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Abstract It is well known that the changes in the breast tissue density are strongly
correlated with the risk of breast cancer development and therefore classifying the
breast tissue density as fatty, fatty–glandular and dense–glandular has become
clinically significant. It is believed that the changes in the tissue density can be
captured by computing the texture descriptors. Accordingly, the present work has
been carried out with an aim to explore the potential of Laws’ mask texture
descriptors for description of variations in breast tissue density using mammo-
graphic images. The work has been carried out on the 322 mammograms taken
from the MIAS dataset. The dataset consists of 106 fatty, 104 fatty–glandular and
112 dense–glandular images. The ROIs of size 200 � 200 pixels are extracted from
the center of the breast tissue, ignoring the pectoral muscle. For the design of a
computer aided diagnostic system for three class breast tissue density classification,
Laws’ texture descriptors have been computed using Laws’ masks of different
resolutions. Five statistical features i.e. mean, skewness, standard deviation, entropy
and kurtosis have been computed from all the Laws’ texture energy images gen-
erated from each ROI. The feature space dimensionality reduction has been carried
out by using principal component analysis. For the classification task kNN, PNN
and SVM classifiers have been used. After carrying out exhaustive experimentation,
it has been observed that PCA–SVM based CAD system design yields the highest
overall classification accuracy of 87.5 %, with individual class accuracy values of
84.9, 84.6 and 92.8 % for fatty, fatty–glandular and dense–glandular image classes
respectively. These results indicate the usefulness of the proposed CAD system for
breast tissue density classification.
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1 Introduction

The most commonly diagnosed disease among women that has become a major
health concern for the past few decades is breast cancer [1–3]. For the women in
United Kingdom, the lifetime risk of being diagnosed with breast cancer is 1 in 8
[4]. The study in [5] reported 1.67 million new cases of breast cancer worldwide in
the year 2012. It has been strongly advocated by many researchers in their study
that increased breast density is strongly correlated to the risk of developing breast
cancer [5–15]. The association between increased breast density and breast cancer
risk can be explained on the basis of effects that are caused by the hormones
mitogens and mutagens. The mitogens are known to affect the size of the cell
population in the breast and cell proliferation while mutagens increase the likeli-
hood of damage to these cells. Due to increased cell population, there is an increase
in reactive oxygen species (ROS) production and lipid peroxidation. The products
of lipid peroxidation; malondialdehyde (MDA) and isoprostanes catalyze the pro-
liferation of cells [14].

Breast cancer has a very high mortality rate but the chances of survival are
significantly improved if it is detected at an early stage. Different imaging
modalities like MRI, computerized tomography, ultrasound, etc. are used in the
diagnosis of breast abnormalities but mammography is considered to be the best
choice for detection due to its higher sensitivity [14, 16–24]. Mammography is an
X–ray imaging technique used to detect any abnormalities in the breast. There are
two types of mammography examination:

(a) Screening Mammography: Screening mammography is used to check for
breast abnormalities in asymptomatic women. This examination is used to
detect breast cancer at an early stage when there are no symptoms present.

(b) Diagnostic Mammography: Diagnostic mammography is performed when
either a patient has complaint of some lumps in the breast, pain or any
abnormality is detected during the screening process. It helps in determining
whether the symptoms indicate the presence of a malignancy and is also used
to find the exact location of the abnormalities.

On the basis of density, breast tissue can be classified into the following classes:

(a) Two–class classification: Fatty tissue (F)/Dense tissue (D).
(b) Three–class classification: Fatty tissue (F)/Fatty–glandular tissue (FG)/Dense–

glandular tissue (DG).
(c) Four–class BI–RADS classification: Almost entirely fatty tissue (B–I)/some

fibro–glandular tissue (B–II)/heterogeneously dense breast tissue (B–III)/ex-
tremely dense breast tissue (B–IV).

The typical fatty tissue being translucent to X–rays appears dark on a mam-
mogram whereas the dense tissues appear bright on the mammograms. The fatty–
glandular breast tissue is an intermediate stage between fatty and dense tissues
therefore a typical fatty–glandular breast tissue appears dark with some bright
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streaks on the mammogram. The mammograms are visually analyzed by the
radiologists to identify and differentiate between different density patterns of the
breast tissue. The typical breast tissue density patterns are easy to identify and
analyze. This analysis is however subjective and depends on the experience of the
radiologist. The appearances of atypical cases of the breast tissue density patterns
are highly overlapping and differentiating between these atypical cases through
visual analysis is considered to be a highly daunting task for the radiologists. The
sample images depicting the typical and atypical cases of breast tissue density
patterns are shown in Figs. 1 and 2, respectively.

In order to provide the radiologists with a second opinion tool for validating their
diagnosis and identify the atypical mammographic images correctly, various
computer aided diagnostic (CAD) systems have been developed in the past for
breast tissue density classification. A brief description of the related studies is
tabulated in Table 1.

From the extensive literature survey presented in Table 1, it can be observed that
most of the related studies are based on the pre–processing of mammograms to

Fig. 1 Sample mammograms showing typical cases. a Fatty class ‘mdb078’. b Fatty–glandular
class ‘mdb094’. c Dense–glandular class ‘mdb172’

Fig. 2 Sample mammograms showing atypical cases. a Fatty class ‘mdb156’. b Fatty–glandular
class ‘mdb228’. c Dense–glandular class ‘mdb058’
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extract the segmented breast tissue (SBT) after removing the pectoral muscle and
the background while very few studies have been carried out that report CAD
system designs based on ROIs extracted from the breast. It has also been shown in
[47] that the ROIs extracted from the center of the breast result in highest perfor-
mance as this region of the breast is densest. The ROI extraction method results in

Table 1 A description of studies carried out for breast tissue density classification

Investigators Dataset description

Database Classes ROI size No. of
images

Accuracy
(%)

Miller et al. [25] Collected by
investigator

2 SBT 40 80.0

Karssemeijer [26] Nijmegen (SBMD) 4 SBT 615 65.0

Blot et al. [27] MIAS (SBMD) 3 SBT 265 63.0

Bovis et al. [28] DDSM (SBMD) 2 SBT 377 96.7

Wang et al. [29] Collected by
investigator

4 SBT 195 71.0

Petroudi et al. [30] Oxford database
(SBMD)

4 SBT 132 76.0

Oliver et al. [31] DDSM (SBMD) 4 SBT 300 47.0

Bosch et al. [32] MIAS (SBMD) 3 SBT 322 91.3

4 95.4

DDSM (SBMD) 4 500 84.7

Muhimmah et al. [33] MIAS (SBMD) 3 SBT 321 77.5

Castella et al. [34] Collected by
investigator

4 256 � 256 352 83.0

Oliver et al. [35] MIAS (SBMD) 4 SBT 322 86.0

DDSM (SBMD) 831 77.0

Subashini et al. [36] MIAS (SBMD) 3 SBT 43 95.4

Tzikopoulos et al. [37] MIAS (SBMD) 3 SBT 322 84.4

Li [38] MIAS (SBMD) 3 SBT 42 94.4

Mustra et al. [39] MIAS (SBMD) 3 512 � 384 322 82.0

KBD–FER (collected
by investigator)

2 144 97.2

Silva et al. [40] MIAS (SBMD) 3 300 � 300 320 77.1

Sharma et al. [41] MIAS (SBMD) 2 200 � 200 322 96.4

Sharma et al. [42] MIAS (SBMD) 2 200 � 200 212 97.2

Kriti et al. [43] MIAS (SBMD) 2 200 � 200 322 94.4

Virmani et al. [44] MIAS (SBMD) 2 200 � 200 322 96.2

Kriti et al. [45] MIAS (SBMD) 2 200 � 200 322 95.6

Kumar et al. [46] DDSM (SBMD) 4 128 � 128 480 73.7

Note SBMD Standard benchmark database, ROI Region of interest, SBT Segmented breast tissue
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the elimination of an extra step of pre–processing to obtain the SBT after removing
the background and pectoral muscle.

K.I. Laws developed a method for texture analysis where an image was filtered
with various two–dimensional masks to find its texture properties which proved to be
useful for texture analysis. In this method five kernels namely Level (L), Edge (E),
Spot (S), Wave (W) and Ripple (R) are used to form different masks used for filtering
purposes [48]. Laws’ mask analysis is considered to be one of the best methods for
texture analysis in image processing applications like breast cancer detection [49,
50], classification of liver diseases [51], bone texture analysis [52] etc.

Thus in the present work, considering the effect of ROI size and location on
performance of the algorithms, a CAD system design is proposed for three–class
classification of different breast tissue density patterns based on their underlying
texture characteristics computed using Laws’ mask texture analysis.

The rest of the paper is organised into 3 sections. Section 2 explains the
methodology adopted in the present work for three–class breast tissue density
classification, giving a brief description of the dataset and proposed CAD system
design. The various experiments carried out for classifying the mammographic
images are explained in Sect. 3 and the conclusions drawn from the present work
are reported in Sect. 4.

2 Methodology

2.1 Description of the Dataset

For the present work mammographic images have been taken from a publicly
available database, mini–MIAS (Mammographic Image Analysis Society). The
database contains 322 Medio Lateral Oblique (MLO) view mammographic images.
The size of each image is 1024 � 1024 pixels with 256 gray scale tones and a 96
dpi horizontal and vertical resolution. The images in the database are divided into
three categories on the basis of density, fatty (106 images), fatty–glandular (104
images) and dense–glandular (112 images). The database includes the name of each
image in form of a mnemonic with prefix ‘mdb’ and a three digit number. The
database also includes nature of the breast tissue, location of abnormality, the radius
of the circle enclosing the abnormality and its severity [53].

2.2 Region of Interest (ROI) Selection

The ROI size is selected carefully, considering the fact that with the selected ROI
size, there should be a good population of pixels available for calculating the
texture properties. For evaluation, the present work considers an ROI of size
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200 � 200 pixels extracted manually from the center of the breast tissue for each
mammographic image. The ROI size of 200 � 200 has been taken based on the
reference in the previous studies [41, 42]. The process of extraction of ROI from the
mammographic image is shown in Fig. 3.

2.3 Proposed CAD System Design

The computer aided diagnostic (CAD) systems are nowadays widely used to
identify the hidden abnormalities that might be missed by the radiologists during
visual analysis hence improving the overall diagnostic accuracy [54–67]. The
experimental workflow to design a CAD system for three–class breast tissue density
classification is shown in Fig. 4.

The proposed CAD system consists of three modules: feature extraction module,
feature space dimensionality reduction module and classification module. From the
extracted ROIs, Laws’ texture descriptors are calculated using Laws’ masks of
different lengths to form the feature vectors (FVs). In the feature space dimen-
sionality reduction module, to remove the redundant features from the FVs, the
principal component analysis (PCA) algorithm has been applied and reduced fea-
ture vectors (RFVs) consisting of principal components (PCs) have been computed.
In the classification module, the computed FVs and RFVs have been fed to different
classifiers namely k–nearest neighbour (kNN), probabilistic neural network
(PNN) and support vector machine (SVM) to classify the mammographic images

Fig. 3 Process of ROI
extraction
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into one of the three classes: fatty, fatty–glandular and dense–glandular according
to the density information.

Feature Extraction Module. In the field of medical imaging, the process of
feature extraction is used to convert the texture features of an image into mathe-
matical descriptors to quantify the textural properties exhibited by the image. The
textural features from images can be extracted using different methods–statistical
methods, signal processing based methods and transform domain methods. These
methods have been depicted in Fig. 5.

In the present work, a signal processing based technique called Laws’ mask
analysis is used. In this technique the images are filtered with specific masks to
extract different textural properties from the images. The masks are formed by
combinations of different one–dimensional kernels. Five kernels namely Level (L),
Edge (E), Spot (S), Wave (W) and Ripple (R) are used to form different masks used
in feature extraction process. Further, the length of these kernels can be 3, 5, 7 and 9
[48, 51, 52, 68, 69]. A description of these one–dimensional kernels is given in
Table 2.

The one–dimensional kernels shown in Table 2 are convolved with each other to
form the two–dimensional masks used for filtering the images to calculate texture
features. The resultant two–dimensional masks for each kernel length are shown in
Fig. 6. The process of feature extraction using Laws’ mask analysis is depicted in
Fig. 7.

Fig. 4 Experimental workflow for the design of CAD system
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The above steps are demonstrated with an example below:
Step 1 Consider Laws’ mask of length 3. Convolve the extracted ROIs with each

of the above nine 2D filters. Suppose the ROI of size 200 � 200 is
convolved with the 2D filter S3S3 to form a texture image (TIS3S3).

TIS3S3 = ROI� S3S3 ð1Þ

Step 2 The mask L3L3 having zero mean is used to form contrast invariant texture
images.

Fig. 5 Different methods used for feature extraction

Table 2 Laws’ kernels of different lengths

l 1D Filter coefficients No. of 2D
laws’ masks

No. of TR
images

3 Level 3 = [1, 2, 1], Edge 3 = [–1, 0, 1], Spot 3 = [–1, 2, –1] 9 6

5 Level 5 = [1, 4, 6, 4, 1], Edge 5 = [–1, –2, 0, 2, 1], Spot
5 = [–1, 0, 2, 0, –1], Wave 5 = [–1, 2, 0, –2 1], Ripple
5 = [1, –4, 6, –4, 1]

25 15

7 Level 7 = [1, 6, 15, 20, 15, 6, 1], Edge 7 = [–1, –4, –5, 0, 5,
4, 1], Spot 7 = [–1, –2, 1, 4, 1, –2, –1]

9 6

9 Level 9 = [1, 8, 28, 56, 70, 56, 28, 8, 1], Edge 9 = [1, 4, 4,
–4, –10, –4, 4, 4, 1], Spot 9 = [1, 0, –4, 0, 6, 0, –4, 0, 1],
Wave 9 = [1, –4, 4, –4, –10, 4, 4, –4, 1], Ripple 9 = [1, –8,
28, –56, 70, –56, 28, –8, 1]

25 15

Note l Length of kernel, TR Rotation invariant texture images
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Fig. 6 2D Laws’ masks: a Law’s masks derived from kernel length 3. b Laws’ masks derived
from kernel length 5. c Law’s masks derived from kernel length 7. d Laws’ masks derived from
kernel length 9

Fig. 7 Steps followed in
process of feature extraction
Laws’ mask analysis
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Normalise (TImaskÞ =
TImask

TIL3L3
ð2Þ

Step 3 The resultant normalized TIs are passed through a 15 � 15 window to
derive 9 texture energy images (TEMs).

TEMi;j ¼
X7

u¼�7

X7

v¼�7

Normalize TIiþ u;jþ v
� ��� �� ð3Þ

Step 4 Out of 9 TEMs, 6 rotationally invariant texture energy images (TRs) are
obtained by averaging.

TRS3L3 ¼ TEMS3L3 þTEML3S3

2
ð4Þ

Step 5 From the derived TRs five statistical parameters–mean, standard deviation,
skewness, kurtosis and entropy [51, 68] are computed, thus a total of 30
Laws’ texture features (6 TRs � 5 statistical parameters) are calculated for
each ROI. These statistical parameters are defined as:

Mean ¼
PM

i¼0

PN
j¼0 ðTRi;jÞ

M� N
: ð5Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼0

PN
j¼0 TRi;j �Mean

� �2

M� N

s

ð6Þ

Skewness =

PM
i¼0

PN
j¼0 TRi;j �Mean

� �3

M� N� SD3 ð7Þ

Kurtosis ¼
PM

i¼0

PN
j¼0 TRi;j �Mean

� �4

M � N � SD4 � 3 ð8Þ

Entropy =

PM
i¼0

PN
j¼0 TRi;j

� �2

M� N
ð9Þ

Proceeding in the similar manner as above, Laws’ texture features can also be
computed for the masks of length 5, 7 and 9 as shown in Table 2.

The brief description of FVs computed using Laws’ mask analysis as used in the
present work are described in Table 3.

Feature Space Dimensionality Reduction Module. Some of the computed
feature vectors (FVs) may contain redundant or correlated features which must be
eliminated. In the present work, the principal component analysis (PCA) algorithm
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has been used to obtain optimal attributes for the classification task [70–74]. The
main steps followed in the PCA algorithm are shown in Fig. 8.

The optimal number of PCs resulting in highest classification accuracy for training
dataset is used for obtaining reduced feature vectors (RFVs) as described in Table 4.

Classification Module. Classification is a technique used in machine learning to
predict the class of an unknown data instance based on the training data set,

Table 3 FVs description

FV Description l

FV1 FV formed by Laws’ mask of length 3 30 (5 features calculated from 6 TR images)

FV2 FV formed by Laws’ mask of length 5 75 (5 features calculated from 15 TR images)

FV3 FV formed by Laws’ mask of length 7 30 (5 features calculated from 6 TR images)

FV4 FV formed by Laws’ mask of length 9 75 (5 features calculated from 15 TR images)

Note FV Feature vector, l Length of FV, TR Rotation invariant image

Fig. 8 Steps followed in
Principal component analysis
algorithm

Table 4 RFVs description RFV Description

RFV1 Obtained by applying PCA to FV1

RFV2 Obtained by applying PCA to FV2

RFV3 Obtained by applying PCA to FV3

RFV4 Obtained by applying PCA to FV4

Note RFV Reduced feature vector, FV Feature vector

Comparison of CAD Systems for Three Class Breast Tissue Density … 117



containing instances whose class membership is known. In the present work,
classifiers like kNN, PNN and SVM are used to classify the instances of the testing
dataset. Before feeding the extracted FVs and RFVs to the classifiers, the features
are normalised in the range [0, 1] by using min–max procedure to avoid any bias
caused by unbalanced feature values.

(1) k–nearest neighbour (kNN) classifier: The kNN classifier is used to estimate
the class of an unknown instance from its neighbouring instances. It tries to
assemble together the instances of the training feature vector into separate
classes based on distance metric. The class of an unknown instance is decided
by a majority vote of its neighbouring instances in the training dataset [71, 75–
77]. There are many distance metrics that can be used in kNN classification
such as Manhattan distance, Minkowski distance, Hamming distance,
Mahalanobis distance etc., but Euclidean distance is the most commonly used
distance metric. In order to design an efficient kNN classifier the optimal value
of k is required. In the present work, the optimal values of (a) the parameter
k and (b) the number of PCs to be retained are determined by exhaustive
experimentation with k 2 1; 2; . . .; 9; 10f g and number of PCs
2 1; 2; . . .; 14; 15f g. In case the accuracy values are same for more than one
value of the parameter k, smallest value of k is selected for the classification
task.

(2) Probabilistic neural network (PNN) classifier: The PNN classifier belongs to a
class of supervised (feed–forward) neural network classifiers used for deter-
mining the probability of class membership of an instance [78–80]. The PNN
architecture has four layers: input layer, pattern layer, summation layer and
output layer. The input layer consists of ‘n’ neurons which accept the primitive
values. The results obtained in the input unit are transmitted to the hidden units
of the pattern layer where the response of each unit is calculated. In the pattern
layer, there are ‘p’ neurons, one for each class. The pdf (probability density
function) of each class is defined in the pattern layer on the basis of training
data and the optimized kernel width parameter Sp also called the spread
parameter. The summation layer sums the values of each hidden unit to get
response in each category. To obtain the class of the unknown instance,
decision layer selects the maximum response from all categories. The optimal
choice of Sp is crucial for the classification task. In order to design an efficient
PNN classifier the optimal value of Sp is required. In the present work, the
optimal values of (a) the spread parameter Sp, and (b) the number of PCs
to be retained are determined by exhaustive experimentation with
Sp2 1; 2; . . .; 9; 10f g and number of PCs 2 1; 2; . . .; 14; 15f g.

(3) Support vector machine (SVM) classifier: In the present work, SVM classifier
has been implemented using one-against-one (OAO) approach for multiclass
SVM provided by LibSVM library [81]. The Gaussian radial basis function
kernel has been used for non-linear mapping of training data into higher
dimensional feature space. In order to design an efficient SVM classifier, the
optimal value of C and c are obtained by grid-search procedure i.e., for each
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combination of (C, c) such that, C2 2�4; 2�3; . . .; 215
� �

and
c2 2�12; 2�11; . . .; 24

� �
the 10-foldcross validation accuracy is obtained for

training data. The combination of C and c yielding the maximum training
accuracy are selected for generating the training model. Further, the optimal
number of PCs to be retained is determined by repeating the experiments with
different number of PCs 2 1; 2; . . .; 14; 15f g [73, 82–85].

Classification Performance Evaluation. The performance of the CAD system
for breast tissue density classification can be measured using overall classification
accuracy (OCA) and individual class accuracy (ICA). These values can be calcu-
lated using the confusion matrix (CM).

OCA ¼
P

No: of correctly classified ROIs of each class in testing datset
Total ROIs in testing dataset

ð10Þ

ICAClass ¼ No: of correctly classified ROIs of a particular class in testing dataset
Total no: of ROIs of a particular class in the testing dataset

ð11Þ

3 Results

The performance of the proposed CAD system to classify the mammographic
images based on their density has been evaluated by conducting various experi-
ments. A description of these experiments is given in Table 5.

Table 5 Description of experiments

Experiment I Classification performance evaluation of different FVs using kNN classifier

Experiment II Classification performance evaluation of different FVs using PNN classifier

Experiment
III

Classification performance evaluation of different FVs using SVM classifier

Experiment
IV

Classification performance evaluation of different RFVs using PCA–kNN
classifier

Experiment V Classification performance evaluation of different RFVs using PCA–PNN
classifier

Experiment
VI

Classification performance evaluation of different RFVs using PCA–SVM
classifier

Note FV Feature vector. RFV Reduced feature vector
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3.1 kNN Classifier Results: Experiment I

This experiment evaluates the classification performance of different FVs using the
kNN classifier. The results are reported in Table 6.

From Table 6, it is observed that for FV1, FV2, FV3 and FV4, the OCA values
are 83.2, 83.8, 86.9 and 78.8 %, respectively. For fatty class the ICA values are
83.0, 81.1, 86.7 and 73.5 % for FV1, FV2, FV3 and FV4, respectively. For fatty–
glandular class, the ICA values are 82.6, 84.6, 84.6 and 82.6 % for FV1, FV2, FV3
and FV4, respectively. For the dense–glandular class the ICA values are 83.9, 85.7,
89.2 and 80.3 % for FV1, FV2, FV3 and FV4, respectively. For testing dataset with
161 instances, in case of FV1, the total misclassified instances are 27 (27/161), for
FV2, the total misclassified instances are 26 (26/161), for FV3, the total misclas-
sified instances are 21 (21/161) and for FV4, the total misclassified instances are 34
(34/161).

3.2 PNN Classifier Results: Experiment II

This experiment evaluates the classification performance of different FVs using the
PNN classifier. The results are reported in Table 7.

From Table 7, it can be observed that for FV1, FV2, FV3 and FV4, the OCA
values are 85.0, 81.9, 83.8 and 78.2 %, respectively. For fatty class, the ICA values

Table 6 Classification performance of different FVs using kNN classifier

FV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

FV1 (30) F 44 6 3 83.2 83.0 82.6 83.9

FG 4 43 5

DG 0 9 47

FV2 (75) F 43 9 1 83.8 81.1 84.6 85.7

FG 4 44 4

DG 0 8 48

FV3 (30) F 46 5 2 86.9 86.7 84.6 89.2

FG 3 44 5

DG 0 6 50

FV4 (75) F 39 11 3 78.8 73.5 82.6 80.3

FG 3 43 6

DG 2 9 45

Note FV Feature vector, l Length of FV, CM Confusion Matrix, F Fatty class, FG Fatty–glandular
class DG Dense–glandular class, OCA Overall classification accuracy, ICAF Individual class
accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular class, ICADG

Individual class accuracy for dense–glandular class
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are 84.9, 83.0, 84.9 and 75.4 % for FV1, FV2, FV3 and FV4, respectively. For
fatty–glandular class, the ICA values are 90.3, 84.6, 88.4 and 88.4 % for FV1, FV2,
FV3 and FV4, respectively. For the dense–glandular class the ICA values are 80.3,
78.5, 78.5 and 71.4 % for FV1, FV2, FV3 and FV4, respectively. For testing
dataset with 161 instances, in case of FV1, the total misclassified instances are 24
(24/161), for FV2 the total misclassified instances are 29 (29/161), for FV3, the
total misclassified instances are 26 (26/161) and for FV4, total misclassified
instances are 35 (35/161).

3.3 SVM Classifier Results: Experiment III

This experiment evaluates the classification performance of different FVs using the
SVM classifier. The results are reported in Table 8.

From Table 8, it can be observed that for FV1, FV2, FV3 and FV4, the OCA
values are 86.3, 86.9, 83.2 and 84.4 %, respectively. For fatty class, the ICA values
are 86.7, 88.6, 90.5 and 81.1 % for FV1, FV2, FV3 and FV4, respectively. For
fatty–glandular class, the ICA values are 78.8, 78.8, 65.3 and 82.6 % for FV1, FV2,
FV3 and FV4, respectively. For the dense–glandular class the ICA values are 92.8,
92.8, 92.8 and 89.2 % for FV1, FV2, FV3 and FV4, respectively. For testing
dataset with 161 instances, in case of FV1, the total misclassified instances are 22
(22/161), for FV2 the total misclassified instances are 21 (21/161), for FV3, the
total misclassified instances are 27 (27/161) and for FV4, total misclassified
instances are 25 (25/161).

Table 7 Classification performance of different FVs using PNN classifier

FV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

FV1 (30) F 45 6 2 85.0 84.9 90.3 80.3

FG 3 47 2

DG 2 9 45

FV2 (75) F 44 9 0 81.9 83.0 84.6 78.5

FG 7 44 1

DG 3 9 44

FV3 (30) F 45 7 1 83.8 84.9 88.4 78.5

FG 4 46 2

DG 2 10 44

FV4 (75) F 40 13 0 78.2 75.4 88.4 71.4

FG 5 46 1

DG 6 10 40

Note FV Feature vector, l Length of FV, CM Confusion Matrix, F Fatty class, FG Fatty–glandular
class DG Dense–glandular class, OCA Overall classification accuracy, ICAF Individual class
accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular class, ICADG

Individual class accuracy for dense–glandular class
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3.4 PCA–kNN Classifier Results: Experiment IV

This experiment evaluates the classification performance of different RFVs using
the PCA–kNN classifier. The results are reported in Table 9.

From Table 9, it can be observed that for RFV1, RFV2, RFV3 and RFV4, the
OCA values are 85.0, 81.9, 86.9 and 79.5 %, respectively. For fatty class, the ICA
values are 77.3, 77.3, 83.0 and 69.8 % for RFV1, RFV2, RFV3 and RFV4,
respectively. For fatty–glandular class, the ICA values are 90.3, 88.4, 86.5 and
88.4 % for RFV1, RFV2, RFV3 and RFV4, respectively. For the dense–glandular
class the ICA values are 87.5, 80.3, 91.0 and 80.3 % for RFV1, RFV2, RFV3 and
RFV4, respectively. For testing dataset with 161 instances, in case of RFV1, the
total misclassified instances are 24 (24/161), for RFV2 the total misclassified
instances are 29 (29/161), for RFV3, the total misclassified instances are 21
(21/161) and for RFV4, total misclassified instances are 33 (33/161).

3.5 PCA–PNN Classifier Results: Experiment V

This experiment evaluates the classification performance of different RFVs using
the PCA–PNN classifier. The results are reported in Table 10.

From Table 10, it can be observed that for RFV1, RFV2, RFV3 and RFV4, the
OCA values are 83.8, 77.6, 85.0 and 74.5 %, respectively. For fatty class, the ICA

Table 8 Classification performance of different FVs using SVM classifier

FV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

FV1 (30) F 46 5 2 86.3 86.7 78.8 92.8

FG 8 41 3

DG 0 4 52

FV2 (75) F 47 5 1 86.9 88.6 78.8 92.8

FG 7 41 4

DG 0 4 52

FV3 (30) F 48 5 0 83.2 90.5 65.3 92.8

FG 12 34 6

DG 0 4 52

FV4 (75) F 43 9 1 84.4 81.1 82.6 89.2

FG 3 43 6

DG 0 6 50

Note FV Feature vector, l Length of FV, CM Confusion Matrix, F Fatty class, FG Fatty–glandular
class DG Dense–glandular class, OCA Overall classification accuracy, ICAF Individual class
accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular class, ICADG

Individual class accuracy for dense–glandular class
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values are 84.9, 75.4, 86.7 and 75.4 % for RFV1, RFV2, RFV3 and RFV4,
respectively. For fatty–glandular class, the ICA values are 90.3, 88.4, 90.3 and
86.5 % for RFV1, RFV2, RFV3 and RFV4, respectively. For the dense–glandular

Table 9 Classification performance of different RFVs using PCA–kNN classifier

RFV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

RFV1 (7) F 41 10 2 85.0 77.3 90.3 87.5

FG 2 47 3

DG 0 7 49

RFV2 (7) F 41 11 1 81.9 77.3 88.4 80.3

FG 1 46 5

DG 1 10 45

RFV3 (6) F 44 5 4 86.9 83.0 86.5 91.0

FG 1 45 6

DG 0 5 51

RFV4 (10) F 37 15 1 79.5 69.8 88.4 80.3

FG 2 46 4

DG 2 9 45

Note RFV Reduced feature vector, l Optimum number of PCs, CM Confusion Matrix, F Fatty
class, FG Fatty–glandular class DG Dense–glandular class, OCA Overall classification accuracy,
ICAF Individual class accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular
class, ICADG Individual class accuracy for dense–glandular class

Table 10 Classification performance of different RFVs using PCA–PNN classifier

RFV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

RFV1 (6) F 45 8 0 83.8 84.9 90.3 76.7

FG 4 47 1

DG 2 11 43

RFV2 (9) F 40 13 0 77.6 75.4 88.4 69.6

FG 2 46 4

DG 7 10 39

RFV3 (6) F 46 7 0 85.0 86.7 90.3 78.5

FG 3 47 2

DG 2 10 44

RFV4 (10) F 40 13 0 74.5 75.4 86.5 62.5

FG 7 45 0

DG 11 10 35

Note RFV Reduced feature vector, l Optimum number of PCs, CM Confusion Matrix, F Fatty
class, FG Fatty–glandular class DG Dense–glandular class, OCA Overall classification accuracy,
ICAF Individual class accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular
class, ICADG Individual class accuracy for dense–glandular class
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class the ICA values are 76.7, 69.6, 78.5 and 62.5 % for RFV1, RFV2, RFV3 and
RFV4, respectively. For testing dataset with 161 instances, in case of RFV1, the
total misclassified instances are 26 (26/161), for RFV2 the total misclassified
instances are 36 (36/161), for RFV3, the total misclassified instances are 24
(24/161) and for RFV4, total misclassified instances are 41 (41/161).

3.6 PCA–SVM Classifier Results: Experiment VI

This experiment evaluates the classification performance of different RFVs using
the PCA–SVM classifier. The results are reported in Table 11.

From Table 11, it can be observed that for RFV1, RFV2, RFV3 and RFV4, the
OCA values are 87.5, 85.7, 86.3 and 85.7 %, respectively. For fatty class the ICA
values are 84.9, 81.1, 86.7 and 83.0 % for RFV1, RFV2, RFV3 and RFV4,
respectively. For fatty–glandular class, the ICA values are 84.6, 86.5, 78.8 and
82.6 % for RFV1, RFV2, RFV3 and RFV4, respectively. For the dense–glandular
class the ICA values are 92.8, 89.2, 92.8 and 91.0 % for RFV1, RFV2, RFV3 and
RFV4, respectively. For testing dataset with 161 instances, in case of RFV1, the
total misclassified instances are 20 (20/161), for RFV2 the total misclassified
instances are 23 (23/161), for RFV3, the total misclassified instances are 22
(22/161) and for RFV4, total misclassified instances are 23 (23/161).

Table 11 Classification performance of different RFVs using PCA–SVM classifier

RFV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

RFV1 (7) F 45 8 0 87.5 84.9 84.6 92.8

FG 5 44 3

DG 0 4 52

RFV2 (8) F 43 9 1 85.7 81.1 86.5 89.2

FG 5 45 2

DG 1 5 50

RFV3 (8) F 46 7 0 86.3 86.7 78.8 92.8

FG 6 41 5

DG 0 4 52

RFV4 (8) F 44 9 0 85.7 83.0 82.6 91.0

FG 5 43 4

DG 0 5 51

Note RFV Reduced feature vector, l Optimum number of PCs, CM Confusion Matrix, F Fatty
class, FG Fatty–glandular class DG Dense–glandular class, OCA Overall classification accuracy,
ICAF Individual class accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular
class, ICADG Individual class accuracy for dense–glandular class
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4 Conclusion

In the present work the efficacy of Laws’ texture features derived using Laws’
masks of different resolutions have been tested for three-class breast tissue density
classification. From the results obtained, it can be observed that the RFV1 con-
sisting of first 7 PCs computed by applying PCA algorithm to FV1computed using
Laws’ mask of length 3 with SVM classifier is significant to discriminate between
the breast tissues exhibiting different density patterns achieving the highest overall
classification accuracy of 87.5 %. The proposed CAD system design for the present
work is shown in Fig. 9.

The proposed CAD system is different from earlier studies as most of the related
studies have pre–processed the mammograms for segmenting the breast tissue by
removal of pectoral muscle for their analysis while in the proposed CAD system
design a fixed size ROI (200 � 200 pixels) is manually extracted from the center of
the breast tissue thus eliminating the pre–processing step.

Fig. 9 Proposed CAD system design for three-class breast tissue density classification
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The high density of the breast tissue tends to mask the lesions present in the
breast which may be malignant or benign therefore, it is recommended that if the
proposed CAD system design classifies a testing instance to be of high density i.e.
belonging to either fatty-glandular class or dense-glandular class, then the radiol-
ogists should re-examine that particular mammogram for any the presence of any
lesion behind the high density tissue.
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