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Modeling and Modifying Response
of Biochemical Processes for Biocomputing
and Biosensing Signal Processing

Sergii Domanskyi and Vladimir Privman

Abstract Processes involving multi-input multi-step reaction cascades are used in
developing novel biosensing, biocomputing, and decisionmaking systems. In various
applications different changes in responses of the constituent processing steps (reac-
tions) in a cascade are desirable in order to allow control of the system’s response.
Here we consider conversion of convex response to sigmoid by “intensity filter-
ing,” as well as “threshold filtering,” and we offer a general overview of this field
of research. Specifically, we survey rate equation modelling that has been used for
enzymatic reactions. This allows us to design modified biochemical processes as
“network components” with responses desirable in applications.

3.1 Introduction

In theoretical rate-equation modeling of chemical and biochemical reactions in
several-step cascades that are being investigated for novel biosensing or biomole-
cular computing applications [1, 8, 9, 11, 16, 17, 26, 27, 40, 42, 47–49, 51, 52,
54, 56, 59, 62, 63, 66, 79, 80, 88, 105, 106, 108, 117, 126, 127], one frequently
focuses on the select few primary kinetic pathways [57, 64, 85, 86] for each step
(reaction, process). This is done in order to limit the number of adjustable parameters
in such systems, for which experimental data are typically noisy [73, 84] and not
sufficiently detailed for a more accurate multi-parameter description of all the possi-
ble reaction pathways. Here we illustrate this approach by considering two specific
recently studied systems [30, 94] relevant to biosensing and biocomputing [1, 17,
52, 68, 107]. However, the illustrated general framework for setting up rate-equation
modeling applies to many other chemical, biochemical and biomolecular systems in
the biosensing and biomolecular computing (biocomputing) contexts, extensively
researched over the past decade [54, 64].
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We concentrate on processes with multi-input reaction cascades that are used
in biosensing, biocomputing, and decision making devices and setups utilizing
(bio)chemical processes with well-defined responses [8, 9, 49, 51, 53, 56, 59, 105,
106, 117, 126, 127]. Enzymatic processes are of particular interest because they
promise short-term development of new biosensing [21, 40–42, 59, 117, 120] and
bioactuating applications [58, 65, 95] with several signal processing steps. Indeed,
most biosensing and bioanalytical devices involve enzymatic reactions, which are
biocompatible, selective (specific), and also relatively easy to integrate with electron-
ics [125]. For instance, enzyme-based logic systems [9, 55, 56, 68, 105, 106] operat-
ing as binary YES/NO biosensors can be interfaced with electrochemical/electronic
devices by coupling to electrodes [41] or field-effect transistors [51, 60, 83].

The considered rate equation modelling has been used for cascades of enzy-
matic reactions [30, 88, 93, 94]. The set of kinetic rate equations describing the
key (bio)chemical reaction steps of interconversion of different chemicals as well as
the output buildup, is typically solved numerically with finite difference methods.
These rate equations model the main reaction steps and enable fitting key process
parameters to the extent allowed by limited and/or noisy experimental data. Indeed,
the full kinetic description of each enzymatic process would in most cases require
numerous parameters (rate constants) for each enzyme. We have developed models
[30, 88, 93, 94] that give a reasonable system’s response control—and descrip-
tion for potential modifications for applications—with a small number of adjustable
parameters.

The use of the rate-equation modeling reviewed here, allows us to “design” mod-
ified biochemical processes as “device components” (signal processing steps) with
responses desirable in applications. This is illustrated in Fig. 3.1, where panel (a)
shows a typical “convex” response of a (bio)chemical process. The output is limited
by the input chemical for small inputs, which results in a linear dependence. How-
ever, as the input is increased, other chemicals’ availability limits the output, and its
response to large input values reaches saturation. This can be modified for various
applications, as sketched in Fig. 3.1.

In Sect. 3.2, we offer an illustration of a system where the convex response is
modified to yield a sigmoid “filter” shape, by intensity-filtering [6, 30, 43, 44, 50,
82, 90, 92, 93, 96, 114, 122–124] whereby the input [96] or output [2, 43, 82] is
chemically depleted up to a limited extent. For such filtering, the dashed line, Fig. 3.1,
panel (c), illustrates the possibility of signal loss as the price paid for modifying the
system’s response. Linear response is desirable in many biosensing applications [5,
20, 22, 25, 29, 34, 76, 91, 97, 101–103, 111, 124, 128], see Fig. 3.1, panel (b).
However, in certain cases threshold response is preferred [94], as shown in Fig. 3.1,
panel (d). In Sect. 3.3, we offer an example of a system where an added enzymatic
process accomplishes such a response-modification by an interesting new enzyme-
functioning mechanism. Section3.4 offers a Summary.
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Fig. 3.1 a A typical “convex” response shape for a chemical or biochemical process. b Linear
response desirable in many biosensing applications. c “Binary” sigmoid-shape response of interest
in biomolecular computing, desired to be symmetrical and steep at themiddle inflection. d In certain
applications the conversion of a linear response to the threshold one, followed by a linear behavior,
(b) → (d), is required. Adapted with permission from Ref. [94]. Copyright c© 2014, American
Chemical Society

3.2 Sigmoid Response and Its Numerical Rate-Equation
Modeling

3.2.1 Sigmoid Response for Noise Reduction in Binary Gate
Functioning

Sigmoid response is useful when “binary” input and output values are of interest in
processing based on biomolecular reactions, which has recently been investigated
for “digital” sensor and actuator design, logic systems, and other novel ideas in inter-
facing and computing involving biomolecules [52, 53]. Enzyme-catalyzed reactions
have been used in such systems, with emphasis on novel diagnostic applications [4,
19, 27, 52, 53, 87]. For example, binary signal differentiation can be useful for future
biomedical and diagnostic applications involving analysis of biomarkers indicative
of specific illnesses or injury [42, 43, 74, 90]. Processing steps then mimic binary



64 S. Domanskyi and V. Privman

logic gates and their networks. These developments promise new functionalities for
analytical purposes, offering a new class of biosensors which can generate a binary
output of the alert type: YES/NO, in response to several input signals. These are
parts of biosensor-bioactuator “Sense/Act/Treat” systems [57, 71, 115, 117]. The
approach has already been used to analyze biomarkers indicative of certain traumas
[69, 81]. Binary (digital) in such applications refers to the ability to identify specific
values or ranges of values corresponding to 1 or 0 (YES/NO, Act/Don’t Act) signals
[85]. Standard binary logic gates, including AND, OR, XOR, INHIB, etc. [2, 7, 32,
87, 104, 108], and also few-gate model biomolecular networks [3, 21, 41, 88, 121]
were demonstrated, some mimicking simple digital electronics designs.

Control of noise in functioning of biomolecular gates used as network elements is
an important topic to consider [3, 85, 87]. An effective approach to noise control has
been to modify some of the biomolecular reaction responses in a network of process-
ing steps, according to (a)→ (c), per Fig. 3.1, i.e., have the output a sigmoid function
of the input(s). This mechanism is also used in natural systems [15, 87, 99]. Sig-
moid response then “filters” the output towards the two reference binary values. Such
biomolecular filtering based on several mechanisms has been considered, including,
the use of allosteric enzymes that have substrates with self-promoter properties [89],
“intensity filtering” (defined shortly) by redox transformations [90], pH control by
buffering [82], and intensity filtering utilizing competing enzymatic processes [82].
These developments have built on earlier approaches to understand or realize sig-
moid/digital (ON/OFF, YES/NO) responses in natural or synthetic biological and
biochemical systems [13, 14, 33, 77].

The convex response, Fig. 3.1a, when scaled to the logic 0 to 1 input and output
ranges, and assuming that the logic 0s and at physical 0s (of the reactants’ concentra-
tions), always has slope larger than 1 at the origin, and therefore amplifies the spread
of the input(s) due to noise, as it is transmitted to the output. In intensity filtering a
fraction of the output [87, 90, 108] signal or that of the input signal(s) is neutral-
ized [96] (or converted into one of the intermediate reagents) by an added chemical
process, but only for small values of the signals. The two approaches are interrelated
especially when the considered processes are networked: outputs then become inputs
to other gates. The partial output removal approach has been successfully applied
to systems of interest in applications [43], as well as yielded realizations [44, 123]
of double-sigmoid (means, with “filtering” properties with respect to both inputs)
AND and OR logic gates. As sketched in Fig. 3.1c, the price paid when using such
“intensity filtering” is the potential loss of some of the signal intensity (the spread
between the physical values corresponding to the binary 0 and 1).

Intensity filtering based on partial input neutralization has been theoretically ana-
lyzed [30] for optimizing the binary output signal. In the present section we survey
this approach as an example. In the next subsection we describe the system for which
experimental data were obtained in Ref. [96]. We illustrate how a simplified kinetic
description of the enzymatic processes involved can be set up, to limit the number of
fitted parameters to key rate constants. Furthermore, ideally the model setup should
be done in a way that allows us to identify those chemical or physical parameters of
biocatalytic processes which could be adjusted to control the quality of the realized
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sigmoid response. Quality measures of the sigmoid response should then be opti-
mized, including the steepness and symmetry of the sigmoid curve, as well as the
issue of avoiding too much signal intensity loss due to the added filtering.

3.2.2 Sigmoid Response Achieved by Neutralizing a Fraction
of the Input

As an example, we analyze a specific system [96] that corresponds to signal trans-
duction: The simplest “identity” logic gate that converts a single input: 0 or 1, to the
same binary value, 0 or 1, of the output. In principle, the physical “logic values” (or
ranges) of inputs that are designated as 0s or 1s are determined by the application.
In fact, logic 0 needs not necessarily be at the physical zero. In the present case [96]
the input is glucose in solution, the initial t = 0, where t is the time, concentration of
which can be varied. We take the experimental [96] input values 0 mM and 10 mM,
for the binary 0 and 1, respectively.

The signal processing was biocatalyzed by an electrode-immobilized enzyme
glucose oxidase, resulting in oxidation of glucose. The output was measured [96] at
the “gate time,” tg = 180 s, as the current resulting from the transfer of two elementary
units of charge per each oxidation cycle. In Fig. 3.2, the current, I(tg), normalized per
its maximum value Imax(tg) for the largest glucose input, Gmax = 10mM, is plotted
versus the glucose input. The data are taken from Ref. [96], whereas the model fit,
detailed later, is from Ref. [30].

For evaluating the effects of noise [73, 87] in the signals, we have to consider the
shape of the whole response curve, e.g., Fig. 3.2, i.e., the output current versus the
input glucose concentration not only near the logic points but also generally over
the whole 0 to 1 interval of values and somewhat beyond. As expected, the response
curve here is convex. As described earlier, it is useful to convert the response to
sigmoid, which offers advantages in noise handling, because small or zero slope at
both logic points results in suppression of noise in the input as it is converted to the
output.

Here we consider the approach [30] realized in Ref. [96], of neutralizing (con-
suming) a fraction of the input (glucose) in an added competing chemical process
that only can use up a limited amount of glucose. Enzyme hexokinase was added to
the solution, and adenosine triphosphate (ATP) was introduced in limited amounts
as compared to the maximum 10mM of glucose, to “switch on” the filtering effect.
Indeed, the process biocatalyzed by hexokinase consumes glucose but only to the
extent that ATP is not used up, without contributing to the output current. This makes
the output signal, the current at the electrode, sigmoid. The corresponding experi-
mental points from Ref. [96] and model fit (detailed shortly) are shown in Fig. 3.3.

Asmentioned earlier, entirely phenomenological data fittingwith properly shaped
(convex or sigmoid) curves in not satisfactory, because we want to explicitly iden-
tify and model the dependence on those parameters which could be controlled to
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Fig. 3.2 Experimental data [96] (circles) and our numerical model (line) for the normalized current
at time tg versus the initial glucose concentration, G, without the “filter” process, with the fitted
parameters as described in the text. Adapted with permission from Ref. [30]. Copyright c© 2012,
American Chemical Society

optimize the system’s response. Phenomenological approaches [46] include the Hill
function fitting [96]. Here we survey a different approach based on rate-equation
modeling of the key steps of the enzymatic processes. We identify the concentra-
tions of hexokinase and ATP as parameters to change, to significantly improve the
sigmoid response.

Due to complexity of most enzymatic reactions, in our modeling we focus on
few key processes for each of them. Indeed, as emphasized earlier we want few
adjustable parameters, suitable for the noisy data available in this field, e.g., Figs. 3.2
and 3.3. With numerous parameters the specific data set might look better fitted,
but the extrapolative power of the model will be lost. Thus, only enough adjustable
parameters are kept to have a schematic overall-trend description of the response
curves such as those shown in Figs. 3.2 and 3.3.

Let us first consider glucose oxidase (GOx) only, without the added “filtering.”
We identify the following key process steps and their rates:

E + G →k1 C →k2 E + · · · . (3.1)

Here E denotes the concentration of GOx, and G that of glucose. The intermediate
products are produced in the first step, involving concentration C of the modified
enzyme. For glucose, unlike some other possible substrates for GOx, the first step
(lumping several processes) can usually be assumed practically irreversible [41, 42,
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Fig. 3.3 Experimental data [96] (circles) and our numerical model (line), the same as in Fig. 3.2,
but with the filtering process active. The process here is the same as in Fig. 3.2, but with added
hexokinase (2µM). The initial concentration of ATP, 1.25 mM, was a fraction of the maximum
initial glucose concentration, 10 mM. Adapted with permission from Ref. [30]. Copyright c© 2012,
American Chemical Society

45, 46]. The last step is also irreversible. It is important to emphasize that we do not
aim at a detailed kinetic study of the enzymatic reactions involved. As pointed out
earlier, we seek a simple, few-parameter description of the response curve based on
data fromRef. [96].We ignore the kinetics of all the other reactants, input or product,
except for the rate equation for C(t),

dC(t)

dt
= k1G(t)E(t) − k2C(t), (3.2)

which should be solvedwithE(t) = E(0) − C(t). Indeed, we need this quantity only,
because the current is proportional to the rate of the second step in Eq. (3.1),

I(t) ∝ k2C(t), (3.3)

i.e., our output is I(tg) ∝ C(tg).
Without the hexokinase “filtering” part of the process, we can assume that theGOx

reaction at the electrode practically does not consume glucose: G(t) = G(0) = G.
This assumption is appropriate for electrochemical designs for glucose sensing
[39, 112, 113]. We also assume that the oxygen concentration is constant (and there-
fore is absorbed in a rate constant), ignoring the fact that for the largest glucose
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concentrations some corrections might possibly be needed due to oxygen depletion
at the electrode [96]. With these assumptions, Eq. (3.2) can be solved in closed form,

C(t) = k1E(0)G

k1G + k2
[1 − e−(k1G+k2)t]. (3.4)

Here the initial (and later remaining constant) value of G is the input, varying from
0 to Gmax. For logic-gate-functioning analysis of such processes, we define scaled
logic-range variables,

x = G(0)

Gmax
, y = I(tg;G(0))

Imax
= C(tg;G(0))

C(tg;Gmax)
, (3.5)

where Imax = I(tg;Gmax). The slope of y(x) near the logic point values x = 0 and 1,
determines the noise transmission factors [85, 87].

The data in Ref. [96] were given as the values of y for several inputs,G(0).Without
the filter process, least-squares fit of these data in our case yielded the estimates
k1 ∼= 80mM−1s−1, k2 ∼= 60 s−1. However, these estimates are rather imprecise, as
indicated by the numerical fitting procedures. Indeed, these rate constants are large
in the sense that the dimensionless combinations k2tg and k1Gmaxtg are both much
larger than 1. This is consistent with other estimates of these rate constants for GOx
with glucose as a substrate [12, 31, 38, 61]. The dependence of the scaled variable
y on G = G(0),

y =
k1E(0)G
k1G+k2

[1 − e−(k1G+k2)tg]
k1E(0)Gmax

k1Gmax+k2
[1 − e−(k1Gmax+k2)tg ] ≈ G(Gmax + k2

k1
)

Gmax(G + k2
k1

)
, (3.6)

is then to a good approximation only controlled by the ratio k2/k1, for which a
relatively precise estimate is possible, k2/k1 = 0.75 ± 0.02 mM. The quality of the
fits such as that shown in Fig. 3.2, is not impressive, but this is similar to the situation
with the more phenomenological Hill-function fitting [96].

With the filter process added, in the presence of hexokinase (HK), of concentration
denotedH(t), and ATP, of concentration A(t), glucose will be depleted. Data are then
available [96] for several initial values A(0), all smaller than Gmax. In order to limit
the number of adjustable parameters we will only consider that pathway of the HK
biocatalytic process [36, 118] in which glucose is taken in as the first substrate,
to form an intermediate product of concentration D(t). We again take a simplified
scheme for theHKactivity, ignoring a possible reversibility of the complex formation
and other details [36, 37, 45, 118],

H + G →k3 D + · · · , D + A →k4 H + · · · . (3.7)

This approach yields only two adjustable parameters which enter the rate equations
that determine the time-dependence of glucose to use in Eq. (3.2) for calculatingC(t),
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dG

dt
= −k3HG, (3.8)

dH

dt
= −k3HG + k4DA,

dD

dt
= k3HG − k4DA,

dA

dt
= −k4DA.

Note that the two middle equations can be made into one by using D(t) + H(t) =
H(0). The available data were for H(0) = 2µM. The resulting system was solved
numerically, and the data available for four initial nonzero ATP concentrations were
fitted to yield the estimates k3 = 14.3 ± 0.7mM−1s−1, k4 = 8.1 ± 0.4mM−1s−1.
The earlier estimate for k2/k1 was used to obtain these values.

3.2.3 Sigmoid Response Optimization

For fault-tolerant [3, 32, 88] information processing when gates are connected in a
network [35, 116], parameters must be chosen to reduce the analog noise amplifi-
cation or avoid it, the latter accomplished by filtering. There are various sources of
noise in the biochemical reaction processes that affect their performance as binary
“gates.” Imprecise and/or noisy realization of the expected response curve, y(x), is
one such source. There is also noise in the input(s) that is passed to the output. In
biochemical environments the noise in the inputs is quite large [23, 28, 52, 53, 85,
87, 98, 110]. Avoiding this “analog noise” being amplified during signal processing
is paramount to small-scale network stability. For larger networks, additional con-
sideration of “digital” errors [85] is required, but here we focus on the single gate
design.

Unless the input noise levels are very large or the response curve has non-smooth
features near the logic point x = 0 or 1, then the noise transmission factor is simply
given by the slope of the curve y(x) near each of the two logic points. Filtering can
make both slopes (at 0 and 1) much smaller than 1, compare Figs. 3.2 and 3.3. For
best results, the filtering response-curve shape should be centered away from 0 or 1
and also steep. However, improvement of the quality of filtering should not be done at
the expense of the intensity of the output signal in terms of its actual range of values,
here equal Imax, as opposed to the scaled variable y. Loss of intensity amplifies the
relative level of noise from all the sources discussed above.

The inputs are set by the gate usage and typically cannot be adjusted. We can
select other parameters values to optimize the filtering quality. Here we formulate
quantitative criteria for such optimization. Note that within the assumed regime of
functioning, in our model the shape of y(x) does not depend on E(0). However, other
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“gate machinery” (means, not input or output) initial chemical concentrations can
be varied. Here we consider the adjustment of H(0) and A(0). Other modifications
can include changing the physical or chemical conditions (which affects the rates of
various processes) or limiting the supply of oxygen [72].

To have the response curve as symmetric as possible we consider the position of
the peak of the slope, y′(x). In enzymatic processes, sigmoid response-curves are
typically not symmetrical with respect to the inflection region; see Fig. 3.3 and also
someapproximate analytic expressions and their plots inRefs. [92, 93].Wecandefine
the width of the peak of the derivative by the difference x2 – x1, where y′(x1,2) = 1.
Themiddle-point of the peak is defined at (x2 + x1)/2. Figure3.4 shows three different
illustrative sigmoid response curves, as well as their derivatives calculated in our
model, with the parameter values discussed in the preceding subsection. Figure3.5
presents a contour plot of the deviation of the middle-point peak position from 1/2.
Our aim is to get it rather close to 1/2 without compromising the other gate-quality
criteria. One of these is analyzed in Fig. 3.6, which plots the width of the peak, which
we would like to be as small as possible.

A “non-binary” criterion for gate quality is that of avoiding to the extent possible
the loss of the signal intensity. Since enzymatic processes usually approach saturation
at large inputs, here this can be defined as the fractional loss:

1 − Imax(H(0) > 0,A(0) > 0)

Imax(H(0) = 0,A(0) = 0)
= 1 − I(tg,Gmax)H(0)>0,A(0)>0

I(tg,Gmax)H(0)=0,A(0)=0
. (3.9)

This quantity is shown inFig. 3.7 as the percentage value. Figures3.5, 3.6 and3.7 span
values safely within the experimentally realizable ranges of the considered control
quantities, H(0) and A(0). Consideration of Figs. 3.5 and 3.6 suggests that the peak
can be made optimally centrally positioned and narrow, by selecting approximately
H(0) = 4µM and A(0) = 4 mM. The optimal choices correspond to the regions
marked by the white ovals in the figures. At least some loss of intensity is usually
present for this type of filtering. However, it can be tolerated if percentage-wise
it is comparable to (or smaller than) the degree of noise otherwise present in the
output. The approximately 5% loss level in the oval-delineated region (see Fig. 3.7)
is therefore acceptable.

Our optimal sigmoid response shape and its derivative are shown as curves (a) in
Fig. 3.4. While not symmetrical, the response curve is centrally positioned and rather
narrow. The derivative of the output signal in regions 0 ≤ x � 0.37 and 0.63 � x ≤
1 is less than 1, see Fig. 3.4: bottom panel, curve (a). In these two regions, each
extending ∼37% from the logic points 0 and 1, on the input axis, the noise in the
input will not be amplified. The criteria just surveyed are quite general and can be
applied to other systems contemplated for information and signal processing or for
biosensing with biomolecular processes.
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Fig. 3.4 Examples of sigmoid curves (top panel) and their derivatives (bottom panel) for three
different selections of the parameters used to control the response: a H(0) = 4µM and A(0) =
4 mM; b H(0) = 8µM and A(0) = 4 mM; c H(0) = 3µM and A(0) = 6 mM. The values (a)
correspond to the center of the optimal range as described in the text. The dashed line indicates the
level at which the width of the peak of the derivative is measured. Adapted with permission from
Ref. [30]. Copyright c© 2012, American Chemical Society
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Fig. 3.5 Contour plot for various initial values of HK and ATP, of the deviation of the middle-point
of the peak location from 1/2, i.e., (x2 + x1 – 1)/2. The optimal values are as small as possible
(green color). The oval defines the best choice of the parameters considering the other criteria for
optimizing the response: see text. Reprinted with permission from Ref. [30]. Copyright c© 2012,
American Chemical Society

3.3 Threshold Response in an Enzymatic System

3.3.1 Modifications of Response Functions of Biomolecular
Processes

In the preceding section we considered conversion of convex response to sigmoid.
However, in various applications different changes in the response function might
be desirable. In biosensing applications in many situations it is useful to modify the
generic response to make it as linear as possible [5, 20, 22, 25, 29, 34, 76, 91,
97, 101–103, 111, 124, 128], i.e., the conversion (a) → (b) in Fig. 3.1, here also
hoping to avoid too much loss in the overall signal intensity. Recently, a model was
developed [91, 124] (not reviewed here) and applied to data analysis, of how two
enzymatic processes with different nonlinear responses can be combined to yield an
extended approximately linear response regime.

Recently, experiments [66] on three-input majority and minority enzymatic gates
for biocomputing applications have underscored the importance of another type of
“biochemical filtering” as a part of the biochemical post-processing of the output to
achieve the desired response. In this case the conversion of a linear response to the
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Fig. 3.6 Contour plot of the width of the peak. The optimal values are as small as possible (the
green shades). The oval defines the best choice of the parameters considering the other criteria
for optimizing the response: see text. Reprinted with permission from Ref. 30. Copyright c© 2012,
American Chemical Society

threshold one, followed by a linear behavior, (b) → (d) in Fig. 3.1, is required. Here
we review results [94] establishing that such “filtering” mechanism in the reported
experiments [66] (and in the earlier work on filtering [67]) utilizing the enzyme
malate dehydrogenase (MDH), also called malic dehydrogenase, is a result on an
unusual mechanism of enzymatic biocatalytic activity of this enzyme, noted in an
early work on the mechanism of action of MDH [100]. This work [100] considered
what is called [70] a reversible random-sequential bi bi mechanism of action for
MDH, and reported that MDH can undergo a variant of inhibition [100] that results
in the slowing-down of the oxidation/reduction of one of the two substrate/product
redox couples.

As suggested by this observation, modeling of the filtering effect here is quite dif-
ferent from that for the afore-surveyed [6, 30, 44, 93, 122–124] “intensity filtering.”
We survey an appropriate description, which was applied [94] to data for a system
where the initial linear response is due to the biocatalytic action of another enzyme,
glucose dehydrogenase (GDH). We also report (in the next subsection) additional
interesting conclusions for “intensity filtering” that was considered in the preceding
section.
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Fig. 3.7 Contour plot of the measure of the loss of the output signal intensity, Eq. (3.9). This
measure should be minimized (green color) without compromising the other gate-quality criteria.
The oval defines the best choice of the parameters considering the other two criteria: see text.
Reprinted with permission from Ref. 30. Copyright c© 2012, American Chemical Society

3.3.2 Signal Transduction Combined with Fast Reversible
Deactivation of the Output

The system that is considered here is shown schematically in Fig. 3.8. We already
emphasized that the full kinetic description of enzymatic processes requires several
rate constants for each enzyme. We will revisit this later (in Sect. 3.3.3). Let us
first attempt to use a simple model with a minimal number of parameters in an
attempt to describe the effect on a linear response of the type shown in Fig. 3.1b, of
an added process that affects the output product, of concentration, P(t), by rapidly
interconverting it to and from (equilibrating it with) another compound that is inert
as far as contributing to the output signal. Our conclusion will be that this simple
description is not adequate for the system of interest [94]. However, the model itself
is useful to study because adding fast, reversible processes that affect the product
can be done relatively easily in most cases by chemical or biochemical means.

The first enzyme in the cascade, GDH, was utilized in the kinetic regime quite
typical for many uses of enzymes, i.e., with both of its input chemicals (substrates),
glucose and NAD+, provided with the initial concentrations large enough to have the
products of the reaction generated with a practically constant rate for the times of the
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experiment. For the product of interest, NADH,we thus assume that its concentration,
P(t), varies according to

dP

dt
= RG, (3.10)

P(tg) = RGtg, (3.11)

where R is a rate constant that can be fitted from the data, whereas G is the initial
concentration of glucose, which is the input at time t = 0, was varied from 0 up to,
here, Gmax = 8 mM. Other reagents in the present system have fixed initial concen-
trations. The linear behavior in time applies for all but the smallest inputs, G, and it
breaks down for very short times as well as for very long times on the time-scales of
the experiments that went up to 600s.

The second enzyme, MDH, is also used in the regime of plentiful supply of
the initially available substrates (one of the two in each direction of functioning, see
Fig. 3.8). Since its functioning is reversible, we could attempt to describe the kinetics
of the present system by the effective processes

G →R P, P
r+
�
r+

M (3.12)

We note that MDH oxidizes NADH to NAD+, which is then our “inert” compound
(not contributing to the measured signal obtained by optically detecting the con-
centration of NADH), but since NAD+ is already present in the system in a large
quantity, the variation of its concentration has little effect on the reverse process.
However, malate, denoted, M(t), see Fig. 3.8, not initially present, directly (and for

Fig. 3.8 The schematics of
the enzymatic processes in
the biocatalytic cascade [94]
surveyed in Sect. 3.3. The
reactants and biocatalysts
that are initially in the
system (with filtering) are
color-coded blue, including
β-nicotinamide adenine
dinucleotide (NAD+) and its
reduced form (NADH). The
double-arrows emphasize
that the functioning of MDH
is reversible. Reprinted with
permission from Ref. [94].
Copyright c© 2014,
American Chemical Society
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simplicity we assume linearly) affects the reverse process rate. The present model
is not accurate, but interesting because the resulting rate equations can be solved in
closed form,

dP

dt
= RG − r+P + r−M,

dM

dt
= r+P − r−M, (3.13)

P(t) = RG

{
r+[1 − e−(r++r−)t]

(r+ + r−)2
+ r−t

r+ + r−

}
. (3.14)

One could speculate that an added fast reversible process that deactivates a part
of the product, up to a fraction that corresponds to the concentrations of the rate-
limiting chemicals for which that reversible process equilibrates, might have some
“filtering” effect. But Eq. (3.14) suggests that there is no “filtering” at all. Instead,
the dependence of the product P(tg) on the input, G, remains linear for any fixed
“gate time” tg, with a reduced slope (means, with loss of intensity). The original
time-dependence, Eq. (3.11), is linear in both G and tg. However, with the added
process the time dependence is modified. Figure3.9 illustrates that for small times
the rate of the product output is unchanged (the added process is not really active).
For large times a reduced rate, RGr−/(r+ + r−), is approached.

Interestingly, the experimentally observed [66] change from the linear to threshold
response, (b) → (d) in Fig. 3.1, must therefore be due to more complicated kinetic
mechanisms than that summarized in Eq. (3.12). The origin of the observed effect
turns out to be connected to an interesting kinetic property of the functioning of
MDH, reviewed in the rest of this section. The model just considered, however,
suggests that, generally adding a fast, reversible process of deactivation of the input
by equilibrating it with another species cannot in itself result in threshold type (at
low inputs) intensity filtering. Examples [6, 30, 43, 44, 50, 82, 90, 92, 93, 96,
114, 122–124] when such an approach worked have always involved the absence of
equilibration by kinetic restrictions, for example due to a limitation on how much of

Fig. 3.9 Time dependence
of the NADH concentration,
P(t), for typical parameter
values [94] with (the red
curve) and without (the black
straight line) the added fast
reversible “output
deactivation” process
biocatalyzed by MDH. The
dashed line is the asymptotic
rate, RGr−/(r+ + r−), for
large times. Adapted with
permission from Ref. [94].
Copyright c© 2014,
American Chemical Society
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the other species could be produced (imposed by the process requiring some other,
limited-supply chemical).

3.3.3 MDH Kinetics with Inhibition

Enzymes have rather complicated kinetic mechanisms. These typically involve the
formation of complexes with substrate(s), then follow-up processes involving these
complexes, etc., in most cases resulting in the restoration of the enzyme at the end of
the cascade, when products are released. Our first enzyme, GDH, has such a standard
mechanism of action [10, 78, 109], that would require several rate constants to fully
model. The second enzyme, MDH, has a complicated and less common mechanism
of action [24, 75, 100, 119], with a number of intermediate complexes. It is in fact not
fully studied. MDH can form complexes [100] with all four of the relevant substrates
for the direct (NADH and oxaloacetate) or reverse (NAD+ and malate) functioning,
and then form triple-complexes inwhich the actual redox-pair conversions occur. This
is sketched in Fig. 3.10a. Modeling [18] of all the processes would require at least
18 rate constants. This illustrates why it is so important to use few-parameter kinetic
models for a semi-qualitative description of the response in sensor and biomolecular
computing applications. Such approaches [85, 93] usually involve setting up an
effective rate equation description that captures the main process pathways.

Fig. 3.10 a Mechanism of action of MDH. Here E stands for the enzyme, P for NADH (the
product), N for NAD+, whereas malate and oxaloacetate are denoted by M and O, respectively.
b The “direct” reaction pathways activate at early times. c A hypothetical mechanism for a reaction
pathway subset that dominates at later times
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The output product, NADH, denoted P, generated by the GDH process, acti-
vates all the “direct” complex-formation and redox conversion processes of MDH,
Fig. 3.10b. The latter not only partially convert NADH back to NAD+, to be denoted
N , but these processes also build up the concentration of malate, M. The “reverse”
processes of MDH are then also activated, driving the system towards equilibration.
However, it has been reported in the literature [100] that, as the concentration of
malate is increased relative to oxaloacetate, denotedO, the redox inter-conversion rate
NADH ↔ NAD+ actually slows down, whereas the inter-conversion rate oxaloac-
etate ↔ malate increases. This might look paradoxical, but a likely explanation is
as shown in Fig. 3.10c. Most of the enzyme, E, becomes trapped in the complexes
EP and EN (as well as in complexes, ENM and EPO). The fast inter-conversion
oxaloacetate ↔ malate (O ↔ M) is compensated for by the inter-conversion EP ↔
EN. This interesting mechanism can be either kinetic or caused by malate inhibiting
[100] some of the reaction pathways. It is important to emphasize that despite the
earlier experimental evidence [100], this mechanism is largely a conjecture. In fact,
the observation that this assumption leads to modeling [94] that fits the data provides
an additional support to it.

To model this effect with a minimal possible number of parameters, considering
that oxaloacetate is supplied in large quantity, we ignore its depletion. We assume
that the concentration of malate that would correspond to steady state isM0. We then
write the rate equation of the linear supply of the product, cf. Eq. (3.10), but with the
added depletion term,

dP

dt
= RG − K(M0 − M)P = −KP2 − K(M0 − Rt)P + RG. (3.15)

Here K is the rate constant for the decrease in the amount of the product, P, due
to the initially active mechanism, Fig. 3.10b, which is gradually replaced by the
mechanism involvingEP↔EN asM increases from0 toM0, Fig. 3.10c. This assumes
that the relative rates of the two mechanisms are directly proportional to M0 − M
and M, respectively. The second expression in Eq. (3.15) was obtained by using
M(t) = RGt − P(t). This can be solved to yield

P(t) = RGt − M0 + M0e−K( 1
2RGt−M0)t

1 + KM0
∫ t
0 e

−K( 1
2RGτ−M0)τdτ

, (3.16)

or

P(t) = RGt − M0 + 2
√
KRGM0e

Kt
2 (2M0−RGt)

√
2πKM0e

KM2
0

2RG

[
erf

(√
K

2RGM0

)
−erf

(√
K

2RG (M0−RGt)
)]

+2
√
KRG

.

(3.17)
This expression provides the dependence of P(tg) on G, of the type shown in

Fig. 3.1d, and was successful in experimental data fitting [94] for a system the
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Fig. 3.11 Top panel
Measured time dependence
[94] for input G = 7 mM,
points practically merged
into solid lines, and model
results, shown as dashed
lines, for a typical
experiment a without
filtering, and b with filtering.
Bottom panel Measured
dependence on the initial
glucose concentration [94]
for fixed time tg = 360 s,
shown as dots, for a without
filtering, and b with filtering;
model results are shown as
dashed lines. Adapted with
permission from Ref. [94].
Copyright c© 2014,
American Chemical Society

schematic of which is sketched in Fig. 3.8. Figure3.11 provides an illustration of
fitting the experimentally measured [94] time dependence, and also shows an exam-
ple of data fitting [94] for the response function, which should be compared with
Fig. 3.1b and 3.1d.

3.4 Summary

We reviewed the biochemical “intensity filtering,” by considering approaches to
modeling binary AND gate performance and optimization of its “digital” response.
Specifically, we considered the recently introduced approach of a partial input con-
version into inactive compounds, which yields sigmoid response of the output, of
interest in information/signal processing and in biosensing applications. For selected
examples, we established criteria for optimizing such a “binary” response. Different
physical or chemical conditions can be changed to impact enzymatic processes, and
we demonstrated this by an example of how our system’s response changed when
the initial concentrations of two “filter process” chemicals were varied. The devel-
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oped criteria are quite general and can be applied to other systems contemplated for
information/signal processing, and for biosensing, with biomolecular processes.

Applying a similar rate-equation modelling approach we then demonstrated that
reversible conversion of the product to another compound cannot on its own result in
(bio)chemical “filtering.” Experimentally observed biochemical “threshold filtering”
by a reaction biocatalyzed by an enzyme with an unusual mechanism of action was
instead attributed to inhibition of certain process pathways for this enzyme once one
of its substrates builds up in concentration. Experimental data analysis supports the
model’s validity.
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