
Chapter 6
Associative Memory in Reaction-Diffusion
Chemistry

James Stovold and Simon O’Keefe

Abstract Unconventional computing paradigms are typically very difficult to
program. By implementing efficient parallel control architectures such as artificial
neural networks, we show that it is possible to program unconventional paradigms
with relative ease. The work presented implements correlation matrix memories (a
form of artificial neural network based on associative memory) in reaction-diffusion
chemistry, and shows that implementations of such artificial neural networks can be
trained and act in a similar way to conventional implementations.

6.1 Introduction

Whilst, in theory at least, unconventional computing paradigms offer significant
advantages [33] over the traditional Turing/von Neumann approach, there remain a
number of concerns [32] regarding larger-scale applicability, including the appro-
priate method for programming and controlling such unconventional approaches
to computation. The massive parallelism obtainable through many of these par-
adigms is both the basis for, and a source of problems for, much of this power.
Given how quickly these approaches could overtake conventional computing meth-
ods, large-scale implementations would be incredibly exciting, and would allow
for a larger proportion of possible computations to be computable [12]. The power
of such parallelism can be seen by the recent advent of general-purpose graphic
processing unit (GPGPU) technology, where huge speed-ups are gained by par-
allelising repetitive tasks. However, translating between the traditional, algorithmic
approach to problem solving that is ubiquitous in computer science, and the complex,
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dynamical, nonlinear environment that most unconventional paradigms exploit, can
be a highly non-trivial task.

Conrad [11] proposed the principle of a tradeoff between programmability, effi-
ciency and evolvability of a computational system. This principle states that the
price paid for having such a highly-programmable system is in terms of efficiency,
evolvability or both. A corollary to this is that, in order to increase the efficiency of
a computational construct, either the programmability or the evolvability must be
sacrificed.

This principle underlies the field of unconventional computing. By considering
alternative, non-standard approaches to computation, there is the possibility that the
efficiency of the system can be increased with a minimal loss of programmability.

There aremany examples of unconventional approaches to computation, eachwith
their potential advantages, all with a notable decrease in programmability. For exam-
ple, Adleman [5] showed experimentally that DNA could be used as a computational
substrate by computing a solution to the Hamiltonian Path Problem; Nakagaki [28]
showed that the plasmodial slimemould Physarum polycephalum could compute the
shortest path through a maze; and Laplante [24] showed how a mass-coupled chem-
ical reaction could implement a Hopfield network. While these are all clearly much
harder to program than traditional computational substrates, the potential for much
more efficient computation is present in all of them through their intrinsic parallelism.
By exploring many alternate paths of computation simultaneously, certain uncon-
ventional substrates have the effect of being able to implement a non-deterministic
UTM, allowing them to potentially solve NP problems in polynomial time.

The problem faced by researchers in the unconventional computing field is that
in order to get access to this huge potential power, the system must be programmed,
and in order to use the substrate as a general-purpose computer, the system must
be reliable. These considerations are necessarily non-trivial. The reliability problem
is inherent in the non-determinism, as there is no guarantee that the substrate will
perform the computation intended. The programmability problem is that of finding
‘algorithms’ that can be used to perform meaningful computation on the substrate.

Conrad [12] quantified the idea that general-purposemachines are not particularly
general-purpose, and that only certain problems can be solved using conventional
computational methods. From this, it becomes clear that different approaches to
the same problem—whilst being Turing equivalent—may be different from other
perspectives. For example, consider Turing tarpit languages such as ‘OISC’ [15]
and ‘brainfuck’ [sic] [27]. Although these languages are Turing complete in the same
sense as languages such as C and Java, they have particularly obfuscated programs.
These systems serve to elucidate the difference between being Turing computable
and being usably computable. While an extreme example, ‘brainfuck’ shows the
importance of programmability in general-purpose computers. If this idea is extended
to computability in general, just because a system is labelled as Turing complete does
not mean that it should be explicitly used as a Turing machine.

Recent approaches have attempted to utilise parallelism to increase the number of
computable functions. In conventional computing paradigms, this consists of many
UTMs (Universal Turing Machines) working in parallel on the same function. The
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use of GPGPU processing has been the primary result of this, but the problem with
using multiple forms of the same computational construct is that each computational
unit has the same limitations. Field-programmable gate arrays (FPGAs) help with
this, in that processing units can be implemented alongside bespoke hardware, to
speed up regularly-used operations, but problems arise in terms of the time taken
to reprogram the devices. Because of this, the reprogrammability—and hence the
programmability—of FPGAs as a computational construct is reduced in response to
the efficiency gained.

If unconventional computing paradigms are considered as a complement toUTMs,
the number of computable functions is likely to be increased, as the limitations of each
system may offset those of the other. This is because there will inevitably be certain
functions that UTMs are better suited to, and other functions that unconventional
approaches are better suited to.

In this paper, we present an implementation of an artificial neural network (a corre-
lationmatrixmemory) in anunconventional paradigm(reaction-diffusion chemistry).
This implementation will serve as a method of simplifying the process of program-
ming the unconventional paradigm (we already know how to program correlation
matrix memories, and it’s simpler than programming reaction-diffusion reactors).

The paper is organised as follows: in Sect. 6.2 we introduce diffusive computation
and reaction-diffusion chemistry, and show how this can be used for computation; in
Sect. 6.3 we describe associative memory and correlation matrix memories; Sect. 6.4
discusses the methods used to get our results; Sects. 6.5, 6.6, 6.7, and 6.8 detail the
process of designing and testing the correlationmatrixmemories in reaction-diffusion
chemistry. Finally, Sect. 6.9 presents our conclusions.

6.2 Diffusive Computation and Reaction-Diffusion
Chemistry

We define diffusive computation as an unconventional approach to computing that
harnesses the diffusion of particles as a representation of data. The power of diffusive
computing systems come from their highly parallel architectures, with the emergent
behaviour of interactions between diffusing particles dictating the operation of the
system. A simple example of a diffusive computing system is a cellular automaton.
While nothing physical diffuses in a cellular automaton, the emergent behaviour of
structures such as gliders gives rise to the diffusion of information. A simple rule for
the cellular automaton can be used to give complex behaviour that is shown to be
similar to that of reaction-diffusion systems [4].

One of the primary benefits of considering this unconventional computing para-
digm is the potential it offers compared to existing systems. The properties of dif-
fusive computation compared with general-purpose machines make it a much better
candidate for producing systems that have similar complexity to that of the brain [29].
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There are many different forms of diffusive computation, such as silicon-based
diffusion processors [3], slime mould [2] and cellular automata [4]. In this paper, we
consider a fundamental form of diffusive computation: reaction-diffusion chemistry.

Reaction-diffusion chemistry (RD chemistry) is a form of chemical reaction that
changes state in such a way that wavefronts of reagent appear to flow (or diffuse)
across the solution. The most widely-used models are based on the Belousov–
Zhabotinsky reaction [9, 40], which may display single waves of reaction or an
oscillation between two (observable) states, depending on the setup used.

6.2.1 Belousov–Zhabotinsky Reaction

Belousov [9] discovered a visibly periodic chemical reaction based on Bromate and
citric acid. The reaction cycled through a series of colour changes on a timescale
of many seconds—making it very easy for humans to observe the changes in state.
Zhabotinsky [40] then enhanced the effect of the colour change by replacing the
citric acid used by Belousov with malonic acid. This reaction was soon termed the
Belousov–Zhabotinsky (BZ) reaction.

The chemical reaction can be distributed across a wide area, such as in a Petri dish,
with the depth of the liquid reduced to less than 2mm. This can also be achieved
by binding the catalyst to a chemical gel, with a thin layer of chemicals over the
top. This ‘thin-layer’ reactor allows the system to be considered as a pseudo-two-
dimensional system. As the reaction oscillates, each point in the reactor will react
only with the chemicals available locally to it, meaning that a small disturbance in
the reaction—such as an inhomogeneity (gas bubble, speck of dust etc.)—will cause
a wave of colour change to propagate across the reactor [41], and can result in some
very interesting effects (such as those in Fig. 6.1).

There aremany potential catalysts for BZ reactions, eachwith different properties.
Ruthenium bipyridyl complex (Ru(bipy)2+3 ) is particularly interesting as a catalyst
in BZ reactions as it is photosensitive. This in an incredibly helpful property, as
the rate with which ruthenium catalyses the reaction is inversely proportional to the
level of illumination. This can be harnessed as a method of controlling the reaction

Fig. 6.1 A ‘leading centre’ pattern, observed in a thin-layer Belousov–Zhabotinsky reaction
(from [39])
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for computation [23]. By disabling different regions of the reactor, either through
illumination or by constraining the distribution of catalyst in a chemical gel, circuits
can be constructed that allow logic gates and other computation to be performed [6].

6.2.2 Applications

The different applications of diffusive chemical reactions have been studied in great
depth since it was proposed as a basis for morphogenesis by [37]. Between 1986
and 1989, a series of seminal papers proposed a method of using RD chemistry as a
computational medium, showing that it can be used for a number of image processing
operations: in particular, contrast modification and contour discernment [21–23].
These papers sparked much research interest, particularly given the CPU-intensive
nature of sequential image processing algorithms and how intrinsically parallelised
the process becomes through the use of RD chemistry.

Since then, a large amount of work has been invested examining the computa-
tional properties of RD chemistry. RD chemistry was shown to have the intrinsic
ability to find the shortest path through a maze, with a time complexity that is inde-
pendent of the complexity of the maze, only dependent on the distance between
start and finish [31]. This is because the propagating waves explore every reachable
path simultaneously, but at each junction, only the first wave to arrive can continue
(because of the refractory period of the waves, which will inhibit later waves).

There have been many other applications of RD chemistry, for example, construc-
tion of a Voronoi diagram [35]; a chemical diode [6]; and the involute for a static
object [25].

The computational universality of RD chemistry (and other nonlinear media) has
been discussed in depth [1], and many authors have suggested different approaches
to constructing logic gates. The use of capillary tubes to constrain the reaction has
been considered, using the diameter of the tube to control the behaviour of the wave,
which can be used to implement logic gates (including a universal set) [36]. Various
logic gates, a memory cell and a coincidence detector have been constructed using
simulations of the diffusion dynamics when constrained to channels [26].

Gorecki et al. [16] take this idea a step further, constructing the coincidence
detector, which implements an AND gate, both in simulation and in experiments.
The coincidence detector (shown in Fig. 6.2) allows a single wave to pass through in
either direction, but the presence of twowaves travelling towards each other raises the
activator concentration between the colliding waves higher than either of the single
waves would alone. This higher concentration then diffuses farther into the gap in
catalytic material compared to the concentration from the single waves. The lower
part of the gate, which acts as the output, can then be stimulated by this diffusion.
The same paper then presents an extension of this idea by constructing a cascadable
binary counter.

If a series of waves arrive at a gap in chemical medium within a certain time
period, the concentration on the far side of the gap will rise higher than with a single
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Fig. 6.2 Four photographs of a chemical coincidence detector. Each photo has two sections of active
substrate, the left-most acting as inputs, the right-most as output. The waves are inputted (from the
top and bottom), and as they collide, the activator concentration between them rises higher than if
only one wave was present. This results in the activator diffusing farther into the gap between input
and output section, producing a wave on the output section (from [16])

wave, because of the diffusion of chemicals across the gap [17]. If this stimulation is
sufficient, it can cause an excitatory response on the far side of the gap [13], which
is directly analogous to the behaviour of spiking neurons [34].

6.3 Associative Memory

Associative memory is a form of memory that associates stimuli with responses.
There are two forms of associative memory, autoassociative memory and heteroas-
sociative memory. In autoassociative memory, the associated, complete pattern can
be retrieved from a small cue: for example, given the cue ‘lived happily ever…’ most
people would immediately think of ‘…after’. However, with heteroassociative mem-
ory, other patterns that are associated with the cue are retrieved, but not necessarily
the completed pattern from the cue. The brain works in a similar way to a combi-
nation of these forms of memory, as when presented with the same cue as above,
most people would still complete the associated pattern, but subsequently think of a
fairytale or children’s story.

From a computational perspective, this could be implemented as an artificial
neural network [18] that behaves in a similar fashion, where a noisy pattern or subset
of the pattern could be used as the stimulus to the network in order to retrieve the
complete, clean pattern.

The basic idea of an artificial associative memory is to train a fully-connected,
two layer artificial neural network (see Fig. 6.3) in such a way that, when presented
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Fig. 6.3 Two-layer artificial
neural network showing the
relationship between
input–output pairs and the
correlation matrix M, as
given in matrix (6.1), below

with the stimulus vector x , the connections between the input and output layers will
produce the associated output vector y [10]. In training such a network, theweights on
these connections are crucial, as they are what define the association. The correlation
weight matrix, w, stores associations representing p patterns, and is produced via:

wi j =
p∑

1

x (p)
i · y(p)

j

Because of the importance of the correlation weight matrix, one form of artificial
associative memory uses it as the entire basis for the computational construct. This
is the Correlation Matrix Memory.

6.3.1 Correlation Matrix Memories

Willshaw [38] proposed a potential method for the brain to store memories inspired
by ‘correlograms,’ produced by shining light through two pieces of card with pin-
holes on. The resulting spots of light were captured on a third piece of card, and
pertained to the correlation between the patterns on the first two cards. By capturing
the correlation present on the third card, an inverted pattern could be used to retrieve
the original pattern. Willshaw [38] then proposed a discretised form of correlogram,
called an ‘associative net’ that captured this idea, but without the imperfections of
an experimental setup. By presenting a series of input patterns and output patterns
to the associative net simultaneously, the associations can be built up within the net
and the patterns later retrieved by presenting one of the original patterns.

The idea of an associative net later developed into the binary Correlation
Matrix Memory (CMM) [20]. The CMM is a matrix-based representation of a
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fully-connected two-layer neural network (one input layer, one output layer), where
binary values in the matrix represent the binary weights on the connections between
the two layers. As such, the neural network in Fig. 6.3 would be represented by the
CMM, M, with k input–output pairs I and O:
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(6.1)

Before training, the initial matrix M would be filled with zeros (as there are no
associations stored in the network). As the k binary-valued input–output pairs are
presented to the network, the associations are built up in the matrix.

Upon recall, we get [18]:
O = MIr

where Ir is the input pattern, and O is the output from the network trained with
associations stored inM. The desired output pattern, Or is currently combined with
noise from the other patterns stored in the network, er , hence:

O = Or + er

er =
N∑

k=1
k �=r

(ITk Ir )Ok

The output vector O can be thresholded to a appropriate level, which (depending on
how saturated the network is) should leave the desired output vectorOr . This process
can be used as a method of generalisation, allowing the network to retrieve complete
patterns from a noisy or distorted cue.

Because the association matrix, M, is a binary matrix (only allowing 0 or 1),
the network can also be represented by a grid of wires, with connections between
horizontal and vertical wires representing the 1 s in M, and hence the associations
stored in the network (see Fig. 6.4).

The binary nature of the CMM lends itself to be efficiently implemented using
RD chemistry. The propagating waves in RD chemistry can be used to implement
the binary signals (0/1 encoded as absence/presence of a wave) that are required to
perform training and recall in the CMM. Interactions between the input waves and
correlation matrix can allow recall to occur without external influence. Section6.5
discusses how the correlation matrix,M, may be stored in an RD memory structure.
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Fig. 6.4 A CMM can be viewed as an electrical circuit, with associations between input–output
pairs represented by the connections between input and outputwires (left). Thematrix representation
of this diagram is given as the correlation matrix on the right

6.4 Methods

Given the speed of the chemical reaction, we have simulated the dynamics of the BZ
reaction instead of using a wet lab setup. A large number of authors have taken this
approach previously, including some of the early papers by Rovinsky [30] who give
a mathematical model of the dynamics alongside the chemical definition.

6.4.1 Simulation

We simulate a diffusive chemical reaction using the Oregonator model [14]:

∂u

∂t
= 1

ε

[
u − u2 − ( f v + φ) · u − q

u + q

]
+ Du∇2u

∂v

∂t
= u − v

(6.2)

with parameter values as given in Table6.1. The parameters (ε, f , φ, q, Du) are
described in detail in [19], but (briefly): ε is a scaling factor, f is the stoichiometric
coefficient (a conservation of mass parameter), q is a propagation scaling factor, φ is
representative of the illumination, and Du is the diffusion coefficient for the solution.
These are fixed over the course of the reaction and reactor, other than φ, which varies
spatially across the reactor in order to construct ‘circuits.’

The diffusion term (Dx∇2x for chemical x) is provided for the activator u, but not
for inhibitor v. This is because the simulation assumes that v is bound to an immobile
substrate, such as a chemical gel. Equation6.2 are integrated using an explicit forward
Euler integration, with timestep δt = 0.001 and five-node discrete Laplace operator
with grid spacing δx = 0.25.Waves are started through the simultaneous stimulation
of 15 adjacent pixels by setting their activator concentration (u) to 1.0.
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Table 6.1 Parameter values
for excitable
Belousov–Zhabotinsky
simulation

Parameter Value

ε 0.0243

f 1.4

φactive 0.054

φpassive 0.0975

q 0.002

Du 0.45

δt 0.001

δx 0.25

6.4.2 Extracting Results

Two different methods are used to extract results from the simulation. The first is to
use time-lapse images produced by the simulation to visually check the presence or
absence of a wave in a given channel; the second is through the use of ‘pixel traces’.

Time-lapse images were produced by thresholding the activator concentration at
u = 0.04 every 1000 simulated time-steps. All points above u = 0.04 were marked
as white, while the rest left as they were (see Fig. 6.5).

The idea behind pixel traces, on the other hand, is to record the concentration val-
ues of a small set of pixels throughout the entire run of the simulation. This record of
chemical concentrations can then be used to produce a graph, showing how the con-
centrations vary over time. Alternatively, if many runs are being performed, and the
arrival of a single wave is all that matters, the activator concentration can be thresh-
olded to an appropriate value, and used to determine the approximate arrival time
of the wave. The graph presented in Fig. 6.6 shows an example pixel trace extracted
from the simulator, and the threshold point. All time values with concentration above
this threshold are then extracted, and the centre of the ‘bump’ is calculated, as an
approximation of thewaves arrival time at the specified pixel. For thework presented,
this threshold value is held constant at u = 0.54.

Fig. 6.5 Example time-lapse output from the simulator. The activator concentration is thresholded
at u = 0.04 every 1000 simulated time-steps, andmarked aswhite. The illuminated (passive) regions
of reactor (high φ) are signified by grey background, and non-illuminated (active) regions of reactor
(low φ) are black
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Fig. 6.6 Graph showing the pixel trace values over time (solid line) and threshold point (dashed
line) for approximating wave arrival time

6.5 Isolated CMM Neuron

While the basic structure of the CMM is a matrix of binary neurons, we first consider
the construction of an individual binary neuron and its connectionswith other neurons
in the matrix. There already exist a number of physical implementations, including
the use of a simple RAM device [8]. This use of a memory device to store the neural
network was the starting point for the construction of the CMM presented here.

Motoike [26] showed how memory cells can be constructed in RD chemistry
using a unidirectional ring of catalytic channels. By arranging the catalyst such
that an external signal can excite the channels, or annihilate an existing excitatory
wavefront, the memory cell can perform set/reset operations. Gorecki [17] proposed
a method of separating the reset and read operations that were previously linked. An
early design for this is given in Fig. 6.7, where the ring round the edge contains the
state of the memory cell and the ‘S’ shape in the centre can be used as a reset signal.

A side-effect of this particular design of memory cell is that by taking an output
from one point in the ring, it can be used to produce a periodic signal (as the wave
travels round the ring, it will pass the output point at a rate proportional to the internal
perimeter of the ring).

By storing the value of the CMM neuron in a memory cell in this way (i.e. if there
is a connection in the matrix at that point, the memory cell is set to 1), then training
a CMM is just a case of setting the corresponding memory cells.
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Fig. 6.7 Basic (simulated) memory cell. The wave propagates round the outer ring, in one direction
only, but can be cleared by stimulating the S-shaped structure in the centre. From [17]

6.5.1 Requirements

The following requirements were identified as the basis for the CMM design:

Req. 1: The system must implement functionality of a CMM neuron.
Req. 1a: The neuron must maintain an internal state, si ∈ {0, 1}.
Req. 1b: The neuron must output si ∧ x for some binary input x ∈ {0, 1}.
Req. 1c: The neuron must allow the state, si to be set to 1 (for training).
Req. 2: The neuron must allow the input (output) of one neuron to be passed to
the next as input horizontally (output vertically).



6 Associative Memory in Reaction-Diffusion Chemistry 153

6.5.2 Design

Figure6.8 shows the initial logical design of the circuit. The circuit consists of a
single memory cell, used to store the internal state (si ) of the neuron. This fulfills
Req.1a. It is also used to provide a periodic pulse to coincidence detector (a), when
trained to value 1. The second input to coincidence detector (a) is the input signal x ,
which corresponds to an individual binary element of the input vector I. The output
of detector (a) is then si ∧ x , and so fulfills Req.1b. Finally, on coincidence of input
signal x and training signal z (which corresponds to an individual binary element of
the output vector O) the second coincidence detector (b) sets the memory cell to 1,
satisfying Req.1c. From the fulfilling of all three sub-requirements, the system can
then be said to fulfill Req. 1.

The cascading of inputs horizontally is achieved by splitting the x input value
so that it feeds into both the coincidence detectors in the neuron and to the next
neuron in the row. The z input in the design is representative of the vertical cascade
functionality. This is used to pass the training signals through to each neuron and
also to pass through the outputs from those neurons above this in the column to the
bottom of the matrix. These points fulfill Req. 2.

In order to implement the vertical (train/output) cascading without interfering
with the logic of the neuron, it has been moved from the centre to the side, leaving
space for the memory cell to be compactly placed in the centre of the neuron (see
Fig. 6.9).

During training, only an input–output pair of (1, 1) will load the memory cell,
because coincidence detector (b), which is used for training, implements a logical-
AND operation.

During recall, given an input of x = 1, if the memory cell is loaded (i.e. if there
exists a link at this point in the matrix), then this cell will produce an output wave.
This is then fed down to the output channel, marked z. This output channel feeds
into the top of the cell below it in the matrix, as a means of propagating all the
values from that column down to the thresholding logic that will be present at the
bottomof thematrix. Because all thewaves in any particular columnwill be produced

Fig. 6.8 Diagram showing
the logical design of a single
CMM neuron. The loop on
the right implements a
memory cell (with state
si ∈ {0, 1}), the input
(output) path is represented
by x (z), and is used for both
training and recall, and the
original value of x (z) is
passed through to the next
neuron in the row (column)

(a)

(b)
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Fig. 6.9 Chemical layout for single CMM neuron. There are two coincidence detectors (AND-
gates) in this design, the first is above the memory cell and is used during training (x ∧ z, detector
(b) in Fig. 6.8). The second is below the memory cell and is used during recall (x ∧ si , detector (a)
in Fig. 6.8)

simultaneously, the waves in the z-channel will not interfere with each other in any
way. They also cannot interfere with the x-channels, as by the time an output wave
is generated, the x-value will already have propagated to the next column.

Because of the way the neuron has been designed, we need to include a further
requirement to ensure the design is scalable:

Req. 2a: The periodicity of the memory cell output must match the time to cascade
horizontally.

This requirement means that the cascaded inputs will match with the periodic output
of the memory cell across the entire row of neurons (i.e. the inputs to each neuron
will arrive at the same point in the memory cell’s periodic cycle).

6.5.3 Testing

Three tests were identified to ensure the proposed design was sufficient for use as a
CMM neuron:

Test 1: Test periodicity of memory cell output is equal to time for cascading input
horizontally.
Test 2: Test recall logic works for two neurons in each direction.
Test 3: Test training logic works for two neurons in each direction.
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Test 1 requires precise measurements of the periodicity of the memory cell output
and of the cascading input. To implement this test, two neurons were wired up
horizontally, and a periodic boundary implemented on the far-side of the second
neuron. This means that when the input propagates through the second neuron, it will
reappear at the input of the first neuron. In doing so, the input becomes a periodic
signal that can be compared to the signals from the memory cell output.

Test 2 can be implemented alongside Test 1, as a side effect of having a memory
cell loaded and providing an input signal. Provided the first neuron produces output
at every input signal, and the second produces no output, then the logic is correct.

Tests 1 and 2 were measured through pixel traces at locations (98, 44) and
(98, 121) and time-lapse images.

Test 3 required training signals to be provided to the neurons from both the top and
left. As this cannot be implemented alongside the other tests, it was set up separately.
The test was looking for whether the coincidence of training signals will load the
memory cell, and also tested that the output of said memory cell will coincide with
the input from a recall signal. On top of this, the test needed to check for whether
another training signal will ‘overload’ the memory cell, i.e. loading the cell with two
waves instead of one.

Test 3 was measured using time-lapse images.

6.5.4 Results

Figure6.10 shows the pixel traces for both memory cell and input cascade, for Test 1.
The times that the waves pass the measurement points line up exactly for every other
memory cell output—the semi-periodic nature of the x signal is due to there being
two neurons wired up, so the signal takes twice as long to reach the measurement
point.

The recall logic of the CMM neuron worked as expected, as can be seen from the
time-lapse image produced towards the start of the run, in Fig. 6.11.

Finally, the training logic of the CMM also worked as expected, as can be seen
from the time-lapse images in Fig. 6.12.

At this point, all three tests have been shown to be a success and the CMM neuron
can now be considered as fulfilling its requirements.

6.6 CMM Thresholding

The next stage in the development of a complete CMM network is the ability to
threshold the output. One of the main strengths of associative memory is the ability
to generalise from a noisy or incomplete input pattern and returning the complete
pattern. As described in Sect. 6.3.1, the output pattern,Or should contribute the most
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Fig. 6.10 Top graph shows semi-periodic input of x signal, bottom graph shows periodic output of
memory cell. The spikes at the start of the bottom graph result from the initial stimulations

Fig. 6.11 Time-lapse image showing correctly implemented recall logic in CMM neuron. Left
Neuron is trained to value 1, and upon recall outputs value 1. Right Neuron is trained to value 0,
and upon recall outputs value 0

to the output of the network, with just a comparatively small noise term that needs
to be cancelled out.

One method for achieving this is to input a series of waves (corresponding to the
integer value of the threshold) up the output channels of thematrix. This will have the
effect of annihilating that number of waves in each channel. Any waves remaining
will propagate to the output, and should represent Or .
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Fig. 6.12 Time-lapse images (top) showing CMM neuron training, and failure to ‘overload’ the
neuron (where more than one value is stored in the memory cell at the same time (images are
multiples of 10,000 simulated time steps). Images on the bottom show snapshots (at 500 simulated
time step intervals) of the same behaviour, showing how the refractory period of the wave in the
cell prevents a further wave from starting

6.6.1 Requirements

The followingwere identified as requirements for an appropriate thresholding circuit:

Req. 1: The system must generate the specified number (θ ) of waves as output.
Req. 1a: The system must maintain an internal state representing the number of
waves outputted.
Req. 2: The system must allow extraneous (i.e. >θ ) output waves from the CMM
to pass through uninhibited.

6.6.2 Design

Figure6.13 shows the basic logical design proposed to fill these requirements. The
memory cell is used to produce the periodic output required from the circuit, while
the binary counter keeps track of how many waves have been produced, fulfilling
Req.1a. Once the binary counter reaches threshold, it inhibits the production of
further waves by clearing the memory cell, fulfilling Req.1.
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Fig. 6.13 Design for thresholding logic with threshold value θ . The circuit should produce θ waves,
which are used to inhibit the output line. Once the counter reaches θ , it produces a single wave that
inhibits the memory cell, stopping the output of waves

Figure6.14 shows the chemical design (for threshold θ = 4). By inserting a diode
junction [6] on the output channel, the circuit fulfills Req.2, as the thresholding
waves will propagate up the output channel, until the appropriate threshold has been
reached, at which point the output waves will propagate past the thresholding logic
to the output.

Fig. 6.14 Reaction layout for thresholding logic with threshold value θ = 4. The twomemory cells
on the right and bottom are the binary counter, and the large memory cell on the left produces the
output waves to inhibit the output line (across the top)
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6.6.3 Testing

Test 1: Test number of waves outputted from thresholding logic matches threshold
value, θ .
Test 2: Test number of waves outputted from CMM after thresholding matches
number produced less threshold value.

Both tests can be performed simultaneously, by hooking up a series of five CMM
neurons to a threshold circuit with θ = 4. If both tests are successful, the circuit
should output a single wave after thresholding. These tests can be measured using
pixel traces, counting the number of waves produced on the output of the threshold
logic, and then visually counting the number ofwaves produced on the post-threshold
output channel.

Figure6.15 shows the pixel trace for the threshold circuit output, clearly showing
four waves at regular intervals, as expected. Figure6.16 shows a time-lapse image
with a single output wave on the output channel. At this stage, each test has been
passed successfully, and the thresholding logic can now be considered as fulfilling
its requirements.

6.7 CMM Training

The final checks to perform on a column of CMM neurons is to ensure that the
training mechanism functions correctly. While Req.1c in Sect. 6.5 showed that an
individual neuron can be set to 1, this did not show how multiple neurons could be
trained to a specific binary pattern.
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Fig. 6.15 Graph showing correct output from threshold circuit, with four periodic waves produced
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Fig. 6.16 Time-lapse image showing single output wave on output channel, after thresholding.
Note The image has been rotated from the original definition of a CMM, so this represents a single
column of neurons

Fig. 6.17 A single column (rotated) of a correlation matrix, successfully trained to the binary value
of 21 (10110)

The first test will be to check that a column of neurons is able to be trained. In
order to achieve this, a column of five CMM neurons have been wired up, as in
Fig. 6.16, but without the threshold circuit (for simplicity). These will be trained to
the binary pattern that encodes 21 (10110).

Five waves are sent down the z-channel of the column, with a periodicity such that
the waves arrive at the neurons at the same time as each other (one wave every 15,750
simulated timesteps).When all five had been sent, the x-channels of the columnwere
stimulated with the binary pattern to be stored (at simulated time t = 77,000). For
the training to be successful, the memory cells pertaining to the 1 s in the stored
pattern will be set, and no others.

As can be seen from the time-lapse image in Fig. 6.17, the first, third and fourth
memory cells (from the top of the column) have been set to 1, and no others. This
shows that the training stage for a single pattern in a single column has been suc-
cessful.

The next step in testing the single column is to store a second pattern in the pre-
trained column of CMM neurons. At present, three of the neurons (1, 3, 4) have
been set. By subsequently storing the binary pattern encoding 5 (00101), the column
should only set the final (fifth) neuron in the column, so that the final neurons set are
(1, 3, 4, 5). This pertains to the logical OR of the first and second patterns (10111).
If any of the pre-set neurons are affected, then this test will have failed.

As can be seen from the time-lapse image in Fig. 6.18, the training has been
successful and the appropriate neurons are set, as anticipated.

The next stage in the training testing is to ensure that multiple columns can be
trained with different patterns. This will be achieved by connecting up two columns
of CMM neurons, and training the first (left-most) column with the binary pattern
encoding 25 (11001) and the second column with the binary pattern encoding 21
(10110, as before).
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Fig. 6.18 A single column (rotated) with binary value of 21 (10110) already stored, is successfully
trained with the binary value of 5 (00101), resulting in the superposed value 10111 stored in the
column

Fig. 6.19 Twocolumns (rotated) are successfully trainedwith distinct patterns,without interference
or crosstalk between the patterns. First pattern (bottom) is the binary value of 25 (11001); second
pattern (top) is the binary value of 21 (10110)

As can be seen from Fig. 6.19, the multi-column training was successful, with
each column successfully trained without interference from the other column.

At this point, it is evident that the mechanisms provided for training a matrix of
CMMs are sufficient. The next stage is to check the recall from a trained network of
CMMs.

6.8 Full CMM Networks

Before we can be sure we have constructed associative memory, we need to ensure a
network of CMM neurons will perform the computation we expect it to. The design
decisions made when considering the individual neuron, and the testing that has
already been performed on the thresholding and training aspects of the network,
ensure that this is straightforward.

The testing in this sectionwill consist of all themajor stages required to construct a
fully-functional CMMnetwork. The network will be trained on a number of patterns.
It will then be presented with a noisy version of one of the patterns, and the response
thresholded to retrieve the answer. These tests will be performed on a 6× 4 matrix
of CMM neurons, with threshold θ = 2. The patterns stored in the matrix will be
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Fig. 6.20 Left Logical construction of a trained 6× 4 CMM, with four patterns (011000, 010111,
101010 and 101101) stored, and input pattern 010101). Right Matrix representation of the same
CMM, including expected results after thresholding at θ = 2

the binary representations of 24, 23, 42 and 45. Upon presentation of the binary
representation of 21, the network should respond with 23.

Figure6.20 shows the logical (trained) construction of this network, where the
grey and white boxes represent 1 and 0 respectively.

As is evident fromFig. 6.21, the trainingphase successfully stored the four patterns
in the network.
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Fig. 6.21 Time-lapse image of the 6× 4CMMnetwork (rotated) after trainingwith the four patterns
(011000, 010111, 101010 and 101101)

The final phase is to check the recall and generalisation of the network. The
threshold circuit is started, and the input pattern (010101) presented to the network.
As is evident from Fig. 6.22, the network responded with the second column, which
corresponds to the number 23. From this, it can be seen that the circuit successfully
implements a CMM-based associative memory.

6.9 Conclusions and Future Work

Reaction-diffusion chemistry and diffusive computation could offer a viable alterna-
tive to traditional approaches to computer science, but are generally very difficult to
program. By providing a method of implementing different forms of neural network
(spiking neurons previously [34]) and associative memory herein, we offer differ-
ent methods of encoding problems in RD chemistry using paradigms that are more
well-known.

The work presented implements a binary correlation matrix memory, and shows
that the memory exhibits that same behaviour in RD chemistry as it would in tradi-
tional substrates. One of the main benefits of using binary CMMs is that training the
network doesn’t require altering the circuit in any way, just requires the setting of a
series of memory cells. This is much simpler than training the form of spiking neuron
we proposed previously [34], although a simpler spiking neuron implementation has
been proposed [29] but requires a more implicit representation to that proposed by
the current authors.

We suggest that diffusive computation, such as reaction-diffusion chemistry, has
many further applications, and through the use of silicon-based diffusive proces-
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Fig. 6.22 Final time-lapse
of the 6× 4 CMM network.
The time-lapse was cleared
at simulated time 575000, to
make the results clearer. The
input pattern (010101) gives
a single output after
thresholding (second
column) which pertains to
the value 010111
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sors [7] these systems could potentially be used alongside traditional computing
systems, such that those problems that are amenable to solution by diffusive compu-
tation can be offloaded to the diffusive processor for efficient processing.
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