
Chapter 8
Light-Sensitive Belousov–Zhabotinsky
Computing Through Simulated Evolution

Larry Bull, Rita Toth, Chris Stone, Ben De Lacy Costello
and Andrew Adamatzky

Abstract Many forms of unconventional computing, i.e., massively parallel
non-linear computers, can be realised through simulated evolution. That is, the behav-
iour of non-linear media can be controlled automatically and the structural design of
the media optimized through the nature-inspired machine learning approach. This
chapter describes work using the Belousov–Zhabotinsky reaction as a non-linear
chemical medium in which to realise computation. A checkerboard image compris-
ing of varying light intensity cells is projected onto the surface of a catalyst-loaded
gel resulting in rich spatio-temporal chemical wave behaviour. Cellular automata
are evolved to control the chemical activity through dynamic adjustment of the light
intensity, implementing a number of Boolean functions in both simulation and exper-
imentation.

8.1 Introduction

Excitable and oscillating chemical system—the Belousov–Zhabotinsky (BZ) reac-
tion [35]—have been used to solve a number of computational tasks such as imple-
menting logical circuits [3, 31], image processing [22], shortest path problems [30]
and memory [27]. In addition chemical diodes [4], coincidence detectors [15] and
transformers where a periodic input signal of waves may be modulated by the barrier
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into a complex output signal depending on the gap width and frequency of the input
[28] have all been demonstrated experimentally.

A number of experimental and theoretical constructs utilising networks of
chemical reactions to implement computation have been described. These chemical
systems act as simple models for networks of coupled oscillators such as neurons,
circadian pacemakers and other biological systems [21]. Ross and co-workers [5]
produced a theoretical construct suggesting the use of “chemical” reactor systems
coupled by mass flow for implementing logic gates neural networks and finite-state
machines. In further work Hjelmfelt et al. [16, 17] simulated a pattern recognition
device constructed from large networks of mass-coupled chemical reactors contain-
ing a bistable iodate-arsenous acid reaction. They encoded arbitrary patterns of low
and high iodide concentrations in the network of 36 coupled reactors. When the net-
work is initialized with a pattern similar to the encoded one then errors in the initial
pattern are corrected bringing about the regeneration of the stored pattern. However,
if the pattern is not similar then the network evolves to a homogenous state signalling
non-recognition.

In related experimental work Laplante et al. [23] used a network of eight bistable
mass coupled chemical reactors (via 16 tubes) to implement pattern recognition oper-
ations. They demonstrated experimentally that stored patterns of high and low iodine
concentrations could be recalled (stable output state) if similar patterns were used as
input data to the programmed network. This highlights how a programmable paral-
lel processor could be constructed from coupled chemical reactors. This described
chemical system has many properties similar to parallel neural networks. In other
work Lebender and Schneider [24] described methods of constructing logical gates
using a series of flow rate coupled continuous flow stirred tank reactors (CSTR)
containing a bistable nonlinear chemical reaction. The minimal bromate reaction
involves the oxidation of cerium(III) (Ce3+) ions by bromate in the presence of bro-
mide and sulphuric acid. In the reaction the Ce4+ concentration state is considered as
“0” (“False”) and “1” (“True”) if a given steady state is within 10% of the minimal
(maximal) value. The reactors were flow rate coupled according to rules given by a
feedforward neural network run using a PC. The experiment is started by feeding in
two “true” states to the input reactors and then switching the flow rates to generate
“true”-“false”, “false”-“true” and “false”-“false”. In this three coupled reactor sys-
tem the AND (output “true” if inputs are both high Ce4+, “true”), OR (output “true”
if one of the inputs is “true”), NAND (output “true” if one of the inputs is “false”)
and NOR gates (output “true” if both of the inputs are “false”) could be realised.
However to construct XOR and XNOR gates two additional reactors (a hidden layer)
were required. These composite gates are solved by interlinking AND and OR gates
and their negations. In their work coupling was implemented by computer but they
suggested that true chemical computing of some Boolean functions may be achieved
by using the outflows of reactors as the inflows to other reactors, i.e., serial mass
coupling.

As yet no large scale experimental network implementations have beenundertaken
mainly due to the complexity of analysing and controlling many reactors. That said
there have been many experimental studies carried out involving coupled oscillating
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and bistable systems (e.g., see [6, 10, 18, 32]). The reactions are coupled together
either physically by diffusion or an electrical connection or chemically, by having
two oscillators that share a common chemical species. The effects observed include
multistability, synchronisation, in-phase and out of phase entrainment, amplitude or
“oscillator death”, the cessation of oscillation in two coupled oscillating systems,
or the converse, “rhythmogenesis”, in which coupling two systems at steady state
causes them to start oscillating [11].

Alongside the development of unconventional computers has been the growing
use of machine learning techniques to aid their design and programming (see [25] for
an overview). Since techniques such as evolutionary computing (e.g., [12]) have been
shown able to handle various complex tasks effectively, the aim is to apply them to
harness the as yet only partially understood intricate dynamics of non-linear media to
perform computations more effectively than with traditional architectures. Previous
theoretical and experimental studies have shown that reaction-diffusion chemical
systems are capable of information processing. As such, we have been exploring the
use of simulated evolution to design such chemical systems which exploit collision-
based computing (e.g., [1]). We use a spatially-distributed light-sensitive form of the
BZ reaction in gel which supports travelling reaction-diffusion waves and patterns.
Exploiting the photoinhibitory property of the reaction, the chemical activity (amount
of excitation on the gel) can be controlled by an applied light intensity, namely it can
be decreased by illuminating the gel with high light intensity and vice versa. In this
way a BZ network is created via light and controlled using (heterogeneous) cellular
automata (CA) designed using simulated evolution [8, 9, 14]. This architecture is
adapted from the system described in [34] and experimental chemical computers
have been realised, as will be described.

8.2 Simulated Media

We use two-variable Oregonator equation [13] adapted to a light-sensitive
Belousov–Zhabotinsky (BZ) reaction with applied illumination [7]:

∂u

∂t
= 1

ε
(u − u2 − (fv + φ)

u − q

u + q
) + Du∇2u

∂v

∂t
= u − v (8.1)

The variables u and v represent the instantaneous local concentrations of the
bromous acid autocatalyst and the oxidized form of the catalyst, HBrO2 and tris
(bipyridyl) Ru (III), respectively, scaled to dimensionless quantities. The rate of
the photo-induced bromide production is designated by φ, which also denotes the
excitability of the system in which low simulated light intensities facilitate excitation
while high intensities result in the production of bromide that inhibits the process,
experimentally verified by [19]. The system was integrated using the Euler method



202 L. Bull et al.

with a five-node Laplacian operator, time step �t = 0.001 and grid point spacing
�x = 0.62. The diffusion coefficient,Du, of species uwas unity, while that of species
vwas set to zero as the catalyst is immobilized in the gel. The kinetic parameters were
set to ε = 0.11, f = 1.1 and q = 0.0002. Themedium is oscillatory in the darkwhich
made it possible to initiate waves in a cell by setting its simulated light intensity to
zero. At different φ values the medium is excitable, sub-excitable or non-excitable.

8.2.1 Cellular Automata

Wehave used cellular automata (CA) to control such chemical systems (Fig. 8.1), i.e.,
finite automata are arranged in a two-dimensional lattice with aperiodic boundary
conditions (an edge cell has five neighbours, a corner cell has three neighbours, all
other cells have eight neighbours each). Use of a CA with such a two-dimensional
topology is a natural choice given the spatio-temporal dynamics of the BZ reaction.
Each automaton updates its state depending on its own state and the states of its
neighbours. States are updated in parallel and in discrete time. In standard CA all
cells have the same state transition function (rule), whereas in this work the CA is
heterogeneous, i.e., each cell/automaton has its own state transition function. The
transition function of every cell is evolved by a simple evolutionary process. This
approach is very similar to that presented in [29]. However, his reliance upon each

Fig. 8.1 Relationship between the CA controller, applied grid pattern and chemical system com-
prising one process control cycle. Modified with permission from J. Chem. Phys. 129, 184708
(2008). Copyright 2008, AIP Publishing LLC
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cell having access to its own fitness means it is not applicable in the majority of
chemical computing scenarios we envisage. Instead, fitness is based on emergent
global phenomena in our approach (as in [26], for example). Thus, following [20], we
use a simple approachwherein each automaton of the two-dimensional CA controller
is developed via a simple genetics-based hillclimber. After fitness has been assigned,
some proportion of the CA genes are randomly chosen and mutated. Mutation is the
only variation operator used here to modify a given CA cell’s transition rule to allow
the exploration of alternative light levels for the grid state. For a CA cell with eight
neighbours there are 29 possible grid state to light level transitions, each of which is
a potential mutation site. After the defined number of such mutations have occurred,
an evolutionary generation is complete and the simulation is reset and repeated.
The system keeps track of which CA states are visited since mutation. On the next
fitness evaluation (at the end of a further 25 control cycles) mutations in states that
were not visited are discarded on the grounds that they have not contributed to the
global fitness value and are thus untested. We also performed control experiments
with a modified version to determine the performance of an equivalent random CA
controller. This algorithm ignored the fitness of mutants and retained all mutations
except those from unvisited states.

8.2.2 Controller

For a given experiment, a random set of CA rules is created for a two-dimensional
array of size 10-by-10 cells. The rule for each cell is represented as a gene in a
genome, which at any one time takes one of the discrete light intensity values used
in the experiment. As previously mentioned, the grid edges are not connected (i.e.,
the grid is planar and does not form a toroid) and the neighborhood size of each
cell is of radius 1; cells consider neighborhoods of varying size depending upon their
spatial position, varying from three in the corners, to five for the other edge cells, and
eight everywhere else. In the model each of the 100 cells consists of 400 (20-by-20)
simulation points for the reaction. The reaction is thus simulated numerically by a
lattice of size 200-by-200 points, which is divided into the 10-by-10 grid.

To begin examining the potential for the evolution of controllers for such tem-
porally dynamic structures in the continuous, non-linear 2D media described we
have designed a simple scheme to create a number of two-input Boolean logic gates.
Excitation is fed in at the bottom of the grid into a branching pattern. To encode a
logical ‘1’ and ‘0’ either both branches or just one branch of the two “trees” shown
in Fig. 8.2 are allowed to fill with excitation, i.e., the grid is divided into two for the
inputs (Fig. 8.3). These waves were channelled into the grid and broken up into 12
fragments by choosing an appropriate light pattern as shown in Fig. 8.2. The black
area represents the excitable medium whilst the white area is non-excitable. After
initiation three light levels were used: one is sufficiently high to inhibit the reaction;
one is at the sub-excitable threshold such that excitation just manages to propagate;
and the other low enough to fully enable it. The modelled chemical system was
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Fig. 8.2 Showing initiation pattern a and a typical example of a coevolved light pattern b. Modified
with permission from J. Chem. Phys. 129, 184708 (2008). Copyright 2008, AIP Publishing LLC

Fig. 8.3 Typical examples of solutions ofAND,NANDandXOR logic gates in simulation, required
active cells: 20, N: actual number of active cells. Input states I1, I2 for the logic gates are shown
on the left and consist of two binary digits, spatially encoded using left and right “initiation trees”
(Fig. 8.7). Input values of ‘0’ are encoded using a single branch of the relevant tree resulting in 3
fragments, while binary ‘1’ is encoded using both branches of the tree resulting in 6 fragments.
Evolution found a solution in 56 (AND), 364 (NAND) and 16556 (XOR) generations
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run for 600 iterations of the simulator. This value was chosen to produce network
dynamics similar to those obtained in experiment over 10 s of real time.

8.3 Simulated Experiments

A colour image was produced by mapping the level of oxidized catalyst at each
simulation point into an RGB value. Image processing of the colour image was
necessary to determine chemical activity. This was done by differencing successive
images on a pixel by pixel basis to create a black and white thresholded image. Each
pixel in the black and white image was set to white (corresponding to excitation)
if the intensity of the red or blue channels in successive colour images differed by
more than 5 out of 256 pixels (1.95%). Pixels at locations not meeting this criterion
were set to black. An outline of the grid was superimposed on the black and white
images to aid visual analysis of the results.

The black and white images were then processed to produce a 100-bit description
of the grid for the CA. In this description each bit corresponds to a cell and it is
set to true if the average level of activity within the given cell is greater than a pre-
determined threshold of 10%. Here, activity is computed for each cell as the fraction
of white pixels in that cell. This binary description represents a high-level depiction
of activity in the BZ network and is used as input to the CA. Once cycle of the CA
is performed whereby each cell of the CA considers its own state and that of its
neighbours (obtained from the binary state description) to determine the light level
to be used for that grid cell in the next time step. Each grid cell may be illuminated
with one of three possible light levels. The CA returns a 100-digit trinary action
string, each digit of which indicates whether high (φ = 0.093023), sub-excitable
threshold (φ = 0.04) or low (φ = 0.000876) intensity light should be projected onto
the given cell. The progression of the simulated chemical system, image analysis of
its state and operation of theCA to determine the set of new light levels comprises one
control cycle of the process. A typical light pattern generated by the CA controller is
shown in Fig. 8.2b. Another 600 iterations are then simulated with those light-levels
projected, etc. until 25 control cycles have passed. The number of active cells in the
grid, that is those with activity at or above the 10% threshold, is used to distinguish
between a logical ‘0’ and ‘1’ as the output of the system. For example, in the case of
XOR, the controller must learn to keep the number of active cells below the specified
level for the 00 and 11 cases but increase the number for the 01 and 10 cases.

Figure8.3 shows typical examples of each of the three logic gates learned using the
simulated chemical system. Each of the four possible input combinations is presented
in turn—00 to 11—and for each input combination the system is allowed to develop
for 25 control cycles. Fitness for each input pattern is evaluated after the 25 control
cycles with each correct output scoring 1, resulting in a maximum possible fitness
of 4. Figure8.4 shows the fitness averaged over ten runs for AND and NAND tasks
with mutation rate 4000, and similar results for XOR are shown for mutation rate
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Fig. 8.4 Showing the performance of evolving CA controllers for the three logic gate tasks con-
sidered. Dashed lines show the equivalent performance of random search. a AND gate. b NAND
gate. c XOR gate

6000. Favourable comparisons to an equivalent random controller are also shown in
each case.

8.4 Laboratory Experiments

The success of our simulated experiment encouraged us to build an experimental
setup (Fig. 8.5) and perform the same tasks in the real light-sensitive BZ medium.
We immobilised the light-sensitive (Ru(byp)32+ catalyst in a thin layer of silica gel
which was bathed in the catalyst free BZ reagents. All chemicals were purchased
from Aldrich (U.K.) and used as received unless stated otherwise. Ru(bpy)3SO4 was
recrystallised fromRu(bpy)3Cl2 using sulphuric acid. For the silica gel 222mL of the
purchased 27% sodium silicate solution (stabilized in 4.9 M sodium hydroxide) was
acidified by adding 57mL of 2M sulphuric acid and 187mL of deionisedwater. Then
0.6mL of 0.025MRu(bpy)3SO4 and 0.65mL of 1.0M sulphuric acid solutions were
added to 2.5mLof the acidified silicate solution. This solutionwas used to prepare the
silica gel in a custom designed 0.3mm deep Perspex mould. After 3 hours gelation
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Fig. 8.5 A block diagram of the experimental setup where a: computer, b: projector, c: mirror,
d: microscope slide with the catalyst-loaded gel, e: thermostated Petri dish, f : CSTR, g1 and g2:
pumps, h: stock solutions, i: camera, j: effluent flow, k: thermostated water bath

time the 26mm × 26mm × 300 µm gel layers were removed from the mould,
carefully washed and stored in water until use. The experiments were performed
in a thermostated (22 Co) open reactor containing the catalyst loaded silica gel and
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the catalyst free BZ solution (0.42 M sodium bromate, 0.19 M malonic acid, 0.64
M sulphuric acid and 0.11 M bromide). This reactor was fed by a continuously-fed
stirred tank reactor (CSTR) which freshly mixed the BZ reagents to keep the system
far from its equilibrium state. The flow between the two reactors and the removal
of the effluents was maintained by two peristaltic pumps. An InFocus Model LP820
Projector was used to shine a computer generated 10-by-10 cell checkerboard grid
pattern (with a size of 20mm × 20mm) on the surface of the gel through a 455nm
narrow bandpass interference filter, 100/100mm focal length lens pair and mirror
assembly (Fig. 8.5). Three light intensity levels were used in the checkerboard image
representing excitable, subexcitable threshold, and non-excitable domains,with 0.35,
1.6 and 3.5mW cm-2, respectively. Images of the chemical wave fragments on the
gel were captured using a Lumenera Infinity2 USB 2.0 scientific digital camera. To
improve visibility and enable subsequent image processing images were captured
while a uniform grey level of 3.5mW cm-2 was projected on the gel for 10ms instead
of the checkerboard grid. Captured images were processed to identify activity in the
same way as for the model.

Fig. 8.6 Typical examples of solutions of AND, NAND and XOR logic gates in chemical exper-
iment, required number of active cells: 15 (20 for AND), N: actual number of active cells. Input
states I1, I2 for the logic gates are shown on the left and consist of two binary digits, spatially
encoded using left and right “initiation trees” (Fig. 8.7a). Input values of ‘0’ are encoded using a
single branch of the relevant tree resulting in 3 or 4 fragments, while binary ‘1’ is encoded using
both branches of the tree resulting in 6 or 7 fragments. The simulated evolution—seeded with a CA
evolved during the simulated runs—found a solution in 16 generations in each case

Figures8.6 and 8.7 show how similar performance is possible on the real chemical
system for each of the three logic functions. In order to produce working XOR and
NAND gates from these experiments, it was necessary to use a value of 15 for the
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Fig. 8.7 Showing the performance of evolving CA controllers for the three logic gate tasks con-
sidered. Dashed lines show the equivalent performance of random search. a AND gate. b NAND
gate. c XOR gate

required number of active cells due to the relative difficulty of these tasks. All other
parameters were the same as those used for numerical simulation.
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Because of the limited lifetime of the medium these runs were seeded with CA
evolved during the simulated runs presented in Fig. 8.3. Runs using random initial
controllers were also explored on the real chemical system (dashed lines on Fig. 8.7),
but no successful runs were found over the 40 generations. This is not surprising
considering that the average generations needed to find a good solution was higher
than 40 in the simulations because of the relative increase in difficulty. Nevertheless
the two systems are very similar since the runs with seeded CA evolved during the
simulations found solutions in a very short time, namely in 16 or 20 generations. If
a solution had been found in four generations it would have meant that the initial
states of the simulated and real chemical system are perfectly identical. However,
since there is a noticeable difference between the initial states, the solution found by
the evolutionary algorithm in simulation was very close to the solution needed for
the real chemistry, but a few generations of evolution were needed to adapt to the
difference between the two systems. These results show that the approach is capable
of adapting to small changes in its environment and finding a solution very quickly
when presented with domain-specific knowledge obtained from modeling.

8.5 Conclusion

Excitable and oscillating chemical systems have previously been used to solve a
number of simple computational tasks. However, the experimental design of such
systems has typically been non-trivial. In this chapter we have presented results from
a methodology by which to achieve the complex task of designing such systems—
through the use of simulated evolution. We have shown using both simulated and
real systems that it is possible in this way to control dynamically the behavior of
the BZ reaction, and to design the topology of a network-based approach to chem-
ical computing. As discussed in [25], evolution can also be used to pre-configure
programmable/changeable elements of an unconventional medium, such as voltages
within liquid crystal, before computation occurs. We have used a similar approach
for the gel-based system described above, enabling evolution to predefine where
fragment waves of excitation can enter a central area of collision/computation (e.g.,
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[33]). Which of these approaches is best able to exploit the properties of non-linear
media for computation—or whether their use in combination is possible—remains
open to future exploration.
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