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Abstract Magnetic resonance imaging (MRI) is a well-known medical imaging
technique, that exclusively uses the response of the hydrogen nucleus which is
abundant in the human body. In recent years, parallel MRI techniques have been
developed to accelerate image acquisition. A notable development in parallel MRI
was the introduction of SMASH by Sodicksen and Manning. Since then, great
progress in the development and improvement of parallel imaging reconstruction
methods has taken place. The Sensitivity Encoding (SENSE) proposed by
Preussmann and Weiger is the most widely used image-domain parallel MR image
reconstruction technique. SENSE uses an initial estimate of the coil sensitivity in
combination with an SNR optimized noise inversion to obtain the final recon-
structed image. This chapter starts with a brief history of the parallel imaging,
discusses the estimation of sensitivity and SENSE reconstruction.

1 Introduction to Parallel Imaging

Magnetic resonance imaging (MRI) is a well-known medical imaging technique
that exclusively uses the response of the hydrogen nucleus which is abundant in the
human body [1]. Variation of hydrogen density and specifically its molecular
binding in different tissues produces a much better soft tissue contrast than CT. MRI
has some further advantages if compared with x-ray and CT: (i) MRI does not use
ionizing radiation. (ii) Images can be generated with arbitrary slice orientation
including coronal and sagittal views. (iii) Several different functional attributes can
be imaged with MRI. (iv) Capability to provide risk-free diagnostic assessment.
However, rapid switching of magnetic field gradients often causes severe dis-
comfort to the subject being scanned. This forms a serious impediment requiring
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scanning protocols to be implemented in a shorter period of time, simultaneously
maintaining the image quality. Imaging speed is a crucial consideration for mag-
netic resonance imaging (MRI). The speed of conventional MRI is limited by
hardware performance and physiological safety measures. In the recent years,
parallel MRI techniques have been developed that utilize radiofrequency (RF) coil
arrays to accelerate image acquisition beyond these previous limits [2–10].

“Parallel” MRI is a new technique that circumvents these limitations by utilizing
arrays of radio frequency detector coils to acquire data in parallel, thereby enabling
still higher imaging speeds. In parallel MRI, coil arrays are used to accomplish part
of the spatial encoding that was traditionally performed by magnetic field gradients
alone. A schematic representation of parallel MRI is given in Fig. 1. The term
parallel imaging comes from the fact that signals are acquired simultaneously from
multiple coils. The effective use of multiple coils in parallel has been shown to
multiply imaging speed, without increasing gradient switching rate or RF power
deposition. In parallel imaging, the acquisition is speeded up by under-sampling the
data received from the multiple coils. Under-sampling is described by factor called
acceleration factor. The resulting data loss and consequent aliasing is compensated
by the use of additional spatial information obtained from several receiver coils.

Spatial localization in conventional MRI is accomplished using a set of magnetic
field gradients. The spatially varying fields resulting from the application of each
gradient pulse spatially encodes the received signal, and generates an image using
Fourier approximation. In conventional MR acquisition, the Fourier space is
scanned line-by-line [11, 12]. This considerably limits the speed of image acqui-
sition. Protocols with delayed scan times are not desirable, particularly for imaging
applications involving repeated acquisitions. This includes functional imaging,
perfusion and diffusion imaging, and imaging of the beating heart. Even though
methods are available for tracking motion [13, 14], or reduction of accompanying

Fig. 1 Schematic representation of parallel imaging
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motion induced artifacts [15], accelerated MRI provides better solution for above
applications.

Parallel MRI (pMRI) uses spatially separated receiver coils to perform spatial
encoding. Though the theoretical foundation of pMRI was established in 1980s
[16], not much was done in terms of its implementation due to the inability to
design parallel coils capable of providing high Signal-to-Noise Ratio (SNR) images
in a large enough Field Of View (FOV). Due to this, several attempts were made to
accelerate MR acquisition using alternate means such as minimization of TR
(Repetition Time) by increasing the gradient strength, and single shot imaging [17].
However, the performance of above methods was limited by the allowable strength
of gradient pulse amplitudes. The idea of using phased array coils for MRI dates
back to the early eighties, wherein the design efforts were largely concentrated in
building array coils with reduced coil-to-coil coupling [18, 19]. The phased array
coils are beneficial due to their ability to generate high SNR signals with reduced
motion artifacts. The first phased array MRI system implemented by Roemar et al.
[20] in the form of two inductively coupled resonant rings, electrically isolated from
each other with a decoupling element connected between the rings. In this, dif-
ferential weighting of signals from the two coils were used for signal localization,
thereby reducing the need for time consuming gradient-encoding steps.
Enhancement of SNR was achieved by means of the decoupling circuitry. For nc
independent coils in the absence of mutual coupling, the SNR is increased by a
factor of square root of nc. A detailed description of phased-array MRI technology
is provided in the review article [21]. Recent advances in the design of MRI
equipment and imaging procedures is described in [22].

In conventional MR imaging, the phase-encoding steps are performed in
sequential order by switching the magnetic field gradient step-by step, which in turn
determines the speed of acquisition. Since the switching is expensive, acceleration
is achieved by skipping alternate phase encoding lines. This was first implemented
in 1989 by under sampling the k-space in PE (Phase Encode) direction [23].
Since SNR is dependent on the number of phase encoding steps used, accelerated
image acquisition can be achieved only at the expense of reduction in SNR.
However, the reduced SNR is compromised by elimination of phase related dis-
tortion. Irrespective of the MRI sequence used, parallel imaging maintains image
contrast without need for higher gradient system performance.

We now come to the question of how parallel MRI makes imaging faster.
Assume the number of voxels, the number of receiver channels, the number of
frequency encoding steps and the number of phase encoding steps are nv, nc, Nfe

and Npe, respectively. Obviously, the number of measured samples is
nc � Nfe � Npe = nc � nk = Ns (where nk is the number of sampling positions in
k-space). To make reconstructions feasible, it is necessary that

Ns � nv ð1Þ

In conventional single channel MRI,Ns = Nfe � Npe = nv. For example, to obtain
a 256 � 256 image, the acquisition matrix is also 256 � 256. In parallel MRI, since
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nc > 1, it is possible that we reduce the number of frequency encoding or phase
encoding steps while still having enough information for a feasible reconstruction.
Usually, the k-space is evenly under-sampled in the phase encoding direction to
reduce the scanning time. The rate at which under-sampling is performed is called
acceleration factor or acceleration rate [3, 4]. An obvious implication of Eq. (1) is that
the largest possible acceleration rate is equal to the number of channels.

In summary, if an array of RF coils is used to acquire MR signals simultaneously
and the coil sensitivities are available, the spin density may be determined from a
reduced set of phase encodings. This is the basic principle of parallel imaging.

2 Background

2.1 History of Parallel Imaging Methods

The performance of pMRI is largely determined by the coil geometry. For instance,
large coils cover large areas of the subject, resulting in low SNR due to small
fraction of the sensitive volume occupied by the sample. The coil sensitivity can be
considered as a point spread function that serves to degenerate the received signal,
in addition to the additive noise. However, the spatial sensitivity profiles of each
receiver coil serve to provide an additional encoding in pMRI. Better image
reconstruction becomes possible only with prior knowledge of the coil sensitivities.

The first step towards pMRI was proposed by Carlson [16] in 1987. His method
consisted of a uniform sensitivity pattern in one coil while applying linear gradient
in the other. In this fashion, a Fourier series expansion was used to reconstruct the
unfolded image data in k-space. Kelton et al. [22] proposed a second method of
reconstruction in the spatial domain, wherein a matrix inversion was employed to
unalias the image. Subsequently, this method was further modified to include
reduction factors greater than two, but less than the number of coils used [2].
Theoretically, imaging time reduces by number of array coils, but practically lesser
due to sensitivity noise, and increased coupling between coils. The basic limitation
for all the above studies was the need for a reliable method to determine the
individual coil sensitivity function.

A notable development following this period was the introduction of
Simultaneous Acquisition of Spatial Harmonics (SMASH) method by Sodickson
and Manning [3]. SMASH is the first experimentally successful parallel imaging
technique that uses linear combinations of coil sensitivity profiles to generate
low-order spatial harmonics of the desired FOV. Sodickson and Griswold then
presented a successful in vivo implementation of pMRI using the SMASH tech-
nique, thereby starting the rapidly growing field of parallel imaging [24]. Only one
year later, Pruessmann and Weiger proposed the concept of sensitivity encoding
(SENSE) [3] which is strongly related to the early proposals of Kelton [23], Ra and
Rim [2]. The difference between the two is that SENSE uses an SNR optimized
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matrix inversion in combination with an initial estimate of the coil sensitivity
mapping. Since then, great progress in the development and improvement of par-
allel imaging reconstruction methods has taken place, thereby producing a multi-
tude of different and somewhat related techniques and strategies [3–5, 9, 10, 24–
26]. Currently, the best-known are SMASH [3], SENSE [4] and GRAPPA [9].
However, various other techniques, such as AUTOSMASH [25], VD-AUTO-
SMASH [26], Generalized SMASH [10], mSENSE [27], PILS [6] and SPACERIP
[5] have also been proposed.

2.2 Spatial Encoding and Image Reconstruction

The general equation of multi-channel MR acquisition can be expressed as

slðkx; kyÞ ¼
ZZ

x y
Clðx; yÞqðx; yÞ e�i2pðkxxþ kyyÞdxdy ð2Þ

where Clðx; yÞ denotes the coil sensitivity profile of the lth channel [28]. Here, the
signal comprises an integration of the spin density qðx; yÞ against the spatial
encoding function consisting of coil sensitivity and gradient modulation. Unlike
Fourier encoding where off-resonance frequencies are determined in accordance
with spatial positions, the sensitivity encoding functions serve to differentially
sample the image based on the spatial positions closer to the respective coils. These
functions may be regarded as representing different “views” or “projections” of the
image to be reconstructed, with each measured signal point representing the
appearance of the image from the corresponding perspective, as illustrated in Fig. 2.

Gradient encoding

O
B

JE
C

T

Sensitivity encoding K-space

Fig. 2 Encoding scheme in pMRI
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In multi-channel acquisition, the received signal in each coil is weighted by the
coil sensitivity function Cl (r), and the magnetic field B(r). In terms of the weighting
functions, the spatial encoding function of MR acquisition can be expressed as

E1ðrÞ ¼ c2�h
4kBT

ClðrÞ BðrÞ e�ic BðrÞ�B0½ �t
t¼tf

�� ð3Þ

The discrete time measured signal can be generalized to be the inner product

sf ¼ Ef rð Þ; q rð Þh i ð4Þ

For a k-space with N points, the basis vectors then produce a signal vector with
N elements

s ¼

s1
s2
�
�
�
sN

2
6666664

3
7777775
¼

E1 rð Þ ; q rð Þh i
E2 rð Þ ; q rð Þh i

�
�
�

EN rð Þ ; q rð Þh i

2
6666664

3
7777775

ð5Þ

For each discretized location r, Eq. (5) can be represented in the matrix form

s = Eq ð6Þ

where s and q contain the measured samples and image pixels, respectively. E is
referred to as the generalized encoding matrix (GEM) [8] with dimension Ns � np.
Equation (6) shows that the encoding of MRI is essentially a linear transform, and
the reconstruction in general involves inverse problems, namely,

q̂ ¼ E�1s ð7Þ

The major difficulty is that the dimension of the GEM E, is in general, rather
large and direct inversion is prohibitively time-consuming and memory-intensive.
The inversion operation is simplified using different pMRI reconstruction methods.
In further discussions, the number of voxels, the number of receiver channels, the
number of frequency encoding steps and the number of phase encoding steps are
denoted by nv, nc, Nfe and Npe, respectively. Obviously, the number of measured
samples will be nc � Nfe � Npe = nc � nk = Ns (where nk is the number of sam-
pling position in k-space) and the encoding matrix E is of dimension Ns � nv. To
make reconstructions feasible, it is necessary that Ns � nv.
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2.3 Sensitivity Calibration to Obtain the Encoding Matrix E

At a given sampling location, the encoding function and coil sensitivity are related
in the form

Ek;lðrÞ ¼ c2�h2

4kBT
ClðrÞ eik:r ð8Þ

The coil sensitivities are calculated from the knowledge of coil array geometry. For
flexible coil arrays, the coil sensitivity functions are to be recalibrated due to
scan-to-scan changes in the coil locations. The coil modulated images are given by

qlðrÞ ¼ ClðrÞqðrÞ ð9Þ

The coil images have a non-unifrom intensity distribution due to the spatially
varying sensitivity values. Meaningful information about the image can only be
obtained once the individual coil images are combined so as to have a uniform
spatial sensitivity C0 at all spatial location. The uniform spatial profile is obtained in
practice by using a bird-cage body coil. The ratio of channel image to the body coil
image, therefore, yields

qlðrÞ
qbody�coilðrÞ

¼ ClðrÞ
C0

ð10Þ

Alternatively, a sum-of-squares combination yields

qlðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l qlðrÞj j2

q ¼ ClðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l ClðrÞj j2

q ð11Þ

Since the multiplication of 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l
ClðrÞj j2

p is common to all coils, it can be incor-

porated in the formulation of an effective encoding function which differs from the
original encoding Eq. (8) as follows:

~Ek;lðrÞ ¼ Ek;lðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l ClðrÞj j2

q ð12Þ

All pMRI methods effectively reconstruct the image ~qðrÞ given by

q̂ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

l
ClðrÞj j2

q
qðrÞ ð13Þ
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Calibration data, used to reconstruct the coil images can be obtained from a
separate scan before or after the image acquisition. Because of the requirement of
external information, this approach is generally known as external calibration.
Alternatively, the calibration scan can be incorporated as a part of the image
acquisition, and the calibration data can be extracted from the image dataset. This
approach is called auto-calibration or self-calibration. The crucial difference
between the external- and self-calibration approaches lies in the timing of the
acquisition of calibration data relative to the image acquisition.

SENSE reconstruction methods require a prior knowledge of the coil sensitivity
profiles. The SENSE method is mathematically an exact reconstruction method
proposed by Pruessmann et al. [4]. SENSE is the most popular image-space based
pMRI technique, which is being offered by many companies particularly Philips
(SENSE), Siemens (mSENSE), General Electric (ASSET), and Thoshiba
(SPEEDER). SENSE is the most used pMRI method for clinical applications due to
its broad availability and the enhanced image acquisition capabilities.

The SENSE method addresses the most general case of combined gradient and
sensitivity encoding. The two reconstruction approaches in SENSE include strong
reconstruction for optimal voxel shape and weak reconstruction for approximate
voxel shape using Dirac function [4] accompanied by SNR reduction. The recon-
struction algorithm for both the approaches are numerically demanding due to the
hybrid encoding nature. Use of FFT (Fast Fourier Transform) is possible only in the
case of weak reconstruction for Cartesian SENSE.

3 SENSE Methods

3.1 Representation of Aliased Images

For achieving scan time reduction in pMRI, phase encoding lines are
under-sampled by an acceleration factor R. Therefore, the distance between phase
encoding lines is increased by R. Even though number of phase encoding steps Npe

is reduced, the maximum gradient strength Npe � Gy remains same. This results in
aliased image reconstruction. The k-space srl retrieved with an acceleration factor R
is identical to complete k-space sl excluding the unacquired lines. The FOV is
reduced only in the phase encoding direction, because the 2D Fourier transfor-
mation is separable. The aliased image is obtained by an inverse Fourier trans-
formation of srl in y direction.
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qrl ðx; yÞ ¼ DFT �1
y srl ðx; kyÞ

� �

¼ R
Npe

XNpe�R

ky¼0;R;2R;���
slðx; kyÞ eikyy

¼ R
Npe

XNpe�R

ky¼0;R;2R;���
eikyy

XNpe�1

y0¼0

qðx; y0Þ e�ikyy0

¼ R
Npe

XNpe�1

y0¼0

qðx; y0Þ
XNpe�R

ky¼0;R;2R;���
eikyy e�ikyy0

¼ R
Npe

XNpe�1

y0¼0

qðx; y0Þ
XNpeR �1

ky¼0;1;2;���
eikyy e�ikyy0

ð14Þ

Since eikyy and e�ikyy0 are orthogonal, the sum over ky for R = 1 gives zero for all
y 6¼ y0. R

Npe
is assumed to be an integer for simplicity. For R > 1 the exponential

functions can be represented as the sum of R Kronecker delta functions.

qrl ðx; yÞ ¼
XNpe�1

y0¼0

XR�1

m¼0

dðy0; ymod
Npe

R
þm� Npe

R
Þ qðx; y0Þ

¼
XR�1

m¼0

qðx; ymod
Npe

R
þm� Npe

R
Þ

ð15Þ

Each value in aliased image qrl is a superposition of R values from the original
image.

3.2 SENSE Reconstruction Using Encoding Matrix
Formulation

The ideal image q and k-space values slðkx; kyÞ are related using the encoding
matrix E.

slðkx; kyÞ ¼
X
kx;ky

qðx; yÞEl;kx;kyðx; yÞ ð16Þ

where the encoding matrix E is

El;kx;kyðx; yÞ ¼ e�ipðkxxþ kyyÞClðx; yÞ ð17Þ
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The image reconstruction is performed using the linear reconstruction matrix F

q̂ðx; yÞ ¼
X
l;kx;ky

Fl;kx;kyðx; yÞ slðkx; kyÞ ð18Þ

The reconstruction matrix F is estimated using weak voxel criterion, where the
voxel functions are approximated using Dirac function. The F½x;y;l;kx;ky� and
E½l;kx;ky;x;y� related by

FE = Idnv ð19Þ

where Idnv is an nv � nv identity matrix. Equation (19) is valid only under ideal
conditions when the data is fully sampled and the receiver coils have no
overlap. However, the latter condition is not fully valid for phased arrays for which
the relation between reconstruction and encoding matrices are determined by a
sample noise matrix. A detailed discussion of these effects are presented in the next
section.

3.3 Phased Arrays

One of the basic requirement of parallel MRI is to acquire MR signals simulta-
neously using multiple coil elements from a receiver coil array. The coil arrays are
conventionally called “phased array”, had been invented and widely used in MRI
even before the advent of parallel imaging. It was developed in 1990 by Roemer
[29], improve SNR for large FOV applications.

The concept of phased array was first introduced in phased array radar and
ultrasound. In an array data is acquired simultaneously and combined subsequently
from a multitude of closely positioned receive coils so that SNR and resolution of
small surface coils can be obtained over a large FOV normally associated with body
imaging with no increase in imaging time. An important issue compared to the
design of a single surface coil is that there may be interactions among nearby coil
elements, commonly called “mutual coupling”. To minimize the coupling effect
various techniques, such as overlapping [29], low impedance preamplifier [29],
interconnecting capacitors/inductors have been proposed.

Figure 3a shows a schematic of a 4-element phased array using Shepp-Logan
phantom image. Each receiver acquires MR signals independently. The absolute
magnitude single-coil images from the four channels are displayed in Fig. 3b. It is
shown that for each channel, high SNR is observed in a certain region of the FOV;
after combination, it is expected that we can obtain high SNR over the entire FOV.
The data combination algorithms are discussed as follows.

For an N-element phased array, let Y denote the N � N receiver noise matrix,
with the m-nth entry representing noise correlation between the mth and the nth
channel, and the mth diagonal element representing the noise level of the mth
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channel. For a given point (x, y), let pi denote the pixel value from the ith channel
and P = [p1 p2 p3 … pN]

T, let ci denote the complex sensitivity of the ith coil at that
point and C = [c1 c2 c3 … cN]. The combined pixel value with optimized SNR,
according to [19], is expressed as

pcombine ¼ kPTW�1C ð20Þ

where k is a constant scaling factor. The optimum data combination can be obtained
as a linear combination of data from individual channels with appropriate
weightings to each position. When the noise correlation is negligible, it is easily
shown that the SNR-optimized composite image is a combination of single-coil
images weighted by their respective sensitivities.

The accurate knowledge of sensitivity is required to combine the data as shown
in Eq. (20). Since in some cases, measuring the sensitivity of each coil is excessive,
it is desirable to have a technique which combines the data without detailed
knowledge of the coil sensitivity while at the same time preserves high SNR. For
this purpose, the coil sensitivities in Eq. (3) are approximated by the single-coil
images themselves. This leads to the more commonly used “sum-of squares”
combination [29], which takes a simpler form

pcombine ¼
ffiffiffiffiffiffiffiffi
PHP

p
ð21Þ

where the superscript H denotes conjugate transpose.
If the different coils have a significant overlap, the matrix inversion in Eq. (7) is

challenging because the rows of the sensitivity matrix Cl becomes linearly
dependent. This leads to noise amplification in the reconstructed image. The noise
arises due to the reduced amount of acquired data. Due to the mutual coupling
between coils, this noise is spatially varying. The spatial variation in noise is

4 element array

Receiver 1

Receiver 3

Receiver 2

Receiver 4

Coil 1 Coil 2

Coil 3 Coil 4

(a) (b)

Fig. 3 a Schematic of a phased array coil using Shepp-Logan, b Absolute magnitude single-coil
images from the four channels
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quantified using a noise covariance matrix. With qp representing a vector consisting
of signals ql,p from the same location in each coil element, SNR of the Root
Sum-of-Squares (RSoS) image is expressed as

SNRRSoSðp) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qHp w

�1qp

q
ð22Þ

where w denotes the noise covariance matrix, that is approximated by summing the
scalar dot product of coil sensitivities over a number of points. The (i, j)th element
of this matrix is obtained as

wi;j¼
Xnv
p¼1

CiðpÞ�CjðpÞ; for i; j ¼ 1; 2; . . .; nc: ð23Þ

The w is the nc � nc receiver noise matrix which denotes the variance in each coil as
well as correlation between coils. The propagation of noise from k-space to
image-space is described by the sample noise matrix ~w ¼ w� Idnk and image noise
matrix X in which the pth diagonal element represents the noise variance in the pth
image value and off-diagonal elements provides noise correlation between image
values. The relation between sample noise and image noise matrices are given by

X ¼ F~wFH ð24Þ

This variance is minimized for each pixel using the Lagrangian multipliers,
using the constraint in Eq. (19) yielding the SENSE solution

F ¼ ðEH ~w�1EÞ�1EH ~w�1 ð25Þ

3.4 Cartesian SENSE

In the standard cartesian sampling, k-space is undersampled with a reduction factor
R in the Fourier domain and aliased reduced FOV image q̂rl is obtained in the spatial
domain for each of the nc array coils. Each pixel in the aliased image contains the
local coil sensitivity weighted by signal contribution from the R pixels in the
original full-FOV image q. From Fig. 4, it is clear that the contributing pixel
positions form a cartesian grid corresponding to the size of the reduced FOV.

To reconstruct the full-FOV image q̂, one must undo the signal superposition
underlying the fold-over effect Fig. 3. The SENSE reconstruction process is sket-
ched in Fig. 5.

The time and space complexity of Eq. (27) is reduced using cartesian SENSE.
From Eq. (15), it is clear that value of each aliased pixel is a linear combination of
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R pixel values. Therefore, the encoding matrix E becomes block diagonal. Let

qr
ðiÞ
l ,C

ðiÞ
l , q

ðiÞ represent the ith column of qrl , Cl, and q respectively. Each column
consists of R blocks. Each block represents a partitioning of signals into R aliasing
components under cartesian sampling.

Aliased pixel

Full FOV

Reduced FOV

Fig. 4 Aliasing in 2D cartesian sampling

(x , y+ y)

(x , y)

1
r( x , y )

2
r( x , y )

8
r( x , y )

Coil 1

Coil 2

Coil 8

Fig. 5 Fold over in SENSE
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qðiÞ ¼
qðiÞ1
qðiÞ2
..
.

qðiÞR

2
66664

3
77775; C

ðiÞ
l ¼

CðiÞ
l;1

CðiÞ
l;2

..

.

CðiÞ
l;R

2
66664

3
77775 ð26Þ

As illustrated in (Fig. 6), the jth element of rth block (r = 1, …, R) of the ith
column of image q is given by

qðiÞr ðjÞ ¼ qðiÞðNpe

R
� ðr � 1Þþ jÞ; where j ¼ 1; . . .;

Npe

R
ð27Þ

The corresponding element of sensitivity vectors for each coil l 2 1; . . .; ncf g are
given by

CðiÞ
l;r ðjÞ ¼ CðiÞ

l ðNpe

R
� ðr � 1Þþ jÞ; where j ¼ 1; . . .;

Npe

R
ð28Þ

diag ðCðiÞ
l;r Þ represents a diagonal matrix of size Npe

R � Npe

R . These diagonal matrices

from one column are now cascaded to form a Npe

R � Npe matrix representation of the

Unfolding process

C
oil 1

C
oil 8

C
oil 2

Coil 1 Coil 2 Coil 8

Sensitivity maps

FFT

FFT

FFT

Undersampled
K-space data

Aliased
images

Unaliased
image

Fig. 6 The SENSE process
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ith column in the lth coil. The encoding matrix elements of the lth coil El is now
constructed by cascading the above diagonal matrix blocks of size Npe

R � Npe cor-
responding to all the columns. The stack representing each coil is now cascaded
row-wise to form the encoding matrix E,

E ¼ Er
l

� �
where r ¼ 1; . . .;R

l ¼ 1; . . .; nc
ð29Þ

This is depicted in Fig. 7.
The inversion of each block corresponding to each pixel can be done indepen-

dently. The encoding process given by Eq. (17) is then simplified to

qrl ðx; yÞ ¼
XR�1

m¼0

qðx; ymod
Npe

R
þm� Npe

R
Þ � Clðx; ymod

Npe

R
þm� Npe

R
Þ ð30Þ

In matrix form, this becomes

q̂r1ðx; yÞ
q̂r2ðx; yÞ

..

.

q̂rncðx; yÞ

0
BBB@

1
CCCA ¼

C1ðx; yÞ; C1ðx; yþNpe=RÞ; . . .;C1ðx; yþðR� 1ÞNpe=RÞ
C2ðx; yÞ; C2ðx; yþNpe=RÞ; . . .;C2ðx; yþðR� 1ÞNpe=RÞ

..

.

Cncðx; yÞ; Cncðx; yþNpe=RÞ; . . .;Cncðx; yþðR� 1ÞNpe=RÞ

0
BBB@

1
CCCA

qðx; yÞ
qðx; yþNpe=RÞ
..
.

qðx; yþðR� 1ÞNpe=RÞ

0
BBB@

1
CCCA

ð31Þ

Coil 1

Coil 2

Coil 8

RaliasesFig. 7 R aliases in SENSE

Theory of Parallel MRI and Cartesian … 325



where Npe:Nfe is the FOV size in pixels, x ¼ 1; . . .;Nfe and y ¼ 1; . . .; Npe

R

When the c ¼

C1ðx; yÞ; C1ðx; yþNpe=RÞ; . . .;C1ðx; yþðR� 1ÞNpe=RÞ
C2ðx; yÞ; C2ðx; yþNpe=RÞ; . . .;C2ðx; yþðR� 1ÞNpe=RÞ
..
.

Cncðx; yÞ; Cncðx; yþNpe=RÞ; . . .;Cncðx; yþðR� 1ÞNpe=RÞ

0
BBB@

1
CCCA

matrix is non-singular for all x and y, the reconstruction problem will not be ill
posed.The unfolding matrix U is then given by

U ¼ ðcHw�1cÞ�1cHw�1 ð32Þ

Therefore, the R reconstructed pixels in vector form is given by

q̂ðx; yÞ
q̂ðx; yþNpe=RÞ
..
.

q̂ðx; yþ ðR� 1ÞNpe=RÞ

0
BBB@

1
CCCA ¼ U

q̂r1ðx; yÞ
q̂r2ðx; yÞ
..
.

q̂rncðx; yÞ

0
BBB@

1
CCCA ð33Þ

3.5 SENSE for Optimum SNR Imaging

Parallel acquisition techniques suffer from loss in SNR when compared with
optimum array imaging. In general, the SNR in the parallel MR reconstructed
image is decreased by the square root of the reduction factor R as well as by an
additional coil geometry dependent factor-geometry factor (g-factor) [30–32].
In SENSE, the loss in SNR arises due to ill-conditioning of the matrix inverse in
SENSE reconstruction, and depends on the acceleration rate, the number of coils,
and coil geometry. This loss can he explained through additional constraints
imposed on the choice of array weighting factors. In standard array coil imaging,
weighting factors are chosen to maximize SNR at a given point P. SENSE
reconstruction has the same requirement, but in addition to that, SNR has to be
minimized at a number of points P. The ultimate sensitivity limit for SENSE
reconstruction can he calculated from sensitivity maps for optimum SNR imaging.

4 Conclusion

This approach of parallel MRI, the under-sampled MR data acquired with a set of
phased-array detection coils are combined using reconstruction techniques.
In SENSE, the spatial sensitivity information of the coil array needs to be deter-
mined for spatial encoding. It is very important that the calculated sensitivities are
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accurate, otherwise can result in aliasing artifacts. Apart from this, parallel acqui-
sition techniques suffer from loss in SNR when compared with optimum array
imaging. All these factors need to be well addressed for optimum reconstruction in
parallel MRI.
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