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Abstract In this paper we propose a model to deal with flexibility in complex Web

services composition (WSC). In this context, we use a model based on high level

Petri nets called RECATNets, where control and data flows are easily supported.

Indeed, RECATNets combine the strengths of recursive Petri nets with the expressive

power of abstract data types. Since RECATNets semantics is expressed in terms

of the conditional rewriting logic, one can use the Maude LTL Model-Checker to

investigate several behavioral properties of Web services composition.

1 Introduction

With the increasing complexity of business requirements, the distributed and flexible

characteristics of Web services, the possibility of errors in Web service composition

(WSC for short) is greatly increased. As a result, many researchers tried to propose

formal methods, Finite State Machine [1], Pi calculus [2] or Petri nets [3, 4] to build

the formal description and verification models of WSC. However, one of the weak-

nesses of these methods is their lack of support for managing flexible WSC which

require dynamic adaptation of their structure. We refer to flexible WSC as the abil-

ity to create, modify, extend or suppress (sub)processes in a structured way, at the
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occurrence of exceptions. In addition, such a composite Web services can potentially

be very large, complex and cumbersome. In regard to the previous points, if we want

to describe, faithfully, real-life WSC, we need an expressive modeling formalism

that allows, in one hand, to specify their flexible and distributed features, and in other

hand, to check the interaction (control-flow) correctness of these business processes

while taking into account their data flow aspect. In this paper, a new model based on

a kind of high level algebraic Petri nets combining the expressive power of abstract

data types and Recursive Petri nets [5] called Recursive ECATNets (RECATNets for

short) [6] is proposed in order to cope with the flexibility problem in complex WSC.

The RECATNets model offers practical mechanisms for a direct and intuitive support

of dynamic creation and suppression of processes. They are well-suited for handling

the most advanced WSC patterns (involving cancellation and multiple instances).

The proposed model is expressive enough to capture the semantics of complex ser-

vice compositions and their respective specificities. Since RECATNets semantics is

expressed in terms of the conditional rewriting logic [7], one can use the Maude

LTL model-checker [8] to investigate several behavioral properties of Web services

composition. The remainder of this paper is organized as follows. Section 2 gives a

brief overview of related work. Section 3 presents the basic concepts of RECTANets.

Web service modeling and specification using RECATNet are presented in Sect. 4.

Section 5 is devoted to the algebra for composing Web services and its RECATNets-

based formal semantics. A case study is presented in Sect. 6. Section 7 presents the

analysis method and the verification process. Finally, Sect. 8 concludes and gives

some further research directions.

2 Related Works

The composition of web services requires the modelling of different combinations of

web services involved in this composition [9]. The modelling of web services com-

position is addressed in several papers. In this section, we briefly overview some

approaches that are closely related to our work. In [10], the authors propose in their

project e-flow to use workflow management system in order to compose web ser-

vices. However, this approach lacks a formal model for specifying web services

composition. In [11], the authors developed a Petri net based approach that uses

several structural properties for identifying inconsistent dependency specification in

a workflow. However, the proposed approach is restricted to acyclic workflows. In

[3], the authors propose a Petri net-based algebra for composing web services. They

provide a direct mapping from each composition operator to Petri nets. Their model

is expressive enough; but data types cannot distinguish because they used elemen-

tary Petri nets. Contrary to our model, data types can be distinguished because the

model used the expressive power of abstract data types. In [4], the authors used col-

ored Petri nets [12] for modelling web services and their composition where data

types can be distinguished. However, the author focalise in modeling, only, simple

patterns. The author propose in [13] a model for composing web services based high
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level Petri nets, called G-nets. In this model, the authors propose to compose web ser-

vices via special places called instantiated switch places. For the analysis, the author

need to tranform their G-net models into Predicate/Transition nets (PrT-nets). How-

ever, some useful patterns like multiple instance and cancellation of service are not

addressed. In [14], the author present a review of forty-three patterns for modeling

business process using Colored Petri-Net (CPN). However, we note that the pattern

of multiple instantiation of a sub-process is difficult to implement when a particular

instance of a sub-process initiates other sub-process instances or involves recursive

calls to the one of these ancestors process. This is even more complex when the num-

ber of such instances is not known prior to the execution of the process or where such

instances require synchronization on many levels. One of the weakness of the previ-

ous approach is their lack a support for modeling useful advanced patterns like mul-

tiple instance and cancellation of service. In order to address this issue, we present a

modular and hierarchical formalism called RECATNet that allows composition via

abstract transitions. The usefulness of our proposed model is: (1) offering a practi-

cal mechanisms for handling the most advanced flow patterns (dynamic) multiple

instance and cancellation of Web service, (2) providing a hierarchical composition

of web services, (3) its modular specification and its flexibility by adding/removing

service’s instances in a dynamic manner, (4) allowing distributed execution of web

services composition and (5) its semantic may be defined in terms of conditional

rewriting logic [7] therefore, the model-checker MAUDE [8] can be used to check

its correctness.

3 Recursive ECATNet Review

Recursive ECATNets (abbreviated RECATNets) [6] are a kind of high level alge-

braic Petri nets combining the expressive power of abstract data types and Recursive

Petri nets [5]. Each place in such a net is associated to a sort (i.e. a data type of the

underlying algebraic specification associated to this net). The marking of a place is a

multiset of algebraic terms (without variables) of the same sort of this place. More-

over, transitions in RECATNet are partitioned into two types (Fig. 1): elementary

and abstract transitions. Each abstract transition is associated to a starting marking,

denoted like a multi-set of places put inside bracket. A capacity associated to a place

p specifies the number of algebraic terms which can be contained in this place for

(a) (b)

Fig. 1 Transition types in RECATNets. a Elementary transition. b Abstract transition
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Table 1 Different forms of

Input Condition IC(p, t)
IC(p, t) Enabling condition

a0 The marking of the place p must be equal to

a (e.g. IC(p, t) = 𝜙

0
means the marking of p

must be empty)

a+ The marking of the place p must include a
(e.g. IC(p, t) = 𝜙

+
means condition is always

satisfied)

a− The marking of the place p must not include

a, with a ≠ 𝜙

𝛼1 ∧ 𝛼2 Conditions 𝛼1 and 𝛼2 are both true

𝛼1 ∨ 𝛼2 𝛼1 or 𝛼2 is true

each element of the sort associated to p. As shown in Fig. 1, the places p and p′ are

respectively associated to the sorts s and s′ and to the capacity c and c′. An arc from

an input place p to a transition t (elementary or abstract) is labelled by two algebraic

expressions IC(p, t) (Input Condition) and DT(p, t) (Destroyed Tokens). The expres-

sion IC(p, t) specifies the partial condition on the marking of the place p for the

enabling of t (see Table 1). The expression DT(p, t) specifies the multiset of terms to

be removed from the marking of place p when t is fired. Also, each transition t may

be labelled by a Boolean expression TC(t) which specifies an additional enabling

condition on the values taken by contextual variables of t (i.e. local variables of the

expressions IC and DT labelling all the input arcs of t). When the condition TC(t)
is omitted, the default value is the term True. For an elementary transition t, an out-

put arc (t, p′) connecting this transition t to a place p′ is labelled by the expression

CT(t, p′) (Created Tokens). However, for an abstract transition t, an output arc (t, p′)
is labelled by the expression ⟨i⟩CT(t, p′) (Indexed Created Tokens). These two alge-

braic expressions specify the multiset of terms to produce in the output place p′ when

the transition t is fired. In the graphical representation of RECATNets, we note the

capacity of a place regarding an element of its sort only if this number is finite.

If IC(p, t) =def DT(p, t) on input arc (p, t) (e.g. IC(p, t) = a+ and DT(p, t) = a), the

expression DT(p, t) is omitted on this arc. In what follows, we note Spec = (Σ,E)
an algebraic specification of an abstract data type associated to a RECATNet, where

Σ = (S,OP) is its multi-sort signature (S is a finite set of sort symbols and OP is a

finite set operations, such OP ∩ S = 𝜙). E is the set of equations associated to Spec.

X = (Xs)s∈S is a set of disjoint variables associated to Spec where OP ∩ X = 𝜙 and

Xs is the set of variables of sort s. We denote by TΣ,s(X) the set of S-sorted S-terms

with variables in the set X.[TΣ(X)]⊕ denotes the set of the multisets of the Σ-terms

TΣ(X) where the multiset union operator (
⊕

) is associative, commutative and admits

the empty multiset 𝜙 as the identity element.

Definition 1 A recursive ECATNet is a tupleRECATNet = ⟨Spec;P,T ,F; sort,Cap,
IC,DT ,CT ,TC, I,Υ, ICT ,K⟩ where:

∙ Spec = (Σ,E) is a many sorted algebra where the sorts domains are finite (with

Σ = (S,OP)), and X = (Xs)s∈S is a set of S-sorted variables,
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∙ [P,T ,F] is a net where (T ∩ P = 𝜙) and T = Telt ∪ Tabs is finite set of transi-

tions partitioned into abstract and elementary ones. Tabs and Telt denoted the set

of abstract and elementary transitions,

∙ sort: P → S, is a mapping called a sort assignment,

∙ Cap: is a P-vector on capacity places: p∈P, Cap(p): TΣ(𝜙) → ℕ ∪ {∞},

∙ IC ∶ P × T → [TΣ,sort(p)(X)]∗
⊕

where ∗∈ {0,+,−} maps a multiset of terms for

every input arc,

∙ DT ∶ P × T → [TΣ,sort(p)(X)]⊕ maps a multiset of terms for every input arc,

∙ CT ∶ P × T → [TΣ,sort(p)(X)]⊕ maps a multiset of terms for every output arc (p, t)
where t ∈ Telt and a starting marking associated to t ∈ Tabs according to place p,

∙ TC ∶ T → [TΣ,bool(X)] maps a boolean expression for each transition,

∙ I = Icut ∪ Ipre is a finite set of indices, called termination indices, dedicated to cut

steps and preemptions (interruptions) respectively,

∙ Υ is a family, indexed by I, of effective representation of semi-linear sets of final

markings,

∙ ICT ∶ P × Tabs × I → [TΣ,sort(p)(X)]⊕ maps a multiset of terms for every output arc

(p, t, i) where t ∈ Tabs and i ∈ I,
∙ K ∶ Telt → Tabs × Ipre, maps a set of interrupted abstract trasitions, and their asso-

ciated termination indexes, for every elementary transition.

Let’s use the net presented in Fig. 2a to highlight RECATNet’s graphical symbols and

associated notations. (1) An elementary transition is represented by a filled rectangle;

its name is possibly followed by a set of terms t′⟨i⟩ ∈ Tabs × I. Each term specifies

an abstract transition t′ which is under the control of t, associated with a termination

index to be used when aborting t′ consequently to a firing of t. For instance tcancel is an

elementary transition where its firing preempts threads started by the firing of t1 and

the associated termination index is 1. (2) An abstract transition t is represented by a

double rectangles with the center filled; its name is followed by the starting marking

CT(t). For instance, t1 is an abstract transition and CT(t1) = ⟨p5,Rq⟩ means that

any thread created by firing of t1 starts with one token i.e. one request Rq in place

p5. (3) Any termination set can be defined concisely based on place marking. For

instance, Υ0 specifies the final marking of threads such that the place p6 is marked at

least by one token. (4) The set I of termination indices is deduced from the indices

used to subscript the termination sets and from the indices bound to elementary

(a) (b)

Fig. 2 Example of a RECATNet and two possible firing sequences
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transitions i.e. interruption. From the example I = {0, 1}. Informally, a RECATNet

generates during its execution a dynamical tree of marked threads called an extended

marking, which reflects the global state of such net. This latter denotes the fatherhood

relation between the generated threads (describing the inter-threads calls). Each of

these threads has its own execution context.

Definition 2 (Extendedmarking) An extended marking of a RECATNet is a labelled

rooted tree denoted Tr = ⟨V ,M,E,A⟩ where:

∙ V is the set of nodes (i.e. threads),

∙ M is a Mapping V → [TΣ(𝜙)]⊕ associating an ordinary marking with each node

of the tree, such that ∀v ∈ V ,∀p ∈ P,M(v)(p) ≤ Cap(p),
∙ E ⊆ V × V is the set of edges,

∙ A is a mapping E → Tabs associating an abstract transition with each edge.

Note that contrary to ordinary nets, RECATNet are often disconnected since each

connected component may be activated by the firing of abstract transitions.

Running example. Figure 2b highlights a possible firing sequences of the

RECATNet represented in Fig. 2a. The graphical representation of any extended

marking Tr is a tree where an arc v1(m1) → v2(m2) labeled by tabs means that v2 is a

child of v1 created by firing abstract transition tabs and m1 (resp. m2) is the marking

of v1 (resp. v2). Note that the initial extended marking Tr0 is reduced to a single node

v0 whose marking is ⟨p1,Rq1⟩⊗ ⟨p0, ok⟩. From the initial extended marking Tr0, the

abstract transition t1 is enabled; its firing leads to the extended marking Tr1 which

contains a fresh node v1 marked by the starting marking CT(t1). Then, the firing of

the elementary transition t2 from node v1 of Tr1 leads to an extended marking Tr2,

having the same structure as Tr1 but only the marking of node v1 is changed. From

node v1 in Tr2, the cut step 𝜏0 is enabled; its firing leads to an extended marking Tr3
by removing the node v1 and change the marking on its node father i.e. v0 by adding

ICT(t1, 0) = (p4, achieved). Also, another way to remove nodes in extended marking

using elementary transition with associated preemption. For instance, from node v0
in Tr1, the elementary transition tcancel with associated preemption (t1, 1) is enabled;

its firing leads to an extended marking Tr4 by removing the node v1 and change the

marking on its node father i.e. v0 by adding ICT(t1, 1) = (p3, cancelled). More details

about RECATNets such as formal firing and fundamental properties are presented

in [6, 15]. This paper shows the usefulness of using the formalism of RECATNets

in the field of Web services composition.

4 Modeling Web Services Using RECATNet

We give now a formal definition of a Web service.

Definition 3 (Web Service) A Web service is a tuple [3] S = ⟨NameS,Desc,Loc,
URL,CS,RECATNetS⟩ where:
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∙ NameS is the name of the service used as its unique identifier,

∙ Desc is the description of the provided service. It summarizes what functionalities

the service offers,

∙ Loc is the server in which the service is located,

∙ URL is the invocation of the Web service,

∙ CS is a set of the component services of the Web service, if CS = {NameS} then

S is a basic service, otherwiseS is a Composite service,

∙ RECATNetS = ⟨Spec;P,T ,F; sort,Cap, IC,DT ,CT ,TC, I,Υ, ICT ,K⟩ is the

RECATNet service modeling the dynamic behavior of the Web service.

We show in the next section how Web services can be incrementally composed.

5 Web Services Composition

The common control structure in Web services composition usually includes sim-

ple patterns like: sequential, choice, iteration, parallel and discriminator operators

and complex patterns like multiple instance and cancellation service [14]. Suppose

S1, S2 and S3 are three different atomic Web services i.e. each service Si perfoms

an individual operation that cannot be split into sub-operations. The algebra opera-

tor descriptions of these control structure can be seen as: S = 𝜀 ∣ S1 ∙ S2 ∣ S1 + S2 ∣
𝜇(S1) ∣ S1 ∥ S2 ∣ (S1 ∣ S2) ⊳ S3 ∣ (S1)⋆ ∣ S1! where:

∙ 𝜀 stands for an empty service, i.e., a service performs no operation.

∙ S1 ∙ S2 performs the service S1 followed by the service S2, i.e., ∙ is an operator of

sequence.

∙ S1 + S2 can reproduce either the behavior S1 or S2, i.e., + is an alternative operator.

∙ 𝜇(S1) represents a composite service where the behavior S1 may be executed mul-

tiple times, i.e., 𝜇 is an iteration operator.

∙ S1 ∥ S2 performs concurrently the two services S1 and S2 i.e., ∥ is a Parallel oper-

ator.

∙ (S1 ∣ S2) ⊳ S3 waits for the execution of one service (among the S1 and S2) before

activating the service S3 i.e.⊳ is a discriminator operator. Note that S1 and S2 are

executed in parallel and independently,

∙ (S1)⋆ repressents a composite service which allows creating multiple instances of

a given Web service S1. These instances are independent of each other and run

concurrently,

∙ S1! represents a composite service which if the Web service S1 has started, it is dis-

abled and, where possible, the currently running instance is halted and removed.

In this section, we give a formal definition, in term of RECATNet, of the com-

position operators. Let specified, as defined in Definition 1, each atomic Web ser-

vice by Si = ⟨NameSi,Desci,Loci,URLi,CSi,RECATNetSi⟩ where RECATNetSi =
⟨Speci;Pi,Ti,Fi; sorti,Capi, ICi,DTi,CTi,TCi, Ii,Υi, ICTi,Ki⟩. Let’s define a func-

tion initMarking(WS) that is used to return the start marking i.e. initial state of the
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invoked Web serviceWS. The following notations are common to all the composition

operators:

∙ NameS is the name of the new service,

∙ Desc is the description of the new service,

∙ Loc is the location of the new service,

∙ URL is the invocation of the new service.

5.1 Empty Service

The empty service 𝜀 is a service that performs no operation. It is used for technical

and theoretical reasons.

Definition 4 The empty service is defined as 𝜀 = ⟨NameS,Desc,Loc,URL,CS,
RECATNetS⟩ where:

∙ NameS = Empty
∙ Desc = “EmptyWebService”

∙ Loc = Null stating that there is no server for the service,

∙ URL = Null stating that there is no URL for the service,

∙ CS = {Empty} and

∙ RECATNetS = ⟨Spec; {p}, 𝜙, 𝜙;𝜙, 𝜙, 𝜙, 𝜙, 𝜙⟩
In Fig. 3a, we show the graphic representation of the empty service 𝜀.

5.2 Sequence

The sequence operator allows the construction of a service composed of two services

executed one after the other. This is typically the case when a service should wait

the execution result of another one before starting its execution.

(a)

(b)

(c)

Fig. 3 Empty service (a), sequence service (b) and choice service (c)
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Definition 5 The sequence operator S1 ∙ S2 is defined as S = ⟨NameS,Desc,Loc,
URL,CS,RECATNetS⟩ where:

∙ CS = CS1 ∪ CS2 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2 ∪ p3}, T = {t1 ∪ t2}, F =
{(p1, t1), (t1, p2), (p2, t2), (t2, p3)}, CT = {(t1, initMarking(S1)), (t2, initMarking
(S2))}.

Graphically, given two services S1 and S2, the composite service S1 ∙ S2 is repre-

sented by the RECATNet shown in Fig. 3b.

5.3 Choice

Given two services S1 and S2, the choice (alternative) operator allows modelling the

execution of either S1 or S1, but not both.

Definition 6 The choice operator S1 + S2 is defined as S = ⟨NameS,Desc,Loc,URL,
CS,RECATNetS⟩ where:

∙ CS == CS1 ∪ CS2 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2}, T = {t1 ∪ t2}, F =
{(p1, t1), (p1, t2), (t1, p2), (t2, p2)}, CT = {(t1, initMarking(S1)), (t2, initMarking
(S2))}.

Graphically, given two services S1 and S2, the composite service S1 + S2 is repre-

sented by the RECATNet shown in Fig. 3c.

5.4 Iteration

The iteration operator allows a service S to be performed a certain number of times.

Definition 7 The iteration operator𝜇(S1) is defined as S = ⟨NameS,Desc,Loc,URL,
CS,RECATNetS⟩ where:

∙ CS = CS1 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2}, T = {t1 ∪ t2}, F =
{(p1, t1), (p1, t2), (t2, p2)}, CT = {(t1, initMarking(S1))}.

Graphically, if we consider the service S1, the composite service 𝜇(S1) is represented

by the RECATNet shown in Fig. 4a.
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(a)
(b)

(c)

Fig. 4 Iteration (a), parallel (b) and discriminator service (c)

5.5 Parallel

Given two services S1 and S1, the parallel operator builds a composite service per-

forming the two services in parallel and without interaction between them. The

accomplishment of the resulting service is achieved when the two services are com-

pleted.

Definition 8 The parallel operator S1 ∥ S2 is defined as S = ⟨NameS,Desc,Loc,
URL,CS,RECATNetS⟩ where:

∙ CS = CS1 ∪ CS2 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2 ∪ p3 ∪ p4}, T = {t1 ∪ t2 ∪
t3}, F = {(p1, t1), (t1, p2), (t1, p3), (p2, t2), (p3, t3), (t3, p4), (t3, p4)}, CT = {(t2,
initMarking(S1)), (t3, initMarking(S2))}.

Graphically, if we consider two services S1 and S2, the composite service S1 ∥ S2 is

represented by the RECATNet shown in Fig. 4b.

5.6 Discriminator

Two or more equivalent services are invoked in parallel to achieve a given task but

only one is required to finish before proceeding with the invocation of the next com-

posed services of the composite service. It is presumed that these services are equiv-

alent in terms of functionalities. The results of the first service to finish are used

while the results of the remaining invoked services are ignored. At least one service

of the invoked set of services must succeed for the composite service to succeed. The

main goal of the discriminator operator is to increase reliability and delays of the ser-

vices through the Web. For the customers, best services are those which respond in

optimal time and are constantly available.

Definition 9 The discriminator operator (S1 ∣ S2) ⊳ S3 is defined as S = ⟨NameS,
Desc,Loc,URL,CS,RECATNetS⟩ where:
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∙ CS = CS1 ∪ CS2 ∪ CS3 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2 ∪ p3 ∪ p4 ∪ p5 ∪ p6}, T =
{t1 ∪ t2 ∪ t3 ∪ t4 ∪ t5}, F = {(p1, t1), (t1, p2), (t1, p3), (t1, p5), (t2, p4), (t3, p4), (p4,
t4), (p4, t5, (p5, t5), (t4, p6), (t5, p6))}, CT = {(t2, initMarking(S1)), (t3, initMarking
(S2)), (t5, initMarking(S3))}.

Graphically, if we consider three Web services S1, S2 and S3, the composite service

(S1 ∣ S2) ⊳ S3 is represented by the RECATNet shown in Fig. 4c.

5.7 Multiple Instance Service

Multiple instance operator allows for a given Web service to be instantiated multiple

times in a business process. The number of instances is not known during the design

or run time. These instances are run concurrently but, whilst they are running, new

ones can be created.

Definition 10 Multiple instance service operator (S1)⋆ is defined as S = ⟨NameS,
Desc,Loc,URL,CS,RECATNetS⟩ where:

∙ CS = CS1 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2 ∪ pcreate ∪ pstopcreate}, T =
{t1 ∪ taddIns ∪ tremove},F = {(p1, t1), (t1, p2), (p1, taddIns), (taddIns, p1), (pcreate, taddIns),
(pcreate, tremove), (tremove, pstopcreate)}, CT = {(t1, initMarking(S1))}.

Graphically, if we consider a Web service S1, the composite service (S1)⋆ is repre-

sented by the RECATNet shown in Fig. 5a.

5.8 Cancel Service

The cancel service operator provides the ability to stop a running instance of a Web

service. For instance, the purchaser can cancel his buyonline’s order at any time

before it starts or during its running but not after the payment was done.

(a) (b)

Fig. 5 Multiple instance service (a) and Cancel service (b)
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Definition 11 Cancel service operator S1! is defined as S = ⟨NameS,Desc,Loc,
URL,CS,RECATNetS⟩ where:

∙ CS = CS1 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2 ∪ p3 ∪ pstartCancel ∪
pendCancel}, T = {t1 ∪ tcancel}, F = {(p1, t1), (t1, p2, ⟨0⟩), (t1, p3, ⟨1⟩), (pstartCancel,
tcancel), (tcancel, pendCancel)},

CT = {(t1, initMarking(S1))}, K(tcancel) = (t1, 1).

Graphically, if we consider a Web service S1, the composite service S1! is represented

by the RECATNet shown in Fig. 5b.

6 A Case Study

Figure 6 shows an illustrative example of modelling a simplified BuyOnline ser-

vice adapted from [16]. BuyOnline web service provides online book buying ser-

vice which is composed of four atomic services: LocateBook, SigIn, CreateAcct and

Payement. The composite web service may receive a list of request, sent by users,

through the Place StartBO. Each request is represented by a token (ID,BN, SII,CAI,
CCI) denotes repsectivelly Identifier,BookName, SignInInfo,CreateAcctInfo,Credit
CardInfo. At the beginning, BuyOnline service starts by searching a book in web site

according to the book name using service LocateBook. This operation is performed

by firing the abstract transition LocateBook which, if this book can be found, returns

its ISBN number. Then, the user can by this book but a valid register is required.

If the user has a legal account, then finish loging using service SignIn; otherwise

the user needs to create a new account using the service CreateAcct. In the last one,

informations about the created account must be returned i.e. CAO ≠ 𝜙. Finally, the

service payment can finish the payment for the book according to ISBN number

and credit card information CCI provided by user. Two cases are distinguished, if

the credit card information are valid, the service payment will perform the payment

by success; otherwise the service payment terminates by error i.e. echecP, and an

error meaasge CCI − not − valid is sent to user. Note that the user can cancel his/her

online book buying service by firing the elementary transition CancelBO. Note that

for each request sent by user, an instance of BuyOnline service is created. These

instances are independent and may be executed in a distributed manner. In order

to support dynamic creation instances of BuyOnline service, we need to update the

model according to the pattern of Multiple instance operator shown in Fig. 5a. Here,

and in order to perform analysis, we assume that our model is finite i.e. starts by a

finite set of requests.
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Fig. 6 BuyOnline book service

7 Verification of Web Services Composition

Our approach of verification can be described in Fig. 7. First, atomic services must be

described in their associated RECATNets. Then, based on composition rules defined

previously, generates the composite web services in terms of RECATNet. This opera-

tion may be insured by our java’s tool RECATNet-WSC that is partially implemented.

After that, from the obtained RECATNet, we generate in an automated manner its

semantics in terms of rewriting logic [7] using the model-to-text (M2T) transforma-

tion tool Acceleo.
1

The rewriting logic files are used as an input of the model-checker

Maude [8] to investigate several behavioral properties of Web services composition.

1
http://www.eclipse.org/acceleo/.

http://www.eclipse.org/acceleo/
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Fig. 7 Our approach

Fig. 8 RECATNets meta-model

7.1 RECATNets Meta-Modeling

In order to use M2T transformation using tool Acceleo, we need to define the meta-

model of RECATNet. As shown in Fig. 8, we propose a general meta-model of our

formalism using the UML class diagram model. Our proposed meta-model is com-

posed mainly of the following classes.

∙ RECATNet: it builds the final model from a set of Place, Arc, Transition and

CutStep.

∙ Place: it represents the RECATNet places. It has three attributes :name, marking
and capacity.
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∙ Transition: it represents the RECATNet transitions. It has three attributes: name,

TC and K. One classe inherits from the super-class Transition: AbsTransition for

abstract transition. This class contains one attribute startMarking.

∙ Arc: it represents the RECATNet arcs. It contains one attribute inscription. This

class is a super-class of two classes. The first one is InputArc for arcs going from

places to transitions. It contains two attributes IC for Input Condition and DT
for Destroyed Token. The second is OutputArc for arcs going from transitions to

places. It contains only the attribute CT for Created Token. In addition, the last

class is a super-class of IndexedOutputArc for arcs going from abstract transition to

places. It contains one attribute index to identify the set of indices of termination.

∙ CutStep: it represents the RECATNet cut steps. It contains two attributes index to

identify the index of termination and condition to identify the condition for firing

the cut step.

7.2 RECATNet Semantics in Terms of Rewriting Logic

RECATNet’s semantics may be defined, easily, in terms of rewriting logic, therefore

someone can use the LTL model-checker of MAUDE to investigate several behav-

ioral properties of Web services compositions. A set of rewriting rules has been

introduced in [6, 15] in order to express the semantics of RECATNet in terms of

rewriting rules. In order to automate this approach, we have developed a model-to-

text (M2T) transformation tool based Acceleo generator code. The transformation’s

rules have been inspired from rewriting rules proposed in [6]. For instance, if we con-

sider the RECATNet of the atomic service Payment in Fig. 6, the generated Maude

specification using M2T transformation is shown in Fig. 9. In fact, three rewriting

rules are generated associated to the three elementary transitions in the RECAT-

Net of the atomic service Payment in Fig. 6. For instance, the rewriting rule in line

4 rl[Payment-running] describes the firing of the elementary transition Payment-
running. So, this rewrite rule requires that the left-hand side is a marking where

the place Payment-Ready is marked and yields to a marking i.e. the right-hand side,

where the place EndP is marked.

Fig. 9 Generated Maude specification
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7.3 Implementation Using the Maude Tool

An important property will be checked in Web service composition called soundness
which concerns the correctness of internal control-flow of a composite Web service.

The soundness of a Web services component is based on two criteria:

∙ Proper termination: This property called also compatibility of component Web

services [17]. Proper termination means that starting from an initial extended

marking, every possible execution path properly terminates (eventually) i.e.

reaches a final extended marking. This property is expressed in LTL by the fol-

lowing formula: F finalState where the proposition finalState is valid in extended

marking Tr if this latter is reduced to its root node with only terms in place

ReqAchieved. The temporal operator F is denoted by ⟨⟩ in MAUDE notation. This

formula has been proven to be true by MAUDE LTL-model checker in Fig. 10.

∙ No dead service: This property means that every atomic Web service must be

invoked, at least, once. This requirement imposes that the Web services com-

ponent should not contain Web services that can never be executed. In order

to check this property, we define the proposition isInvoked(ws) which is valid

in an extended marking Tr, if the specified Web service ws is invoked i.e. is

running. Thus, to check that there is no dead service, we express the nega-

tion of this formula as the following LTL formula
⋁

ws∈WS
G¬isInvoked(ws) where

WS is the set of atomic web services used during composition. Here, WS =
{LocateBook, SigIn,CreateAcct,Payement}. If this formula is not valid, it means

that the property No dead service is verified. The temporal operators G (Gener-

ally) and ¬ (not) are denoted, respectively, by [] and ∼ in MAUDE notation. In

our case study, as we have a choice between the service SigIn and CreateAcct,
this formula is expressed in LTL as following: [] ∼ isInvoked(LocateBook)∖∕[] ∼
(isInvoked(SignIn)∖∕isInvoked(CreateAcct))∖∕ [] ∼ isInvoked(Payment). This for-

mula has been proven to be not valid by MAUDE LTL-model checker in Fig. 11.

The model-checker returns the expected counterexample.

As the two properties Proper termination and No dead service are proved to be

valid, therefore, the generated composite Web service is sound.

Fig. 10 Checking Proper termination property under Maude
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Fig. 11 Checking No dead service property under Maude

8 Conclusion

In this paper, an effecient and flexible approach for Web services composition has

been proposed. This approach takes fully advantage of modular, distributed exe-

cution aspects of RECATNets formalism. The formal semantic of the composition

operators is expressed easily in terms of RECATNets by providing a direct transfor-

mation of each operator in terms of RECATNets. In fact, the model of RECATNets is

particularly adequate for handling the most advanced flow patterns such as dynamic

creation of processes and specifying exceptional behaviors in WSC at design time.

Also, our method allows the verification of some properties using the LTL model-

checker of the Maude system. In the future, we plan to complete this work by devel-

oping a tool capable of making automatic the mapping WSDL-descriptions into

RECATNets.
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