area of research for the physical assembly of a Cell Matrix is to employ self-
assembly of individual cells into a larger 2D or 3D structure [15]. This raises a
potential issue of cellular disorientation:

• each cell (in the 2D/4-sided case) has a notion of north, south, east and west;
• circuits are made from collections of cells communicating with each other;
• this means each cell needs to know how it is oriented relative to other cells.

For example, Fig. 29.48 shows a set of 4 cells being used to make a short wire.
Each cell passes input from its west to its east, thereby making a 4-cell wire. In
this case, each cell is oriented normally. In Fig. 29.49, the four cells are oriented
randomly. While each has been configured to act as a wire from west to east, the
cells are unable to act together to pass information from one cell to another. Given
this orientation, three of the cells would need to be programmed differently, as shown
in Fig. 29.50. The necessary equations are shown below each cell.

As described earlier, determining a cell’s orientation is relatively easy. First, pro-
gram the cell with a feedback circuit that copies west to west; then send a 1 out your
own eastern output, and listen for an echo. If you receive it, then the target cell is
oriented normally; if not, configure it to copy north to north, and try again. Knowing
the configuration that results in an echo tells you the cell’s orientation. Provided a
cell’s orientation can be determined, it is then easy to modify the cell’s configuration
string to restore the intended behavior. Thus, via introspection and appropriate modi-
fication of configuration instructions, a disoriented cell can be effectively re-oriented,
so that it can be used as if it were oriented normally.

Of course, this only works for a target cell directly adjacent to a correctly-
functioning set of cells.However (as usual), if an adjacent target cell can be effectively
re-oriented, then it can be used to re-orient non-adjacent cells, by building and using

3This work was supported by the Cross-Disciplinary Semiconductor Research (CSR) Program
award G15173 from the Semiconductor Research Corporation (SRC).
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Fig. 29.48 Four cells, each configured to pass a single bit of data from west to east
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Fig. 29.49 Four cells, each configured to pass a single bit of data from west to east. In this case,
the cells are disoriented, so the structure is not able to pass data from west to east
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Fig. 29.50 By taking into account the disorientation of the cells, they can be configured differently
to restore the data-passing capability of this circuit. Each cell’s configuration is listed below the cell

multi-channel wires. The controlling circuit needs to be more complex, to allow for
generation of test sequences and rotation of desired truth tables to match true orien-
tation. Aside from that change, the build process for configuring a region of cells is
essentially unchanged.

The situation is different though for parallel configuration. Consider the situation
in Fig. 29.51. Here, a Medusa wire is setup to configure n cells (T0 through Tn−1)
in parallel. But unless all of these cells have the same orientation, there is no single
configuration string that can be sent through the wire to configure all cells with the
same effective configuration. For example, if T0 is rotated 90 degrees clockwise and
T1 is rotated 90 degrees counter-clockwise, then the configuration strings sent into
their respective D inputs must be adjusted accordingly. Similarly, to determine the
orientation of a cell, test patterns must be fed to the cell and its behavior studied.
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Fig. 29.51 A Medusa wire
being used to configure n
cells in parallel. To configure
all target cells with the same
behavior, different
configurations need to be
loaded into each cell based
on its orientation

T1T1

T2

T3

T4

Tn-2

Tn-1

T0

Since different cells may have different responses, eachmust be studied individually;
yet to maintain parallelism, a set of cells should be tested in parallel. How can these
seemingly conflicting requirements be reconciled?

The answer, again, is that the mechanisms of introspection and modification are
purely local to each cell, meaning that the circuits to determine and respond to each
target cell’s orientation can be built near each target cellT0, T1, . . . , Tn−1. This allows
a universal set of instructions to be sent through the Medusa wire to each head, but
also allows each head to act differently based on its local observations.

To accomplish this, each head is augmented with additional control circuitry as
shown in Fig. 29.52. Three main channels are transmitted:

1. the PC, which delivers D inputs for configuring the target cell, as well as data to
be used in testing a cell’s orientation. The PC also returns data output from the
target cell;
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Fig. 29.52 Additional circuitry configured at each head of the Medusa wire. PC, CC and BREAK
are the usual channels of the 3-channel wire. ORIENTATION carries two bits that code the current
orientation being tested; LOCK is used to record the current value on the ORIENTATION lines;
and OVERRIDE causes the CC to be asserted regardless of the ORIENTATION lines’ values

2. the CC, which delivers the C input to control the target cell’s mode (C or D); and
3. the BREAK line, which is an auxiliary data line that can be used to interrupt a

wire and return it to a previous/shorter state.

In addition to these channels, there are three extra sets of lines sent to the control
circuit:

4. an ORIENTATION wire, which carries two bits of information representing the
current orientation being tested or configured;

5. a LOCK signal used to indicate that a test pattern is being delivered; and
6. an OVERRIDE signal, used to set the target’s C input regardless of the state of

the ORIENTATION lines.

Figure29.53 shows how these lines work together to solve the simultaneous re-
orientation problem formultiple heads. Asserting theOVERRIDE line causes the CC
line to be passed to the target cell’s C input, thus allowing the target to be configured
regardless of its orientation. This is used to load a feedback test pattern (e.g. DW =
W ) into the target cell. Next, the ORIENTATION lines are set to 00 (indicating a
rotation of 0 degrees from “normal” orientation), and a 1 is then sent through the
PC channel. While maintaining those signals, the LOCK line is momentarily pulsed
high. Assuming the target cell is oriented normally, the two D flip flops will load the
current orientation (00); otherwise, the flip flops’ values will remain unchanged.

By cycling through all four possible test patterns (DW = W , DN = N , DE = E
and DS = S), the flip flops will be loaded with the orientation that resulted in
feedback detection, and thus indicate the orientation of the target cell. This completes
the introspection phase of the system. Next, this information is used to configure
the target cell with the desired configuration. This is accomplished by asserting
the CC line and sending the desired configuration four times: once for each possible
orientation. As each configuration is sent, theORIENTATION lines are set to indicate
the orientation corresponding to the current configuration being sent. In the unique
case where the ORIENTATION lines match the saved orientation, the flip flops’
MATCH output will be asserted, which will allow the CC signal to drive the target
cell’s C input.
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Fig. 29.53 Circuitry for simultaneous determination and correction of head cell orientation. LOCK
is used to load the 2-bit orientation latch with the current orientation (OR1 and OR0) provided PC is
receiving a 1 (echo) from the target cell. If the orientation matches the latched value, the MATCH
output is asserted, which causes CC to be routed to the Medusa head. The OVERRIDE signal also
causes CC to be routed to the Medusa head

Since the control circuitry in Fig. 29.53 is local to each head of the Medusa wire,
the saved orientation information is correct for each target cell, and after sending
the four possible configuration strings, each target cell will have been configured
as desired. While this now takes 4× longer than configuring a normally-oriented
matrix, the process is still O(

√
n). The 4× factor can be eliminated (in exchange for

a 4× increase in space utilization) by making the Medusa Wire’s PC channel four
times as wide, so that the configuration bitstream for all four possible orientations
are sent in parallel. The control circuit can be modified to act as a 4-1 selector to
route one of those four PC sub-channels into the target cell’s D input.

Thus, by combining analysis and self-modificationwith local hardware to preserve
and utilize local information, a high degree of parallelism can be maintained despite
the need to perform different operations at each Medusa head.

29.5 Conclusions and Future Work

The ideas of introspection and self-modification have been discussed, with respect
to a particular self-configurable architecture called the Cell Matrix. Native mecha-
nisms for support of introspection and self-modification have been described, and
these have been used to develop circuits and methodologies for various low-level
behaviors, including wire building, parallel configuration, defect detection and iso-
lation, orientation-determination, and self-location within the matrix. These have
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been used as building blocks to create more-complex systems that utilize introspec-
tion and self-modification in a variety of ways. The simplest example demonstrates
circuit synthesis in response to system state; whereas the most complex uses parallel
differentiation in response to local introspection to tailor circuit synthesis as a way
to work with disoriented cells.

The techniques and examples presented herein are starting points for more-
sophisticated systems. It is hoped that this work will be extended in multiple
directions, including work in higher-dimensional spaces; extension to other self-
modifying, introspective architectures; and creation of larger-scale end-products that
exhibit fault detection/avoidance/adaption, parallel synthesis and operation, and self-
analysis. Eventually, thesemay not be ends unto themselves, butwill simply be pieces
of a larger picture: a picture of artificial systems that utilize self-awareness to afford
resiliency, adaption and growth as part of their normal operation.
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Chapter 30
Looking for Computers in the Biological
Cell. After Twenty Years

Gheorghe Păun

Abstract This is a personal, in a great extent autobiographical, view on natural
computing, especially aboutDNAandmembrane computing, having as a background
the author work in these research areas in the last (more than) two decades. The dis-
cussion ranges from precise (though informal) computer science and mathematical
issues to very general issues, related, e.g., to the history of natural computing, ten-
dencies, questions (deemed to remain questions, debatable) of a, say, philosophical
flavor.

30.1 Preliminary Cautious and Explanations

The previous title needs some explanations which I would like to bring from the very
beginning.

On the one hand, it promises too much, at least with respect to my scientific
preoccupations in the last two decades and with respect to the discussion which
follows. It is true that there are attempts to use the cell as it is (bacteria, for instance)
or parts of it (especially DNAmolecules) to compute, but a research direction which
looks more realistic, at least for a while, and which has interested me, is to look in the
cell for ideas useful to computer science, for computability models which, passing
from biological structures and processes to mathematical models, of a computational
type, can not only ensure a better use of the existing computers, the electronic ones,
but they can also return to the starting point, as tools for biological investigations.

This is the English version of the Reception Speech I have delivered on October 24, 2014,
at the Romanian Academy, Bucharest, and printed by the Publishing House of the Romanian
Academy in December 2014. Some ideas and some paragraphs of the text have appeared, in
a preliminary version, in the paper Gh. Păun “From cells to (silicon) computers, and back”,
published in the volume New Computational Paradigms. Changing Conceptions of what is
Computable (B.S. Cooper, B. Lowe, A. Sorbi, eds.), Springer, New York, 2008, 343–371.
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Looking to the cell through the mathematician-computer scientist glasses, this is
the short description of the present approach, and in this area it is placed the personal
research experience which the present text is based on.

On the other hand, the title announces already the autobiographical intention.
Because a Reception Speech is a synthesis moment, if not also a career summarizing
moment, it cannot be less autobiographical than it is, one uses to say, any novel or
poetry volume.And, let us not forget, the life in thepurity and signsworld (a syntagma
of Dan Barbilian-Ion Barbu, a Romanian mathematician and poet) of mathematics
assumes/imposes a great degree of loneliness, as acad. SolomonMarcus reminded us
in his Reception Speech (2008), [51], while the loneliness (it is supposed to) make(s)
us wiser, but it also moves us farther from the “world-as-it-is”, so that at some stage
you no longer know howmuch from amathematician belongs to the “world” and how
much belongs to mathematics. That is why we can consider that a mathematician is
autobiographical both in his/her theorems and in the proofs of his/her theorems, as
well as in the models (s)he proposes.

Looking back in time, I find that I am now at the end of two periods of two
decades each, the second one completely devoted to “searching computers in the
cell”, while the first period was almost systematically devoted to preparing the tools
needed/useful to this search. The present text describes mainly the latter of these two
periods.

30.2 Another Possible Title

For a while, I had in mind also another title, much more general, namely, From
bioinformatics to infobiology. It was at the same time a proposal and a forecast, and
the pages which follow try to bring consistency to this forecast. Actually, the idea
does not belong to me, in several places there were discussions about a new age of
biology—the samewas predicted also for physics—based onusing the informational-
computational paradigms, if not also based on further chapters of mathematics, not
developed yet. The idea is not to apply computer science, be it theoretical or practi-
cal, to biology, but to pass to a higher level, to a systematic approach to biological
phenomena in terms of computability, with the key role of information being under-
stood. Attempts which illustrate this possibility, also advocating for its necessity,
can be found in many places, going back in time to Erwin Schrödinger and John
von Neumann. In a recent book, [47], Vincenzo Manca also pleads for “a new biol-
ogy”, which he calls infobiotics, starting from the observation that the life is too
important to be investigated only by biologists. I would reformulate in more general
terms: the life is too important and too complex to be investigated only by the tra-
ditional biology—with the important emphasis that exactly the biologists are called
to not only benefit, but also to provide consistency to infobiology. Together with
the computer scientists and, more plausibly and more efficient, borrowing from the
computer scientists ideas, models, techniques, making them their own ideas, models
and techniques and developing them. There is here also a plead for multi-trans-inter-
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disciplinarity (starting with the higher education), but also a warning: this is not only
possible, but, it seems, this is also at the right time, on the verge to become urgent.

30.3 The Framework

Having in mind the title before and looking for an “official” enveloping area, the
first syntagma which appears is natural computing—with the mentioning, however,
that it covers a very large variety of research areas, including the bioinformatics and
also moving towards infobiology. For an authoritative description, let us consider the
four volumes handbook [65]. From the beginning of the Preface, we learn that Nat-
ural Computing is the field of research that investigates human-designed computing
inspired by nature as well as computing taking place in nature, that is, it investigates
models and computational techniques inspired by nature, and also it investigates, in
terms of information processing, phenomena taking place in nature. The generality
is obvious, adding to the desire to identify in nature (important: not only in biology)
ideas useful to computer science, a position which, as I have already said, although it
is not completely new, if it is systematically applied, it can lead to a new paradigm in
biological research and in other frameworks too: the informational approach, hence
surpassing the traditional approach, the chemical–physical one.

The idea was formulated also in other contexts: the computational point of view
(to the information processing one adds the essential aspect of computability) can
also lead to a new physics—among others, this is the forecast of Jozef Gruska, an
active promoter of quantum computing. On the same idea is grounded also the col-
lective volume [79].Many chapters have exciting-enthusiastic titles: Life as Evolving
Software, The Computable Universe Hypothesis, The Universe as Quantum Com-
puter, etc. There also is a chapter-long Preface, by sir Roger Penrose, not always
fully agreeing with the hypotheses from the book.

Actually, also theHandbook of Natural Computingmentioned before includes the
quantum computing among the covered domains. Here is its contents
(the main sections, without specifying the chapters): Cellular Automata, Neural
Computation, Evolutionary Computation, Molecular Computation, Quantum Com-
putation, Broader Perspective—Nature-Inspired Algorithms, Broader Perspective—
Alternative Models of Computation. There is some degree of “annexationism” here
(for instance, cellular automata are not too much related to the biological cells), but
let us mention that the section devoted to the molecular computation covers DNA
computing, membrane computing, and gene assembly in ciliates, the former two
areas being exactly what we are interested in here.
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30.4 The Popularity of a Domain

Even remaining only at the editorial level and at the level of conferences (without
considering also the research projects, hence the financial support), one can say
that there is a real fashion of natural computing—more general, of unconventional
computing, more restricted, of bioinformatics.

Here are only a few illustrations. Springer-Verlag has a separate series of books
dedicated to natural computing monographs, named exactly in this way, it also has
a journal, Natural Computing. A typical journal is International Journal of Uncon-
ventional Computing, published by OCP Science, Philadelphia, USA. There is an
international conference,Unconventional Computing, which became, in the last year,
slightly pleonastic, International Conference on Unconventional Computation and
Natural Computation. BIC-TA, that is, Bio-Inspired Computing—Theory and Appli-
cations, is another conference of a real success, at least in what concerns the number
of participants, a meeting whose format I has established, together with colleagues
from Spain and China, in 2005, and which is organized since then each year, in China
or in the neighboring countries—this can explain the massive participation, as the
Chinese researchers are very active in this area.

We have reached the closest upper envelope of the area discussed here: the com-
putability inspired from biology. It is important to note that the term “bioinformatics”
(bio-computer science) has a doublemeaning,with, one can say, a geographical deter-
mination. In the “pragmaticWest”, itmainly covers the computer science applications
to biology (in the “standard” scenario, one goes fromproblems towards tools, without
toomuch theory). In Europe, both directions of influence are taken into consideration,
from biology towards computer science and conversely. Although it is just natural
that both these two research directions should be developed together, in collabora-
tion, the reality is not always so. In search of solutions for current questions, some of
them really urgent, for instance from the biomedical area, mathematics and computer
science often provide tools prepared and developed in other areas. The typical exam-
ple is that of differential equations, with a glorious history in physics, astronomy,
mechanics, meteorology, and which are “borrowed” to biology, not always checking
their adequacy. I will return to this issue, of a great importance for promoting new
tools for biology.

“The European strategy”, of constructing a mathematical theory which looks for
applications after it is developed, has its appeal and advantages—but also its traps.
Being an European, being a mathematician, I have been especially attracted by this
strategy, but, in time, I becamemore andmore interested by “reality”, by applications.

30.5 What Means to Compute?

Let us come back to the title, with the fundamental question concerning the definition
of the notions of computation and computer. This is a question of the same type
as “what is mathematics?”, with many different answers, none of them complete,
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none of them fully agreed. If information processing is a computation, then we can
see computations everywhere. With a very important detail, hidden in the previous
formulation:we can see.We, the human beings. Otherwise stated, an observer, which
interprets a process as being a computation. I do not want to push the discussion as
far as asking questions of the form “does a tree which falls in the water of a lake,
in the middle of an uninhabited forest, produce any noise, taking into account that
there is nobody there to hear it?”—I mention the fact that this question was the topic
of a paper accepted some years ago by a conference on unconventional computing,
that is why I recall it—and, on the other hand, I also do not want to involve God in
this issue, the omnipresent, omniscient, omnipotent God, considered as an universal
observer (at least, not for observing computations, maybe only for noticing noises
in desert forests…).

A somewhat exaggerated but rather suggestive example is that of a drop of liq-
uid which falls freely in the air. During its falling down, the drop instantaneously
“solves” on its surface, by the form it takes, complex differential equations. Is this a
computation? I would not go so far. Similarly with what happens continuously in the
cells of a leaf or of the human body, at the biochemical or even at the informational
level.

The idea of a computation as a process considered so by an observer is not at
all new. One of the conclusions of the John Searle book [68] is exactly this—a
computation is not an intrinsic property of a process, but it is observer–relative.

A very suggestive formulation of the role of the observer in considering a process
as being a computation belongs to Tommaso Toffoli, and it appears in a paper with
a statement-title, [72]: “We’we just seen that it is not useful to call computation just
any nontrivial yet somewhat disciplined coupling between state variables. We also
want this coupling to have been intentionally set up for the purpose of predicting
or manipulating—in other words, for knowing or doing something. This is what
shall distinguish bona-fide computation from other intriguing function–composition
phenomena such as weather patterns or stock–exchange cycles. But now we have
new questions, namely, ‘Set up by whom or what?’, ‘What is it good for?’, and ‘How
do we recognize intention?’

Far from me to want to sneak animistic, spiritualistic, or even simply anthropic
considerations into the makeup of computation! The concept of computation must
emerge as a natural, well-characterized, objective construct, recognizable by and
useful to humans, Martians and robots alike” (my emphasis, Gh.P.).

Toffoli’s questions should be remembered and discussed, but they move us far
from our subject. Let us return to John Searle, namely, to a more technical reading
of the idea of implying an observer in the definition of a computation. This was
the approach of Matteo Cavaliere and Peter Leupold, both of them my students in
the PhD school in Tarragona, Spain, the former one being my first PhD student
there. They have published a series of papers with this subject, I cite here only a
recent one, by Peter Leupold, [44]. Actually, in the Cavaliere–Leupold approach
there appear two observers, one of them—we can call it observer of the first order—
following a simple process and “translating” the steps of the process in an external
language, and the second observer, closer to the Searle–Toffoli observer, interpreting
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as a computation the results of the activity of the first observer. Cavaliere and Leupold
consider a series of process–observer (of the first order) pairs which, separately, have
a reduced (computing) power, but which, together, lead to the computing power of
Turing machines from the point of view of the external observer.

30.6 The Turing Machine

Let us start also from another direction, from the meaning given by mathematics to
the notion of computation. Already from the thirties of the previous century we have
a definition ofwhat is computable, the answerAlan Turing gave to the question “what
is mechanically computable?”, formulated by David Hilbert at the beginning of the
twentieth century. “Mechanically”, i.e., “algorithmically” in our today reformulation.
There were many proposed answers (I recall only the recursive functions and the
lambda-calculus), given by great names of mathematics–computer science (I recall
here only Alonzo Church, Stephen Kleene, Emil Post), but the solution given by
Turing, what we call now Turing machine, has been accepted as the most convincing
one (a fact certified even by the highly exigent Gödel). This is now in computer
science the standard model of an algorithm (I have not said definition, because we
have only an intuitive understanding of the idea of an algorithm, but we can say that
in this way we have a definition of what is computable).

Without entering into details, I mention only that Hilbert’s problemwasmore gen-
eral. It started from the algorithmic resolution of diophantine equations, those with
integer coefficients (the tenth problem inHilbert’s 1900 list as published in 1902), but
in its later (in 1928) formulation Hilbert was saying that “the Entscheidungsproblem
[the decision problem in the first order logic] would be solved if we would have a
procedure which, for any logical expressionwewould decide through a finite number
of operations whether it is satisfiable… Entscheidungsproblem should be considered
the main problem of the mathematical logic”. At this general level, Gödel theorems
answer negatively Hilbert’s program. Negative answers gave also Church and Tur-
ing, while Hilbert tenth problem was solved—also negatively—in 1970, by Yurii
Matijasevich (after many efforts of several mathematicians: Julia Robinson, Hilary
Putnam, Martin Davis). Turing not only gives a negative answer, moreover, he not
only defines “the frontiers of computability”, but he also produces an example of a
problem placed behind these frontiers, a problem which is not algorithmically solv-
able, the halting problem (there is no algorithm, hence a Turing machine, which,
taking as input an arbitrary Turing machine, can tell us, in a finite number of steps,
whether the given input machine halts or not when starting from an arbitrarily given
initial data). To the halting problems reduce, directly or indirectly, most if not all
undecidability results obtained after that.

The Turing machine is so important for computer science, including the nat-
ural/unconventional computability, that it is worth discussing it a little bit more.
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30.7 Some More Technical Details

It is interesting to note thatwhenhe defined his “machine”, Turing explicitly started—
he states this at the beginning of the paper—from the attempt to abstract the way a
human being computes, reducing to the minimum the resources used and the oper-
ations made. In this way, in the end one obtains a “computer” which consists of a
potentially infinite tape, bounded to the left, divided in cells where one can write
symbols from a given finite alphabet; these symbols can be read and rewritten by a
read-write head, which can “see” only one cell, can read the symbol written there,
can change it, then it can move to the neighboring left or right cell or it can stay in
the same place; the activity of the read-write head is controlled by the finitely many
states of a memory. Thus, we get instructions of the form s1a → s2bD with the
following meaning: in state s1, with the head reading symbol a, the machine passes
to state s2, modifies a to b (in particular, a and b can be identical), and moves the
read-write head as indicated by D. One starts with the tape empty, with the machine
in a special initial state s0; one writes the initial data on the tape (for instance, two
numbers which have to be multiplied), one places the head on the first cell of the tape
(the leftmost one), and one follows the instructions of the (e.g., multiplication) “pro-
gram” until one reaches a final state and the machine halts, no further instruction can
be applied. The contents of the tape at that moment is the result of the computation.

Extremely reductionistic, but this is the most general model of an algorithmic
computation—because no previous definition of what is computable is known, this
assertion is only a hypothesis, called the Turing–Church thesis. However, what made
Turing machine so attractive were not only the simplicity of its definition and its
power (it was proved that the Turing machine can simulate any other computing
model), but also its robustness (the computing power is not changed if we add fur-
ther ingredients to the architecture or to the functioning, such as further tapes, if we
infinitely prolong the tape also to the left, if we consider non-deterministic compu-
tations, etc.), and, mainly, the existence of universal Turing machines: there exists a
fixed Turing machine TMU which can simulate any particular Turing machine TU,
in the following sense. If a code of the machine TM (let us denote it by code(TM))
is placed on the tape of TMU together with an input x of TU, then TMU will pro-
vide the same result as that provided by TU when starting from input x. A little bit
more formally (but still omitting some details—e.g., codifications), we can write
TMU(code(TM), x) = TM(x). And Turing proved that there are universal Turing
machines, [74].

This is the “birth certificate” of the today computers, consequently called of
Turing–von Neumann type (in forties, when he has participate in the designing of the
first programmable electronic computers, von Neumann was influenced by Turing
ideas).

A couple of things deserve to be mentioned: the code of machine TM is the
program to be executed/simulated on TMU, starting from the data x; the instructions
of TMU form the “operating system” of our “computer”; the data and the programs
are written in the same place, on the tape of the universal Turing machines (in the
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“computer memory”)—from here it follows the possibility to process programs in
the same way as we process data, hence the vulnerability of programs to computer
viruses.

Several details are important from the point of view of natural computing. The
work of the Turing machine is sequential, in each time unit one performs only one
instruction. In many places in nature, if not in most of them, in particular, in biology,
the processes develop in parallel, which is a very appealing feature for computer
science, but these processes are not necessarily synchronized, which, in turn, raises
difficulties for computer science.

There also are further differences between Turing machines, the “biological com-
puters”, and the electronic computers, but we will discuss these differences later.

For the time being we keep in mind that in what follows to compute has the
meaning suggested by Turing machines: there are an input and an output, between
them there is an algorithm which bridges inputs and outputs, and the result of a
computation is obtained in the moment when the machine halts. Very restricted,
but precise. With such a framework at hand, we can look around for computations,
moreover, we can investigate them in a well developed context, the computability
theory—actually, a set of several theories, such as automata theory, formal language
(grammar) theory, complexity theory and others.

30.8 Computer Science and Mathematics

This is maybe the place to remind a debate which motivated many discussions and
points of view, often biased, concerning the relation between computer science and
mathematics. Discussions of this kind have appeared in the higher education (in the
sixties-seventies of the last century, at the time of sputniks and hydroelectrical plants,
we had many faculties of “mathematics–mechanics”, now mechanics was replaced
by computer science), the issue is often debated in mass media. Actually, the context
is larger, sometimes it is put in question the relation of mathematics with other
sciences, with school education, with the society. There are persons who are proud
of the fact that they “were not good in math”. It was even expressed the opinion that
mathematics is a luxury, a “national fetish” (this expression has recently appeared in
the title of a Romanian newspaper article), in short, that one makes too much fuss of
mathematics and one teaches too much mathematics. This opinion is getting more
and more popular, supported also by the ubiquitous penetration of computers (“we
no longer need to know the multiplication table, the computer knows it for us”).

Of course, there is a problem with the mathematical education.What, how much,
and, mainly, how?—and there also are further questions; we can find them, often
also together with solutions, in the papers dedicated in the last years by professor
Solomon Marcus to education. The problem cannot be solved from bottom up, the
mathematicians involved in research and in higher education should consider it—
this is, for instance, the opinion of Juraj Hromkovic, from ETH Zürich, [38], based
on the practical activity in this respect carried out in the institute where he works
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(among others, this activity was materialized in mathematical school books of a new
type). In general, the mathematicians should enter public debates and plead for their
discipline, mainly they are guilty if the domain loses its popularity. It is true that for
a mathematician mathematics is a great game, which, like any game, has an intrinsic
rewarding, in the very development of the game, therefore it is natural that the interest
for “popularization” is low among mathematicians, but the persons who are proud
of their mathematical infirmity, be it real or only claimed, are always much more
visible, more vocal, and the danger which comes from this is obvious.

Having in mind only the relation between mathematics and computer science, let
us mention that the theoretical computer science, placed at the intersection of the
two domains, is often considered by computer scientists as a part of mathematics,
and by mathematicians as a part of computer science. Sometimes, theoretical com-
puter science has problems even inside computer science—as it happens also with
other theoretical branches of science with a strong practical dimension. Of course,
all these are false problems by themselves, but they can have unpleasant practical
consequences.

Being of the same opinion, I cite here an authoritative voice, that of
Edsger W. Dijkstra, one of the classics of computer science, in fact, of the prac-
tical computer science: it is sufficient to remind that during sixties he has worked
for implementing the Algol language in the Amsterdam Mathematical Center, and,
furthermore, he was the promoter of structured programming, well-known among
the software practitioners. (Maybe it is good to add here that the first four years after
graduation I have intensively written computer programs, in Cobol and Fortran, real-
izing even the programs for computing the salaries of theworkers in a largeBucharest
factory—I remember, therefore, what practical computer science means…)

“The end of computer science?”, asks Dijkstra, ironically-rhetorically, already in
the title of his note [21], which starts with the following phrase: “In academia, in
industry, and in the commercial world, there is a widespread belief that computing
science as such has been all but completed and that, consequently, computing has
matured from a theoretical topic for the scientists to a practical issue for the engi-
neers, the managers, and the entrepreneurs.” Then, it adds: “This widespread belief,
however, is only correct if we identify the goals of computer science with what has
been accomplished and forget those goals that we failed to reach, even if they are
too important to be ignored.”

Much more explicit is Dijkstra in the speech he delivered in May 2000 at a
symposium (In Pursuit of Simplicity) organized at the Austin-Texas University, on
the occasion of his retirement. The title of the speech is also relevant, [22]. I recall a
couple of aphoristic phrases: “What is theoretically beautiful tends to be eminently
useful.” “In the design of sophisticated digital systems, elegance is not a dispensable
luxury but a matter of life and death, being a major factor that decides between
success and failure.” “These days there is so much obsession with application that, if
the University is not careful, external forces, which do make the distinction [between
theory and practice], will drive the wedge between theory and practice and may try
to banish the theorists to a ghetto of separate departments and separate buildings.
A simple extrapolation will tell us that in due time the isolated practitioners will
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have little to apply; this is well-known, but has never prevented the financial mind
from killing the goose that lays the golden eggs. The worst thing with institutes
explicitly devoted to applied science is that they tend to become institutes of second-
rate theory.”

The plead to place us under the spell of Leibniz is obvious, because, Leibniz said
it, “the symbols direct the reason”, and, after having a language where “all reason
truths will be reduced to a kind of calculus”, “the errors will only be computation
errors”. (Leibniz program, continued and formulated in more precise terms by David
Hilbert, cannot be realized, on the one hand, mathematics is too exact-rigorous while
the reality is too complex and nuanced to can transform everything in formal com-
putations, on the other hand, Gödel theorems proved that even the Hilbert program
is not realizable.)

Of course, the mathematics–computer science relationship is much more com-
plex, but we cannot explore it further here. I close the discussion returning to the
starting point: the today computers, programmable, of Turing–von Neumann type,
are born from the Turing universality theorem from 1936. It is interesting to note
(and comfortable for Dijkstra position) that, by means of a vote through Internet, in
2013, looking for the most important scientific and technological British discovery,
the first place was won, surprisingly for our pragmatic times, by the Turing machine
and Turing universality theorem, which were placed ahead of the steam engine, the
telephone, the cement, the carbon fiber and other similarly important things.

30.9 Does Nature Compute?

Having in mind the computability in the sense of Turing, the previous question
becomes more restrictive, but the discussion above provides us the borderlines in
between which we have to look for the answer: yes, nature computes at least at the
level of… humans, and yes, nature computes whenever there is a process which can
be interpreted as a computation by a suitable observer. Opinions which are placed
closer to the former or the latter of these limits can be easily found, I cite here only
one from the very permissive extreme, even passing over the borderline, because the
observer is not mentioned anymore.

At the beginning of Chap.2 (“Molecular Computation”) of the collective volume
[29] M. Gross says: “Life is computation. Every single living cell reads information
from a memory, rewrites it, receives data input (information about the state of its
environment), processes the data and acts according to the results of all this com-
putation. Globally, the zillions of cells populating the biosphere certainly perform
more computation steps per unit of time than all man made computers put together.”

In what follows, I adopt a more conservative and, at the same time, more pro-
ductive position: bearing in mind the mathematical definition of computability, more
precisely, the Turing approach, let us look around, especially in biology, in search of
ideas, data structures, operations with them, ways to control the operations, “com-
puter” architectures, which can suggest (1) new computability models, (2) ways to
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better use the existing computers, (3) possibilities of improving the existing comput-
ers at the hardware level, maybe even (4) new types of computers, based on biological
materials. It should be noticed the increased ambition from a point to the next one.
It is worth remembering that DNA computing started from the very beginning from
the attempt to compute in a test tube, thus directly addressing the fourth goal in the
list above.

We mainly had here in mind the goals of computer science, but the first objective
also covers the second direction of researchmentioned in the preface of theHandbook
of Natural Computing, the investigation of processes taking place in nature in terms
of computability, and this research direction should be explicitly and separately
emphasized, especially for pointing to a “side effect” of this approach, namely the
return to biology, delivering models useful to the biologist.

At this moment, DNA computing was not too much useful to practical computer
science, it was useful to biology andmuch useful to nano-technology, suggesting new
research questions. Membrane computing has significant applications to computer
science and biology, with higher promises in the latter area, including biomedicine
and ecology among the application directions.

A detail: “the goal of computer science” also covers the theoretical interest, which
is not supposed to necessarily lead to applications, in the restricted meaning of the
term. Let us think, for instance, to ciliates. In the division process, when passing
from the micronuclear genes to the macronuclear genes, these unicellular beings
complete complex operations of list processing, and they are doing this sincemillions
of years, much before the computer scientists gave name and investigated these data
structures. Of course, the ciliates are not thinking to computations when doing this,
but we, the humans, can build beautiful theories starting from their activity, including
computability models, sometimes equivalent in power with Turingmachines. Details
and references can be found in the monograph [23].

30.10 An Eternal Dilemma

The previous discussion inevitably pushes us towards the long debate concerning
the relation between invention and discovery. The bibliography is huge, I cite here
only the book [49]. How much is invention and how much is discovery in com-
puter science—with particularization to natural computing? I do not try to provide
an answer, there are as many answers as many view points, personal experiences,
philosophical positions. The models we work with are of a mathematical nature, the
Platonic point of view ensures us that everything is discovery, because mathematics
itself is a revealed reality. Yes, but it is already agreed that notions, concepts, theories,
and models are inventions, the theorems are discovered, the proofs are invented. We
can continue the alternating sequence by adding that the applications are discovered.
Therefore, the models are considered inventions.

However, I would like to introduce a nuance. The models are based on structures
which already exists, but they have not received yet a name. Moreover, differently
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from a wall which can be discovered both by an archaeologist who knows what
he is searching for, but also by a fruit trees farmer who digs the soil with other
goals than finding the basement of an old church, a computability model can be
“seen” in a cell only by a computer scientist who has already in mind computability
models. For instance, the processes called by biologists symport and antiport exist,
they function since long ages in their ingenious ways, but they compute only for a
mathematician who is looking for a computing model based on passing “objects”
from a cell compartment to another one. “Computing by communication”—I have
searched for a while something like that, having the intuition that it exists, and I had
the solution when a biologist (Ioan Ardelean) told me about symport and antiport
operations. This was a model mostly discovered than invented. Actually, a discovery
which was not done by bringing to light the discovered object, but by means of
superposing the intuition of a model over a piece of reality. The imagined model,
similar to other existing computability models, was actualized during the dialogue
between reality and the formal framework. I can say that this is at the same time
invention and discovery.

30.11 Another Endless Discussion

I am not continuing with other similarly delicate questions, always of interest in spite
of any given answers. (For instance, providing us the opportunity to ask howmuch art
and how much science is in computer science, Donald Knuth entitled an impressing
editorial project, planned to have a dozen of volumes, The Art of Programming.)
However, I touch here another very sensitive topic, with which I was confronted
sometimes in the form of the newspaper question (but not completely nonsensical):
“During your research in the cell area, have you ever met God?” Of course, the
expected answer is something different from “yes” or “no”, and similarly obvious
is that, if we take the question seriously, we will get lost on the slippery sands of
personal options, beliefs, metaphors.

If God is the order, the organization, the good and the beautiful, Spinoza’s God,
visible in the harmony of the Universe laws, as Einstein would say, then yes, I
meet Him continuously, both in cells and outside them. Furthermore: in the title of
the book [45] Mario Livio asks Is God a Mathematician? I answer in the style of
Plato: no, God is not a mathematician, He is mathematics itself (the “grammar of the
world”)—hence, again, I meet Him every moment.

If, however, God is what the Book proposes to me, then I go in line with Galileo
Galilei, who, in a letter sent to don Benedetto Castelli, on December 21, 1613, said
(I recall it following [14]): “God has written two books, the Bible and the Book of
Nature. The Bible is written in the language of men. The Book of Nature is written
in the language of mathematics. That is why the language of the Bible is not suitable
for speaking about nature. The two books must be studied independently from each
other.” And Galileo added: the Book of Nature teaches us “how the Sky/Heaven
goes”, while the Bible teaches us “how to go to the Sky/Heaven”.
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After centuries of separation—mainly dogmatical, from both sides—, alternating
with attempts, most of them pathetical, of reconciliation of science with religion,
the words of Galileo can look too simple or opportunistic, but they cut in an effi-
cient way a continuously regenerated Gordian knot. Let me mention also a more
sophisticated, but somewhat symmetrical position, of Francis S. Collins, [13], not
only contemporary with us, but also connected to the topic of these pages, as he
was the director of National Human Genome Research Institute, one of the leaders
of the famous Human Genome Project. The syntagma “language of God” was used
also by Bill Clinton, in 2001, when he has announced the completion of “the most
important, most wondrous map ever produced by humankind”, the map of the around
three billions of “letters” of the “book of life”. Even if the title seems to suggest this,
Collins is neither a creationist, nor an adept of the intelligent creation, but he is an
“evolutionary deist” and the conclusion of his book is that “the God of Bible is also
the God of the genome” (p. 222 in the Romanian version), while “science can be
a form of religiosity” (p. 240). This is a very comfortable positioning, but, in what
follows, I remain near Galileo.

30.12 The Limits of Today Computers

The fashion of natural computing and especially of the computing inspired from biol-
ogy does not have only the internal motivation, of the numerous research directions
explored in the last decades and proved to be theoretically interesting and at least
promising if not directly useful in practice, but it has also an external motivation,
related to the limits of the current computers, some of them rather visible. Indeed, the
computers are the twentieth century invention with the widest impact, with impli-
cations in all components of our life, from communication to the functioning of the
financial system, from the health system to the army, from the numerous gadgets
around us to Internet. In spite of all these—actually, just because of that—the com-
puters which we have now have limits which we reach often (with the mentioning
that also here, like in most things, there is something bad in the good and something
good in the bad: powerful computers can be used both in positive ways, but also for
bad goals, such as breaking security systems and cryptographic protocols on which,
for instance, the protected communication is based.) Let us however think positively
and note that there are many tasks which the today computers cannot carry out, but
which we would like to have performed.

The processors become continuously faster and more compact, the memory stor-
age larger and larger. Sure, but howmuch this tendencywill last? It wasmuch invoked
the so-called Moore law, stated in 1965 by Gordon A. Moore, co-founder of Intel
Corporation, with respect to the number of transistors which can be placed on an
integrated circuit, extended then to the cost of information unit stored, formulated
sometimes even in the form “in each year, the computers become two times smaller,
two times faster, and two times more powerful”. Exponential in all the three direc-
tions, thus tending fast towards the quantum limit in the dimension of processors.
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Even at the more technical level, confirmed for a couple of decades, of doubling
the capacity of processors, the law—actually, only an observation, followed by a
forecast—has been adjusted several times, with the doubling/halving moved first at
one year and a half, then at two years, then at three years. Still, it is not too bad, but
one cannot continue too much even at this pace.

In fact, the real problem is a different one. Progresses are made continuously at
the technological level, but the current computers have intrinsic limits, which cannot
be overcome only by means of technological advances. The computer recognizes
fingerprints, but not human faces, it plays chess at the level of the world champion,
but (on the standard board, not on reduced boards) it plays GO only at the level of
a beginner, it proves propositional calculus theorems, but cannot go over this level
(and definitely cannot distinguish trivial and non-interesting theorems from theorems
which deserve to be collected). All these and many more, mainly because these
computers are… of Turing–von Neumann type. That is, sequential. Uniprocessor. (It
also has other weaknesses, less restrictive in the current applications—for instance,
it is a considerable energy consumer.) It computes whatever can be computed, but
this is true in principle, at the competence level. There is here also a historical aspect.
In the beginning, we were interested in what it can be computed, in the frontiers
of computability, of algorithmic decidability. All these are important mathematical
questions, but in applications it is of a direct relevance the performance, the resources
needed for a given computation, what we can compute now and here, in specified
conditions. Howmuch electricity consumes a computer and howmuch space it needs
are no longer questions of current interest, as they were in sixties (and still are in
special frameworks, such as in cosmos and robotics), but the time we have to wait
before receiving the answer to a given problem or the result of a computation is a
crucial aspect in any application. And, I already mentioned it, in this respect not
the technological promises are crucial, but the mathematical limits, the borderline
between feasible and non-feasible.

30.13 A Great Challenge: The Exponential Complexity

A powerful theory was developed dealing with this subject, the computational com-
plexity theory. Since the very beginning, it has defined as tractable the problems
which can be solved in a polynomial time with respect to the size of the problem.
(An example: consider a graph—a map with localities and roads among them—with
n nodes. Which is the time necessary for an algorithm to tell us whether or not the
graph contains a Hamiltonian path, i.e., a path which visits all nodes, passing only
once through each of them? If this time is bounded by a polynomial in n, then we say
that the algorithm is of a polynomial complexity.) The problems of an exponential
complexity, those which need a time of the type 2n, 3n, etc. for an input of size n
were considered intractable. The former class was denoted by P, the latter one with
NP, with the abbreviations coming from “polynomial” and “non-deterministically
polynomial”, respectively: a problem belongs toNP if we can decide in a polynomial
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time whether a proposed solution for it is indeed a solution or not (otherwise stated,
we “guess” a solution, then we check whether it is correct; more technically, the
solution is found by a non-deterministic Turing machine, one which has several pos-
sible transitions at a computation step and we rely on the fact that it always chooses
the right continuation, without exhaustively checking all possibilities). For precise
details the reader can consult [55].

Let us recall that in the classNP there is a subclass, of “themost difficult problems
in NP”, the NP-complete problems: a problem is of this type if any other problem
in NP can be reduced to it in a polynomial time. Consequently, if an NP-complete
problem could be solved in a polynomial time, then all problems in NP could be
solved in a polynomial time. The problems used in cryptography are in most cases
NP-complete.

A beautiful theory, which, however, in its basic version has three weaknesses: (1)
it cannot tell us yet whether or not P = NP, whether or not polynomial solutions
can be found also for the problems which are now supposed to be of an exponential
complexity, (2) the theory does not take into account such “details” as the coeffi-
cients and the degree of the polynomials and which, at the practical level, can have a
crucial influence on the computation time, and (3) the theory takes into consideration
the extreme cases, it is of the worst case type, it counts the steps of computations
which solve the most difficult instances of a problem, while the reality is placed in
most cases in the middle, near the “average”. Here is an example with a practical
relevance: the linear programming problem is in P, because the ellipsoid algorithm
of Leonid Khachiyan (1979) solves the problem in a polynomial time, but this algo-
rithm is so complex that practically, in most cases, it is less efficient than the old
simplex algorithm, proposed during the Second World War, considered one of the
most important ten algorithms ever imagined, but which is, theoretically, of an expo-
nential complexity.

For these reasons, the complexity theory was refined and diversified (average
complexity, approximate algorithms—these algorithms have a direct connectionwith
natural computing), while the definition of tractability was carefully redefined.

Anyway, the general feeling was transformed in a slogan: the Turing–von Neu-
mann computers cannot solve in a reasonable time problems of an exponential com-
plexity.

The interest for the P = NP problem is enormous. On the one hand, most of the
(no-trivial) practical problems are in the classNP and are not known to be inP, hence
they are (considered) intractable, cannot be efficiently solved, on the other hand,
most of the cryptographic systems in use are based on problems of an exponential
complexity, hence solving them in a polynomial time would lead to breaking these
systems. The problem whether P is or not equal to NP was already formulated in
1971 (by Stephen Cook), and in the year 2000 it was included by Clay Mathematical
Institute, Cambridge, Massachusetts, in the list of the seven “millennium problems”,
with a prize of one million dollars for a solution.

While the importance of this problem for the theoretical computer science cannot
be overestimated, it is not clear which would be the practical consequences of a
solution, whichever this will be. There were many discussions on this topic—see,
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for instance, [15]. If a proof of the strict inclusion of P in NP will be obtained, as
most computer scientists (but not all of them!) believe, then almost nothing will
be changed at the level of the practical computer science. If the equality will be
proved in a non-constructive manner, or the proof will be a constructive one, but
in a non-feasible manner (polynomial solutions to problems in NP will be found,
but with polynomials of very high degrees or with very large coefficients), then
the practical consequences will not be significant (but a race will start for ad-hoc
solutions, having the time estimated by polynomials with reasonable degrees and
coefficients). If, however, a “cheap” passage from NP to P would be found, then the
consequences for the practical computer science will be spectacular—in the good
sense, excepting the cryptography, where the consequences will be dramatic.

At the level of the software there is one further problem, which I recall here in
the formulation of Edsger W. Dijkstra (from [21]): “Most of our systems are much
more complicated than can be considered healthy, and are too messy and chaotic to
be used in comfort and confidence. The average customer of the computing industry
has been served so poorly that he expects his system to crash all the time.” The lack
of robustness of the complex software systems is today a concern of the same interest
as it was in the year 2000.

In order to illustrate the fact that not by means of technological progresses one
can face the exponential complexity, let us examine a simple case: let us consider
a problem of exponential complexity of the range of 2n, for instance, a graph prob-
lem, which can be solved on a usual computer, say, for graphs with 500 nodes, in
approximately one quarter of hour; let us suppose that the technology provides us a
computer which is 1000 times faster than the ones we have, which is a totally non-
trivial advance, not very frequently met. Using the new computer, we will solve the
same problems as before in about one second (around 15min means approximately
1000s), but if we try to address the same problem for graphs with more than 500
nodes, the progresses are negligible: with the new computer wewill solve in a quarter
of hour only problems for graphs with at most 510 nodes. The simple reason for that
is the fact that 210 is already bigger than 1000. If the problem were of complexity
3n, then we will stop around 506 nodes…

30.14 Promises of Natural Computing

In order to cope with the exponential complexity, but also for other reasons which
I will mention later, computer science has imagined several research directions,
most of them also related to the natural computing, even to bio-inspired comput-
ing: (1) looking for massively parallel computers, (2) looking for non-deterministic
computers/computations, (3) looking for approximate/probabilistic solutions to com-
putationally hard problems.

All these three research directions were explored already in the framework of the
“standard” computer science, both at the theoretical level and at the technology level,
the electronic one. Multiprocessor computers are available since several years—but
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without reaching the massive parallelism which is supposed to solve complex prob-
lems. If a large number of processors are put together, there appear other problems,
some of them technological (e.g., high temperature dissipation), others, maybe more
important, theoretical, concerning the synchronization of the processors. A distinct
research area deals with the synchronization complexity—see, for instance, [37].
One of the conclusions of this theory says that, for a large number of processors,
the synchronization cost (measured by the number of bits necessary to this aim)
becomes larger than the cost of the computation itself, which suggests to get rid of
synchronization, but then other problems appear, as we are not accustomed to use
asynchronous computers.

Even less used we are to construct and utilize “non-deterministic computers”. In
exchange, the last of the three ideas mentioned above is rather attractive, and in this
respect of a great help is the “brute force” of existing computers. The approach is
useful especially in addressing complex optimization problems: exploring randomly
the candidate solutions space, for a large enough time, with a sufficiently high prob-
ability we will reach optimal or nearly optimal solutions. Approximate solutions,
possibly found with a known probability of being optimal.

Here it enters the stage, with great promises, the natural computing. From now
on I will only refer to the one having a biological inspiration.

In a cell, a huge number of “chemical objects” (ions, simple molecules, macro-
molecules, DNA and RNAmolecules, proteins) evolve together, in an aqueous solu-
tions, at a high degree of parallelism, and, at the same time, of non-determinism, in
a robust manner, controlled in an intricate way, successfully facing the influences
coming from the environment, and getting in time very attractive characteristics, such
as adaptation, learning, self-healing, reproduction. Many other details are of interest,
such as the reversibility of certain processes or the energy efficiency, with the number
of operations per Joule much bigger than in the case of the electronic processing of
information (erasing consumes energy, that is why the reversible computers are of
interest; see, e.g., [5, 43]).

It seems, therefore, that during millions of years of evolution nature has polished
many processes (and material supports for them) which wait to be identified and
understood by the computer scientists, in order to learn new computability methods
and paradigms, maybe for constructing computers of a new kind. And, the computer
scientists have started to work since a long time…

Here are a few steps on this road, very shortly: Genetic algorithms, as a way to
organize the search through the space of candidate solutions, imitating the Darwinian
evolution, in order to solve optimization problems. Generalization to evolutionary
computing and evolutionary programming. Neural networks, trying to imitate the
functioning of the human brain, also used for finding approximate solutions, espe-
cially for pattern recognition problems. A little bit later, DNA computing, which has
proposed a new hardware, massively parallel, based on using the DNA molecules
as a support for computations. Even younger, membrane computing, taking as the
starting point the biological cell itself and cell populations.

In turn, the evolutionary computing, in general, the area of approximative
algorithms inspired from biology, is spectacularly ramified, in the most diverse
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(in certain cases, also picturesque) directions: immune computing, ant colony algo-
rithm, bee colony algorithm, swarm computing, water flowing computing, cultural
algorithm, cuckoo algorithm, strawberry algorithm—and it is highly probable that
in the meantime further algorithms have been proposed…

It is important to note that all the above mentioned branches of natural comput-
ing, with the exception of DNA computing, are meant to be implemented on the
usual computer, in the aim of having a better use of it; one proposes new types
of software/algorithms, not to change the computers architecture or new types of
hardware.

30.15 Everything Goes Back to Turing

In a certain sense and to a certain extent, the whole history of theoretical computer
science is related to biology, it has searched and has found inspiration in biology. I
have already mentioned that, in 1935–1936, when he has defined the machine which
bears now his name, Turing tried to imitate the way the humans are computing.

After one decade, McCulloch, Pitts, Kleene have founded the theory of finite
automata starting from the modeling of neurons and of neural networks. Later, the
same starting point led to what is called today neural computing.

It is interesting to note that the beginnings of this research area can be identified
in unpublished papers of the same Allan Turing. We have here an interesting case
which can illustrate the influence of psychology and sociology on the development
of science, telling about uninspired group leaders and about researchers interested
more in their research than in the publication of the obtained results. Specifically,
in 1948, Turing has written a short paper, called “Intelligent machinery”, which has
remained unpublished until 1968, because his boss from the London National Phys-
ical Laboratory, ironically, named sir Charles Darwin, the grandson of the famous
biologist with the same name, has written on the corner of the first page of the paper
“schoolboy essay”, thus preventing the publication.

“In reality, this farsighted paper was a manifesto of the field of artificial intelli-
gence. In the work (…) the British mathematician not only set out the fundamentals
of connectionism but also brilliantly introduced many of the concepts that were later
to become central to AI, in some cases after reinvention by others.”—I have cited
from [18]. Among others, Turing paper introduces two types of “neural networks”,
with the neurons randomly connected. This was proposed as a first step towards an
intelligent machine, one of the key features of these networks being that of learning,
of getting trained for solving problems. This is neural computing avant la lettre,
with the main ideas rediscovered later, without referring to Turing. Details about
Turing “unorganized machines” can also be found in [69, 70]. Furthermore, at the
address http://www.AlanTuring.net one can find details about Turing unpublished
manuscripts and about the recent efforts to reintroduce them in circulation.

The same Turing, in the same year 1948, has proposed the “genetic or evolution-
ary search”, the first ideas of the evolutionary computing developed later, a domain

http://www.AlanTuring.net
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which contains now several powerful branches, (re)launched during the years: evo-
lutionary programming (L.J. Fogel, A.J. Owens, M.J. Walsh), genetic algorithms
(J.H. Holland), evolutionary strategies (I. Rechenberg, H.P. Schwefel), all three ini-
tiated in the sixties, genetic programming (J.R. Koza, the years 1990). The first
experiment of computer “optimization through evolution and recombination” was
carried out in 1962, by Bremermann. Details can be found in [24].

It would not be completely surprisingly if among Turing manuscripts we would
discover also ideas related to DNA computing—let us remember that Turing died in
June 1954, and the paper where J.D. Watson and F.H.C. Crick described the double
helix structure of the DNA molecule was published one year before, [75].

It is worth mentioning that two other concepts with a high career in computer
science come from Turing, thus supporting the assertion that “everything starts with
Turing”. First, Turing himself raised the question whether or not one can compute…
more than the Turing machine, imagining Turing machines with oracles, which is
a much investigated topic in the current computer science. Then, Turing can be
considered not only a founder of artificial intelligence, but also a forerunner of what
is called now artificial life: in the last years of his life, Turing was interested in
morphogenesis, in modeling the evolution from the genes of a fertilized egg to the
structure of the resulting animal.

30.16 An Encouraging Example: The Genetic Algorithms

Before passing to the DNA andmembrane computing, topics which I will describe in
moredetails, let us spend some timediscussing abranchof natural computing inspired
from biology which is, at the first sight, surprisingly efficient. This is the genetic
algorithms area, used for solving complex optimization problems for which there
do not exist deterministic optimal algorithms or these algorithms are not efficient.
The implicit slogan can look confusing: if you do not know where to go, then go
randomly—with the mentioning that the “randomness” here is directed, the “random
walk” is done “like in nature, in species evolution”.

Everything is a metaphorical imitation of some elements from the Darwinian
evolution. Let us assume we have a two variables function (we can suggestively
represent it as a ground surface, with valleys and hills) for which we need to find
the maximum (one of them, if there are several). If we cannot analytically address
the problem, then we can choose to walk randomly through the definition domain,
looking for the greatest value of the function. To this aim, we represent the domain
points as “chromosomes”, binary strings of a constant length, we choose (randomly
or through other methods) a given number of starting points, and we compute the
function value for all of them. Then we pass to “evolution”: we take two by two the
“chromosomes” and we recombine them (by crossover), that is, we cut them at a
specified position and then we recombine the fragments, the prefix of one “chromo-
some” with the suffix of the other one and conversely. In this way, we obtain two new
“chromosomes”, describing two new individuals of the next “generation”. We repeat
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this procedure for a specified number of times, we select the best solution obtained
so far, and we stop.

Nothing guarantees that in this way we reach the solution of the problem, that,
for instance, we do not get stuck in a local maximum, without being able to escape,
but, and this is the (pleasant) surprise, in a large number of practical applications,
this strategy works. Sure, there are a lot of variations of the previous scenario, it is
even said that the monographs in this area are a sort of “cooking books”, collections
of recipes, lists of ingredients and suggestions of improvements of the algorithms:
besides recombination, similar to the biological evolution, one also uses the local
mutation operation, the passing from a generation to another one can be done inmany
ways, the “chromosomes” population can be distributed, we can evolve it locally,
communicating in a way or another among regions, there are several halting criteria,
and so on and so forth.

We have here at work the brute force of the computers and the evolutionary
metaphor—with results, I repeat and stress it, unexpectedly good: non-intuitive solu-
tions, rapid initial convergence, in many cases succeeding to avoid local maxima.
The only “explanation” for these good results is the “bio-mystical” one: genetic algo-
rithms are so good because they involve ingredients which nature has polished for
many millions of years in the species evolution.

All these induce, at the same speculative level, a rather optimistic conclusion: if
the genetic algorithms are so useful, in spite of the lack of anymathematical argument
for their usefulness, let us try to imitate biology also in other aspects, with a great
probability that, if we are similarly inspired to extract the right ideas, to obtain other
fruitful suggestions for improving the use of the existing computers and, maybe, for
imagining computers of other kinds, more efficient.

However, this optimism should be cooled down by the observation that a famous
result in the area of evolutionary computing, in the area of approximate optimization
algorithms in general, is the so-called no free lunch theorem, [77], which, informally,
says that any two methods of approximate optimization are equally good, in average,
over all optimization problems. “Equally good” can be also read “equally bad”, for
each method there are problems for which the method does not provide satisfactory
solutions.

30.17 A Coincidence

Before passing to DNA computing, an autobiographical intermezzo. In April 1994
I was in Graz, Austria, attending a conference, and there I got a copy of the paper
by Tom Head, from State University of New York at Binghamton, USA, soon after
that a friend and collaborator, [33]. It was a revelation. I was then after twenty
years of formal language theory research and I immediately felt that it is open there
a large area of application of what I have done before. It is true, I should had a
similar revelation earlier, namely when I have read professor SolomonMarcus paper
[48], but probably it was too early, at that time I had not passed yet through the
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twenty years of preparation for natural computing which will be shortly described
in a forthcoming section. In his paper, Tom Head introduces a formal operation
with strings which formalizes the operation of recombination of DNA molecules.
He calls it splicing, and I will call it in the same way, thus distinguishing it from
the recombination operation from the genetic algorithms. The two operations are
related, but they are not identical. Still being in Graz, I have imagined a sort of
grammar based on the splicing operation, in fact, a variant simpler than that of Tom
Head and closer to the string operations in language theory. The paper emerged in this
way [57] has consecrated the splicing version I have proposed. After a few weeks,
I was in Leiden, The Netherlands, where I have written a paper [61] together with
Grzegorz Rozenberg and Arto Salomaa, the latter one from Turku, Finland, the place
where I have spent after that several years, initially devoted to DNA computing and
then to membrane computing. As usually well inspired, G. Rozenberg gave to our
paper the title “Computing by splicing”. Because, starting then, we have named H
systems the computing devices based on splicing, thus reminding the name of the
one who has introduced (invented or discovered?…) the respective operation, we
have sent the paper, in manuscript, to Tom Head. He has immediately replied, by
phone, asking us rather excited: have you known that right now it was carried out
a successful experiment of computing with DNA?! No, we did not know—this was
only a coincidence, which I place in the category of significant coincidences.

30.18 The First Computation in a Test Tube

TomHeadwas talking about LeonardAdleman experiment, reported in the autumn of
1994, [1]. Speculations about the possibility of using DNAmolecules for computing
were made already in seventies of the last century (Ch. Bennett, M. Conrad, even
R. Feynman, with his much invoked phrase “there is plenty of space at the bottom”,
referring to physics but also extended to biology). Adleman has confirmed these
expectations, solving in a laboratory the problem whether a Hamiltonian path exists
or not in a given graph (I have mentioned it in a previous section). The problem
is known to be NP-complete, hence among the most difficult intractable problems,
of an exponential complexity (we assume that P is not equal to NP), but Adleman
solved it in a number of steps which is linear with respect to the size of the graph. It is
true, these steps are biochemical operations, performed by making use of a massive
parallelism, even of non-determinism, all these made possible by the characteristics
of the DNA molecules and the related biochemistry.

In short, millions of copies of one stranded sequences of nucleotides, codifying
the nodes and the edges of the graph, were placed in an aqueous solution. Then,
by decreasing the temperature of the solution, these sequences annealed, forming
double stranded molecules, corresponding to the paths in the graph. Because there
were used sufficiently many copies of the initial sequences, with a high probability
we obtain in this way all paths in the graph. From them, the paths were selected
which pass through all nodes, and this was done by usual laboratory procedures: gel
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electrophoresis for separating the molecules according to their length, then selection
through denaturation and amplification by PCRof the paths passing through all nodes
(hence Hamiltonian).

This procedure assumes a number of biochemical operations which is linear with
respect to the number of the nodes in the graph. The problem isNP-complete, hence
this is an extraordinary achievement—and the consequenceswere accordingly sound.
Already in the next year, 1995, it was organized in Princeton a meeting with the
title “DNA Computing”, which became an international conference which is still
continuing. However…

30.19 Pro and Against Arguments

Adleman experiment was a historical achievement, the proof that it is possible. How-
ever, the experiment has considered a graphwith only 7 nodes, for which the problem
can be solved by a simple visual inspection. In comparison, at the beginning of the
nineties, the computers were already able to solve the Hamiltonian path problem for
graphs with several hundred nodes, sufficient for current practical applications (in
the meantime, the progresses continued).

Moreover, the solution was obtained by means of a space–time trade-off, the
number of molecules used was exponential with respect to the number of nodes.
Juris Hartmanis, an authoritative name in computer science, after expressing his
enthusiasm (Hartmanis compares computer science with physics, [31]: while the
latter progresses by means of crucial experiments, the former progresses by means
of proofs that something can be done, by demos; Adleman has produced such a
demo!), has computed, [32], the quantity of ADN which is necessary in order to
apply Adleman’s procedure for a graph with 200 nodes and he has found that the
weight of the ADN would be greater than the weight of the Earth…

From a practical point of view, DNA computing is, to a certain extent, in the
same point even now. Numerous experiments, but all of them always dealing with
“toy problems”, a lot of theory, a lot of lab experience gained in dealing with DNA
molecules, with results of interest for the general lab technology (just one exam-
ple: an improved version of PCR, the Polymerase Chain Reaction, called XPCR,
was proposed, [26]), but the domain has moved towards nano-technology, no com-
putability practical applications were reported (unless if, and this is plausible, there
were applications in cryptography which are still classified).

However, the list of possible advantages of usingDNAmolecules for computing is
large: a very good efficiency as a data support, with one bit at the level of a nucleotide;
energy efficiency; parallel and non-deterministic behavior, two dreams of computer
science (with the mentioning that the non-determinism also brings problems, for
instance, providing false solutions); a very developed laboratory technology; robust-
ness, predictability, reversibility of certain processes.
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30.20 The Marvelous Double Helix

The DNAmolecule has surprising properties at the informational and computational
level. Let us remind that, formulated in “syntactic” terms, we have two strings of
letters A, C, G, T, the four nucleotides, placed face to face, in Watson–Crick com-
plementary pairs, always A being paired with T and C with G. The two strings are
oriented, in opposite directions with respect to each other; the biochemists indicate
the directionality by marking one end of a string with 3′ and the other end with
5′. There already appear here a surprise, first pointed out in [66]: the structure of
the DNA molecule “hides”, in a codified manner, the computing power of Turing
machines! The formulation above is not precise, it however corresponds to the fol-
lowing observation. Already in 1980, it was proved, [25], that any language whose
strings can be recognized by a Turing machine can be written as the image of a
specified fixed language, let us denote it with TS(0, 1), by means of a sequential
transducer.

The previous language is the so-called “twin-shuffle” over 0, 1 (hence the used
notation). Shuffle is the operation of mixing the letters of the two words, without
changing their ordering (exactly as in the case of shuffling two decks of playing cards
of different back colors). Here we shuffle the letters of two “twin” words, one string
of symbols 0, 1 and the second string identical with this one, but changing the “color”
of each symbol (for instance, we can add an upper bar or a prime to each symbol
in order to get the twin string). In turn, the sequential transducers are the simplest
transducers, with a finite memory and with a head which scans the string from left to
right. Let us note that we work with four symbols, let us say 0, 1 and their pairs 0′, 1′.
Exactly the number of the nucleotides, four. Let us also note that TS(0, 1) is a fixed
language. Given an arbitrary language, if it is recognized by a Turing machine, then
it can be obtained from this unique language TS(0, 1), only the transducer depends
on the language.

The nice and significant surprise is that the language TS(0, 1) can be obtained by
means of “reading” the DNA molecules, in the following way: let us walk along the
two Watson–Crick complementary sequences, from the left to the right, advancing
randomly along the two strands, and associating with the four nucleotides A, C, G,
T symbols 0, 1 according to the following rule: A = 0,G = 1,T = 0′,C = 1′.
Collecting all these strings over 0, 1, 0′, 1′, for all readings of all DNA molecules,
we get a set which is exactly TS(0, 1)!

Consequently, any language which can be defined by a Turing machine can be
obtained by translating these readings of theDNAmolecules bymeans of the simplest
transducer, the sequential one, with a finite memory. The transducer depends on
the language, it “extract” from TS(0, 1) the result of the computations of a Turing
machine. The power is there, what we have to do is only to make it visible. (In
a certain sense, we have again the coupling of a simple process, the “reading” of
the DNA molecule, and an observer of the first order, a simple one, the sequential
transducer, like in the papers of M. Cavaliere and P. Leupold mentioned before, with
the result reaching the highest level of computability, the power of Turing machines.)
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Two questions arise in this framework. For instance, we mentioned the different
orientation of the two strands of the DNA molecule, but in the previous reading we
pass along the two strands in the same direction, from the left to the right. There is no
problem, the reading of the double stranded DNAmolecules can proceed in opposite
directions and the result is the same. Second: nature is redundant, are all the four
nucleotides (the four symbols 0, 1, 0′, 1′) necessary in order to cover, in the sense
discussed above, the power of Turing machines? No, three symbols are sufficient—
but not two! Proofs for all these results can be found in the monograph [62].

Speaking about computations and redundancy, let us remember that a large part
of the DNA molecule is “residual”, it does not codify genes and we do not exactly
know what it is used for. We can then speculate: if in the cell, at the genetic level,
one performs computations (the viruses are strings of nucleotides, hence their iden-
tification is a parsing operation, hence a computation), and these computations are
supposed to be complex, why not?, even of the level of Turing machines, then we
need a “workspace”, a “tape” which in the end remains empty in most of its length,
with the result placed in a finite part of it (at the beginning in the case of the Turing
machine tape). Can then the DNA without an apparent usefulness be the workspace
for complex computations, which we cannot yet understand?

30.21 Computing by Splicing

In his experiment, Adleman has not used the splicing operation, but the biochemical
ingredients specific to the splicing have been used in many other cases: restriction
enzymes, which cut the DNA molecules in well specified contexts, ligases which
glue back the nucleotides thus repairing the strands, recombination on the basis of
the “sticky ends” of the molecules with the strands of different lengths, hence with
nucleotides which do not have their Watson–Crick pairs.

I do not recall biochemical details or mathematical details concerning the splic-
ing operation. In short, two molecules (represented as simple strings, because the
nucleotides of a strand are precisely identified by their complementary nucleotides
placed on the other strand) are cut in two parts each, in the middle of a context spec-
ified by a pair of substrings, and the fragments obtained are recombined crosswise,
thus obtaining two new strings. Starting from an initial set of strings and applying
this operations repeatedly (with respect to a given finite set of contexts, hence of
splicing rules), we obtain a computing device, a language generator, similar to a
grammar. We obtain an H system. A large part of the monograph DNA Computing.
New Computing Paradigms cited before is dedicated to the study of these systems:
variants, extensions, generative power, properties.

Always when a new computing model is introduced, the first question to clarify
concerns its power, in comparison with the automata theory and language theory
classifications—the Turing machine and its restrictions, the Chomsky grammars,
the Lindenmayer systems. Let us only note that the two “poles” of computability
are the power of Turing machines, through the Turing–Church thesis the maximal
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level of algorithmic computability, and the power of the finite automata, the minimal
level. In terms of grammars and languages, the maximal class is that of unrestricted
Chomsky grammars and of recursively enumerable languages, while the minimal
one corresponds to regular grammars and languages.

The H systems with a finite number of starting strings and a finite number of
splicing rules generate only regular languages. This is not sufficient as computing
power, moreover, a “computer” of this level cannot have (convenient) universality
properties, hence it cannot be programmable.

Interesting and attractive enough is the fact that, adding a minimal control on the
splicing operation, with many controls of this kind suggested by the area of regulated
rewriting or coming from biology (example: associate a promoter, a symbol, with
each splicing rule and the rule is applied only to strings which contain that symbol;
a variant—the symbol does not appear, it acts as an inhibitor), then we obtain H
systems which are equivalent with the Turing machine. The proof is constructive,
therefore we “import” in this way from the Turing machines the existence of the
universal machine, which means that we get an universal H system, a programmable
one.

Unfortunately, so far, no such universal “computer” based on splicingwas realized
in a laboratory. The passage from the natural case, with an uncontrolled splicing
operation (thus with the power under the power of the finite automaton), to the
controlled case was not yet done in a laboratory and it is not clear whether it can
be realized in the near future. The construction of the universal computer based on
splicing has to still wait…

30.22 An Important Detail: The Autonomous Functioning

Let us not forget that a universal, programmable computer shouldwork autonomously,
that is, after starting a program, the computer continues without any external control.
This is completely different from the usual DNA computing experiments, where the
human operator (or a robotic operator) controls the whole process. For instance, in
the case of the 1994 experiment, Adleman was, in fact, the “computer”, he has only
used the DNA molecules as a support for the computation, while the computation
complexity counted the lab steps performed by the biochemist, not the internal steps,
the DNA operations, performed in parallel.

There are, however, promising progresses towards the implementation of
autonomous computations, the key-word, very much promoted in the last years,
being self-assembly. Remarkable achievements in this direction has obtained Erik
Winfree and his group fromCaltech, Pasadena, USA, and his approach is worthmen-
tioning also because it starts (pleasantly enough for the discussion concerning the
usefulness of mathematics for computer science) from an old chapter of theoretical
computer science, the domino calculus of Wang Hao, developed in the beginning of
sixties of the last century. In short, square dominos, with the edges colored (marked),
can be used for computing (by placing the dominos adjacently, in such a way that
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the neighboring dominos have the contact edges of the same color), thus simulating
the work of a Turing machine. We obtain once again a computing model which is
universal.

Erik Winfree has constructed “dominos” from DNA molecules, with the edges
marked with suitable sequences of nucleotides, he has left them free in a solution,
such that the dominos glued together according to the Watson–Crick affinity of the
nucleotides “coloring” the edges. The approach worked well, the experiments were
successful—but everything has remained once again, in Hartmanis terms, at the level
of a demo. It is important to underline that this time it was not addressed a given
problem, as in Adleman case and as in most of the experiments reported in the DNA
computing literature, but it was implemented in a laboratory a Turingmachine, hence
an universal computing model—that is why this demo is perhaps farther reaching
than that of Adleman (however, Adleman was the first one…).

There also are other attempts to obtain autonomous “computers” in a laboratory.
I mention here only the simulation of a finite automaton, an achievement of a team
from Weizmann-Rehovot and Tehnion-Haifa, Israel, [3], with the mentioning that
one deals with a finite automaton with only two states. Again, only a demo…

30.23 What Means to Compute in a Natural Way?

The DNA Computing monograph has also chapters dedicated to other ways of com-
puting, inspired from the DNA biochemistry, for instance, by insertion and deletion
of substrings (in given contexts), by means of a “domino game” with DNA mole-
cules which are coupled on the basis of the Watson–Crick complementarity, a model
different from the Wang Hao one.

Splicing, insertion–deletion, prolongation of strings. In membrane computing we
use the multiset processing. The evolution itself is mainly based on recombina-
tion/splicing, the local mutations appear only accidentally. In contrast, the existing
computers and almost all theoretical models of computing use the string rewriting
operation. One works locally, on strings of arbitrary length. This observation is valid
for automata, grammars, Post systems,Markov algorithms.All these operations, both
the rewriting and the “natural” ones (the splicing only with an additional control), so
different among them, lead to computability models of the same power, that of the
Turing machine.

The question is obvious: what means to compute in a natural way? With many
continuations: Why computer science has not considered (with rare exceptions) also
other operations different from rewriting? Can we devise (electronic) computers
based on “natural operations” (for instance, using the splicing or other forms of
recombination)? When Hilbert has formulated the question “what is mechanically
computable?”, he probably had inmind formal logical systems,where the substitution
is a central inference rule, and Turing has proposed an answer in the same language.
Were we influenced in this way to think in the same terms when we have designed
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the first computers? I have never heard that the engineers have said that we cannot
imagine, maybe also construct, computers based on different operations.

It remains the questionwhether or not such new types of computerswould be better
than the existing computers or not. Theoretically, they will have the same power,
hence the differences should be looked for on different coordinates: computational
efficiency, easiness of use, learning possibilities and so on.

I said above that the H systems are either of the power of finite automata or equiv-
alent with Turing machines. Similar situations are met in the membrane computing.
Can we then say that the classes of automata and grammars which lie in between
finite automata and Turing machines—and there are many such classes investigated
in the theoretical computer science—are not “natural”? In some sense, this is the case.
For instance, the context-free languages have a definition which has a mathematical-
linguistic motivation, while the context-sensitive languages have a definition with
a motivation coming from the complexity theory (it refers to the space needed for
generating or recognizing the strings of a language).

30.24 Let Us Pass to the Cell!

In spite of the theoretical achievements, of numerous successful experiments (how-
ever, dealing with problems of small dimensions) and of the continuous progresses in
what concerns the lab techniques, the DNA computing has not confirmed the enthusi-
asm of the twenty years ago, after the announcement of the Adleman experiment—if
not having, as I have suggested before, application in cryptography which will be
declassified only after several decades. There are elements which can support this
assumption. For instance, during the first DNA computing conference, Princeton,
1995, a communication was presented, [7], which described a possibility to break
Data Encryption Standard, DES, the system used by the American administration,
using DNA, in four months. Next year, the subject was discussed by a team contain-
ing also Adleman, and the proposed DNA experiment was supposed to can break
DES in five days, provided that the lab operations would be done by robots. A further
paper of this kind was presented in 1997, the year when DES was broken also with
electronic computers and then abandoned.

Anyway, at some years after Adleman experiment it was clear that one cannot
go essentially further, it was necessary to have one more innovative idea, one more
“breakthrough” in order to make an essential step towards applications (towards a
“killer-app”, as the Americans use to say), and one of the “explanations” of this
situation was the fact that DNA molecules behave better in vivo (more predictable,
more robustly) than in vitro. The suggestions is just natural: let us go to the cell!
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30.25 The Fascinating Cell

The cell is really fascinating for a mathematician-computer scientist. I am sure that
this is true also for biologists. The smallest entity which is unanimously considered
alive. The topic is not trivial: at the middle of years 1980, at the Santa Fe Institute for
complexity studies a new research vista was initiated, under the name of artificial
life, as an extension of artificial intelligence, aiming to investigate the life per se, to
simulate it on non-biological supports, on computer and in mathematical terms. The
starting point was, of course, the attempt to have a definition for what we intuitively
call life, but the progresses have not gone too far: all definitions either left out some-
thing alive, or they ensured that, for instance, the computer viruses are alive (they
have “metabolism”, self-reproduction etc.). Let us also remember that already Erwin
Schrödinger has a book whose title asks What is Life?, [67].

The cell passes this test. It is an extraordinarily small “factory”, with a complex,
intricate and efficient internal structure, where an enormous number of agents inter-
act, from ions to large macromolecules like that of DNA, and where informational
processes are carried out at each place and in each moment. Some cells live alone (I
am not saying “isolated”), as unicellular organisms, other cells form tissues, organs,
organisms.

It is a topic of interest the one concerning the role of the cells in making possible
the life itself. I am only citing the reference book [2] the paper [34], also important
for what follows because it proposes the slogan “life means surfaces inside surfaces”,
referring to the membranes which define the inner structure of the cells, and I end
with a paragraph from [40]: “The secret of life, the wellspring of reproduction, is
not to be found in the beauty of Watson–Crick pairing, but in the achievements of
collective catalytic closure.”

I am adding also a suggestive equation-slogan, which acad. Solomon Marcus has
launched during one of the first Workshops on Membrane Computing, the one in
Curtea de Argeş, 2002, [50]:

Life = DNA software + membrane hardware.

30.26 The Membrane. From Biology to Computability

We have thus arrived to a fundamental ingredient—the membrane. One can speak
very much about it, and the biologists and the experts in bio-semiotics have done it.
The cell itself exists because it is separated from the neighboring environment by a
membrane. Not only metaphorically, any entity exists because it is delimited by a
“membrane”, actual or virtual, from the world around.

The (eukaryotic) cell also has a number of membranes inside: the one which
encloses the nucleus, the complicated Golgi apparatus, vesicles, mitochondria. From
a computational point of view, the main role of these membranes is to define “pro-
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tected reactors”, compartments where a specific biochemistry takes place. There
also are other features-functions of the biological membranes which are important
for membrane computing: inmembranes are placed protein channels which allow the
selective communication among compartments; on membranes are bound enzymes
which control many of the biochemical processes which take place around them;
the membranes are useful also for creating reaction spaces small enough so that
the molecules swimming in solution can get in contact so that they can react. It is
said that when a compartment is too large for the local biochemistry to be efficient,
nature creates new membranes, in order to obtain small enough “reactors” (so that,
by Brownian movement, the molecules collide sufficiently frequent and react) and
for creating new “reaction surfaces”.

I stress the fact that I look here to the cell, its structure, and processes inside
it through the glasses of the mathematician-computer scientist, ignoring many bio-
chemical details (for instance, the structure itself of the membranes) and interpreting
the selected ingredients according to the goal of this approach: to define a computing
model.

Let us give some details, starting with the essential role of membranes in com-
munication. If, in the biological cell or in the model we are going to define, the
compartments delimited by membranes evolve separately, then we will not have one
“reactor”, but a number of neighboring “reactors”, evolving independently. How-
ever, the membranes ensure the integration. The polarized molecules or those of
great dimensions cannot pass through the (phospholipid, with a polarized “head”
and two hydrophobic “legs”) molecules of the membranes, but they can pass across
a membrane through the protein channels embedded in it. This passage is selec-
tive and sometimes it is done against the gradient, from a smaller concentration to
a higher concentration. A very interesting case is that of the simultaneous passage
through a protein channel of two or more molecules: the respective molecules cannot
pass separately, but they can do it together, either in the same direction (symport)
or in opposite directions, one molecule entering the respective compartment and the
other one going out, simultaneously (antiport). An important chapter of membrane
computing is based on these operations and the interest comes from the particularity
of this process: there is no rewriting, but only object transport across the borders
defined by the membranes, there is no erasing, but only communication. Computing
by communicating (objects). We can formulate also in this context the question what
means to compute in a natural way?

We can read in many places about the informational processes taking place in a
cell, in most cases with the involvement of membranes, too.

“Many proteins in living cells appear to have as their primary function the transfer
and processing of information, rather than the chemical transformation of metabolic
intermediates or the building of cellular structures. Such proteins are functionally
linked through allosteric or othermechanisms into biochemical ‘circuits’ that perform
a variety of simple computational tasks including amplification, integration, and
information storage.”

This is the abstract of the paper [8]. In their turn, in [30], one interprets the
cytoskeleton as an automaton, while in [46] one constructs a whole theory starting
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from the informational aspects of the cell life. About the bio-semiotics of the cell
has elaborated in many places Jesper Hoffmeyer, already mentioned at the previous
pages. I am citing here only his paper [35].

30.27 A Terminology-History Parenthesis

Before passing to a quick description of membrane computing, let me point out a
few preliminary things.

First, about the name of the domain. I have called itmembrane computing, starting
from the role of themembrane in the life of the cell, in its architecture and functioning,
but the choice was not the best one. “Cellular computing” was probably the most
“marketable” choice, but I have discarded it as being too comprehensive.

Then, the name of the models: in the first papers, I used “membrane systems”,
but soon those who started to investigate these models have called them “P sys-
tems”, continuing the line of other computing devices having a name (H systems are
the closest ones). In the beginning this induced to me some public discomfort, for
instance, during conferences, but the letter P soon became autonomous, completely
neutral to me.

The domain has grown very rapidly and it is still active after more than sixteen
years since its initiation. I have sometimes askedmyself whichwere the explanations,
and what I can do for enhancing the growth. Several aspects concurred to the interest
for the membrane computing: the favorable context (the natural computing “fashion”
mentioned in the beginning); the right moment, on the one hand, with respect to the
DNA computing (which, in some sense, is covered and generalized by membrane
computing), on the other hand, with respect to the theoretical computer science in
general and the formal language theory in particular.

There are several things to be mentioned here. After four decades since the
introduction of Chomsky grammars, the formal language theory became “classical”
enough andgot somewhat retired from the front research (almost completely inUSA),
even if there still exist specialized conferences (for instance, about finite automata
and their applications) or more general conferences (DLT—Developments in Lan-
guage Theory). Membrane computing appeared as a continuation and an extension
of formal language theory: the main investigation objects are no longer the strings of
symbols and the languages, but (I anticipate) the multisets of symbols and the sets
of multisets. Strings, without taking into account the ordering of the symbols, more
technically speaking, strings “seen” through the Parikh application, the one which
tells us the number of occurrences of each symbol in a given string. The consequence
was that a large number of researchers in formal language theory became interested
in the new research area.

A comprehensive information about the membrane computing area can be found
at the domain website from the address http://ppage.psystems.eu, hosted in Vienna
(it is the successor of a page which has functioned for many years in Milan, Italy, at
the address http://psystems.disco.unimib.it).

http://ppage.psystems.eu
http://psystems.disco.unimib.it
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Of course, it has counted very much the “sociology” of the domain. A community
was soon created, and this is very important, not only in science, but in culture
in general. They have contributed to that the seniors mentioned above, the yearly
conferences (started in 2000,with thefirst three editions organized inCurtea deArgeş,
Romania, where the meeting returned for the tenth edition and where I intend to also
organize the twentieth edition) as well as a series of meetings which I would like to
specially emphasize, one of a unusual format, which I have organized for the first time
in Tarragona, Spain, in 2003. After that, it took place every year in Seville, also in
Spain. Because it had to have a name, I called it “BrainstormingWeek onMembrane
Computing”. One week when researchers interested in membrane computing work
together, far from the current preoccupations, teaching or bureaucratic tasks. A very
fruitful idea was to collect in advance open problems and research topics and to
circulate them among the participants before the meeting in Seville, then addressed,
in collaboration, during the Brainstorming. Very useful meetings—in the website of
membrane computing one can find the yearly volumes, with the papers written or
only started during the Brainstorming.

Very useful was, of course, the Internet. The first paper, [58], has waited more
than one year before it was published, but, because I was in Turku, Finland, in the
autumn of 1998, I made the paper available on Internet, in the form of an internal
report of TUCS, Turku Center for Computer Science (Report No. 208, 1998, www.
tucs.fi). Until 2000, when the journal paper has appeared, there were written some
dozens of papers, making possible the organization of the first meeting dedicated to
this topic, in Curtea de Argeş.

30.28 A Quick View on Membrane Computing

Let us not forget: we want to start from the cell and to construct a computing model.
The result (the one proposed in the fall of 1988) is something of the following form.
We look to the cell and we abstract it until we only see the structure of the hier-
archically arranged membranes, defining compartments where multisets of objects
are placed (I am using a generic term, abstract, free of any biochemical interpre-
tation); these objects evolve according to given reactions. A multiset is a set with
multiplicities associated with its elements, hence it can be described by a string;
for instance, aabcab describes the multiset which contains three copies of a, two of
b, and one of c. All permutations of the string aabcab describe the same multiset.
The reactions, in their turn, are described by multiset “rewriting” rules, of the form
u → v, where u and v are strings which identify multisets. Initially (in the beginning
of a computation), in the compartments of our system we have given multisets of
objects. The evolution rules start to be applied, like biochemical reactions, in parallel,
simultaneously, making evolve all objects which can evolve—and thus the multisets
change. Using a rule u → v as above means to “consume” the objects indicated by
u and to introduce the objects indicated by v. We have to notice that the objects and
the rules are localized, placed in compartments, the rules in a given compartment

www.tucs.fi
www.tucs.fi
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are applied only to objects from that compartment. Certain objects can also pass
through membranes. We proceed by applying rules until (like in the case of a Turing
machine) we get stuck, no rule can be applied, and then the computation halts. The
result of a halting computation is “read”, for instance, in the form of the number of
objects placed in a compartment specified in advance.

Processing of multisets (of symbols), in parallel, in the compartments defined
by a hierarchical structure of membranes—this is the short description of a “P sys-
tem”. A distributed grammar, working with multisets of symbols—this is the direct
connection with the formal language theory.

The working site starting here looks endless.
First, one can introduce a large number of variations of P systems, with a mathe-

matical, computer science, biological motivation, or motivated by applications.
From the point of view of mathematics, the models should be minimalistic, they

have to contain the smallest number of ingredients. For computer science, a comput-
ing model is good to be as powerful as possible, in the best case universal, equivalent
with the Turing machine, and as efficient as possible, in the best case able to solve
NP-complete problems in polynomial time.

Biology and applications provide a long list of alternatives, starting with the way
of arranging the membranes (hierarchical, as in a cell, or placed in the nodes of an
arbitrary graph, as in tissues and other populations of cells), the types of objects
(symbols as before, strings or even more complex data structures, such as graphs
or bidimensional arrays), the form of the evolution rules (also dependent on the
type of objects), the strategies of applying them, the way of defining the result of a
computation.

I have mentioned before the multiset rewriting rules. They can be arbitrary, non-
cooperative (with the left hand multiset consisting of a single object, which cor-
responds to context-free rules in Chomsky grammars), or, an intermediate case,
catalytic (of the form ca → cv, where c is a catalyst, an object which assists object a
in its transformation to the multiset v). Then, we have the symport and antiport rules,
which move objects from a compartment into another one (example: the antiport
rule (u, out; v, in), associated with a membrane, moves the objects indicated by u
from this membrane to the surrounding compartment and the objects indicated by
v in the opposite direction). Very important are the rules which divide membranes,
because they increase, even exponentially, the number of membranes in the system.
Many other types of rules were investigated (for instance, with a control on their
application—with promoters, inhibitors, etc.), but I do not mention them here, the
presentation would become too technical for the intentions of this text.

If the objects in the compartments of a system are strings, then they evolve by
means of operations specific to strings: rewriting, insertion and deletion, or, in order
to make the model more uniform from a biological point of view, by the splicing
operation from the DNA computing.

An interesting situation is that when we work with symbol objects, hence with
numbers, but the result of a computation is “read” outside the system, in the form
of the string of the objects which are expelled from the system. It is worth noticing
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the qualitative difference between the internal data structure, the multiset, and the
external one, the string, which carries out positional information.

In turn, the applications need a completely different strategy of constructing the
models—far from minimalistic, but adequate to the modeled piece of reality; this
time not the computing power is of interest, but the evolution in time of the system.
I will come back to applications.

Over this small jungle of models one superposes the investigation program of the
classic computer science: computing power, normal forms, descriptional complexity,
computational complexity, simulation programs, etc., etc.

30.29 Classes of Results (and Problems)

Of course, I will not recall precise theorems, but I will only mention the two main
classes of results in membrane computing and their general form.

Computational completeness/universality: most of the classes of P systems con-
sidered so far are equivalent with Turing machines, they are computationally com-
plete. Because the proofs are constructive, in this way one also brings to membrane
computing the universality property in the sense of Turing (that is why we speak
about computational completeness and universality as they would be synonymous).
In most cases, this result is obtained for systems of a reduced, particular form, with a
small number of membranes. For instance, cell-like P systems with only two mem-
branes, using catalytic rules (hence not of the general form) can compute whatever
the Turing machines can compute.

An important detail: two catalysts are sufficient. It is an open problem whether
the P systems with only one catalyst are universal. The conjecture is that the answer
is negative, but the proof still fails to appear. This is one of the most interesting types
of open problems in membrane computing (many of them still open): identifying the
precise borderline between universality and non-universality.

Efficiency: the classes of P systems which can grow (exponentially) the number
of membranes can solve NP-complete problems in a polynomial time. The idea is
to generate, in a polynomial time, an exponential working space and then to use it,
in parallel, for examining the possible solutions to a problem. Membrane division
helps, similarly the membrane creation, similarly other operations. Like in the case
of the Adleman experiment, we have again a space–time trade-off, but in our case the
space is not provided in advance, but it is created during the computation, through
“mitosis” or by means of other “realistic” biological operations.

There are also in this area open problems concerning the borderline between
efficiency and non-efficiency, but more difficult to be stated in plain words.

Interesting is a somewhat unexpected fact.Using rules of the forma → aa, applied
in parallel, we can produce an exponential number of copies of a in a linear number
of steps. (In n steps, we get 2n copies of a.) However, such an exponential working
space is not of any help in solving high complexity problems in a feasible time—this
is what the so-calledMilan theorem, from Claudio Zandron PhD thesis, says. If these
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objects are localized, placed in an exponentially large number of membranes, then
the situation is different. Otherwise stated, not only the size of the working space
matters, but also its structure, the possibility to apply different rules in different
compartments. This is a subtle aspect, which I do not know whether it has been met
also in other frameworks.

For details, the reader is refereed to the monograph [59] and, especially, to the
handbook [63].

30.30 Significations for Computer Science and for Biology

A computing model which has the same power as the Turing machine is a good
thing, such a computer is universal not only in the intuitive sense, but it is also
programmable. Moreover we have here a distributed, parallel computer, with a great
degree of non-determinism, controlled in various biologically inspired ways.

Let us, however, observe the similarities and the differences between a usual
computer program, a set of instructions of a Turing machine, and a set of evolution
rules of a P system. In the programming languages, the programs consist of precisely
ordered instructions, perhaps labeled and addressed by means of these labels. In the
case of the Turing machine, the sequence of instructions to be applied is determined
by the states of the machine and by the contents of the tape. In the cell case, the
reactions are potential, their set is completely unstructured, and their application
depends on the available molecules. The evolution rules are just waiting for the data
to which they can be applied, there is a competition between rules with respect to
the objects to process.

The differences are visible and they suggest once again the question what means
to compute in a natural way?, adding now the question whether we can work with
programs in the form of completely unstructured sets of instructions.

On the other hand, in the first moment, it is expected that the biologist reaction
to results of the type of the equivalence with the Turing machine is indifference, a
raising of the shoulders. Another domain, another language, another book… But:
if the cell is so powerful from a computational point of view, then, according to an
old result, the Rice theorem (“all nontrivial problems—having both instances with
a positive answer and instances with a negative answer—about a computing model
equivalent with Turing machines are algorithmically undecidable”), no nontrivial
question about the cell can be solved in an algorithmic way, by means of a program.
The biologists formulate every day such questions: How a cell, a cell population, an
organ or an organism evolves in time? Is there a substance which gets accumulated
over a given threshold, in a given compartment? What happens if we add a multiset
of molecules (a medicine), does the state of an organ improves (from specified points
of view)?—and so on. If a model of the cell would be decidable, then we could find
the answer to such questions by (algorithmically) examining the model, at a given
initial state. But, because this is not possible (cannot be done in principle, not only we
cannot do it now, here), what remains to do are the laboratory experiment (expensive
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and time consuming), the computer experiment (cheap, fast, but with the relevance
depending on the quality of the model), and, theoretically, the non-algorithmic, ad-
hoc, approach.

The previous paragraphs can be seen also as a plead for biology to learn new
languages, in particular, the language of theoretical computer science, thus having
the possibility of raising problems and of finding solutions which cannot appear,
cannot be even formulated in the previous language. This would be an essential step
towards infobiology.

30.31 Three Novel Computer Science Problems

In the continuation of the discussion about the significance for computer science,
let us point out a remarkable fact: natural computing in general and membrane
computing in particular raise theoretical questions which were not considered in the
framework of the classical computer science. Here are three questions of this kind,
all three pertaining to complexity theory.

Like in the case of Adleman, most experiments of DNA computing started from
an instance of a problem and constructed a “computer” associated with that instance.
The standard complexity theory does not allow such an approach, it asks for uniform
solutions, for programs/algorithms which start from the problem (and its size) and
solve all instances of the problem. The idea is that during the programming stage
one can already work on solving the problem, so that one can then pretend that the
solution was found faster than it was the case in reality. That is why, also for the
uniform solutions one limits the time allowed for programming, for constructing
the algorithm. Let us then place a bound also on the programming time in the case
when we start from an instance, so that we cannot cheat here either. The relationship
between uniform solutions and semi-uniform (with a limited time for programming)
solutions is not clarified yet, in spite of its importance for the natural computing.
In membrane computing there were reported a series of related results—see, for
instance, recent papers by DamienWoods (Caltech, USA), Niall Murphy (Microsoft
Research, Cambridge, UK), Mario J. Pérez-Jiménez (Seville University, Spain).

Second: in DNA computing and in many models in membrane computing, at
least part of the steps of a computation are of a non-deterministic type, but in the
end the experiment/computation provides a unique result. The idea is to organize the
computation in such a way that it is confluent, with two variants: either the system
evolves non-deterministically for a while, then it “converges” to a unique configura-
tion and then it continues in a deterministic way, or the system “converges logically”,
it gives the same result irrespective of how it evolves. Again, the complexity theory
lacks a study of these situations, of the cases intermediate between determinism and
non-determinism.

Finally, the biology provides situationswhere extended resourceswait for external
challengeswhich activate a suitable portion of the resource. The examples of the brain
and of the liver, from which we use at any given time only part of the huge number of
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available cells, are themost known.We can then imagine “computers”—for instance,
neural networks—with an arbitrarily large number of cells/neurons, but containing
only a limited quantity of information (not to hide there the solution of a problem);
after introducing a problem in the system, one activates the necessary number of
cells/neurons for solving it. There is no theory dealingwith this strategy (of using pre-
computed resources). How the pre-computed working space should look in order to
contain only “a limited quantity of information”, how this information can be defined
and measured, when a system with pre-computed resources is acceptable/honest, it
cannot hide the solution of a problem in its structure?

Natural computing not only motivates the improvement of old results in computer
science, but it also makes necessary new developments, which were not imagined
before.

30.32 About the Tools Used in Membrane Computing

In order to stress once again the relationships between various branches of theoretical
computer science which, at the first sight, look far from each other, and the fact that
membrane computing, the natural computing in general, use many old techniques
and results, let me remind some details from my personal experience.

In the first universality proof for P systems I have used the result of Yuri Mati-
jasevich mentioned also before, of characterizing the sets of numbers computed by
Turing machines as solutions of diophantine equations. I have, however, soon real-
ized that a simpler proof can be obtained starting from the characterization of the
same sets of numbers with the help of the matrix grammars. The initial paper was
published in this form. In this context it appears the necessity of improving some old
results in this area. After a while, also the matrix grammars were replaced, the proofs
are now based mainly on register machines, investigated already in the sixties.

A technique even older was useful in the first universality proof for H systems,
namely the way of functioning of Post systems, which were introduced at the begin-
ning of the years 1940. Adapted to the splicing operation, this has led to a technique
called rotate-and-simulate, which has become almost standard for H systems and
their variants.

In the first years ofmy research activity, I wasmuch interested inmatrix grammars
and I have concluded this research with a monograph (published in Romanian, in
1981), extended after a while to a book, [19], in collaboration with Jürgen Dassow,
from Magdeburg, Germany, dedicated to all restrictions in the derivation of context-
free grammars. The same happened with other domains which were useful in the
membrane computing; the Marcus contextual grammars and the grammar systems
are the most important of them.

In mathematics and computer science it is not possible to say in advance whether
and when a subject or a result will be useful…
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30.33 Spiking Neural P (SNP) Systems

A class of P systems inspired from the brain structure and functioning deserves to
be separately discussed. It was introduced later than other models, [39], but it seems
that it will get earlier hardware implementations useful to computer science (details
about this possibility can be found in [78]).

In a few words, such a system consists of “neurons” linked through “synapses”
along which circulate electrical impulses, produced in the neurons by means of
specific rules. Like in the case of the real neurons (see, for instance, [52]), the com-
munication among neurons is done by means of identical electrical impulses, spikes,
for which the frequency is relevant, codifying information. Otherwise stated, impor-
tant is the distance in time between spikes. In each moment, the axons are a sort
of “bar codes”, sequences of 0 and 1 which move from a neuron to another one.
Obviously, the model ignores many neuro-biological details, but even at this reduc-
tionistic level we can formulate a series of questions concerning the relevance for
computer science. In a certain sense, the SNP systems use the time as a support of
information. The distance between two events, two spikes here, codifies a number.
Can we construct a computer with such a “memory”? I mention the question only as
a speculation—provocative at the theoretical level.

A result which deserves to be recalled refers to the search of SNP systems which
are universal in the Turing sense, that is, they can be programmed in such a way
to simulate any other SNP system. From the equivalence with the Turing machine,
it follows immediately that such a system exists. The problem of interest concerns
the number of neurons of an “universal brain” of this kind, able to simulate any
computation in any particular system. This number is not at all too large. In [56] one
uses 50–80 neurons, depending on the type of rules for producing spikes, but these
numbers were subsequently decreased. In newspaper terms, we can say that “there
are computationally universal brains consisting of only a few tens of neurons”. From
here we can either infer that a computing model of the form of SNP systems is very
powerful, actually, that the neurons of these systems are too powerful, or that the
Turing computability level is not very high—or both these conclusions. Of course,
the human brain does not function as a Turing machine—but the computational
paradigm was useful, to a certain extent, in modeling the brain functioning.

30.34 About Implementations

The DNA computing started by the definition of the splicing operation, in 1987, but
about the possibility of using DNA molecules for computing there were discussions
already one decade before. However, the domain became popular after Adleman
experiment in 1994. An example was thus created, so that the question whether
or not there are implementations of P systems is both natural and frequent. It is
understood that one speaks about implementations on a biological substrate. The
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answer is negative. There were some attempts, but no successful experiment was
reported.

An experiment of this kind was designed in the group of professor Ehud Keinan
(withwell known research both in chemistry and biology) from the Technion Institute
in Haifa, Israel, where I have spent one week in 2006, exactly with this purpose.
Two main related problems were identified from the beginning: finding a P system
plausible to be implemented in a laboratory and, of course, finding the biochemical
techniques necessary. We did not intend to solve an NP-complete problem, we have
not found a reasonable one, but we have looked for a system whose behavior was
illustrative for membrane computing (compartments, multisets, parallel processing),
and we have chosen a system generating numbers in the Fibonacci sequence. The
lab implementation seemed to be only a time issue—as well a question of money,
for buying the laboratory equipments and the…DNA molecules. The plan was to
simulate the membranes by means of the micro-chambers of a reconfigurable lab
installation, with the objects being DNA molecules.

The first experiments did not succeed, then the…sociology of science struck
again: the two PhD lady students who were in charge with this experiment moved to
USA. In the meantime, an USA patent has appeared, on the name of Ehud Keinan,
for implementing a P system, but using another technique, based on three non-
miscible liquids placed in a common space. As far as I know, it is about a “theoretical
implementation”, no successful experiment was reported.

The question which naturally arises is whether or not such an experiment would
bring something useful from the point of view of applications. Recalling a saying of
Benjamin Franklin, “it is impossible to say what will become a newborn baby”, but,
having in mind the case of DNA computing, it is highly possible that this will only
be a demo, at the level of simple calculations.

Completely different is the situation of implementations on an electronic hard-
ware. There are several promising implementations on a parallel hardware (on
NVIDIA graphic cards, in Seville, Spain), on a hardware especially designed for
membrane computing (Madrid–Spain andAdelaide–Australia), on networks of com-
puters, even on web. All these succeed in a great extent to capture the essential char-
acteristics of P systems, the parallelism. Having in mind the parallelism, I do not
call implementations, but simulations the cases when one uses standard sequential
computers.

On the other hand, both the simulation programs and, still more, the implemen-
tations are useful in applications.

30.35 Applications

Membrane computing confirms an observation already made in several situations:
when a mathematical theory, starting from a piece of reality, is sufficiently developed
at the abstract, theoretical level, there are high chances to find applications not only
in the domain which has inspired it, but in other areas too, some of them far away, at
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the first sight, from the reality fromwhere the theory emerged (but having a common
deep structure). It is, very convincingly, the present case.

It was just natural to return to the cell. Biology needs tools and models, the
cell is not easy to model. It was stated that, after completing the human genome
reading, the main challenge for the bioinformatics is the modeling of the cell, [73].
I have already mentioned that many of the models currently used in biology are
based on differential equations. In many cases they are adequate, in many cases
not. Differential equations belong to the mathematics of the continuum, they are
appropriate to very large populations of molecules, uniformly stirred. However, in a
cell, many molecules can be found in small numbers, therefore the approximation of
the finite through the infinite, as necessary for applying differential equations, can
lead to wrong results. This makes necessary the discrete models, in particular, the P
systems, which also have other characteristics which are attractive for the biologist:
they come from biology, hence they are easily understandable, which is an aspect
which should not be underestimated; furthermore, P systems are algorithmic models,
directly programmable in order to simulate them on the computer; can be easily
extended, are scalable, adding new components, of any type, does not change the
simulation program; their behavior is emergent, cannot be predicted by just looking
to the components.

There aremany applications ofmembrane computing in biology and biomedicine.
From the individual cell, the applications passed to populations of cells (e.g., of
bacteria) and then to… ecosystems. I cite here only [11]—the last two authors are
biologists, experts in the ecology of the bearded vulture and animal protection from
Lleida, Spain. Of course, the ecosystem is a metaphoric cell, while the “molecules”
are the vultures, goats, wolves, hunters, all these in discrete quantities, small known
numbers, with no possibility to be modeled with the instruments of the continuous
mathematics. Other ecosystems which were investigated concern Panda bears in
China and the zebra mussel from the water basins of the Spanish hydroelectrical
plants.

So far, plausible applications. Not so expected are the applications in computer
graphics (but in this respect we have a previous example, that of Lindenmayer sys-
tems), cryptography (in the organization of the attack against certain cryptographic
systems), approximate optimization (distributed evolutionary computing, with the
distribution organized like in a cell; the number of papers in this area is very large,
the topic being popular in China, and the results are surprisingly and pleasantly
good—with the mentioning that the famous no free lunch theorem should cool down
also here the enthusiasm), economic modeling (a metaphorical extension similar to
that to ecosystems), robot control.

These two last areas of applications are part of a potentially larger one, based
on the use of the so-called numerical P systems, where, in a cell-like framework
there evolve numerical variables, not molecules; the evolution is done by means of
certain programs, consisting of a production function and a repartition protocol. The
inspiration comes from economics, [60]. The systems of this kind compute functions
of several variables, in a parallel way, and this computation is rather efficient, that
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is why it is expected that this somewhat exotic class of P systems will find further
applications.

Details about applications can be found in the webpage of membrane computing,
in the mentioned Handbook, as well as in the collective volumes [12, 27].

30.36 Doubts, Difficulties, Failures

During ceremonies like the today one [delivering a Reception Speech in the Acad-
emy] or with the occasion of periodical reports, it is not usual, even not appropriate,
to also speak about difficult moments, even if this would be instructive for the reader
and useful for the domain.

On the other hand, the hesitations and the doubts are continuously a component
of the researcher life. For instance, I can compile a long list of moments where my
expectations were of a certain type and the results were different.

This happened starting with the mathematical results. For instance, in the begin-
ning I did not believe that the catalytic P systems are universal, furthermore, that they
are universal even in the case of using only two catalysts. Similarly, for a while I have
expected to find a class of systems for which the number of membranes induces an
infinite hierarchy (of the classes of sets of computed numbers). In exchange, almost
always the universality is obtained with only one or two membranes. One membrane
means no structure of the system, a trivial architecture. Of course, we can see here
the positive fact: the (catalytic) processing of multisets is powerful enough in order
to simulate a Turing machine.

Because I have in mind the case of the DNA computing, I do not count as a failure
the fact that there are no biological implementations of P systems (although such
an event would have a great publicity impact), but I still wait for an implementation
on a parallel or a dedicated hardware having a “commercial” value. Such an imple-
mentation is necessary and, I believe, it is also possible. For instance, some years
ago, a team of biologists and computer scientists from Nothingham, Sheffield (UK),
and Seville have tried to simulate on a computer the communication among bacteria,
modeling the so-called quorum sensing. The simulation programs were able to deal
with hundreds of bacteria, the biologists wanted to pass to populations of thousands
of bacteria. My expectation is that the implementations, for instance, on NVIDIA
cards, will reach soon this level of magnitude requested by the biologists.

Concerning the applications in general, although they were not of interest at the
beginning ofmembrane computing, at somemoment it was clear that the domain can-
not pass over a certain level of development and notorietywithout “real” applications.
For a while, there were applications, but of the postdiction, not of the prediction type.
The frequent scenario is the following: we take a biological phenomenon, discussed
in a paper or in a book, we formalize it as a P system, we write a simulation program
(or we take one available—at this moment we also have a specialized programming
language, P-lingua, realized in the Seville University), we perform experiments with
data from the paper or the book, and if the results are similar to those obtained in a
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laboratory or through other methods, we are happy. Postdiction, nothing new for the
biologists, we only get more confidence in the new model and we can tune it with
real data. In order to pass over this stage it is necessary to have a biologist in the
team, who should come with a research question, with hypotheses which need to be
checked. In turn, the computer scientist should come with sufficiently versatile mod-
els and with sufficiently efficient programs, in order to cope with the complexity of
biological processes. After sixteen years, the bibliography of membrane computing
applications (among them, comfortably many being of the prediction type) is rather
large—see the references from the previous section (we add the recent paper [6])—
although still we need biologists who have to come towards the computer scientists,
maybe to learn membrane computing or, at least, to learn to use the instruments
which the computer scientists have already realized (and tested).

I said before that I was continuously interested in forming a community—initially,
this was an intuitive desire, later it became conscious, as this was a way to stabilize
the domain against the dynamics of the groups. This looks as an external aspect, but
we do not have to ignore the influence of the psycho-sociology on science, especially
in the case of young branches. A group which is broken can mean a group less (it
depends where its members land, whether they continue or not the research activity)
or the apparition of several new groups, in new places. I have been the witness of
both these two types of consequences. Fortunately, at the present time, the membrane
computing community has dimensions which provide it with a comfortable inertia—
which, however, does not mean that membrane computing will not get dissolved into
infobiology, it already works for that…

30.37 At the Frontier of Science-Fiction

The main promise of natural computing is a better use of the existing computers,
pushing forward the frontier of feasibility, by providing solutions, perhaps approx-
imate, to problems which cannot be solved by means of traditional techniques. The
DNA computing came with a more ambitious goal, that of providing a new type of
hardware, of “biological chips”, “wet processors”, efficient not only in computational
terms, but also in what concerns the energy consumption, or making plausible very
attractive features, self-healing, adaptation, learning. Biology can suggest also new
computer architectures or ideas for implementing other dreams of computer science,
such as the parallel computation, the unsynchronized one, the control of distributed
processes, the reversible computation and so on.

All these are somewhat standard expectations, but there also are some ideas which
point out to the science of tomorrow, if not directly to science-fiction.

One of these directions is that which aims to hypercomputability, to “compute the
uncomputable”, to pass beyond the “Turing barrier”. The domain is well developed,
there are over one dozen basic ideas which lead to computabilitymodels stronger that
the Turingmachine—while physics does not forbid any one of these ideas, moreover,
it even suggests ideas which look genuinely SF, like, e.g., the use of an internal time
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of the model which contains cycles or of a bidimensional time. It is true, Martin
Davis [20] considers all of them tricks by which the computing power is introduced
in the model from the very beginning, in disguise, and then one proves that the model
passes beyond the Turing machine (for example, one considers real numbers, which
can codify, in their infinite sequence of decimals, all possible computations), but
there also are some ideas which look more realistic that others.

One of them is that of acceleration, already discussed several decades ago, not
only in computer science: R. Blake (1926), H. Weyl (1927), B. Russell (1936), have
imagined processes which need one time unit (measured by an external clock) for
performing the first step, half of a time unit for the second step (the process “learns”),
and so on, at every step, half of the time needed by the previous step. In this way, in
two time units (I insist: external, measured by the observer) one performs infinitely
many (internal) steps. Such an accelerated Turing machine can solve the halting
problem, hence it is more powerful than a usual Turing machine.

Let us now remember the observation that nature creates newmembranes in order
to get small reactors, where the reactions are enhanced, because of the higher pos-
sibilities of molecules to collide. Consequently, smaller is faster. The biochemistry
in an inner membrane is faster than in the surrounding membrane. Let us push the
speculation to the end and assume that the “life” in a membrane is twice faster than
in the membrane containing it. Exactly the acceleration we have mentioned above.
One can prove [10] that, exactly as in the case of the accelerated Turing machine,
an accelerated P system (able to repeatedly create inner membranes) can decide the
halting problem.

Hypercomputability might seem to be only a mathematical exercise, but it is
estimated that passing beyond the Turing barrier could have more important conse-
quences than finding a proof, even an efficient one, of the P = NP equality; see, for
instance, [17].

Let us get closer to the laboratory. I have mentioned the lab implementation of
a finite automaton with an autonomous functioning. A finite automaton can parse
strings. The genes are strings, the viruses are strings (of nucleotides). A hope of
medicine is to cure illnesses by editing genes, to eliminate viruses by identifying them
and then cutting them in pieces. A more efficient idea than to introduce medicines in
out body is to construct a “machinery” which can recognize and edit the necessary
sequences of nucleotides, genes or viruses. To this aim, we need a carrying vector,
to bring the gene editor in the right place. The identification of that place can be
done by an automaton, possibly a finite one, while the vector can be a sort of nano-
carrier which can be also built fromDNAmolecules. In short, un nano-robot, suitably
multiplied,which canmove fromacell to another one, curingwhat it is necessary to be
cured. A pre-project of such a nano-robotwas presented in [4]. In a great extent, it was
the same team which has implemented the autonomous finite automaton mentioned
before.

There still are many things to be done, the possibility to have our body continu-
ously scanned by a gene repairing robot is not at all close to us. (Such a robot can
also have malevolent tasks, it can be a weapon—one can open here a discussion
about the ethics of research, but there are sufficiently many debates of this type,
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even in bio-computer science. Also Francis S. Collins speaks about bioethics in The
Language of God, the book mentioned several pages before.) On the other hand,
there are numerous nano-constructions made of DNA, “motors”, “robots”, etc. The
nano-technology based on DNA biochemistry is spectacularly developed. I cite, as
a reference, the paper [64].

It is worth mentioning here also an observation made by Jana Horáková and Jozef
Kelemen in [36], with respect to the evolution of computers, somewhat in parallel
with the evolution of the idea of a robot: from organic to electromagnetic, then to
electronic, and in the end tending to return to organic.

Further speculations?Without any limits, starting from facts with a solid scientific
background. In the extremeedge, one canmentionFrankTipler,with his controversial
eternal life, in informational terms, which is nothing else than artificial life at the
scale of the whole universe [71]. In any case, we have to be conscious that all these
are plans for tomorrow formulated today in the yesterday language, to cite a saying
of Antoine de Saint-Exupéry. The progresses in bioengineering can bring surprises
which we cannot imagine in this moment.

30.38 Do We Dream Too Much?

Let us come down on the Earth, to the reality, to the natural computing as we have
it now and how it is plausible to have it in the near future, adopting a lucid position,
even a skeptical one, opposed to the enthusiasm from the previous section and to the
enthusiasm of many authors. (I am not referring here to newspaper authors, which
too often use big words when talking about bioinformatics.)

In order to promote an young scientific branch, the enthusiasm is useful and
understandable—but natural computing is no longer an young research area. Let
us oppose here to the previous optimism a more realistic position, starting from
the differences, many and significant, between computer science and biology, from
the difficulties to implement bio-ideas in computer science and computations in
cells: the goal of life is life, not the computations, we, the computer scientists, see
everywhere computations and try to use them for us; in a certain sense, life has
unbounded time and resources, it affords to make experiments and to discard the
results of unsuccessful attempts—all these are difficult to extend to computers, even
if they are based on biomolecules. Similarly, life has a great degree of redundancy and
non-determinism. Then, the biological processes have a high degree of complexity,
moreover, they seem tomainly use themathematics of approximations, probabilities,
fuzzy sets, all of which are difficult to be captured in a computingmodel, not to speak
about the difficulty to implement them.

Still more important: we perhaps dream too much even from the theoretical point
of view. First, the space–time trade-off does not redefine the complexity classes, at
most it can enlarge the feasibility space (see againHartmanis remarks aboutAdleman
experiment).
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Then, there is a theorem of Michael Conrad [16] which says that three desired
characteristics of a computer, programmability (universality), efficiency, and evolv-
ability (the capacity to adapt and learn), are contradictory, there is no computer which
can have all these three features at the same time. We can interpret this result as a
general no free lunch theorem for the natural computing.

A similar theorem of limitation of “what can be done in principle” belongs to
Robin Gandy, a student and collaborator of Turing, which offers general mathe-
matical arguments to Martin Davis: the hypercomputability is a difficult thing to
reach (see, for instance, [28]). Gandy wanted to free the Turing–Church thesis of any
anthropic meaning (in Turing formulation, the thesis says that “everything which
can be computed by a human being can be computed by a Turing machine”). To
this aim, he has defined a general notion of a “computing machine”, described by
four properties formulated mathematically and which any “computer”, an actual or a
theoretical one, should possess. Then, Gandy proved that any machine having these
properties can be simulated by a Turing machine.

Passing from theoretical computer science to applications, let me notice that there
are visible limitations also in this respect. I am even convinced that, if one will
make lists with the properties the models and the simulations we would like to
have (adequacy, relevance, accuracy, efficiency, understandability, programmability,
scalability and so on), then impossibility theorems similar to Arrow, Conrad, Gödel
theorems will be proved concerning the modeling and the simulation of the cell—the
very task which M. Tomita formulated.

30.39 Everything Is New and Old All Are…

(The title of this section reproduces a verse from a poem by Mihai Eminescu, the
national poet of Romania.)

In spite of what was said above, there is a more and more visible interest in
the modeling of the cell. Actually, a dedicated research direction was proposed,
the systems biology, with several programmatic papers, published in high visibility
journals, such as Science and Nature. The main promotor was H. Kitano [41, 42],
which has in mind a general model of the cell, meant to be simulated on a computer
and thenused, in relation alsowith other computer science andbiological instruments,
in such a way “to transform biology and medicine in a precise engineering”. The
goal is important and probably feasible in a medium-long term, but the insistence
with which one speaks about “systems biology” as about a novel idea made Olaf
Wolkenhauer to ask already in the title of his paper [76] whether this is not only “the
reincarnation of systems theory applied in biology”. The paper recalls the efforts in
this respect made in the years 1960, with the disappointments appeared at that time,
due, among others, to the limits of the computers (but also to the limits of biology:
let us remember that the Singer-Nicolson model of the membrane as a “fluid mosaic”
dates only from1972).But, besides the computing power, it is possible that something
else was missing, which is perhaps missing even today, both in computer science and
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in biology. The last paragraph from Olaf Wolkenhauer paper invokes the name of
Mihailo Mesarovic, a classic of systems theory, which, in 1968, said: “in spite of the
considerable interest and efforts, the application of systems theory in biology has not
quite lived up the expectations… One of the main reasons for the existing lag is that
systems theory has not been directly concerned with some of the problems of vital
importance in biology”. His advice for biologists, continues Olaf Wolkenhauer, is
that such a progress can only be obtained by means of a stronger direct interaction
with the systems theory researchers. “The real advance in the applications of systems
theory to biology will come about only when the biologists start asking questions
which are based on the system-theoretic concepts rather than using these concepts to
represent in still another way the phenomena which are already explained in terms
of biophysical or biochemical principles… then we will not have the application of
engineering principles to biological problems, but rather a field of systems biology
with its own identity and in its own right [54].”

Mesarovic words can be taken as a motto of infobiology in favor of which the
whole present text pleads.

The transformation of biology andmedicine in “a precise engineering” can be also
related with the current difficulties to understand what is life, materialized, among
others, in the current limits of the artificial intelligence and artificial life. One says, for
instance, that up to now the computers are good in IA, the intelligence amplification,
but not equally good in AI, artificial intelligence. Still less progresses were made
in what concerns the artificial life. In terms of Rodney Brooks, [9], this suggests
that “we might be missing something fundamental and currently unimagined in our
models of biology”. Computers are good in crunching numbers, but “not good at
modeling living systems, at small or large scale”. The intuition is that life is more
than biophysics and biochemistry, but what else it is can be something which we
cannot imagine today, “some aspects of living systems which are invisible to us right
now”. “It is not completely impossible that we might discover some new properties
of biomolecules or some new ingredient”. An example of such a “new stuff”, R.
Brooks says, can be the quantum effects from the microtubules of the neural cells,
which, according to Penrose, “might be the locus of consciousness at the level of the
individual cell” (citation from R. Brooks).

A similar opinion was expressed by another great name of the artificial intelli-
gence, John McCarthy, [53]: “Human-level intelligence is a difficult scientific prob-
lem and probably needs some new ideas. These are more likely to be invented by a
person of genius than as part of a Government or industry project”.

Anyway, the progresses related to the collaboration between computer science and
biology should not be underestimated. If we do it, thenwe take a riskwhich has struck
big names of science and cultures. I close with a funny example of this kind, some
statements (dated around 1830) of the French philosopher Auguste Comte: “Every
attempt to employmathematical methods in the study of biological questionsmust be
considered profoundly irrational and contrary to the spirit of biology. If mathematical
analysis should ever hold a prominent place in biology—an aberration which is
happily almost impossible—it would occasion a rapid and widespread degeneration
of that science.”
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Thanks to God, the philosopher was wrong—but we needed about two hundred
years to see that…

30.40 (Provisory) Last Words

I hope that this quick description was convincing in showing that the way from
biology to computer science and back to biology is intellectually fascinating and
useful to both sciences.

A few things should be remembered: (i) in all its history, computer science tried to
learn from biology, (ii) and this effort brought important benefits to computer science
and equally to biology; (iii) the progresses in this area should not be underestimated,
(iv) but, in general, it is plausible that we expect too much (and too fast) from the
computer science-biology symbiosis, (v) because we ignore the essential differences
between the two universes, the inherent limits of computability and the fact that
biology is not a mathematically formalized science, (vi) with the mentioning that
possibly one needs a new mathematics in order to model and simulate life and
intelligence; finally, (vii) let me anticipate a new age of biology, beyond the today
bioinformatics and the today natural computing, and let me also propose a name for
it, infobiology.

Should we wait two further decades in order to see it taking shape?
From an intellectual point of view, during the forty years which I have told about

here I have lived around academician SolomonMarcus, a “big tree”which invalidates
the phrase (“In the shadow of big trees not even the grace is growing.”) by which
Constantin Brancusi motivated his decision to refuse to work under the guidance of
Rodin: professor Solomon Marcus never puts shadow on his numerous students and
collaborators, but on the contrary. I repeat, in order to stress it: on the contrary. I
witness this and I dedicate to him this discourse, thanking him once again.

Acknowledgments Thanks are due to an anonymous referee, who has carefully read the text and
also pointed to us paper [6].
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Chapter 31
Unconventional Computing: A Brief
Subjective History

Cristian S. Calude

Abstract In this chapter we present a few stages of the evolution of the emerging
area of unconventional computing from a personal perspective.

31.1 Introduction

In 1994 John Casti1 and I started talking about the eventual decay of Moore’s law
and the advance of new models of computation, which we called unconventional.2

The famous open problem NP versus P informally asks whether every problem
whose solution can be quickly verified by a Turing machine can also be quickly
solved by a Turing machine.3 By mid 1990s there was a wide spread belief that the
problem will be solved in the negative before the end of the century. This motivated
the imperious need of “fast” ways to solve NP problems (quickly checkable) not in P
(quickly solvable), a computational challenge unlikely, if not impossible, to succeed
using Turing computability.

The third reason was the Turing barrier derived from the Church-Turing Thesis:
all computations are extensionally equivalent to Turing machines. Is it possible to

design new models of computation capable of transgressing Turing’s barrier?
The need to have a conference on that subject appeared obvious. The first con-

ference of the new series called Unconventional Models of Computation was held

1At that time at the Santa Fe Institute.
2The earliest written reference to the term which I have is from an email sent by Seth Lloyd to

John Casti Sat on 27 Jul 1996 17:12:41 in which Seth, answering an email from John, lists some

researchers in “unconventional and non-Turing models of computation”.
3The problem was formulated in an equivalent form by Kurt Gödel in a letter to John von Neumann

in 1956. Its current mathematical formulation was given by Steven Cook in 1971 using the classes

NP and P defined via polynomial time computability, a debatable model of “feasible computation”,

see also [18].

C.S. Calude (B)
Department of Computer Science, University of Auckland, Auckland, New Zealand
e-mail: cristian@cs.auckland.ac.nz

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 22,
DOI 10.1007/978-3-319-33924-5_31

855



856 C.S. Calude

in 1998; 13 further conferences followed. Journals in the area of unconventional
computing started to appear in 2002.

31.2 Moore’s Law and Turing’s Barrier

Moore’s law is a famous empirical trend stating that the number of transistors in a
dense integrated circuit doubles approximately every two years.4 It was proposed in
1965 by Gordon Moore, co-founder of Intel, in [22]; hence in 2015 we mark its 50th
anniversary.

In the IT world the law informally translates into the prediction that the silicon
chips that power servers, PCs, phones, and wifi gadgets can run faster and consume
less power roughly doubling every two years or so. The law is so accurate that it is
used in the semiconductor industry to guide long-term planning and to set targets for
research and development.

Various analyses concluded that the law will run out of steam, i.e. the improve-
ments of conventional ways of manufacturing microprocessors, graphics chips and
other silicon components will hit a wall: drastically new ideas will be required. Pre-
dictions are notoriously difficult and this case is no exception. Indeed, 2000 was a
failed estimation; other dates, 2013 and 2015, suffered the same fate. At the 2015
IEEE international Solid-State Circuits Conference (http://isscc.org)5 organised in
San Francisco, USA on February 22–26, Intel engineers discussed the challenges of
moving from current 14 nm chips to the 10 nm manufacturing node and even smaller.
Moore’s law is not (yet) dead!

The Church-Turing Thesis6 states that a function on the natural numbers is com-
putable in an informal sense (i.e. computable by a human being using a pencil-and-
paper method, ignoring any resource limitations) if and only if it is computable by
a Turing machine. Identifying an informal concept with a mathematical one makes
the “thesis” mathematically unprovable; however, in principle, it can be disprovable.
There are many studies on the Church-Turing Thesis, see for example [19].

The major challenge posed by the Church-Turing Thesis is whether there are
any possibilities of going beyond Turing’s barrier, i.e. whether one can develop
tools to compute (in some meaningful way) uncomputable functions. This problem
is both theoretical as well as practical. There is an active community devoted to
this problem—called hypercomputation—see [26]. Davis [16, 17] argues strongly
against hypercomputation on the ground that it is physically unfeasible. Curiously
enough, there exists a practical model of hypercomputation (see [2]) which has a
(yet) unknown computational capability (in particular, it is not know whether it can
solve the Halting Problem).

4The period is often quoted as 18 months.
5One of the top academic conferences on chip design.
6Named after American mathematician Alonzo Church and his British Ph.D. student Alan Turing.

http://isscc.org
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31.3 Unconventional Computation or Unconventional
Computing?

The adjective unconventional means “not conforming to accepted rules or stan-
dards”. The name unconventional computation was chosen for its “neutrality”: it
included both major new computing trends at the time when it was coined, in 1994—
biological/molecular/DNA and quantum physics models—and gives none of them
any preference. The year 1994 was an exceptional time for both molecular and quan-
tum computation: Adleman’s molecular computation paper appeared in Science [6]
and Shor’s quantum algorithm for factoring quickly large integers was published in
the same year [23]. They both generated an immense interest across disciplines.

The adjective unconventional has also shortcomings. For example, it is time-
dependent: what is unconventional today might become conventional tomorrow.
Also, various researchers may have different opinions regarding whether a model of
computation is unconventional or not. For example, a model using a finite automa-
ton seems hardly unconventional now as it was in 1994: however, if the use of the
automaton is essentially different from the standard ones, then one could argue that
the model of computation is unconventional.

The initial title of the book [8] was TheHuman Face of Computation, a title coined
by Solomon Marcus, one of its contributors. Then, in a private exchange of emails,
Joseph Sifakis, another contributor, argued that “computing” is a better term than
“computation”. An interesting discussion, involving also Solomon Marcus, followed.

Computation refers to any type of calculation or use of computing technology
in information processing [24], while computing denotes any goal-oriented activity
requiring, benefiting from, or creating algorithmic processes, e.g. through comput-
ers [25]. Computing connotes the use (or study) of computers. Computation connotes
calculation (not necessarily by computer and not necessarily via mathematical oper-
ations, though this is technically what a computer does). Computation seems to be
more theoretical; computing tends to be more general.7 Also, as Marcus noted, “Com-
puting has only three syllables while computation has four; musically, the former is
better than the latter”. So the title of the book has been changed!

The initial title of the conferenceUnconventionalModels ofComputation has been
changed in 2005 to Unconventional Computation8 and again in 2012 to the current
Unconventional Computation and Natural Computation.9 Here the term “computa-
tion” has (till now?) survived.

7See more at [14].
8To emphasise both theoretical and practical studies.
9UCNC page: https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/uc/uc.html.

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/uc/uc.html
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31.4 Unconventional Models of Computation 1998
(UMC’98)

The first conference in the series was organised in Auckland New Zealand on 6–9
January 1998 by the Centre for Discrete Mathematics and Theoretical Computer
Science (https://www.cs.auckland.ac.nz/research/groups/CDMTCS/) in Auckland
and the Santa Fe Institute (http://www.santafe.edu).

The website of the conference appears in Fig. 31.1. Its proceedings [10] were pub-
lished by Springer and distributed to participants during the conference, see Fig. 31.2.
Pictures from the conference can be found at UMC98 pictures (https://www.cs.
auckland.ac.nz/research/groups/CDMTCS/conferences/umc98/umcphotos.html).

UMC-98
First International Conference on

UNCONVENTIONAL MODELS OF COMPUTATION

5-9 January 1998
Auckland, New Zealand

The First International Conference on Unconventional Models of Computation was organised by the
Centre for Discrete Mathematics and Theoretical Computer Science, NZ, and the Santa Fe Institute, USA.
The proceedings volume has been published in the DMTCS Series of Springer-Verlag, Singapore. Click
here for some photos.

This web page contains a number of pointers to information that may be of interest in the context of this
conference.

Call for Participation (old)
Programme
Electronic Conference Registration (old)
Registration of Interest (old)
Accommodation Information
Homepage of the Centre
Information about Auckland
Handy Restaurant Guide
Handy Cafe Guide
Handy Pub and Wine Bar Guide
Links to UMC-Related Web Pages
NZ Herald presentation
InfoTech Weekly presentation: Scientists Ponder Future of Computers
K. Svozil unconventional review (to appear in the EATCS Bull. 64(1998).)
K. Gh. Paun review (to appear in the EATCS Bull. 64(1998).)

Fig. 31.1 UMC’98 website (https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferen
ces/umc98/)

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/
http://www.santafe.edu
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/umc98/umcphotos.html
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/umc98/umcphotos.html
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/umc98/
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/umc98/
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The conference attracted a lot of attention. Various reports were published in
prestigious international publications like Nature [9], Complexity [11] and the Bul-
letin of the European Association for Theoretical Computer Science (64 (1998),
presentations by G. Păun (https://www.cs.auckland.ac.nz/research/groups/CDM
TCS/conferences/umc98/paun.pdf) and K. Svozil (https://www.cs.auckland.ac.nz/
research/groups/CDMTCS/conferences/umc98/karl.pdf)) as well as in local media,
New Zealand Herald (https://www.cs.auckland.ac.nz/research/groups/CDMTCS/
docs/nzherald.pdf) and InfoTech Weekly. Bob Doran’s Computer History Time
Line (https://www.cs.auckland.ac.nz/historydisplays/TimeLine/TimeLineMain.php)
which includes computing history displays in the Computer Science Department at
the University of Auckland also marks the UMC’98 event (https://www.cs.auckland.
ac.nz/historydisplays/TimeLine/TimeLine4.5/4.5.13-CDMTCS).

Fig. 31.2 UMC’98
Proceedings

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/umc98/paun.pdf
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/umc98/paun.pdf
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/umc98/karl.pdf
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/umc98/karl.pdf
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/docs/nzherald.pdf
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/docs/nzherald.pdf
https://www.cs.auckland.ac.nz/historydisplays/TimeLine/TimeLineMain.php
https://www.cs.auckland.ac.nz/historydisplays/TimeLine/TimeLine4.5/4.5.13-CDMTCS
https://www.cs.auckland.ac.nz/historydisplays/TimeLine/TimeLine4.5/4.5.13-CDMTCS
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31.4.1 Scope

By mid 1990s both areas of biological and quantum computing had their own spe-
cialised conferences. The scope of UMC’98 was to bring together researchers from as
many as possible areas of unconventional computing and encourage/stimulate inter-
action. The organisers paid special attention to “merge” in the programme papers
from different areas, to avoid the creation of clusters of specialised mini-conferences
and to stimulate interdisciplinarity.

31.4.2 Preparation

The conference took almost four years to prepare. As mentioned above, discussions
had started in 1994. The title included the word “model” because of the theoretical
nature of the domain at that stage: unconventional computation was on paper only!

In 1998 the area of unconventional computation included biological/molecular/
DNA and quantum models of computation, neural networks, cellular automata,
reversible computation, genetic algorithms, hyper-Turing machines or any other
model of computation going beyond Turing’s barrier and the meaning and relevance
of Church-Turing Thesis for the physics of computation.

31.4.3 Invited Speakers

The list of invited speakers consisted of a rather “unconventional” mixture of10

• well-known eminent researchers, H. Jeff Kimble, John. H. Reif and Arto Salomaa,
• and young rising stars, Martyn Amos, Artur Ekert, Seth Lloyd, and Christopher

Moore,

with slightly more from the latter category (all well-known researchers today).

31.4.4 Opposing “Philosophies”

In the final session we discussed the goals of biological and quantum computing. In
both areas “computers” were understood “by default” to be universal, i.e. equivalent
in power to a universal Turing machine.

Regarding the future, two interesting, divergent “philosophies” for quantum com-
puting emerged:

• for the Europeans the main interest was in using the new framework of quantum
computing to prove new impossibility results in quantum physics, in particular the
impossibility of building a “real” quantum computer, while

10In alphabetical order.
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• the Americans didn’t care much whether quantum computers can be built or not,
they were determined to build and commercialise them.

Today the idea of universality has been by and large abandoned. Various proposals
to solve “quickly” NP-hard problems have also been discarded because of practical
unfeasibility.

The European preference can be illustrated with the work on locating “value
indefinite observables” [1, 3] which led to a new form of the Kochen-Specker the-
orem [20] and a better understanding of the unpredictability of quantum mechanics
[4, 5].

In the area of quantum computing a new emerging trend called quassical com-
puting11 combines classical and quantum computing by taking advantage of their
complementary capabilities.12 The example of the adiabatic quantum machines D-
Wave produced by the Canadian company D-Wave Systems confirms the American
prediction. D-Wave One (2011) operates on a 128-qubit chipset while D-Wave Two
(2013) works with 512 qubits [15].

31.5 Unconventional Computation and Natural
Computation 2015 (UCNC’2015)

After Brussels, Belgium (December 2000), Kobe, Japan (October 2002), Sevilla,
Spain (October 2005), York, UK (September 2006), Kingston, Canada (August
2007), Vienna, Austria (August 2008), Ponta Delgada, Portugal (September 2009),
Tokyo, Japan (June 2010), Turku, Finland (June 2011), Orléans, France (September
2012) Milano, Italy (June 2013) and London, Ontario, Canada (July 2014), the 14th
Unconventional Computation and Natural Computation (http://ucnc15.wordpress.
fos.auckland.ac.nz) conference returns to Auckland, New Zealand and was held
from 31 August to 4 September 2015.

The UCNC conference series is overseen by a Steering Committee which includes
Thomas Back (Leiden University, The Netherlands), Cristian S. Calude (University
of Auckland, New Zealand), as founding chair, Lov K. Grover (Bell Labs, Murray
Hill, New Jersey, USA), Nataša Jonoska (University of South Florida, USA), as co-
chair, Jarkko Kari (University of Turku, Finland), as co-chair, Lila Kari (University
of Western Ontario, Canada), Seth Llloyd (Massachusetts Institute of Technology,
USA), Giancarlo Mauri (University of Milano-Bicocca, Italy), Gheorghe Păun (Insti-
tute of Mathematics of the Romanian Academy, Romania), Grzegorz Rozenberg
(Leiden University, The Netherlands), as emeritus chair, Arto Salomma (Univer-
sity of Turku, Finland), Tommaso Toffoli (Boston University, USA), Carme Torras

11A term coined by N. Allen [7].
12An early example of quassicality appears in [21] where a method to enhance Grover’s quantum
search by incorporating it into classical procedural algorithms is presented. See also [12].

http://ucnc15.wordpress.fos.auckland.ac.nz
http://ucnc15.wordpress.fos.auckland.ac.nz
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(Institute of Robotics and Industrial Informatics, Barcelona, Spain), and Jan Van
Leeuwen (Utrecht University, The Netherlands).

The list of main areas of interest of the conference has expanded consider-
ably: molecular (DNA) computing, quantum computing, optical computing, chaos
computing, physarum computing, computation in hyperbolic spaces, collision-
based computing; cellular automata, neural computation, evolutionary computation,
swarm intelligence, nature-inspired algorithms, artificial immune systems, artificial
life, membrane computing, amorphous computing; computational systems biology,
genetic networks, protein-protein networks, transport networks, synthetic biology,
cellular (in vivo) computing. computations beyond the Turing model and philosoph-
ical aspects of computing.

31.6 Unconventional Computing Journals

As in any new area of computer science, conferences dominate in the beginning,
then, after maturing, new international refereed specialised journals are founded.
For unconventional computing this process started in 2002:

• Springer journal Natural Computing (http://www.springer.com/computer/theoreti
cal+computer+science/journal/11047) founded in 2002 by G. Rozenberg.

• Elsevier journal Theoretical Computer Science C—Theory of Natural Comput-
ing (http://www.journals.elsevier.com/theoretical-computer-science) founded in
2004 by G. Rozenberg.

• Old City Publishing journal International Journal of Unconventional Computing
(http://www.oldcitypublishing.com/journals/ijuc-home/) founded in 2005 by A.
Adamatzky.

• IGI Global publisher journal International Journal of Nanotechnology and Molecu-
lar Computation (http://www.igi-global.com/journal/international-journal-nanote
chnology-molecular-computation/1117) founded in 2009 by B. MacLennan.

31.7 Unconventional Computing: An Area in Full
Expansion

An interesting article titled “Unconventional Computing” [13] commenting on recent
achievements in the field was written by V. Cerf, the Chief Internet Evangelist at
Google. Among them is the IBM TrueNorth (http://www.research.ibm.com/articles/
brain-chip.shtml), the one million neuron brain-inspired processor. The chip con-
sumes just 70 mW and is capable of 46 billion synaptic operations per second, per
watt, “literally a synaptic supercomputer in your palm”.

The advance in neural chips, Watson-like systems and quantum computers require
strategies, solutions and programming styles very different from those used in con-

http://www.springer.com/computer/theoretical+computer+science/journal/11047
http://www.springer.com/computer/theoretical+computer+science/journal/11047
http://www.journals.elsevier.com/theoretical-computer-science
http://www.oldcitypublishing.com/journals/ijuc-home/
http://www.igi-global.com/journal/international-journal-nanotechnology-molecular-computation/1117
http://www.igi-global.com/journal/international-journal-nanotechnology-molecular-computation/1117
http://www.research.ibm.com/articles/brain-chip.shtml
http://www.research.ibm.com/articles/brain-chip.shtml
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ventional computing (see, for example [12]). Academia13 is not anymore the sole
place for such studies: commercial companies, from those with a well-established
research track-record like IBM and Lockheed Martin, to new ones, like D-Wave Sys-
tems or TDK-Headway Technologies, and to IT giants like Google and Microsoft,
have ambitious programmes.

International projects like Truce (www.truce-project.eu), Training and Research
in Unconventional Computing, a Coordination Action, supported by the Future and
Emerging Technologies (FET) programme within the ICT theme of the Seventh
Framework Programme for Research of the European Commission, play an important
role.
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