
Chapter 13
Soliton-Guided Quantum Information
Processing

Ken Steiglitz

Abstract Wedescribe applications of solitons and soliton collisions to the transport,
transfer, and beam-splitting of qubits carried by optical photons. The transport and
transfer realize the “flying qubits” necessary for quantum information processing,
and the beam-splitting leads, in theory, to an implementation of quantum computing
using linear optics. These proposed applications are embedded in a uniform optical
fiber and require no special device fabrication, no cooling, and no vacuum.

The pioneering papers of Feynman [1] and Deutsch [2] in the 1980s sparked the
rapid development of the field of quantum information processing. The theoretical
and experimental progress has been remarkable, with the development, for example,
of quantum error correction and a fast algorithm for factoring, and the exploration of a
wide variety of physical implementations. In the latter category, the optical photon as
the carrier of a qubit has played an important role in the experimental demonstration
of quantum cryptography and other important applications to communications and
information processing. At the same time there has been tremendous progress in
our understanding of classical nonlinear waves, and, in particular, solitons in optical
fibers. In this chapter we will explore what role solitons and soliton collisions might
play in the development of quantum information processing with optical photons.
For a more detailed account, the reader is referred to [3–5], from which the material
in this chapter was drawn.

13.1 Photon Trapping

A pulse traveling down a fiber forms a soliton when the dispersion, which tends
to widen the pulse, is counterbalanced by the nonlinear Kerr effect, whereby the
electric field changes the index of refraction of the material. Such a soliton is called a
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temporal soliton, as opposed to a spatial soliton, where a beam is confined spatially
when diffraction is counterbalanced by a nonlinear effect in the material. In this
chapter we will restrict our attention to temporal solitons. Hasegawa and Tappert
predicted that stable optical solitons will form in a fiber in 1973 [6], and they were
observed experimentally in 1980 by Mollenauer et al. [7]. Since then, because of
important potential applications to communications, there has been intense activity
in both the theoretical and experimental aspects of solitons in optical fibers.

The induced waveguide What is important to us here is the fact that the soliton
creates a local distortion of the index of refraction that travels with it down the fiber.
This moving distortion can act as a waveguide that can trap and shepherd another,
much weaker, light pulse that can differ from the soliton in both frequency and
polarization. The strong soliton pulse is called the pump, denoted by P , and theweak,
shepherded, pulse is called the probe, denoted by u. Wewill follow themodel of such
a pump/probe system that was laid out by Manassah [8]. It consists of two coupled
equations: the first is the standard, integrable cubic nonlinear Schrödinger equation
(3-NLS) that describes the formation of the pump; the second, which describes the
propagation of the probe, is, in fact, precisely the linear Schrödinger wave equation
with a potential determined by the pump.

The solution for the pump is the well known soliton solution, a complex wave
with a carrier and sech-shaped envelope. The relative phase of two of these solitons
on collision determines the nature of the collision. In particular, when the relative
phase is π , the collision is repulsive, and the induced waveguide will look like a
smoothly bent waveguide. We will be using collisions of this type throughout.

The solution for the probe is, as we might expect, an eigenvalue problem, which
we solve by separation of variables, using as ansatz the complex wave

u(z, t) = u(t)e−i Ez, (13.1)

where z is distance along the fiber, and t is time in the frame moving with the pump
soliton, which we refer to as local time. In the z direction it is simply a phasor of con-
stant intensity. In the t direction, which we can think of in the z-t plane as the lateral
direction in the induced waveguide, the probe is more interesting. The reduced equa-
tion with independent variable t is the associated Legendre equation, with solutions
u�m of degree � and order m that are non-singular, physically acceptable, and zero
at infinity for integers � ≥ m > 0. Letting ξ = tanh(kRt), where kR is a parameter
that determines the energy of the soliton, each u�m is the product of (1 − ξ 2)m/2 and
a polynomial in ξ of degree (� − m) and parity (−)�−m , with (� − m) zeros in the
interval−1 ≤ ξ ≤ +1 [9, 10]. As functions of t the solutions of the reduced equation
take the form sechm(kRt) times a polynomial in tanh(kRt) of degree (� − m). The
degree � of the wave functions supported in the induced waveguide is determined
solely by the ratio of corresponding parameters in the pump and probe equations,
and is therefore fixed for any given physical fiber implementation.
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Assume, then, that the given fiber implementation is such that � andm are integers,
anddenote the probe solutionof degree � andorderm by |�m〉. Then there are exactly �

eigenfunctions supported by the inducedwaveguide, corresponding tom = 1, . . . , �,
with corresponding energy eigenvalues E1, . . . , E�. When the superposition of more
than one of these co-propagate (the reduced equation is linear) the difference in these
energy levels causes beating in the z-direction (see Eq.13.1), as discussed in [8].

The quantum limit Up to now we have described the formation of an electromag-
netic probe wave trapped in the waveguide induced by a soliton, where this probe is
weak compared to the soliton. If we let the probe get weaker and weaker we reach
the point at which the probe can no longer behave like a wave, but must behave like
a particle—a photon.

We next must consider the critical question of whether it is possible to detect
a probe photon in the presence of the (much larger) pump. There are two ways in
which we can separate the probe and pump to make this detection feasible: First,
they can be orthogonally polarized in a polarization-maintaining fiber. Second, they
can be separated in wavelength. As discussed in more detail in [3], it is reasonable
to expect the detection of single probe photons in the collisions described here to
be possible at a wavelength of 1550nm within about one or two kilometers of fiber.
This experiment would be the next step in pursuing a physical demonstration of the
ideas discussed in this chapter.

13.2 Photon Transfer

We look next at the simple situation where a faster soliton which is not carrying a
photon overtakes a slower soliton that is, as sketched in Fig. 13.1.What happens, with
appropriate choice of parameters, is that the photon will be transferred to the faster
soliton, as shown by the numerical simulation illustrated in Fig. 13.2. The repulsive
collision of the two pump solitons is shown at the top. At the bottom we see the
deflection of the probe wave (now a photon) to the faster soliton. The probe in this
case is in the single-peaked ground state |11〉. This setup and the ones described in
the following sections correspond exactly to what is known for classical waves as a
directional coupler, and such couplers induced by spatial solitons have been studied
since the 1990s [11–13].

Fig. 13.1 Sketch illustrating
the conditions for photon
transfer when a fast soliton
overtakes a slower one

distance along fiber
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Fig. 13.2 An example of photon transfer. a The pump solitons in a repulsive collision. b The probe
when launched in the state |11〉. The photon is transferred to the overtaking soliton (See [3] for
details.)

In some sense the experiment we have just described is analogous to a photon
bouncing off a mirror: the photon is simply diverted. If the photon carries a qubit of
quantum information in a photon/no-photon representation, it is a flying qubit in the
sense described by DiVincenzo [14] in his well known paper outlining the require-



13 Soliton-Guided Quantum Information Processing 301

ments for a physical implementation of quantum computing and communication.
The present fiber scheme would then provide a means for routing flying qubits with
solitons.

13.3 Beam Splitters

If we change the system parameters we can arrange an experiment that corresponds,
not to an ordinary mirror, but to a half-silvered mirror—a beam-splitter. For this we
use a collision between probe solitons of order 2 instead of 1, and a greater relative
velocity, as shown in Fig. 13.3.

This is analogous to a non-polarizing beam-splitter. The photon is deflected or
transmitted with certain probabilities, in the case shown, both 1/2 for a 50/50 beam-
splitter. For a system that functions as a polarizing beam-splitter, we can use a probe
in a state that is the superposition of states |22〉 and |21〉. It turns out that with
the proper choice of parameters, the photon in state |21〉 is not deflected, while the
photon in state |22〉 is transferred. When the superposition of the two photon states
is used as the input probe, the modes are separated, just as an ordinary polarizing
filter will separate the horizontal and vertical components of a light wave of mixed
polarization. An example of a polarizing beam-splitter is shown in Fig. 13.4.

Fig. 13.3 The probe when launched in the state |21〉. In this case the soliton collision takes place at
a greater relative velocity and the system acts as an ordinary non-polarizing beam-splitter (See [3]
for details.)
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Fig. 13.4 Illustrating a
soliton-guided polarizing
(mode-separating)
beam-splitter. a The probe
when launched in the excited
state |21〉. The photon in this
case stays in large part with
its original captor soliton. b
The probe when launched in
the state |22〉. The photon is
transferred to the faster
soliton, as in the |11〉 case
shown in Fig. 13.2. c The
probe when an equal linear
combination of ground and
excited states, |22〉 + |21〉, is
launched. The system is
analogous to a polarizing
beam-splitter (See [3] for
details.)
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Note that in this soliton-induced beam-splitter, the modes of the probe play the
role of polarization axes, and these axes should not be confused with the polarization
modes of the fiber medium itself. It thus might be more proper to call this system a
“mode-separating” beam-splitter.

13.4 Manipulating Photon Phase

There is a missing piece if we want to accomplish general quantum computing, as we
shall see in the next section—we must be able to shift the phase of a single photon.
But the same ideas used in the previous sections can be used for this purpose. A
phase shifter can work as follows: Two solitons, A and B, are launched at the same
velocity in the z direction, first B, then A. Initially, soliton A carries a photon. Soliton
C, a third soliton, is then launched at a greater velocity. When C overtakes A, the
photon is captured by C; and C carries the photon with it until it overtakes B, at which
point the photon is transferred from C to B. The net effect is that soliton C ferries the
photon from A to B. The photon accumulates extra phase during the time it travels at
an altered velocity, and the amount of the phase shift can be controlled by adjusting
that time. Figure13.5 shows the probe in an example. The reader is referred to [4]
for details about how the solitons and probe are designed to accomplish this phase
shifting.

Fig. 13.5 The probe signal in a phase shifter. A photon is being carried by soliton A; The faster
soliton C overtakes soliton A, picks up the photon, and ferries it to soliton B, where it is deposited.
In this example from [4] the overall phase shift achieved is π (See [4] for details.)
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13.5 General Quantum Computing

In 2001 Knill et al. [15] published a surprising and important paper: they showed
that general quantum computing can be implemented using only components we
have described—beam-splitters, phase shifters—plus single-photon sources and
photo-detectors. The latter plays a crucial role in providing the necessary nonlinear
aspect to the system: feedback from photo-detectors. The reader is referred to [15]
for the details of this clever scheme, and to [16] and its references for recent improve-
ments.

We have thus described a way in which soliton-guided photons can be used to
implement general quantum computing, at least in theory. We should quickly point
out, however, that the scheme proposed by Knill et al. carries with it an overhead
that may be, although polynomial in the problem size as required by the theory, pro-
hibitively large. This is balanced, however, by the relative simplicity of the physical
components, most of which are either off-the-shelf or close to it. In addition, the use
of soliton-guided flying qubits provides a natural and uniform way to implement the
required routing and switching.

13.6 Using Dark Solitons

Dark solitons occur in the normal-dispersion regime of a fiber [18], and occur as
dips in a uniform background, in contrast with the bright solitons we have so far
been considering. They offer some real advantages over bright soliton collisions
in controlling light waves: First, dark solitons are known to be more stable in the
presence of noise and are generallymore robust than bright solitons [18, 19]. Second,
the probe, which is of much lower intensity, peaks at the dip in the intensity of its host
soliton, thus increasing the signal-to-noise ratio and making it easier, in principle, to
detect. Third, the characteristics of the dark soliton beam splitter do not depend on
the relative phase or relative speed of the colliding solitons, whereas bright solitons
need to have their phases and speeds carefully controlled to produce a given result.
The improvement in signal-to-noise ratio for detecting single photons may prove to
be especially important in any practical implementation.

Figure13.6 shows collisions of two dark solitons, and also illustrates the case
when the probe photon is unaffected by the collision, but simply remains with its
captor. The waveguides induced by dark solitons can be used to control photon
probes in the same way that bright solitons can, in contrast with the zero-crosstalk
case reported in [17], provided that the group velocity dispersion and nonlinear
coupling parameter for the fiber are chosen appropriately. These degrees of freedom
are readily available if we use different wavelengths and polarizations for the pump
and probe. For the probes corresponding to the degree-1 associated Legendre modal
functions, the dark soliton junctions behave in a way that is very closely analogous to
a beam-splitter made of crossed optical polarizers, with a single parameter playing
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Fig. 13.6 a The pump
signal, a dark soliton
collision. b The
corresponding probe signal
illustrating the case when the
probe is not affected, the
so-called “zero-crosstalk”
case [11, 17] (See [5] for
details.)

Fig. 13.7 The probe signal
in the same induced
waveguide with the probe
parameters adjusted so that
probe is split equally (See [5]
for details.)



306 K. Steiglitz

the role of angle between polarizing filters. For the probes corresponding to the
degree-2 associated Legendre functions, the junction can act as a mode-separating
beam-splitter. Figure13.7 illustrates such a dark-soliton-guided beam-splitter.

13.7 Conclusion and Open Problems

We have seen how, in theory (and that is a big qualification), solitons in optical fibers
can be used to provide a kind of “substrate” for manipulating qubits. Transport, trans-
fer (and therefore routing), and even general quantum computing, using the scheme
of Knill et al. [15], all fit naturally in this picture. At the least, this way of imple-
menting flying qubits may prove of practical use in many quantum communication
and cryptographic systems.

Open questions remain concerning the practicality of physical implementation:
are fibers, photon sources, and photon detectors available that have the required
physical characteristics? Perhaps the most logical next step, and a project of interest
in itself, would be the experimental verification of photon capture and transport in
an optical fiber, by both bright and dark solitons.

Also of interest are the questions, both theoretical and experimental, of the sus-
ceptibility of trapped photons to decoherence, as compared with that of ordinary
photons in fibers—a problem that, to the author’s knowledge, not been studied. It
would also be very interesting if soliton-guided photons could be used to realize
quantum repeaters.
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