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Abstract This paper presents a new approach for state estimation and parameter
identification in fuzzy dynamical systems. The basis of the proposed approach is
adaptive network calculation model of the fuzzy prior and posterior estimates of
system state variables taking place in consecutive time steps. The optimization of
model parameters based on modified simplex algorithm is also proposed. Presented
method for parameter identification has also a set of new properties, such as ability
of integration in the expert systems, higher level of potential accuracy and possi-
bility of real-time identification. Example of optimal parameter estimation for fuzzy
dynamical system is considered and results of the experiments are provided.
Experiments show that estimations of identified parameters obtained on the basis of
adaptive network applied in dynamical systems of Sugeno type does not deviate
from real values by more than in 10 %.
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1 Introduction

Recent methods for control of complex dynamical objects, which work is connected
with uncertainty, are based on the analytical models, which are represented in form
of differential and recurrence equations. Analysis of related publications [1–4]
shows that the major part of researches uses traditional methods, which has a set of
limitations, such as requirement of subordination to normal distribution law, usage
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of traditional mean-square criteria for estimation of the optimality of model
parameters, usage of the simplest linear models for measurer systems, etc. Here, the
questions, which deal with integration of the empirical knowledges of human
experts into poorly formalized process models characterized by incompleteness,
imprecision and contradictory [5] as well as presence of fuzzy and subjective factors
affected on parameter estimation, are still practically unexplored [6–8].

Nowadays, intelligent models are more preferable for modeling of poorly for-
malized objects. These models are based on knowledges, the main class of which is
fuzzy dynamical systems (FDS) [2–4]. The basis of FDS is formalization of the
empirical experience and knowledges of human experts, which is represented in
linguistic form via fuzzy logic tools. To make FDS be practically usable in con-
trolling systems, the development of effective construction methods as well as
estimation and state correction algorithms is required. It is also important to adapt
FDS for the real conditions.

This paper considers the decision of general problems, which are referred to
identification, prediction and estimation of FDS states, which describe behavior of
poorly formalized dynamical objects.

2 Model of Representation and State Estimation for FDS

Among of many well-known ways for discrete-time FDS representation [9–11], the
most simple one is FDS construction in form of recurrence equation [7]:

xkþ 1 ¼ FðxkÞ ðk ¼ 0; 1; . . .;NÞ; ð1Þ

where x is the state from the state space X of FDS, F is the fuzzy mapping xk → xk+1,
which is given by membership function (MF) lFðxk; xkþ 1Þ. This function is also
convenient to be represented in form of conditional MF lFðxkþ 1jxkÞ.

Real applications consider both FDS and the measuring system, which realize
the transformation of states from X into the external observations from Z taking into
account affecting noises. Thus, practically useful model of FDS may be represented
considering measurer errors and fuzzy noises in form of the following system:

xkþ 1 ¼ Fkðxk; ekÞ
zk ¼ Skðxk; dkÞ

�
k ¼ 0; 1; . . .;N; ð2Þ

where Fk is the state equation for FDS; Sk is the nonlinear function of measurer
work; xk is the internal state of a system; εk is the fuzzy system noise described by a
defined MF lek ; δk is the fuzzy measurer error described by a defined MF ldk ; k is
the discrete time index.

State space X for (2) is the set of values characterizing the position of a FDS in
an observed time step and playing the role of initial conditions for the future system
behavior. However, real system has uncertainties and, thus, dependency between
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current and future values is represented by a fuzzy variable. Estimation and cor-
rection of this dependency are very important for dynamical objects control in the
area of fuzzy modeling. The task of estimation and correction is defined as follows.

Let the initial information about FDS be presented in form of MF µ(x0) and the
observed states be presented by vector of observations Zk ¼ ðz0; z1; . . .; zkÞ from
time interval ½t0; tk�. It is required to predict fuzzy state xk+1, which is defined by MF
µ(xk+1). FDS correction is performed by specifying the MF for the determined fuzzy
value of xk+1, when zk+1 is observed at time step tk+1.

3 Recurrent Algorithm for FDS State Estimation

Estimation and correction for the FDS states are performed based on determination
and matching prior information and posterior one characterized by conditional MFs
lðxkþ 1jZkÞ и lðxkþ 1jZkþ 1Þ. The conditional MFs are determined by the following
recurrence procedure.

Let the FDS be nonstationary system with discrete time presented by (2). Let
initial state MF lðx0Þ be a priory determined. Measurement errors, noises and states
are independent fuzzy variables [12].

Based on assumption that Zkþ 1 ¼ ðZk; zkþ 1Þ, MF lðxkþ 1jZkþ 1Þ can be pre-
sented as

lðxkþ 1jZkþ 1Þ ¼ lðxkþ 1jZk; zkþ 1Þ: ð3Þ

Conditional fuzzy variables lðxkþ 1jZk and ðxkþ 1jZkþ 1Þ, which belong to (3),
are independent because fuzzy noises εk and δk affecting on FDS (determining
ðxkþ 1jZkþ 1Þ) and measurer (determining ðxkþ 1jZkþ 1Þ), respectively, are also
independent. Thus, Eq. (3) can be defined as follows:

lðxkþ 1jZk; zkþ 1Þ ¼ lðxkþ 1jZkÞ& lðxkþ 1jzkþ 1Þ: ð4Þ

Conditional MF of fuzzy variable (xk+1|zk+1) may be expressed by using mea-
surer function from (2) via the MF of fuzzy noise:

lðxkþ 1jzkþ 1Þ ¼ lðdkþ 1Þ dkþ 1 ¼ S�1
kþ 1ðxkþ 1; zkþ 1Þ

� �
: ð5Þ

Since nonlinear mapping S�1
kþ 1 from (5) is commonly multivalued, the fuzzy

estimation for ldkþ 1
ðS�1

kþ 1ðxkþ 1; zkþ 1ÞÞ takes maximum possible value via Zadeh
extension principle [13]:

ldkþ 1
ðS�1

kþ 1ðxkþ 1;zkþ 1ÞÞ ¼ sup
D¼S�1

kþ 1ðxkþ 1;zkþ 1Þ
ldkþ 1

ðDÞ: ð6Þ
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Merging (6) and (5), the following equation can be got:

lðxkþ 1jzkþ 1Þ ¼ sup
D¼S�1

kþ 1ðxkþ 1;zkþ 1Þ
ldkþ 1

ðDÞ: ð7Þ

Conditional MF lðxkþ 1jZkÞ from (4) describes fuzzy mapping U : Zk ! xkþ 1,
which can be represented in form of the composition of fuzzy mappings:

U ¼ ðZk ! xkÞ � ðxk ! xkþ 1Þ: ð8Þ

Conditional MF lðxkjZkÞ characterizes fuzzy mapping Zk ! xk as well as fuzzy
conditional MF lðxkþ 1jxkÞ characterizes fuzzy mapping xk ! xkþ 1. As a result of
composition, we get MF lðxkþ 1jZkÞ for fuzzy mapping U : Zk ! xkþ 1:

lðxkþ 1jZkÞ ¼ sup
xk
½lðxkjZkÞ & lðxkþ 1jxkÞ�; ð9Þ

where lðxkþ 1jxkÞ is expressed via fuzzy noise based on the state equation (2):

lðxkþ 1jxkÞ ¼ sup
D¼F�1

k ðxkþ 1;xkÞ
lek ðDÞ: ð10Þ

If expression (10) is merged with Eq. (9), MF lðxkþ 1jZkÞ can be calculated as

lðxkþ 1jZkÞ ¼ sup
xk
½lðxk; ZkÞ& sup

D¼F�1
k ðxkþ 1;xkÞ

lek ðDÞ�: ð11Þ

Considering (9) and (11), the final recurrence relations for finding the posterior
MF of the fuzzy state of FDS at certain step (k + 1) can be expressed in following
form:

lðxkþ 1jZkþ 1Þ ¼ lðxkþ 1; ZkÞ& sup
D¼S�1

k ðxkþ 1;zkþ 1Þ
ldkþ 1

ðDÞ

lðxkþ 1jZkÞ ¼ sup
xk
½lðxkjZkÞ& sup

D¼F�1
k ðxkþ 1;xkÞ

lekðDÞ�

8><
>: ; ð12Þ

Initial information for implementation of (12) is presented by lðx0jz0Þ, which is
taken in the form of initial fuzzy state lðx0Þ determined by the problem statement.

4 Optimal FDS Parameters Estimation

The task of parameter estimation refers to the problem of parameter identification,
when the structure of FDS is a prior determined.

Let the structure of FDS is given in form of system (2), where nonlinear state
function Fk and measurer one Sk depend on the set of uncertain parameters at each
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time step. The parameters are presented by vector Ak and Bk, respectively. In this
case, model of non-stationary FDS with uncertain parameters is expressed by the
following system:

xkþ 1 ¼ Fkðxk;Ak; ekÞ
zk ¼ Skðxk;Bk; dkÞ k ¼ 0; 1. . .;N

�
: ð13Þ

Let the observation set be presented in form of vector Z = [z0, z1, …, zk], which
is determined on time interval [tn, tm]. It is required to calculate parameters of FDS
Ak and parameters of measurer Bk, which make the system behavior be similar to
experimental observations as more as possible.

To formalize the term “as more as possible”, the criterion of identification
quality is introduced. This criterion characterizes the rate of correspondence
between FDS and experiments. It is calculated based on the matching of prior
MF lðxkþ 1jZkÞ, which reflects the fuzzy estimation of state from X at the time step
tk+1 considering the observation of zk at time step tk, and posterior MF
lðxkþ 1jZkþ 1Þ, which reflects the fuzzy estimation of FDS state at time step tk+1
considering the observation of zk+1. Difference between prior and posterior MF is
expressed by fuzzy error ek of current estimation of FDS. MF of the error has the
following form:

lðek;Ak;Bk;Bkþ 1Þ ¼ sup
xkþ 1

lðxkþ 1jzk;Ak;BkÞ& lðxkþ 1 þ ekjzkþ 1;Bkþ 1Þ: ð14Þ

Optimality criterion J can be presented by any fuzzy criterion in form of non-
linear dependency on both conditional and posterior MFs. Particularly, it is con-
venient to use minimum of deviation for MF of fuzzy estimation error ek from its
model function defined on interval [emin, emax], i.e.:

JkðAk;Bk;Bkþ 1Þ ¼
Zemax

emin

rðekÞ � l ekj;Ak;Bk;Bkþ 1ð Þð Þ2 dek; ð15Þ

where ek is the current error of the estimation, lðekjAk;Bk;Bkþ 1Þ is the MF of
fuzzy estimation error (14), rðekÞ is the model function, which is chosen according
to the specifications of an identification task.

Estimation problem is concluded in calculation of such vectors Ak and Bk, which
minimize criterion J, i.e.

min
Ak ;Bk ;Bkþ 1

J ¼ min
Ak ;Bk ;Bkþ 1

Zemax

emin

ðrðekÞ � lðekjAk;Bk;Bkþ 1ÞÞ2dek: ð16Þ
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5 Adaptive Network Model of FDS

Determination of the conditional MF for fuzzy state and optimization of the FDS
parameters are made by using both adaptive network model (ANM) and iterative
algorithm described below. The basis of ANM is the process of a prior and a
posterior MF calculation for each time step from the interval [tn, tm] and also their
matching based on chosen criterion J.

Let output signal (or observed state of a system) zk is observed at certain step tk ∊
[tn, tm]. Then, the fuzzy state of FDS at time step tk+1 can be calculated based on
composition of fuzzy relations S�1

k : zk ! xk and Fk : Xk ! Xkþ 1 determined by
measurer equation and state one (13), respectively. Conditional MF µ(xk|xk) is
determined for fuzzy relation S�1

k based on measurer equation taking into account
fuzzy noise δk:

lðxkjzk;BkÞ ¼ ldk ðSkðxk;BkÞ � zkÞ: ð17Þ

Conditional MF µ(xk+1|xk) is defined for fuzzy mapping Fk based on state
equation taking into account fuzzy noise εk:

lðxkþ 1jxk;AkÞ ¼ lek ðFkðxk;AkÞ � xkþ 1Þ: ð18Þ

According to (17) and (18), MF µ(xk+1|zk) has the following form for compo-
sition S�1

k �Fk:

lðxkþ 1jzk;Ak;BkÞ ¼ sup
xk

½ðlðxkjzk;BkÞ& lek ðFkðxk;AkÞ � xkþ 1Þ� ð19Þ

Expression (19) is a prior MF characterizing the fuzzy value of state from
X considering observed state zk at step tk.

To calculate posterior MF lðxkþ 1jzkÞ, output signal zk+1 should be assumed. The
posterior MF for fuzzy state xk+1 is calculated based on measurer equation (13)
considering fuzzy noise δk+1:

lðxkþ 1jzkþ 1;Bkþ 1Þ ¼ ldkþ 1
ðSkþ 1ðxkþ 1;Bkþ 1Þ � zkþ 1Þ ð20Þ

Calculations for the MFs and criterion J can be shown in form of network
structure representing feedforward calculation illustrated by Fig. 1.

Figure 1 shows that each element implements separated stage of transformations
for input signals zk and zk+1 into conditional MF lðxkþ 1jzk;Bk;AkÞ and
lðxkþ 1jzkþ 1;Bkþ 1Þ.

Output block calculates J according to the given input signals. Identification
of the FDS parameters is performed by handling parameters of Ak of FDS and
both Bk and Bk+1 of measurer using backpropagation method [14] and modified
Nelder-Mead simplex method [15].
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6 Example

Implementation of above described method can be illustratively shown on the
example of identification of the following FDS:

xk ¼ f ðxk�1; ak�1Þþ ek ¼ ak�1 � x1:7k�1 þ ek
zk ¼ sðxkÞþ dk ¼ bk � x1:2k þ dk

�

where ak−1 is the identified parameter of the system; bk is the parameter of an
observer; εk is the fuzzy noise presented in the system, which is represented by
Gauss MF with zero mean and variance σε = 0.05; δk is the fuzzy noise presented in
the measurer, which is represented by Gauss MF with zero mean and variance
σδ = 0.22.

Let ak−1 equal 2, ck equal 1.2 for all k. Then, MFs have the following forms:

lðekÞ ¼ exp ð� 1
2 � 0; 5 � e

2
kÞ:

lðdkÞ ¼ exp ð� 1
2 � 0; 22 d

2
kÞ

To describe the optimality criterion, the minimization of the MF deviation for
fuzzy estimation error ek is used:

J ¼ min
ak

Zemax

emin

r ekð Þ � lðek; akÞð Þ2 dek:

Model function of error is determined on interval emin; emax½ � ¼ �1; 1½ � of its
changing as follows:

rðeÞ ¼ eþ 1 if � 1� e\0
rðeÞ ¼ �eþ 1 if 0� e� 1

�

Fig. 1 General structure of ANM
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Let initial state x0 equal 0.8 and the calculation of sup
xk
ð�Þ be provided with

discretization step Δ = 0.05 for x. Let also the integral from (15) be performed
numerically utilizing quadratic formulas with step Δ = 0.05 and infinite limits be
changed by finite ones satisfying finite requirements for estimation algorithm
(xmin = 0, xmax = 4). Here, the Nelder-Mead method [9] together with ANM opti-
mizing ak−1 plays the main role for providing both the satisfactory computational
speed and the required accuracy of results. Presented example consider the imita-
tion of noises be generated programmatically using standard package of
Mathematica software.

Calculation results are presented on figures below. Figure 2 illustrates curve of
dependency between J and identified parameter ak, when k = 37. The curve shows
that the minimum of J is placed near to real value of ak−1 = 2.

Figure 3 presents the dependency between parameter ak, which is required to be
determined, and iteration step k of Nelder-Mead algorithm. Curve illustrates that ak
come around its real value and it deviate from this no more than by 10 %, when
k increases.

The set of 400 experiments was performed to experimentally test efficacy of
proposed approach. In the experiments, fuzzy Sugeno models with various numbers
of unknown parameters (from 3 to 9) represent the FDS. Results show that the
calculated estimations of ak differ from their real values no more than by 10 % in
the major part of samples (more than 95 %). Moreover, results proved that iden-
tified parameters of FDS are approximately converged to their real values after 20
−30 iterations of algorithm in the major part of samples. Small number of required
iterations shows the practical possibility of using ANM for FDS identification in
real time mode.

Fig. 2 Dependency between J and ak for k = 37
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7 Conclusions

This paper presents the new approach for estimation of states and identification of
parameters in fuzzy systems describing the dynamics of poorly formalized pro-
cesses. The proposed method utilizes adaptive network model and modified sim-
plex algorithm. Experimental test of the method shows that determined parameters
deviated no more than by 10 % from their real values in the major part of samples.
Proposed approach for parameter identification has also the set of new properties,
among which possibility for integration in the system of expert knowledges, higher
level of accuracy versus traditional techniques and possibility of identification in
real time are presented.
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