
Chapter 9
On Synthesis and Solutions of Nonlinear
Differential Equations—A Bio-Inspired
Approach

Ivan Zelinka

Abstract This chapter discusses an alternative approach for mathematical-physical
problems solution by means of bio-inspired methods, especially by evolutionary
algorithms. Twodifferent approaches are demonstrated here. Thefirst one is the use of
evolutionary algorithms on design, parameter estimation and control of the chemical
reactor that is represented by 5 nonlinear and mutually joined differential equations,
the second one is the use of analytic programming (method of the same class as
genetic programming or grammatical evolution) to solve two different differential
equations (4th and 2nd order), that represent problems from civil engineering by
appropriate function synthesis. Theoretical background as well as applications are
discusses here.

9.1 Introduction

Evolutionary computation is a sub-discipline of computer science belonging to the
‘bio-inspired’ computing area. The main ideas of evolutionary computation have
been published for example in [1] and widely introduced to the scientific community
[6, 8]. The most well known evolutionary techniques are Genetic Algorithms (GA)
introduced by J. Holland [6, 8] based on ideas of A.M Turing [7] and based on first
computer experiments by Barricelli in [2], Evolutionary Strategies (ES) by Schwefel
[21] and Rechenberg [18] and Evolutionary Programming (EP) by Fogel [5] for
example.

The main idea is that every individual of a species can be characterized by its
features and abilities that help it to cope with its environment in terms of survival
and reproduction. These features and abilities can be termed by its fitness and are
inheritable via its genome. In the genome the features/abilities are encoded. The

I. Zelinka (B)
Faculty of Electrical Engineering and Computer Science, Department of Computer Science,
VSB-TU, 17. Listopadu 15, Ostrava-Poruba, Czech Republic
e-mail: ivan.zelinka@vsb.cz
URL:http://www.ivanzelinka.eu

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 23,
DOI 10.1007/978-3-319-33921-4_9

213

214 I. Zelinka

code in the genome can be viewed as a kind of description that allows to store,
process and transmit the information needed to build the individual. So, the fitness
coded in the parent’s genome can be handed over to new descendants and support
the descendants in performing in the environment. The evolutionary principles are
transferred into computationalmethods in a simplified form that will be outlined now.
If the evolutionary principles are used for the purposes of calculations, the following
procedure is used, as reported in [26]:

1. Specification of the EA parameters: For each algorithm, parameters that control
the run of algorithm or terminate it regularly must be defined, if the termination
criterion defined in advance are fulfilled (for example, the number of cycles—
generations). Part of this point is the definition of the cost function (objective
function) or, as the casemay be, what is called fitness—amodified return value of
the objective function). The objective function is usually a mathematical model
of the problem, whose minimization or maximization leads to the solution of the
problem.

2. Generation of the initial population (generally N × M matrix, where N is the
number of parameters of an individual—D. Depending on the number of opti-
mized arguments of the objective function and the user’s criterions, the initial
population of individuals is generated. An individual is a vector of numbers hav-
ing such a number of components as the number of optimized parameters of the
objective function. These components are set randomly and each individual thus
represents one possible specific solution of the problem. The set of individuals
is called population.

3. All the individuals are evaluated through a defined objective function and to each
one of them fitness value is assigned, which is a modified (usually normalized)
value of the objective function, or directly the value of the objective function.

4. Now parents are selected according to their quality (fitness, value of the objective
function) or, as the case may be, also according to other criterions.

5. Descendants are created by crossbreeding the parents. The process of cross-
breeding is different for each algorithm. Parts of parents are changed in classic
genetic algorithms, in a differential evolution, crossbreeding is a certain vector
operation, etc.

6. Every descendant is mutated by presence of randomness. In other words, a
new individual is changed by means of a suitable random process. This step
is equivalent to the biological mutation of the genes of an individual.

7. Every new individual is evaluated in the same manner as in step 3.
8. The best individuals are selected.
9. The selected individuals fill a new population.
10. The old population is eliminated and is replaced by a new population; step 4

represents further continuation.

Steps 4–10 are repeated until the number of evolution cycles (generations etc.)
specified before by the user is reached or if the required quality of the solution is
not achieved. The principle of the evolutionary algorithm outlined above is general

9 On Synthesis and Solutions of Nonlinear Differential … 215

and might more or less differ in specific cases. For more detailed overview about
evolutionary algorithms we strongly recommend to read [26].

Together with, say classical evolutionary algorithms, an alternative approach how
to use evolution has been developed (since 90’s) so that instead of numerical solutions
(i.e. unknownparameters estimation) of given problem, symbolic solutions have been
derived in the form of mathematical formulas, electronic circuits etc. Generally this
approach can be called as “symbolic regression” and the most popular and classic
approaches are for example Genetic Programming (GP) [11] or Grammatical Evo-
lution (GE) [15]. Another interesting research was carried out by Artificial Immune
Systems (AIS) or/and systems, which do not use tree structures like linear GP and
other similar algorithm like Multi Expression Programming (MEP), etc.

In this chapter, a differentmethod calledAnalytic Programming (AP) [27], is used.
AP is a grammar free algorithm—structure, which can be used by any programming
language and also by any arbitrary evolutionary algorithm (EA) or another class of
numerical optimization method.

The term symbolic regression represents a process during which measured data
sets are fitted, thereby a corresponding mathematical formula is obtained in an ana-

lytical way. An output of the symbolic expression could be, for example, N

√
x2 + y3

k ,
and the like. For a long time, symbolic regression was a domain of human calcula-
tions but in the last few decades it involves computers for symbolic computation as
well.

For closer description of the theoretical principles of AP it is recommended to
study [27]. Comparative studies with selected well known case examples from GP
as well as applications on synthesis of: controller, systems of deterministic chaos,
electronics circuits, etc. are described there. For simulation purposes, AP has been
co-joinedwith EA’s likeDifferential Evolution (DE) [22], Self-OrganizingMigrating
Algorithm (SOMA) [3], GeneticAlgorithms (GA) [6] and SimulatedAnnealing (SA)
[4, 10]. All case studies are described, mentioned and referenced there.

The initial idea of symbolic regression by means of a computer program was
proposed in GP [11]. The other approach of GE was developed in [15] and AP in
[27]. Another interesting investigation using symbolic regression was carried out in
[20] on AIS and Probabilistic Incremental Program Evolution (PIPE), which gener-
ates functional programs from an adaptive probability distribution over all possible
programs. Yet another new technique is the so called Transplant Evolution, see
[23] or [24] which is closely associated with the conceptual paradigm of AP, and
modified for GE. GE was also extended to include DE by [14]. Symbolic regres-
sion is schematically depicted in Fig. 9.1. Generally speaking, it is a process which
combines, evaluates and creates more complex structures based on some elemen-
tary and non-complex objects, in an evolutionary way. Such elementary objects are
usually simple mathematical operators (+,−,×, . . .), simple functions (sin, cos,
And, Not , …), user-defined functions (simple commands for robots—MoveLeft,
TurnRight, …), etc. An output of symbolic regression is a more complex “object”
(formula, function, command,…), solving a given problem like data fitting of the so-
called Sextic and Quintic problem described by Eq. (9.1) [12], randomly synthesized

216 I. Zelinka

Fig. 9.1 Symbolic regression—schematic view

function by Eq. (9.2), Boolean problems of parity and symmetry solution (basically
logical circuits synthesis) by Eq. (9.3) [11, 29], or synthesis of quite complex robot
control command by Eq. (9.4) [12, 16]. Equations (9.1)–(9.4) mentioned here are
just a few samples from numerous repeated experiments done by AP, which are used
to demonstrate how complex structures can be produced by symbolic regression in
general for different problems.

x

(
K1 +

(
x2K3

)

K4 (K5 + K6)

)
∗ (−1 + K2 + 2x (−x − K7)) (9.1)

√
t

(
1

log (t)

)sec−1(1.28)

logsec
−1(1.28) (sinh (sec (cos (1)))) (9.2)

Nor [(Nand[Nand[B || B, B && A], B]) && C && A && B,

Nor [(!C && B && A || !A && C && B || !C && !B && !A) &&
(!C && B && A || !A && C && B || !C && !B && !A) ||
A && (!C && B && A || !A && C && B || !C && !B && !A),

(C || !C && B && A || !A && C && B || !C && !B && !A) && A]]

(9.3)

Prog2[Prog3[Move, Right, IfFoodAhead[Left, Right]],
IfFoodAhead[IfFoodAhead[Left, Right], Prog2[IfFoodAhead[
IfFoodAhead[IfFoodAhead[Left, Right], Right], Right],
IfFoodAhead[Prog2[Move, Move], Right]]]]

(9.4)

Lets briefly discuss the main ideas of GP, GE and AP to give better overview of
SR background in order to understand how it has been used on examples here.

9 On Synthesis and Solutions of Nonlinear Differential … 217

9.1.1 Genetic Programming

GP was the first tool for symbolic regression carried out by means of computers
instead of humans. The main idea comes from GA, which was used in GP [11, 12].
Its ability to solve very difficult problems iswell proven; for example, GP performs so
well that it can be applied to synthesize highly sophisticated electronic circuits, etc.

The main principle of GP is based on GA, which is working with populations of
individuals represented in the LISP programming language. Individuals in a canoni-
cal form ofGP are not binary strings, different fromGA, but consist of LISP symbolic
objects (commands, functions, …), etc. These objects come from LISP, or they are
simply user-defined functions. Symbolic objects are usually divided into two classes:
functions and terminals. Functionswere previously explained and terminals represent
a set of independent variables like x , y, and constants like π, 3.56, etc.

The main principle of GP is usually demonstrated by means of the so-called trees
(basically graphs with nodes and edges, as shown in Figs. 9.2 and 9.3, representing
individuals in LISP symbolic syntax). Individuals in the shape of a tree, or formula
like 0.234 Z + X − 0.789, are called programs. Because GP is based on GA,

Fig. 9.2 Parental trees

Fig. 9.3 Offsprings

218 I. Zelinka

evolutionary steps (mutation, crossover, …) in GP are in principle the same as GA.
As an example, GP can serve two artificial parents—trees on Figs. 9.2 and 9.3, repre-
senting programs 0.234 Z + X − 0.789 and ZY (Y + 0.314Z). When crossover
is applied, for example, subsets of trees are exchanged. Resulting offsprings of this
example are shown on Fig. 9.3.

Subsequently, the offspring fitness is calculated, such that the behavior of the
just-synthesized and evaluated individual-tree should be as similar as possible to the
desired behavior. The desired behavior can be regarded as a measured data set from
some process (a program that should fit them as well as possible) or like an optimal
robot trajectory, i.e., when the program is evaluating a sequence of robot commands
(TurnLeft, Stop, MoveForward,...) leading as close as possible to the final position.
This is basically the same for GE.

For detailed description of GP, see for example classical books [11, 12].

9.1.2 Grammatical Evolution

GE is another program developed in [15] which performs a similar task to that of GP.
GE has one advantage over GP, which is the ability to use any arbitrary programming
language, not only LISP as in the case of the canonical version of GP. In contrast
to other EA’s, GE was used only with a few search strategies, and with a binary
representation of the populations. The last successful experiment with DE applied
on GE was reported in [14]. GE in its canonical form is based on GA, thanks to
few important changes it has in comparison with GP. The main difference is in the
individual coding.

While GP manipulates in LISP symbolic expressions, GE uses individuals based
on binary strings. These are transformed into integer sequences and then mapped
into a final program in the Backus-Naur Form (BNF) [15], as explained by the
following artificial example. Let T = {+,−,×, /, x, y} be a set of operators and
terminals and let F = {epr, op, var} be the so-called nonterminals. In this case, the
grammar used for final program synthesis is given in Table9.1. The rule used for
individuals transforming into a program is based on Eq. (9.5) below. GE is based on
binary chromosome with a variable length, divided into the so-called codons (range
of integer values, 0–255), which is then transformed into an integer domain according
to Table9.2.

unfolding = codon mod rules
where rules is number of rules for given nonterminal

(9.5)

Synthesis of an actual program can be described by the following. Start with a
nonterminal object expr. Because the integer value of Codon 1 (see Table9.2) is 40,
according to Eq. (9.5), one has an unfolding of expr = op expr expr (40 mod 2, 2 rules
for expr, i.e., 0 and 1). Consequently, Codon 2 is used for the unfolding of op by *
(162 mod 4), which is the terminal and thus the unfolding for this part of program is

9 On Synthesis and Solutions of Nonlinear Differential … 219

Table 9.1 Grammatical evolution—rules

Nonterminals Unfolding Index

expr ::= op expr expr 0

var 1

op ::= + 0’

- 1’

* 2’

/ 3’

var :: X 0”

Y (1”)

Table 9.2 Grammatical evolution—codon

Chromozone Binary Integer BNF index

Codon 1 101000 40 0

Codon 2 11000011 162 2’

Codon 3 1100 67 1

Codon 4 10100010 12 0”

Codon 5 1111101 125 1

Codon 6 11100111 231 1”

Codon 7 10010010 146 Unused

Codon 8 10001011 139 Unused

closed. Then, it continues in unfolding of the remaining nonterminals (expr expr) till
the final program is fully closed by terminals. If the program is closed before the end
of the chromosome is reached, then the remaining codons are ignored; otherwise,
it continues again from the beginning of the chromosome. The final program based
on the just-described example is in this case x · y (see Fig. 9.4). For a fully detailed
description of GE principles, see [15].

Fig. 9.4 Final program by GE

220 I. Zelinka

9.1.3 Analytic Programming

The final method described here and used for experiments in this chapter is called
AP, which has been compared to GP with very good results (see, for example, [16,
27, 29]).

The basic principles of AP were developed in 2001 [27] and it is also based on the
set of functions, operators and terminals, which are usually constants or independent
variables alike, for example:

• functions: sin, tan, tanh, And, Or , …
• operators: +, -, ×, /, dt , …
• terminals: 2.73, 3.14, t , …

All these objects create a set, from which AP tries to synthesize an appropriate
solution. Because of the variability of the content of this set, it is called a general
functional set (GFS). The structure of GFS is nested, i.e., it is created by subsets of
functions according to the number of their arguments (Fig. 9.5). The content of GFS
is dependent only on the user. Various functions and terminals can be mixed together.
For example, GFSall is a set of all functions, operators and terminals, GFS3arg is a
subset containing functions with maximally three arguments, GFS0arg represents
only terminals, etc. (Fig. 9.5).

AP, as further described later, is a mapping from a set of individuals into a set
of possible programs. Individuals in population and used by AP consist of non-
numerical expressions (operators, functions, …), as described above, which are
represented by their integer position indexes in the evolutionary process (Figs. 9.6
and 9.7, see also Chap.2). This index then serves as a pointer into the set of

Fig. 9.5 Hierarchy in GFS

http://dx.doi.org/10.1007/978-3-319-33921-4_2

9 On Synthesis and Solutions of Nonlinear Differential … 221

Fig. 9.6 DSH-Integer index, see Chap.2

Fig. 9.7 Principle of
mapping from GFS to
programs

expressions and AP uses it to synthesize the resulting function-program for cost
function evaluation.

Figure9.7 demonstrates an artificial example how a final function is created from
an integer individual via Discrete Set Handling (DSH). Number 1 in the position of
the first parameter means that the operator + from GFSall is used (the end of the
individual is far enough). Because the operator + must have at least two arguments,
the next two index pointers 6 (sin from GFS) and 7 (cos from GFS) are dedicated
to this operator as its arguments. The two functions, sin and cos, are one-argument
functions, so the next unused pointers 8 (tan from GFS) and 9 (t from GFS) are
dedicated to the sin and cos functions. As an argument of cos, the variable t is
used, so this part of the resulting function is closed (t is zero-argument) in its AP
development. The one-argument function tan remains, and because there is one
unused pointer 9, tan is mapped on t which is on the 9th position in GFS.

http://dx.doi.org/10.1007/978-3-319-33921-4_2

222 I. Zelinka

To avoid synthesis of pathological functions, a few security tricks are used in AP.
The first one is that GFS consists of subsets containing functions with the same or
a smaller number of arguments. The nested structure (see also Fig. 9.5) is used in
the special security subroutine, which measures how far the end of an individual
is and, according to this, mathematical elements from different subsets are selected
to avoid pathological functions synthesis. More precisely, if more arguments are
desired then a possible function (the end of the individual is near) will be replaced by
another function with the same index pointer from the subset with a smaller number
of arguments. For example, it may happen that the last argument for one function
will not be a terminal (zero-argument function). If the pointer is longer than the
length of subset, e.g., a pointer is 5 and is used GFS0, then the element is selected
according to the rule: element= pointer_value mod number_of_elements_in_GFS0.
In this example, the selected element would be the variable t (see GFS0 in Fig. 9.5).

GFS need not be constructed only from clear mathematical functions as demon-
strated above, but may also be constructed from other user-defined functions, e.g.,
logical functions, functions which represent elements of electrical circuits or robot
movement commands, linguistic terms, etc.

9.1.3.1 Versions

AP was evaluated in three versions. All three versions utilize the same set of func-
tions for program synthesis, terminals, etc., as in GP [11, 12]). The second version
labelled as APmeta (the first version, APbasic) is modified in the sense of constant
estimation. For example, the so-called sextic problem was used in [12] to randomly
generate constants, whereas AP uses only one, called K , which is inserted into the
formula (9.6) below at various places by the evolutionary process. When a program
is synthesized, all K ’s are indexed as K1, K2, …, Kn to obtain (9.7) the formula,
and then all Kn are estimated by using a second EA, the result of which can be, for
example, (9.8). Because EA (slave) “works under” EA (master), i.e., EAmaster →
program → K indexing → EAslave → estimation of Kn , this version is called AP
with metaevolution, denoted as APmeta .

x2 + K

πK
(9.6)

x2 + K1

πK2
(9.7)

x2 + 3.56

π−229
(9.8)

Due to this version being quite time-consuming, APmeta was further modified to
the third version, which differs from the second one in the estimation of K . This is

9 On Synthesis and Solutions of Nonlinear Differential … 223

accomplished by using a suitable method for nonlinear fitting (denoted APn f). This
method has shown the most promising performance when unknown constants are
present. Results of some comparative simulations can be found in [27]. APn f was
the method chosen for the simulations described in this chapter.

9.1.3.2 Analytic Programming Subroutines

AP described above is in full detail explained in [27]. Special procedures, that ensure
that AP is stable, fast and efficient algorithm are described there. Reader who is inter-
ested in this topic can get an explanation what structure is created by basic building
block elements, how is individual (i.e. the vector of the real number representation)
mapped into space of possible programs/solutions (i.e. math formulas, electronic
circuits etc.), how crossover and mutation are done, what is reinforced AP evolution
as well as how, so called security procedures, are used to ensure that AP will gener-
ate “non-pathological” solutions (i.e. closed solutions—no divide by 0, synthesized
function has all arguments as needed etc.). Also similarities and differences between
AP, GP and GE are discussed in [27].

9.2 Selected Applications

This section briefly describes some selected applications of classical EA and AP use,
which have been conducted during the past few years. The most representative from
our own research are

1. Evolutionary control of the chemical reactor control and synthesis of its geomet-
rical structure and parameters estimation.

2. Civil engineering problem solution.

The first case has been solved by classical evolutionary approach and the second
one by means of SR with AP and SOMA use.

9.2.1 Chemical Reactor—Predictive Control and Design

Chemical process control requires intelligent monitoring due to the dynamic nature
of the chemical reactions and the non-linear functional relationship between the
input and output variables involved. Chemical reactors are one of the major process-
ing units in many chemical, pharmaceutical and petroleum industries as well as in
environmental and waste management engineering. In spite of continuing advances
in optimal solution techniques for optimization and control problems, many of such
problems remain too complex to be solved by the known techniques. In chemical
engineering, evolutionary optimization has been applied by the author and others to

224 I. Zelinka

system identification a model of a process is built and its numerical parameters are
found by error minimization against experimental data. Evolutionary optimization
has been widely applied to the evolution of neural networks models for use in control
applications. The area of reactor network synthesis currently enjoys a proliferation
of contributions in which researchers from various perspectives are making efforts to
develop systematic optimization tools to improve the performance of chemical reac-
tors. The contributions reflect on the increasing awareness that textbook knowledge
and heuristics [13], commonly employed in the development of chemical reactors,
are now deemed responsible for the lack of innovation, quality, and efficiency that
characterizes many industrial designs, [13]. The main aim of this participation is to
show that evolutionary algorithms (EAs) are capable of optimization on chemical
engineering processes. The ability of EAs to successfully work with at investiga-
tion on optimization and predictive control of chemical reactors. Firstly, a nonlinear
mathematical model is required to describe the dynamic behavior of batch process;
this justifies the use of evolutionary method to deal with this process, for static opti-
mization of a chemical continuous stirred tank reactor. Consequently, it is used to
design geometry technique equipment for chemical reaction. In the next part, we
have used EAs to predictive control of chemical process of reactor, too. The opti-
mized reactor and predictive control were used in a simulation with optimization
by evolutionary algorithms and the results are presented in graphs. The use of evo-
lutionary algorithms in optimization and control of chemical technologies is very
important today and many researchers are working in that field. They are using clas-
sical as well as evolutionary algorithms for those purposes, lets mention for example
[13, 17] for more classical approach to solve problems of chemical technologies,
[9]. Surprisingly, many problems can be defined as optimization problems, e.g. the
optimal trajectory of robot arms; the optimal thickness of steel in pressure vessels;
the optimal set of parameters for controllers; optimal relations or fuzzy sets in fuzzy
models; and so on. Solutions to such problems are usually more or less hard to arrive
at, their parameters usually including variables of different types, such as real or
integer variables. Evolutionary algorithms are quite popular because they allow the
solution of almost any problem in a simplified manner, because they are able to han-
dle optimizing tasks with mixed variables—including the appropriate constraints, as
and when required. This paper explains SOMA’s use on design and predictive control
of given chemical reactor.

9.2.1.1 Reactor Description

Model of the reactor as depicted in Fig. 9.8 inside which above-mentioned reactions
can be realized was given by the system of equations (9.9). This is set of 5 nonlinear
differential equations that are mutually joined and coupled. Exact solution of such
kind of equation system is in an analytic way usually very hard or impossible. In the
system (9.9) there are alsomany free, i.e. adjustable parameters. The set of adjustable
parameters is in Table9.3. Some of them are given by kind of chemical reactions
running inside reactor, some of them can be set ‘arbitrary’ based on expert knowledge

9 On Synthesis and Solutions of Nonlinear Differential … 225

Fig. 9.8 Reactor scheme

Table 9.3 Chemical reactor adjustable parameters

Value Units in SI Description

m Kg Chemical mass inside reactor

mA Kgs−1 Chemical input A

mB Kgs−1 Chemical input B

aA % Concentration of chemical o input A

aB % Concentration of chemical on input B

TA K Input temperature of chemical on input A

TB K Input temperature of chemical on input B

T1 K Input temperature of cooling medium

mP Kgs−1 Output of chemical product

S m2 Cooling surface

m0 Kgs−1 I/O cooling medium

mX Kg Cooling medium inside reactor

or/and by selected numerical methods of optimization. For our purposes the set of
adjustable parameters is in Table9.3. The chemical reactions in this reactor belong
to the class of exothermic reactions (releasing heat) so reactor needs to be cooled, as
mentioned on the Fig. 9.8 (double reactor wall for cooling medium). For more about
chemical reactors and its control it is recommended to see for example [13, 17].

226 I. Zelinka

ȧAP = aAmA
m − aAP (t)mP

m − Ae− E
RTP (t) aAP(t)aBP(t)

ȧBP = aBmB
m − aBP (t)mP

m − Ae− E
RTP (t) aAP(t)aBP(t)

ȧP = Ae− E
RTP (t) aAP(t)aBP(t) − aP (t)mP

m

ṪP = TAmAcA
mcP

− TBmBcB
mcP

+ Ae
− E

RTP (t) aAP (t)aBP (t)�Ḣr

cP
− Sk p1TP (t)

mcP
− mPTP (t)

m + Sk p1Tx (t)
mcP

Ṫx = T1mx
m0

+ Sk p1TP (t)
m0cX

− TP (t)mX

m0
− Sk p1TX (t)

m0cX
(9.9)

Certain class of chemical reactions like enzymatic dechromation technology, etc.
can be realized inside this kind of reactor. The advantage of the enzymatic reac-
tion is the production of protein hydrolyzates of relatively good quality and chrome
sludge. Using organic bases to form alkaline reaction mixture increases the qual-
ity of both its products. A partial regeneration of organic base when diluted protein
hydrolyzates undergo concentration cuts the operating costs of enzymatic hydrolysis.
In commercial application, the greatest volume of protein hydrolyzate is channelled
into agriculture. Hydrolyzate, as an organic nitrogenous fertilizer, not only equals
the combined urea-ammonium nitrate fertilizer in crop yield, but also surpasses its
manifolds in the foodstuff value of consumer’s greens. The content of nitrates is as
much as 200 times lower on average. Hydrolyzate is also used in the manufacture
of biodegradable foil, especially for producing sowing tape. Application of protein
hydrolyzates appears to have good potential in the building industry and in manufac-
ture of modified amino-plastic for adhesive compounds of zero, or at least very low,
free formaldehyde content. A serious problem, and at present one lacking a com-
pletely satisfactory solution, is the development of recycling technology for chrome
from so called filter cake. The main obstacle for the utilization of the chrome sludge
is a relatively high content of proteins in the dry substance of cake. In closing, it
may be said that enzymatic hydrolysis has a place in the treatment of chromium con-
taining tannery waste and the funds expended on this field of research have brought
satisfactory results.

9.2.1.2 Experiment Design and Used Algorithms

For our experiments, focused on predictive control of reactor (9.9), described here,
reactor has been tested for its behavior under expert setting and evolutionary esti-
mated and set parameters. Before predictive control has been tested on this reactor,
behavior of reactor was investigated in order to select the best configuration for pre-
dictive control experiments. This was done in [28] and is onlymentioned here. Expert
parameters were used for initial—original setting. They come from experiences of
experts and literature and were partly obtained during visit in laboratory, Resine and
Composite for Forest Products‘ in Sainte-Foy, Canada. This set of parameters con-
sisted of two kind of parameters i.e. parameters of chemical materials and physical
parameters of reactor under consideration, see system of (9.9). An initial condi-
tions (aAP0, aBP0, aP0, TP0, TX0,) used in following simulations are also described
in Eq. (9.9). As the result shows [28] the reactor under expert parameters produce

9 On Synthesis and Solutions of Nonlinear Differential … 227

unsatisfactory behavior [28]. Reactor production stabilizes itself (i.e. without control
procedure) after 27h on 15% concentration of output chemical. From that point of
view above-mentioned parameters were regarded as unsatisfactory. Used evolution-
ary algorithm was SOMA [3, 25]. It is a stochastic optimization algorithm that is
modeled based on the social behavior of competitive—cooperating individuals. It
was chosen because it has been proven that this algorithm has the ability to converge
towards the global optimum. Before predictive control a few static optimizations
by SOMA algorithm were consequently done in [28]. They were done in following
steps:

1. Optimization without restrictions.
2. Optimization with restrictions applied exactly in given time.
3. Optimization with penalty applied during time interval.
4. Optimization with penalty applied during time interval and sub optimization of

cooling surface.

The last static optimization is the important one. Each of four optimization cases
was 10× repeated and consequently depicted [28]. From all 10 simulations the best
reactor was finally chosen. In all four cases evolutionary optimizationwas focused on
parameters (Table9.3) estimation. According to reactor setting based on the Table9.3
a global extreme was found in 13th dimensional configuration space. Last 13th
dimension was cost value of cost function. In case of the last optimization (opti-
mization with penalty applied during time interval and sub-optimization of cooling
surface) searching for global extreme had run in 11th dimensional space because of
relations among some parameters. Based on this, we decided that for predictive con-
trol (again done by evolutionary algorithms) will be used reactor whose structure was
optimized by evolutionary algorithms. As mentioned in [28], reactor under expert
parameters produce unsatisfactory behavior. Reactor production stabilizes itself (i.e.
without control procedure) after 27h on 15% concentration of output chemical. Opti-
mization of the parameters and reactor structure gives configuration, in which reactor
production stabilizes itself (i.e. without control procedure) after 8min on 50% con-
centration of output chemical. It is 0.009 of the original time from expert set reactor.
Thus improvement of the reactor is more than significant.

Differences between the two reactors are best seen in Table9.5. Parameters
expertly designed reactor and parameters obtained by static optimization are reported
there. What is clear from both sets of parameters, the size of the reactor, which was
the most successful optimization tied to the volume and surface cooling reactor is
not clear from the Table9.5. The terms rS radius rm and �r (for the optimal case,
the reactor is completely filled) are reported there. The parameter rs is the radius
of the reactor in the event that this relates to the cooling surface S and the radius rm
related to the total reactor volume derived from the m. In the original reactor there
is a visible the gap between the two radii, which means that the reactor would need
either additional auxiliary cooling surface or part of the cooling surface should not
to be used. This is not the case of the optimized reactor. The parameter �r is the dif-
ference between the outer and inner radius because it is a double-walled reactor. The

228 I. Zelinka

original reactor is the distance between outer and inner casing �r = 0.08m while
the optimized �r = 0.14m. Remaining parameters are clearly seen from Tables.

The cost value which minimization leads to the optimal control setting was done
by Eq. (9.10) which consist of two parts. The first one was output product concen-
tration aP and the second output product temperature TP . In fact during whole study
has been used different cost functions (as mentioned in [28]) like Eq. (9.10) (basic
optimization of the reactor structure), (9.11) (basic control on fixed output concen-
tration of chemical and temperature ap), (9.12) and (9.13) advanced cost functions
for predictive control without and with penalization of output quality.

fcost = 0.6 −
1000∑

t=500

aP (t) (9.10)

fcost =
3000∑

i=0

ap(i) + Tp(i) i = {0, 10, 20, . . . , 3000} (9.11)

fcost = |0.6 − aP (t)| + |aAP (τ)| + |aBP (τ)| + |TP (τ)| + |TX (τ)|
where

t = 1200
τ = 100

under conditions

aAP (τ) =
{

0
100 aAP (τ)

i f aAP (τ) ∈< 0, 1 >

else

aBP (τ) =
{

0
100 aBP (τ)

i f i aBP (τ) ∈< 0, 1 >

else

TP (τ) =
{

0
TP (τ)

i f TP (τ) ∈< 273.15, 273.15 + 150 >

else

TX (τ) =
{

0
TX (τ)

i f TX (τ) ∈< 273.15, 273.15 + 500 >

else

(9.12)

fcost = 0.6 −
1000∑
t=500

aP (t) + |aAP (τ)| + |aBP (τ)| + |TP (τ)| + |TX (τ)|

under conditions f or τ ∈< 500, 1000 >

aAP (τ) =
{

0
100 Max(aAP (τ))

i f Max(aAP (τ)) & Min(aAP (τ)) ∈< 0, 1 >

else

aBP (τ) =
{

0
100 Max(aBP (τ))

i f Max(aBP (τ)) & Min(aBP (τ)) ∈< 0, 1 >

else

TP (τ) =
{

0
Max(TP (τ))

i f Max(TP (τ)) & Min(TP (τ)) ∈< 273.15, 273.15 + 150 >

else

TX (τ) =
{

0
Max(TX (τ))

i f Max(TX (τ)) & Min(TX (τ)) ∈< 273.15, 273.15 + 150 >

else
(9.13)

9 On Synthesis and Solutions of Nonlinear Differential … 229

9.2.1.3 Predictive MIMO Evolutionary Control

Themain aim of this experimentwas to provide predictive control of chemical reactor
(9.9), see also [13, 17]. In this case control was considered as the MIMO (multiple
input–multiple output) control. Control process was done by evolutionary algorithms
use instead of classical controller. Selected algorithm was SOMA [3] and was used
like predictive controller estimating control parameters for reactor in order to reach
desired values aAP in the shortest time for different values of aAP = 0.35, 0.25, 0.1,
0.45(output concentration) and constant TP (product temperature). The cost function
(the predictive control functional) that has to be minimized by SOMA, in order to
follow aAP and TP was given by Eq. (9.14).

J (N1, N2, Nu) =
L∑

i=1

N2∑

j=1

ηi (j)[y(k + j) − w(k + j)]2+
M∑

i=1

Nu∑

j=1

λi (j)[�u(k + j − 1)]2

(9.14)

In this functional there is variable penalty of overshooting (controlled trajectory
can overshoot desired value w and thus needs to be penalized) and in fact there are
2 of them (L = 2, penalization of two outputs). The dimension of inputs was 5: λ =
�mA,�mB,�TA,�TB,�T1 = [400, 200, 20, 20, 20], i.e. MIMO 5:2. Controlled
variables ap and Tp were penalized when controlled values overstepped bigger value
than η = ap, TP = [400, 20]. These parameters were chosen so that the effects of the
two controlled variables on the resulting value of the functional approximately equal.
Penalization of ap was selected in the bigger range than of Tp. Thanks to this the
impact of penalization on the final value of the functional was at least approximately
the same level. Optimization would run of course even for the badly set penalization
or also without it. Used algorithm would then put more emphasis on changing the
values onwhich it was appropriate functionalmore sensitive, i.e. those that contribute
more to change its cost value. The above values have been set approximate based
on trial and error approach. Those that are numerically shown above, this seemed to
be the most suitable for control of the proposed reactor above (9.9). Compared to
classical approach of the predictive control, special feature of these simulations was
that it did not carry out the calculation of the new controller output in each kth step,
but only if system behavior was changed by some external error or by change in the
desired values. Given that, control actions were calculated based on the knowledge
of future behavior (according to model reactor), it is still predictive control despite
modification of the standard conventions for calculating control actions at each step
k. This predictive control has been taken for the variable of mass flow rates and
temperatures of both input products including coolant temperature. There were done
twokinds of predictive control,without andwith penalization of the output-controlled
values [28], see also Figs. 9.9 and 9.10.

230 I. Zelinka

Fig. 9.9 Controlled
concentration

Fig. 9.10 Controlled
temperature

9.2.1.4 Results

As discussed in the previous section, MIMO 5:2 was used in chemical reactor to
control two kinds of predictive control, without and with penalization of the output-
controlled values. Selected Figs. 9.9 and 9.10 from our experiments show both kinds
of simulations that have been 4 times repeated and all 4 simulations were depicted in
one figure to show its quality and diversibility. Figures9.9 and 9.10 show how output
variable ap followed changes of desired value and how Tp stand on desired value for
the control with penalization. Results are also reported in the Tables9.4 and 9.5 and
are calculated according to Eqs. (9.10)–(9.13). As seen from figures (Figs. 9.9
and 9.10) and tables, penalization plays important role in such kind of optimiza-
tion and control.

9 On Synthesis and Solutions of Nonlinear Differential … 231

Table 9.4 Optimal reactor
behavior estimated by
evolution

Parameter ap Tp

Max 11.46 767.36

Avg 9.05 711.24

Min 6.99 654.15

Table 9.5 Difference
between selected reactor
parameters

Parameters Expert setting SOMA setting

rs 11.46 767.36

rm 9.05 711.24

�r 6.99 654.15

9.2.2 Symbolic Solution of the Nonlinear ODEs

Another use of evolution, in this case the use of the AP on ordinary differential
equations (ODE) solution synthesis was used here, especially on

1. ODE solving, exactly u′′(t) = cos(t), u(0) = 1, u(π) = −1, u′(0) = 0, u′(π) =
0, see [19], 100× repeated

2. ODE solving, exactly ((4 + x)u′′(x))′′ + 600u(x) = 5000(x − x2), u(0) = 0,
u(1) = 0, u′′(0) = 0, u′′(1) = 0, see [19], 5× repeated

In this case we used SR—AP in order to search for such functions u (of course
different for each case) that satisfied equations in both cases. Cost value of cost
function for these simulations were difference (see Figs. 9.14 and 9.15, size of the
filed area between original and just founded function) between actually generated
and expected function.

9.2.2.1 On the Hilbert Space and the Classical Approach

Hilbert space widely used in physics and applied mathematics can be viewed like
special case of analytic programming (AP). Lets see it in more detailed view. Hilbert
space is usually defined like functional space with following properties [19]

1. Completeness.
2. Compactness.
3. Orthogonality.
4. Orthonormality (if no, Schmidt orthonormalization can be used, see [19].
5. ...

These demands allow to solve various problems (i.e. PDE etc.) usually in a simple
manner. In a geometrical point of view Hilbert space can be depicted like mutually
orthogonal axes. Each axis represents one base function, usually periodic functions
like sinus or cosine. Position of each point in such so-called functional space can
be described by its co-ordinates on all axes, or on the contrary, composition of

232 I. Zelinka

Fig. 9.11 Space of possible u(x) solutions. Each point on surface is a value of the area between
curves as on Fig. 9.14

all vector components destined by co-ordinates on all axes, give resulting function –
vector from origin to discussed point in the Hilbert space. Solution of given problem,
which is usually represented by ODE or PDE, is done in Hilbert space so that there
is selected proper functional base of orthogonal functions, inside this base is build
resulting functional and by means of suitable methods are estimated its unknown
parameters. For example in [19] is solved ODE (see Case 2) whose cost function
surface is depicted in Fig. 9.11 and some solutions onFig. 9.14. Surface fromFig. 9.11
is depicted so, that z axis (each point of surface) in Fig. 9.11 is size of area between
desired and actual solution depicted in Fig. 9.14. The aim of the numerical methods
applied in the Hilbert space is to minimize this area, i.e. to find minimum on the cost
function surface from Fig. 9.11.

9.2.2.2 Synthesis of the Case 1

This set of simulations was focused on ODE solving. In [19] it is solved by means of
Ritz or Galerkin method on a priori selected functional base, which was orthogonal.
Here it was solved by AP without any a priori demands on mixed functional base
(sin, cos, …). The results were fully identical as with classical methods, i.e. u(t) =
−cos(t). This example was of course quite simple. More interesting example is the
Case 2: the solution synthesis of the ((4 + x)u′′(x))′′ + 600u(x) = 5000(x − x2),
u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0.

9 On Synthesis and Solutions of Nonlinear Differential … 233

9.2.2.3 Synthesis of the Case 2

This simulation was focused on solution of quite complicated ODE (Case 2) which
come from civil engineering. Original solution obtained bymeans of Ritz or Galerkin
method [19], based on Hilbert functional space that consisted of sinus functions and
original solution, obtained by means of Ritz or Galerkin method, was according to
[19] u(x) = 1.243sin(πx) + 0.0116sin(2πx) + 0.00154sin(3πx).

AP with SOMA was used in two ways. In the first one SOMA was used to esti-
mate only parameters a, b, c of founded u(x), i.e. u(x) = a sin(πx) + b sin(2πx) +
c sin(3πx). In the original solution all three coefficients were calculated by means of
quite complicated Ritz or Galerkin method. SOMA was able to find all three coeffi-
cients as is depicted on Fig. 9.13. This problem was basically classical optimization
because functions were a priori known. This simulation was 100 times repeated and
in all cases has lead to the same results. The second use of SOMA here was not
focused only on parameter estimation. AP with SOMA was used on complex set of
functions (sin, cos, . . .) operators (+,−, /, . . .) and constants (a, b, c) to find their
best combination i.e. to build up function fitting function u as well as possible. The
best result are shown on Fig. 9.12. On Figs. 9.14 and 9.15 are snapshots of the tem-
porary solutions recorded during evolution. Through such solutions has AP/SOMA
passed through all to the best one.

Fig. 9.12 Acceptable
solution by AP (blue dotted
curve)
u(x) = 1.243 sin(πx) +
0.0116 sin(2πx)

Fig. 9.13 The best solution
(blue dotted curve)
u(x) = 1.23413 sin(πx) +
0.00922643 sin(2πx) +
0.000997829 sin(3πx)
obtained during evolution

234 I. Zelinka

Fig. 9.14 Temporary
solution (blue dotted curve)
u(x) = 1.243 sin(πx) −
0.3 sin(2πx) + 0.1 sin(3πx)
obtained during AP evolution

Fig. 9.15 Another
temporary solution (blue
dotted curve)
u(x) = 1.243 sin(πx) +
1 sin(2πx) + 1 sin(3πx)
obtained during AP evolution

9.3 Conclusion

In this chapter we have demonstrated how different evolutionary approaches can be
used in real life problems. Classical evolutionary algorithms as well as symbolic
regression have been used in chemical reactor design and control. This system is
represented by 5 nonlinear differential equations and evolution has been solving its
geometrical design, chemical concentrations and also its control. In the second part
we have introduced application of the symbolic regression on the unknown func-
tion (solution of the differential equation) synthesis and compared it with classical
solution given by Ritz or Galerkin methods in functional spaces. As clearly visible
from figures, all simulations show results with satisfactorily quality. This and also
other results from the area of bio-inspiring algorithms clearly show that bio-inspired
methods are definitely powerful and can be often used to solve very hard problems
from various domains of science and/or technology.

Acknowledgments The following grants are acknowledged for the financial support provided for
this research:GrantAgency of theCzechRepublic–GACRP103/15/06700S,VSB-TU internal grant
SGS 2016/175 and by The Ministry of Education, Youth and Sports from the National Programme
of Sustainability (NPU II) project "IT4Innovations excellence in science–LQ1602".

9 On Synthesis and Solutions of Nonlinear Differential … 235

References

1. Back, T., Fogel, B., Michalewicz, Z.: Handbook of Evolutionary Computation. Institute of
Physics, London (1997)

2. Barricelli, N.: Esempi numerici di processi di evoluzione. Methodos, pp. 45–68 (1954)
3. Davendra, D.D., Zelinka, I.: Self-Organizing Migrating Algorithm Methodology and Imple-

mentation. Springer, Heidelberg (2016)
4. C̆erný, V.: Thermodynamical approach to the traveling salesman problem: an efficient simula-

tion algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)
5. Fogel, G., Corne, D.: Evolutionary Computation in Bioinformatics. Bioinformatics artificial

intelligence. Morgan Kaufmann, Burlington (2003)
6. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press,

Ann Arbor (1975)
7. Holland, J.H.: Intelligentmachinery, unpublished report for national physical laboratory (1975)
8. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology. Control and Artificial Intelligence. MIT Press, Cambridge (1992)
9. Hildebrandt, D., Hopley, F., Glasser, D.: Optimal reactor structures for exothermic reversible-

reactions with complex kinetics. Chem. Eng. Sci. 51(10), 1533–2520 (1996)
10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science

220(4598), 671–680 (1983)
11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge (1992)
12. Koza, J.R., Andre, D., Bennett, F. H., Keane, M.A.: Genetic Programming III: Darwinian

Invention and Problem Solving, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

13. Luyben,W.L.: Chemical ReactorDesign andControl.Wiley-Interscience, 1 edn, (August 2007)
14. O’Neill, M., Brabazon, A.: Grammatical differential evolution. In: Arabnia, H.R (ed.) Pro-

ceedings of the 2006 International Conference on Artificial Intelligence, ICAI 2006, vol. 1, pp.
231–236, CSREA Press, Las Vegas, Nevada, USA (2006)

15. O’Neill, Michael, Ryan, Conor: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers, Norwell (2003)

16. Oplatková, Z., Zelinka, I.: Investigation on artificial ant using analytic programming. In Pro-
ceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO
’06, pp. 949–950, ACM, New York, NY, USA (2006)

17. Perry, R.H., Green, D.W. (eds): Perry’s Chemical Engineering Handbook. 6th edn. McGraw-
Hill, New York (1984)

18. Rechenberg, I.: Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biol-
ogischen evolution. Frommann-Holzboog (1973)

19. Rektorys, K.: Variational methods in Engineering Problems and Problems of Mathematical
Physics, vol. 1. Academia, Prague (1999)

20. Rafal, S., Jürgen, S.: Probabilistic incremental program evolution. Evol. Comput. 5(2), 123–141
(June 1997)

21. Schwefel, H.P.: Numerische Optimierung von Computer-Modellen mittels der Evolution-
sstrategie. ISR, vol. 26. Birkhaeuser, Basel/Stuttgart (1977)

22. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimiza-
tion over continuous spaces. J. Glob. Opt. 11(4), 341–359 (Dec 1997)

23. Weisser, R., Osmera, P.: Two-level tranpslant evolution. In Proceedings of the 17th Zittau Fuzzy
Colloquium (2010)

24. Weisser, R., Osmera, P., Matousek, R.: Transplant evolution with modified schema of dif-
ferential evolution : optimization structure of controllers. In Proceedings of the International
Conference on Soft Computing, MENDEL, Brno, Czech Republic (2010)

25. Zelinka, I.: Soma-self organizing migrating algorithm. In: Onwubolu, G.C., Babu, B. (eds.)
NewOptimization Techniques in Engineering, Springer, NewYork, pp. 167–218 (2004). ISBN
3-540-20167X

236 I. Zelinka

26. Zelinka, I., Celikovský, S., Richter, H., Chen, G. (eds.): Evolutionary Algorithms and Chaotic
Systems. Studies in Computational Intelligence, vol. 267. Springer, Heidelberg (2010)

27. Zelinka, I., Davendra, D., Senkerik, R., Jasek, R., Oplatkova, Z.: Analytical Programming-a
Novel Approach for Evolutionary Synthesis of Symbolic Structures. InTech (2011)

28. Zelinka, I., Davendra, D.D., S̆enker̆ík, R., Pluhác̆ek, M.: Investigation on evolutionary predic-
tive control of chemical reactor. J. Appl. Log. 13(2 Part A):156–166, 2015

29. Zelinka, I., Oplatkova, Z., Nolle, L.: Analytic programming-symbolic regression by means
of arbitrary evolutionary algorithms. Int. J. Simul. Syst. Sci. Technol. 6(9):44–56, aug 2005.
Special Issue on: Intelligent Systems

	9 On Synthesis and Solutions of Nonlinear Differential Equations---A Bio-Inspired Approach
	9.1 Introduction
	9.1.1 Genetic Programming
	9.1.2 Grammatical Evolution
	9.1.3 Analytic Programming

	9.2 Selected Applications
	9.2.1 Chemical Reactor---Predictive Control and Design
	9.2.2 Symbolic Solution of the Nonlinear ODEs

	9.3 Conclusion
	References

