
Chapter 21
On Hybrid Classical and Unconventional
Computing for Guiding Collective Movement

Jeff Jones

Abstract Collective movement in living systems typically displays complex
dynamics which cannot be described by the component parts themselves. Plasmod-
ium of slime mould Physarum polycephalum exhibits complex amoeboid movement
during its foraging and hazard avoidance whichmay be influenced by the local place-
ment of attractants, repellents and light irradiation stimuli. Slime mould is a useful
inspiration to soft-robotics due to its simple component parts and the distributed
nature of its control and locomotion mechanisms. However, it is challenging to inter-
face classical computing devices to a distributed systemwhich utilises self-organised
and emergent properties. In this chapter we investigate potential hybrid approaches
to the task of automatically guiding collective robotics devices, using a multi-agent
model of slimemould.We demonstrate a variety of simple open-loop guidancemeth-
ods. We then describe a hybrid classical/unconventional computing approach using
a closed-loop feedback mechanism with attractant and repellent stimuli. Both stimu-
lus types were capable of successful automatic guidance, but we found that repellent
stimuli (a light illumination mask) provided faster and more accurate guidance than
attractant sources, which were found to exhibit overshooting phenomena at path
turns. The method allows traversal of convoluted arenas with challenging obstacles
such as narrow channels and complex gratings, and provides an insight into how
unconventional computing substrates may be hybridised with classical computing
methods to take advantage of the mutual benefits of both approaches.

21.1 Introduction: Collective Movement

Collective movement is a directed movement of multiple individuals which are cou-
pled (directly or indirectly) by some aspect of their environment or special senses.
The phenomenon is observed in natural systemswhich span huge variations in spatial
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scale, temporal scale, and in their environmentalmedium.At very small spatial scales
this includes self-organised movement or aggregation of collectives composed of
individual cells to form regular patterns. In bacteria this can be observed, for exam-
ple, in the formation of regular patterns inBacillus subtilis [36] andProteus mirabilis
[43]. Cells of the cellular slime mould Dictyostelium discoideum are well known to
aggregate under the influence of cAMP [16, 34]. At slightly larger scales human
cells are known to move collectively during embryogenesis [46], wound repair [9]
and tumorigenesis [13] in response to a wide range of chemotactic, bioelectric and
mechanical stimuli [17, 35].

Collective movement at the population level can result in dynamic and dramatic
patterning phenomena, such as swarming [10], flocking [44], herding [18], and
shoaling and schooling [22, 42]. The specific biological and generalised coupling
mechanisms which generate these emergent patterns from the low-level individual
interactions have been studied [15, 51, 61]. In human environments collective move-
ment is seen in walking trail patterns [21], crowd dynamics [20, 67], and car traffic
systems [19, 37].

Non-living systems may also exhibit collective movement, for example the phe-
nomenon of sorted patterned ground [31] or the evolution of dune structures [33, 62].
But in these non-living cases the movement of the ‘individuals’ is passive and undi-
rected, guided only by environmental forces (freeze-thaw cycles and wind transport
respectively). In living systems collective movement not only responds to environ-
mental forces but also adds an element of responding to an external stimulus. This
directed response enables the dynamical cohesion of a population in space (for exam-
ple flocking in response to predatory threats), the efficient ordering or movement of
a mobile population (trails or raiding fronts of ant colonies), the aggregation of a
population towards a single location (for example prior to the assembly of the grex
structure in Dictyostelium), and the arrangement of complex patterns (the concen-
tric patterns in B. subtilis or the arrangement of endothelial precursor cells to form
vascular structures). The type of stimulus and the location at which it is presented
are an important consideration in the response of the mobile collective.

Collective movement is of interest for computing and robotics applications
because the mechanisms which enable collective movement in natural systems are
relatively simple, use local communication cues, exploit self-organised patterning
and exhibit distributed control. There is typically no central orchestrator of move-
ment in such systems, and the contribution of all entities may be of equal importance.
These emergent behaviours result in efficient collectives which contain redundant
parts and are resilient to damage or interruption. Simple identical components would
reduce the cost of robotic devices. Furthermore, communication between robotic
entities and evaluation of current position and future goal position imply a signif-
icant computational cost which would be multiplied when the collective contains
a large robotic population. The exploitation of strategies exploited by living col-
lective systems in artificial robotic collectives may result in useful physical and
computational cost savings, with the benefit of innate autonomy and resilience of the
collective. As previously noted, collective movement is observed in a diverse number
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of target organisms operating at very different scales. If we are to take inspiration
from living examples of collective movement for robotics purposes which example
system should be chosen?

21.2 Collective Movement in Slime Mould Physarum
Polycephalum

An ideal candidate for a biological organism to explore collective movement would
be capable of the complex sensory integration, movement and adaptation, yet be
composed of a relatively simple component parts that are amenable to simple under-
standing and external influence. The acellular slime mould Physarum polycephalum
meets these criteria. P. polycephalum is a giant single-celled amoeboid organism,
visible to the naked eye. During the plasmodium stage of its complex life-cycle [50]
it takes the form of a constantly adapting protoplasmic network. This network is
comprised of a sponge-like material which exhibits self-organised oscillatory and
contractile activity which is harnessed in the transport and distribution of nutrients
within this internal transport network. The organism is remarkable in that the con-
trol of the oscillatory behaviour is distributed throughout the almost homogeneous
medium and is highly redundant, having no critical or unique components.

The plasmodium is amorphous in shape and ranges from the microscopic scale
to up to many square metres in size. It is a single cell syncytium formed by repeated
nuclear division, comprised of a sponge-like actomyosin complex co-occurring in
two physical phases. The gel phase is a dense matrix subject to spontaneous contrac-
tion and relaxation, under the influence of changing concentrations of intracellular
chemicals. The protoplasmic sol phase is transported through the plasmodium by the
force generated by the oscillatory contractions within the gel matrix. Protoplasmic
flux, and thus the behaviour of the organism, is affected by changes in pressure, tem-
perature, space availability, chemoattractant stimuli and illumination [11, 12, 32, 38,
41, 53, 59]. The P. polycephalum plasmodium can thus be regarded as a complex
functional material capable of both sensory and motor behaviour. Indeed it has been
described as a membrane bound reaction-diffusion system in reference to both the
complex interactions within the plasmodium and the rich computational potential
afforded by its material properties [7]. The study of the computational potential of
theP. polycephalum plasmodiumwas initiated byNakagaki et al. [39] who found that
the plasmodium could solve simple maze puzzles. This research has been extended
and the plasmodium has demonstrated its performance in, for example, path planning
and plane division problems [47, 48], spanning trees and proximity graphs [1, 2],
simplememory effects [14, 45], the implementation of logic gates and adding circuits
[55, 63].

Robotics use ofP. polycephalum is possible by exploiting its response to changing
conditions within its environment. The migration of the plasmodium is influenced by
a wide number of external stimuli including chemoattractants and chemorepellents
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[64], light irradiation [40], thermal gradients [65], substrate hardness [54], tac-
tile stimulation [5], geotaxis [66] and magnetotaxis [49]. By careful manipula-
tion of such external stimuli the plasmodium may be considered as a prototype
robotic micro-mechanical manipulation system, capable of simple and program-
mable robotic actions including the manipulation (pushing and pulling) of small
scale objects [8, 57], transport and mixing of substances [4]. A Physarum-inspired
approach to amoeboid robotics was demonstrated by Umedachi et al. [60] in which
an external ring of coupled oscillators, each connected to passive and tune-able
springs was coupled to a fluid filled inner bladder. The compression of the peripheral
springs mimicked the gel contractile phase and the flux of sol within the plasmodium
was approximated by the coupled transmission of water pressure to inactive (softer)
springs, thus deflecting the peripheral shape of the robot. The resulting movement
exhibited flexible behaviour and amoeboid movement.

Physarum has been shown to be a useful model organism in the study of distrib-
uted robotics. In this article we explore the problem of collective guidance, i.e. how to
move and guide a population of independent mobile entities along a pre-determined
path. This task represents a only small subset of general robotics challenges which
also include the problem of how to survey and map an unknown environment, and
how to plan paths between two or more locations in an environment. Approaches
to robotics guidance and planning problems directly inspired by Physarum include
the simultaneous localisation and mapping problem [30], the generation and man-
ual guidance of collective transport [29], and amoeboid movement [28]. Hybrids of
unconventional computing and classical computing substrates are relatively uncom-
mon. In the work of [6] a hybrid path planning system was implemented by using
waves from a chemical reaction-diffusion processor to represent start points, end
points and obstacles. These waves were used to generate a repulsive field which was
used to guide a robot along the arena. The Physarum plasmodium itself was used as a
guidance mechanism in a biological mechanical hybrid approach where the response
of the plasmodium to light irradiation stimuli provided by extended sensors from a
classical robot device was then used to provide feedback control to the robot’s move-
ment actuators [58]. More recently the problem of generating a path between two
points in an arena was tackled with a Physarum-inspired morphological adaptation
approach [27].

In this article we take the next logical step in these robotics challenges by tackling
the problem of dynamically guiding a collective of mobile entities along the path
whilst avoiding obstacles. We examine the multi-agent virtual plasmodium and its
response to stimuli in Sect. 21.3. Section21.4 demonstrates simple open-loop exam-
ples of guidance. Closed-loop approaches involving a hybrid of classical and uncon-
ventional substrates are presented in Sect. 21.5 with assessments of both attractant
and repellent guidance methods, novel properties seen during path traversal, and a
recovery mechanism for any collectives which may become detached from the target
path. We conclude in Sect. 21.6 with a summary of the approach, its main properties
and contribution to the field.
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21.3 A Virtual Collective Inspired by Slime Mould

To explore guided collective movement we use a simple modification to the parti-
cle approximation of P. polycephalum introduced in [24] which generated dynam-
ical adaptive transport networks. The approach is based on the concept of simple
component parts which exhibit collective emergent behaviour and has shown to be
successful in reproducing a wide range of behaviour seen in P. polycephalum. Pre-
sentation of external environmental stimuli (both attractant and repellent) has been
shown to be a critical factor in the evolution of patterning and complexity of com-
putational behaviour within this model [26] (for more information, see [25]). In this
approach the plasmodium is represented by a population of mobile particles with
very simple behaviours, within a 2D diffusive environment. A discrete 2D lattice
stores particle positions and also the concentration of a local generic chemoattrac-
tant. The chemoattractant concentration represents the hypothetical flux of sol within
the plasmodium. Free particle movement represents the sol phase of the plasmod-
ium and particle positions represent the fixed gel structure (i.e. global pattern) of
the plasmodium. Particles act independently and iteration of the particle population
is performed randomly to avoid introducing any artifacts from sequential ordering.
Particle behaviour is divided into two distinct stages, the sensory stage and the motor
stage. In the sensory stage, the particles sample their local environment using three
forward biased sensors whose angle from the forward position (the sensor angle
parameter, SA, set to 90◦), and distance (sensor offset, SO, set to 15 pixels) may
be parametrically adjusted (Fig. 21.1). The offset sensors represent the overlapping
filaments within the plasmodium, generating local coupling of sensory inputs and
movement to form networks of particles. The SO distance is measured in pixels and
the coupling effect increases as SO increases.

During the sensory stage each particle changes its orientation to rotate (via the
parameter rotation angle, RA, set to 45◦) towards the strongest local source of
chemoattractant. After the sensory stage, each particle executes the motor stage

Fig. 21.1 Schematic
illustration of a single agent
particle. Position on the 2D
lattice is indicated by ‘C’,
three offset sensors ‘FL’, ‘F’
and ‘FR’ sample the local
chemoattractant
concentration, Sensor Offset
SO parameter sets distance
from ‘C’ to sensors, Sensor
Angle SA indicates angle
between sensors
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and attempts to move forwards in its current orientation (an angle from 0–360◦) by
a single pixel. Each lattice site may only store a single particle and particles deposit
chemoattractant (5 arbitrary units) into the lattice only in the event of a successful
forwards movement. If the next chosen site is already occupied by another particle
the default (non-oscillatory) motor behaviour is to abandon the move, remain in the
current position, and select a new random direction.

For experiments with varying population sizes, adaptation of the population size
was implemented via tests at regular intervals. The frequency at which the growth
and shrinkage of the population was executed determined the turnover rate for the
population. The frequency of testing for growth was given by the Gf parameter and
the frequency for testing for shrinkage is given by the Sf parameter (both set to 15).
Growth of the population was implemented as follows: If there were between Gmin

(0) and Gmax (10) particles in a local neighbourhood (window size given by Gw, 9
pixels) of a particle, and the particle had moved forward successfully, a new particle
was created if there was a space available at a randomly selected empty location in
the immediate 3 × 3 neighbourhood surrounding the particle.

Shrinkage of the population was implemented as follows: If there were between
Smin (0) and Smax (24) particles in a local neighbourhood (window size given by Sw,
5 pixels) of a particle the particle survived, otherwise it was deleted. Deletion of a
particle left a vacant space at this location which was filled by nearby particles (due
to the emergent cohesion effects), thus causing the blob to shrink slightly.

Diffusion of the collective chemoattractant signal is achieved via a simple 3 × 3
mean filter kernel with a damping parameter (set to 0.1) to limit the diffusion dis-
tance of the chemoattractant. The low level particle interactions result in complex
pattern formation. The population spontaneously forms dynamic transport networks
showing complex evolution and quasi-physical emergent properties, including clo-
sure of network lacunae, apparent surface tension effects and network minimisation.
An exploration of the possible patterning parameters was presented in [23].

21.3.1 Generation of Multi-agent Cohesion

Condensation of the multi-agent networks forms uniform sheet-like structures.
Figure21.2 shows the evolution of the stable SA 45◦, RA 45◦ network within a circu-
lar arena. The agents coalesce into network trails and the contraction behaviour con-
denses the network until all interior space is removed and a sheet-like mass remains.
This sheet configuration also exhibits unusual properties: the sheet itself forms a
minimal surface shape and ripple-like activity can be seen to propagate through the
sheet. The sheet also shows relatively stable dissipative ‘islands’ of greater trail flow.
The islands reflect areas where a temporary vacancy of agents exists. The number
and size of the islands is related to the sensor offset distance (SO) of the agents.
When the SO parameter increases, the number of vacancy islands decreases and the
spacing between them increases (Fig. 21.2). This suggests that the vacancy islands
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Fig. 21.2 Formation of sheet-like structures and the emergence of dissipative vacancy ‘islands’.
Top row (left to right) Network evolution over time: %p = 20 agent trails, SA 45◦, RA 45◦. Bottom
row (left to right) Dissipative vacancy island patterns at SO: 9, 13, 19, 23, 28, 38

self-assemble under the influence of the SO parameter and represent transient regions
of free movement within the mass of particles.

21.3.2 Generation of Oscillatory Dynamics

Although the particle model is able to reproduce many of the network based behav-
iours seen in the P. polycephalum plasmodium such as spontaneous network for-
mation, shuttle streaming and network minimisation, the default motor behaviour
does not exhibit oscillatory phenomena and inertial surging movement, as seen in
the organism. This is because the default action when a particle is blocked (i.e. when
the chosen site is already occupied) is to randomly select a new orientation, resulting
in very fluid network evolution. The oscillatory phenomena seen in the plasmodium
are thought to be linked to the spontaneous assembly/disassembly of actomyosin and
cytoskeletal filament structures within the plasmodium which generate contractile
forces on the protoplasm within the plasmodium. The resulting shifts between gel
and sol phases prevent (gel phase) and promote (sol phase) cytoplasmic streaming
within the plasmodium. To mimic this behaviour in the particle model requires only
a simple change to the motor stage. Instead of randomly selecting a new direction
if a move forward is blocked, the particle increments separate internal co-ordinates
until the nearest cell directly in front of the particle is free. When a cell becomes
free, the particle occupies this new cell and deposits chemoattractant into the lattice.

The effect of this behaviour is to remove the fluidity of the default movement
of the population. The result is a surging, inertial pattern of movement dependent
on population density (the population density specifies the initial amount of free
movement within the population). The strength of the momentum effect can be
adjusted by a parameter (pID) which determines the probability of a particle resetting
its internal position coordinates, lower values providing stronger inertial movement.
When this simple change in motor behaviour is initiated surging movements are
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seen and oscillatory domains of chemoattractant flux spontaneously appear within
the virtual plasmodium showing characteristic behaviours: temporary blockages of
particles (gel phase) collapse into sudden localised movement (solation) and vice
versa. The oscillatory domains themselves undergo complex evolution including
competition, phase changes and entrainment. We utilise these dynamics below to
investigate the possibility of generating useful patterns of regular oscillations which
may be coupled to provide motive force.

21.3.3 Generation of Collective Amoeboid Movement

In the absence of stimuli the oscillatory waves propagating through the particle
population (a large cohesive ‘blob’) simply deform the boundary of the blob. This
distortion may cause randommovement of the blob through the lattice but this move-
ment is not predictable and is subject to changes in direction. To move the blob in
any meaningful way it is necessary to distort the blob with regular stimulus inputs in
order to shift its position in a chosen direction. These input stimuli are inspired by
stimuli which have been shown to influence the movement of slime mould, attractant
stimuli and repellent stimuli. Slime mould is known to migrate towards diffusing
attractant stimuli, such as nutrient chemoattractant gradients or increasing thermal
gradients. Conversely the organism is known to be repelled (moving away from)
certain hazardous chemical stimuli and exposure to light irradiation.

Attractant stimuli are represented in the multi-agent model by the projection of
spatial values into the diffusive lattice. Since the particles also deposit and sense
values from this lattice they will be attracted towards locations which present the
same stimulus. An example of the migration of a self-oscillating blob of multi-agent
particles towards attractant stimuli can be seen in Fig. 21.3 inwhich a blob comprising
4000particles is exposed to the attractant field generated byprojection of four discrete
attractant stimuli into the diffusive lattice. The initially random distortion of the blob
(Fig. 21.3a) is followed by migration of particles at the leading edge of the blob (i.e.
closest to the nearest stimulus, Fig. 21.3b). This changes the shape of the blob and
causes travelling waves to emerge, moving forwards in the direction of the nearest
nutrient, shifting the position of the blob and moving it towards the nutrient. As each
nutrient is engulfed it is ‘consumed’ simply by decrementing the amount projected
into the lattice (Fig. 21.3c, d). Removal of the first stimulus point then exposes the
blob to the next point, and so on, causing the blob to migrate along the nutrient
locations (Fig. 21.3e–h).

Repellent chemical stimuli may be approximated in the model by projecting neg-
ative values into the lattice at spatial sites corresponding to repellents, causing the
blob to move away from the stimuli. Alternatively, the light irradiation response
may be represented by reducing values within the lattice at exposed regions (the
shaded region in Fig. 21.4d) whilst reducing the values sampled by agents’ sensors
within exposed regions. This reduction of stimuli at exposed regions renders them
less attractive to individual particles and particles migrate away from these regions.
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Fig. 21.3 Propagation of self-oscillating blob in the direction of nutrient attractants. a Blob com-
prising of 4000 particles is inoculated on the left side of a diffusive lattice containing four nutrient
attractants, b–c blob shape is deformed as particles move towards the attractants, generating trav-
elling waves within the blob, d–h consumption of nutrients exposes the blob to nearby attractants
causing the collective to move to the right of the arena

This migration is initiated at the interface between exposed and unexposed regions,
causing an efflux of particles from exposed regions (Fig. 21.4e). The inherent cohe-
sion of the agent population results in a distortion of the blob shape and a collective
movement away from the exposed area 21.4f–h).

In this section we have demonstrated the innate cohesion of the multi-agent popu-
lation in both oscillatory and non-oscillatory movement modes. The non-oscillatory
mode is relatively predictable and attempts to retain a minimal shape profile whilst
the oscillatory mode has the advantage of generating self-organised amoeboid move-
ment, at the expense of more unpredictable movement patterns. We have demon-
strated how the blob can be influenced by both attractant and repellent stimuli. In
the next sections we explore mechanisms to automatically guide the multi-agent
population along a pre-selected path.
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Fig. 21.4 Propagation of self-oscillating blob away from repellent stimulus. a–c blob stays in
approximately the same position when no stimulus is present, d projection of simulated light irradi-
ation to left side of the blob (shaded) reduces flux and particle sensitivity in the diffusive lattice at
these exposed regions, e–h particles migrate away from exposed regions towards unexposed regions
of the blob, shifting the mass of the blob away from the illuminated region
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21.4 Automatically Guided Movement: Open-Loop
Methods

In this section we describe relatively simple open-loop approaches to guidance of the
virtual plasmodium through an arena. These approaches do not require any input from
conventional computing methods and can be implemented completely by projection
of spatial patterns to the unconventional computing substrate.

21.4.1 Fuse Method

In thismethod the entire path is presented as a continuous line of attractant stimuli and
a small population is inoculated at the region indicated by the cross-hair (Fig. 21.5a).
The population is attracted by the path, growing in size and moving towards it. The
stimulus comprising the path is consumed by the population and the population
adapts to the consumption of the path by migrating along the path until the end point
is reached (Fig. 21.5b–f).

Fig. 21.5 Fuse method. a A small population was inoculated at the start point (cross) of a path
represented by a continuous line of stimuli, b–c the population consumes the line, growing and
moving along the stimulus path, d–f the movement and consumption continues until the blob
arrives at the final destination point
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Fig. 21.6 Stepping-stone method. a A small population was inoculated at the start point (cross)
of a discrete array of points, b–c the blob consumes each point and is then attracted by the next
stimulus point along the path, d–f the movement and consumption continues until the blob arrives
at the final destination point

21.4.2 Stepping-Stone Method

In the stepping-stone method the path is presented as a sequence of discrete stimulus
points (Fig. 21.6a). A small population is again inoculated at the cross-hair location.
The small blob of virtual plasmodium consumes the stimulus on the current point on
the path and is then attracted to the next point in the path (Fig. 21.6c, d). The blob
traverses the path in a series of hops, moving from point to point, until the final goal
point is reached (Fig. 21.6f).

21.4.3 Elastic Method

This method utilises the morphological adaptation inherent within the population.
The path is again represented by a series of discrete stimuli and a small blob is
inoculated at the cross-hair location (Fig. 21.7a). Unlike the fuse and stepping-stone
methods, each stimulus point is not immediately consumed, instead the population
grows in size to span all points on the path from beginning to end (Fig. 21.7a–c).
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Fig. 21.7 Elastic method. a–c A small population was inoculated at the start point (cross) and,
attracted by the stimulus points of the path, grew to extend across all points, d–f all stimulus points
except the end point were then removed and the virtual plasmodium adapted to the change of
stimulus profile by retracting towards the end point

After reaching the final path point all previous path points are deleted and the blob,
which is now only ‘anchored’ to the attractant of the final point, adapts its shape,
shrinking and moving its body plan to the final point, completing the movement.

21.5 Automatically Guided Movement: Closed-Loop
Feedback Methods

The open-loop methods, although effective in these examples, do not account for the
possibility that the virtual plasmodium may become detached from the path. Once
each particular method is set in action, there is no guarantee of the success, or failure,
of the motion along the path. We require feedback about the position of the model
population within its environment, and mechanisms to dynamically influence the
position within the arena to reach the goal. This requires a more complex closed-
loop approach.

To provide a real challenge for this approach we utilise the self-oscillatory behav-
iour of the model plasmodium. This behaviour was introduced in [56] to reproduce
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the spontaneous and self-organised oscillation patterns observed within small sam-
ples ofPhysarum plasmodia [52]. In themodel plasmodium these oscillations emerge
from interruptions of individual particle movement, as described in Sects. 21.3.2 and
21.3.3. We adjust the momentum of the self-oscillatory amoeboid movement time
using the pID parameter. Higher values of pID (for example 0.05) result in less persis-
tence of direction of individual particles, whereas lower values (for example 0.001)
result in much stronger persistence of direction. The accumulation of interruptions
in movement of individual particles results in travelling waves of flux forming within
the mass of particles as particles occupy vacant spaces within the collective. It was
shown in [28] that these travelling waves could shift the mass of particles, effec-
tively moving the blob of virtual plasmodium. In the same paper it was demonstrated
how the self-oscillatory dynamics could be influenced by the manual placement of
attractant stimuli and simulated light irradiation stimuli, causing the blobs to move
towards attractants and away from light hazards.

21.5.1 Momentum Parameter: Effect on Blob Migration

The effect of initiating self-oscillatory behaviour and its pID parameter on blob posi-
tions is shown in Fig. 21.8 which details experiments with decreasing pID parameters
and the effect this has on the random migration of an unstimulated self-oscillating
blob from its inoculation position (circle) at the centre of the experimental arena.
The position of the blob is recorded as the centroid of all the particles comprising the
blob and its path is indicated by the line extending from the central point (Fig. 21.8a,
c and e).

For the control condition, with no self-oscillatory behaviour initiated, there was
very little displacement of the blob from the inoculation site (maximumof 1.41 pixels
displacement over 5000 scheduler steps). Any displacement of the blob was caused
by the stochastic influences on individual particles within their sensory method.
When oscillatory behaviour was initiated, the build-up of momentary interruptions
of particle movement caused the position of the blob to be displaced significantly
by the emergent travelling waves within the blob. At pID 0.1 the distance from the
inoculation site increased gradually (Fig. 21.8b). Decreasing pID resulted in greater
displacement of the blob (Fig. 21.8d and f). Lower pID parameter not only resulted
in greater movement from the inoculation site but also more persistence in the direc-
tion of movement. This was often followed by sudden random changes in direction
(for example, Fig. 21.8e). These changes in direction are the cause of the apparent
decrease in error from the original position (Fig. 21.8d and f) at decreased pID.
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Fig. 21.8 Comparison of spontaneous migration error from inoculation position at different pID
settings, blob position and error tracked over 5000 steps. a record of blob at pID 0.1, b plot of
migration error at pID 0.1, c–d pID 0.01, e–f pID 0.001
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21.5.2 Hybrid Control System

The unpredictability of the movement in the self-oscillating blobs renders it chal-
lenging to control and guide their movement. A method for automatic guidance
must represent a hybrid approach between the unconventional computing methods
which generate the emergent behaviour in the virtual plasmodium (the generation of
self-oscillatory travelling waves and amoeboid movement), and classical computing
methods to detect the position of the blob and provide the feedback stimuli to guide
the blob along the chosen path. A schematic overview of the closed-loop hybrid
system is given in Fig. 21.9.

Note that Fig. 21.9 is partitioned by a vertical dashed line. This line indicates the
separation of conventional and unconventional approaches and also indicates regions
where both approaches interact. The unconventional part of the system generates the
emergent oscillatory behaviour of the blob from local and self-organised particle
interactions. Information about the blob’s collective state is then extracted by the
conventional (classical) part of the method which calculates the centroid (centre of
mass) of the blob. The position of the blob is compared at every 50 scheduler steps
to the points comprising the path in the arena. When the blob is closer to the next
point along the path than to the current stimulus location, the next point along the
path is then selected to provide the new location stimulus for the blob. The target
stimulus is then projected into the spatially implemented unconventional part of the
method. This stimulus acts to guide the blob towards this new location. Two possible

Fig. 21.9 Schematic overviewof closed-loop guidancemethod indicating interface between uncon-
ventional computing and conventional computing approaches (dashed line). Left side of dashed line
represents the contribution of the unconventional approach, characterised by bottom-up generation
of self-organised emergent phenomena, right side of line represents the contribution of classical
computing approaches in generating the control method. Both sides contribute inputs to each other
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stimulus types can be used, both of which are seen in the Physarum plasmodium and
are described in the following sections.

21.5.3 Automatic Guidance with Attractant Stimuli

The first stimulusmethod used attractant stimuli. In the wild, slimemould is attracted
to certain stimuli such as nutrients or localised warm areas. In the model plasmodium
attractant stimuli are represented by projecting localised stimuli into the diffusive
lattice. These stimuli, when projected within sensory range of the blob, attract the
particles comprising the blob. Particles at the outer periphery of the blob move
towards the stimulus and the cohesion of the blob (caused by the indirect coupling of
the particles’ offset sensors) generates travelling waves inside the blob which move
directly towards the stimulus. As demonstrated bymanual placement in [28], this can
be used to guide (or ‘pull’) the blob towards the chosen direction. In the closed-loop
method described in this article we can replace the manual placement of stimuli with
automated transient placement of point stimuli to guide the blob along the chosen
path.

Figure21.10 shows the results of automated closed-loop guidance of the self-
oscillatory blob along a pre-defined path by the attractant method. The path starts at
the large cross marker and ends at the circle marker, and individual guidance points
on the path are denoted by small crosses (Fig. 21.10a). The path is composed of mul-
tiple links between start and end points in an arena populated by solid obstacles (grey
shapes) which the agent particles cannot cross. The particle population, comprising
2000 particles, was inoculated at the initial cross marker position and for the first
1000 scheduler steps the blob was allowed to form and stabilise. After 1000 steps
the automated guidance mechanism described in the previous sub-section was initi-
ated. The short straight lines connecting the small crosses indicates the pre-defined
path (green, online) and the path taken by the oscillatory blob is indicated by the
blue (online) markers. The example results include four different momentum (pID)
parameter settings.

Although the blob follows the path in all examples, at low pID (i.e. high momen-
tum) settings there is considerable deviation from the desired path, particularly when
the path changes direction (see, for example, Fig. 21.10a and the supplementary video
recordings at http://uncomp.uwe.ac.uk/jeff/automatedguidance.htm).

This overshooting of the desired path is caused by the blob position being influ-
enced by the strong oscillatory waves within the blob. At low pID values this momen-
tum is particularly strong, causing the blob to overshoot the corners after the momen-
tum of oscillatorywaves has been established during straighter sections of the course.
Under the strongest momentum condition the blob ‘crashes’ into the circular obstacle
at the lower-right of the arena and the blob has to re-form before its progress can
continue. An indication of the strength of the momentum can be seen at the end of
each course in Fig. 21.10 where the blob continues to receive attractant input from
the final position on the path. Although the position of this stimulus is static, the

http://uncomp.uwe.ac.uk/jeff/automatedguidance.htm
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Fig. 21.10 Automated guidance of amorphous amoeboid robot via attractants. a, c, e, g Image
showing trajectory of blob (blue online) as it is guided along path (green online) from start (cross)
to finish (circle) with pID parameter values 0.001, 0.01, 0.05, 0.1 respectively, b, d, f, h plot showing
error of blob position (in pixels) compared to path over time

path of the blob (blue, online) shows that the blob continues to traverse around the
periphery of the final position. At low pID (high momentum) values, the radius of
this circular movement is much larger than at high pID (low momentum) values.

As the blob traverses the points on the path, there is a repetitive sequence of error
minimisation which occurs, as shown in Fig. 21.11 (which shows an enlarged portion
of the migration plot of Fig. 21.10f between 2000–3000 steps). This is indicated by
the ‘sawtooth’ profile of the plot.As the blobmoves forward (attracted by the stimulus
point presented at the next path node) the distance between the current centroid of
the blob and the target node is minimised (the diminishing diagonal lines of the plot).
When this distance is less than the distance between the current node, the new node
is selected. The selection of the next node changes the stimulus point location and
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Fig. 21.10 (continued)

also causes a sudden jump in migration error (the vertical lines in the plot). This
pattern of minimisation and new target selection occurs until the end node of the
path is reached, at which point the blob will circle the final node on the path.

21.5.4 Automatic Guidance with Repellent Stimuli

As an alternative to pulling the blob towards the stimulus, it is also possible to
‘push’ the blob. This can be achieved by mimicking the response of slime mould to
hazardous stimuli, for example exposure to light irradiation. In the face of such stimuli
slime mould withdraws parts of its body plan away from exposed regions [40] and
can thus be guided away from simple obstacles comprised of light-exposed areas [3].
In the model plasmodiumwe can reproduce the effect of exposure to light by altering
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Fig. 21.11 Evolution of automated guidance during path traversal. Chart showing enlarged portion
of Fig. 21.10f at time 2000–3000 steps. Sawtooth profile plot shows changes in migration error as
the blob is guided from node to node along the path, minimising the distance error at the current node
(downward diagonal), before the next node is selected, generating a new error distance (vertical
line)

the sensitivity of particles exposed to illuminated regions of the lattice. This reduces
flux within that region of the blob and also attraction to attractant stimuli located in
these exposed regions. Due to the cohesion of the blob, the travelling waves moving
within the blob are stronger in unilluminated regions and this propels the blob from
exposed regions.

We can implement automated guidance by repellent stimuli by having the stimu-
lus point represent an absence of illumination, for example a square masked region.
Outside this region all other areas are temporarily exposed to simulated light expo-
sure. This tends to maintain the blob within the confines of the masked region and
alsomove peripheral parts of the blob that are outside of the protectivemasked region
back inside the mask.

We tested the repellent method on the same obstacle arena as used in the attractant
stimulus condition. Figure21.12 shows examples of blob guidance through this arena
at different pID values. As indicated by the chart plots showing distance from the
chosen path, the general ‘sawtooth’ pattern of movement along the path is the same
as in the attractant guidance method. However, the trajectory of the blob under light
irradiation guidance shows much closer adherence to the original path and there is
significantly less ‘overshoot’ than in the attractant guidance method when sudden
changes in path direction occur. Across multiple runs of both attractant and repellent
conditions the time taken to traverse the path was also shorter in the light-irradiation
condition at allpID values (Fig. 21.13a). Furthermore, themean error from the desired
path was also lower for the light-irradiation condition, compared to the attractant
guided method (Fig. 21.13b).
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Fig. 21.12 Automated guidance of amorphous amoeboid robot via repellent stimulus of simulated
light irradiation. a, c, e, g Image showing trajectory of blob (blue online) as it is guided along path
(green online) from start (cross) to finish (circle) with pID parameter values 0.001, 0.01, 0.05, 0.1
respectively. Masked area is indicated by the square region surrounding the blob, b, d, f, h plot
showing error of blob position (in pixels) compared to path over time

Why does the light irradiation guidance method track the path more accurately
than the attractant method? The square masked region surrounding the blob (for
example, Fig. 21.12a) illuminates all regions outside the mask (i.e. outside of the
main blob region), providing simultaneous stimuli at different parts of the blob,
compared to the single point stimulus in the attractant condition. Any particles in
the illuminated region are subject to the reduction in flux and thus try to return to
the unexposed region within the square. This suppression of flux outside the mask
square has the effect of damping travelling waves outside the square, causing less
momentum to build up, and more accurate traversal of the path.

It should be noted that although the high-momentum travelling waves in the
attractant condition were responsible for the increased error from the desired path,
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Fig. 21.12 (continued)

the oscillatory travelling waves are of critical importance for the blob movement.
Indeed in the attractant stimulus method, the migration of the blob along the entire
course could not be completed without oscillatory movement. In the light irradiation
stimulus condition, the light mask was sufficient to move the non-oscillatory collec-
tive along the path, but the penalty was a greatly increased time of traversal — over
80,000 scheduler steps— compared to a range of 1900–8000 steps under oscillatory
conditions.

21.5.5 Novel Properties of Guided Amoeboid Movement

In addition to the tracking abilities of the hybrid unconventional/conventional com-
puting guidance methods, the amorphous and adaptive properties of the collective
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Fig. 21.13 Comparison of attractant and repellent guidance methods in terms of time and guid-
ance errors. a comparison of path traversal time for different pID values for attractant (squares)
and repellent (crosses) stimuli, b mean guidance error from path at different pID values for attrac-
tant (squares) and repellent (crosses) stimuli (mean of ten runs per pID value, standard deviation
indicated). Guidance by repellent stimuli is faster and more accurate

result in some interesting properties during its movement. Figure21.14 shows the
guidance of the blob along a vertical arena (in this example by repellent light irradi-
ation stimuli). The arena is composed of a narrow channel, some horizontal blocks
and finally a very narrow grating, before the destination site (Fig. 21.14a). As the
blob passes through the narrow channel, the blob elongates, adapting its shape auto-
matically in order to fit through the narrow channel (Fig. 21.14b) before restoring its
approximately circular shape once the channel has been crossed.

In the case of the grating at the bottom of the arena, the space between the grating
obstacles is so narrow that the blob shape deforms dramatically in regions outside the
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Fig. 21.14 Novel properties of the amoeboid blob as it navigates a complex vertical arena. a
overview of traversed arena showing obstacles (grey), path (green, online), and blob trajectory
(blue, online), b blob elongates as it passes through a narrow tunnel, c–e blob is distorted as it is
forced through a narrow grating by the stimulus mask before re-forming its shape when the obstacle
is passed

mask, forming writhing pseudopodium-like tendrils (Fig. 21.14c–e). Again, once the
grating has been crossed the blob reforms its shape as itmoves to the goal site. Despite
this significant distortion of blob shape the path taken by the blob is fairly close to
the target path (Fig. 21.14e). These properties are a function of the unconventional
computing part of the system, in that they arise as an emergent property of the low-
level particle interactions.
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Fig. 21.15 Guided blob becomes stuck on grating using attractant method. a blob enters grating
area, b distortion of blob pattern occurs, c blob becomes entwined on grating obstacle, d blob
minimises around grating and continues to cycle in this position

The distortion and re-formation of the blob shape at the narrow grating does not
occur reliably with the attractant based guidance method, however. Figure21.15
shows a blob guided by a single attractant source entering the grating region
(Fig. 21.15a) where its body plan is distorted on contact with the obstacles
(Fig. 21.15b). The blob becomes entwined on a single obstacle in the
grating (Fig. 21.15c) andminimises its shape towrap around theobstacle (Fig. 21.15d).
The blob remains in this position indefinitely, cycling around this obstacle. Corrup-
tion of the X and Y stimulus values with Gaussian noise (to try to present multiple
stimulus sites) does not detach the blob from the obstacle. This behaviour again
demonstrates the effectiveness of guidance by illumination masked regions com-
pared to the attractant guidance method. Why does the blob not become stuck at this
obstacle when guided by the repellent mask? Again, this is because the illumination
mask presents multiple stimulus points to the blob (at the interface of the square
mask edges which contact the blob), whereas the attractant guidance method only
presents a single guidance stimulus.

21.5.6 Emergency Recovery Mode for Lost Collectives

In over 80 experiments with the guidance mechanisms we only encountered one
instance (attractant stimulus condition, with low pID 0.001) where the blob migrated
far from the desired path and was not influenced by the presented attractant stimulus
(incidentally, thiswas the cause for the large deviation bars in the first data point of the
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attractant series in Fig. 21.13b). In this instance the ‘lost’ blob spontaneously moved
(via random migration) back near to the path where it once again was influenced by
the presented stimuli. However, this led us to devise a ‘recovery mode’ to cater for
instances when the amoeboid blobs may lose sight of the path. This mechanism was
implemented in the following way (Fig. 21.16). At each scheduled comparison of
blob centroid position and the closest nearest path position, the Euclidean distance
(in pixels) was compared to a threshold value θ . If θ (set to 100 pixels) was exceeded
a binary lost flag was set and an attractant stimulus (or light illuminationmask for the
repellent condition) was projected at random locations along an imaginary line from
the blob centroid to the nearest path point (Fig. 21.16b). These additional stimuli
attract the blob and continue to be presented until the distance from the blob to
the path point was < θ , at which time the lost flag was reset and normal guidance
resumed. This mechanism is sufficient to guide the errant blob back onto the correct
path.

Fig. 21.16 Automated recovery of ‘lost’ blob. a blob migrates away from centre position and
exceeds θ , triggering recovery mode, b a stream of attractant stimuli is presented between the blob
and the target point, c the blob is attracted to the stimuli and starts to migrate back to the target,
d recovery stimuli are halted when the distance < θ
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21.6 Discussion

Control and guidance of collective soft-robotics devices is a very challenging prob-
lem for classical computing when the robotic devices themselves harness emergent
behaviours arising from the local component interactions of the collective itself. In
this article we have examined the problem of generating and controlling collective
amoeboid movement from an unconventional computing perspective using a multi-
agent model of slime mould Physarum polycephalum. Collective movement was
generated in a morphologically adaptive ‘blob’ comprising a population of simple
particles on a diffusive lattice. Taking inspiration from slime mould, the position
of this blob could be altered by the spatial placement of attractant and repellent
stimuli. Simple open-loop mechanisms were demonstrated using attractant stimuli
which enabled automatic, but uncontrolled, movement along a pre-defined path. In
order to automatically guide the movement of the multi-agent collective, however, a
hybrid approach utilising features of unconventional and classical computation was
required.

The hybrid approach utilised the self-organised generation of blob cohesion and its
movement by oscillatory travelling waves (the unconventional computing substrate)
in a blob of fixed population size. This was combined with a classically implemented
closed-loop mechanism to ascertain the current position of the blob in relation to a
pre-defined path. By comparing the current blob position with the closest point on
the path, a stimulus (the next available path point) was then presented to the uncon-
ventional computing substrate, causing the blob to migrate along the path. Of the
two stimulus types investigated (attractant and repellent) to guide the blob, the repel-
lent stimulus (masking the blob from simulated light irradiation) resulted in a faster
path traversal with fewer errors (in terms of distance from the pre-defined path) and
allowed the blob to pass automatically through very narrow gratings. Passage through
a narrow grating could not be achieved using the attractant stimulus condition, due
to the lack of simultaneous stimuli to the blob when compared to the repellent mask
method. The momentum of the blob could be controlled by adjusting a parameter
of the model. Stronger momentum resulted in faster path traversal in both stimulus
types, but resulted in a characteristic overshooting of path corners in the attractant
stimulus condition.

This hybrid approach successfully combines classical computing (tracking and
stimulus location)with unconventional computing (generation of self-organised trav-
elling waves to generate amoeboid movement). The unconventional computing part
of the system accounts for novel properties of the amoeboid robot such as cohe-
sion, spontaneous oscillatory movement and automatic deformation of shape (and
subsequent re-formation) in the presence of obstacles. The result is a parsimonious
combination of classical computing and its benefits (for example, rapid and efficient
arithmetic calculations for tracking and guidance), combined with the desirable fea-
tures provided by unconventional computing (self-organised movement, resilience
to deformation) that are a natural fit for unconventional computing substrates and
which would be difficult to implement in a classical system. The result of this hybrid
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approach is a system which combines the best features of both approaches. We hope
that this work will provide a useful contribution towards future implementations of
soft-bodied robotic systems which utilise hybrid unconventional and classical com-
puting methods.
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