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Preface

Recently, developments in the domain of biomedical sensing and imaging along
with its associated clinical applications attract the focus of researchers. The main
goal is to develop algorithmic and computer-based approaches to design efficient
CAD systems using medical images obtained through various imaging modalities.
The application of computer-based approaches to medical applications has opened
numerous challenging problems for both the medical computing field and the
mathematical community. CAD systems are often utilized to achieve accurate
diagnosis, which provide early detection of life-threatening diseases.

This volume comprises of 21 chapters, including two overview chapters,
abdominal imaging in clinical applications supported computer-aided diagnosis
approaches as well as different techniques for solving the pectoral muscle extraction
problem in the preprocessing part of the CAD systems for detecting breast cancer in
its early stage using digital mammograms. Afterward, some chapters related to
swarms-based segmentation in several medical applications are involved. These
chapters included segmentation framework that is based on fractional-order
Darwinian particle swarm optimization (FODPSO) and mean shift
(MS) techniques, 3D brain tumor segmentation based on hybrid clustering tech-
niques using multi-views of MRI, and an automatic segmentation method that
performs multilevel image thresholding by using the spatial information encoded in
the gray-level co-occurrence matrix (GLCM). Moreover, some chapters proposed
several classification techniques including comparison of CAD systems for three
class breast tissue density classification using mammographic images, developing
novel automated glaucoma diagnosis system which analyze and classify retinal
images using based on feature selection and static classifier selection schemes,
proposing automated classification of ultrasound liver tumors using support vector
machine (SVM) with the aid of fuzzy c-means (FCM) and level set method, and
classification of motor imagery BCI based on variable precision multigranulation
rough set and game theoretic. Furthermore, other chapters that included an
ultrasound-based three-dimensional computer-aided diagnosis (CAD) tool for the
diagnosis of anterior Talofibular ligament, introducing an advancements of
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electroanatomic mapping systems, providing details about the approaches for
development of methods for image quality assessment followed by brief intro-
duction on existing image quality assessment methods, discussing a human–com-
puter interface (HCI)-based novel approach for designing a computer-aided control
and communication system using electrooculogram (EOG) and electromyogram
(EMG) signals for people with severe hindrance to motor activities and commu-
nication and highlighted the theory of parallel MRI and Cartesian SENSE recon-
struction. Finally, some chapters are concerned with an elaborate and illustrative
discussion about various bioinformatics tools used for gene prediction;
sequence/phylogenetic analysis as well as function prediction, realizing a decision
support system based on the technique of case-based reasoning and dedicated to the
diagnosis of a very dangerous pulmonary pathology, and describing various gene
structure prediction programs which based on individual/hybrid soft computing
approaches as a bioinformatics approach.

We would like to express gratitude to the authors for their contributions. It would
not have been possible to reach this publication quality without the contributions
of the many anonymous referees involved in the revision and acceptance process
of the submitted manuscripts. Our gratitude is extended to them as well. It is
expected very good promote for almost all readers for this book—from under-
graduate students to postgraduate levels and also for researchers, professionals, and
engineering. As the editors, we wish this book will stimulate further research in
medical imaging applications based algorithmic- and computer-based approaches
and utilize them in real-world clinical applications. We would like to thank also the
reviewers for their diligence in reviewing the chapters. Special thanks go to our
publisher, Springer.

We hope that this book will present promising ideas and outstanding research
results supporting further development of computer-based approaches in medical
imaging for clinical applications.

Nilanjan Dey
Vikrant Bhateja

Aboul Ella Hassanien
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Abdominal Imaging in Clinical
Applications: Computer Aided
Diagnosis Approaches

Amira S. Ashour, Nilanjan Dey and Waleed S. Mohamed

Abstract Computer aided diagnosis (CAD) is considered one of the main research
subjects in medical image processing and diagnostic radiology. The development of
CAD systems would provide anatomical knowledge coupled with image processing
procedures to improve diagnosis/healthcare. For accurate diagnosis and treatment,
researchers are interested with clinical image analysis. Since, the abdominal organs
are characterized by complexity and high inconsistency. Thus, the identification of
distinct algorithms to model the organs and abnormalities it is vital for under-
standing anatomy and disease. Moreover, a survey on CAD based abdominal image
enhancement, segmentation, classification and fusion is included. Finally, chal-
lenging topics are addressed to explore new fields for development.

Keywords Computer aided diagnosis � Medical image processing � Abdominal
imaging � Magnetic resonance imaging � Computed tomography � X-ray
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1 Introduction

Clinical imaging plays a crucial role in the continuum of abdominal diseases
diagnosis, prognosis, and treatment assessment. Imaging studies are concerned with
the identification of the location, size, and features of the organ under concern. Over
the past decade, image processing in radiological imaging have developed to be
currently considered a crucial tool for extracting instructive information from the
enormous amount of data. Thus, researchers’ intensive focus is attracted to medical
image processing and analysis [1, 2]. In the medical domain, it is significant to
assess the relation between accurate diagnosis and treatment. Consequently, med-
ical imaging which refers to several diverse technologies is used to view the human
body for diagnoses and monitoring medical conditions. Different modalities are
invented and developed for the target of collecting data that assist diagnosis as well
as holistic process of research that consists of data (in the form of signals and/or
images) collection, data evaluation and decision-making. It is used for the visual-
ization of body parts, organs, tissues, for clinical diagnosis, disease monitoring and
thus proper treatment. Therefore, medical images are very supportive to diagnose
diseases, support the anatomy of the human body, pathological lesion detection,
therapeutic management of the patient and to presume diverse problems in the
medical field. Consequently, diverse methods of diverse modalities in medical
imaging techniques can be employed for the abdomen, such as: Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission
Tomography (PET), Single-photon emission computed tomography (SPECT),
X-ray, Endoscopy, Ultrasound as well as Microscopic imaging [3–5]. These
medical imaging techniques encompass various fields that used for imaging the
different abdomen parts.

There are diverse abdominal diseases such as the Peptic ulcer, Cholcystitis,
Cancer, Liver cirrhosis, Intestinal obstruction, inflammatory bowel diseases and
Metastasis that require accurate diagnosis. Generally, each modality provides dis-
similar information about certain abdomen area under study or treat, related to
possible disease. Moreover, each abdominal modality has its advantage and dis-
advantage as well as accuracy level for a particular abdomen imaging [6–8].
According to the patient case, the physician determines which type of these
instruments to be used. For example, CT is a non-invasive medical examination
where algorithms are used to construct an image representing a “slice” through the
object. The CT is often the preferable method for diagnosing numerous cancers,
such as liver and pancreatic cancers. As well as, CT images for internal organs, soft
tissue, and blood vessels provide greater clarity and more details than conventional
X-ray images. It can provide detailed information to diagnose, plan treatment, and
evaluate many conditions. Therefore, it is used to evaluate a wide range of diag-
noses where its benefits are far exceeding its limitations. Effective assessment and
evaluation of diagnosis is required in order to capture the current health status of
several populations [9]. This procedure involves several steps such as the
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systematic monitoring of data, identification of the optimum measures and rea-
sonable evaluation of outcomes.

However, medical images are often deteriorated due to various distortion caused
by diverse sources of interference and other equipments’ artifact that affect the data
acquisition system as well as the measurement processes in imaging. In addition, the
desired objects of interest are not well identified from others. Therefore, a challenge
of the modern health society is to work towards improving and developing medical
image modalities augments to improve the visibility of significant features in a
medical image that assist accurate diagnosis process and eliminate/reduce the effect
of the artifacts. Thus, medical image analysis includes images de-noising, pattern
recognition, features extraction, segmentation, classification are essential for accu-
rate diagnosis [10]. This field takes compensation of computer progress in sake of
effective diagnosis. Thus, computer aided systems become a must to construe and
combine the acquired images for the purpose of diagnosis and intervention.

Automatic system deployed for analysis and visualization of images involves the
recognition of objects and their correlations [11]. Afterward, specialists deal with
images for identification of a particular structure. Thus, computer assisted disease
prognosis participates an imperative role and has become a foremost research focus
for microscopic imaging and diagnostic where different image processing tech-
niques that can be used to analyze these images for disease diagnosis.

Computer-aided diagnosis (CAD) helps physicians to cope with this complexity
by providing computer output based on biomedical data quantitative analysis. It has
become one of the main research subjects in medical imaging and diagnostic
radiology. The essential concept of CAD is to offer a computer output which serves
as a “second opinion” to assist biomedical data analysis. Hence, for the progress of
a successful CAD scheme, it is necessary to develop computer algorithms and
investigate how useful the computer output would be for the diagnosis, how to
quantify the benefits of the computer output as well as how to maximize the effect
of the computer output on the diagnoses. Thus, large-scale observer performance
studies using a reliable methodology, such as receiver operating characteristic
(ROC) analysis are as significant as the development of computer algorithms in the
CAD field [12, 13].

From the previously mentioned diverse constraints, it is understandable that
research and development of CAD has occupied a team effort by investigators with
different backgrounds such as physicists, computer scientists, radiologists, engi-
neers, psychologists and statisticians. The concept of CAD is broad; thus it can be
applied to both imaging modalities, and bio-signals [14]. Conversely, the majority
of CAD schemes developed in the past include the detection of liver, pancreas,
kidney lesions as well as the detection of polyps in CT Colonography. However,
there is a gap which opens up during systems design. This gap results from the fact
that the demand for reliability impacts on the system requirements, because the
reliability requirement is more difficult to achieve for complex systems. In this case,
the word difficulty expresses the increase in resources or cost in general to meet the
requirement. Over time, the increase in system complexity coupled with similar
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levels of reliability has caused an exponential rise in the complexity to achieve the
system requirements.

This chapter considers the major techniques of medical image analysis and
modalities concerning different abdominal diseases. It deals with image analysis
techniques with computer-assisted image analysis. The structure of the remaining
sections is as follows. Section 2 represented the abdominal medical image
modalities. Section 3 included computer aided diagnosis supported abdominal
imaging applications which focused on the CT abdominal image processing. The
discussion is conducted in Sect. 4, and finally the conclusion in Sect. 5.

2 Abdominal Medical Image Modalities

Advanced imaging techniques have a significant role to improve the quality of
medical care of the patients. Non-invasive medical imaging modalities assist the
physician to render accurate diagnoses and precise required treatment. A massive
amount of medical imaging modalities is accessible and subject to active and
promising research. Each modality gives a variety of information about the body’s
organ under investigation, which related to possible disease. The imaging modality
selection for a targeted clinical study requires medical insights specific to organs
under study [15–19]. Figure 1 demonstrated different modalities that can be used
for abdominal medical imaging based on the body part under investigation.

These several modalities that used in the abdominal diagnosis are discussed as
follows.

Abdominal 
Imaging

MRI Liver, kidneys, adrenals, pancreas, and spleen

CT scan Pillary tract, and abdominal cavity

X-ray Spleen, stomach, and intestines

Ultrasound Liver, gallbladder, spleen, pancreas, and kidneys

Endoscopic 
ultrasound

Organs in and near the digestive tract

Duplex 
ultrasound 

Hepatic  and renal vascular system, and aorta

Fig. 1 Medical images classification structure
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2.1 Magnetic Resonance Imaging for Abdominal Diagnosis

An abdominal MRI scan is an imaging technique that uses dominant magnets and
radio waves in order to create images of the inside of the abdomen region. It is
considered a non-invasive and non-ionizing device that provided three dimensional
(3D) images, high spatial resolution and excellent soft-tissue contrast.

The foremost uses of MRI including the investigation of: (i) Kidney disease
diagnosis, (ii) Blood flow in the abdomen, (iii) Blood vessels in the abdomen,
(iv) The abdominal pain or swelling cause, (v) Liver or kidney problems,
(vi) Lymph nodes in the abdomen and (vii) Masses in the liver, adrenals, kidneys,
pancreas, or spleen. Furthermore, the MRI can be used to distinguish tumors from
normal tissues. In addition, it assists the physician to determine the tumor char-
acteristics such as severity, size, and spread.

The MRI has the advantages of avoiding the dangers of angiography and in
providing better information about masses in the abdomen than CT in some cases.
Differential contrast between soft tissues can be represented with high spatial res-
olution by varying the data acquisition parameters. Conversely, it has the disad-
vantages of the malfunction due its metal parts. In addition, the strong magnetic
fields produced during the use of MRI can affect the heart pacemakers and other
implants which attached to the patient [20, 21].

2.2 X-ray for Abdominal Diagnosis

X-ray imaging is a transmission-based procedure in which X-rays source pass
through the patient body. This X-ray is detected either by an ionization chamber or
a film on the opposite side of the body. Differential attenuation of X-rays in the
body leads to different contrast in the image between different tissues. Planar X-ray
radiography generates 2D projection of the tissues lying between the film and the
X-ray source. It is used to study the liver, kidney stones and structures in the
abdomen including the stomach, spleen, and intestines [22].

X-ray technique produces low radiation exposure. As it is regulated to provide
minimum amount of radiation exposure, which required to produce the image.
However, it has several disadvantages such as (i) Its 2D nature of the images can
result in false positives, (ii) Not good for distinguishing anomalies in the dense
tissues, and (iii) Its resolution is low.

2.3 Computed Tomography for Abdominal Diagnosis

Computed tomography is a type of specialized X-ray devices that can display
cross-sectional images of a precise area of the body. In the CT process, the X-ray
source is compactly collimated to interrogate a thin slice throughout the patient. To
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produce a series of one-dimensional projections at different angles, the source and
detectors rotate jointly around the patient. Afterword, these data are restructured to
provide a two-dimensional (2D) image with reasonable contrast between soft tis-
sues. Mathematically, Radon transform is used to reconstruct the image from a
series of projections. Typically, CT scan can be used in the abdominal investiga-
tions in cases such as (i) Palpable abdominal mass, (ii) Abdominal pain, (iii) Kidney
stones, (iv) Intestinal obstruction, and (v) Inflammation of the intestines, such as
Crohn’s disease.

An abdominal CT is a relatively safe technique, but there are risks including the
exposure to radiation during the test, which is higher than the amount with an X-ray,
allergy to contrast dye, and can lead to kidney malfunction from contrast dye [23].

2.4 Ultrasound for Abdominal Diagnosis

Ultrasound imaging (US) produces images through the backscattering of mechan-
ical energy from the interfaces between tissues and small structures within tissue. It
operates at frequencies within the range of 1 and 10 MHz. At high frequencies, it
has high spatial resolution and involves no ionizing radiation. The main clinical
applications of US include intra-abdominal imaging of the liver, kidney, and the
compromised blood flow detection in veins and arteries.

Thus, US is considered a non-invasive, portable, and inexpensive diagnostic
modality which has extensive use in the clinic [24]. The weakness of the US
technique comprise (i) the relatively poor soft-tissue contrast, (ii) the gas and bone
impede the path of ultrasound waves, meaning that certain organs cannot easily be
imaged, (iii) not useful for imaging deep within the body, and (iv) its resolution is
fairly limited.

2.5 Endoscopic Ultrasound for Abdominal Diagnosis

Since, US is a procedure that used to investigate the inside of the body using
high-frequency sound waves. Thus, endoscopic US has a thin, flexible tube device
that passed either through the mouth or through the rectum till it reach the digestive
tract. Sound waves are sent out the end of the endoscopy’s tube and bounce off the
organs in the body. Afterward, a computer receives these waves and creates an
image of the body inside. The endoscopic US can be used to: (i) find the abdominal
pain cause, (ii) find the cause weight loss, (iii) diagnose diseases of the pancreas,
gallbladder, and bile duct, and (iv) investigate cysts, tumours, and cancers. It is used
also to get sample or biopsy by using a thin needle that can be passed through the
tube to collect tissue/fluid.

This technique does not produce harmful radiation. However, breathing and
bleeding problems may occur during the investigation [25].

8 A.S. Ashour et al.



2.6 Duplex Ultrasound for Abdominal Diagnosis

Typically, ultrasonic energy can be applied to interrogate vessels at great
depth as well as arteries in the abdomen. Duplex US combines the
traditional ultrasound with Doppler ultrasound, where the traditional US uses
sound waves that bounce off blood vessels to create images, while the Doppler US
records sound waves reflecting off blood. It can be used for examination of: (i) the
blood vessels and blood flow in the abdominal area, and (ii) the kidney and its
blood vessels [26]. There are no risks for using the Duplex US technique.

3 Computer Aided Diagnosis Supported Abdominal
Imaging Applications

Recently, advancement of digital imaging technologies supports high-resolution
images to be interpreted rapidly. Thus, CAD systems become important for medical
image understanding and interpretation for accurate diagnosis. The CAD concept is
universal for different modalities/disease types. Physicians use the output of a
computerized technique for automated image analysis and processing as a diag-
nostic aid. The main aim for the CAD is to perform medical image analysis and
processing that support diagnosis.

Medical image analysis is concerned with the transformation of an image to
produce information representation for the original image to be more reliable for
further analysis. It is used to derive consistent visualizations and models. Generally,
medical image analysis has several stages, namely (i) image formation: using the
suitable modality to capture the medical image, (ii) image visualization: using
image enhancement techniques to manipulate the captured image, (iii) image
analysis, including features extraction, restoration, segmentation and classification,
finally (iv) image management, including techniques that provide efficient storage,
communication, transmission, archiving, and retrieval of the image data to facilitate
telemedicine. Based on these steps, some clinical applications based CAD system
for CT abdominal image processing are presented as follows.

3.1 Abdominal Image Enhancement

Medical image enhancement plays a significant role in CAD systems for correct
diagnosis decision based on the image information. It improves the medical image
for physicians to diagnose, reduce/remove unwanted information and contrast
enhancement. Spatial domain and frequent domain are the traditional medical
image enhancement methods. Researchers are interested with developing various
medical image enhancement techniques.
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Jiang et al. suggested an enhancement algorithm by combining the histogram
equalization along with image details conservation and bi-dimensional empirical
mode decomposition [27]. The overall image contrast has been increased through
the histogram equalization with the image details conservation; followed by the
bi-dimensional empirical mode decomposition. Thus, the medical image has been
decomposed into image information with different frequency that had different
levels to perform image enhancement. The dataset has been consisted of 60 sets of
CT abdominal images. The experimental results are illustrated in Fig. 2.

Figure 2d depicted that the internal structure of the abdominal organs such as the
liver and pancreas as well as the adhesion between the parts of the organ became
clearly displayed compared to the original image. In Fig. 2e the lung was clearly
appeared. Moreover, Fig. 2f proved that the enhanced liver image was clearly seen
with the liver’s blood vessels.

Ashour et al. [28] proposed an abdominal image enhancement algorithm using
log transform in an optimization framework. The optimization has been achieved
using a well know meta-heuristic algorithm, namely the Cuckoo search
(CS) algorithm to determine the optimal parameter settings for log transform. The
proposed technique performance has been studied on a low contrast CT abdominal
image dataset. The experimental results proved that the CS based approach has
superior convergence and fitness values compared to Particle swarm optimization
(PSO). In addition, the Image Quality Analysis (IQA) justified the robustness of the
proposed enhancement technique. Figure 3 illustrated different assessments when
using the CS or the PSO compared to the original CT multiple liver lesion images.

Figure 3 established that using CS provided more enhanced images than that
obtained using PSO. It is obvious that the enhanced images based CS for the log

Fig. 2 Abdominal images enhancement: a, b and c original images, and d, e and f the final
enhanced images [27]
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transformation parameters optimization was clearer than the images based PSO. In
addition, the enhanced image using CS displayed clearly all portions of the liver
with obvious lesion appearance compared to those based on PSO.

3.2 Abdominal Image Segmentation

Segmentation of the different body’s organ is often considered the first step in CAD
after the image enhancement. Segmentation of abdominal organs, such as the
kidneys, liver, and spleen attracts researchers recently, where it faces many chal-
lenges. In CT scan, several artifacts can arise due to beam-hardening artifacts,
partial-volume artifacts, and streak artifacts [29]. Moreover, the difficulties arise due
to lack of organ tissue homogeneity in shape and texture. Liver and tumor seg-
mentation can be performed on the CT images manually or semi automatically.

Karssemeijer [30] presented a stochastic model and gray level distribution model
for 3D abdominal geometry. An iterative relaxation segmentation procedure has
been used, where obtained information from the model and the measurements were
weighted concurrently. The authors used two iterative procedures, namely iterative
conditional modes and the simulated annealing. Kumar et al. [31] proposed an
automatic segmentation approach of liver tumor in abdominal CT images. Region
growing method has been used by pre- and post- processing functions for automatic
segmentation of liver and Alternative Fuzzy C-Means (AFCM) algorithm for tumor
segmentation. The results included quantitative comparison, which demonstrated a
close correlation between the automatic and manual segmentation along with high
spatial overlap between the regions-of-interest (ROIs) generated by the two
methods. Figure 4 illustrated the segmentation of the original liver and tumor
images.

Figure 4 illustrated the simplified image created by analyzing the histogram after
removing unwanted structures and tissues. However, the small and unconnected

Fig. 3 Output images using PSO and CS compared to the original image: a the original image;
b the enhanced image based on PSO algorithm and c the enhanced image based on the Cuckoo
Search algorithm [28]
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tissues remain. Afterward, morphological erosion was performed to eliminate these
remaining objects and retain the liver region. The liver region centroid was found.
The centroid’s co-ordinates acted as seed point for automatic region growing. The
segmented liver using the proposed method is shown in Fig. 4d, while the seg-
mented tumor using the AFCM approach is shown in Fig. 4e. Finally, the seg-
mented liver and tumor on the original CT image is shown in Fig. 4f.

3.3 Abdominal Image Classification

Generally, classification refers to the assignment of a physical object into one of a
set of predefined categories. Thus, it requires analysis of the numerical properties of
various image features to organize data into categories. Sharma et al. [32] achieved
an auto-segmentation and tissue characterization effective system for analysis of
medical images based on hybridization of syntactic and statistical approaches using
artificial neural network (ANN). This proposed algorithm performed segmentation
and classification, which recognized objects, identified different textures, curved
surfaces, or a surface inclination by texture information and brightness. The fol-
lowed steps were: (i) image filtering, (ii) segmentation, (iii) feature extraction, and

Fig. 4 CT liver image segmentation: a Simplified image, b Eroded image with centroid, c Region
grown liver, d Segmented liver, e Segmented tumor using the AFCM approach, and f Segmented
liver and tumor [31]
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(iv) extracted features’ classification. The ANN is used to classify the soft tissue
using texture-primitive features. The proposed algorithm was first tested on Markov
textures, which achieved 100 % classification.

Kumar and Moni [33] proposed a novel feature extraction scheme based on
multi-resolution fast discrete curvelet transform (FDCT) for CAD of liver diseases.
The liver was segmented from CT images by adaptive threshold detection and
morphological processing. The suspected tumor regions were extracted from the
segmented liver using fuzzy c-means (FCM) clustering. The FDCT was used to
textural information from the extracted tumor. These features were used to train and
classify the liver tumor into hemangioma and hepatoma utilizing artificial neural
network classifier. Näppi et al. [34] compared the relative performance of the
support vector machine (SVM) and the random forests (RF) classifiers for auto-
mated detection of colorectal lesions in the computed tomographic colonography
(CTC). The experimental results established that the performance of the RF clas-
sifier was superior compared to the SVM classifier in CTC.

3.4 Abdominal Image Fusion

Typically, each modality has its artifacts as well advantages. Thus, combining the
images captured form two modalities for the same organ will enable the benefit
from two imaging modalities in one examination. This can be performed through
medical image fusion, which defined as the process of superimposing and aligning
images obtained using two different modalities.

Ewertsen et al. [35] evaluated the accuracy of aligning varying parameters such
as the respiratory phase, patient position, and distance from the co-registration
points/planes measured form the CT or MRI. A total of 80 co-registrations achieved
the highest accuracy, when the respiratory phase for the co-registration method was
the same. Moreover, the accuracy is improved by choosing co-registration
points/planes close to the area of interest. The results depicted that image fusion
involving real-time US is an accurate procedure for abdominal examinations.
Figure 5 illustrated the liver overlaid/fused images in one single image. After a

Fig. 5 a Co-registered images of the liver shown side by side (ultrasound (US): left computed
tomography (CT): right), and b CT and US images of the liver overlaid (left) and corresponding
CT-image (right)
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preliminary co-registration, the MRI or CT images were reformatted in a projection
to fit the live US images.

4 Discussion

Generally, medical imaging provides information on the causes of the patients’
symptoms and diseases. Since, abdomen contains various organs that have subtle
and complex appearances. Furthermore, accurate diagnosis relies on the organs’
and/or lesions’ measurements including their shape and volume. These measure-
ments are considered indicators for any disorder. In the clinical practice, this pro-
cess is challenging task which requires development of algorithms and CAD
systems. In the last two decades, CAD has been developing fast to support radi-
ologists in the interpretation of medical images by using computer systems. The
preceding sections depicted that CAD systems are effective in improving diagnostic
accuracy of radiologists. In CAD research, is concerned with the detection and
diagnosis of abdominal diseases, including Lymphoma, intestinal obstruction, liver
cirrhosis, renal failure as well as masses/stones/cysts in liver and kidney.
Accordingly, in medical imaging, CAD has been an active research area to support
the different modalities. Since, medical image processing includes:

(A) Medical image enhancement: to reduce/remove the noise and any unwanted
objects in the medical image,

(B) Pattern recognition: to detect certain shape/texture as well as to identify
objects,

(C) Features extraction: to transform the existing features into a lower dimensional
space,

(D) Medical image segmentation: to partition the medical image into multiple
segments in order to locate objects, structures and boundaries in the image,

(E) Medical image classification: to assign the detected objects into one of a
predefined categories, and

(F) Medical image fusion: to combine images of two different modalities.

During these processes for abdominal image processing, different challenges can
be addressed as follows:

• The classification process if the CAD for CTC suffers from large numbers of
false-positive detections. Thus, the SVM classifiers can be improved as it is
considered popular classifier for reducing false-positive detections in CAD
systems.

• Texture analysis plays a significant role in the future of medical image inter-
pretation for monitoring disease progression.

• Computer aided detection and diagnosis is a promising field in image classifi-
cation, which requires new algorithms.
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• Automatic diagnosis systems have cover all medical imaging aspects and to
replace all manual or semi-automated existing systems.

• Image fusion is a promising process, which gathers the advantages of using
several modalities.

• Meta-heuristic optimization algorithms can be used to support the CAD
systems.

5 Conclusions

Abdominal diagnosis relies on the inclusive analysis of its complex organs. Thus,
different modalities are employed to capture images for the organ under concern.
Computer-based systems for the analysis of the obtained images are promising over
human interpreters. These systems provided large knowledge base for diagnostic
information, high speed, and non-sensitivity to fatigue. Recently, CAD systems are
being used routinely in hospitals and for clinical applications. Therefore, image
based knowledge detection plays significant roles in several CAD applications. It
has great potential to be incorporated into the next-generation picture archiving and
communication systems (PACS). Robust medical image analysis/processing are
vital for such discovery in various CAD applications. In this chapter, the different
modalities uses as well as their advantages/disadvantages are addressed. Various
applications for CT based different image processing approaches are included. It is
concluded that CAD systems is a wide domain that can support different abdominal
and medical clinical applications. It provides accurate, efficient and high speed
image analysis for reliable diagnosis.
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An Overview of Pectoral Muscle
Extraction Algorithms Applied to Digital
Mammograms

Suhas Sapate and Sanjay Talbar

Abstract Substantial numbers of patients are reaching to a progressive breast
cancer stage due to increase in the false negatives coming out of cumbersome and
tedious job of continuously observing the mammograms in fatigue. Hence, the early
detection of cancer with more accuracy is highly expected to reduce the death rate.
Computer Aided Detection (CADe) can help radiologists in providing a second
opinion increasing the overall accuracy of detection. Pectoral muscle is a pre-
dominant density area in most mammograms and may bias the results. Its extraction
can increase accuracy and efficiency of cancer detection. This work is intended to
provide the researchers a systematic and comprehensive overview of different
techniques of pectoral muscle extraction which are categorized into groups based
on intensity, region, gradient, transform, probability and polynomial, active con-
tour, graph theory, and soft computing approaches. The performance of all these
methods is summarized in tabular form for comparison purpose. The accuracy,
efficiency and computational complexities of some selected methods are discussed
in view of deciding a best approach in each of the categories.
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1 Introduction

1.1 Overview of Mammography

Breast cancer is the most common cancer and is the second most common cause of
cancer deaths in women. Breast cancer incidences worldwide are increasing over
the years with more than 1 million new cases reported each year. The chances of
success are more if further treatment and therapeutic actions are taken in the early
stages of the breast cancer. Thus, early detection plays an important role for
improving breast cancer prognosis [1–3].

A mammogram is an X-ray image of the human breast. A careful observation of
this image can allow us to identify and evaluate indicators of abnormalities at early
stage in the human breast. Screening mammograms are useful in finding likelihood
of cancer in patients without any external symptom, whereas patients with some
abnormal symptoms or lumps in breast undergo diagnostic mammography.
Mammographic images are generated by passing low dose X-ray across each breast.
This produces a picture which highlights the soft tissues, dense tissues, pectoral
muscle, and fibro-glandular region etc. Expert radiologists can read these mam-
mograms to find out the abnormalities, if are there, in the breast. Any change in two
or more mammograms taken over a period, say a year or two, may signify cancer in
its early stage. A mammogram can depict changes in the breast up to a year or two
before any symptoms observed by patient or physician [1, 4]. If the significant
changes are confirmed as early stage cancer, further extensive treatments can be
avoided and probability of breast conservation can be improved. Modern mam-
mography machines are with low radiation doses, 0.4 mSv, of X-ray and produces
high-quality digital images with 2 views of each breast [5]. In mass screening
programs, mammography is the most effective, more popular, cheaper and hence
commonly used imaging modality for breast than Magnetic Resonance Imaging
(MRI), Nuclear Imaging and Ultrasound [6]. The mediolateral oblique (MLO-
taken at around 30–70° angle) view and craniocaudal (CC-top to down) view, are
two standard mammographic projections used for screening mammography.
In MLO view, maximum portion of the breast, including pectoral muscle, is
exposed. It is always better to expose maximum portion of pectoral muscle in MLO
view to guarantee that each and every part of the breast is covered neatly. Hence, it
is the most important projection. Thus, the pectoral muscle on the MLO view is a
vital component in confirming correct patient positioning which results in a accu-
rate mammogram of adequately good quality. This is very important to mini-
mize the number of false positives (FP), false negatives (FN) and improve the
sensitivity of the mammographic images [7].

As shown in the Fig. 1, the mammographic image consists of various parts apart
from the region of interest required for automatic detection of abnormalities. These
parts include low and high intensity labels, scanning artifacts etc. all in the back-
ground. Pectoral muscle located on top left (left MLO view) or top right (right
MLO view) occupies major portion of the breast. The labels, scanning artifacts and
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pectoral muscle may increase the computational complexity of the detection process
and also cause the reduction in detection accuracy. Hence to remove all these
unnecessary parts from the breast region in the mammogram is a vital preprocessing
task in CADe system of the breast cancer.

Segmentation of mammographic image into its representative anatomically
distinct regions such as background (the non-breast area), pectoral muscle, a nipple,
fibro-glandular region (parenchyma), and adipose region etc., is very crucial. It is
the first preprocessing step in Computer Aided Diagnosis (CADx) of breast cancer.
The different methods available for automatic extraction of pectoral muscle have
been categorized as shown in the Fig. 2.

Fig. 1 A typical left MLO
view mammographic image

Segmentation 
Methods 

Based on Gray 
Levels

Intensity Based Methods (Section 2) 

Region Based Methods (Section 3)

Derivative Based Methods (Section 4)

Based  on 
Texture 
Features 

Transform Based Methods (Section 5) 

Probability / Polynomial Methods (Section 6)

Active Contour Based Methods (Section 7)

Graph Theory Based Methods (Section 8)

Based on Soft 
Computing
(Section 9)

Fuzzy Logic Based Method 

Genetic Algorithm Based Method 

Support Vector Machine Method

Fig. 2 Mammogram segmentation methods
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The performance, indicating the degree of correctness of the segmentation
results and their respective ground truth, is evaluated based on various parameters.
It can be assessed subjectively by a expert radiologist by ranking the results or
objectively by comparing the results with the ground truth using different metrics.
The most widely used interpretation is the confusion matrix consisting of true
positives (TP), true negatives (TN), false positive (FP), false negatives (FN). The
performance of many methods is measured in terms of: specificity, sensitivity,
precision, accuracy rates which are defined Table 1.

Similarly, the metrics used for error evaluation includes average error, Hausdorff
distance, Absolute Error Distance etc. are also used in some techniques. Another
metric used is ‘Receiver Operating Characteristic’ curve determined by true posi-
tives and false negatives results of a given experiment.

1.2 Significance

The accuracy of the automatic detection of breast cancer using CADe systems may
be improved by separating region of interest in mammographic images. The
presence of labels, noise, artifacts and majorly the pectoral muscle in the breast
region may affect the performance and accuracy of the CADe system. Removing
these parts out from the mammogram can increase computational complexity of the
CADe systems. The presence of the pectoral muscle occupying a predominant
region in the MLO view mammogram of breast, as shown in Fig. 1, may affect the
results of cancer detecting process very badly. Pectoral muscle extraction is
essential to provide effective results in the preprocessing step in CADe of breast
cancer. An automatic pectoral muscle extraction plays a vital role in reducing the
computational complexity and the errors of CADe systems. The further image
analysis for breast cancer detection may become easier in the cancer detection
process. The pectoral muscle extraction can also be useful in

• image registration for analyzing abnormality as like bilateral symmetry;
• automatic breast tissue density quantification;
• 3-D reconstructions from multiple mammographic views;
• mammogram-pair registration and comparison etc.

The following are the common preprocessing tasks [8] performed on the input
mammographic image.

Table 1 Performance
measurement parameters

Performance parameter Formula to calculate the parameter

Sensitivity TP cases/total positive cases

Specificity TN cases/total negatives cases

Precision TP cases/(TP cases + FP cases)

Accuracy (TP cases + TN cases)/total samples
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• Improving the quality of the input image by enhancing its contrast
• Finding out RoI by delineating the breast border in a simple, effective way
• Pectoral muscle is then extracted using a particular segmentation technique

1.3 Challenges

In most of the mammographic images, pectoral muscle detection still remains a
challenging task. The major challenges of Pectoral Muscle Extraction [9] are due to
its

• unclear and superimposed boundaries due to overlapping features;
• total absence in some cases;
• varying position, size, shape and texture from image to image;
• textural information similar to that of breast tissue, in most of cases;
• concave or convex border with its appearance varying in every other

mammogram;
• border which cannot be modeled with any common geometrical or mathematical

representation;

Thus, to devise a solution that extract a pectoral muscle accurately and efficiently
over a wide variety of mammographic images, possibly from different databases
[10, 11], is really a great challenge.

1.4 Motivation

The very solution to the pectoral muscle extraction problem lies in the domain of
image segmentation. A variety of techniques are available to solve the basic seg-
mentation problem. However to apply the technique commonly on a variety of
images, one has to modify the fundamental segmentation algorithm or support it
with some other supplementary methods. A few soft computing and other sup-
porting techniques are also available to modify the basic segmentation algorithm so
that the desired result of pectoral muscle extraction is achieved efficiently with
sufficient accuracy over a different set of mammographic images.

1.5 Hypothesis

The different methods available for automatic extraction of pectoral muscle have
been summarized under different categories in this chapter. The reason behind this
detailed overview of automatic pectoral muscle extraction methods is to understand
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the merits, demerits, limitations, problems and challenges encountered in each and
every method while applying them over a different set of mammographic images.
The performance of all the methods under similar category is enlisted for com-
parison purpose. This book chapter is intended to provide the researchers a sys-
tematic and comprehensive overview of different techniques of pectoral muscle
extraction from digital mammograms.

1.6 Contributions

One of the intentions behind the work is to bring all the methods applied for
pectoral muscle extraction, in a single chapter, so that the researchers get the
consolidated information required and the further directions to devise a new simpler
approach with even better accuracy, perhaps by combining some good concept
proposed in some or the other algorithms enlisted here.

1.7 Organization of Chapter

The rest of this chapter is organized as follows. The Sect. 2 covers all the Intensity
and histogram based methods. Region based approaches are discussed in Sect. 3.
Section 4 describes all the gradient based approaches. Wavelet based approaches
are presented in Sect. 5. Section 6 consists of the probability and polynomial based
approaches. Section 7 includes active contour based approaches. Section 8 outlines
graph theory based methods and Sect. 9 incorporates the soft computing methods.

2 Intensity Based Approaches

In the intensity based approaches, it is considered that the pectoral muscle area in
the mammogram is dense and with high intensity compared to its surrounding
tissues. These approaches try to find out change in the intensity levels of the
pectoral muscle area and its adjacent parenchymal region. Rise and fall in the
intensity levels all over the pectoral muscle plays a vital role in delineating the
pectoral muscle border with better accuracy. Though, finding the exact pectoral
muscle border in some cases is highly difficult; especially, with overlapping of
surrounding tissues. From the literature surveyed, the different solutions based on
either intensity, histogram, morphology or their combination with varying rates of
success are discussed as given below.

A pectoral muscle extraction using histogram thresholding is proposed by
Thangavel and Karnan [12] in a very efficient manner. The global optimum
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threshold value is selected first and then the intensities less than this threshold are
assigned with zero, whereas the remaining intensities are assigned with one.
Morphological operators such as erosion and dilation are then applied for pre-
serving details nearby the pectoral muscle region. This result is then converted to a
binary image from which upper left region of white pixels represent a pectoral
muscle region of the mammogram image. This proposed algorithm is very simple,
easy to implement and yet with goof performance. The experimental setup, results,
image dataset used etc. are not discussed and the accuracy of the method is also not
calculated in the paper.

An automatic method based on interesting properties of watershed transforma-
tion was explored by Camilus et al. [13]. In this approach, application of Watershed
Transform on gradient images leads to a watershed line matching to the pectoral
muscle border which in turn allows an efficient extraction of the pectoral edge. The
problem of over-segmentation of the pectoral muscle region is resolved by applying
merging algorithm which combines the suitable catchment basins to extract pectoral
muscle with better accuracy. This method is validated by performing an experiment
on 84 mammographic images form MIAS database which reveals a mean FP to be
0.85 % whereas mean FN is 4.88 %. The cases with FP and FN greater than 0.10
are almost zero, which indicates a good accuracy. The overall performance is
claimed to be better than other techniques in this domain. The performance of this
simple method is very accurate and efficient. The result is not validated with variety
of images over multiple datasets.

A fully automatic breast region segmentation algorithm based on multilevel Otsu
[14], gradient estimation and linear regression is presented by Kamila and Justyna
[15]. After morphological preprocessing, a fast algorithm for multilevel thresh-
olding classifies pixels in the multiple classes based on a number of gray levels.
This separates the region of low intensity background from that of the breast
skin-air interface in the image. Applying gradient on this image produces a rough
pectoral muscle border which is smoothed by using a linear regression. This linear
regression leads to finding the exact border of the pectoral muscle. The algorithm
when tested on 300 MIAS database images showed an accuracy of 95–97 % which
is quiet high in comparison with existing methods. The efficiency of this algorithm
measured in terms of total percentage error was found to be 98–99 %. The major
success of this method lies in elimination of wrong detection. However, the method
is not tested on variety of images from different datasets.

Liu et al. [16] proposed a accurate extraction of pectoral muscle border effi-
ciently. The algorithms works on the basis of position related features of pectoral
muscle in the breast area. The method makes repetitive use of the Otsu thresholding
along with the morphology based operators to line out a rough edge of the pectoral
muscle. This rough approximate edge then passes through a ‘multiple regression
analysis’ to give out a refined pectoral muscle edge accurately. When tested on 150
MIAS database images, this algorithm gives almost the same results as that of the
expert radiologists over a wide range of mammograms with varying appearances. It
is also observed that the algorithm is effective even when the pectoral muscle edge
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is obscured by overlapping breast tissue or other artifacts. The performance of this
algorithm is validated over the different error metrics such as mean error (1.7188),
misclassification error (0.0083), extraction error rate (0.00134), modified Hausdorff
distance (0.08702) and average error is quite less. However, the repetitive use of
thresholding makes this algorithm computationally intensive.

Duarte et al. [17] presented an automatic method, based on morphological filters,
to estimate the pectoral muscle in mammograms. Morphological filters improve the
image contrast between breast contour and background, also, between the pectoral
muscle and the breast parenchyma. Original image gray level is first reduced from
256 to 9 in a heuristic way. By considering pectoral muscle as one of the densest
region of the image, it is segmented by using the seventh and sixth gray-levels as
thresholds, which are negated producing images N7 and N6, as shown in [17].
A morphological opening (disc-shaped SE with a 21-pixels diameter) is applied to
N7, intending to exclude the smaller bright pixels that are out of the pectoral muscle
region. An inferior reconstruction (disc-shaped SE with an 11-pixels diameter) is
also applied but to the resulting image (mark), using N6 as its mask. Then, a
morphological closing (again, a disc-shaped SE with an 11-pixels diameter) is
applied to fill gaps in the reconstructed image contour. The gradient of the image
obtained in the previous procedure is determined and a first-order polynomial is
adjusted to estimate pectoral muscle. Then, it is tested if this estimated pectoral
muscle comes into contact with the upper image edge or any of the lateral edges, as
well as, if it does not cross the breast contour. If the above occur, then pectoral
muscle is considered the densest region and hence adequately estimated. This
method is evaluated by an experienced radiologist. The results of applying such
methodology on 154 images (300 dpi, 8 bits) from the DDSM database show
acceptable results with 93.6 % accuracy. This morphological operations based
method is simple yet effective. However, the method is robust over different sets of
images with varying appearances of pectoral muscle.

Burcin et al. [18] presented a novel segmentation algorithm for a pectoral muscle
extraction based on Otsu’s method in mammograms. The proposed system includes
a pectoral muscle extraction on the basis of automatically selected threshold in an
unsupervised manner. The process starts with preprocessing operations to remove
the artifacts out of the breast border and to enhance the region of interest.
A nonparametric, unsupervised extended version of Otsu’s segmentation method
with N = 2 is applied for segmenting the pectoral muscle. Connected component
labeling algorithm is used for labeling the segmented regions. A upper of the two
largest regions is selected as pectoral muscle. A limit area control mechanism
proposed in this method with area value 21000 pixels for 512 � 512 mammo-
graphic images, allows to prevent false segmentation; especially for images with no
pectoral muscle. The experimental results on 96 MIAS database images show 93 %
accuracy. This method is simple, effective but its experimental results are not
validated on different sets of images.

Performance evaluation of intensity based methods for pectoral muscle extrac-
tion is tabulated in Table 2.
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As mentioned in Table 2, a multilevel Otsu’s algorithm based method with gra-
dient estimation and linear regression suggested by Kamila and Justyna [15] gives the
best performance in this category. This is because of a fast multilevel Otsu’s seg-
mentation method that delineates the highlighted pectoral muscle in the prepro-
cessing part and this is accurately marked by the linear regression. There are very rare
cases in which computational complexity of the algorithms in terms of speed and
time is considered. Further it is revealed that, in a few cases, the density of the
pectoral muscle is high and is approximately same as that of the fibro glandular disc
or small doubtful masses. Hence, most of the intensity based techniques are not able
to discriminate the pectoral muscle from above mentioned dense parts of the breast.
Consequently, the performance of all such techniques in these cases is very poor.

3 Region Based Methods

Region is a group of connected pixels with similar properties. Region based seg-
mentation is a technique that allows to determine the regions directly in the given
image. Mammographic images can be segmented using initial seed points until
some condition or criterion based on distance etc. is satisfied. Region based
methods are better than the edge based techniques (Sect. 4) in noisy images where
edges are difficult to detect. These methods are simple, fast, leak through weak
boundaries. From the literature surveyed, the different solutions provided on the
pectoral muscle extraction with the help of region based segmentation techniques
with varying rates of success are summarized below.

Table 2 Performance evaluation of intensity based methods

Year authors Main theme # Images
success%

Advantage/disadvantage

2005 Thangavel
and Karnan [12]

Histogram-based thresholding –

–

∙ Easy, efficient
∙ Accuracy not
calculated

2011 Camilus et al.
[13]

Watershed transformation 84 MIAS
FP 0.85

∙ Accurate, efficient
∙ Not robust

2012
Kamila and
Justyna [15]

Multilevel Otsu, gradient estimation,
linear regression

300 MIAS
95-97

∙ No wrong detection
∙ Not robust

2012
Liu [16]

Iterative Otsu Thresholding and
morphological processing

150 MIAS
HD-0.087

∙ Accurate, robust,
efficient

∙ Computationally
intensive

2012
Duarte et al. [17]

Morphological filters, gradient and
first order polynomial

154
93.6

∙ Simple, accurate
∙ Not robust

2014
Burcin et al. [18]

Nonparametric, unsupervised
extended version of Otsu’s method

96 MIAS
93

∙ ccurate, effective, no
false segmentation

∙ Not robust
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Raba et al. [19], illustrated an automatic pectoral muscle suppression method
using a novel selective region growing algorithm. Initially selected seed point gives
a rough approximation of the pectoral muscle region. This rough region is then
refined with the help of morphological operations such as opening and closing.
With this refinement, pectoral muscle border is highlighted clearly and hence
extracted easily. This algorithm when tested on 320 images from MIAS database,
showed around 98 % results as “near accurate” out of which 86 % are the good
extractions of the pectoral muscle. Moreover, this technique is robust enough to
give consistently good results over a wide variety of pectoral muscle appearances
among all the mammograms. However, the method is weak in producing correct
results when a tissue appears near the pectoral border [9]. The accuracy of the
technique can further be improved by taking into account few more shape based
and other related features.

Saltanat et al. [20], proposed a different method comprising pixel intensity levels
values mapping in an exponential scale followed by a modified thresholding
algorithm to line out the pectoral muscle area accurately in an efficient way.
A region growing algorithm finds out an approximation of the pectoral muscle area
and then verifies the same for exact match with that in the ground truth marked
image. If it is not matching exactly, the rough region is adjusted to match with the
desired pectoral muscle. This results into a mapped image with brighter regions
which is enhanced further to divide it into regions with enhanced contrast. This is
followed by specialized thresholding and region growing algorithm with lesser
overflow of regions. The method is claimed to be robust over a large number of
images with varying size, shape and positions of pectoral muscles appearances.
When applied on 322 images of Mammogram Image Analysis Society (MIAS)
database, the proposed algorithm gives 84 and 94 % accurate results when evalu-
ated by two radiologists respectively.

A very good effect with simplicity is explored by Nagi et al. [21] through an
automated technique for breast segmentation using a seeded region growing
algorithm with morphological preprocessing. The process starts with removal of
noise in the image using 2-D median filtering. Artifacts are suppressed and back-
ground is separated using thresholding and contrast enhancement. A seeded region
growing algorithm is then applied to extract the pectoral muscle from the mam-
mogram. A fully automated segmentation leading to accurate breast contour and the
better computational performance over a wide range of mammograms with fatty,
fatty-glandular and dense-glandular breasts are the two major contributions of the
proposed algorithm claimed by the authors. The experimental setup includes two
ground truth marked datasets, one is MIAS and the other is UMMC. The proposed
method works well on a wide range of mammographic images with varying
appearances pectoral muscles and shows good accuracy in pectoral muscle
extraction. However, how the initial seed points are selected is not explained at all.
The metric of accuracy and the quantified accuracy is not specified.

Nanayakkara et al. [22] proposed a method based on modified Fuzzy C-Means
(mFCM) clustering algorithm. The process starts with preprocessing separating out
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the region of interest and filtering out unwanted artifacts. A standard FCM is
modified to avoid random initialization of cluster seeds and to show better pixel
clustering in a speedy way using a block density approach. mFCM makes use of
local information to estimate region modes robustly and to classify noisy pixels
near the pectoral muscle border. The approximate pectoral muscle boundary
obtained is then fitted by using a local maximum average gradient search. The
contour obtained thus is smoothed using locally weighted least square fitting
mechanism. Performance of the proposed method is tested by using 277 MIAS
images with all types of breast tissues and pectoral muscle appearances. The
experimental results indicate that the mean FP is 3.35, mean FN is 11.12 and mean
Hausdorff distance is 14.83. The performance is also evaluated on some other error
metrics and is quite acceptable. The performance of the proposed method is also
compared with standard algorithms and it outperforms in terms of parameters such
as percent overlap area (POA) and Hausdorff Distance (HD). The method works
effectively even in case of pectoral muscle overlapping with breast parenchyma.
The experiment is not validated on different sets of images; hence not robust.

The performance evaluation of the above mentioned region based methods for
pectoral muscle extraction is presented in Table 3. The solution based on modified
Fuzzy C-Means algorithm in [22] is the best among all the methods proposed so far
in the region based methods group. This is because this proposed method works
accurately well for all images having pectoral muscle overlapping with parenchy-
mal region of breast. However, the computational complexity of the same method is
not discussed. It is desired that the researchers should explore region based seg-
mentation further and present a modified version which is simple yet effective on a
wide variety of images.

Table 3 Performance evaluation of region based methods

Year authors Main theme # Images
success %

Advantage/disadvantage

2005
Raba et al.
[19]

Region growing and
morphological
operations

320
86

∙ Robust method, consistent
results

∙ Fails when muscle border is near
breast tissue

2010
Saltanat
et al. [20]

Specialized thresholding
algorithm

322
84 and 94

Efficient, robust

2010
Nagi et al.
[21]

Seeded region growing
and morphological
processing

MIAS
UMMC

∙ Fully automatic, simple, works
on images with varying breast
densities

∙ Initial seed points selection is
not explained

2013
Klein [22]

Modified fuzzy C-means 277 MIAS
FP 3.35
FN 11.12

∙ Accurate, efficient, tested on
different metrics

∙ Fails where dense tissue and
pectoral muscle overlaps
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4 Gradient Based Approaches

Pectoral muscle can be separated from the breast region by a straight or curved line
between them. Hence, gradient based line detection methods are becoming a de
facto standard for this purpose. A few researchers have proposed gradient based
techniques using a straight line estimation to identify the pectoral muscle edge with
quiet good accuracy. However, the actual pectoral muscle edge is not always
straight; instead it is concave at some places and convex at other places. In the
literature, few techniques refine the estimated straight line to fit the actual curved
pectoral edge in the mammogram. Based on the available research literature, the
different gradient based solutions for pectoral muscle extraction with varying rates
of success are explained as given below.

Bezdek et al. [23] described a novel method for pectoral muscle edge and breast
border detection effectively in four different stages. First, conditioning which is an
important determinant of image quality is either by means of histogram equaliza-
tion, spatial filtering or contrast enhancement to normalize the image intensities
required for linear cumulative histogram. The second stage of feature extraction
deals with visualizing more apparent edges, digital butte and canyon. This is
achieved by means of Sobel and Prewitt masks followed by the geometric char-
acteristics like range and standard deviation. These parameters lead to an exact
separation of flat areas and the edge walls with flat top and steep sides as well as
steep-walled valleys. These chosen features are then used in a blending function
such as Minkowski norms, generalized logistic function or computational learning
model to aggregate the information about the edges and to produce a wide range of
edge images. The original “byte images” becomes “float images” after feature
extraction and the same are reconverted to “byte images” using ‘dynamic scaling’
functions in the last stage. Once the extracted features match with the proposed
blending function, it gives rise to an optimal edge image with full details. A pectoral
muscle edge can be easily extracted from this detailed edge image. The overall
performance of the algorithm seems to be acceptable for most of the images;
however the result analysis with regard to sensitivity, specificity or any other
parameter is not carried out in the work undertaken.

Chandrasekhar and Attikiouzel [24] addressed the segmentation of pectoral
muscle by modifying the conventional edge detection paradigms to tunable para-
metric edge detection. The method makes use of four neighborhood based edge
features, two directed digital gradients and two statistical descriptors. The pixels in
a 3 � 3 window around a current pixel are “strung out” as a vector x of dimensions
9, from top to bottom, left to right, in the original neighborhood. The authors have
relaxed the constraint that the edge vector component should only be directed
digital gradient. Instead, they allowed any combination of edge sensitive features
defined as given below.
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Here uh is horizontal Sobel digital gradient, uv is vertical Sobel digital gradient
ur is range and us is the standard deviation. In order to ensure compatibility
between the ranges of the different features, each is normalized so that the range of
all four is [0, 4]. The algorithm also relaxed the constraint that the function that
combines vector components to yield a real scalar magnitude must satisfy the
properties of a norm, and instead allowed a generalized logistic function, bLðxÞ as a
sigmoid blending function to yield a real scalar and defined as given below.

bLðxÞ ¼ 1
1þ expð�kðx� bÞÞ ð5Þ

where, k and b are real positive constants. Thus a modification of the conventional
edge detection paradigm gives rise to families of tunable parametric edge detectors,
one of which has been used to extract the pectoral edge simply, controllably and
reliably from mammograms. When tested on 12 MIAS images with k = 100 and
b = 0.5, it gives simple, controllable and reliable segmentation of the edge of the
pectoral muscle for 10 images. However, the algorithm fails to yield a binary
pectoral edge image alone.

Ferrari et al. [25] discussed a automatic technique of segmenting pectoral muscle
edge by means of Hough Transform. The algorithm starts with binarization pro-
cedure that automatically identifies the pectoral muscle edge from the selected
region of interest (ROI). The limited and bounded ROI minimizes the possibility of
other linear structures biasing pectoral muscle edge representation. High frequency
noise is then suppressed using Gaussian Filter. Hough transform of the Sobel
gradient of ROI is then computed using

p ¼ x� xoð Þ cos(H)þ y� yoð Þ sin(H) ð6Þ

where (xo, yo) is the origin of the coordinate system of the image, p indicates the
distance and H is the angle made by the pixel coordinates under analysis. This
method is simple and efficient. However the detailed discussion on the experimental
results is not covered.

A fully automatic method for segmenting the pectoral muscle consisting of the
muscle edge estimation by straight line and cliff detection is presented by Kwok
et al. [26]. The algorithm starts with an iterative thresholding that separates the
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pectoral muscle from the parenchymal region. This is followed by a median filtering
to remove unwanted noise. A gradient test then eliminates the problematic portions
of separating straight line which is then fitted to minimize the least square error. In
order to avoid the worst results, the straight line estimation is followed by validation
test in an iterative manner till the line is fitted. To refine the muscle edge along this
estimated straight line, cliff detection is used. This cliff detection consists of surface
smoothing for removal of noise, rough texture etc. and edge detection to find a real
shape of the muscle edge. Detecting the cliff is a dynamic process which is carried
out until the best curved approximation is determined. Essentially, the intensity
drops are identified and the intensity rises are ignored for the better results. This
algorithm was tested on MIAS database images and approximately 94 % of images
were acceptably segmented. However, this method is weak in detecting exact
texture and the vertical pectoral borders especially.

Kwok et al. [27] presented a new adaptive automatic pectoral muscle extraction
algorithm in which pectoral muscle edge is roughly identified by a straight line
followed by its validation for its location and orientation. The algorithm uses the
prior information about position and shape of the muscle edge to approximate the
straight line estimation by means of iterative threshold selection to optimize the
binarization. Enough care is taken to preserve the average luminance in the binary
image. The result which is not always accurate and hence is corrected using cliff
detection in a iterative manner to precisely find out the pectoral muscle edge. The
algorithm is slightly modified from that of [26] and is designed to identify the
intensity cliff nearby the pectoral border. The identified cliff locations are used to
remove unwanted locations and to add intermediate values wherever necessary by
using two point linear interpolations. This yields an image which is smoothed using
average filter to produce a detected curve with some reduction in the sharpness. An
iterative refinement then sharpens the edge that separates the pectoral muscle from
the parenchymal region to a higher degree of accuracy. The algorithm when applied
to MIAS database of 322 images, was found to be robust over a wide range of
appearances of the pectoral muscles from all the images. Two expert mammo-
graphic radiologists evaluated that the proposed method gives an accuracy of
83.9 %.

Another interesting approach for pectoral muscle extraction is presented by
Kwok et al. [28]. The algorithm starts with finding an approximation of the rough
straight line along the pectoral muscle edge. Normal’s to all the pixels along this
rough line directed inwards are calculated to find out the curved portions of the
pectoral border. The angles of these normal’s vary between 180 to −180. The value
of difference between two consecutive normal’s can be negative or zero indicating
convex and otherwise concave. Thus overall extraction of the pectoral muscle is
acceptably accurate. This method is simple and novel. The experiment performed
on 322 MIAS images shows an accuracy of 79.5 %. The method is computationally
intensive due to iterative nature.

A novel pectoral muscle edge detection method that overcomes a few drawbacks
of the conventional techniques to give high precision results is proposed by
Weidong et al. [29]. Firstly, a rough portion of the pectoral border consisting of
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various texture features is separated by computing optimal threshold curve and
local mean square deviation (MSD) curve. These curves help to find an appropriate
threshold with respect to the distributed intensities over the mammographic image.
A zonal Hough Transform, which is different than the conventional one, is applied
to roughly fit the line along pectoral muscle border. This rough boundary is then
refined by using a proposed elastic thread method to fit the actual muscle border
which is slightly curved. When tested on 60 MLO view mammograms, the pro-
posed method showed an accuracy of 96 % with a high acceptable precision.

Zhou et al. [30] designed and developed an automated algorithm to identify a
pectoral muscle edge based on texture field orientation that utilizes a combination
of prior information, local and global image features. The a priori knowledge on
this muscle is its approximate direction and high intensities compared to its adjacent
region. The local information at a pixel is represented by the high gradient in a
direction approximately normal to the pectoral boundary, while the global infor-
mation is represented by the relationship between the potential pectoral muscle
boundary points. This is used in this proposed texture-field orientation
(TFO) method that utilized two gradient-based directional kernel (GDK) filters: one
enhances the linear texture parts followed by extracting a texture orientation of the
image on the basis of calculated gradient. This represents the dominant texture
orientation at each pixel in the image which is then improved by a second GDK
filter for extracting the ridge point. After validation of the extracted ridge points, a
shortest-path finding method is applied to prepare the estimation of the probability
of each ridge point lying on the actual pectoral border. Thus the ridge points with
higher probability are connected to form the pectoral muscle edge. A data set of 130
MLO-view digitized film mammograms (DFMs) from 65 patients, data set of 637
MLO-view DFMs from 562 patients, and data set of 92 MLO view full field digital
mammograms (FFDMs) from 92 patients etc. were tested to find out how much
adaptive is TFO algorithm. The evaluation showed that 91.3 % of the tested images
give out a correct pectoral muscle edge in a acceptable form. Also the technique
works well proving its robustness over a wide range of variety of images.

A very simple yet accurate novel method for the detecting the pectoral muscle edge
by making use of gradient and shape dependent characteristic traits is highlighted by
Chakraborty et al. [31]. The algorithm starts with the pectoral muscle border esti-
mation as a rough line by means of some characteristic traits of the pectoral muscle.
This straight line passes through a refinement process to produce a pectoral muscle
border more accurately. The method is applied on 200 mammograms (80-MIAS, 80
DR, and 40-CR images) and assessed based upon the false positive (FP), false neg-
ative (FN) pixel percentagewhichwas 4.22, 3.93, 18.81 %, and 6.71, 6.28, 5.12 % for
selected three databases, respectively. Whereas, mean distance closest point (MDCP)
values for the same set of images are 3.34, 3.33, and 10.41 respectively. When
compared with two similar techniques for identifying pectoral muscle developed by
Ferrari et al. [26] and Kwok et al. [28], proposed technique results are found more
accurate. The accuracy of the proposed algorithm still can be improved.

For the detection of pectoral muscle, Molinara et al. [32] presented a new
approach based on a preprocessing step useful to normalize the image and highlight
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the border separating the pectoral muscle from parenchymal region. This method is
based on a preprocessing step that highlights the boundary separating the pectoral
muscle from parenchymal region and on the evaluation of the gradient of the image
along the x-axis direction. A subsequent step including edge detection and
regression via RANSAC algorithm gives rise to a straight line separating pectoral
muscle from the parenchymal region. The experiments performed on 55 images
from DDSM database, showed that 89.1 % results are acceptable while 10.9 %
un-accurate. One of the drawbacks is that this method includes repetitive processes
and hence is computationally expensive and slow.

4.1 Proposed Method Using Morphological Operations
and RANSAC

A slight modification, in the method suggested in [32], which is based on RANdom
SAmpling Concensus (RANSAC) algorithm, in terms of the preprocessing for a
good quality image followed by a computationally efficient RANSAC algorithm
has reflected in acceptable results. In the proposed method, the unwanted noise and
artifacts are removed using morphological operations. The upper and lower end
points along the pectoral muscle in the top row and left column based on intensity
variations is determined. The contrast of the image is them stretched following a
binarization using Otsu’s graythresh. A sobel operator then used to find out the
estimation of edges near pectoral muscle border of the smoothed image. This
estimation of the pectoral muscle edge is verified two to three times. The points in
between upper and lower end points along approximate pectoral muscle edge are
then recorded for RANSAC algorithm.

4.1.1 RANSAC Algorithm

The RANSAC algorithm divides given data into inliers and outliers and yields
estimate computed from minimal set of inliers with maximum number of support
points. The algorithm used is as given below.

1. Select minimal subset of data points in a random way required to fit a sample
model

2. Points within some distance threshold t of model are a consensus set. Size of
consensus set is model’s support

3. Repeat for N such samples; model with maximum number of points is most
robust fit

• Points within distance t of best model are inliers
• Fit final model to all inliers.
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4.1.2 Experimental Results and Discussion

In order to test the performance of the RANSAC algorithm implemented, 40 images
have been selected from mini MIAS database [10] consisting of 322 mammograms.
Each of these MLO view mammographic images is having a size of 1024 � 1024
pixels with 8 bits per pixel. The spatial resolution of each pixel is 200 mm per
pixel. Though the images are old and outdated, they are chosen for experimental
purpose because they are publicly available. The snapshots of the output images are
in Fig. 3. The results of pectoral edge segmentation are evaluated visually by the
authors and show promising effects as enlisted in the Table 4.

From the experimental analysis, it is revealed that the algorithm works well in
case of strong pectoral muscle borders which are nearly straight. In case of curved
edges, the performance of the algorithm is poor and below average. The segmen-
tation is even worse in a few cases. The segmentation in some cases fails due to
overlapping of the pectoral muscle in the lower part of the breast tissue as the edge
is not at all detectable. The time complexity of RANSAC algorithm is given on the
basis of Eq. 7.

t ¼ k
1� a

ðTmþMs � NÞ ð7Þ

Fig. 3 Experimental results of RANSAC Algorithm. a Original image mdb038. b Line by
RANSAC. c Extracted ROI of mdb-038. d Original image mdb046. e Line by RANSAC.
f Extracted ROI of mdb-046
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where, a is probability that a good model is rejected, k is number of samples drawn,
N is number of data points, Tm is time to compute a single model, Ms average
number of models per sample. k is a function of I, N and h, where I is the number of
inliers and h is confidence in the solution. The computations required for imple-
mentation of RANSAC algorithm are shown in Table 5.

For N data points, there are L = N(N − 1)/2 possible estimated lines altogether
as all the points are treated equally. The computational complexity of all the lines is
O(L) which is approximately O(N2), and the time required to select the suitable line
fitting the pectoral muscle border is approximately O(kMN2). Thus, The contri-
bution here lies in the RANSAC algorithm with limited number of iterations (k) and
less number of samples (M) to select the best fit. However RANSAC algorithm fails
sometimes at producing the correct model with the user-defined probability leading
to an inaccurate model output.

Performance evaluation of gradient based methods for pectoral muscle extraction
is tabulated in Table 6.

With the aid of Table 6 in Chap. “Electroanatomical Mapping Systems.An
Epochal Change in CardiacElectrophysiology”, the method based on Straight Line
Estimation and Cliff Detection presented Kwok et al. [26] gives the best results in
terms of 322 number of images. The reason behind the better accuracy of this robust
method lies in a special cliff detection mechanism designed to refine the straight line
estimate of the pectoral muscle border. This technique succeeds majorly due to its
two components, surface smoothing and edge detection. The method presented by
Weidong et al. [29] gives 96 % successful results but only on 60 images. No
particular method based on gradient that works accurately for identifying the
pectoral muscle on a wide range of images with varying positions of pectoral
muscle. In majority of the techniques, the solution developed is tested over a
specific set of images or a specific problem in given context. There are very rare
cases in which computational complexity of the algorithms in terms of speed and
time is considered.

Table 4 Experimental results of RANSAC algorithm

Accurate Acceptable Unacceptable Overall accuracy

22 10 8 82 %

Table 5 Computations required for RANSAC algorithm

Time to compute single
model—Tm

Number of
samples

Number of
models

Total
computations

Addition L M − 1 k L(M − 1) (k)

Subtractions L(L − 1)/2 L(L − 1)/2

Multiplications L L

Divisions 0 0

Combinations L + L/2 M − 1 k
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Hence, there is a tremendous scope to develop several new theories to solve this
problem. What is required is a simple method that gives a perfect detection with
maximum possible accuracy in terms of sensitivity and specificity in a robust way
over a wide range of variety of images from different datasets available.

5 Transform Based Approaches

Texture features are useful and successful in the analyzing and interpreting mild
textured mammograms. Texture features and intensity variations can be observed
closely by decomposing the complex image to elementary form through wavelet
analysis by means of Gabor wavelets, dyadic wavelets, Radon transform, Hough
transform etc. These elementary components at different positions and scale helps
radiologists to analyze the strong intensity level variations precisely. Wavelet
transform analyzes various frequency components at various resolution scales and
reveals the spatial as well as frequency components simultaneously from the image.

Table 6 Performance evaluation of gradient based methods

Year authors Main theme # Images
success%

Advantages/disadvantages

1998 Bezdek et al.
[23]

–

–

∙ Simple, effective
∙ No result analysis

2000, Chandrasekhar
and Attikiouzel [24]

Tunable parametric edge
detection

12 MIAS
93

∙ Easy, efficient
∙ Fails on curved muscles

2000 Ferrari et al. [25] Hough transform –

–

∙ Simple, effective
∙ Fails on curved muscles

2001 Kwok et al. [26] Straight line estimation and
Cliff detection

322 MIAS
94

∙ Efficient, accurate
∙ Difficult, complex

2004 Kwok et al. [27] Modified Cliff detection 322 MIAS
83.9

∙ Effective accurate
∙ Computation intensive

2004 Kwok et al. [28] Straight line, iterative curve
method

322 MIAS
79.5

∙ Simple effective
∙ Iterations adds into
computational
complexity

2007 Weidong et al.
[29]

Polyline fitting and elastic
thread approach

60 MIAS
96

∙ High precision, effective
∙ Not robust

2010 Zhou et al. [30] Texture-field orientation
method

–

91.3
∙ Robust
∙ Computation intensive

2012
Jayasree [31]

Average gradient and shape
based feature

MIAS
4.22FP
6.7FN

∙ Efficient, simple, robust
∙ Fails only on few very
complicated images

2013
Molinara et al. [32]

Edge detection, regression
via RANSAC

DDSM-55
89.1

∙ Efficient, avg. accuracy
∙ Fails on images with
curved pectoral muscles

2015 Proposed
method

Morphological operations
and RANSAC algorithm

MIAS 40
82

∙ Simple, efficient
∙ Not robust

An Overview of Pectoral Muscle Extraction Algorithms … 37



The original image can be perfectly constructed from these decomposed compo-
nents. However, only a few researchers have exploited the power of wavelet based
analysis to extract the pectoral muscle from the mammographic images. From the
literature reviewed, the different ideas presented on transform based segmentation
techniques with varying rates of success are described as given below.

Ferrari et al. [33] discussed a ‘Gabor wavelet’ based technique for automatic
pectoral muscle edge identification. The algorithm starts with defining a region of
interest (ROI) consisting of pectoral muscle in its entirety. This ROI image is then
convolved with a specially designed bank of tunable ‘Gabor filters’ which encap-
sulate maximum information. This convolution enhances the appearances of all the
ROI components in terms of their directional gradients, orientation and scale. The
‘Gabor filter’ designed in this method with scale parameter S = 4 and K = 12
orientations. This set of 48 parameters leads to 48 filters spanning the entire fre-
quency spectrum. Angular bandwidth of each filter is 15°. Assuming the MLO view
of optimally positioned breast, the Gabor filters are applied with 12 orientations and
4 scales. Vectored summation of K filtered images separates out phase Ø(x, y) and
magnitude A(x, y) images at each pixel location (x, y), which represent the edge
flow vector. Series of nonzero vectors from the opposite directions become can-
didates for pectoral muscle edge. As optimally positioned MLO view expects the
pectoral muscle located within 30°–80°, the corresponding Gabor filter frequency
responses can be oriented at 45°, 60° and 75° in the image domain. Disjoint
boundary parts are connected by using iterative linear interpolation method. The
longest line with maximum pixels is declared as a pectoral muscle border. This
method delineates the pectoral muscle edge accurately with FP rate of 0.58 % and
FN rate of 5.77 % from 84 mammographic images of mini MIAS database. Though
this method gives accurate results, it is computationally more intensive.

Hough Transform and Radon transform are related to each other. Hough
transform can make use of radon function for straight line detection. Hough
transform is a special form of a radon transform. Linear features from images with
high noise can be extracted using radon transform. Kinoshita et al. [34] presented a
novel method for pectoral muscle extraction using radon transform. The prepro-
cessing step includes application of Wiener filter to remove minor artifacts with
high contrast and preserves the edge information at the same time. The algorithm
proposed starts with finding and edge image using ‘Canny filter’. Radon transform
is then applied on this edge image in an appropriate angular interval of 5° to 50°
and −5° to −50° for right and left breast respectively. This leads to a number of
straight line candidates representing pectoral muscle edge. The longest high gra-
dient straight line candidate is then selected to delineate pectoral muscle edge
separating the breast tissue. Localized radon transform used in this algorithm
reduces the computational complexity and increases the speed. However, when
tested on 540 mammograms, experimental results for 156 images are ‘accurate’
with FP < 5 %, acceptable for 220 images with FN < 15 % whereas 164 images
are not accepted. Analysis of the experimented results shows that the algorithm
works well for straight line edges while its performance with curved edges is not so
good.
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Mustra et al. [35] presented a hybrid method for extracting pectoral muscle edge.
The algorithm starts with determining a reduced region of interest to understand the
breast region orientation with its height multiple of 2n, usually half of the height of
image, and width based on skin-air interface of the breast on top line. Height and
width chosen at power of 2 allows proper wavelet decomposition. In order to make
edge detection an easy task, it reduces the original image to a 3-bit image. Dyadic
wavelet of fourth level decomposes this image into approximate edge images. This
approximate edge image undergoes interpolation on the basis of wavelets to prepare
the image with same size and brightness as that of the original one. A blurring filters
of size 40 � 40 is then applied for smoother edges. The image is thresholded for
spreading the gray intensities evenly over the image. A Sobel filter then finds out
the pectoral edge which is approximated then to a straight line separating pectoral
muscle and breast tissue. When tested on 40 digital mammograms, the experimental
results show ‘good and acceptable’ segmentation on 85 % images. Further analysis
reveals that the algorithm works well when there is a high contrast between pectoral
muscle and breast tissue. It fails when either the pectoral muscle is small or its
contrast is low.

Mencattini et al. [36] presented a method for optimal pectoral muscle extraction
using local active contour scheme and Gabor filters in a special combination. As
described in [33], original image is initially decomposed using ‘Gabor filters’ and
then the magnitude and phase of the image are then calculated. Vectored summa-
tion of 48 ‘Gabor filters’ detect the candidate lines for the pectoral muscle profile, as
per the process narrated in [33]. However the candidates selected may mislead
increasing the False Negative rate of accuracy. Hence, this method eliminates the
false pectoral edge candidates by using different logical conditions as described in
[36]. These logical conditions allows to remove false candidate lines and the absent
muscle problem is also addressed as well. The experimental results exhibit a very
good accuracy up to 90 % on mini MIAS database images.

All the methods discussed above assume that the pectoral muscle can be fitted
with a straight line. However, many a times, it is either concave, convex or both.
Li et al. [37] presented a homogeneous texture and intensity deviation based
method for pectoral muscle segmentation. This method diminishes the limitations
of pectoral muscle extraction with a straight line. The process starts with a
non-sub-sampled pyramid (NSP) which decomposes the original image into
low-frequency and high-frequency sub-bands. The pectoral muscle is represented
by means of likelihood maps in texture field calculated through clustering based
segmentation and in intensity field calculated using neighbor Mean Square
Deviation (MSD) matrix. By combining likelihood maps in a row, initial point on
the border of the pectoral muscle is found out first and later other points are
obtained by the same process in an iterative manner. The ragged edge obtained this
way is further refined with the help of Kalman filter efficiently. The experimental
results show an accuracy of 90.06 % on 322 MIAS database images and 92 % on
images from DDSM database.

Performance evaluation of transform based methods for pectoral muscle
extraction is enlisted in the Table 7. As mentioned in the Table 7, a method
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presented by Li [37] is the best with 92 % accuracy on 322 MIAS database images.
The best results are possible because of the efficient Kalman filter applied on
approximately correct rough estimation of pectoral muscle edge. There are very few
methods that identify the pectoral muscle border accurately and efficiently, over
different sets of mammograms. Assumption that the pectoral muscle edge can be
fitted with straight line is not always true and limits the accuracy of the results. It is
revealed that the research published in the domain of pectoral muscle separation
based on transform is really low. Hence there is tremendous scope to develop
several new theories to solve this problem. What is required is a simple method that
gives a perfect detection with maximum possible accuracy in terms of sensitivity
and specificity in a robust way over a wide range of variety of images from different
datasets available.

6 Probability and Polynomial Based Approaches

The texture, appearance and density of the breast structures can be used to deduce the
different statistical parameters for classifying the pixel intensities of digital mam-
mograms. This approach is successfully used by a few researchers to statistically
identify the ‘pectoral muscle edge’ in a effective way. From the literature surveyed,
the different techniques presented on probability and polynomial based ‘pectoral
muscle segmentation’ with varying rates of success are discussed as given below.

Sultana et al. [38] presented a new method with excellent tolerance to noise, for
detecting a ‘pectoral muscle’ in ‘mammograms’ by making use of ‘Mean Shift
Approach’. Assumption that a straight line can be fitted to a ‘pectoral muscle edge’
fails increasing ‘False positive rate’ which in turn decreases the segmentation

Table 7 Performance evaluation of transform based methods

Year authors Main theme #Images
success%

Advantages/disadvantages

2004 Ferrari
et al. [33]

Tunable Gabor wavelet
filters

84 MIAS
FP 0.58,
FN 5.77

∙ Accurate, efficient
∙ Sensitivity not analyzed

2008 Kinoshita
et al. [34]

Weiner filter, radon filters 540
69.62

∙ Fast, less complex
∙ Fails at curved borders

2009 Mustra
et al. [35]

Dyadic wavelet
decomposition of 4th level

40
85 %

∙ Simple, efficient
∙ Fails if pectoral muscle
is small

2011
Mencattini et al.
[36]

Gabor filters with logical
conditions

90 MIAS
90

∙ Efficient, easy
∙ Not so accurate

2013 Li et al.
[37]

Texture and intensity
deviation, Kalman filter

322 MIAS,
DDSM
90.06, 92

∙ Robust, efficient
∙ Complex
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accuracy. This new method smashes out the drawbacks of straight line assumptions
and obtains more accurate segmentation results. The process starts with removal of
high frequency components in the image that may degrade the segmentation results.
‘Region of Interest’ consisting of ‘pectoral muscle’ is selected by using ‘Histogram
Equalization’ followed by thresholding with low value. In the ‘mean shift
approach’, firstly, ‘probability density functions’ (PDF) is used to estimate the
initial points on the edge. To estimate this PDF, the proposed method uses a
‘Gaussian kernel’ which helps to find out the convergence in a few steps only and
forms the cluster of pixels. Approximation of all possible paths in the direction of
each point’s gradient far from valleys and closer to PDF peak is performed. The
process stops after assigning all the pixels a peak value. Thus a labeled map is
obtained for each region. The mean value of each region in the map is calculated
and the region with mean value bigger than T = 150 are registered as selected
candidates for the ‘pectoral muscle edge’. The selected region fulfilling the local
contrast feature is then declared as a ‘pectoral muscle edge’. The experimental
results show an 84 % TP rate per image and 13 % FP rate per image. The very
advantage of this new method is that it is a parameter-less clustering method which
doesn’t need any priori information about number of clusters and size of each
cluster.

A statistical approach using the idea of ‘Goodness of Fit’ is discussed by Liu
et al. [39] for detecting the ‘pectoral muscle edge’. This method works on the basis
of joint normal distribution applied to determine the probability of a pixel lying
along a either high or low intensity region in the image. Based on this decision, a
contour is finalized to remove pectoral muscle from breast tissue. The algorithms
assumes the mammogram as a set of independent random intensity variables
modeled as a normal distribution N(l, r2) where l is the mean and, r2 is the
variance. This is kxk distribution of pixels sharing the same statistical features in
the flat regions with strong features. An Anderson Darling (AD) test is applied on
this set of pixels to perform a ‘Goodness of Fit’ test. This AD value is calculated as
per the equation given in [39]. A smaller AD value indicates that the pixel belongs
to a flat or slow changing (low frequency) component. A larger AD value represents
a pixel from the high frequency component or related brighter region in the image.
Thus AD value acts as image and edge enhancement measure which is insensitive
to the amplitude of intensity variations in the image. Thus when this AD measure is
applied on the mammograms, the pectoral muscle with brighter pixels along with its
border full of stronger intensity variations is identified very easily. The experi-
mental results on the randomly selected 100 images from MIAS database show that
the proposed method gives ‘accurate and acceptable’ segmentation on 81 images
while ‘unacceptable’ on 19 images. Thus the proposed method works more effec-
tively on ‘pectoral muscle extraction’.

Mustra and Grgic [40] discussed a pectoral muscle extraction method that
combines conventional pectoral muscle edge identification with the polynomial
approximation of curved muscle in six steps. First part includes finding the location
where pectoral muscle is situated. This portion is usually 2/3 of the breast height
and thus forms a region of interest. Second step is to enhance the contrast using
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Contrast Limited Adaptive Histogram Equalization (‘CLAHE’) algorithm. Third,
this is followed by a morphological opening with 3 � 3 structuring element which
eliminates small objects and background noise while preserving the larger objects.
Fourth step, a preliminary binary mask is created using previously calculated
threshold. The rough pectoral muscle border achieved is then smoothed with the
help of cubic polynomial fitting in an iterative manner. In fifth step, from the binary
mask, 10 points are selected randomly for polynomial fitting of the muscle
boundary. A cubic fitting function is chosen with 4 coefficients as shown in the
equation:

y ¼ p1x3 þ p2x2 þ p3xþ p4 ð8Þ

where y is the horizontal coordinate and x is the vertical coordinate and pi are the
coefficients. In sixth step, a cubic polynomial function has been chosen because of
the curved shape of pectoral muscle. An iterative linear fit function which finds
correct slope is chosen to avoid wrong choice of points and is defined as

y ¼ p5xþ p6 ð9Þ

where y is the horizontal coordinate and x is the vertical coordinates. This proposed
method when applied on MIAS database of 322 images showed 91.61 % successful
results, 7.45 % acceptable results and 0.93 % unacceptable results.

Oliver et al. [41] presented a different pectoral muscle extraction technique using
a supervised single strategy. The process starts by computing the probability den-
sity function, AR for each pixel location (x) which is belonging to either back-
ground, pectoral muscle or breast. The method takes the advantage of the fact that
usually background is dark, pectoral muscle is bright and breast region is in
between bright and dark. There are exceptions as well. The intensity range, IR, of
these regions is determined based on histogram of each of these regions through a
training over a set of images. Local binary patterns (LBP) is then used to charac-
terize each pixel based on its texture probability, TR. The likelihood of the pixel
belonging to a particular region is then calculated by multiplying all three proba-
bilities AR, IR and TR. Finally all the pixels are assigned to the region with higher
probability. This allows us to extract pectoral muscle easily. The experimental
results on 149 MIAS images show a high degree of accuracy. The exact metric of
the accuracy and its analysis is not discussed. The method is easy to implement and
efficient. Performance evaluation of statistics and probability based methods for
pectoral muscle extraction is tabulated in Table 8.

As observed in the Table 8, the method based on edge detection and polynomial
estimation, presented by Mustra and Grgic [40] is the best among all methods in
this class. The reason behind the success of this method lies in very good rough
estimation and the best results with polynomial refinement over estimated pectoral
border. It is very clear that the domain of ‘Probability and statistics’ is not fully
explored but there is enough potential as like other application domains.
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7 Active Contour Based Approaches

‘Active contours’ which are also known as snakes are widely applied in medical
image processing for detecting edge or curves, segmenting the image, shape
modeling etc. Given the set of contours in the image, the snake tries to minimize the
internal and external potential energies of all the possible surrounding neighbors of
points along the contours. The internal deformation energy controls the capability
of snake for stretching or blending of the contour. The external energy though the
local minima attract the snake, The Gaussian smoothing filter defines the local
minima which give gradient intensity edge that attracts the snake. Thus the classical
snake has capability of extracting smooth edge accurately. However, it cannot deal
with images with topological variations. Hence, number of improvements in the
classical snake methods is suggested by the researchers in the literature. From the
literature reviewed, the different studies presented on ‘active contour’ based seg-
mentation techniques with varying rates of success are discussed as given below.

Wirth and Stapinski [42] suggested a slight modification to the classical ‘active
contour method’ to segment the breast region and identify the ‘pectoral muscle
edge’. All the initial contour points are identified by applying a dual threshold
which is obtained using ‘Uni-modal Thresholding Algorithm’. The edges obtained
this way are then enhanced using directed edge enhancing method. The enhanced
edges are enlarged by removing noise after applying morphological erosion.
A modified snake using a greedy algorithm calculated the energy for all the
neighbors of all the pixels along continuity, curvature or gradient in the image. Thus
lowest energy pixel is selected and again the energy levels in its neighborhood are
calculated. At last the snake stops after defining a contour that represents the
pectoral muscle edge. The algorithm when applied on 25 images from MIAS
database shows acceptable results.

Ferrari et al. [43] discussed a novel method using adaptive contour model for
extracting the breast and pectoral muscle boundary. The algorithm starts with
contrast enhancement of the image by applying a logarithmic operation. This results
in a significant improvement in the low density regions with fewer details near the

Table 8 Performance evaluation of statistics and probability based methods

Year authors Main theme # Images
success%

Advantages/disadvantages

2010 Sultana
et al. [38]

Mean-shift segmentation
approach

TP 84,
FP-13

∙ Accurate, efficient
∙ Computation intensive

2011 Liu et al.
[39]

Goodness of fit measure 100 MIAS
81

∙ Simple, effective
∙ Not robust

2013 Mustra and
Grgic [40]

Edge detection,
polynomial estimation

322 MIAS
92–97

∙ Highly accurate
∙ Little-bit complex

2014
Oliver et al. [41]

Position, intensity, and
texture information

149 MIAS
High

∙ Fast, reliable
∙ No result analysis
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pectoral muscle border and breast border. This is followed by a low distortion
binarization using Lloyd-Max algorithm. A morphological opening is then applied
to reduce the minute unwanted objects and the noise. This demarks the pectoral
muscle border approximately. An adaptive active deformable contour model is then
applied on the image by adjusting the internal and external energy controlling
parameters at each point. The proposed contour model minimizes the energy by
means of a greedy algorithm developed by Williams and Shah (1992). The pectoral
muscle segmentation results are evaluated based on the FP rate is 0.41 % and FN
rate is 0.58 % for 84 mammographic images from MIAS database.

Though the ‘active contour models’ are useful in accurate extraction of pectoral
muscle and other breast regions, the evolution of snake poses several limitations
such as (i) sensitivity to initial contour position, quantity of internal parameters,
weak edges, noise etc. (ii) an appropriate local minimum may be missed creating
problem for convergence of points. (iii) Placing an initial contour closer to expected
border (iv) lack of hard constraint regarding specific distance between two pixels.

The approaches discussed below try to eliminate the above mentioned limita-
tions and suggest the modifications in the ‘active contour model’ to optimize the
results.

Chaabani et al. [44] illustrated a method for identifying a pectoral muscle using
Hough Transform and active contour. The algorithm starts with application of
Canny edge detection followed by a Hough Transform in the angle interval between
135o to 165o. A line with the maximum number of pixels belonging to the contour
is selected as pectoral muscle edge. This estimated line is further refined using the
active contour model by virtue of energy minimizing spline. The algorithm when
applied on DDSM database of mammograms showed that the success rate of
pectoral muscle extraction was 92.5 % whereas there are 7.5 % images are
unaccepted.

Wang et al. [45] presented a novel method for detecting pectoral muscle edge
automatically with the help of ‘discrete time Markov Chain’ (DTMC) along with a
‘active contour’method. Markov chain represents a portion of the object in a random
discrete set of current pixel locations over time. The next pixel location is determined
by using n-step transition probabilities. This is combined with two properties such as
continuity and uncertainty belonging to pectoral muscle region for detecting the
approximate border of the pectoral muscle. In the given algorithm, the rows and
columns of the image are represented by time and state of the DTMC respectively.
Thus DTMC algorithm obtains a rough edge of the pectoral muscle in an iterative
manner. The detailed procedure for finding a rough pectoral border is explained in
[45]. This rough border is further validated by replacing the false part with a straight
line. This coarse pectoral muscle edge is refined by a snake algorithm with a slight
modification. The internal energy parameter in the modified snake obtains a smooth
pectoral muscle border whereas the external energy stretches the pectoral border as
long as possible. The experiment performed on 200 images from DDSM database
shows a ‘good’ segmentation on 75 % images and ‘acceptable’ segmentation on
91 % images. Accuracy of the detection can further be improved by developing a
method searching the pectoral muscle border on the initial row itself.
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The multiphase segmentation model proposed by Vese and Chan combines each
phase using ‘level set functions’ for representing 2n regions. At every stage of
contour evolution, the ‘level set function’ is deviated aside from ‘signed distance
function’ (SDF). Hence it requires costly re-initialization in each curve evolution.

In a topological analysis of medical images, isocontour mapping is very useful in
retrieving meaningful information. Kim et al. [46] developed an algorithm focusing
on intensity analysis of mammographic images and generates a adaptive contour
map using a modified ‘active contour model’. In this approach, the complex
mammographic images are analyzed to extract topographic features from rough to
fine scale and are represented in an isocontour map. This isocontour map image
causes the reduction in analysis complexity. The algorithm presented here starts
with applying a denoising method for reducing interference noise from the image.
This image then undergoes two-phase segmentation and two sub-regions are cre-
ated. This partitioning is achieved by using the Mumford Shah energy functional
recursively. A multipass ‘active contour’ that is based on ‘active contour without
edges’ (AWCE) proposed by Chan and Vese is used to extract local regional
information. In an image with weak edges and intense noise, AWCE model par-
titions the regions based on energies. The algorithm again partitions one sub-region
iteratively by using level set evolution without re-initialization (LSEWR) by min-
imizing a new energy model. This LSEWR introduces an internal energy term
which doesn’t allow the ‘level set function’ to deviate from a ‘signed distance
function’ (SDF) in every contour evolution. This segmentation of sub-regions
results into a tree-like structure of all the sub partitions forming a map of adaptive
contours. This map is then finalized after skipping the isocontours with same
energy. Thus the algorithm works very well on mammographic images with weak
and blurred edge effectively and also reduces the isocontour maps quantity from
206 to 11.

Looking into the several limitations posed by snakes based methods, Akram
et al. [47] proposed a preprocessing algorithm to remove a pectoral muscle edge
along with the other unwanted artifacts from the mammograms. This algorithm
makes use of a modified ‘active contour method’ proposed by Chan and Vese
which is based on the Mumford Shah model. The algorithm in its first part, converts
a given image into a binary image using a threshold T = 15, and then removes the
low and high intensity labels along with scanning artifacts by computing a row and
column wise pixel summation method. In its second stage, the pectoral muscle
border is traced by using multiphase ‘active contour method’ which is based on
Mumford Shah model. The algorithm introduces a new term Mk which allows
moving the contour inwards and also computes its stopping point based on the
difference between consecutive contours. Thus the contour of the pectoral mus-
cle and other breast regions is derived. In the third part, the pectoral muscle is
extracted out using Mk value. The algorithm when tested on few images from
mini MIAS database, shows an accuracy of 77.10 % on images with bad prepro-
cessing results while it is 97.84 % on images with accurate preprocessing results.
Thus, the accuracy of the technique discussed herein is highly dependent on the
preprocessing results and the value of stopping point in the contour model.

An Overview of Pectoral Muscle Extraction Algorithms … 45



Performance evaluation of active contour based methods for pectoral muscle
extraction is tabulated in Table 9. As mentioned in Table 9, the method based on
Hough Transform and active contour by Ali Cherif [44], gives the best results
among all. The best results in this method are possible due to effective refinement
work by the active contour model suggested. As such, there is no particular method
that works satisfactorily with better accuracy for the problem of identifying the
pectoral muscle, uniformly over a wide variety of mammograms. In majority of the
methods, the solution developed is tested over a set of limited images or a specific
database images only. There are very rare cases in which computational complexity
of the algorithms is considered. Though the researchers are trying their level best to
find out an accurate solution, it is revealed from the literature reviewed that the
research published in the domain of pectoral muscle separation based on active
contour methods is really low. And hence there is tremendous scope to develop
several new theories to solve this problem.

8 Graph Based Methods

Image segmentation based on graph theory based methods though computationally
intensive can be applied for pectoral muscle edge detection to obtain the expected
results. Recently, the appropriate selection of local and global information features
along with simplified efficient techniques such as Minimum Spanning Trees and
Shortest path have come up with promising results. Based on the research work

Table 9 Performance evaluation of active contour based methods

Year authors Main theme # Images
success%

Advantages/disadvantages

2003
Wirth and
Stapinski [42]

‘Unimodal Thresholding
Algorithm’ and modified
contour model

25 MIAS
∙ Good

∙ Simple, efficient
∙ No result analysis

2004
Ferrari et al. [43]

Adaptive contour model 84 MIAS
FP 0.41,
FN-0.58

∙ Efficient, accurate
∙ Not robust

2010
Chaabani et al.
[44]

Hough transform and active
contour

DDSM
92.5

∙ Accurate, effective
∙ Not robust

2010
Wang et al. [45]

Time Markov chain and active
contour model

200 DDSM
75, 91

∙ Simple, efficient
∙ Not robust

2013
Kim et al. [46]

Active contour without edges,
level set evolution without
re-initialization

–

–

∙ Simple
∙ Not robust

2013
Akram et al. [47]

Multiphase active contour
method

MIAS
77.10, 97.84

∙ Accurate with good
preprocessing

∙ Not robust
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studied from the available literature, the different solutions presented on the basis of
graph theory for pectoral muscle border identification with varying rates of success
are discussed as given below.

Ma et al. [48] presented two methods, one on the basis of adaptive pyramids
(AP) and other on minimum spanning tree (MST), for pectoral muscle identification
in digital mammograms. The first method implemented in this paper is based on the
algorithms suggested by Jolion and Montanvert for building a pyramid graph of
vertices (pixels) in the given image. The ‘interest operator’ and ‘two state variables’
allow choosing the surviving vertices while exploiting different characteristics of
the image. The two state processes for selecting these two state variables is
explained in [48]. Thus a graph pyramid consisting of significant components of the
image with non surviving vertex as a root is constructed. The reduction in the level
of pyramid is dependent on the changing image information and hence the pyramid
is adaptive. The second method based on MST constructs a graph of edges (con-
necting pixels as vertices) with weights defined by a function based on intensity
differences. The algorithm proceeds forming a segment of pixels with minimum
internal variation and merging two segments with less internal variations. The
implementation of MST based algorithm is computationally intensive. None of
these methods give accurate pectoral muscle segmentation; any one can be chosen
for further smoothing of the results. An active contour is used to bring the rugged
pectoral muscle edge closer to the real one. The internal and external energies
represented in [48] produce smoothing and highlighting effects on the pectoral
muscle border. The implementation of the methods with the selected 84 mammo-
graphic images from mini MIAS database shows moderately acceptable results. The
performance of the methods based on the error measure of average distance
between actual and computed border is less than 2 mm for 80 % and it is less than
5 mm for 97 % of the selected 84 images. Being a first attempt to identify the
pectoral muscle using graph theory based methods; the results are encouraging and
open a wide scope for further experiments with different local and global charac-
teristics features of the image.

Camilus et al. [49] proposed a graph cut based method to automatically identify
the pectoral muscle edge in digital mammograms in an efficient way. The algorithm
starts with careful observation of anatomical features and cropping of the mam-
mogram to a region of interest which completely includes pectoral muscle and thus
eliminates the unwanted components while reducing the time complexity. The
proposed method achieves the segmentation in three major steps. The first step
formulates the weighted graph of edges formed by joining the image pixels as
vertices. The dissimilarity in the pixels (usually intensities or Euclidean distance)
determines the weight on the edges which are then sorted in non decreasing order of
weights. The second step of the algorithm sorts the edges based on their weights
and homogeneity of edges. Here the ROI gets divided into different segments based
on intra region and inter region dissimilarity factors. The mean of all the edges
known as intra-region edge average (IRA) calculated with formula specified in
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Eq. (1) in [49] represents the homogeneity of the probable image segment.
Similarly, inter region edge mean (IRM), as defined in Eq. (6) of [49], allows
merging two closely resembling regions. Selection of proper values of parameters
d1 and d2 for dynamic threshold ultimately leads to a coarse region identified at the
top left corner of the ROI. The third step includes the application of Bezier curves
to rough pectoral muscle edge. The experiment performed on randomly selected 84
images from MIAS database with ground truth marked by the expert radiologists
gives consistent accuracy in terms of FP as 0.64 % and FN as 5.58 %. In most of
the tested images, the error rate is very less; especially FP and FN either of which
may be less than 0.05 but not both at a time. Thus the results are quite superior to
earlier method [48]. The proposed method even works well in case of pectoral
muscle border near to the dense tissues and also in case of very small pectoral
muscle. However, the results of the method can be improved further by incorpo-
rating a few more low level features along with high level features and some more
anatomical constraints.

Cardoso et al. [50] presented an algorithm based on a shortest path on a graph to
detect the pectoral muscle border automatically. The algorithm assumes that the
pectoral muscle, if present, is the change in the intensity levels of the image pixels
which ranges from top margin of the image to the left margin. Assuming the origin
at the top left corner, the left columns are mapped to the bottom rows due to which
the pixels along the pectoral muscle border remains in vertical direction along top to
bottom rows with one and only one pixel along each row. A weighted graph of the
image is then constructed to find out the optimal vertical path using the cumulative
minimum cost C for each pixel using the formula given in [50]. The weight on each
edge in the graph is computed with a formula given in [50]. Once the shortest path
is constructed, the pectoral muscle edge is finalized. The rows are then transformed
back to the Cartesian coordinate system. The contour validation rule is applied to
verify if there is no pectoral muscle present in the image. The experiment performed
on a set of 50 DDSM images and 100 images from HSJ Portugal, with ground truth
marked by expert radiologists, shows the Hausdorff distance of 0.1387 and 0.1426
whereas Mean distance of 0.0545 and 0.0387 respectively. These results are quite
good among all the graph based methods for the same task. However, this method
may give wrong results in case of multiple strong pectoral muscle borders present in
the image.

Performance Evaluation of graph theory based methods for pectoral muscle
extraction is enlisted in the Table 10. As seen in the Table 10, the method based on
shortest path and support vector machine approach, by Cordoso et al. [50], is the
best among all. The better result is possible because of the accurately constructed
weighted graph using cumulative minimum cost measure. Further, it is revealed that
the crucial tasks in all the graph based methods include constructing the graph,
sorting the edges and determining the edge weights in the given image. The dif-
ferent parameters selected to provide either local or global image information plays
a vital role in the overall algorithm. The results of some of the recent methods have
proved to be really promising but still there is a lot expectation from the accuracy
point of view. Hopefully, the researchers will be able to exploit the real power of
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graph theory with some other concepts leading to a accurate solution for the pec-
toral muscle identification efficiently.

9 Soft Computing Methods

Soft computing is a new emerging trend of obtaining precise solution for compli-
cated cases of the problems. The elements of soft computing includes fuzzy logic,
genetic algorithm, neural computing and evolutionary computation. Soft computing
techniques can be used for wide range of applications including image segmenta-
tion. A few important soft computing based methods for pectoral muscle extraction
are explored briefly below.

Karnan and Thangavel [51] presented a two step approach to detect a breast
border separating a pectoral muscle indirectly using Genetic Algorithm. The breast
border identification process in the proposed work starts with binarization of the
given mammographic image using local minima of the histogram as the threshold
value. The connected components in the binary image are then smashed out using
morphological operations. This results into a binary image showing a breast border.
Pixels on this border with a neighborhood window of size 3 � 3 form a binary
kernel which represents the population string in the proposed genetic algorithm.
Population strings along fitness values which are sum of intensities along border,
generates new population using the genetic ‘reproduction’ for crossover. The
crossover operator then allows exchanging of bits in the 2 � 2 window of repro-
duced kernels. This is followed by a 2 dimensional mutation operation in which a
transformation is performed if the kernel matches any one of the 14 windows shown
in [52]. The kernels in final population represent the enhanced border points on the
breast border which indirectly separates a pectoral muscle in the left top corner of

Table 10 Performance evaluation of graph theory based methods

Year authors Main theme # Images
success%

Advantages/disadvantages

2007
Ma et al. [48]

Adaptive pyramids (AP),
minimum spanning tree
(MST), active contours

84 MIAS
2 mm, Error 80
5 mm, Error 97

∙ Accurate, effective
∙ Computation intensive

2010
Camilus et al. [49]

Graph cut based method,
Bezier curve

84 MIAS
FP 0.64 FN5.58

∙ Efficient
∙ Complex

2011
Cardoso et al. [50]

Shortest path method 50 DDSM,
100 FSJ
HD 0.1387,
0.1426
MD 0.0545
0.0387

∙ Accurate, effective
∙ Computation intensive
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mammogram. The performance of the algorithm analyzed on 114 images with
malignancy from MIAS database shows the accuracy of 90.60 % for detection.
Further analysis plotting True Positives versus False Positives shows True Positive
Fraction as 0.71 and 0.938 whereas False Positive Fraction 0.2890 and 0.0614 with
threshold 50 and 150 respectively.

Domingues et al. [53], proposed a fully automatic yet simpler method to detect
the pectoral muscle border using a shortest path and support vector machine
approach. The method first finds out the region of interest by removing unwanted
labels and artifacts in the background by using an adaptive thresholding approach.
The image is then cropped to reduce the area of the breast and the computational
complexity subsequently. The two endpoints on the pectoral muscle are detected
based on two support vector regression (SVR) models. The end point on the pec-
toral muscle on the top row is detected using a SVR model which is based on the
input features obtained from a 32 � 32 thumbnail from the upper half of the
cropped image. The other end point on the pectoral muscle on the left column is
detected using a SVR model which is based on the input features obtained from a
32 � 32 thumbnail from the lower half of the cropped image. The pectoral muscle
border is along the shortest path through edges represented in a graph, in between
these two end points. A weighted graph with pixels as nodes and edges connecting
neighboring pixels with its magnitude as weight, is searched for a shortest path
which demarks the pectoral muscle. When tested, this algorithm shows the
Haus-dorff distance of 0.0860 and 0.1232 whereas Mean distance of 0.1232 and
0.0340 on 50 images from DDSM database and HSJ database respectively. Though
the accuracy of the proposed algorithm is low, its simplicity is really very
acceptable by different manufacturers for devising a solution.

Aroquiaraj et al. [54], proposed a novel pectoral muscle extraction method
which is merely a combination of straight line techniques, Connected Component
Labeling algorithm (CCL) and, Fuzzy Logic. The method is validated on 322
images from the Mammographic Image Analysis Society (MIAS) database. The
evaluation was done using various parameters such as Mean Absolute Error
(MAE), Hausdroff Distance (HD), Probabilistic Rand Index (PRI), Local
Consistency Error (LCE) and Tanimoto Coefficient (TC). The combination of fuzzy
with straight line algorithm gives more than 95.5 % accuracy which is quite high
and acceptable.

Sapate and Talbar [55] discussed a modified ‘K-means clustering’ [56] for
eliminating a pectoral muscle from the breast tissue leading to a substantial accu-
racy. The algorithm starts with applying a combination of image filters and mor-
phological operations for removing noise, scanning artifacts, low and high intensity
labels from the mammographic images along with accentuating some specific
features. A modified K-means algorithm presented in this method attempts to
improve the original algorithm in both of its major phases i.e. computing cluster
centers and assigning pixels to appropriate clusters with K = 4. The automatic
selection of initial cluster centers improves the accuracy of segmentation in the
proposed method. The experimental results show that the accuracy and the
computational complexity, both, are improved over the original algorithm.
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Experimental results on 130 images from MIAS database show the accuracy of
pectoral muscle extraction is 86 %. The method is not robust as its results are not
validated with different datasets of mammograms.

Performance evaluation of soft computing methods for pectoral muscle extrac-
tion is tabulated in Table 11. With aid of the Table 11, the method by Aroquiaraj
et al. [54] combining connected component labeling, fuzzy logic and straight line
estimation approaches is the best among all. The reason behind these best results is
that the fuzziness of the gray scale mammograms is correctly modeled by this fuzzy
based approach. The soft computing based approaches give better performance over
the existing traditional techniques for the pectoral muscle extraction. However, very
few of the soft computing approaches are explored for extracting the pectoral
muscle. Therefore, there is tremendous scope for exploring further the potential of
soft computing based other approaches to improve the accuracy of the pectoral
muscle extraction problem.

10 Conclusions

The overview of the different techniques covered in this chapter focuses on the
efforts made in the direction of solving the pectoral muscle extraction problem in
the preprocessing part of the CADe systems for detecting breast cancer in its early
stage using digital mammograms. The discussion about all the different methods
proposed by researchers in literature reveals that there exists very few methods
which give more accurate results on a wide range of images with varying position,
shape and size of the pectoral muscle in the mammographic image of the breast. On
the other hand, there are very rare cases where the computational complexity of the
proposed algorithm has been calculated with a due importance. The performance
and accuracy of techniques enlisted may be useful for comparison purpose.
Hopefully, this study will be useful for the researchers to find out a better scope to
devise a robust yet simple pectoral muscle extraction algorithm with better accuracy

Table 11 Performance evaluation of soft computing based methods

Year authors Main theme # Images
success%

Advantages/disadvantages

2007
Karnan [51]

Genetic algorithm 114 MIAS
90.60

∙ Accurate, efficient
∙ Not robust

2010
Domingues et al. [53]

Shortest path and
support vector
machine approach

50 DDSM
HD.0860

∙ Simpler, efficient
∙ Less accurate, not robust

2014
Laurence [54]

Connected component
labeling, fuzzy logic,
straight line estimation

MIAS322
95.5

∙ Accurate, efficient
∙ Complex, computation
intensive

2015
Sapate [55]

Modified K means
clustering method

150 MIAS
86

∙ Simple, efficient
∙ Not robust
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over a wide range of mammograms with varying positions, shapes and intensities of
the pectoral muscle regions.
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Magnetic Resonance Brain Imaging
Segmentation Based on Cascaded
Fractional-Order Darwinian Particle
Swarm Optimization and Mean Shift
Clustering

Hala Ali, Mohammed Elmogy, Eman El-Daydamony, Ahmed Atwan
and Hassan Soliman

Abstract A digital image can be partitioned into multiple segments, which is
known as image segmentation. There are many challenging problems for making
image segmentation. Therefore, medical image segmentation technique is required
to develop an efficient, fast diagnosis system. In this paper, we proposed a seg-
mentation framework that is based on Fractional-order Darwinian Particle Swarm
Optimization (FODPSO) and Mean Shift (MS) techniques. In pre-processing phase,
MRI image is filtered, and the skull stripping is removed. In segmentation phase,
the output of FODPSO is used as input to MS. Finally, we make a validation to the
segmented image. The proposed system is compared with some segmentation
techniques by using three standard datasets of MRI brain. For the first dataset,
proposed system was achieved 99.45 % accuracy, whereas the DPSO was achieved
97.08 % accuracy. For the second dataset, the accuracy of the proposed system is
99.67 %, whereas the accuracy of DPSO is 97.08 %. Proposed system improves the
accuracy of image segmentation of brain MRI as shown in the experimental results.
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1 Introduction

Today medical imaging technologies provide the physician with some comple-
mentary diagnostic tools, such as X-ray, computer tomography (CT), magnetic
resonance imaging (MRI), and ultrasound (US). Human anatomy can be visualized
by using two widely used methodologies, which are MRI and X-ray. The human
soft tissue anatomy can be visualized by using MRI that provides information in
3D, whereas X-ray imaging is used to visualize bones [1]. The most complex organ
is the brain of the human body. So, the differentiation between various components
and deeply analyze them is a difficult task. The most common images are MRI
images for brain image analysis. The magnetic field and radio waves are utilizing by
MRI for providing a detailed image of the brain. Moreover, conventional imaging
techniques have not many advantages as MRI. Few of them are [2]: high spatial
resolution, excellent discrimination of soft tissues, and rich information about the
anatomical structure. Brain tumors are classified by neuroradiologists into two
groups, namely: glial tumors (gliomas) and non-glial tumors. There are different
types of brain tumors that more than 120 types, which leads to the complexity of the
effective treatment [3].

For MRI images, segmentation into different intensity classes is required by
many clinical and research applications. The best available representation is doing
by these classes for biological tissues [4, 5]. Therefore, image segmentation is a
crucial process for deciding the spatial location, shape and size of the focus,
establishing and amending the therapeutic project, selecting operation path, and
evaluating the therapeutic effect. In general, the interest tissues in the brain MRI
images are White Matter (WM), Gray Matter (GM), and Cerebrospinal Fluid (CSF).
Multimodal medical image fusion is carried out to minimize the redundancy. Also,
it enhances the necessary information from the input images that is acquired using
different medical imaging sensors. The essential aim is to yield a single fused image
that could be more informative for an efficient clinical analysis [6]. The retrieval of
complementary information is facilitated by using image fusion for medical images
and has been diversely employed for computer-aided diagnosis (CAD) of
life-threatening diseases. Fusion has been performed using various approaches,
such as pyramids, multi-resolution, and multi-scale. Each and every approach of
fusion depicts only a particular feature (i.e. the information content or the structural
properties of an image) [7].

On the other hand, Images can be divided into constituent sub-regions this
process known as image segmentation. The group of segments or sub-regions is the
result of image segmentation that collectively covers the whole image or a set of
contours derived from the image. Color, intensity, or textures are some
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considerations or computed properties for classifying the pixels in some regions.
Adjacent regions are significantly different with respect to the tested characteristic
(s) [8]. The manual segmentation takes much time, but it is possible. Therefore,
automated detection and segmentation of brain abnormalities are a challenging
problem of research since decades [9].

The complexity of the segmentation arises from the different characteristics of
the images. Therefore, medical image segmentation is considered as a challenging
task [10]. Image segmentation divides digital images into non-overlapping regions.
It extracts significant and meaningful information from the processed images. In
addition, the numerous analysis can be performed to extract critical areas from the
images [11]. MRI is the most commonly used technique for evaluating the
anatomical of human brain structures. It provides a comprehensive vision of what
happen in patient’s brain. It consists of the typical structures of brains, such as GM,
WM, CSF, and damage regions. They are presented in single common structures or
overlapped areas [12]. WM, GM, and CSF need the accurate measurement for the
quantitative pathological analyzes. Segmentation of the MRI brain image data is a
goal that is required to process these regions [13].

Segmentation divides an image into regions that are meaningful for a particular
task. Region-based and boundary-based methods are two major segmentation
approaches. The first approach is based on detecting the similarities. The second
approach is based on the continuous boundaries around regions that are formed by
detecting discontinuities (edges) and linking them.

Region-based methods find connected regions based on some similarities
between the pixels [14]. The most fundamental feature of defining the regions is
image gray level or brightness, but other features, such as color or texture, can also
be used. However, if we require that the pixels in a region be very similar, we may
over segment the image. If we allow too much dissimilarity, we may merge what
should be separate objects. The goal is to find regions that correspond to objects as
humans see them, which is not an easy goal [15]. Region-based methods include
thresholding (either using a global or a locally adaptive threshold; optimal
thresholding (e.g., Otsu, isodata, or maximum entropy thresholding)). If this results
in overlapping objects, thresholding of the distance transform of the image or using
the watershed algorithm can help to separate them. Other region-based methods
include region growing (a bottom-up approach using “seed” pixels) and
split-and-merge (a top-down quad tree-based approach).

Boundary-based methods tend to use either an edge detector (e.g., the canny
detector) and edge linking to link any breaks in the edges, or boundary tracking to
form continuous boundaries. Alternatively, an active contour (or snake) can be
used. It is a controlled continuity contour that elastically snaps around and encloses
a target object by locking on to its edges [14, 16].

There are many image segmentation techniques for medical applications. The
specific applications and different imaging modalities control the selection between
the various methods of segmentation. The performance of segmentation algorithms
is still challenging because there are several imaging problems, such as noise,
partial volume effects, and motion. Some of these methods, such as thresholding
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methods, region-growing methods, and clustering methods, were studied by many
researchers [17–19].

The most frequently used techniques for medical image segmentation is the
thresholding. Different classes can be obtained according to the thresholding, which
is separating pixels to their gray levels. Partitioning the scalar image intensities to a
binary is made by using thresholding approaches. In the segmentation of thresh-
olding techniques, the threshold value is compared with all pixels. If the threshold
value is less than the pixels’ intensity value, the pixels are grouped into one class.
Otherwise, another class grouped other pixels.

Multi-thresholding can be determined by processing the threshold with many
values instead of only one value. In digital image processing, the most popular and
simple method is a multi-thresholding technique. It can be divided into three dif-
ferent types: global, local, and optimal thresholding methods. In the former, global
thresholding methods are used to determinate a threshold for the entire image. It
only concerns the binarization of image after segmentation. The second is the local
thresholding methods, which are fast methods. In the case of multilevel thresh-
olding, the local methods are suitable. However, the number of the threshold
determination is a major drawback. The usage of the objective function is the main
advantage of the optimal thresholding methods [20]. Indeed, the determining of the
best threshold values amounts to optimize the objective function. There are different
types of optimization approaches, such as the Genetic Algorithms (GAs), Firefly
Algorithm, and Particle Swarm Optimization (PSO). GAs has a problem for finding
an exact solution but is good at reaching a near optimal solution. In contrast, an
optimal solution is enhanced by using PSO. The FODPSO is especially used in this
paper because it presents a statistically significant improvement in terms of both
fitness value and CPU time. In other words, the optimal set of thresholds and less
computational time is achieved by using the FODPSO approach with a larger
between-class variance than the other approaches [21].

In image segmentation, the most common used techniques are clustering algo-
rithms. It is an unsupervised learning technique, in addition to the number of
clusters should be determined by the user in advance to classify pixels [22, 23]. As
a result, the grouping of similar pixels or dissimilar pixels in one group is called
clustering process [24]. Partitioning and grouping pixels are the two ways of
clustering [25]. In partitioning type, dividing the whole image can be done by
clustering algorithm into smaller clusters in a successive way. In contrast the
grouping type, larger clusters are obtained by starting each element as a separate
cluster after then are gathered. The decision of grouping pixels together is based on
some assumptions. Mean Shift is an example of an unsupervised clustering tech-
nique that does not require prior knowledge, such as the number of the data cluster.
It is an iterative method that starts with an initial estimation [26]. MS segmentation
is used for making concatenation for both the spatial and range domains of an
image. In addition, it is used for identifying modes in this multidimensional joint
spatial-range feature space. The bandwidth parameter (the value of kernel size) is
free and is not restricted to a constant value. Several methods are used for esti-
mating a single fixed bandwidth. Over-clustering and under-clustering arise from
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the chosen value of the bandwidth. The too small value of the bandwidth produces
over-clustering, and also the too large value of bandwidth provide critical modes
that can be merged under-clustering. When the feature space has significantly
different local characteristics across space, under- or over-clustering arise from the
use of a single fixed bandwidth that is considered as a drawback [27].

In this chapter, we concentrate on both clustering and multilevel thresholding
methods for medical brain MRI image segmentation. Our experiments were con-
ducted by using the most used multilevel thresholding and clustering techniques.
This paper is organized into six sections. Section 2 introduces the basic concepts of
some different medical image segmentation systems. Section 3 presents some dif-
ferent medical image segmentation systems for the current related work. In Sect. 4,
the proposed medical image segmentation system is discussed. It is based on
Cascaded FODPSO and Mean Shift Clustering. The experimental results are con-
ducted on three different standard datasets in Sect. 5. The conclusion and the future
work are presented in Sect. 6.

2 Related Work

Image segmentation plays a significant role in the field of medical image analysis.
The most frequently used techniques for medical image segmentation is the
thresholding. Therefore, many researchers have proposed many segmentation
techniques for obtaining optimal threshold values based on a multi-thresholding
method for image segmentation. In the rest of this section, we will speak about
some current research effort in medical image segmentation.

Parvathi et al. [28] proposed for high-resolution remote sensing images a new
segmentation algorithm. It can also be applied to medical and nonmedical images.
Frist, the remote sensing image is decomposed in multiple resolutions by using a
biorthogonal wavelet. A suitable resolution level is determined. The simple
grayscale morphology is used for computing the gradient image. The selective
minima (regional minima of the image) had imposed to avoid over-segmentation on
the gradient image. Second, they applied the watershed transform, and the seg-
mentation result is projected to a higher resolution, using the inverse wavelet
transform until the full resolution of the segmented image is obtained. The main
drawback in preprocessing step they did not make skull removing this leads to
increasing the amount of used memory and processing time.

Clustering techniques are the most common used for medical image segmen-
tation. For example, Khalifa et al. [29] proposed a system for MRI brain image
segmentation that is based on wavelet and FCM (WFCM) algorithm. Their algo-
rithm is a robust and efficient approach to segmenting noisy medical images.
Feature extraction and clustering are the two main stages of the proposed system.
The multi-level 2D wavelet decomposition is used to make extraction of Features.
The FCM clustering is provided with the feature of the wavelet decomposition.
Finally, the image is segmented into (WM, GM, and CSF) these three classes are
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the brain tissue. The limitation of their work is that they did not apply skull
removal. Without removing the skull, scalp, eyes, and all structures, which are not
of interest, increases the amount of used memory and increase the processing time.

Bandhyopadhyay and Paul [30] proposed a way for brain tumor diagnosis that it
is an efficient and fast way. Multiple phases are included in their system. The first
phase consists of more than MR images registration taken on adjacent layers of the
brain. In the second phase, to obtain a high-quality image, a fusion between reg-
istered images is performed. Finally, improved K-means algorithm is performed
with the dual localization methodology for segmentation. The main disadvantage is
the large grid dimension. The fine anatomic details also were ignored, such as an
overlapping region of gray and white matters in the brain or twists and turns in the
boundary of the tumor.

Arakeri and Reddy [31] proposed an approach for MRI brain tumor by using
wavelet and modified FCM clustering that provides efficient segmentation of brain
tumor. In the first phase, the wavelet transform is used for making decomposition of
the image and in the next phase modified FCM algorithm is used to segment the
approximate image in the highest wavelet level. The low-resolution image is
restraining noise and reducing the computational complexity. Then, the
low-resolution segmented image is projected on to the full resolution image by
taking inverse wavelet transform. The main limitation of this work is the use of
highest wavelet level decomposition this may lead to neighboring features over-
lapped of the lower band signals.

On the other hand, many researchers do this best to improve the FCM algorithm
performance for image segmentation. For example, Mostfa and Tolba [32] pro-
posed a wavelet multi-resolution with EM algorithm for segmenting the medical
image known as (WMEM). In the first stage, a spatial correlation between pixels is
detected by Haar transform with length 2. In the second stage, EM algorithm
receives the original image. The two scaled images are generated from 2D Haar
wavelet transform to make segmentation separately. Then, these three segmented
images are produced with their weighted or thresholding value. Each pixel in the
image is classified depending on these three segmented images. They did not
demonstrate what about the time of each algorithm or in the integration method.

Javed et al. [11] proposed a system for noise removal and image segmentation.
Their system comprised of two major phases that involved a multi-resolution based
technique and k-means technique. False segmentation is arisen from noise cor-
rupted images, which this is primary issues of Uncertainty and ambiguity.
Therefore, on the input image multi-resolution based noise removal is applied as a
preprocessing step. The image free noise is segmented by k-means based technique
to identify different objects present in image data automatically. The main disad-
vantage is they did not make skull removing in preprocessing step that increases the
amount of used memory and increases the processing time.

Jin et al. [13] proposed a multispectral MRI brain image segmentation algorithm.
This algorithm based on kernel clustering analysis. The algorithm is called as
multi-spectral kernel based fuzzy c-means clustering (MS-KFCM). In their pro-
posed system, MRI T1-weighted and T2-weighted brain image are filtered and then
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make a selection to the features as the input data. The separation improvement of
the input data is doing by mapping the input data to a high-dimensional feature
space. The output of FCM clustering is used as the initial clustering center of
MS-KFCM. The performance of MS-KFCM is better than FCM and KFCM, but
FCM and KFCM are similar in the performance. The advantage of using the
multi-spectral image segmentation is to achieve higher accuracy than to use
single-channel image segmentation. The limitation of their work is that they did not
make skull removal. Without removing the skull, scalp, eyes, and all structures,
which are not of interest, the memory usage and the processing time are increased.

Mangala and Suma [33] presented brain MRI image segmentation algorithm that
is called Fuzzy Local Gaussian Mixture Model (FLGMM). They removed noise by
applying Gaussian filter. They handled the bias field estimation by using BCFCM.
Second, all techniques initialized by using K-means. Then, they used FLGMM to
make segmentation to the processed image. The Jaccard similarity (JS) is used for
measuring the segmentation accuracy. The JS value is [0, 1], and the higher value of
JS means that the segmentation is more accurate than the lower values. They did not
deal with reducing the computational complexity and improving the robustness.

The most frequently used techniques for medical image segmentation is the
thresholding. Therefore, many researchers have proposed many segmentation
techniques for obtaining optimal threshold values based on a multi-thresholding
method for image segmentation. For example, Ghamisi et al. [34] presented two
methods for images segmentation to identifying the n − 1 optimal for the n-level
threshold. The FODPSO and (DPSO) are proposed for image segmentation.
Delineating multilevel threshold, the disadvantages of preceding methods in terms
of limitation of the local optimum, and high CPU process time are solved by using
these two methods [34]. The efficiency of other well-known thresholding seg-
mentation methods is compared with their proposed methods. When taking into
consideration some different measures, such as the fitness value, STD, and CPU,
their experimental results showed that their proposed methods superior to other
compared methods. On the other hand, they did not handle real-time image
segmentation.

Ghamisi et al. [35] introduced two main segmentation approaches for classifi-
cation of hyperspectral images. They used FODPSO and MS segmentation tech-
niques. The support vector machine (SVM) is used for classifying the output of
these two methods. In their proposed system, in the beginning, the input image with
(B bands) enters to the FODPSO to perform segmentation. Second, the output of
FODPSO is supplied to MS as input to make segmentation to the (B bands) image.
Finally, the classification process of (B bands) to produce (1 band) image is done by
using SVM. The main disadvantage of MS is the tuning size of the kernel, and the
obtained result may be affected considerably by the kernel size.

Hamdoui et al. [36] proposed an approach that known as Multithresholding
based on Modified Particle Swarm Optimization (MMPSO). They implemented
their proposed method for segmenting images based on PSO to identify a multilevel
threshold. They mentioned that their proposed method was suitable for complex
gray-level images. Their results indicated that the MMPSO is more efficient than
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PSO and GA. The main drawbacks of this method are that their approach is better
only when the level of segmentation increase and the image is with more details.

AbdelMaksoud et al. [37, 38] proposed a system based on hybrid clustering
techniques for medical image segmentation to provide the detection of brain tumor
with an accurate way and minimal execution time. The integration clustering
techniques are doing between K-means and FCM or K-means and PSO. In each
stage, the accuracy and minimum execution time are putting into account. In the
preprocessing phase, the median filter is used to enhance the quality of the image
and making skull removal, this leads to reducing the time and the used amount of
memory. In segmentation stage, all advantages are preserved for K-means, FCM,
and PSO; while the proposed techniques solved their main problems. The thresh-
olding is applied for clear brain tumor clustering. Finally, the contoured tumor area
is obtained by the level set stage on the original image.

Samanta et al. [39] proposed a multilevel thresholding technique that has been
used for image segmentation. An optimal threshold value is selected by using a new
approach of Cuckoo Search (CS). CS is used to achieve the best solution for the
initial random threshold values or solutions. It evaluates the quality of a solution
correlation function. Finally, MSE and PSNR are measured to understand the
segmentation quality. For CS, the first phase is to initial generations of the popu-
lation for the cuckoo nest. Second, the original image is segmented by the candidate
solution and rank the solution as per the correlation value. Third, the current best
solution is found. Fourth, randomly few nests are distorted by pa probability.
Finally, the final segmented image is doing by the best candidate solution.

Dey et al. [40] presented a system that extracted blood vessels from retinal
images. It provides early diagnosis of diseases like diabetic retinopathy, glaucoma,
and macular degeneration. The most frequent disease that can occur glaucoma. It
has serious ocular consequences, which can even lead to blindness if it is not
detected early. First, they made a conversion from the green channel of the Color
Retinal Fundus to grayscale image. Second, the gray image is used to apply an
adaptive histogram equalization [6]. Third, the median filter is used to make sub-
tracting the background from the foreground. Fourth, they used FCM followed by
binarization and filtering. Fifth, the corresponding disease is compared with the
ground truth image. Finally, the calculation of the sensitivity, specificity, PPV,
PLR, and accuracy are applied.

3 Basic Concepts

3.1 Thresholding Techniques

Several techniques for image segmentation are proposed for medical applications.
The specific applications and different imaging modalities control the selection of
the various methods. Imaging problems, such as noise, partial volume effects, and
motion can also have significant consequences on the performance of the
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segmentation algorithms. In the thresholding, different classes can be obtained
according to separating pixels to their gray levels. The approaches that perform a
binary partitioning of the image intensities to scalar segment images is called
Thresholding approaches. In the thresholding segmentation, the threshold value is
compared with all pixels. The threshold value that is less than pixel’s intensity value
is grouped into one class. Otherwise, another class grouped other pixels. The
multi-thresholding determined more than one threshold values [11, 41]. The main
restriction of thresholding the spatial characteristics of an image does not typically
take into consideration. Therefore, noise and intensity inhomogeneities were sus-
ceptible to it, which can occur in MRI images. Thresholding is defined mathe-
matically by Eq. (1) [42]:

gðx,yÞ ¼ 1; if f(x, y [ T)
0; if f(x, y)�T

�

ð1Þ

where f(x, y) represent the input image and T the value of the threshold. g(x, y) is
the segmented image that is given by Eq. (1). Using the above Eq. (1), we can be
segmented the image into two groups. The multi-threshold point is used when we
want to segment the given image into multiple groups. This equation Eq. (2)
segments the image into three groups If we have two threshold values.

gðx,yÞ ¼
a; if f(x, y) [T2

b; if T1 \ f ðx,yÞ � T2
c; if fðx, yÞ�T1

8

<

:

ð2Þ

The algorithm for the thresholding is given by Gonzalez et al. [43] as follows:

Step 1 An initial estimation is selected for the global threshold, T.
Step 2 The image is segmented by using the value of threshold (T), as shown in

Eq. (4), to get 2 groups of pixels. If pixels with intensity values > T are
contained in G1, else the pixels with values � T are contained in G2.

Step 3 m1 and m2 are the average mean intensity values that are computed for the
pixels in G1 and G2 respectively.

Step 4 The new threshold value is computed.
Step 5 If the difference between a predefined parameter. DT is smaller than values

of T in successive iterations. This process is repeated for steps 2 through 4.
Otherwise, it is stopped.

3.1.1 Global Thresholding

In the Global thresholding method, for the entire image, only one threshold value is
selected. Bimodal images are used to Global thresholdingwhere the image foreground
and background has the homogeneous intensity and high contrast between them, the
Global thresholding method is simple and faster in computation time.
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3.1.2 Local Thresholding

An image is divided into sub-images and the threshold value computed for each
part. Global thresholding takes less computation time than a local threshold. When
there is a variation in the background in an image, Its result is satisfactory. It can
extract only small regions [44].

Histogram Thresholding

It is based on thresholding of histogram features and gray level thresholding. The
threshold is mathematically defined by Eq. (1). The algorithms as follows [45–49]:

Step 1 The histogram is drawn for each part of the MRI brain image that is
divided around its central axis into two halves.

Step 2 Threshold point of the histogram is calculated based on the comparison
technique made between two histograms.

Step 3 The segmentation process for both the halves is doing by the threshold
point.

Step 4 For finding out the physical dimension of the tumor, the detected image is
cropped along its contour.

Step 5 The segmented image pixel value is checked for creating an image of the
original size. If the threshold value is less than the pixel value, then assign
a value equal to 255 else 0.

Step 6 Segment the tumor area.
Step 7 The tumor region is calculated.

3.2 An Overview of PSO Algorithm

One of the evolutionary optimization methods is the PSO algorithm. Typically, the
evolutionary methods are successful as shown in the experiments for segmentation
purposes [50, 51]. Evolutionary algorithms ideally do not make any assumption
about the underlying problem. Therefore, all types of problems are performed well
approximating solutions. In the traditional PSO, the particles are called candidate
solutions. To find an optimal solution, these particles travel through the search
space, by interacting and sharing information with neighbor particles, namely their
individual best solution (local best) and computing the neighborhood best. Also, in
each step of the procedure, the global best solution obtained in the entire swarm is
updated. Using all of this information, particles realize the locations of the search
space where success was obtained and are guided by these successes.
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3.3 Multilevel Thresholding Method Based on FODPSO

An efficient way to perform image analysis is to use multi-level segmentation
techniques. However, the selection of a robust optimum n-level threshold is
required to be automatic. In the following discussion, a more accurate formulation
of the problem is introduced.

Image analysis can be performed in an efficient way by using multi-level
thresholding segmentation techniques. The essential challenge in the image seg-
mentation is the selection of the optimum n-level threshold. However, the selection
of the optimum n-level threshold is required to be automated. The rest of this section
presents a more precise formulation of the problem, introducing some basic notation.

In the proposed system, a gray image is used as the color image takes more
computation time. For each image, there are L intensity levels, which are in the
range of 0; 1; 2; . . .; L� 1f g. Then, we can define the probability distribution as
[52]:

pi ¼
hi
N
;
XN

i¼1
pi ¼ 1 ð3Þ

where i represents a particular intensity level, i.e.,1� i� L� 1. The total number of
the pixels in the image is N. The number of pixels can be represented by hi for the
corresponding intensity level i. In other words, image histogram is represented by
hi; which can be normalized and considered as the probability distribution pi for
component of the image. The total mean (i.e., combined mean) can be simply
computed as:

lT ¼ ipi ð4Þ

The generic n-level thresholding can be derived from the 2-level thresholding in
which n − 1 threshold levels tj, j� 1; . . .; n� 1, are necessary and where the
operation is performed as expressed below in Eq. (5):

Fðx; yÞ

¼

0 f ðx; yÞ� t1
1
2 ðt1 þ t2Þ; t1 \f ðx; yÞ� t2
..
.

1
2 ðtn�2 þ tn�1Þ; tn�2 \f ðx; yÞ� tn�1

L; f ðx; yÞ [ tn�1

8

>

>

>

>

>

<

>

>

>

>

>

:

ð5Þ

The image is represented by x, which is the width (W) of the image, and y,
which is the height (H) of the image. Then, the size can be represented by H�W
denoted by fðx; yÞ with L intensity gray levels. In this situation, the pixels of a
given image will be divided into n classes ðD1; . . .;DnÞ It may represent multiple
objects or even specific features on such objects (e.g., topological features).
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The method that maximizes the between-class variance is used for obtaining the
optimal threshold. It is the most efficient computational method that can be gen-
erally defined by:

r2
B ¼

X

n

j¼1

WJðlj � lTÞ2; ð6Þ

where j represents a particular class in such a way that WJ and lj are the probability
of occurrence and the mean of the class j, respectively. The probabilities of
occurrence WJ of classes ðD1; . . .;DnÞ are given by:

WJ ¼

P

tj

i¼1
pi; j ¼ 1

P

tj

i¼tj�1 þ 1
pi; 1 \ j \ n;

P

L

i¼tj�1 þ 1
pi; j ¼ n;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð7Þ

WJ is the mean of each class that is computed as:

lj ¼

P

tj

i¼1

ipi
Wj
; j ¼ 1

P

tj

i¼tj�1 þ 1

ipi
Wj
; 1 \ j \ n;

P

L

i¼tj�1 þ 1

ipi
Wj
; j ¼ n;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð8Þ

In other words, the n-level thresholding problem is limited to an optimization
problem. It searches for the thresholds tj that make maximization for the objective
function (i.e., a fitness function) defined as:

u ¼ max
1\t1���\tn�1\L

r2BðtjÞ ð9Þ

As the number of threshold levels increases, this optimization problem involves
a much larger computational effort. It makes us think of the question: Which type of
methods that the researcher can use for solving this optimization problem for
real-time applications? [52]. FODPSO is an example of such methods that recently
presented. FODPSO is a new version that derived from the DPSO. To control the
convergence rate of FODPSO, the fractional calculus is used to solve this kind of
problems [35].

When the threshold levels and image components increase the optimization
problem, it needs much computational effort. Recently, biologically inspired
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methods, such as PSO, are alternatives to analytical methods to solve efficiently
optimization problems [13]. An example of such methods that is presented recently
is the FODPSO. This method is a natural extension of the DPSO. It is presented
using fractional calculus to control the convergence rate. It was extended for the
classification of remote sensing images in [18, 35, 52].

As in the classical PSO, to find an optimal solution particles travel through the
search space in FODPSO by interacting and sharing information with other parti-
cles. In each step of the algorithm t, the success for a particle is evaluated by a
fitness function. Each particle n, moves in a multidimensional space to model the
swarms according to a position xsn½t�; 0� xsn½t� �L� 1, and velocity vsn [t]. the
individually best ~xsn [t] and the globally best ~g

s
n [t] information are highly control the

position and velocity values.

vsn½tþ 1� ¼ a vsn½t� þ
1
2
a vsn½t� 1� þ 1

6
að1� aÞvsn½t� 2�

þ 1
24

að1� aÞð2� aÞvsn½t� 3� þ q1r1 ~gn � xsn½t�
� �

þ q2r2 ~xsn � xsn½t�
� �

ð10Þ

xsn½tþ 1� ¼ xsn½t� þ vsn½t + 1� ð11Þ

The global and individual performance are controlled by weights coefficients q1
and q2. Within the FODPSO algorithm, the fractional coefficient controls the
inertial influence of particles. The random vectors r1 and r2, which is a uniform
randomly number between 0 and 1 with each component. The fractional coefficient
is parameter a, will weigh the influence of past events in determining a new
velocity,0\a\1. The velocities of particles’ are initially set to zero when applying
multilevel thresholding FODPSO of images and their position is randomly set
within the boundaries of the search space, i.e., vsn½0� ¼ 0 and 0\xsn½0�\L� 1. In
other words, the number of intensity levels L determine the search space, i.e., if an
8-bit image segmentation, and then particles will be deployed between 0 and 255.
Hence, each particle in the same swarm will be found and compared to all particles,
a possible solution uc. The higher between-class variance uc the particle will be the
best performing particle (i.e., ~gsn), thus luring other particles toward it. It is also
noteworthy that when a particle improves, i.e., when a particle is able to find a
higher between-class variance from one step to another, the fractional extension of
the algorithm outputs a higher exploitation behavior. This allows achieving an
improved collective convergence of the algorithm, thus allowing a good short-term
performance. FODPSO is a method with a higher between-class variance to specify
a predefined number of clusters. In [35], the authors demonstrated that the
FODPSO-based segmentation method performs considerably better in terms of
accuracies than genetic algorithm, bacterial algorithm, PSO, and DPSO, thus
finding different number of clusters with a higher between-class variance and more
stability in less computational processing time.
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4 The Proposed MRI Image Segmentation System

There are many medical image segmentation systems that are used for detecting
brain structure and tumor. All of these systems are not equal in accuracy and in
execution time. Therefore, our goal is to build a robust segmentation system to deal
with the brain images. As all thresholding-based methods, FODPSO segmentation
suffers from two main disadvantages. First, inhomogeneity cannot be handled.
Second, when the object intensity does not appear as a peak in the histogram. In the
MS method, the size of the kernel needs to be tuned by the user [35]. The tuning
may be a difficult task, and the final results may be dramatically affected. The
proposed medical image segmentation system consists of three main phases:
pre-processing, segmentation, and validation, as shown in Fig. 1. We take into

Fig. 1 The block diagram of the proposed framework
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account the accuracy and the time. In the preprocessing stage, we used the median
filter and brain extractor tool for skull stripping from the processed image. In the
segmentation phase, we make integration between MS and FODPSO that takes all
advantages of them. Finally, validation is performed on the proposed system and
the ground truth.

The CT is used for image segmentation method, but it is not used alone. In
addition, it is not good as MRI. It is used with MRI in the fusion process to improve
the data. The image resolution of lesion or target is high in MRI rather than CT
scans in stereotactic surgery. The stereotactic frame makes artifacts in images but
less in MRI because it is used contrast enhancement or different pulse sequences.
Especially, the benefits of using MRI rather than CT that is high contrast ven-
triculography, when performing stereotactic surgery in patients with brain lesions or
normal anatomical targets [53].

Ghamisi et al. [35] proposed an approach that is based on two segmentation
methods: FODPSO and mean shift segmentation. The proposed framework is used
for dealing with Hyperspectral image analysis. In contrast, we applied the same
proposed approach with a different data type of image for brain MRI. We applied
proposed approach in MRI brain medical image. As compared the hyperspectral
image with MRI brain medical image, there are many disadvantages of hyper-
spectral image. The cost and complexity are the primary disadvantages. Large data
storage capacities, fast computers, and sensitive detectors are needed for hyper-
spectral data analysis. Large hyperspectral cubes require significant data storage
capacity, multidimensional datasets, and potentially exceeding hundreds of mega-
bytes. The processing hyperspectral data, cost, and time are greatly increased.
Therefore, our proposed system is applied on MRI brain medical image that gives
better accuracy and small time consuming of the segmented image as compared to
Hyperspectral image.

4.1 The Preprocessing Phase

The improvement of image quality and noise removal are the main target of this
stage. The de-noising and skull stripping are sub-stages of the pre-processing stage.
In medical images, de-noising is necessary for sharping, clearing, and eliminating
noise and artifacts. Gaussian and Poisson’s noise are usually affected by MRI
images [54]. By using a median filter, the numerically sorted order is obtained from
all pixel values in the window, and then the processed pixel is replaced by the
median of the pixel values. Linear filtering is not better as median filtering for
removing noise in the existence of edges [55]. The MR images also corrupted by
Rician distributed noise. It is assumed to be white, and these images are suffered
from reducing a contrast of signal-dependent bias. However, a widely used
acquisition technique to decrease the acquisition time gives rise to correlated noise
[56, 57]. On the other hand, the skull and the background of the image are removed
while they do not contain any useful information. Decreasing the amount of the
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memory usage and increase the processing speed are done by removing unhelpful
information, such as background, skull, scalp, eyes, and all other structures. Skull
removal is done by using BET (Brain Extractor Tool) algorithm [58].

4.2 The Segmentation Phase

In this stage, we make integration between MS and FODPSO to take the advantages
of these segmentation techniques. First, FODPSO will segment the input MRI brain
image as shown in Table 1. Then, MS will segment the output of this step again. In
other words, the result of FODPSO is used as an input to MS. The number of the
clusters can be predefined by FODPSO, and a higher between-class variance to find
the optimal set of thresholds in less computational time can be obtained by it. So, it

Table 1 FODPSO segmentation algorithm [18]
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is a favorable method. Therefore, we extract brain structure (WM, GM, and CSF)
from the segmented image to the binary image then the proposed system is vali-
dated in the next phase.

4.3 The Validation Phase

In this stage, the result of the image segmentation with the proposed clustering
techniques was compared to the ground truth as illustrated in the experimental
results. The calculated measures are time, Jaccard similarity coefficient, and Dice
similarity coefficient. The performance of the segmented images is shown in the
experimental results in details and how to compute each of the performance mea-
sures. The accuracy of segmented image (SA) can define as:

SA =
Number of correctly classified

Total number of pixels
� 100% ð12Þ

5 The Experimental Results and Discussion

The proposed system is implemented by using MATLAB R2011a on a Core(TM) 2
Due, 2 GHz processor, and 4 GB RAM system. We used three standard datasets.
The first dataset is BRATS [59] database from Multimodal Brain Tumor
Segmentation. It consists of 30 glioma patients with multi-contrast MRI scans (both
low-grade and high-grade, and both with and without resection) along with expert
observation for “active tumor” and “edema”. For each patient, there are many
available types of images, such as T1, T2, FLAIR, and post-Gadolinium T1 MRI
images. This database contains 81 images and has ground truth images to compare
the results of our method with them. These images are got from Brain Web
Database at the McConnell Brain Imaging Centre of the Montreal Neurological
Institute, McGill University.

The second dataset is the Brain Web [60] database. It contains phantom and
simulated brain MRI data based on two anatomical models: normal and multiple
sclerosis. For both of these models, the data volumes of the full 3-dimensional data
are emulating by using the three sequences (T1-, T2-, and proton density- (PD-)
weighted). On the other hand, there is a variety of slice thicknesses, noise levels,
and non-uniformity levels of intensity. It is a T1 modality, 1 mm slice thickness.
This dataset consists of 152 images.

The third dataset is the Digital Imaging and Communications in Medicine
(DICOM) [61]. DICOM consists of 22 images that contain brain tumors.
All DICOM image files are encoded in JPEG2000 transfer syntax with “.DCM”
extension. It has no ground truth images for the contained images.
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5.1 Measuring the Segmentation Performance

To provide a proper comparison between the tested methods, we use different
performance measures, such as:

1. Jaccard similarity coefficient [62, 63]: It is a widely used overlap measure,
which is public and used usually as similarity indices for binary data. The area
of overlap JSC is computed between the segmented image S1 and the gold
standard image S2 as shown in Eq. (13).

JSC ¼ ðS1 \ S2Þ/ðS1 [ S2Þ ð13Þ

2. Dice similarity coefficient [62, 63]: It measures the number of the extent of
spatial overlap between two binary images. It is the most widely used for
measuring the performance of segmentation. Its values range between 0 and 1 if
the value is zero there is no overlap. If the value is one, this means a good
agreement.The Dice coefficient is defined as:

D ¼ 2ðS1 \ S2Þ/volðS1 [ S2Þ ¼ 2JSC/ð1þ JSCÞ ð14Þ

3. Accuracy

True PositiveðTPÞ ¼ No of resulted images having brain tissue
total No of images

ð15Þ

True NegativeðTNÞ ¼ No of images that haven0t brain tissue
total No of images

ð16Þ

False PositiveðFPÞ ¼ No of images that non brain and detected positive
total No of images

ð17Þ

False NegativeðFNÞ ¼ No of images have brain tissue and not detected
total No of images

ð18Þ

Accuracy ¼ ðTPþ TNÞ
ðTPþ TN þFPþFNÞ

� �

ð19Þ

TP is true positive, and FP is false positive. They are correctly and incorrectly
classified a number of voxels as brain tissue by the automated algorithm. TN is
true negative, and FN is false negative. They are correctly and incorrectly
classified a number of voxels as non-brain tissue by the automated algorithm.

In Table 2, we listed the main parameter of FODPSO. The maximum number of
iterations is IT. N is initial number particles with each swarm. The coefficients
q1 andq2 are weights, which control the global and individual performance. The
fractional coefficient is commonly known as /. It will weigh the influence of past
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events in determining a new velocity, 0\ / \1. The number of swarms is Ns

where Ns
max represents the maximum number of allowed swarms. Ns

min represents
the minimum number of allowed swarms. The number of particles is described by
Nkill, no enhancement in fitness means that the number of particles was deleted by
the swarm over a period. Initialize D v maximum number of levels a practical can
travel between iterations.

Table 3 shows the main stages of the proposed method. The first stage is the
skull removal that performed by using BET algorithm [58]. The second stage uses
the FODPSO algorithm combined with the MS algorithm. The output of FODPSO
is supplied as an input to MS. By doing the experiments on all images of the three
datasets using the MS; we found that the best results in image clusters can be got if
bandwidth = 0.2 that proved by try and error. By decreasing the bandwidth for the
same threshold, it processes the images in less time. Over-clustering and
under-clustering arise from the chosen value of the bandwidth. The too small value
of the bandwidth produces over-clustering, and also, the too large value of band-
width provide critical modes that can be merged under-clustering. Also, in the third
dataset, we make detection of the tumor by FODPSO algorithm combined with the
MS algorithm (Tables 4, 5, and 6).

Table 2 The parameters of FODPSO

Parameters method IT N q1;q2 Dv Nmax Nmin Ns Ns
max Ns

min Nkill /
FODPSO 150 30 0.8 3 50 10 4 6 2 10 0.6

Table 3 The main steps of the proposed framework

Data 
Set Original BET FODPSO

+MS
Truth/normal

D
S1

D
S2

D
S3
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Table 4 The comparison between five different segmentation techniques on the two tested
datasets

Data 
Sets

Original BET FCM MS PSO DPSO FODPSO
+MS

D
s1

Already 
skull 
removed 

D
s2

D
s3

No skull 
removed 

Table 5 The comparison between FCM, Mean Shift, PSO segmentation algorithms

Data 
Sets Original FCM Time MS Time PSO Time

D
s1

11.47670 
s

0.748976 
s 

9.8863
s 

D
s2

10.65768
0s 

0.685284 
s 9.4908

s 
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In Tables 7 and 8, the mean of errors is measured in the two tested datasets by
using the JSC and Dice. It is established that the proposed technique
(FODPSO + MS) gives the best result than any other tested techniques.

In Table 9, we can observe that the accuracy of FCM same as MS for the two
datasets. In Table 10, the accuracy of DPSO is better than PSO. In Table 11, the
FODPSO + MS is superior to the previous techniques with accuracy 99.67 %
(Figs. 2 and 3).

Table 6 The comparison between DPSO and FODPSO + MS segmentation algorithms

Data 
Sets

Original DPSO Time FODPSO+MS Time 

D
s1

7.7962s
7.9069s

D
s2

4.4876s 4.5191s

Table 7 The mean errors for the Jaccard and the Dice similarity coefficients for DS1

Segmentation techniques for DS1

FCM MS PSO DPSO FODPSO + MS

JSC 0.9136 0.9178 0.9312 0.9433 0.9821

Dice 0.9548 0.9571 0.9644 0.9708 0.9910

Time (s) 11.47670 0.785911 31.3395 30.9704 12.8960

Table 8 The mean errors for the Jaccard and the Dice similarity coefficients for DS2

Segmentation techniques for Ds2

FCM MS PSO DPSO FODPSO + MS

JSC 0.9223 0.9223 0.9389 0.9478 0.9825

Dice 0.9596 0.9596 0.9685 0.9732 0.9912

Time (s) 10.228735 0.654596 28.1894 24.8010 12.2559
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Table 9 The performance metrics of FCM and Mean Shift

Clustering techniques

FCM Mean shift

Datasets TP TN FP FN Accuracy TP TN FP FN Accuracy

DS1 95.67 0 0 4.33 95.67 95.67 0 0 4.33 95.67

DS2 96.03 0 0 3.97 96.03 96.03 0 0 3.97 96.03

DS3 86 0 0 14 86 86 0 0 14 86

Table 10 The performance metrics of PSO and DPSO

Clustering techniques

PSO DPSO

Datasets TP TN FP FN Accuracy TP TN FP FN Accuracy

DS1 96.03 0 0 3.97 96.03 97.08 0 0 2.92 97.08

DS2 96.90 0 0 3.10 96.90 97.67 0 0 2.33 97.67

DS3 86.23 0 0 13.77 86.23 86.96 0 0 13.04 86.96

Table 11 The performance
metrics of FODPSO + MS

Clustering techniques

FODPSO + MS

Datasets TP TN FP FN Accuracy

DS1 99.45 0 0 0.55 99.45

DS2 99.67 0 0 0.33 99.67

DS3 94.67 0 0 5.33 94.67

Performance Measure of 
segmentation techniqes DS1

Fig. 2 The performance measure of the segmentation techniques in seconds for DS1
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6 Conclusion

Achieving acceptable performance is a hard target in the segmentation process
because unknown noise is contained in the medical images. The proposed approach
is based on the combination of FODPSO and MS techniques. A number of clusters
can be predefined by FODPSO, and a higher between-class variance for finding the
optimal set of thresholds in less computational time can be obtained by it. In the
proposed approach, the result of FODPSO is used as the input to MS to develop a
pre-processing method for the classification. The main difficulty of MS is tuning the
size of the kernel, and the obtained result may be affected by the kernel size. Results
indicate that the use of both segmentation methods can overcome the shortcomings
of each of them. The combination can significantly improve the outcome of the
classification process. In the future, a hybrid technique based on clustering algo-
rithms and multilevel thresholding like FODPSO can be combined to work on input
dataset for better results.

In the future, the chaos-based concept will be integrated with PSO. Also, a
hybrid technique based on clustering algorithms like FCM and multilevel thresh-
olding like FODPSO can be combined to work on input dataset for better results. In
the future, We can also use a multi-modal image like MRI and CT for improving
results. To overcome the issue of trapping the solution in local optima is solved by
Clustering based a biologically inspired Genetic algorithm was developed that we
can apply in the future work.
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3D Brain Tumor Segmentation Based
on Hybrid Clustering Techniques Using
Multi-views of MRI

Eman A. Abdel Maksoud and Mohammed Elmogy

Abstract 3D medical images segmentation is a very difficult task. It may not be
accurate and takes extreme time. In this chapter, we accurately detect the brain
tumor from 3D MRI image with less time. The 3D image consists of multiple 2D
slices. Segmenting each 2D slice by using the 2D techniques gives more accuracy
rather than segmenting the whole 3D image. The integration between K-Means and
Particle Swarm Optimization was proposed to segment the 2D MRI slices of the 3D
MRI image. We solved the time problem of segmenting all 2D slices of the 3D
image. The experiments emphasized the effectiveness of our proposed system in
segmenting the 2D and 3D medical images. It achieved 100 % accuracy for the
tested 3D dataset and 98.75 % average accuracy for all tested 2D and 3D datasets.
The proposed integration reduced time by a mean of 10 min for the tested 2D and
3D datasets.

Keywords 3D medical image segmentation � 2D MRI slices � K-means � Particle
swarm optimization

1 Introduction

Image processing is a fundamental task in computer vision that is used in many
different fields, especially the medical field. It is critical to analyze images. The
medical image processing transforms the raw images into numerically symbolic
form for better representation and evaluation. This transformation or extraction is
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integrated with the information that is generated from multiple imaging modalities
to aid diagnosis and surgeries [1]. It is noteworthy that, medical images have poor
contrasts, noises, and missing or widespread boundaries. On the other hand,
medical images exhibit intensity inhomogeneity. A single tissue class varies over
the extent of the image gradually due to the intensity level. Moreover, the intensity
of a pixel may not be consistent with any class [2].

Image segmentation techniques have been developed in order to locate objects,
boundaries, and shapes in medical images. However, the selection of an appropriate
technique for a particular type of image or application is a difficult problem. Thus,
there is no universally accepted method for image segmentation. Therefore, it is still
a challenging problem in image processing [3], besides, the over-segmentation and
under-segmentation problems. On the other hand, image segmentation techniques
may be supervised or unsupervised. They also can be categorized as thresholding,
texture analysis, clustering, region, and edge-based methods [4].

The images need to be geometrically aligned for better observation. This
alignment procedure maps points from one image to their corresponding points in
another one [5]. This process is called image registration that aligns two or more
images of the same scene. These images may be taken from different views or at
different times or from different sensors [6].

These sensors in medical imaging provide different imaging modalities, such as
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron
Emission Tomography (PET). Response(s) to these imaging modalities generate an
enormous amount of useful information that is extracted and analyzed by the
radiologists for the purpose of analysis, detection and the diagnosis of diseases. The
obtained sensor responses of the various medical imaging modalities are often
complementary in nature, i.e. a particular sensor modality is deprived of the features
acquired by another sensor (imaging modality). For example, CT images deal with
the demonstration of the extent of disease and provides information about denser
tissues with less distortion; while MRI contains the information regarding soft
tissues. Hence, a radiologist always purposes to analyze the sensor responses to the
different modalities simultaneously [7].

Although some of the imaging modalities help the physicians to diagnose the
lesions, they have some limitations. Some of them provide only functional infor-
mation and the other provide anatomical information. The ones that give best results
are very expensive and cannot be used in all laboratories, such as PET. The others
are not comfortable and negatively affect the patient like CT. Ultrasound
(US) suffers from poor contrast like X-rays. The scanners or imaging modalities
take multiple images at different times and different views.

In many cases, MRI provides information that cannot be obtained from other
scans [8]. MRI displays the anatomy in the axial, sagittal, and coronal planes. The
slice thickness of the images varies between 1 and 10 mm. MRI is good for coronal
and sagittal imaging. In each of these modalities, a relative set of 2D slices provides
a 3D array of image intensity values. A 3D image can be obtained from many
consecutive or sequent 2D slices. The segmentation of 3D medical images is very
difficult, but it is paramount in image processing. There is no doubt that, the major
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advantage of 3D imaging is improving the small image component visualization. It
visualizes the hidden details of the organs that cannot be observed by the 2D images.

The realization of 3D visualization of the medical images is to carry on correct and
reasonable segmentation of the image at first [9]. In this respect, although segmenting
the 2D slices needs extra time compared to the time required for 3D volume, the 2D
techniques provide higher reliability for image quality [10]. On the other hand, the
brain tumor disease is critical and serious. It affects the human body and cause death
if it is not detected quickly and accurately. Therefore, developing a new medical
system depending on the clustering techniques is needed to detect the brain tumor
accurately and with less time especially when we use the 3D MRI images.

In this chapter, the framework is started with the pre-processing phase. Then, the
tumor area is extracted by using our proposed KPSO technique [11, 12]. After that,
the post-processing and segmentation phases are applied. We use all 2D slices of
the 3D image to get the actual volume of the tumor in the brain. Finally, the
performance and accuracy are evaluated in the validation phase. There are multiple
methods that are used to segment directly the 3D images, such as Atlas-based
segmentation. However, it is limited by the fact that the segmentation results highly
depend on the quality of affine registration and consumed time in Atlas construc-
tion. A slight misalignment of the issues usually leads to a dramatic decrease in
segmentation accuracy [13]. On the other hand, segmenting each slice provides
more precision.

The current chapter is organized as follows, in Sect. 2; we introduce some of the
current scientific work in medical image segmentation. Section 3 presented the
materials and methods used in this work. It describes the image dataset used in this
work. It shows the proposed medical image segmentation system based on our
proposed hybrid clustering technique to detect the brain tumor based on 3D MRI
images. Section 4 depicts the experimental results obtained from the evaluation of
our framework using the before mentioned dataset and discusses the main questions
derived from it. Finally, conclusion and future work are drawn in Sect. 5.

2 Related Work

Many researchers presented methods for 3D brain tumor segmentation. They used
several image segmentation techniques based on different imaging modalities. For
example, Jiang et al. [14] performed a method based on multimodal brain MR
images, like T1, T2, post-Gadolinium T1, and FLAIR sequences. It depends on two
classifiers. The first is a global classifier and the second is a custom classifier. The
global was trained by using samples from the population feature set, and the custom
classifier was trained by using samples from seed points in the testing image. The
procedure of their proposed method consisted of four steps started with feature
extraction by Gabor filter, and the feature volumes were generated by stacking the
2D image slices features. Then they did a distance metric learning and classifiers
training. After that, they did the optimization by graph cut. The main limitations of
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this method are that it was a semi-automatic method. Besides that, the high
dimension of the features slowed down the convergence of the algorithm. It was
time-consuming especially in training the global classifier. It takes about 2 h to train
the global classifier containing 57 cases with four modalities.

Ali et al. [15] determined volume of Brain Tumor from multiple MRI slices in the
3D image. The authors enhanced the slices of MRI brain images by filtering the
image using a bilateral filter and make the erosion and dilation by the morphological
process then they made edge detection by Sobel operator. After that, they made skull
removal by morphological operations. In the end, they contoured the tumor area,
constructed the 3D image for the tumor and determining the location of the tumor
within the brain. The limitation of this method, they made morphological operations
many times to extract the tumor only in each slice, of course, that is time-consuming
especially with a large number of slices. They put into account only the accuracy and
ignored time. In addition, it is not an entirely automatic method.

Alomoush et al. [16] produced another method combined with a firefly algorithm
FA and Fuzzy C-Means FCM to detect the brain tumor in the brain MRI image.
They used FA in generating near-optimal initial cluster centers for FCM in the
initialization step of FCM algorithm. At first, the FA examined the search space of
the given data set to determine the near-optimal cluster centers. The cluster centers
were assessed by using FCM objective function. Second, the generated cluster
centers that had been identified were employed as the preliminary cluster centers for
the FCM algorithm. They tested their algorithm on 3D MRI images of multiple 2D
slices. The authors compared their method, with FCM algorithm that used the
random initialization and proved that FCM with FA was faster than FCM with
random initialization. Although the authors did stripping skulls and other unwanted
contents in the image, they ignored removing noises by modern filters. FCM is very
sensitive to noises. It will not work well in the presence of these noises.

Thiagarajan and Bremananth [17] detected the brain tumor by using conditional
random field and artificial bee colony optimization. First, they extracted the MINC
dataset file or 3D MRI image to multiple 2D slices with a jpeg format. Then the
authors removed film artifacts like patient name and age by using tracking algorithm.
After that, they made image enhancement by using histogram equalization and the
median filter. Then they used the conditional random field to accelerate the per-
formance of the artificial bee colony optimization algorithm. By using the bina-
rization, they detected and calculated the shape of the tumor. The main disadvantage
of their method is that they did not use any algorithm to remove skulls as they used
tracking algorithm to eliminate film artifacts and used filters to remove noises from
the image. When they used the binarization to calculate the tumor area by calculated
the white pixels of total pixels some mistakes will do by calculating some skull
pixels also in addition to the tumor pixels. Moreover, although they dealt with the
3D MRI image, they did not make the 3D reconstruction and visualization.

Wu et al. [18] proposed a new image segmentation method to extracts the pelvic
on the structure. They used a combination of anatomical knowledge and compu-
tational techniques. They tested the performance of the training models by using
cross validation process has been designed to identify how segmentation can be
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affected variations in training sets. They also used “mean distance” and
“mis-segmented area.” to evaluate accuracy and results of segmentation. They used
multiple slices of CT. Their framework consisted of preprocessing as the first
part. The First part consisted of sub-steps including filtering, morphological oper-
ations, and image enhancement. The second part is the edge detection by the canny
edge detector. The third part of their method is a shape matching template detection.
In this part, they used about 100 bone templates to be compared to each CT slice.
The fourth part is using the registered active shape model to extract pelvic bone
tissues. Finally, the 3D pelvic model reconstruction from the multiple 2D seg-
menting CT slices using the iso surface method. They made the comparisons
between using their method and the deformable snake model. The disadvantages of
this method, it is time-consuming. Using the training models and segmenting all the
2D CT slices take much time to produce the segmenting 3D image. They used only
five training models because more training models cause more and more
time-consuming and not adding much to the accuracy of segmentation! Besides
that, the authors used the poor contrast CT image with less resolution.

Narkbuakaew et al. [19] made a 3D model of ribs cage. Their work depended on
the KM clustering technique and organized the clustered regions in subsequent
indexes of the background, soft-tissue, and hard tissue regions. The framework
started with the feature extraction of the entire image. Then they made clustering by
KM, which results in two regions. The authors after that identify the object region.
The clustering indexes were done. The authors made the 3D rib cage surface
modeling by Marching Cubes algorithm. The authors made the comparisons
between their method, 2D k-means, and 2D FCM. The advantage of this method is
that its running time is less than 2D KM, and 2D FCM. On the other hand, it is not
fully automatic because it requires manual adjustment of several parameters.
Moreover, the clustering relied on the basic feature components, gray and median
gray. The thing that cannot completely remove some undesirable regions appears in
the clustering results such as large kidney regions.

Piao et al. [20] segmented the kidneys cysts from the CT slices by making two
stages of segmentation. They segmented the kidney regions by graph cut method at
first and then segmented the cysts regions by combining FCM with the level set
method. After that, they made the 3D visualization and calculated the volume of the
cysts in the kidney. They calculated the volume of the organ or the cysts by multi-
plying the cyst area and thickness of each CT slice image. The sum of all cyst volumes
in all CT slices represents the total cyst volume. The disadvantages of this method, the
authors did not make image preprocessing to remove noises as the used techniques
such as FCM is so sensitive to noise. They used poor contrast CT images and didn’t
make resolution enhancement that was affect the 3D visualization negatively.

Ananth et al. [21] segmented the liver and hepatic tumors from the 3D CT
images. They made segmentation for the liver then for the tumors in the livers.
Their method depended on the geodesic graph cut based methods. In the processing
phase, authors used mean shift filter and thresholding method to reduce the pro-
cessing region and identify the edges by contouring. Then they made the seg-
mentation by the graph-based method for the liver. The authors segmented the liver
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from the background. Then they made the same steps to segment the tumors from
the liver in the CT images.

The disadvantages of this method are that they cannot be able to make an
estimation of the execution time. It was always different in terms of computational
power. Large hepatic tumors of the outer liver rim cannot be detected by the both
used (graph cut and geodesic graph cut) methods as they were excluded from the
surface liver volume. Moreover, the accuracy of tumor segmentation is not as high
as for liver surface. Finally, the authors used a mean shift filter that represented
more than 70 % of the total processing time, so, they can use an alternative filtering
to reduce time.

Bandhyopadhyay and Paul [22] segmented the brain tumor based on KM. They
made segmentation of images due to normal brain cell of (gray matter GM, white
matter WM, and CSF) and the tumor cells of the brain. Their workflow concludes
images enhancement. They made the enhancement by a 3–by–3 ‘unsharp’ contrast
enhancement filters. The authors made the registration by feature detection, the
feature matching, transform model estimation, and image resembling and trans-
formation. Fusing registered images is the determination of how to combine the
sensor images. They stripped the skull by using a mask generated from the original
image. They made the segmentation by KM in order to extract WM, GM, and
Tumor by calculating the histogram of the segmented image. The last step of their
workflow is an analysis of tumor dimension by applying a scan line method. The
method consists of three steps; the first is KM algorithm, the second is local
standard deviation guided grid based coarse grain localization, and final step is local
standard deviation guided grid based fine grain localization. In their experiments,
they used three types of MRI images. One is Sagittal view images (Side view), the
other is Coronal view images (Back view), and the last type is Axial view images
(Top view). The disadvantages of their work are, the image fusion technique gives
good result infusing multiple images. However, in some cases, it results in loss of
intensity and ignores anatomic details in the boundary of the tumor or overlapping
region of GM and WM in the brain. In addition, although KM clustering technique
is very simple and fast, it fails in some cases to detect the brain tumor specifically if
it is malignant tumor type. Another limitation is that the authors used slices of
sagittal, coronal and axial but segmented each view slices alone and did not perform
the 3D visualization of all slices to preview the 3D volume of the tumor.

We detected the brain tumor accurately with minimal time in 2D images by our
hybrid clustering technique in our proposed medical system [11, 12]. We kept in
mind to achieve the same objective in detecting the brain tumor on 3D images. The
same framework with 2D images is used, but we add some phases such as
post-processing and 3D modeling.

We used the KPSO clustering technique on the 2D slices of the 3D image to
guarantee the accuracy and reducing time as possible. By the proposed technique
and medical system, as far as we know, the time of segmenting 2D slices of the 3D
image is reduced. On the same time, the accuracy of segmenting the 3D image that
contains multiple 2D slices is increased by using 2D segmentation techniques. The
brain was modeled, and we visualized the real tumor area accurately. The results
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were compared with the ground truth. The total time of segmenting the 2D slices
was calculated. The total time was compared with the segmentation time of the
automatic method in ground truth; the result was very near. Besides that, we provide
three main images: clustering, thresholding, and contouring that is a very helper to
the user. Moreover, the 3D reconstruction that displays all clustering slices of the 3D
image to the user. The user in this phase can move the clustering slices through x, y
and z to observe all details containing small parts. Finally, display the volumetric
brain and the tumor area from the 2D slices after aligning them. The preprocessing
and post-processing phases are critical and help in accurate detection, reducing the
time and saving memory. We cannot deny that using accurate and contrast imaging
modality helps in the processing process as we used the MRI scanner.

3 The Proposed Segmentation Framework

The 3D image segmentation framework consists of six phases applied on the 2D and
3D MRI images to detect the brain tumor, as shown in Fig. 1. The six phases are the
preprocessing, the clustering, the segmentation, the post processing, the 3D

Fig. 1 The proposed 2D/3D medical image segmentation system
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modeling, and the evaluation stages. It is starting from the preprocessing which
consists of three steps skull removal, filtering and conversion of MRI from 3D to 2D
slices. The next phase is the clustering by our proposed KPSO. Then the
post-processing that consists of alignment and filtering. The alignment means con-
catenating all the 124 2D clustering slices again to produce the 3D clustering image.

After that, segmentation is done by a combination of the two segmentation
methods thresholding and level set. The former extracts the tumor from the brain by
making the binarization process that increases the brightness of the brain tumor
cells and darkens the background. The thresholding or binarization process clarifies
the tumor area to the physician. The thresholded image is used as an output to
display the tumor area and is matched with the smoothed image in the level set
process. This matching allows the level set to determine the tumor area from the
thresholded image to contour accurately. The second method or level set is used to
mark the brain tumor area in the smoothed image. It seems as an expert or physician
marks the tumor area in the MRI scan by a green color marker.

By using binarization and level set processes, our system provides the physician
with a good observation for the tumor area. We get benefits of using these image
segmentation methods thresholding and level set after clustering, and we avoided
the problems of them if they were used alone.

In parallel to the phase of segmentation, the modeling phase is used to view all
slices that were clustered by the 3D reconstruction and viewed the volume of tumor
in the brain from all clustering slices. The phases of the framework will be declared
in the subsequent.

3.1 Pre-processing Stage

In this phase, a series of processes is applied on the entered 3D MRI image before
clustering and segmentation. This 3D image consists of multiple 2D slices. We
make the processing for each slice because we will detect the tumor cells in each
one. So, the 3D image must be extracted to the 2D slices. The 3D image is in the
NRRD extension that has to be converted to JPG extension. However, before the
extraction and to save time we have to make skull removal and filtering.

• Skull removal: The contents of the brain image, such as the skull, scalp, spinal
and other unwanted structure are not necessary and take a long time in pro-
cessing besides they waste memory. Therefore, our objective in this phase is to
isolate only the brain that has the tumor cells to be detected from the entire
image. We used the brain surface extractor algorithm BSE to filter the image and
removed irregularities. It detects edges in the image. Then, it performs mor-
phological erosions and isolates the brain. It also performs surface cleanup and
image masking. The output of this sub-step is the isolated brain from the image
in NRRD image. The skull removal was done on the 3D image and, of course,
applied to all slices.
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• De-noising: Medical images suffer from poor contrasts, noises, artifacts, missing
or diffusive boundaries. They are very sensitive to noises especially the brain
images. MRI images are usually corrupted by disturbances, such as Gaussian
and Poisson noise. Gaussian noise prevails, which degrades the integrity of the
relevant image information. Gaussian noise is statistical noise that has the
probability density function equivalent to a normal distribution and tends to
make the image data Gaussian distributed. This noise has a property of being
additive in nature [23]. The vast majority of the de-noising algorithms assume
additive white Gaussian noise. There are some algorithms that designed for
Gaussian noise elimination, such as edge-preserving bilateral filter, total varia-
tion, and non-local means [11]. In this chapter, the median filter is used. We
provide free noised images into our proposed method to avoid
over-segmentation, under-segmentation, reduce processing time and raise the
accuracy.

The noises and artifacts in images were eliminated by using strong filtering
algorithm that is the median filter. The before mentioned algorithm is a nonlinear
filter. It is used as an effective method of removing noise without effect edges. It
preserves edges. Image processing researchers commonly assert that median fil-
tering is better than linear filtering for removing noise in the presence of edges [14].
On the other hand, the noise is removed by using a linear filter (bilateral filter) in the
experiments before using a median filter. We found that median filter removed
noise and gave the image more contrast and sharpness than a bilateral filter. It
moves pixel by pixel through the image and then it replaces each value with the
median value of neighboring pixels. The pattern of neighbors is called the window,
which slides, pixel by pixel over the image. The median is calculated by sorting all
values of the pixels of the window into numerical order and replacing the pixel
being considered with the middle or median pixel value.

The median filter is an effective method for eliminating certain kinds of noise,
specifically impulsive noise, such as salt and pepper. Although the median filter is
well suited for suppressing noise, under the median operation, fine details may be
erased, and the result may be similar to capillarity when the objects in the image are
close enough. Moreover, rounding the corners and mapping texture region to a
uniform shade are the other deficiencies of the median filter. To mitigate these
disadvantages, various approaches of the median filter have been developed such as
stack filters, multistage median, weighted median, rank conditioned rank selection,
and relaxed median [24].

The output of this step is the free noised brain image with no skulls. All slices in
the 3D image also have no noises and without skulls or unwanted structures.

• 3D Images to 2D Images Conversion: MRI displays the anatomy in the axial,
sagittal and coronal planes. The slice thicknesses of the images vary between 1
to 10 mm. MRI is especially useful for coronal and sagittal imaging.
A contiguous set of 2D slices provides a 3D array of image intensity values in
the imaging modality. A 3D image can be obtained from many consecutive or
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relative 2D slices. By using the MIPAV program, we can extract the 3D image
into multiple 2D slices that can be segmented accurately with our system and in
minimal time. The input is the NRRD 3D MRI images. The output of this
sub-step is 2D MRI slices with a dimension of 256 � 256 with the extension of
JPG, which we can deal with in our MATLAB platform.

3.2 Clustering Stage

In this phase, the integration was done between K-means (KM) and particle swarm
optimization (PSO) to produce KPSO. KM and PSO are from different categories.

• K-Means Clustering Technique (KM): It is an exclusive clustering technique.
Data points are belonging to only one cluster and cannot be included in another
cluster. It is the most popular, simple and fast clustering technique. It depends
on initializing a number of clusters at the start of the algorithm [25]. The
algorithm then determines the cluster centers. It depends on the number of
clusters that the user will initialize. The user may initialize a false number of
clusters that will lead to false or inaccurate results. It is not suitable for
real-world datasets in which there are no boundaries between the clusters.
Moreover, it is sensitive to outliers and skewed distributions. It may miss small
clusters if it converges to a local minimum, the thing that may lead to the poor or
false representation of data [26, 27].

• Particle Swarm Optimization (PSO): It is an optimizing clustering technique.
This technique works similar to fishes or birds flocking in search of food [28].
There is a good chance that the flock will find a place with the highest con-
centration of food if each bird follows the track that combines three common
rules. First, keep flying in the same direction. Second, return to the location
where it found the highest concentration of insects so far. Finally, move toward
the neighboring bird that cries the loudest. The merits of the PSO encouraged us
to make the integration between it and KM. The advantages of PSO are that it
has no overlapping and depends on the particle speed in the search. Moreover,
calculations are very simple. It has significant optimization ability. On the other
hand, the disadvantage of the PSO and other optimization techniques is that of
becoming trapped in a local optimum. Thus, it may work in some problems but
may fail on others. The behavior of the swarm can be divided into two types:
exploitation and exploration. The former allows a good short term performance.
However, if the exploitation level is too high, then the algorithm may be stuck in
local solutions. The second allows exploring new solutions. Thus, it improves
the long-term performance. However, if the exploration level is too high, then
the algorithm may take too much time to find the global solution.

KPSO approach is applied on the resulting 2D slices as, in the same way that we
explained in our paper [11, 12]. The KPSO approach is the integration of KM and
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the optimization clustering technique PSO. KPSO provides global optimization
with less processing time. It helps KM to escape from local optima by using PSO
and helps PSO to reduce computation time by using KM.

Figure 2 shows the flowchart of our hybrid clustering technique KPSO. The idea of
the PSO is alike with the bird’s flock or fish school. A swarm is a set of particles or
birds moving around dimensional search space to reach the target or food. Particles are
the pixels, and the search space is the image. Each particle in the swarm makes use of
its memory and knowledge gained by the swarm as a whole to find the best solution.
Also, every particle has a personal position and velocity that affect its movement in
space. The k, No of particles, an inertial weight that controls the velocities are ini-
tialized. It has maximum weight (0.9) and minimum weight (0.4). It decreases from
0.9 to 0.4., randsor (r1, r2) that balancing the exploitation or local search and the
exploring or global search. The value is from [0, 1], constants c1 = c2 = 2, that
control how far a particle will move in once a generation and No of iterations.

The algorithm starts with calculating the centers depending on the number of
clusters that was initialized. After that, grouping the points or pixels to the nearest
centroids depending on the Euclidian distance. The loop is continuous till there are
no points to be grouped to the centroids. The new centroids values are used for
particles in the resulting image to redistribute the scattered points and get the
optimal solution. Of course, there are two best values update each particle. The first
is the personal best (pbest) which is the best solution or fitness that has achieved so
far by that particle. The second value is global best (gbest) which is the best value
obtained so far by any particle in the neighborhood of that particle.

At first, we evaluate the fitness value after that calculate the current particle
position and current velocity by formulas 1 and 2 respectively. If the fitness value
of the particle is greater than pbest then modifying pbest and asking if that fitness
value of a particle is greater than gbest. If not and the fitness value is not greater
than modified pbest then updating velocity and position but if the fitness value of a
particle is greater than gbest then modifying gbest. Each particle modifies its
position using the current positions, velocities, the distance between the current
position and pbest, and the distance between the current position and the gbest.
Each particle updates its velocity and position until reach the max number of
iteration. The output of the algorithm is clustered image, optimal clusters centers,
and computation time.

vnewi ¼ w� voldi þ cl� rl� pbesti � Xold
i

� �þ c2� r2� gbestis � Xold
i

� � ð1Þ

where ѵi
new the new velocity of the particle i, w is the inertia weight, ѵi

old is the old
velocity of the particle i, Xold

i is the old position of the particle, c1 = c2 = 2, r1, r2
between [0, 1].

Xnew
i ¼ Xold

i þXnew
i ð2Þ

where Xnew
i is the new position of the particle i.
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Fig. 2 The flowchart of the KPSO clustering technique
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3.3 Segmentation Stage

In this phase, the output of the best results from KPSO hybrid technique will be
entered to the segmentation technique. Two segmentation techniques we used:
thresholding and active contour level set (for more details see [11, 12]). We got
only the tumor cells from the brain as the lighting areas in a dark background on the
other hand; we got the contouring areas of tumor in the original smoothing image.
They are represented as an expert marked the tumor areas with a green marker pen.
After thresholding, the 2D slices may be entered into the post-processing phases to
be denoised again to remove scattered points that are not belonging to any cluster.

3.4 Post-processing Stage

The post processing phase consists of two sub-steps. The first is an alignment of 2D
clustering slices or registration of the 2D clustering slices. The second is the fil-
tering by the median filter used for the clustering slices before be inserted during the
phase of modeling. The filtering can also be done after the thresholding and before
level set through the segmentation phase as we demonstrated before. The output
clustering images come from the clustering step will be entered in this phase in the
alignment of 2D clustering slices. In this sub-step, the slices are concatenated again
to be one 3D image as it was. They are converted from JPG slices to one NRRD
image (3D image again). Then, in parallel with the segmentation step, the 3D image
will be entered to the median filter to be enhanced after clustering and then will be
ready to be fed to the next phase.

3.5 Modeling Stage

In the modeling phase, the multiple clustering slices of the 3D image are visualized
from several views to be very obvious to the user. The goal of multi-viewing by 3D
reconstruction is to infer the geometrical structure of a scene captured by a col-
lection of images. After that, volume rendering was made to visualize the surface of
the brain.

• 3D Reconstruction: The output of the post-processing phase that is the 3D MRI
image with the extension of NRRD will be fed the 3D reconstruction. The view
of the 3D image is from the three orthogonal views (X, Y, Z) at their different
levels. The user can view the slides by clicking and holding on one slice, then
move it to see the effect. Of course, we make an MAT-file in Matlab that reads
all the slices of the 3D image and uses this MAT-file in the 3D reconstruction
procedure. We load the file after that containing the matrix of all 2D slices then
getting the coordinates x, y and z from using mesh grid. Plot slices by default in
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middle position and put labels. The volumetric slices were plotted by slice
function in MATLAB.

• Volume Rendering: The same 2D clustering slices that are converted to one 3D
image will be entered into the volume rendering sub-step that visualizing the
volume of the tumor in the brain. The tumor was clustered in the 2D slices
images. The surface rendering is done on the NRRD 3D image. The output of
this sub-step is the volumetric brain with segmenting volumetric tumor.

3.6 Validation Stage

In the validation phase, the segmenting images by KPSO were compared with the
ground truth. The results were evaluated by confusion matrix as shown in Table 1.
True positive (TP) means that the case contains the tumor, and the tumor is detected
by the system. True negative (TN) means that the case does not contain tumor, and
the system does not detect the tumor. False positive (FP) means that the case has not
the tumor and system detects the tumor. False negative (FN) means that the case has
a tumor, and the system does not detect the tumor.

Precision is the correct segmentation that refers to the percentage of true posi-
tive. In other words, it is the number of pixels that belong to a cluster and is
segmented into that cluster. Recall, or sensitivity is defined as the number of the
true positives divided by the total number of elements that belong to the positive
cluster [29]. The performance matrix will be illustrated in details in experimental
results.

4 Experimental Results

4.1 Dataset

The dataset we used in brain tumor segmentation is called tumor base. It was
created as a joint effort between the Department of Neurosurgery, the Surgical
Planning Laboratory, Department of Radiology of the Harvard Medical School at
the Brigham, and Women’s Hospital in Boston MA [30]. The data set consists of

Table 1 The confusion
matrix

Predicted

Positive Negative

Actual Positive TP FN

Negative FP TN

94 E.A. Abdel Maksoud and M. Elmogy



MRI images of several brain tumor patients and segmentation images of the brain
tumor from these MRI images.

Manual segmentations obtained by neurosurgeons and automated segmentations
obtained by the method of [31, 32]. The dataset format with no header, unsigned
short 16 bit (byte order: MSB-LSB), the Acquisition information is SPGR T1 POST
GAD, the resolution: 256 � 256 � 124, Pixel size: 0.9375 � 0.9375 mm, slice
thickness: 1.5 mm, slice gap: 0.0 mm and acquisition order: LR. The data set
consists of ten cases each case with different tumor type, location and number of
slices. The used dataset in case 1 has 124 slices.

4.2 Results

Figure 3 illustrates the steps of our framework on the tumor base dataset on the
slice # 50. Image (a) shows the original 3D MRI. Image (b) displays the noisy slice
number 50 with the skull. Image (c) shows the processed image after applying the
median filter on the 3D MRI image with its 124 -2D slices. Image (d) displays the
output of the brain surface extractor procedure on the 3D MRI. Image (e) illustrates
the clustering of each 2D slice of the 3D image by using our proposed method
KPSO. Of course, the 3D image was extracted to its 2D slices before clustering
process. Image (f) shows the form of the concatenated clustered 2D slices to be
aligned again into 3D clustered image that contains slice # 50. On the other hand,
image (g) shows the binarization process on the clustering 2D slices. Also, it shows
that the image after thresholding has pepper and salt noise. Therefore, we use
median filter again in the post-processing to remove noise. Image (h) shows the
output of median filter on the resulting thresholding image. Image (i) introduces the
contouring of the tumor area that was determined by clustering and thresholding.
The contouring is done on the smoothed image by the level set method. The tumor
area is determined by the green line. Image (j) shows the ground truth of that image
to be compared with the output image.

Figure 4 illustrates the steps of our framework on the tumor base data set on the
slice # 60 as examples of the 2D slices. As in Fig. 3, the steps are the same, but we
can observe that slice # 60 differs from slice # 50. In addition, the tumor area differs
from the tumor area in slice # 50.

After we had made the validation of the 2D slices by comparing the clustering
results with the ground truth, we constructed the 3D modeling phase. In the 3D
modeling phase, the 3D reconstruction of all 122 2D slices of the 3D image. After
that, the volume rendering was made. We made the volume rendering for our
concatenated clustering 2D slices and also the automated ground truth result to
compare the brain and the tumor volume with the automated ground truth.

Figure 5 shows the 3D reconstruction of the 2D clustering slices of the 3D MRI
image in the MATLAB platform. The user in this phase can use the mouse to move
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the slices through x, y and z-axis. The user can see all the clustering 2D slices and
detect the tumor by the vision before the segmentation by thresholding and
level set.

Fig. 3 Applying the
proposed 3D framework on
3D MRI data set slice # 50.
a Original 3DMRI image.
b Slice # 50. cMedian filter in
preprocess. d BSE.
e Clustering. f Concatenate all
124 2D slice. g Thresholding.
h Median filter in post
process. i Level set. j Ground
truth
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Fig. 4 Applying proposed
3D framework on 3D MRI
data set slice # 60. a Original
3DMRI image. b Slice # 60.
c Median filter in pre-process.
d BSE. e Clustering.
f Concatenate all 2D slices.
g Thresholding. h Median
filter in post-processing.
i Level set. j Ground truth
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Figure 6 illustrates the difference between using and not using the median filter
on the concatenated 122-2D clustering slices before volume rendering. Of course,
by using a median filter, it increases the smoothness of the image but still the gabs
between the 2D slices make less smoothness in edges.

The next step is the volume rendering. Figure 7 shows the snapshot of the
volume rendering phase. The brain and the tumor cells were represented in three
images due to holding and dragging the image with a mouse. We put the snapshot
of three images to clarify that the user can move the resulting brain with the tumor
in any direction as he wants for most accurate observation. The importance of this

Fig. 5 The snapshot of the 3D reconstruction of 2D clustering slices

Fig. 6 The volume rendering of a concatenating image of 124 clustering 2D slices. a A
concatenating image of the clustering 2D slices before filter. b A concatenating image of the
clustering 2D slices after filter. c Our proposed system result
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phase is hidden in clarifying all the infected parts containing the small cells that
cannot be seen in the 2D slices. By this movement, the user can see all parts of the
brain clearly. We can observe that the surface is not smoothed enough because of
the gaps between the slices when were extracted and aligned or concatenated. If the
3D image is clustered a whole once, the gaps will be avoided.

Figure 8 shows the volume rendering of the ground truth 3D image. The figure
consists of three snapshots of the image after holding and dragging. We made the
comparison between the clustering slices that were resulted from our method KPSO
in our framework and the ground truth slices. Also, we made the volume rendering
for the ground truth slices by MIPAV program (Medical Image Processing and
Analysis Visualization) to evaluate our volume rendering results with the ground
truth.

On the other hand, we evaluated the performance of the 3D medical image
segmentation according to the confusion matrix as shown in Table 1.

The following formulas identify each element in the confusion matrix [33]:

True Positive (TP) ¼ No: of resulted n images having brain tumor
total No: of images

ð3Þ

TrueNegative (TN) ¼ No: of images that haven't tumor
total No: of images

ð4Þ

False Positive ðFPÞ ¼ No: of images that haven't tumor and detected positive
total No: of images

ð5Þ

Fig. 7 The volume rendering of the 3D image

Fig. 8 The volume rendering of automated 3D image ground truth
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FalseNegative (FN) ¼ No: of images have tumor and not detected
total No: of images

ð6Þ

Precision ¼ TP
ðTPþ FPÞ

� �

ð7Þ

Recall ¼ TP
ðTPþ FNÞ

� �

ð8Þ

Accuracy ¼ ðTPþTNÞ
ðTPþTNþ FPþ FNÞ

� �

ð9Þ

By applying these formulas and comparing the results of the clustering slices
with the ground truth, we found that TP = 1, TP rate = 100 %, FN = 0, TN = 0,
FP = 0. On the other hand, Precision, recall and accuracy rates are 100 % for the
tested dataset.

F-measure considers precision and recalls measuring the accuracy of the clus-
tering. F-measure ranging from 0 to 1 is a weighted average of the precision and
recall, whereas 0 shows worst score and 1 shows the best score. The F-measure can
be calculated using the following formula:

F� score ¼ 2� precision� recall
precisionþ recall

ð10Þ

From formula (10) we found that F-score = 1 which means the best score.
Table 2 shows the difference between the clustering time in minutes (m) by

using PSO and using the integration between KM and PSO. The table clarifies the
time of the four 2D and 3D datasets [11, 12].

Table 3 shows the mean of accuracies of the tested 2D and 3D images [11, 12].
The mean accuracy that the proposed system achieved based on the proposed
hybrid clustering technique KPSO is 98.75 % where it reduces the clustering time
by a mean of 10 min.

Table 2 The clustering time of PSO and KPSO

Datasets [11, 12] PSO (m) KPSO (m) Reduced time (m)

DS1 12.61 4.36 8.25

DS2 65.3 42.50 22.8

DS3 23.61 18.52 5.41

The tested dataset (DS4) 17 13 4

Table 3 The means of
accuracy and reduced time

The mean of the reduced time is 10 min

The mean of accuracy is 98.75 %
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Table 4 clarifies the details of the total execution time (s) of the proposed
system.Table 5 shows the comparisons between our system and the other systems
based on the atlas to segment 3D images due to fourth dataset tumor base (DS4)
[29]. Table 6 shows the comparison between our system and other systems due to
sensitivity, specificity and total execution time in the third dataset BRATS (DS3)
[34].

The systems [31, 33, 35] based on Atlas approaches that consume time in Atlas
construction and training dataset. For example, Wang et al. [35] takes 30 min to
drive Atlas. The previous tables clarify the comparison between segmenting the 3D
image by 2D segmentation techniques that segment each 2D slice and the others
that segment the whole 3D image once. Segmenting 2D slices of the 3D image
takes more time than segmenting the whole 3D image once, but the former is more
accurate than the second.

Table 4 The proposed system execution time

System phases Time (seconds (s) or minutes (m))

BSE 30 s

Median filter 10 s

Slices extraction 91 s

Clustering by KPSO 13 m

Concatenation 1 m

Thresholding 2 s

Median filter 1.5 s

Level set 17 m

3D reconstruction 1.5 s

Volume rendering 57 s

Total execution time is 34 m

Table 5 The comparison between proposed system and the other systems in tumor base

System Accuracy
(%)

Execution time
(m)

Operator time of interaction for
initialization

Warfield et al. [31] 99.68 76 4

Manual [31] 98.60 180 1–3 for each slice

The proposed
system

100 34 for case 1

Table 6 The comparison between the proposed system and other systems in BRATS

System Sensitivity (%) Specificity (%) Total time

Jiang et al. [33] 87.45 83.12 Not estimated

Wang et al. [35] 91.9 91.9 120 m for 198 images

The proposed system 100 100 43 m for 81 images
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For 3D MRI images, the real total execution time of clustering 124-2D slices in
case one by our KPSO technique is 13 min. On the other hand, the operator time of
the automated system [31] is between 5 and 10 min for the ten cases. It takes 76 m
in segmentation. The accuracy is 99.68 %. The manual segmentation operator time
is from 3 to 5 h of the 10 cases in the ground truth images. From this result, we can
prove that our approach solved the problem of the segmenting the 2D slices of the
3D image. It needs extremely time as reduced the execution time as shown in
Table 2 and also segmented the tumor accurately.

4.3 Discussion

We can make a constant number of clusters and calculating the means of these
clusters. When k clusters equal 4, it gives best results with our techniques. When
applying cluster no. = 3 on the dataset, we found that TP = 98.4 %, FN = 1.6 %.

The skull removal is critical because it reduces the time of execution and this
item indeed affect the time of overall segmentation system, especially if in dealing
with 3D images. Skull removal affects the calculation of the tumor area. Therefore,
the calculation will be false if not removing skulls. In addition, the skull removal
saves memory. On the other hand, BSE cannot be used on the MRI DICOM images
with dcm extension.

The 3D images with the extension of NRRD should be transformed into another
extension such as JPEG or JPG to be read in MATLAB.

The Median filter is critical after clustering the slices of the 3D MRI image. The
resulting concatenating 3D image will be affected by the smoothing accuracy. From
Fig. 7, we can see that the smoothing degree of the resulting image is low because
of the differences or gabs between slices.

The 2D clustering images that were saved in MAT file in MATLAB must be
smoothed by the median filter before saving to be used in the 3D reconstruction.

5 Conclusion and Future Work

Image segmentation plays a significant role in the medical image to help physicians
to diagnose the lesion and put the true treatment plane. A brain tumor is very
dangerous if not detected early. On the other hand, the brain images are very
sensitive. In the same time, it is very important to segment the 3D brain image. The
3D image segmentation visualizes the small hidden parts that may not be detected
by the physician. Therefore, segmenting the 3D medical images is very difficult. We
developed new medical image segmentation system to detect the brain tumor from
the 3D MRI, which consists of multiple 2D slices. By this system, we detected the
brain tumor accurately with minimum execution time from the 3D MRI images.
Although we extracted the 3D image to the 2D slices and segmented each slice to
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determine the tumor accurately in each one, we reduced the time by using our
approach KPSO. Besides that, we put into account reducing time in each phase of
the proposed system. Therefore, as far as we know, we broke down the base that
“Although segmenting the slices of the 3D image is accurate but it takes a long time
rather than segmenting the 3D image by the 3D techniques.”

The prospered system helps the physicians to see clearly the tumor areas and
cells in the brain image by resulting three images from each 2D slice in the 3D MRI
image. These images are the clustering, the thresholding, and the level set image.
After that, the system visualizes all of these 2D slices in 3D reconstruction. In the
last step, the system makes the volumetric vision of the 3D image to visualize the
brain and the tumor from the 2D clustering slices. The experiments proved the
effectiveness of our proposed system and integration method in detecting 2D and
3D images accurately with minimal execution time.

In the future, we will solve the problem of less brain surface smoothness in
volume rendering step and will also reduce the time without affecting the accuracy.
We will use different datasets not only in MRI brain images but also in other
imaging modalities on different lesions in other parts of the human body.
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Part II
Classification and Clustering



Comparison of CAD Systems for Three
Class Breast Tissue Density Classification
Using Mammographic Images

Kriti and Jitendra Virmani

Abstract It is well known that the changes in the breast tissue density are strongly
correlated with the risk of breast cancer development and therefore classifying the
breast tissue density as fatty, fatty–glandular and dense–glandular has become
clinically significant. It is believed that the changes in the tissue density can be
captured by computing the texture descriptors. Accordingly, the present work has
been carried out with an aim to explore the potential of Laws’ mask texture
descriptors for description of variations in breast tissue density using mammo-
graphic images. The work has been carried out on the 322 mammograms taken
from the MIAS dataset. The dataset consists of 106 fatty, 104 fatty–glandular and
112 dense–glandular images. The ROIs of size 200 � 200 pixels are extracted from
the center of the breast tissue, ignoring the pectoral muscle. For the design of a
computer aided diagnostic system for three class breast tissue density classification,
Laws’ texture descriptors have been computed using Laws’ masks of different
resolutions. Five statistical features i.e. mean, skewness, standard deviation, entropy
and kurtosis have been computed from all the Laws’ texture energy images gen-
erated from each ROI. The feature space dimensionality reduction has been carried
out by using principal component analysis. For the classification task kNN, PNN
and SVM classifiers have been used. After carrying out exhaustive experimentation,
it has been observed that PCA–SVM based CAD system design yields the highest
overall classification accuracy of 87.5 %, with individual class accuracy values of
84.9, 84.6 and 92.8 % for fatty, fatty–glandular and dense–glandular image classes
respectively. These results indicate the usefulness of the proposed CAD system for
breast tissue density classification.
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1 Introduction

The most commonly diagnosed disease among women that has become a major
health concern for the past few decades is breast cancer [1–3]. For the women in
United Kingdom, the lifetime risk of being diagnosed with breast cancer is 1 in 8
[4]. The study in [5] reported 1.67 million new cases of breast cancer worldwide in
the year 2012. It has been strongly advocated by many researchers in their study
that increased breast density is strongly correlated to the risk of developing breast
cancer [5–15]. The association between increased breast density and breast cancer
risk can be explained on the basis of effects that are caused by the hormones
mitogens and mutagens. The mitogens are known to affect the size of the cell
population in the breast and cell proliferation while mutagens increase the likeli-
hood of damage to these cells. Due to increased cell population, there is an increase
in reactive oxygen species (ROS) production and lipid peroxidation. The products
of lipid peroxidation; malondialdehyde (MDA) and isoprostanes catalyze the pro-
liferation of cells [14].

Breast cancer has a very high mortality rate but the chances of survival are
significantly improved if it is detected at an early stage. Different imaging
modalities like MRI, computerized tomography, ultrasound, etc. are used in the
diagnosis of breast abnormalities but mammography is considered to be the best
choice for detection due to its higher sensitivity [14, 16–24]. Mammography is an
X–ray imaging technique used to detect any abnormalities in the breast. There are
two types of mammography examination:

(a) Screening Mammography: Screening mammography is used to check for
breast abnormalities in asymptomatic women. This examination is used to
detect breast cancer at an early stage when there are no symptoms present.

(b) Diagnostic Mammography: Diagnostic mammography is performed when
either a patient has complaint of some lumps in the breast, pain or any
abnormality is detected during the screening process. It helps in determining
whether the symptoms indicate the presence of a malignancy and is also used
to find the exact location of the abnormalities.

On the basis of density, breast tissue can be classified into the following classes:

(a) Two–class classification: Fatty tissue (F)/Dense tissue (D).
(b) Three–class classification: Fatty tissue (F)/Fatty–glandular tissue (FG)/Dense–

glandular tissue (DG).
(c) Four–class BI–RADS classification: Almost entirely fatty tissue (B–I)/some

fibro–glandular tissue (B–II)/heterogeneously dense breast tissue (B–III)/ex-
tremely dense breast tissue (B–IV).

The typical fatty tissue being translucent to X–rays appears dark on a mam-
mogram whereas the dense tissues appear bright on the mammograms. The fatty–
glandular breast tissue is an intermediate stage between fatty and dense tissues
therefore a typical fatty–glandular breast tissue appears dark with some bright
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streaks on the mammogram. The mammograms are visually analyzed by the
radiologists to identify and differentiate between different density patterns of the
breast tissue. The typical breast tissue density patterns are easy to identify and
analyze. This analysis is however subjective and depends on the experience of the
radiologist. The appearances of atypical cases of the breast tissue density patterns
are highly overlapping and differentiating between these atypical cases through
visual analysis is considered to be a highly daunting task for the radiologists. The
sample images depicting the typical and atypical cases of breast tissue density
patterns are shown in Figs. 1 and 2, respectively.

In order to provide the radiologists with a second opinion tool for validating their
diagnosis and identify the atypical mammographic images correctly, various
computer aided diagnostic (CAD) systems have been developed in the past for
breast tissue density classification. A brief description of the related studies is
tabulated in Table 1.

From the extensive literature survey presented in Table 1, it can be observed that
most of the related studies are based on the pre–processing of mammograms to

Fig. 1 Sample mammograms showing typical cases. a Fatty class ‘mdb078’. b Fatty–glandular
class ‘mdb094’. c Dense–glandular class ‘mdb172’

Fig. 2 Sample mammograms showing atypical cases. a Fatty class ‘mdb156’. b Fatty–glandular
class ‘mdb228’. c Dense–glandular class ‘mdb058’
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extract the segmented breast tissue (SBT) after removing the pectoral muscle and
the background while very few studies have been carried out that report CAD
system designs based on ROIs extracted from the breast. It has also been shown in
[47] that the ROIs extracted from the center of the breast result in highest perfor-
mance as this region of the breast is densest. The ROI extraction method results in

Table 1 A description of studies carried out for breast tissue density classification

Investigators Dataset description

Database Classes ROI size No. of
images

Accuracy
(%)

Miller et al. [25] Collected by
investigator

2 SBT 40 80.0

Karssemeijer [26] Nijmegen (SBMD) 4 SBT 615 65.0

Blot et al. [27] MIAS (SBMD) 3 SBT 265 63.0

Bovis et al. [28] DDSM (SBMD) 2 SBT 377 96.7

Wang et al. [29] Collected by
investigator

4 SBT 195 71.0

Petroudi et al. [30] Oxford database
(SBMD)

4 SBT 132 76.0

Oliver et al. [31] DDSM (SBMD) 4 SBT 300 47.0

Bosch et al. [32] MIAS (SBMD) 3 SBT 322 91.3

4 95.4

DDSM (SBMD) 4 500 84.7

Muhimmah et al. [33] MIAS (SBMD) 3 SBT 321 77.5

Castella et al. [34] Collected by
investigator

4 256 � 256 352 83.0

Oliver et al. [35] MIAS (SBMD) 4 SBT 322 86.0

DDSM (SBMD) 831 77.0

Subashini et al. [36] MIAS (SBMD) 3 SBT 43 95.4

Tzikopoulos et al. [37] MIAS (SBMD) 3 SBT 322 84.4

Li [38] MIAS (SBMD) 3 SBT 42 94.4

Mustra et al. [39] MIAS (SBMD) 3 512 � 384 322 82.0

KBD–FER (collected
by investigator)

2 144 97.2

Silva et al. [40] MIAS (SBMD) 3 300 � 300 320 77.1

Sharma et al. [41] MIAS (SBMD) 2 200 � 200 322 96.4

Sharma et al. [42] MIAS (SBMD) 2 200 � 200 212 97.2

Kriti et al. [43] MIAS (SBMD) 2 200 � 200 322 94.4

Virmani et al. [44] MIAS (SBMD) 2 200 � 200 322 96.2

Kriti et al. [45] MIAS (SBMD) 2 200 � 200 322 95.6

Kumar et al. [46] DDSM (SBMD) 4 128 � 128 480 73.7

Note SBMD Standard benchmark database, ROI Region of interest, SBT Segmented breast tissue

110 Kriti and J. Virmani



the elimination of an extra step of pre–processing to obtain the SBT after removing
the background and pectoral muscle.

K.I. Laws developed a method for texture analysis where an image was filtered
with various two–dimensional masks to find its texture properties which proved to be
useful for texture analysis. In this method five kernels namely Level (L), Edge (E),
Spot (S), Wave (W) and Ripple (R) are used to form different masks used for filtering
purposes [48]. Laws’ mask analysis is considered to be one of the best methods for
texture analysis in image processing applications like breast cancer detection [49,
50], classification of liver diseases [51], bone texture analysis [52] etc.

Thus in the present work, considering the effect of ROI size and location on
performance of the algorithms, a CAD system design is proposed for three–class
classification of different breast tissue density patterns based on their underlying
texture characteristics computed using Laws’ mask texture analysis.

The rest of the paper is organised into 3 sections. Section 2 explains the
methodology adopted in the present work for three–class breast tissue density
classification, giving a brief description of the dataset and proposed CAD system
design. The various experiments carried out for classifying the mammographic
images are explained in Sect. 3 and the conclusions drawn from the present work
are reported in Sect. 4.

2 Methodology

2.1 Description of the Dataset

For the present work mammographic images have been taken from a publicly
available database, mini–MIAS (Mammographic Image Analysis Society). The
database contains 322 Medio Lateral Oblique (MLO) view mammographic images.
The size of each image is 1024 � 1024 pixels with 256 gray scale tones and a 96
dpi horizontal and vertical resolution. The images in the database are divided into
three categories on the basis of density, fatty (106 images), fatty–glandular (104
images) and dense–glandular (112 images). The database includes the name of each
image in form of a mnemonic with prefix ‘mdb’ and a three digit number. The
database also includes nature of the breast tissue, location of abnormality, the radius
of the circle enclosing the abnormality and its severity [53].

2.2 Region of Interest (ROI) Selection

The ROI size is selected carefully, considering the fact that with the selected ROI
size, there should be a good population of pixels available for calculating the
texture properties. For evaluation, the present work considers an ROI of size

Comparison of CAD Systems for Three Class Breast Tissue Density … 111



200 � 200 pixels extracted manually from the center of the breast tissue for each
mammographic image. The ROI size of 200 � 200 has been taken based on the
reference in the previous studies [41, 42]. The process of extraction of ROI from the
mammographic image is shown in Fig. 3.

2.3 Proposed CAD System Design

The computer aided diagnostic (CAD) systems are nowadays widely used to
identify the hidden abnormalities that might be missed by the radiologists during
visual analysis hence improving the overall diagnostic accuracy [54–67]. The
experimental workflow to design a CAD system for three–class breast tissue density
classification is shown in Fig. 4.

The proposed CAD system consists of three modules: feature extraction module,
feature space dimensionality reduction module and classification module. From the
extracted ROIs, Laws’ texture descriptors are calculated using Laws’ masks of
different lengths to form the feature vectors (FVs). In the feature space dimen-
sionality reduction module, to remove the redundant features from the FVs, the
principal component analysis (PCA) algorithm has been applied and reduced fea-
ture vectors (RFVs) consisting of principal components (PCs) have been computed.
In the classification module, the computed FVs and RFVs have been fed to different
classifiers namely k–nearest neighbour (kNN), probabilistic neural network
(PNN) and support vector machine (SVM) to classify the mammographic images

Fig. 3 Process of ROI
extraction
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into one of the three classes: fatty, fatty–glandular and dense–glandular according
to the density information.

Feature Extraction Module. In the field of medical imaging, the process of
feature extraction is used to convert the texture features of an image into mathe-
matical descriptors to quantify the textural properties exhibited by the image. The
textural features from images can be extracted using different methods–statistical
methods, signal processing based methods and transform domain methods. These
methods have been depicted in Fig. 5.

In the present work, a signal processing based technique called Laws’ mask
analysis is used. In this technique the images are filtered with specific masks to
extract different textural properties from the images. The masks are formed by
combinations of different one–dimensional kernels. Five kernels namely Level (L),
Edge (E), Spot (S), Wave (W) and Ripple (R) are used to form different masks used
in feature extraction process. Further, the length of these kernels can be 3, 5, 7 and 9
[48, 51, 52, 68, 69]. A description of these one–dimensional kernels is given in
Table 2.

The one–dimensional kernels shown in Table 2 are convolved with each other to
form the two–dimensional masks used for filtering the images to calculate texture
features. The resultant two–dimensional masks for each kernel length are shown in
Fig. 6. The process of feature extraction using Laws’ mask analysis is depicted in
Fig. 7.

Fig. 4 Experimental workflow for the design of CAD system
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The above steps are demonstrated with an example below:
Step 1 Consider Laws’ mask of length 3. Convolve the extracted ROIs with each

of the above nine 2D filters. Suppose the ROI of size 200 � 200 is
convolved with the 2D filter S3S3 to form a texture image (TIS3S3).

TIS3S3 = ROI� S3S3 ð1Þ

Step 2 The mask L3L3 having zero mean is used to form contrast invariant texture
images.

Fig. 5 Different methods used for feature extraction

Table 2 Laws’ kernels of different lengths

l 1D Filter coefficients No. of 2D
laws’ masks

No. of TR
images

3 Level 3 = [1, 2, 1], Edge 3 = [–1, 0, 1], Spot 3 = [–1, 2, –1] 9 6

5 Level 5 = [1, 4, 6, 4, 1], Edge 5 = [–1, –2, 0, 2, 1], Spot
5 = [–1, 0, 2, 0, –1], Wave 5 = [–1, 2, 0, –2 1], Ripple
5 = [1, –4, 6, –4, 1]

25 15

7 Level 7 = [1, 6, 15, 20, 15, 6, 1], Edge 7 = [–1, –4, –5, 0, 5,
4, 1], Spot 7 = [–1, –2, 1, 4, 1, –2, –1]

9 6

9 Level 9 = [1, 8, 28, 56, 70, 56, 28, 8, 1], Edge 9 = [1, 4, 4,
–4, –10, –4, 4, 4, 1], Spot 9 = [1, 0, –4, 0, 6, 0, –4, 0, 1],
Wave 9 = [1, –4, 4, –4, –10, 4, 4, –4, 1], Ripple 9 = [1, –8,
28, –56, 70, –56, 28, –8, 1]

25 15

Note l Length of kernel, TR Rotation invariant texture images
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Fig. 6 2D Laws’ masks: a Law’s masks derived from kernel length 3. b Laws’ masks derived
from kernel length 5. c Law’s masks derived from kernel length 7. d Laws’ masks derived from
kernel length 9

Fig. 7 Steps followed in
process of feature extraction
Laws’ mask analysis
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Normalise (TImaskÞ =
TImask

TIL3L3
ð2Þ

Step 3 The resultant normalized TIs are passed through a 15 � 15 window to
derive 9 texture energy images (TEMs).

TEMi;j ¼
X

7

u¼�7

X

7

v¼�7

Normalize TIiþ u;jþ v
� �

�

�

�

� ð3Þ

Step 4 Out of 9 TEMs, 6 rotationally invariant texture energy images (TRs) are
obtained by averaging.

TRS3L3 ¼ TEMS3L3 þTEML3S3

2
ð4Þ

Step 5 From the derived TRs five statistical parameters–mean, standard deviation,
skewness, kurtosis and entropy [51, 68] are computed, thus a total of 30
Laws’ texture features (6 TRs � 5 statistical parameters) are calculated for
each ROI. These statistical parameters are defined as:

Mean ¼
PM

i¼0

PN
j¼0 ðTRi;jÞ

M� N
: ð5Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PM
i¼0

PN
j¼0 TRi;j �Mean

� �2

M� N

s

ð6Þ

Skewness =

PM
i¼0

PN
j¼0 TRi;j �Mean

� �3

M� N� SD3 ð7Þ

Kurtosis ¼
PM

i¼0

PN
j¼0 TRi;j �Mean

� �4

M � N � SD4 � 3 ð8Þ

Entropy =

PM
i¼0

PN
j¼0 TRi;j

� �2

M� N
ð9Þ

Proceeding in the similar manner as above, Laws’ texture features can also be
computed for the masks of length 5, 7 and 9 as shown in Table 2.

The brief description of FVs computed using Laws’ mask analysis as used in the
present work are described in Table 3.

Feature Space Dimensionality Reduction Module. Some of the computed
feature vectors (FVs) may contain redundant or correlated features which must be
eliminated. In the present work, the principal component analysis (PCA) algorithm
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has been used to obtain optimal attributes for the classification task [70–74]. The
main steps followed in the PCA algorithm are shown in Fig. 8.

The optimal number of PCs resulting in highest classification accuracy for training
dataset is used for obtaining reduced feature vectors (RFVs) as described in Table 4.

Classification Module. Classification is a technique used in machine learning to
predict the class of an unknown data instance based on the training data set,

Table 3 FVs description

FV Description l

FV1 FV formed by Laws’ mask of length 3 30 (5 features calculated from 6 TR images)

FV2 FV formed by Laws’ mask of length 5 75 (5 features calculated from 15 TR images)

FV3 FV formed by Laws’ mask of length 7 30 (5 features calculated from 6 TR images)

FV4 FV formed by Laws’ mask of length 9 75 (5 features calculated from 15 TR images)

Note FV Feature vector, l Length of FV, TR Rotation invariant image

Fig. 8 Steps followed in
Principal component analysis
algorithm

Table 4 RFVs description RFV Description

RFV1 Obtained by applying PCA to FV1

RFV2 Obtained by applying PCA to FV2

RFV3 Obtained by applying PCA to FV3

RFV4 Obtained by applying PCA to FV4

Note RFV Reduced feature vector, FV Feature vector
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containing instances whose class membership is known. In the present work,
classifiers like kNN, PNN and SVM are used to classify the instances of the testing
dataset. Before feeding the extracted FVs and RFVs to the classifiers, the features
are normalised in the range [0, 1] by using min–max procedure to avoid any bias
caused by unbalanced feature values.

(1) k–nearest neighbour (kNN) classifier: The kNN classifier is used to estimate
the class of an unknown instance from its neighbouring instances. It tries to
assemble together the instances of the training feature vector into separate
classes based on distance metric. The class of an unknown instance is decided
by a majority vote of its neighbouring instances in the training dataset [71, 75–
77]. There are many distance metrics that can be used in kNN classification
such as Manhattan distance, Minkowski distance, Hamming distance,
Mahalanobis distance etc., but Euclidean distance is the most commonly used
distance metric. In order to design an efficient kNN classifier the optimal value
of k is required. In the present work, the optimal values of (a) the parameter
k and (b) the number of PCs to be retained are determined by exhaustive
experimentation with k 2 1; 2; . . .; 9; 10f g and number of PCs
2 1; 2; . . .; 14; 15f g. In case the accuracy values are same for more than one
value of the parameter k, smallest value of k is selected for the classification
task.

(2) Probabilistic neural network (PNN) classifier: The PNN classifier belongs to a
class of supervised (feed–forward) neural network classifiers used for deter-
mining the probability of class membership of an instance [78–80]. The PNN
architecture has four layers: input layer, pattern layer, summation layer and
output layer. The input layer consists of ‘n’ neurons which accept the primitive
values. The results obtained in the input unit are transmitted to the hidden units
of the pattern layer where the response of each unit is calculated. In the pattern
layer, there are ‘p’ neurons, one for each class. The pdf (probability density
function) of each class is defined in the pattern layer on the basis of training
data and the optimized kernel width parameter Sp also called the spread
parameter. The summation layer sums the values of each hidden unit to get
response in each category. To obtain the class of the unknown instance,
decision layer selects the maximum response from all categories. The optimal
choice of Sp is crucial for the classification task. In order to design an efficient
PNN classifier the optimal value of Sp is required. In the present work, the
optimal values of (a) the spread parameter Sp, and (b) the number of PCs
to be retained are determined by exhaustive experimentation with
Sp2 1; 2; . . .; 9; 10f g and number of PCs 2 1; 2; . . .; 14; 15f g.

(3) Support vector machine (SVM) classifier: In the present work, SVM classifier
has been implemented using one-against-one (OAO) approach for multiclass
SVM provided by LibSVM library [81]. The Gaussian radial basis function
kernel has been used for non-linear mapping of training data into higher
dimensional feature space. In order to design an efficient SVM classifier, the
optimal value of C and c are obtained by grid-search procedure i.e., for each
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combination of (C, c) such that, C2 2�4; 2�3; . . .; 215
� �

and
c2 2�12; 2�11; . . .; 24

� �

the 10-foldcross validation accuracy is obtained for
training data. The combination of C and c yielding the maximum training
accuracy are selected for generating the training model. Further, the optimal
number of PCs to be retained is determined by repeating the experiments with
different number of PCs 2 1; 2; . . .; 14; 15f g [73, 82–85].

Classification Performance Evaluation. The performance of the CAD system
for breast tissue density classification can be measured using overall classification
accuracy (OCA) and individual class accuracy (ICA). These values can be calcu-
lated using the confusion matrix (CM).

OCA ¼
P

No: of correctly classified ROIs of each class in testing datset
Total ROIs in testing dataset

ð10Þ

ICAClass ¼ No: of correctly classified ROIs of a particular class in testing dataset
Total no: of ROIs of a particular class in the testing dataset

ð11Þ

3 Results

The performance of the proposed CAD system to classify the mammographic
images based on their density has been evaluated by conducting various experi-
ments. A description of these experiments is given in Table 5.

Table 5 Description of experiments

Experiment I Classification performance evaluation of different FVs using kNN classifier

Experiment II Classification performance evaluation of different FVs using PNN classifier

Experiment
III

Classification performance evaluation of different FVs using SVM classifier

Experiment
IV

Classification performance evaluation of different RFVs using PCA–kNN
classifier

Experiment V Classification performance evaluation of different RFVs using PCA–PNN
classifier

Experiment
VI

Classification performance evaluation of different RFVs using PCA–SVM
classifier

Note FV Feature vector. RFV Reduced feature vector
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3.1 kNN Classifier Results: Experiment I

This experiment evaluates the classification performance of different FVs using the
kNN classifier. The results are reported in Table 6.

From Table 6, it is observed that for FV1, FV2, FV3 and FV4, the OCA values
are 83.2, 83.8, 86.9 and 78.8 %, respectively. For fatty class the ICA values are
83.0, 81.1, 86.7 and 73.5 % for FV1, FV2, FV3 and FV4, respectively. For fatty–
glandular class, the ICA values are 82.6, 84.6, 84.6 and 82.6 % for FV1, FV2, FV3
and FV4, respectively. For the dense–glandular class the ICA values are 83.9, 85.7,
89.2 and 80.3 % for FV1, FV2, FV3 and FV4, respectively. For testing dataset with
161 instances, in case of FV1, the total misclassified instances are 27 (27/161), for
FV2, the total misclassified instances are 26 (26/161), for FV3, the total misclas-
sified instances are 21 (21/161) and for FV4, the total misclassified instances are 34
(34/161).

3.2 PNN Classifier Results: Experiment II

This experiment evaluates the classification performance of different FVs using the
PNN classifier. The results are reported in Table 7.

From Table 7, it can be observed that for FV1, FV2, FV3 and FV4, the OCA
values are 85.0, 81.9, 83.8 and 78.2 %, respectively. For fatty class, the ICA values

Table 6 Classification performance of different FVs using kNN classifier

FV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

FV1 (30) F 44 6 3 83.2 83.0 82.6 83.9

FG 4 43 5

DG 0 9 47

FV2 (75) F 43 9 1 83.8 81.1 84.6 85.7

FG 4 44 4

DG 0 8 48

FV3 (30) F 46 5 2 86.9 86.7 84.6 89.2

FG 3 44 5

DG 0 6 50

FV4 (75) F 39 11 3 78.8 73.5 82.6 80.3

FG 3 43 6

DG 2 9 45

Note FV Feature vector, l Length of FV, CM Confusion Matrix, F Fatty class, FG Fatty–glandular
class DG Dense–glandular class, OCA Overall classification accuracy, ICAF Individual class
accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular class, ICADG

Individual class accuracy for dense–glandular class
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are 84.9, 83.0, 84.9 and 75.4 % for FV1, FV2, FV3 and FV4, respectively. For
fatty–glandular class, the ICA values are 90.3, 84.6, 88.4 and 88.4 % for FV1, FV2,
FV3 and FV4, respectively. For the dense–glandular class the ICA values are 80.3,
78.5, 78.5 and 71.4 % for FV1, FV2, FV3 and FV4, respectively. For testing
dataset with 161 instances, in case of FV1, the total misclassified instances are 24
(24/161), for FV2 the total misclassified instances are 29 (29/161), for FV3, the
total misclassified instances are 26 (26/161) and for FV4, total misclassified
instances are 35 (35/161).

3.3 SVM Classifier Results: Experiment III

This experiment evaluates the classification performance of different FVs using the
SVM classifier. The results are reported in Table 8.

From Table 8, it can be observed that for FV1, FV2, FV3 and FV4, the OCA
values are 86.3, 86.9, 83.2 and 84.4 %, respectively. For fatty class, the ICA values
are 86.7, 88.6, 90.5 and 81.1 % for FV1, FV2, FV3 and FV4, respectively. For
fatty–glandular class, the ICA values are 78.8, 78.8, 65.3 and 82.6 % for FV1, FV2,
FV3 and FV4, respectively. For the dense–glandular class the ICA values are 92.8,
92.8, 92.8 and 89.2 % for FV1, FV2, FV3 and FV4, respectively. For testing
dataset with 161 instances, in case of FV1, the total misclassified instances are 22
(22/161), for FV2 the total misclassified instances are 21 (21/161), for FV3, the
total misclassified instances are 27 (27/161) and for FV4, total misclassified
instances are 25 (25/161).

Table 7 Classification performance of different FVs using PNN classifier

FV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

FV1 (30) F 45 6 2 85.0 84.9 90.3 80.3

FG 3 47 2

DG 2 9 45

FV2 (75) F 44 9 0 81.9 83.0 84.6 78.5

FG 7 44 1

DG 3 9 44

FV3 (30) F 45 7 1 83.8 84.9 88.4 78.5

FG 4 46 2

DG 2 10 44

FV4 (75) F 40 13 0 78.2 75.4 88.4 71.4

FG 5 46 1

DG 6 10 40

Note FV Feature vector, l Length of FV, CM Confusion Matrix, F Fatty class, FG Fatty–glandular
class DG Dense–glandular class, OCA Overall classification accuracy, ICAF Individual class
accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular class, ICADG

Individual class accuracy for dense–glandular class
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3.4 PCA–kNN Classifier Results: Experiment IV

This experiment evaluates the classification performance of different RFVs using
the PCA–kNN classifier. The results are reported in Table 9.

From Table 9, it can be observed that for RFV1, RFV2, RFV3 and RFV4, the
OCA values are 85.0, 81.9, 86.9 and 79.5 %, respectively. For fatty class, the ICA
values are 77.3, 77.3, 83.0 and 69.8 % for RFV1, RFV2, RFV3 and RFV4,
respectively. For fatty–glandular class, the ICA values are 90.3, 88.4, 86.5 and
88.4 % for RFV1, RFV2, RFV3 and RFV4, respectively. For the dense–glandular
class the ICA values are 87.5, 80.3, 91.0 and 80.3 % for RFV1, RFV2, RFV3 and
RFV4, respectively. For testing dataset with 161 instances, in case of RFV1, the
total misclassified instances are 24 (24/161), for RFV2 the total misclassified
instances are 29 (29/161), for RFV3, the total misclassified instances are 21
(21/161) and for RFV4, total misclassified instances are 33 (33/161).

3.5 PCA–PNN Classifier Results: Experiment V

This experiment evaluates the classification performance of different RFVs using
the PCA–PNN classifier. The results are reported in Table 10.

From Table 10, it can be observed that for RFV1, RFV2, RFV3 and RFV4, the
OCA values are 83.8, 77.6, 85.0 and 74.5 %, respectively. For fatty class, the ICA

Table 8 Classification performance of different FVs using SVM classifier

FV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

FV1 (30) F 46 5 2 86.3 86.7 78.8 92.8

FG 8 41 3

DG 0 4 52

FV2 (75) F 47 5 1 86.9 88.6 78.8 92.8

FG 7 41 4

DG 0 4 52

FV3 (30) F 48 5 0 83.2 90.5 65.3 92.8

FG 12 34 6

DG 0 4 52

FV4 (75) F 43 9 1 84.4 81.1 82.6 89.2

FG 3 43 6

DG 0 6 50

Note FV Feature vector, l Length of FV, CM Confusion Matrix, F Fatty class, FG Fatty–glandular
class DG Dense–glandular class, OCA Overall classification accuracy, ICAF Individual class
accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular class, ICADG

Individual class accuracy for dense–glandular class
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values are 84.9, 75.4, 86.7 and 75.4 % for RFV1, RFV2, RFV3 and RFV4,
respectively. For fatty–glandular class, the ICA values are 90.3, 88.4, 90.3 and
86.5 % for RFV1, RFV2, RFV3 and RFV4, respectively. For the dense–glandular

Table 9 Classification performance of different RFVs using PCA–kNN classifier

RFV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

RFV1 (7) F 41 10 2 85.0 77.3 90.3 87.5

FG 2 47 3

DG 0 7 49

RFV2 (7) F 41 11 1 81.9 77.3 88.4 80.3

FG 1 46 5

DG 1 10 45

RFV3 (6) F 44 5 4 86.9 83.0 86.5 91.0

FG 1 45 6

DG 0 5 51

RFV4 (10) F 37 15 1 79.5 69.8 88.4 80.3

FG 2 46 4

DG 2 9 45

Note RFV Reduced feature vector, l Optimum number of PCs, CM Confusion Matrix, F Fatty
class, FG Fatty–glandular class DG Dense–glandular class, OCA Overall classification accuracy,
ICAF Individual class accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular
class, ICADG Individual class accuracy for dense–glandular class

Table 10 Classification performance of different RFVs using PCA–PNN classifier

RFV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

RFV1 (6) F 45 8 0 83.8 84.9 90.3 76.7

FG 4 47 1

DG 2 11 43

RFV2 (9) F 40 13 0 77.6 75.4 88.4 69.6

FG 2 46 4

DG 7 10 39

RFV3 (6) F 46 7 0 85.0 86.7 90.3 78.5

FG 3 47 2

DG 2 10 44

RFV4 (10) F 40 13 0 74.5 75.4 86.5 62.5

FG 7 45 0

DG 11 10 35

Note RFV Reduced feature vector, l Optimum number of PCs, CM Confusion Matrix, F Fatty
class, FG Fatty–glandular class DG Dense–glandular class, OCA Overall classification accuracy,
ICAF Individual class accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular
class, ICADG Individual class accuracy for dense–glandular class

Comparison of CAD Systems for Three Class Breast Tissue Density … 123



class the ICA values are 76.7, 69.6, 78.5 and 62.5 % for RFV1, RFV2, RFV3 and
RFV4, respectively. For testing dataset with 161 instances, in case of RFV1, the
total misclassified instances are 26 (26/161), for RFV2 the total misclassified
instances are 36 (36/161), for RFV3, the total misclassified instances are 24
(24/161) and for RFV4, total misclassified instances are 41 (41/161).

3.6 PCA–SVM Classifier Results: Experiment VI

This experiment evaluates the classification performance of different RFVs using
the PCA–SVM classifier. The results are reported in Table 11.

From Table 11, it can be observed that for RFV1, RFV2, RFV3 and RFV4, the
OCA values are 87.5, 85.7, 86.3 and 85.7 %, respectively. For fatty class the ICA
values are 84.9, 81.1, 86.7 and 83.0 % for RFV1, RFV2, RFV3 and RFV4,
respectively. For fatty–glandular class, the ICA values are 84.6, 86.5, 78.8 and
82.6 % for RFV1, RFV2, RFV3 and RFV4, respectively. For the dense–glandular
class the ICA values are 92.8, 89.2, 92.8 and 91.0 % for RFV1, RFV2, RFV3 and
RFV4, respectively. For testing dataset with 161 instances, in case of RFV1, the
total misclassified instances are 20 (20/161), for RFV2 the total misclassified
instances are 23 (23/161), for RFV3, the total misclassified instances are 22
(22/161) and for RFV4, total misclassified instances are 23 (23/161).

Table 11 Classification performance of different RFVs using PCA–SVM classifier

RFV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

RFV1 (7) F 45 8 0 87.5 84.9 84.6 92.8

FG 5 44 3

DG 0 4 52

RFV2 (8) F 43 9 1 85.7 81.1 86.5 89.2

FG 5 45 2

DG 1 5 50

RFV3 (8) F 46 7 0 86.3 86.7 78.8 92.8

FG 6 41 5

DG 0 4 52

RFV4 (8) F 44 9 0 85.7 83.0 82.6 91.0

FG 5 43 4

DG 0 5 51

Note RFV Reduced feature vector, l Optimum number of PCs, CM Confusion Matrix, F Fatty
class, FG Fatty–glandular class DG Dense–glandular class, OCA Overall classification accuracy,
ICAF Individual class accuracy for fatty class, ICAFG Individual class accuracy for fatty–glandular
class, ICADG Individual class accuracy for dense–glandular class
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4 Conclusion

In the present work the efficacy of Laws’ texture features derived using Laws’
masks of different resolutions have been tested for three-class breast tissue density
classification. From the results obtained, it can be observed that the RFV1 con-
sisting of first 7 PCs computed by applying PCA algorithm to FV1computed using
Laws’ mask of length 3 with SVM classifier is significant to discriminate between
the breast tissues exhibiting different density patterns achieving the highest overall
classification accuracy of 87.5 %. The proposed CAD system design for the present
work is shown in Fig. 9.

The proposed CAD system is different from earlier studies as most of the related
studies have pre–processed the mammograms for segmenting the breast tissue by
removal of pectoral muscle for their analysis while in the proposed CAD system
design a fixed size ROI (200 � 200 pixels) is manually extracted from the center of
the breast tissue thus eliminating the pre–processing step.

Fig. 9 Proposed CAD system design for three-class breast tissue density classification
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The high density of the breast tissue tends to mask the lesions present in the
breast which may be malignant or benign therefore, it is recommended that if the
proposed CAD system design classifies a testing instance to be of high density i.e.
belonging to either fatty-glandular class or dense-glandular class, then the radiol-
ogists should re-examine that particular mammogram for any the presence of any
lesion behind the high density tissue.
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Ensemble Classifiers Construction Using
Diversity Measures and Random Subspace
Algorithm Combination: Application
to Glaucoma Diagnosis

Soraya Cheriguene, Nabiha Azizi and Nilanjan Dey

Abstract Glaucoma is a group of eye diseases caused due to excessively high
intraocular pressure within the eye. Ensemble classifier construction has attracted
increasing interest in the field of pattern recognition and machine learning.
Diversity among the classifiers is important factor for each ensemble to be suc-
cessful. The most widely generation techniques are focused on incorporating the
concept of diversity by using different features or training subsets. a classifier
selection process becomes an important issue of multiple classifier system by
choosing the optimal subset of members that maximizes the performance. The main
goal of this study is to develop novel automated glaucoma diagnosis system which
analyze and classify retinal images using a novel classification approach based on
feature selection and static classifier selection schemes. Experimental results based
on RIM-ONE dataset are very encouraging.
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1 Introduction

Glaucoma is a group of eye diseases caused due to excessively high intraocular
pressure (IOP) within the eye. This increased pressure within the eye is usually
caused nerve damage resulting in progressive, permanent vision loss, starting with
unnoticeable blind spots at the edges of the field of vision, getting to tunnel vision,
so to blindness [1]. It has been reported that almost 30 million people worldwide
have glaucoma; the overall number of glaucomatous subjects is anticipated to
increase within the course of the current decade. By 2020, it is estimated that
approximately 80 million people worldwide will be diagnosed with glaucoma [2].
The yank Academy of ophthalmology recommends a routine screening once in
each 2–4 years, for people between the age bracket of 40–64 years and in each 1–
2 years, after 65 years of age which might help in detecting the disease in its early
stage.1 Glaucoma leads to (i) structural changes of the nerve fiber layer and the
optic nerve head (ONH) and (ii) synchronous functional failure of the field of
vision. Glaucoma is generally diagnosed based on the patient’s medical record,
IOP, visual field loss tests and also the manual assessment of the ONH via oph-
thalmoscopy or stereo fundus imaging [3].

Since, the feature is an attribute that may capture a precise property of the visual
image, either locally for objects or globally for the whole image. Thus, extracted
feature is an important widely used for analyzing medical images. An assortment of
approaches can be derived from features extraction such as: signal processing
(hilbert transform and Wavelet transformation) [4, 5], co-occurrence matrices [6].
Fourier power spectrum and neural networks [7] etc.

A number of classifiers are tested to improve the diagnosis of glaucoma disease
and minimizing possible errors that may be done because of inexperienced spe-
cialists. The latest researches have been proposing the combination of multiple
classifiers models as an attempt to improve the accuracy and efficiency of a clas-
sification system [8–10]. During learning, the base classifiers are created separately
on the training data set, then the next step is to choose an effective combination rule
such as majority voting for combining the outputs and produce the final ensemble
decision on a test pattern [11, 12].

The diversity between the classifiers forming the ensemble is recognized to be
one of the required characteristics to achieve high degree of accuracy [10, 13]. In
other words, there is no gain in combining identical components. Many methods
have been developed to enforce diversity among the base learners [14].

The largest set of methods generates ensemble classifiers by using different
training sets. Bagging and Boosting [15, 16] are two of the most popular ensemble
approaches based on the latest method. Bagging (after Bootstrap aggregating)
produces diversity by generating different bootstrap samples from the original
training set for each base classifier. Bootstrapping is less effective when the training
sample size is large compared with the data dimensionality. Hence, in bagging,

1http://www.glaucoma.org/glaucoma/diagnostic-tests.php.
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when the number of training objects decreases, classifiers in the ensemble become
less diverse. Boosting is a deterministic procedure, in which the training sets are
sampled sequentially based on the results of the previous iteration. In contrast,
bagging obtained the training sets and the classifiers in parallel and randomly. The
most widely used boosting method is Adaboost (Adaptive Boosting) and its
numerous variants.

In another group of ensemble classifiers, the diversity among the base members is
achieved by dividing the input feature space where the base classifiers are trained on
different feature subsets, i.e. RandomSub [17]. TheRandomSubspacesmethod based
on selecting different subsets of attribute to train each of the component classifiers.

Given a large number of classifiers, a classifier selection process becomes an
important issue of multiple classifier system (MCS) design. The selection of a
classifier can be either static or dynamic. In Static Selection, the classifiers that will
form the ensemble are chosen at the optimization phase, once and for all and used to
classify the test instances. In Dynamic Selection, the classifiers are chosen at the
classification phase. That is, different testing samples can be classified by different
classifiers. Currently, most of the existing classifier selection schemes for MCSs use
as choice criterion either the accuracy or the diversity.

A system for the classification of different entities of glaucoma is proposed.
Proposed approach begins with features extraction phase; indeed, we used three
heterogeneous families of characteristics and integrate them into a single vector
with the aim of assuring diversity of information that can be offer by each feature
family. These families are based on texture and shape features and which are: the
matrix of co-occurrence (which aims to extract texture characteristics), the moments
of Hu and central moments (these two families aims to describe image shape).
A new multiple classifier system is then exploited to classify and analyze auto-
matically the normal and the abnormal eye images using a combination of Random
subspace method and Static selection strategy based on diversity and accuracy. The
subset of classifiers selected in the static selection procedure is combined using
majority voting.

The rest of this paper is organized as follows. Multiple classifier systems are
briefly described in Sect. 2. In Sect. 3, details about the proposed method are
presented. Then, the experiments and the results are presented in Sect. 4. Section 5
provides information of related work. Section 6 closes the paper with some final
remarks.

2 Multiple Classifier System

As previous mentioned, MCS consists of an ensemble of different classification
algorithms and a fusion function for combining classifier outputs. The goal of using
MCS is to improve the accuracy and efficiency of a pattern recognition system and
reliability of individual classifiers [18, 19]. There are three main issues in the design
of a MCS: the ensemble components, the selection of the components and the
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combination methods that will be used. Figure 1 shows the general architecture of a
classifier ensemble [20].

The concept of Diversity [21] plays a crucial role in the ensemble generation.
The base members should be diverse among themselves with uncorrelated errors.
Traditionally, there have been several methods for generating diversity: Variations
of the parameters of the base classifiers (e.g., initial parameters, such as the weights
and topology, of a neural network model [22, 23], Use of different training datasets
of the classifiers (e.g., the use of learning strategies such as Bagging, Boosting and
Random Subspace [15–17], Variations of the type or topologies of classifiers, using
the same topology, but with different parameters.

In addition, in some real world applications the number of members required to
form an ensemble with a reasonable accuracy could be enormously large [24, 25].
Therefore, it is important to apply a classifier selection process that maximizes the
performance, in order to reduce the number of ensemble members and at the same
time, keeping the diversity within the selected members [26]. In other words,
diversity must be generated to improve accuracy, but this is far from sufficient. In
order to do this, it is important to define a process to choose appropriate subset of
classifiers from the pool of employed to make the decision, which is typically based
on the input pattern to be classified [27]. Currently, most of the existing classifier
selection methods for MCSs use accuracy and diversity of the classifiers as choice
criterions [24, 28–31].

Once a set of classifiers has been created and selected the next step is to choose
an effective aggregation method to derive the ultimate class label of an object from
the individual classifier outputs. There are a vast number of effective combination
methods reported in the literature. They could be assorted according to their
characteristics as Linear or Non-linear [26].

Fig. 1 Traditional multiple classifier system: diverse data splitting is implemented to generate
diverse data subsets, which are then used to train classifiers. Consequently, classifier outputs are
likely to be diverse classifications
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• Linear combination methods. Currently, the simplest ways to combine multiple
classifier system are the sum and average of the classifiers outputs [29].

• Non-linear methods. This group includes rank-based combiners, such as
majority voting strategies [11, 32], the Dempster-Shafer technique [33], Borda
Count [27], fuzzy integral [18], neural networks [18] and genetic algorithms
[29].

3 Proposed Approach

In order to classify the retinal images into glaucoma or normal, the proposed system
represented in Fig. 2.

3.1 Image Acquisition

This study uses the fundus images acquired from RIM-ONE database. RIM-ONE
[34] is exclusively focused on ONH segmentation (Fig. 3); it has 169
high-resolution pictures and five manual reference segmentations and a gold cri-
terion of each one. The high number of professional segmentations allows the
creation of reliable gold standards and the development of high accurate

Fig. 2 The proposed ensemble classifier construction technique for glaucoma eye diseases
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segmentation algorithms. The designed database consists of 169 ONH images
obtained from 169 full fundus images of different subjects. RIM-ONE is composed
by joint collaboration of three Spanish organizations, i.e. Hospital Miguel Servet,
Universidad Nacional de Educación a Distancia and Universidad Complutense.
This public database contains 169 images. Out of these 51 images are for glaucoma
affected and 118 images are normal.

3.2 Feature Extraction

Feature extraction is a crucial step within the classification process and depends on
the purpose (general description, Local description) and the type of image to be
analyzed (binary image, image grayscale, and color image). In our proposed
approach, we have represented the image by three families which are characteristic:
the co-occurrence matrix, Hu moments and central moments.

Hu Moments. Hu moments are used as basic feature descriptors for images, for
the reasons that they are invariant with respect to translation, scaling, as well as
rotation. They have been widely used in image analysis [35–37]. Hu moments have
two advantages: (1) the first absolute orthogonal invariant of Hu moments can
evaluate the degree how the energy is concentrated to the center of energy gravity
for two dimensional data; (2) Hu moments are invariant with respect to translation,
scaling, as well as rotation [38].

Based on normalized central moments, Hu introduced seven moment invariants
which can be summarized as follow:

/1 ¼ g20 þ g02

/2 ¼ðg20 þ g02Þ2 þ 4g211
/3 ¼ g30 þ g12ð Þ2 þ 3g21 � l03ð Þ2

/4 ¼ g30 þ g12ð Þ2 þðg21 þ g03Þ2

/5 ¼ g30 þ 3g12ð Þ g30 þ g12ð Þ g30 þ g12ð Þ2�3 g21 þ g03ð Þ2
h i

þ 3g21 � g03ð Þ g21 þ g03ð Þ 3 g30 þ g12ð Þ2�3 g21 þ g03ð Þ2
h i

/6 ¼ g20 � g02ð Þ g30 þ g12ð Þ2� g21 þ g03ð Þ2
h i

þ 4g11ðg30 þ g12Þðg21 þ g03Þ
/7 ¼ 3g21 � g03ð Þ g30 þ g12ð Þ½ g30 þ g12ð Þ2�3ðg21 þ g03Þ2�

� g30 � 3g21ð Þ g21 þ g03ð Þ 3ðg30 þ g12½ Þ2� g21 þ g03ð Þ2

ð1Þ

Gray Level Co-occurrence Matrix. Grey Level Co-occurrence Matrices
(GLCM) is earliest strategies for texture feature extraction suggested by Haralick
et al. [39] back in 1973. Since then it is been widely employed in several texture
analysis applications and remained to be a very important feature extraction
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technique within the domain of texture analysis. Fourteen features were extracted
by Haralick from the GLCMs to characterize texture [6].

The Grey Level Co-occurrence Matrix is calculated by finding a square matrix G
of order N, where g is the number of gray levels in the image. The (i, j)th entry of G
represents the sum of the number of times that the gray level pixel with intensity i is
adjacent in a specific spatial relationship to a pixel with intensity j and then each
element of G by the total number of such comparisons made. The adjacency can be
defined to take place in each of the four directions (horizontal, vertical, left and
right diagonal) as shown in Fig. 4. The Haralick texture features are calculated for
each of these directions of adjacency [39].

The texture features are calculated by averaging over the four directional
co-occurrence matrices. To extend these concepts to n-dimensional Euclidean
space, we tend to exactly define grey scale images in n-dimensional space and the
above mentioned directions of adjacency in n-dimensional images (Table 1).

Let, H is a spatial dependence matrix. H(i, j) is an element at ði; jÞ location in the
spatial matrix (i, j) be the ði; jÞth entry in a normalized gray tone spatial matrix
dependence matrix = H(i, j)/R, where, R is a normalizing constant. Further, let hx(i)
be the ith entry in the marginal probability matrix obtained by summation of rows

of h(i, j). It is represented mathematically as
PNg

j¼1 Hði; jÞ, where

hxþ y ¼
X

Ng

i¼1
iþ j¼k

X

Ng

j¼1

hði; jÞ; where; k ¼ 2; 3; . . .;Ng ð2Þ

hx�y ¼
X

Ng

i¼1
ji�jj¼k

X

Ng

j¼1

hði; jÞ; where; k ¼ 0; 1; . . .;Ng�1 ð3Þ

Fig. 3 Typical fundus images taken from RIM-One database: a and b glaucoma, c and d normal

135° 90° 45°

0°

Fig. 4 The four directions of
adjacency for calculating the
Haralick texture features
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In the previous equations, Ng is the number of distinct gray levels in the quantized
image. hxþ yðkÞ is the probability of occurrence matrix coordinates summing to
x + y and k is the index. hx�yðkÞ is the probability of occurrence matrix coordinates
summing to x-y and k is the index. Let hx, hy are the partial probability density
function. lx, ly are the mean of hx, hy and rx, ry are the standard deviations of hx
and hy [40]. The used Haralick features in our approach are described below:

Central Moments. In image processing, an image moment is a certain specific
weighted average (moment) of the image pixel intensities, or a function of such
moments, typically chosen to have some enticing property or interpretation [41]. As
the name suggests, the central moments are calculated from the center of the shape.
They are defined as:

lpq ¼
Z

1

�1

Z

1

�1
ðx� �xÞpðy� �yÞqf ðx; yÞdxdy ð4Þ

where �x ¼ M10
M00

and �y ¼ M01
M00

are the components of the centroid.

Table 1 Haralick features

Feature Equation

Angular
second moment

P1 ¼
P

i

P

j
hði; jÞ2

Contrast
P2 ¼

P

N2�1

n¼0
n2fP

N2

i¼1

P

N2

j¼1
hði; jÞg; ji� jj ¼ n

where n is an integer

Correlation
P3 ¼

P

i

P

j
ðijÞhði;jÞ2�lxly
rxry

Sum of squares:
variance

P4 ¼
P

i

P

j
ði� lÞ2hði; jÞ

Inverse difference
moment

P5 ¼
P

i

P

j

1
1þði�jÞ2 hði; jÞ

Sum average
P6 ¼

P

2N2

i¼2
ihxþ yðiÞ

where x and y are the coordinates (row and column) of an entry in the
co occurrence matrix

Sum variance
P7 ¼

P

2N2

i¼2
ði� f8Þ2hxþ yðiÞ

Sum entropy
P8 ¼ �P

2N2

i¼2
pxþ yðiÞ logfhxþ yðiÞg ¼ Pg

Entropy P9 ¼ �P

i

P

j
hði; jÞ logðhði; jÞÞ

Difference variance P10 ¼ variance of hx�y

Difference entropy
P11 ¼ � P

N2�1

i¼0
hx�yðiÞ logfhx�yðiÞg
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3.3 Learning and Classification

The classification method proposed (RSS-SCS) in this paper is based first on the
Random Subspace method (RSS) which creates the initial pool of diverse classifiers
by using different subsets of features to train classifiers and based secondly on Static
Classifier Selection (SCS) using the diversity measure, in which the testing patterns
are classified by the same ensemble configuration. Once a selection method is used
to choose the ensemble members, the resulting set of classifiers are then combined
by combination rule. Many methods can be used to combine the outputs of clas-
sifiers among which the majority voting is a most widely used method [11, 32]. It is
in fact the simplest ensemble scheme: given a test pattern x, each classifier vote for
a target class. The class that gets the highest number of votes is selected. With this
approach, we can reduce the time needed for classifier training for ensemble cre-
ation and also reduce the ensemble selection search space.

Random Subspace Method. The Random Subspace is an ensemble construc-
tion method proposed by Ho [17]. This method has taken the lead in many
application domains characterized by high-dimensional data. Examples include, but
are not limited to, phenotype recognition [42], cancer diagnosis [43] and face
recognition [44].

Random subspace methods use the subspace rate (the quantitative relation of
selected attributes over total attributes stock) to randomly choose features to con-
struct data subsets. After construction of data subsets, base classifiers are trained on
the different sub datasets. The main idea is to enhance the diversity among the
member’s classifiers while keeping their accuracies at the same time. By using
random feature subsets, RSS achieves some advantages for constructing and
aggregating classifiers, especially when the number of available training objects is
much smaller than the feature dimensionality.

Static Classifier Selection. The classifier selection mechanism is assigned to
select best classifiers from a pool of different classifiers, so that the selected subset
of classifiers can achieve the optimum recognition rates. In static selection the best
performing classifier ensemble is chosen during a training phase and used for the
classification of unseen patterns [29]. In general, the chosen classifiers are alleged to
be diverse and accurate to results in highly accurate ensembles, however precisely
how this is enforced within the selection process is not obvious. In our approach we
create all possible subsets of classifier ensemble contain the most accurate classifier
then we select the most diverse subset using diversity measures [13].

The diversity measures can be divided into pairwise and non-pairwise measures.
The pairwise measures define the average of a specific agreement/disagreement
diversity measures between all potential pairings of classifiers in ensemble classi-
fiers. The non-pairwise measures either use the concept of entropy or calculate a
correlation of every ensemble member with the (weighted) mean of the individual
outputs.
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In this study, based on the pairwise measures, we select four measures. The
diversity among the whole set of classifiers over the test set is then defined as an
average over all the pairs of diversity below:

div ¼ 2
MðM � 1Þ

X

M

i¼1

X

M

j¼iþ 1

divi;j ð5Þ

where M is the size of classifiers set and divi;j is the diversity between the classifiers
i and j. The diversity measures applied in this work are:

Correlation between the errors
As it is reasonable to expect that the independence of occurring errors ought to be
helpful for classifier combining, the correlation of the errors is a natural choice to
compare the classifiers subsets of classifiers [24]. Here the correlation coefficient a, b
for the vectors of correctness of classification for classifiers a and b is calculated as

qa;b ¼
Covðva; vbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var að ÞVarðbÞp ð6Þ

where Var(•) refers to variance and Cov(•) covariance. The most effective subset of
classifiers is chosen by selecting that with the minimal mean pairwise correlation.
Where q is within the range from −1 to 1. If q = −1 then it implies that the
agreement of classifiers equals that expected by chance, while q = 1, indicating that
classifiers agree on all the test instances.

Q statistic. statistic Q statistic is defined for two classifiers a, b [45] as

Qa;b ¼
N11N00 � N01N10

N11N00 þN01N10 ð7Þ

where N00 is the number of patterns that both classifiers wrongly classified; in
contrast, N11 stands for the number of patterns that both classifiers correctly clas-
sified; N10 is the number of patterns classified correctly by classifier Di but not by
Dj; likewise, N

01 is the total of patterns classified correctly by classifier Dj, but not
by Di.

Q varies in the range from −1 to 1. A positive Q means that a classifier ensemble
tends correctly to classify the same instance; otherwise it incorrectly classifies the
instance.

Disagreement measure. This measure represents the number of times that one in
every of the classifiers was incorrect and other was correct [46]. It will so be defined
for two classifiers a and b as

Da;b ¼ N01 þN10

N
ð8Þ
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The diversity decreases with decreasing values of the disagreement measure in
the range from 0 to 1.

Weighted Count of Errors and Correct Results. This is a measure takes into
account at the same time the correct and the incorrect results of classifiers and gives
suitable weight on them

WCECa;b ¼ N11 þ 1
2

N01 þN10� �� N00
different � 5N00

same ð9Þ

N00
different is the number of times where two classifiers a and b offer different errors

at the same time. N00
same is the number of times where the classifiers a and b offer the

same mistakes. An elevated value of WCEC measure means that classifiers
Majority Voting. Majority Voting Schemes are very important for combining

decisions by multiple experts. In this combining schema, each classifier has similar
weight classification for test instance which is performed according to the class that
obtains the highest number of votes. This rule is computed as in Eq. 9, given a
subset of p classifiers, yi as the class label output of the ith classifier, and a
classification problem with the following set of class labels X ¼ x1;x2; . . .;xcf g

mvðxÞ ¼ maxck¼1

X

p

i¼1

yi;k ð10Þ

Particularly for forward search, the algorithm first selects the most accurate
classifier c�i in C. Thus, the pair of classifiers, including c�i , with lowest majority
voting error is identified. Then, at each iteration, a new individual is added to the
ensemble. The optimization process is ended when there is no more amelioration on
decreasing the majority voting error.

The main code of RSS-SCS can be outlined as follow:

Input: a p-dimensional labeled training data set

1. For each k ¼ 1; . . .;L

(a) Select a p* dimensional random subspace, from the p-dimensional feature space

(b) Project the data from the original p-dimensional feature space into the selected p*-
dimensional subspace

(c) Construct a classifier Ck, on the acquired p*-dimensional feature

2. Create all possible subsets of classifiers ensemble with N components contain the most
accurate classifier

3. Select the most diverse subset of Classifiers

4. Aggregate generated using majority voting combination techniques
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4 Experiments

4.1 Experimental Protocol

Proposed approach for glaucoma detection and classification using a sample of 207
images from the RIM-ONE dataset. Out of these 66 images are glaucoma affected
and 141 images are normal. Feature extraction step consists in representing the
image by three families of features which are: the co-occurrence matrix, Hu
moments and central moments. Our image eventually will be represented by a large
feature vector including the values from the three families of characteristics, this
feature vector contains over than 24 characteristics.

In order to evaluate our method we use the k-fold cross-validation protocol.
According to this protocol, given a dataset comprising several examples, we ran-
domly divide it into k subsets, with no repetition. k–1 subsets is chosen as training
set, and the remaining subset are used as test set. The cross-validation process is
repeated k rounds and each subset is used only once as test set. The final accuracy
result from this process is the arithmetic mean of all rounds. In our experiments, we
employed a 10-fold cross-validation procedure in which, in each round, any nine of
the ten subsets are selected to implement classifier training. The remaining part will
be executed for testing the classifier. Thus, all accuracy results conferred in paper
refer to the mean over 10 different test sets.

For classifier design, since neural networks and decision trees are twomost widely
used classification techniques [47]; they are created as the single baseline classifiers.
In addition, for the decision tree classifier, we used two types of decision tree J48 and
random tree (J48 is a Java implementation of C4.5). The homogeneous initial
ensemble of classifiers contains 100 classifiers and the parameter settings for
Multilayer Perceptron (MLP), J48 andRandomTree (RT) in this empirical studywere
set at the default settings. Each classifier was trained using randomly selected 50 % of
features from the training dataset. The proposed percentage has been determined by
Ho [17]. The author has shown that the best results are obtained whenwe using half of
the feature components set. Note that the WEKA (Waikato Environment for
Knowledge Analysis) version 3.6.11 was used to conduct our experiment.

4.2 Experimental Results

The RSS-SCS classifier measure is assigned to the three feature vectors. During this
phase, we tried to make several empirical tests to keep the ones that generate the
highest rate of classification. First, each family was tested independently with the
classifier RSS-SCS then all features are grouped together in a single vector that will
be the entrance of our RSS-SCS classifier. Four diversity measures were calculated
during training. Experimental results after execution of our progressive algorithm
are resumed in Tables 2, 3, 4 and 5 and Fig. 5.
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These results indicate that RT ensembles by RSS-SCS can be regarded as the
optimal classifier ensemble technique for detecting the glaucoma disease.
Specifically, they can provide the highest rate of accuracy using all features of
dataset and WCEC measure for classifiers selection.

Table 2 Obtained results of Classifiers ensembles using correlation measure with the three
families of characteristics

RSS-SCS with
co-occurrence
matrix (%)

RSS-SCS with
Hu moments
(%)

RSS-SCS with
central moments (%)

RSS-SCS with
all features (%)

J48 ensemble 77.78 77.35 75.35 90.88

MLP ensemble 74.85 75.35 76.33 86.04

RT ensemble 94.66 91.30 89.90 96.16

Table 3 Obtained results of Classifiers ensembles using WCEC measure with the three families
of characteristics

RSS-SCS with
co-occurrence
matrix (%)

RSS-SCS
with Hu
moments (%)

RSS-SCS with
central
moments (%)

RSS-SCS with
all features (%)

J48 ensemble 78.78 79.21 76.80 93.78

MLP ensemble 76.85 75.35 76.83 86.04

RT ensemble 96.11 93.71 90.38 98.07

Table 4 Obtained results of classifiers ensembles using Qstatistics measure with the three
families of characteristics

RSS-SCS with
co-occurrence
matrix (%)

RSS-SCS
with Hu
moments (%)

RSS-SCS with
central
moments (%)

RSS-SCS with
all features (%)

J48 ensemble 78.28 77.30 76.30 92.83

MLP ensemble 75.80 76.35 76.35 85.57

RT ensemble 96.11 92.28 89.90 96.04

Table 5 Obtained results of classifiers ensembles using disagreement measure with the three
families of characteristics

RSS-SCS with
co-occurrence
matrix (%)

RSS-SCS
with Hu
moments (%)

RSS-SCS with
central
moments (%)

RSS-SCS with
all features (%)

J48 ensemble 78.80 78.76 77.78 84.54

MLP ensemble 76.78 78.28 80.71 85.02

RT ensemble 87.02 85.50 85.52 90.85
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Amongst the three features extraction methods that have been used during the
validation, we observed that the co-occurrence matrix almost gives the higher rate
compared to the other two methods using RT classifiers and J48 classifiers. For the
MLP ensemble, central moment’s method almost gives the higher rate.

From this tables, we can also say that RSS-SCS has again proved its effec-
tiveness in the field of medical diagnosis and especially in the case of retinal images
with a high recognition rate (98.07 %).

We also tested three best-known ensemble methods (Bagging (BG), AdaBoost
(AD) and Random Subspace (RSS)) in order to compare the results of the classifier
RSS-SCS using WCEC diversity measure. Each ensemble contained 100 random
trees. Table 6 summarizes the accuracy percentage of each classifier ensemble with
the tree families of features. From the obtained results in Table 6 we observed that
each classifier ensemble method has given different accuracy rate compared to
others, such as the RSS-SCS given the higher rate compared to the other methods
amongst the three features extraction methods that have been used during the
validation. The experimental results are presented in Fig. 6.
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Fig. 5 Obtained results on different RSS-SCS ensembles with the three features families
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The RSS-SCS method was also evaluated based on Receiver Operating
Characteristic (ROC) curves [48] and the results are shown in Fig. 7. The ROC
curves are usually constructed by plotting the true positive rate (sensitivity) against
the false positive rate (specificity) at various threshold values. We observe that all
RSS-SCS ensembles have good ROC curves because all the points of its curves are
on the top half part of the ROC space.

Table 6 Obtained results of classifiers ensembles with the three families of characteristics

BG (%) AD (%) RSS (%) RSS-SCS (%)

Co-occurrence matrix 76.50 75.40 81.40 96.11

Hu moments 79.30 79.30 80.20 93.71

Central moments 81.20 77.40 80.20 90.38

All features 80.90 76.00 81.80 98.07
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Fig. 6 Obtained results on different classifier ensembles with the three features families
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Figure 8 and Table 7 summarizes the specificity, sensitivity, PPV, NPV and the
AUC for the different RSS-SCS ensembles. According to the above definitions we
can define five metrics [49].

Sensitivity (true positive rate) measures the probability of a positive test when the
disease is present.
Specificity (true negative rate) measures the of a negative test probability when
the disease is not present.
Positive Predictive Value (PPV) measures the proportion of truly positive cases
among the positive cases detected by the test.
Negative Predictive Value (NPV) measures the Proportion of truly negative cases
among the negative cases detected by the test.
Area Under Curve (AUC) can be interpreted as the probability of ranking a true
positive example ahead of a false positive when ordering examples according to
decreasing likelihood of being positive.

Sensitivity ¼ TP
TPþ FN

ð11Þ
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Fig. 8 Obtained results of the different metrics of the proposed system

Table 7 Obtained results of the different metrics of the proposed system using WCEC measure

Sensitivity Specificity PPV NPV AUC

J48 ensemble 0.83 0.98 0.96 0.92 0.96

RT ensemble 0.95 0.99 0.98 0.97 0.97

MLP ensemble 0.80 0.97 0.92 0.91 0.90
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Specificity ¼ TN
TNþ FP

ð12Þ

PPV ¼ TP
TPþ FP

ð13Þ

NPV ¼ TN
TNþ FN

ð14Þ

5 Discussion

Glaucoma detection is a field of research that has received a lot of attention in the
recent decades. Various kinds of techniques have been conducted for improving
classification accuracy. In this section we presented the related work done in the
area of glaucoma diagnosis by other researchers. Table 8 presents the summary of
the automated glaucoma detection studies.

A new automated glaucoma diagnosis system was proposed using a combination
of Higher Order Spectra (HOS) and Discrete Wavelet Transform (DWT) features
extracted from the digital fundus images [50]. The proposed approach using SVM
classifier (with Polynomial kernel order 2) was able to detect the normal and
abnormal glaucoma classes with an accuracy of 95 %. Noronha et al. [51] proposed
a novel non linear method using 3rd order HOS cumulants extracted from Radon
transform (RT) applied on digital fundus images. The 3rd order HOS cumulant
features are submitted to linear discriminant analysis (LDA) to minimize the
number of characteristic. The proposed technique can detect the mild disease stage
with an average accuracy of 92.65 % using Naive Bayes classifier.

Nyul [52] proposed automated glaucoma detection using fundus image features.
Firstly, variations, such as non-uniform illumination, size differences, and blood
vessels were removed from the images. Then, PCA was applied on the combined
characteristics (B-Spline coefficients, Pixel intensities and FFT coefficients). PCA is
applied on the decomposed coefficients to improve the spatial resolution and reduce
the redundancy [53, 54]. These PCA coefficients combined with classifier were
achieve an accuracy of 80 % for detecting glaucomatous retinal fundus images.

A random forest classifier was used to diagnose the fundus images using HOS
and texture features which reported an accuracy of 91 % [55]. The wavelet extracted
from different groups of wavelet filters were displayed to various feature ranking and
feature selection schemes. Haralick features have been used to differentiate between
normal and abnormal glaucoma affected retina. Extracted features have been used to
train the back propagation neural network [40]. Classification of glaucoma eye
disease is successfully achieved an accuracy of 96 %.

Divers morphological features of ONH of fundus image were used to design the
artificial neural network which was able to classify the normal and glaucoma
images with a sensitivity 100 % and specificity 80 % [56]. Classification of normal,

Ensemble Classifiers Construction Using Diversity Measures … 147



T
ab

le
8

Su
m
m
ar
y
of

st
ud

ie
s
th
at

pr
es
en
t
va
ri
ou

s
ap
pr
oa
ch
es

to
gl
au
co
m
a
de
te
ct
io
n

A
ut
ho

rs
Fe
at
ur
es

N
o.

of
cl
as
se
s

N
o.

of
im

ag
es

C
la
ss
ifi
er

us
ed

Sn (%
)

Sp (%
)

A
cc

(%
)

M
oo

ki
ah

et
al
.
[5
0]

H
O
S
an
d
w
av
el
et

T
w
o

(n
or
m
al
/g
la
uc
om

a)
60

SV
M

93
.3
3

96
.6
7

95

N
or
on

ha
et

al
.
[5
1]

H
O
S
cu
m
ul
an
ts

T
hr
ee

(n
or
m
al
/m

ild
/s
ev
er
e)

27
2

N
B

10
0

92
92

.6
5

N
yu

l
[5
2]

PC
A

on
pi
xe
l
in
te
ns
iti
es
,
FF

T
an
d
sp
lin

e
T
w
o

(n
or
m
al
/g
la
uc
om

a)
20

0
SV

M
N
A

N
A

80

A
ch
ar
ya

et
al
.
[5
5]

H
O
S
an
d
te
xt
ur
e

T
w
o

(n
or
m
al
/g
la
uc
om

a)
60

R
an
do

m
-f
or
es
t

N
A

N
A

91

Sa
m
an
ta

et
al
.
[4
0]

te
xt
ur
e

T
w
o

(n
or
m
al
/g
la
uc
om

a)
32

1
B
PN

99
.5
1

90
.4
3

96

N
ay
ak

et
al
.

[5
6]

C
up

to
di
sk

ra
tio

,
di
st
an
ce

be
tw
ee
n
O
D

ce
nt
er

an
d
O
N
H
,
an
d
IS
N
T
ra
tio

T
w
o

(n
or
m
al
/g
la
uc
om

a)
61

A
N
N

10
0

80
N
A

N
ag
ar
aj
an

et
al
.
[5
7]

M
V
E
P

T
w
o

(n
or
m
al
/g
la
uc
om

a)
39

9
A
N
N

95
94

94

K
ol
ář

an
d

Ja
n
[5
8]

Fr
ac
ta
l
an
d
po

w
er

sp
ec
tr
al

fe
at
ur
es

T
w
o

(n
or
m
al
/g
la
uc
om

a)
30

SV
M

N
A

N
A

74

O
ur

m
et
ho

d
T
w
o

(n
or
m
al
/g
la
uc
om

a)
20

7
M
C
S

95
99

98
.0
7

148 S. Cheriguene et al.



mild glaucoma and moderate/severe glaucoma fundus images is the novelty of this
paper [57] using higher order cumulant features with a sensitivity of 100 %. Using
artificial neural network (ANN) model glaucoma and M-VEP (multifocal-visual
evoked potential) data was detected with 95 % sensitivity and 94 % specificity.

Kolar and Jan used texture analysis and SVM classifier to distinguish normal
images from fundus images [58]. Power spectral and fractal features are used to
extract the texture and reported a classification accuracy of 74 %.

In the present work, we have reported a classification average accuracy 98.07 %
sensitivity of 95 % and specificity of 99 % using 207 fundus images. This current
study shows that our integrated index (Table 8) is a highly effective and accurate
tool to classify images taken from patients with glaucoma and normal participants.

6 Conclusion

Prolonged glaucoma may cause irretrievable damage to the retina resulting in
permanent blindness. The early detection of glaucoma eye disease may prevent the
vision loss. Regular screenings of eye will facilitate to diagnose and treat glaucoma.
In this work, we developed an automatic glaucoma diagnosis system based on the
features extracted from retinal images using three families of characteristics. Our
proposed system using new multiple classifier systems is able to detect the glau-
coma and normal classes with an accuracy of 98.07 %, sensitivity of 95 % and
specificity of 99 % with ten-fold cross validation. This learning paradigm is
becoming an effective concept to get a great performance and it is suitable for
applications requiring high accuracy classification.
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Motor Imagery Classification Based
on Variable Precision Multigranulation
Rough Set and Game Theoretic Rough Set

K. Renuga Devi and H. Hannah Inbarani

Abstract In this work classification of motor imagery BCI based on Variable
Precision Multigranulation Rough Set and Game theoretic Rough Set is proposed.
The efficient classification of motor imagery movements of patients can lead to
accurate design of Brain Computer Interface (BCI). Data set are collected from BCI
Competition III dataset 3a and BCI competition IV data set I. During acquisition
there are several noises that affect classification of Electroencephalogram
(EEG) Signal, so pre-processing is carried out with Chebyshev type1 filter between
4–40 Hz in order to remove the noises that may exist in signal. The Daubechies
wavelet is used for extraction of features from EEG Signal. Variable Precision
Multigranulation Rough Set is applied for classification of EEG Signal. Game
theoretic Rough set is applied to determine best combination of a and b are based
on accuracy of Variable Precision Multigranulation Rough Set. An experimental
result depicts higher accuracy with Variable Precision Multigranulation Rough Set
and Game Theoretic rough set compared to existing technique.

Keywords Chebyshev type 1 filter � Daubechies wavelet � Variable precision
multigranulation rough set � Game theoretic rough set

1 Introduction

A Brain-Computer Interface (BCI) provides a functional interaction between the
human brain and the external device [1]. A Brain-Computer Interface (BCI) helps to
move artificial hand, leg, wheel chair based on motor imagery brain signals of
subject [2–4]. The subject sends the signal through BCI can be considered as being
the only way of communication for people affected by motor disabilities [5–7].
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Motor imagery involves imagination of various body parts which modulates sen-
sorimotor oscillation resulting in sensorimotor cortex activation in
Electroencephalogram (EEG) [8]. The frequency of the sensorimotor rhythm is in
the range of 13–15 Hz. Event Related Desynchronization (ERD) is a temporary
decrease in power of the mu (8–13 Hz) and beta (13–50 Hz) brain waves [1, 6, 7].
When a subject performs or imagines movement, ERD can be recorded using
Electroencephalography. Event Related Synchronization (ERS) which is an
increase in power in the mu and beta bands that occurs when the subject stops
imagining a movement [1, 9–12]. Contralateral hemisphere is the hemisphere on the
side of the body opposite to the limb for which the motor imagery task is executed,
whereas ipsilateral hemisphere on the same side of the body [1, 13, 14]. If the
subject imagines a movement with his or her right hand, event-related desyn-
chronization and synchronization occurs mostly in the left hemisphere. Similarly, if
the subject imagines a movement with his or her left hand, the ERD/ERS occurs
mostly in the right hemisphere. Larger areas of motor cortex are affected during
Feet and arms movements so it is difficult to separate them [1, 15, 16]. The
application of BCI are helping paralyzed [4], video games and virtual reality [8],
creative expression [9, 17], neural prosthetics [18], wheelchairs [18], access to the
internet [18] etc.

An efficient algorithm for classifying different user commands is an important
part of a brain-computer interface. The goal of this paper is to classify different
motor imagery tasks, left hand, right hand, both feet, or tongue. Recently, rough set
theory is a technique was used for the data reduction data reduction, discovery of
data dependencies, rule induction from databases and approximate set classification
[19–21]. Rough-set data analysis avoids prior model assumptions such as proba-
bilistic distribution, membership function used in fuzzy sets theory, and basic
probability assignment in Dempster–Shafer theory of evidence and uses only
internal knowledge, and does not depend on external parameters [19]. Rough Set
can result in information loss, extensions of Rough set such as Variable Precision
Rough set, Multigranulation Rough set, Game Theoretic Rough Set can handle
real-valued domains [20]. Variable precision multigranulation rough set
(VPMGRS) is an extension to Rough set with flexible classification of uncertain
objects needs only slight modifications of the original Variable Precision Rough Set
(VPRS) model [22]. Variable precision multigranulation rough set (VPMGRS) is
applied to Motor imagery dataset collected from BCI Competition website.
In VPMGRS thresholds values a, b are determined with game theoretic rough set.
Classification accuracy is evaluated and compared with existing techniques.
Section 2 discusses related work, Sect. 3 discusses the preliminaries, Sect. 4
depicts proposed algorithm, Sect. 5 depicts results and discussion and Sect. 6
concludes the proposed work.
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2 Related Work

Duan et al. [16] presents an approach to classify BCI Competition 2003 dataset Ia.
To eliminate redundancy and extract high-dimensional EEG signals Principle
Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are used.
LDA after PDA shows an accuracy of 88.89.

Velásquez-Martínez et al. [15] applied Common Spatial Pattern for prepro-
cessing and eigen decomposition method to identify main features to discriminate
EEG Signals in Motor Imagery dataset. The proposed method obtained average
accuracy of about 95.21 ± 4.21.

Nicolas-Alonso et al. [7] proposed adaptive classification framework for BCI
Competition IV dataset 2a to address non-stationary in EEG classification. It is
based on Filter Bank Common Spatial Pattern and comprises following stages.
Multiple bandpass filtering using Finite Impulse response filters, spatial filtering
using common spatial pattern algorithm. The results yields a significantly higher
mean kappa of 0.62 compared to 0.58 from the baseline probabilistic generative
model without adaptive processing.

Ang et al. [23] proposed three approaches of multi-class extension to the FBCSP
algorithm on Dataset 2a, namely, Divide-and-Conquer (DC), Pair-Wise (PW), and
One Versus-Rest (OVR).Feature selection algorithms the Mutual Information-based
Best Individual Feature (MIBIF) and Mutual Information-based Rough Set
Reduction (MIRSR) are used to select discriminative CSP features. Filter Bank
Common Spatial Pattern (FBCSP) algorithm is used to optimize the subject-specific
frequency band for CSP on Datasets 2a and 2b of the Brain-Computer Interface
(BCI) Competition IV. The FBCSP algorithm yielded a 10 � 10-fold
cross-validation classification accuracy of 90.3.

Rodríguez-Bermúdez et al. [17] proposed fast adaptive BCI system for feature
extraction and classification of EEG Signal. Power spectral density, Hjorth
parameters and autoregressive modeling are used for feature extraction. The most
relevant features for linear discrimination are selected using a fast and robust
wrapper methodology. The proposed method is evaluated using EEG signals from
nine subjects during motor imagery tasks and experimental results show its
advantages over the state-of-the-art methods, especially in terms of classification
accuracy and computational cost.

Zhou et al. [24] applied improved support vector machine for classifying
Graz BCI Competition 2003 dataset. EEG signals with Daubechies order 4 (db4)
wavelets in 10 and 21 Hz at C3 channel, and in 10 and 20 Hz at C4 channel, for
these frequencies are prominent in discrimination of left and right motor imagery
tasks according to EEG frequency spectral. Classification error rate of the presented
approach was as low as 9.29 %.
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3 Preliminaries

The Proposed Methodology involves acquisition of EEG Signal from BCI
Competition III website http://www.bbci.de/competition/iii/ and BCI Competition IV
website http://www.bbci.de/competition/iv/. The acquired EEG Signal has noises
with in it and needs to be preprocessed before proceeding to feature extraction and
classification. Features are extracted with Daubechies wavelet, since it contains both
time and frequency information in it. Extracted features are classified with variable
precision multigranulation rough set and compared with existing approaches.
Figure 1 depicts proposed methodology of motor imagery classification.

3.1 Daubechies Wavelet

Discrete Wavelet Transform (DWT) invented by Mallat in 1998 shows that it can be
viewed as a multi-resolution decomposition of signal [25]. DWT provides sufficient
information both for analysis and synthesis of signal with significant reduction in
computation time. While Continuous Wavelet Transform (CWT) wavelet series is a
sampled version of CWT provides highly redundant information DWT decomposes
the signal into its components in different frequency bands [26]. Awavelet transform is
multi-resolution analysis as it gives localization in both space and frequency domains
[27]. DWT using filter bank decomposes input signal into high and low frequency
component. It decomposes signal into several frequency band.Wavelet transformation
involves convolution of w (t) with signal x (t) mother wavelet function [28].

Acquisition of 
dataset from BCI 
Competition

Apply Cheby2 
filter for 
preprocessing

Apply Daubechies 
Wavelet for Feature 
Extraction

Apply Variable 
Precision 
Multigranulation 
Rough Set 

Rule 
Generation 
Based on 
VPMGRS

Accuracy 
Evaluation

Fig. 1 Proposed methodology of motor imagery classification

156 K.R. Devi and H.H. Inbarani

http://www.bbci.de/competition/iii/
http://www.bbci.de/competition/iv/


cðs; sÞ ¼
Z

f ðtÞW�
s;tðtÞdt ð1Þ

f ðtÞ ¼
ZZ

cðs; sÞWs;tðtÞdsds ð2Þ

Ws;tðtÞ ¼ 1
ffiffi

s
p W

t � s
s

� �

ð3Þ

where, Ws;tðtÞ-wavelet with scale s and time t [29], s-Shift in time, s-change in
scale, 1

ffiffi

s
p is used for normalization. The original signal approximation at scale index

is the combination of approximation and detail signal at the next lower scale [29,
30]. Figure 2 shows decomposition and reconstruction of signal
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where the set of numbers represents aj(n) the approximation of the signal at the
resolution 2−j and the set of numbers dj (n) represents the details in approximating
the signal at resolution 2−j−1. This is referred to as multi-resolution analysis of a
signal using wavelet transform
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Discrete Wavelet Transform is used in this work, to decompose the signal through
low-pass and high-pass filtering into low and high frequency proportion of the signal
[17, 24, 31]. In real life problem, DWT is more suitable in area of biomedical
applications. DWT determination examines the signal with different resolutions at

Fig. 2 a Decomposition.
b Reconstruction
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different frequency bands by decomposing the signal into detailed coefficients
(cD) and Approximation coefficients (cA) [32]. In short, wavelet transform analysis
of time domain at high frequency and frequency domain at low frequency [30].
Wavelet algorithm provides a way of representing a time frequency information
[31]. It also transforms the Electroencephalograph (EEG) signal to allow further
extraction and classification because EEG signals are non-stationary [17].

An Electroencephalograph signal can be classified into orthogonal, symmetry,
compact support, and non-stationary signals, but these signals can be further
classified according to their characteristics and properties. The wavelet must be
suitable for analyzing EEG signal to give a better reconstruction with fewer
decomposition levels.

An orthogonal signal is important because it conserves the energy of the signal
throughout the wavelet transform so that no information will be lost [25, 33]. It
allows wavelet transformation that can extract high and low frequency details.
because its wavelets are smoother and can enhance the illustration of transients in
the signal. Besides that, EEG signals that contain the features information such
compact support also allows the wavelet transform to efficiently characterize [23,
25, 33]. Wavelet families such as Haar, Daubechies, Symlets, and Coiflets have
sufficient properties to analyze signal. The Haar wavelet is comprised of a
Daubechies order of 1 (db1). Reconstruction coefficient number that had to be more
than two, So Haar wavelet was not selected. The Morlet and Mexican Hat wavelet
are not selected because they are not suitable for biomedical signal processing [25].

Morlet (mor1) wavelet has no scaling function but is explicit. Mexican Hat
(mexh) wavelet has no scaling function and is derived from a function that is
proportional to the second derivative function of Gaussian. Meyer (meyr) Scaling
function is defined in the frequency domain. Haar (haar) Discontinuous and
resembles a step function. Haar represent as Daubechies db1. Symlets (symN)
wavelet is modification to the db family. Coiflets (coifN) built by Ingrid Daubechies
that has 2N moments. Splines biorthogonal wavelets (biorNr.Nd) wavelet needed
two wavelets for signal and image reconstruction. So Daubechies wavelet is chosen
because of the smoothing features, without losing any information, the
down-sampling of a time domain signal can be divided into low and high filtering
[25]. Down-sampling occurs when the original signal x(n), passes through a
high-pass filter, g(n), (detail coefficient) and then a low-pass filter, h(n) (approxi-
mation coefficient) [25].

3.2 Variable Precision Rough Set

Rough Set model proposed by pawlak can be extended to characterize a set in terms
of uncertain information under some levels of certainty [19]. Variable Precision
Rough Set (VPRS) is useful for addressing problems where data sets have lots of
boundary objects. Variable Precision Rough Set (VPRS) has the additional desir-
able property of allowing for partial classification instead of complete classification
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required by Rough Set (RST) [20]. When an object is classified using Rough set it
involves complete certainty that is it goes for a correct classification [21, 34–36].
VPRS has a degree of confidence for detailed analysis of the data in classification,
which is achieved through the use of a majority inclusion relation. The measure c
(X, Y) of the relative degree of misclassification (8) of the set X with respect to set
Y defined as

cðX; YÞ ¼ 1� X \j Y j= Xjj if Xjj [ 0

or cðX; YÞ ¼ 0 if Xjj ¼ 0
ð8Þ

The majority inclusion relation (9) under an admissible classification error b
(which must be within the range 0 � b � 0.5 is defined as

X�b Y , CðX; YÞ� b ð9Þ

Let I = (U, A) be an information system, where U is a non-empty, finite set of
objects and A is a non-empty, finite set of attributes such that a : U ! Va for every
a 2 A [22]. Va is the set of values that attribute a might hold [37]. The information
system assigns a value a(x) from Va to each attribute a and object x in the universe
U. With any R � A there is an associated equivalence relation [22, 37]

IND Rð Þ ¼ f x; yð Þ 2U2j8a2R; a xð Þ ¼ a yð Þg ð10Þ

The relation IND(R) is called a R-indiscernibility relation (10). The partition of U
is a family of all equivalence classes of IND(R) and is denoted by U/IND(R) [37–39].

Let X � U using equivalence classes induced with attribute subset R By
replacing the inclusion relation with majority inclusion relation in the original
definition of lower approximation and upper approximation, the generalized notion
of b-lower approximation (11) and b-upper approximation (12)

RbX ¼ [ ½x�R2[ =R : ½x�R�bX
� � ð11Þ

RbX ¼ [ ½x�R2[ =R : ½x�R�1�bX
� � ð12Þ

The b-positive region (13), b-negative region (14) and b-Boundary region (15)
are defined based on upper and lower approximation [40].

POSR;bðXÞ ¼ RbX ð13Þ

NEGR;bðXÞ ¼ U � RbX ð14Þ

BNR;bðXÞ ¼ RbX � RbX ð15Þ

The quality of the classification is defined as the proportion of cardinality of
positive regions of all the equivalence classes of decision based on the equivalence
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classes for a subset P of the condition attributes C [37]. The quality of classification
is dependent on the b min value associated with all the condition attributes [37–39].

3.3 Multigranulation Rough Set

The Multigranulation Rough Set (MGRS) is formulated on the basis of a family of
binary relations instead of a single indiscernibility relation, where the set approx-
imations are defined by using multi equivalence relations on the universe [41].
A concept of approximation reduct is introduced to describe the smallest attribute
subset that preserves the upper approximation and lower approximation of all
decision classes in MGRS [41, 42]. The form of decision rules in MGRS is ‘‘OR”
unlike the ‘‘AND” rules from classical rough set model.

In classical Rough set, upper and lower approximations are defined under a
single granulation, i.e., the concept is induced from a single relation (such as
equivalence relation, reflexive relation and tolerance relation) on the universe. Let
us assume P and Q are two sets from predictor features and X�U is a desired target
approach, then the rough set of X is derived from the quotient set U/(PUQ) [41].
The quotient set (16) is equivalent to the formula

P[Q ¼ fPi \Qj : Pi 2 [ =P; Qj 2 [ =Q; Pi \Pj 6¼ 0g ð16Þ

The above assumption cannot always be satisfied in following cases. In some
data analysis issues, for the same object, there is a inconsistent relationship between
its values under one attribute set P and those under another attribute set Q [21, 22,
41]. In other words, we cannot perform the intersection operations between their
quotient sets and the target concept and cannot be approximated by using U/(PUQ).
The decision makers may have independent view for the same project in the uni-
verse [21, 22, 41]. In this situation, the intersection operations of one quotient set
will be redundant with another quotient set for decision making. The time com-
plexity of rule extractions can be reduced, by not performing the intersection
operations in all the sites of distributive information systems. In this approach two
models are defined they are optimistic multigranulation rough set and pessimistic
multigranulation rough set [22].

Let S = {U, A, V, f} is an information system where U represents universe
contains non-empty and finite set of objects and A represents non-empty and finite
set of attributes, Va is the domain of the attribute a, V = S a 2 A Va and f:
U � A ! V is a function f(x, a) 2 Va for each a 2 A. X �U and P ¼
fPi�AjPi \Pj ¼ /ði 6¼ jÞ; i; j� lg [22, 41].

The optimistic lower and upper approximation sets of X with respect to P can be
defined as follows [41]
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OMðXÞ ¼ x e [ j_ð½x�pi
n

�XÞ; i� lg ð17Þ

OMðXÞ ¼ x e [ j^ð½x�pi
n

\X 6¼ /Þ; i� lg ð18Þ

The pessimistic lower and upper approximation sets of X with respect to P can
be defined as follows [41]

PMðXÞ ¼ x e [ j^ð½x�pi
n

�XÞ; i� lg ð19Þ

PMðXÞ ¼ x e [ j_ð½x�pi
n

\X 6¼ /Þ; i� lg ð20Þ

3.4 Variable Precision Multigranulation Rough Set

Variable Precision Multigranulation Rough Set is general notions of
multi-granulation rough sets model to process data with noise and it allows for a
controlled degree of misclassification (8) with majority inclusion relation (9) [43].
In the variable precision multi-granulation rough set model, the requirement of
accuracy on each granulation is determined by means of parameter a, b and sup-
porting characteristic function wia, lxpiðxÞ [13]. Let S = (U; A) be an information
system, U represents universe contains non-empty and finite set of objects and A is
a non-empty and finite set of attributes, X � U and P ¼ fPi�AjPi \Pj ¼ /ði 6¼
jÞ; i; j� lg [43]. l is the number of partitions. Then lower and upper approximation
sets of X with respect to P can be defined as follows

VPðxÞab ¼ fx e [ j
X

l

i¼1

wa
i l

x
piðxÞ	 bg ð21Þ

VPðxÞab ¼ 
Pð
XÞab ð22Þ

wia ¼
1
l a� lXpiðxÞ� l
0 lXpiðxÞ\a

�

ð23Þ

The parameter a determines the precision of every granulation which are used to
approximate the target concept. * denotes complementary operation of the set
[43]. Let S = (U, A) be an information system, X � U and
P ¼ fPi�AjPi \Pj ¼ /ði 6¼ jÞ; i; j� lg. If a = 1, then
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VPðxÞ1b ¼ fx e [ j
X

l

i¼1

w1
i l

x
piðxÞ	 bg

¼ fx e [ j
X

l

i¼1

lxpiðxÞ ¼ 11=l 	 bg

¼ PðXÞ1b

ð24Þ

VPðxÞ1b ¼ 
Pð
XÞ1b

¼ 
fx e [ j
X

l

i¼1

lxpiðxÞ ¼ 11=l 	 bg

¼ 
fx e [ j
X

l

i¼1

lxpiðxÞ ¼ 11=l 	 bg

¼ 
fx e [ j
X

l

i¼1

lxpiðxÞ ¼ 01=l 	 bg

¼ 
fx e [ j
X

l

i¼1

lxpiðxÞ 6¼ 01=l 	 bg

¼ PðXÞ1b

ð25Þ

These proposed models generalize the multigranulation rough set approach, and
are helpful to enhance its capability of dealing with noisy data [43].

3.5 Game Theoretic Rough Set

The conventional Pawlak rough set theory does not allow any errors in the positive
and negative regions [44]. Researchers argued that the intolerance to errors
(or) qualitative absoluteness can lead to limitations in practical applications [45].
Extensions of rough sets were introduced through some measures and thresholds to
introduce error tolerance [40]. The probabilistic rough set models is an extension of
rough set and include the decision-theoretic rough set model, the Bayesian rough
set model, the variable precision rough set model, the information-theoretic rough
set model and the game-theoretic rough set model [40, 45]. In these models, a pair
of thresholds a, b is used to define the rough set approximations and the resulting
three regions [44]. The determination of thresholds value is an important issues in
the Variable Precision Multigranulation rough sets [40]. So Game Theoretic Rough
Set is applied for determination of a, b pair.

Game theory is a mathematical structure to govern competition in games between
two or more parties [44]. It can be used to analyze the classification ability based on
different threshold values [44]. It is used to observe the trade-off between accuracy and
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precision and the relationships between this trade-off and threshold values [44]. Each
player has a strategies (set of actions) with expected payoffs (benefits) as a result of
taking that action [40]. A payoff function returns a payoff value by determining the
utility of a chosen action [40]. An Assumption is made that all players are rational.
Rational players choose strategies (set of actions) that improve their position in the
game. Rational players choose strategies (set of actions) that maximize their wining
ability while minimizing the other players’ ability to do the same. Games are for-
mulated into payoff tables, indicating players involved, possible strategies, and
expected payoffs. A single game is defined as G = {O, S, F} O represents a set of
players, S represents set of strategies, F represents Action payoffs [40].

Algorithm Input: Dataset in the form of an Information table, Initial values of
a�; a��; bþ ; bþ þ

Output: Thresholds (a, b)

1. Initialize a = 1.0, b = 0
2. Repeat
3. Calculate utilities of player based on Eqs. (26) and (27)
4. Populate the pay off table with calculated values
5. Calculate Equilibrium in a payoff table using Eqs. (28) and (29)
6. Determine Selected Strategies and corresponding Thresholds (a0, b0)
7. Calculate a�; a��; bþ ; bþ þ based on Eqs. (30)–(33)
8. (a, b) = (a0, b0) Until P(BND(a, b)(C)) = 0 or P(POS(a, b)(C)) > P(C)

(or) a � 0:5 or b	 0:5

The goal of our work is to improve classification, therefore, each player will
represent a measure to achieve a maximum value. Two players are chosen as
Accuracy and Dependency. Accuracy is determined by number of objects that are
correctly classified as Posða;bÞ and Negða;bÞ. Dependency is determined by number
of objects that are in Positive Region divided by total objects in universe.

Accuracyða; bÞ ¼ ðPosða;bÞðCÞ \CÞ [Negða;bÞðCÞ \Cc
�

�

�

�

Posða;bÞðCÞ [Negða;bÞðCÞ
�

�

�

�

ð26Þ

Dependencyða; bÞ ¼ ðPosða;bÞðCÞ
�

�

�

�

Uj j ð27Þ

CC is the set complement of C, containing all objects in U that are not in C.
A particular player would prefer a strategy (set of action) over another strategy (set
of action) if it provides higher payoff during the game. A strategy profile (sm, sn)
would be the game solution (or) Nash equilibrium if the following conditions holds.

For player A : 8s0m2S1; uAðsm; snÞ	 uAðs0m 6¼ smÞ with ðs0m 6¼ smÞ ð28Þ
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For player D : 8s0m2S1; uDðsm; snÞ	 uDðs0m 6¼ smÞ with ðs0n 6¼ snÞ ð29Þ

a� occurs when Single Player Suggest to decrease a; a� occurs when both
players suggest to decrease a, b+ occurs when single player suggest to increase b,
b++ occurs when both players suggest to increase b [44].

a�� ¼ a� ða � Accuracyða0; b0Þ � Accuracyða; bÞÞ ð30Þ

a�� ¼ a� C a � Accuracyða0; b0Þ � Accuracyða; bÞð Þ ð31Þ

bþ ¼ b� b � Accuracyða0; b0Þ � Accuracyða; bÞð Þ ð32Þ

bþ þ ¼ b� c b � Accuracy(a0; b0Þ � Accuracyða; bÞð Þ ð33Þ

4 Proposed Methodology

4.1 Acquisition of Dataset

Motor Imagery data are collected from BCI Competition IV dataset 1. The
recording was made using 59 Channel BrainAmp MR plus amplifiers and a
Ag/AgCl electrode cap of 10-20 System. These data sets were recorded from
healthy subjects. The dataset epoch size is about 190594 � 59 of which 200
positions are marked in training data. For each subject two classes (Hand, Foot) of
motor imagery were selected where the class Hand may be either Left Hand
(or) Right Hand. Signals from 59 EEG positions were measured that were most
densely distributed over sensorimotor areas as shown in Fig. 2. Seven calibration
data has been used for training and eight evaluation data has been used for testing.
Band-pass filtered are applied for signal between 0.05 and 200 Hz and then digi-
tized at 1000 Hz with 16 bit (0.1 µV) accuracy. Another Motor imagery data is
collected from BCI Competition III dataset 3a which is Multiclass motor imagery
data set. EEG amplifier 64-channel was used for recording from Neuroscan cap of
10-20 System. Sixty EEG channels were recorded. The dataset epoch size is about
986780 � 60 of which 300 positions are marked in k3b dataset and 240 position are
marked in k6b and l1b dataset. Data was collected from three subjects (ranging
from quite good to Fair Performance).

4.1.1 BCI Competition IV Dataset 1

Calibration data
In the first two trial runs (or) test, arrows pointing left, right, or down were
presented as visual cues on a screen. Cued motor imagery task involves displaying
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cues for a period of 4 s. After these periods 2 s of blank screen are displayed and
then displays fixation cross in the center of the screen for period of 2 s. The fixation
cross was superimposed with cues, i.e. it was displayed for 6 s. These data sets are
provided to user with complete marker information.

4.1.2 BCI Competition III Dataset 3a

In BCI Competition III dataset 3a training data and test data were recorded with the
same task and from the same subject, but on two different days with about 1 week
in between. EEG was sampled with 250 Hz, it was filtered between 1 and 50 Hz.
The task was to perform imagery left hand, right hand, foot or tongue movements
according to a cue. The random cues was displayed to subject. The recording of
BCI data consists of several runs (at least 6) with 40 trials each after trial begin, the
first 2 s were displayed nothing, at t = 2 s an cross “+” is displayed indicating the
beginning of the trial, then from t = 3 s an arrow to the left, right, up or down was
shown for 1 s; at the same time the subject was asked to imagine a, tongue or foot
movement, left hand, right hand, until the cross disappeared at t = 7 s.

4.2 Chebyshev Type 2 Filter for Pre-processing

EEG signals has very small amplitudes and they can be easily contaminated by
noise [26, 27, 31]. The electrode noise can be generated from the body itself.
Artifacts are noises in the EEG signals and need to be removed from the original
signal for the analysis of the EEG signals [17, 28]. The various noises that can
occur in the signals during recordings are the power line Interference, baseline
movement, electrode noise, EMG disturbance and so on [24].

Chebyshev filters is Infinite Impulse Response (IIR) Filter that have steeper roll
off and more pass band ripple than other filters [23]. Chebyshev filters have the
property that they minimize the error between the actual and the idealized filter
characteristic over the range of the filter with ripples in the pass band. Because of
the passband ripple inherent in Chebyshev filters, they have a smoother response in
the passband. [23, 30, 32]. They are used to separate one band of frequencies from
another. It performs faster than butter worth and elliptic filter since they are carried
out by recursion rather than convolution. Sensorimotor rhythm occurs in the range
of mu (6.25–12.5) and beta (12.5–25) rhythm. In the BCI competition data set,
since our goal is to classify sensorimotor rhythm (12.5–15.5). Passband cutoff
frequency is a scalar vector with values between 0 and 1, with 1 corresponding to
the normalized Nyquist frequency, p radians per sample. Hence the frequency band
range is set between 4–40 Hz with cutoff frequency 0.7 Hz [30, 32].
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4.3 Daubechies Wavelet for Feature Extraction

The Discrete Wavelet Transform is used to decompose EEG signal at resolution
levels of the components of the EEG signal (Delta (d)—0.5–3 Hz, Theta (h)—4–
7 Hz, Alpha (a)—8–13 Hz, Beta (b)—13–31 Hz and Gamma (c)—above 31 Hz)
with the Multi-Resolution Analysis (MRA) [29]. The object of wavelet analysis is
to decompose signals into several frequency bands [25, 33]. Selection of appro-
priate wavelet and the number of decomposition levels are very important for the
analysis of signals using DWT [29]. The number of decomposition levels is chosen
based on the dominant frequency components of the signal.

In the wavelet coefficient, the levels are chosen such that parts of signal that
correlate well with the frequencies for classification of the signal. In this work,
Daubechies 4 (db4) is selected because its smoothing feature can detect changes of
the EEG signal. The frequency band [fm/2 : fm] of each detail scale of the Discrete
Wavelet Transform is related to the original signal sampling rate, which is given by
fm = fs/2 l + 1, where fs is the sampling frequency, and l is the level of decom-
position [25]. In this study, the sampling frequency is 100 Hz of the EEG signal.
Nyquist theorem suggest that the highest frequency of signal would be fs/2. Among
this decomposition levels D1 and D2 contains sensorimotor rhythm (12.5–15.5)
which is passed as input. Frequency bands corresponding to five decomposition
levels for wavelet db4 were listed in Table 1. The signals were decomposed into
details D1–D4.

4.4 Classification Based on VPMGRS

Algorithm for Variable Precision multigranulation Rough set is as follows. Input
are decomposed frequency bands D1, D2 (alpha, Beta) of EEG Signal.

Algorithm 1: Variable Precision Multigranulation Roughset An information
system is a 4-tuple S = {U, A, V, f} where U is a non-empty and finite set of objects,
called a universe, and A is a non-empty and finite set of attributes, Va is the domain
of the attribute a, and f: U � A ! V is a function f(x, a) 2 Va for each a 2 A. An

Table 1 Decomposition
level with BCI competition
dataset

Decomposition levels Frequency range

D1

(Theta, Alpha)
4–13

D2

(Alpha, Beta)
13–22

D3

(Beta)
22–31

D4

(Gamma)
31–40
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indiscernibility relation RB = {(x, y) 2 U � U | a(x) = a(y), 8a 2 B} was deter-
mined by a non-empty subset B � A. Assign Pi to P. Let m represents number of
elements [10, 43].

(1) P ¼ fPi�AjPi \Pj ¼ /ði 6¼ jÞ; i; j� lg. Partition Generated with OR rules
(Multigranulation Rough Set) instead of AND rules (Pawlak Rough Set) l is
the number of partitions [10].

(2) Find the Supporting Characteristic Function wia and lXpiðxÞ
For i = 1:l
For j = 1:m

lXpiðxjÞ = Number of elements that match Decision and Subpartition/Total
number of elements in subpartition

wiaj ¼
1
l a� lXpiðxjÞ� l
0 lXpiðxjÞ\a

�

End For

End For

(3) Then lower and upper approximation sets of X with respect to P can be defined
as follows and explained in detail in Sect. 3.4

VPðxÞab ¼ fx e [ j
X

l

i¼1

wa
i l

x
piðxÞ	 bg

VPðxÞab ¼ 
Pð
XÞab

Let us consider the Sample data
U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} and X denotes one of the decision

variable X = {x1, x2, x6, x8, x9} [10]
Let p1, p2 be the two partitions under consideration computed with

Multigranulation Rough Set [10]

U=p1 ¼ x1; x7f g x2; x3; x4; x6; x8; x9f g x5f g x10f gf g
U=P2 ¼ x1f g x2; x3; x6; x8; x9f g x4; x5f g x7f g x10f gf g

Step 2

X ¼ x1; x2; x6; x8; x9f gU=p1 ¼ x1; x7f g x2; x3; x4; x6; x8; x9f g x5f g x10f gf g
lXP1ðx1Þ ¼ 0:5 P1 ¼ x1; x7f g

Here Total Number of elements are 2
Only x1 are in X so Supporting Characteristic Function is ½ = 0.5.
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lXP1ðx2Þ ¼ 0:6 In P1 = {x2, x3, x4, x6, x8, x9}
Here Total Number of elements are 6
x2, x6, x8, x9 are in X so Supporting Characteristic Function is
4/6 = 0.6. Likewise all the elements supporting characteristic function for each

partitions are found.

lXP1ðx1Þ ¼ 0:5 lXP2ðx1Þ ¼ 1

lXP1ðx2Þ ¼ 0:6 lXP2ðx2Þ ¼ 0:6

lXP1ðx3Þ ¼ 0:6 lXP2ðx3Þ ¼ 0:6

lXP1ðx4Þ ¼ 0:6 lXP2ðx4Þ ¼ 0

lXP1ðx5Þ ¼ 0 lXP2ðx5Þ ¼ 0

lXP1ðx6Þ ¼ 0:6 lXP2ðx6Þ ¼ 0:6

lXP1ðx7Þ ¼ 0:5 lXP2ðx7Þ ¼ 0

lXP1ðx8Þ ¼ 0:6 lXP2ðx8Þ ¼ 0:6

lXP1ðx9Þ ¼ 0:6 lXP2ðx9Þ ¼ 0:6

lXP1ðx10Þ ¼ 0 lXP2ðx10Þ ¼ 0

wia varies according to the lXPðxiÞ [10]. If lXPðxiÞ is greater than a then wia is 1/l,
where l is the number of partitions. If lXPðxiÞ is less than a then wia is 0 [10]. When
the product of wia and lXPðxiÞ is greater than or equal to b then it is added to lower
approximation [10].

VPðxÞ0:30:3 ¼ x1; x2; x3; x4; x6; x8; x9f g
VPðxÞ0:60:6 ¼ x2; x3; x6; x8; x9f g
VPðxÞ0:70:3 ¼ x1f g

5 Experimental Results and Discussion

In Variable precision multigranulation rough set Classification accuracy is evalu-
ated using accuracy measures. Confusion matrix visualizes performance of the
algorithm. Each column of the matrix represents the instances in a predicted class,
while each row of the matrix represents the instances in an actual class. The
accuracy (AC) gives total number of correct predictions. The recall or true positive
rate (TP) is the proportion of correctly identified positive cases. The false positive
rate (FP) is the proportion of incorrectly classified negatives cases. The true neg-
ative rate (TN) is defined as the proportion of correctly classified negatives cases
that were classified correctly The false negative rate (FN) is the proportion of
incorrectly classified positives cases. A confusion matrix is a visualization tool used
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in supervised machine learning for classification. Instances of the predicted class
and actual class are represented in each column and each row. The confusion matrix
calculates the number per class of well classified and mislabeled instances and
evaluate the performance of a classifier.

Cohen’s kappa measures the similarity between two raters who each
classify N items into C mutually exclusive categories [46, 47]. The motivation of
this measure is to extract from the correctly classified percentage the actual per-
centage expected by chance [46, 47]. The equation is as follows

j ¼ PðDÞ � PðEÞ
1� PðEÞ ð34Þ

where P(D) is the percentage of classified instances that are correct and P(E) is the
Expected Proportion by chance [46, 47]. A j Coefficient equals to one means
perfect agreement and zero means poor agreement. In BCI Competition III Dataset
IIIa contains three data with 60 channels and 4 class labels where 1 indicates Left
Hand, 2 indicates Right Hand, 3 indicates Foot and 4 indicates Tongue. In BCI
Competition IV Dataset I Seven Calibration data with 59 channels has been used. It
contains two classes where 1 indicates Right Hand (or) Left Hand and 2 indicates
Foot. The proposed methodology follows k-fold cross validation. In k-fold
cross-validation, the original sample is randomly partitioned into k equal sized
subsamples. Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining k − 1 subsamples are used as training
data. The cross-validation process is then repeated k times (the folds), with each of
the k subsamples used exactly once as the validation data. The k results from the
folds can then be averaged (or otherwise combined) to produce a single estimation.
The advantage of this method over repeated random sub-sampling is that all
observations are used for both training and validation, and each observation is used
for validation exactly once.

Thresholds a and b are determined with game theoretic rough set and assigned the
constant a = 0.5, b ¼ 0:25. The proposed methodology has been compared with
existing techniques Naïve Bayes, Multi layer Perceptron, IBk, Decision Table,
Random Tree, J48. IBk is K-Nearest Neighbour Classifier where k is chosen as 2 for
BCI Competition IV and k is chosen as 4 for BCI Competition III dataset. Distance
weighting method Linear NN Search (Euclidean distance) method is used in IBk.

Naive Bayes Classifier is based on estimator classes. Numeric estimator precision
values are chosen based on analysis of the training data. Multilayer perceptron
classifier that uses backpropagation to classify instances. The network can also be
monitored and modified during training time. The nodes in this network are all
sigmoid (except for when the class is numeric in which case the output nodes
become unthresholded linear units), Rate is assigned with value 0.3, Momentum
(weight updation) is assigned with value 0.2, number of hidden layers is assigned
based on formula number of attributes including class attribute divided by 2 and
Validation threshold is assigned with value 20. J48 generates a pruned C4.5 decision
tree where confidence factor (For Pruning) is assigned with value 0.25, MinNumObj
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(Minimum number of Instances per leaf) is assigned with value 2. numFolds is
assigned with value 3 and it determines the amount of data used for reduced-error
pruning. One fold is used for pruning, the rest for growing the tree. seed is assigned
with value 1 for randomizing the data when reduced-error pruning is used.

Table 2 Classifiication of BCI competition IV dataset 1

Method used Calib
ds1a

Calib
ds1b

Calib
ds1c

Calib
ds1d

Calib
ds1e

Calib
ds1f

Calib
ds1 g

Kappa value

Naïve bayes 0.56 0.50 0.55 0.55 0.59 0.51 0.52

Multi layer
perceptron

0.57 0.54 0.62 0.61 0.65 0.67 0.68

IBk 0.58 0.58 0.69 0.69 0.79 0.62 0.63

Random tree 0.58 0.53 0.59 0.59 0.62 0.56 0.56

J48 0.58 0.52 0.58 0.59 0.58 0.57 0.57

VPMG RS 1 0.68 0.63 0.63 1 0.84 0.77

Table 3 Classification of BCI competition III data set 3a

Technique used K3b K6b L1b

Naïve bayes 0.43 0.55 0.53

Multilayer perceptron 0.44 0.53 0.50

IBK 0.49 0.57 0.57

Random tree 0.46 0.46 0.50

J48 0.45 0.47 0.52

VPMGRS 1 0.74 0.74

Fig. 3 EEG electrode placement for BCI competition III dataset 3a
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In Random Tree Method a tree is constructed by considering K randomly chosen
attributes at each node. It performs no pruning. Also has an option to allow esti-
mation of class probabilities based on a hold-out set (backfitting). Max Depth is
assigned the value 0. It determines the maximum depth of the tree, 0 for unlimited.
minNum is assigned with value 1.0 It determines the minimum total weight of the
instances in a leaf. numFolds is assigned with value 0. It determines the amount of
data used for backfitting. One fold is used for backfitting, the rest for growing the
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tree. (Default Value: 0 denotes no backfitting). seed is assigned with value 1. The
random number seed used for selecting attributes.

It is clear from Tables 2, 3 and Figs. 3, 4, 5 that the proposed methodology
(VPMGRS) gives higher kappa value compared to existing methods. In Calib_ds1a,
Calib_ds1e highest accuracy obtained using existing technique is about 0.58, 0.79
but proposed technique gives about 100 % accuracy. In Calib_ds1b, highest
accuracy obtained using existing technique is about 0.58 but proposed technique
gives 0.68. In Calib_ds1f, highest accuracy obtained using existing technique is
about 0.67 but proposed technique gives 0.84. In Calib_ds1g, highest accuracy
obtained using existing technique is about 0.68 but proposed technique gives 0.77.
In Calib_ds1c and Calib_ds1d highest accuracy obtained using existing technique is
about 0.69 but proposed technique gives 0.63 which is almost nearer to highest
accuracy. In k3b dataset existing techniques gives accuracy of less than 50 %
accuracy but proposed methodology gives 100 % accuracy. In k6b and L1b dataset
highest Kappa obtained from existing techniques is about 0.57 but proposed
methodology gives 0.74 kappa value.

6 Conclusion

Thus the BCI Competition IV dataset 1, BCI Competition III data set 3a shows
higher accuracy when compared with existing techniques. BCI Competition IV
dataset 1 is a two class problem (Right Hand, Foot). BCI Competition III data set 3a
is a four class problem left hand, right hand, both feet, and tongue. Variable
precision multigranulation rough set involves partition by multigranulation rough
set and then based on partition l values are computed and supporting characteristic
function are computed based on partition. Both Supporting Characteristic Function
wa
i , l, a; b values determine classification accuracy. The variation of a; b values in

both BCI Competition Data set depicts higher accuracy. The flexibility to handle
uncertain information in EEG data is the main advantage over state of art methods.
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Computer Aided Diagnosis System
for Mammogram Abnormality

Ahmed M. Anter and Aboul Ella Hassenian

Abstract In this chapter, computer aided detection and diagnosis for Breast tumor
detection and classification in Mammography is proposed. The proposed system
based on four phases. In the first phase, mammogram image is segmented to sub
images with size 64 � 64 pixel then high intensity value of pixel is defined in this
sub image and specifies this intensity as a seed point to region growing
(RG) algorithm which used to specify the ROI. In the second phase, texture features
were extracted using gray-level co-occurrence matrix (GLCM) and combined with
shape features to characterize region of interest (ROI) to normal, benign or
malignant. In the third phase, malignant ROIs are diagnosed and specified to aided
doctor for decision taking. Finally, different methods for evaluating classifier are
used using confusion matrix, kappa coefficient and response receiver operating
characteristic curve (ROC). The effectiveness of the proposed system was measured
using 322 mammogram images from the mammographic image analysis society
(MIAS) database. From experimental results show that, the accuracy obtained from
ROC curve analysis is AUC 94 % with standard error 0.11. The experimental
results shows that the proposed system can accurately segment the breast region in a
large range of digitized mammograms.
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1 Introduction

Breast cancer is the most common form of cancer among women and is the second
leading cause of cancer death in the world wide after lung cancer [1]. Thus, a
variety of Computer Aided Diagnosis (CAD) systems have been proposed to
increase the efficiency and effectiveness of screening procedures by using a com-
puter system, as a second opinion, to aid the radiologist by indicating locations of
suspicious abnormalities in mammograms, and diagnosis this abnormality.
Radiologists carefully search each image for any visual sign of abnormality.
However, at times it may be difficult for radiologists to detect some lesions on
mammograms because abnormalities are often embedded in and camouflaged by
varying densities of breast tissue structures [2]. Indeed, estimates indicate that
between 15 and 30 % of breast cancers are missed by radiologists during routine
screening. Missed detections may be due to the subtle nature of the radiographic
findings, poor image quality, eye fatigue or oversight by the radiologists [2].

The field of computer aided interpretation in mammography deals with the
development of computer tools for automated diagnostic of mammograms. CAD
techniques typically follow a two stage approach, Computer Aided Detection
(CADe) and Diagnosis (CADx). Initially, region of interest will be specified,
subsequently, textural features are automatically extracted from these regions. The
features are merged with linear classifiers or artificial intelligence techniques to
diagnosis abnormalities regions. A mass is defined as lesion seen in at least two
different projections [3]. Masses are described by their shape (Round, Oval,
Lobulated, Irregular, architecture distortion) and margin characteristics
(Circumscribed, Micro-lobulated, Obscured, Spiculated, Ill-Defined). On mam-
mograms, mass areas usually appear brighter than healthy tissues. However, the
patterns of mass lesion are hard to be defined by simple features such as intensities
or gradients because of huge variations among individuals. For example, masses are
quite difficult to be recognized from dense breasts [4].

These phenomenons increase the difficulty in the detection of masses, but still
this cannot be visually observed from the image. In such a case, the masses may not
be found by simply using the thresholding segmentation method. Our system uses
shape and texture for the discrimination of malignant and benign and diagnosis
these malignant type. The texture features are adopted using second order statistics
co-occurrence matrix and shape features are adopted using Circularity, Brightness,
Radial Angle and Compactness. According to the medical view, shape feature is
one of the most important features used for differentiating malignant from benign
masses, four kinds of shape features including circularity, contrast, radial angle and
compactness were adopted as features for mass malignancy and benignancy clas-
sification [5].

The output of texture and shape features is a matrix of size M � 52, where M is
the number of region of interest and 52 is the number of features extracted from
co-occurrence matrix at distance 1 pixel and 4 directions with 12 descriptor and 4
features extracted from shape. The resulting matrix is stored in a database of
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features. The classifier used in this chapter is k-Nearest Neighbor (k-NN) classifier
which is a supervised nonparametric technique. The k-NN method computes the
k-nearest training samples in terms of a distance metric using Euclidean distance
and then assigns the sample to the class that occurs most frequently among the
k-nearest training samples.

There is growing interest in using CAD systems that aid in detection of breast
abnormalities at earlier stages, and there are various image processing methods
proposed for the detection of masses in mammograms. Yin et al. [6] investigated
mammographic asymmetries for the identification of mass lesions. Kegelmeyer
et al. [7] utilized the analysis of local oriented edges and a subset of Laws texture
features to detect spiculated masses. In [8] Zouras investigated the potential of
incorporating a temporal subtraction scheme to the bilateral subtraction technique.
Matsubara et al. [9] used different grey level threshold values depending on the type
of tissue of the breast based on histogram analysis.

In [10] Petrick et al. reported a two-stage adaptive density weighted contrast
enhancement (DWCE) algorithm for mass detection. In [11] the authors first detect
spicules using second order Gaussian derivatives operators. In [12], the authors
used statistical approaches to detect mass in mammogram. Li et al. [13] extract
lesion site selection by morphological enhancement and contextual segmentation.
Campanini et al. [14] work on mass detection in digital mammograms based on
support vector machines (SVM) to classify mass into benign or malignant. Zheng
[15], detect breast cancer depend on Gabor Features.

Wei et al. [16], also used texture features and linear discrimination to classify
between masses and normal texture. Tourassi [17] was based on directly comparing
a new ROI image with all the ROI images in the database. In the first one, the gray
level and the shape were used as a likelihood measure, while on the second one the
similarity was based on mutual information. Chan et al. [18], consisted in extracting
a huge set of features, selecting the most discriminative ones using genetic algo-
rithms, and then classifying by using linear classifiers or neural networks.

The proposed system starts by obtaining features that passed into the k-NN as the
input vectors for classifying the masses as benignancy or malignancy and diagnosis
this mass. However, it should be noted that the accuracy of segmentation signifi-
cantly affects the extraction of shape features. Thus Region Growing method was
used in the mass segmentation module to obtain fine segmented masses from the
image. The main idea is to indicate locations of suspicious abnormalities in mam-
mograms and diagnose these suspicious abnormalities to type of mass (calcification,
Architectural distortion, obscured, circumscribed, speculated, and ill-defined) to
aided radiologist take decision for biopsy or chemotherapy protocol.

The remainder of this chapter is structured as follows: Sect. 2 discuss the
mammogram abnormalities. The proposed mammogram CAD System in Sect. 3.
Experimental Results and discussion presented in Sect. 4. Finally, conclusion in
Sect. 5.
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2 Preliminaries: Mammogram Abnormalities

This section describe a variety of masses which appear in mammogram images.
Masses are a space occupying lesion. Masses come in a wide range of shapes, sizes,
and contrast. They can be extremely subtle, often obscured by normal tissue.
Studies have shown that breast masses comprise the overwhelming majority of
missed cancers [19]. Clinicians try to assess the likelihood of malignancy
depending on the morphological characteristics of the mass (size, shape, margin,
density). There are several types of masses found in mammogram images. Masses
are categorized by their shape, density, and margins. The shapes include: round,
oval, lobular, and irregular. The margins include: circumscribed, microbulated,
obscured, ill defined and Speculated [20]. Figure 1 shows samples of such masses.

The densities include: high density, low density, equal density, and fat con-
taining. These categories help radiologists to precisely describe masses found in
mammograms and to classify masses as benign or malignant. The focus of this
research is the location of masses in mammogram images and therefore masses will
be discussed at length and pictorial examples presented. Figure 1 illustrates some
mass shapes found in mammogram images. Round masses are generally circular
and oval masses are elliptical in shape. Lobular masses display contours and
undulations. Masses with shapes that cannot be characterized are termed irregular
as shown in Fig. 1. As shown in Fig. 1 malignant increases from top to down,
Round masses and oval masses are benign mass but masses with shape architec-
tural, lobulated or with speculated margin are malignant.

Figure 2 shows the varying types of real masses margins or boundaries observed
in mammogram images. Circumscribed masses display distinct well-defined
boundaries. Micro-lobulated masses have margins, which undulate in small
cycles. Obscured masses are those that are hidden by superimposed or adjacent
normal tissues.

Fig. 1 The shape and margin of a mass are strong signs of their malignancy/benignancy degree.
Image extracted from the web of GE Healthcare [20]. a Mass shapes. b Mass margin
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Indistinct masses have poorly defined boundaries that taper into the background.
Speculated masses have spoke-like lines radiating out from the mass. The margins
refers to the border of a mass, and it should be examined carefully because it is one
of the most important criteria in determining whether the mass is the result of a
benign or malign process [21]. Radiologists classify the margin among these five
classes of margins (refer to Table 1).

Fig. 2 Masses examples. a Round mass, b lobular mass, c oval mass, d irregular mass,
e circumscribed mass, f microlobulated mass, g obscured mass, h ill-defined mass, i speculated
mass, j architectural distortion mass
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The probability to find a malignancy mass is normally ordered according to this
classification. The more ill-defined and speculated the margin, the higher the
probability to be associated with a malignant process. It should be clear that these

Table 1 The classification of mammogram masses (shape, margin, and density)

Shape Margin Density

Round: Spherical,
ball-shaped, circular or
globular

Circumscribed (Well-Defined
or Sharply-Defined) Margins:
Sharply demarcated with an
abrupt transition between the
lesion and the surrounding
tissue

High Density: Clearly
higher than surrounding,
suspicious

Oval: Elliptical or egg-shaped Microlobulated Margins:
Undulate with short cycles
producing small undulations

Equal (isodense) Density:
Density not appreciably
different, neutral
significance

Lobular: Contours with
undulations

Obscured Margins: Hidden by
superimposed or adjacent
normal tissue and cannot be
assessed any further

Low Density: Density
lower, but not fat
containing, neutral
significance

Irregular: Cannot be
characterized by any of the
above

Indistinct (Ill-Defined)
Margins: There may be
infiltration by the lesion and
this is not likely due to
superimposed normal breast
tissue

Architectural distortions: This
includes speculated areas
and/or retraction from a focal
point. Characterized by lines
radiating

Speculated Margins:
Characterized by lines
radiating from the margins of a
mass

Fig. 3 Possible masses from mammogram image manually selected
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morphological aspects can be very subtle and difficult to diagnose, even for an
expert radiologist [22].

In order to find the optimal solution to these classes classification problem, as
shown in Fig. 3. The dataset that represent the mass class are 100 masses. Mass
classes are benign and malignant, benign represent 55 and malignant represent 45,
whereas the crops representing the non mass class are 207. All the crops are
extracted and then resized to 64 � 64 from the mammographic images belonging to
the MIAS.

3 The Proposed Computer Aided Diagnosis System
for Mammogram Abnormality

The proposed CAD system for mammogram abnormality classification is com-
prised from four phases as shown in Fig. 4. In the first phase, mammogram image is
segmented to sub images with size 64 � 64 pixel then define high intensity value of
pixel in this sub image and specify this intensity as a seed point in the region
growing (RG) algorithm was used to specify the ROI. In the second phase, texture
features are extracted using GLCM and combined with shape features to categorize

Fig. 4 Proposed CAD system for mammogram abnormality classification
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ROI to normal or abnormal masses. In the third step, diagnosis the ROI and specify
which type of malignant. Finally, different methods used to evaluate non parametric
k-NN classifier.

4 Experimental Results and Discussion

4.1 Mammogram Dataset

Mammograms were obtained from the database of the Mammographic Images
Analysis Society (MIAS) [23] is composed by a set of 322 Medio-Lateral Oblique
(MLO) view digitizedmammograms corresponding to the left and right breasts of 161
women. The films were extracted from the UK National Breast Screening Program,
and digitized to 50 micron pixel. The size of each image was 1024 � 1024 pixels.

Abnormalities are classified into calcifications architectural distortions, asym-
metries, circumscribed masses, speculated masses, and ill-defined masses.
Sub-images were cropped as ROIs from each mammogram by experienced.
329 ROIs were used to analyze shape and texture features. 122 ROIs (including 29
images in calcification class, 19 in architectural distortion class, 15 in asymmetry
class, 25 in circumscribed masses class, 19 in speculated masses class, and 15 in
other or ill-defined masses class) were selected from abnormal tissues. Another 207
ROIs were obtained from normal tissues.

4.2 Experimental Results and Discussion

In this chapter, CAD system for mammogram abnormality detection and diagnosis
was presented. The proposed system based on four phases. The first phase is ROI
specification by segment mammogram image to sub images with size 64 � 64
pixel then define high intensity value of pixel in this sub image and specify this
intensity as a seed point in the region growing (RG) algorithm. The second phase,
the rule based classification of the ROI is specified from GLCM texture feature and
combined with shape features to classify ROI to benign, malignant or normal by
using, In the Third phase, ROIs are diagnosed to identify malignant type to aided
doctor for decision taking. Finally, different methods for evaluating classifier are
used using confusion matrix, kappa coefficient and Response Receiver Operating
Characteristic Curve (ROC). The effectiveness of the proposed system was mea-
sured using 322 mammogram images from the MIAS database.

1. Pre-processing and Pre-segmentation

Detection is important in selecting the candidate regions that highly resemble
masses in terms of their intensity and statistical texture value. Firstly, Pre-
processing median filter is applied to remove high frequencies component, smooth
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mammogram image and increase the efficiency of the proposed CAD system. Then
background and annotation in mammogram removed using adaptive threshold and
connected component and Pectoral muscle is suppressed using Region Growing for
more details see our work in [24].

After that, the process of mammogram segmentation is done based on block
processing windows or tiles. Therefore, this entire mammogram is divided into tiles
area before extraction of features is done to each tile. Figure 5 shows the mam-
mogram image divided into sub-images.

In this work, the whole attention is devoted to the crops classification, rather than
to the scanning of the entire mammographic image. The dataset is composed of 329
crops with pixel size 64 � 64 representing the three classes, normal, benign, and
malignant.

In order to find the optimal solution to this three classes classification problem.
The dataset that represent the abnormality class are 100 classes. Abnormality
classes are benign and malignant, benign represent 55 and malignant represent 45,
whereas the crops representing the normal class are 207. All the crops are extracted
and then resized to 64 � 64 from the mammographic images belonging to the
MIAS.

2. ROIs Segmentation

It is well known that tumor segmentation is one of the most important aspects of
computer aided diagnosis (CAD) because one of the main characteristics of
malignant tumors is (micro-calcification, architectural distortion, obscured, cir-
cumscribed, speculated, and ill-defined). Conversely, benign tumors typically have
well-defined, rounded borders. Segmentation is therefore extremely important
because the diagnosis of a tumor can strongly depend upon image features.

Fig. 5 Mammogram image
divided into sub-images
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Region growing (RG) is an automated segmentation method in which the region
of interest begins as a single pixel and grows based on surrounding pixels with
similar properties. It is a commonly used method [25] due to its simplicity and
accuracy. The algorithm will use the maximum intensity as the seed point. Figure 6
show a pixel that is similar to the suspected lesion and located somewhere inside the
suspected lesion. The next 4-neighboring pixel is checked for similarity so that the
region can grow. If pixels in the 4-neighboring region are similar, they are added to
the region. The region continues to grow until there are no remaining similar pixels
that are 4-neighbors of those in the grown region. Figure 7 show different tumor
regions and efficiency of segmentation by region growing algorithm.

3. Texture Feature Extraction

The texture feature and shape feature are two kinds of major features for the
discrimination between the benign and malignant masses. Once the ROI segmented,
the next step is to extract mass features from the ROI, GLCM used to extract
features from texture. The co-occurrence of gray-levels can be specified as a matrix

Fig. 6 Mammogram image. a Segmented to sub images. b The results for a malignant tumor
produced by the RG technique

Fig. 7 Upper row mammographic sub images show masses, and bottom row show segmentation
by region growing (RG)
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of relative frequencies, in which two pixels separated by a distance d and angle.
A set of features derived from co-occurrence matrices [24] were used to represent
ROIs. Here we use four different directions: 0, 45, 90, and 135, and one distance
equal to 1 pixel. Note that these values were empirically determined and are related
to the scale of textural features found in mammographic images. A large number of
textural features derived from matrices have been proposed. For each co-occurrence
matrix the following statistics were used: angular second moment (ASM), energy,
entropy, contrast, correlation, Dissimilarity, sum average, sum entropy, Sum
Variance, difference variance, difference entropy, and homogeneity features, thus
the resulting in a total of 48 texture features for each ROI.

4. Shape Feature Extraction

It is important to classify tumor whether it is malignant or benign. Several
primary features such as shape, size, appearance, edges, volume and location of
masses can be used as criteria for this purpose. Four shape features are used as
descriptors including circularity, brightness, radial angle and compactness. These
descriptors will be applied on the segmented mass for the shape feature extraction.

Circularity The main purpose of circularity is to show the circular degree of
masses. The roundness is one of the criteria of benign masses, the probability of
masses as being benign is higher when circularity is higher. The circularity value
would be between 0 and 1. If the ratio is 1, this means that the mass matches
exactly, implying the mass is circular. On the other hand, if the circularity is much
smaller than 1, this implies the mass is far from a circle [26].

Circularity ¼ 4pA
p2

ð1Þ

where A is the area of the mass and P is the mass perimeter.
Brightness Generally speaking, the intensities of malignant masses are higher

than those of benign masses. Therefore, the Brightness of masses with respect to the
background in malignancy is higher than in benignancy [26].

Brightness ¼ mean ðO) ð2Þ

where O is a set of pixel that belong to the abnormality segmented region.
Radial angle
The speculation is usually an important indicator of the malignant masses. The

Radial Angle is used to differentiate the shape of edges of the masses as speculated
or as round and smooth. The Radial Angle is the smaller included angle h between
the direction of the gradient and the radial direction of the edge, as shown in Fig. 8.
As we know, when the mass tend to be more rounds, its Radial Angles tend to be
near 180 and the average of the Radial Angles tends to be larger. Conversely, a
mass with speculated edge will have a smaller averaged Radial Angle. Therefore,
the value of the averaged Radial Angles provides one indicator to the differentiation
between benign and malignant masses [26].
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Compactness

Area ¼ jOj ð3Þ

Perimeter ¼ length ðE) ð4Þ

Compactness ¼ Perimeter2

Area
ð5Þ

where O is a set of pixel that belong to the abnormality segmented and E edge
pixels (subset of O).

5. Rule-Based classification (ROIs)

The objective of the classification module is to categorize the specified ROIs as
normal or abnormal (true mass or non-masses). The classification stage consists of
two phases, training phase and testing phase. In the training phase, we let the
system get trained by giving the features and decisions that are previously known.
In the testing phase, unknown data are given and the classification is performed
using the classifier after learning. The classifier used for the classifying this process
is the k-Nearest Neighbor (k-NN) [24, 27].

The k-Nearest Neighbor classifier is a supervised nonparametric technique.
Briefly, given a set of training samples and a test sample, the k-NN method
computes the k-nearest training samples in terms of a distance metric (Euclidean
distance) and then assigns the sample to the class that occurs most frequently
among the k-nearest training samples. To learn and classify new cases we used in
training phase 120 normal cases and 75 abnormal cases (benign and malignant). In
testing phase we used 87 normal cases and 25 abnormal cases to decided the rate of
classifier accuracy.

6. Classifier Performance Evaluation

Different methods for evaluating classifiers were used. These methods are;
confusion matrix, kappa (k) coefficient and Response Receiver Operating
Characteristic Curve (ROC) for more details in [27–29]. The results of proposed
k-NN classifier at k = 1 for classifying tissue to malignant and benign obtained

Fig. 8 Example of radial
angle [26]
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sensitivity is 98 % and specificity is 96 % as shown in Table 2. The result of
another measure sensitivity and specificity obtained from k-NN with k = 3 is
sensitivity 94 % and specificity 96 %, and results obtained with k = 5 is sensitivity
94 % and specificity 96 %.

In Fig. 9, show comparing between the results obtained from the k-NN classifier,
sensitivity and specificity results with k = 1 is much better than results with k = 3
and 5.

As mentioned before, we had initially attempted to classify masses into six
classes. The classification accuracy of correct masses classification for obscured is
around 73 %, whilst for the other cases, the percentages are 72 % for circum-
scribed, 95 % for speculated, 66 % for calcification, 84 % for architectural, and
87 % for ill defined and for over all mass accuracy is 80 % as shown in Fig. 10.

Table 3 shows the accuracy of kappa coefficient and ROC analysis. Kappa
coefficient values in the range 0.61–0.8 suggest that the agreement is substantial,
whereas, Kappa values in the range 0.41–0.6 suggest that the agreement is mod-
erate. The kappa j value is equal to 0.73 and error rate 0.05, this value represent
substantial agreement for classifier . The result of ROC curve analysis is the AUC
94 % with standard error 0.11, this result is excellent test.

Table 4 gives comparison between proposed mass detection algorithm and other
related work. Most detection algorithms consist of two stages. In the first stage the

Table 2 Parameters
extracted from confusion
matrix

Parameters %

Accuracy 97

Sensitivity (TP) 98

Specificity (TN) 96

False positive rate (FP) 3.6

Area under curve (AUC) 100

Fig. 9 Results of k-NN
classifier at k = 1, 3, 5
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goal is to achieve high sensitivity True Positive (TP). The second stage aims to
reduce the number of False Positive (FP) without drastically reducing the sensitivity.

Table 5, show the summary of a representative selection of mass detection
algorithms applied on ROIs compared with the proposed CAD system. The inputs
to these algorithms are ROIs.

Fig. 10 The accuracy obtained from confusion matrix for six classes, (OBS. obscured, CIRC.
circumscribed, SPIC. speculated, CALC. calcification, ARCH. architectural, and MISC. ill defined)

Table 3 Precision and accuracy for tumor classification

Parameters ROC analysis Overall accuracy Kappa accuracy

AUC. S.E. – j j err.

Accuracy 94 % 0.11 80 % 0.73 0.045

Table 4 A comparison between proposed mass detection algorithm and other related work on
mammograms

Author Year No. of Images Sensitivity (TP) (%) Specificity (FP/image)

Yin 1991 46 95 3.2

Zouras 1996 79 85 4

Matsubara 85 82 0.65

Petrick 168 90 4.4

Karssemeijer 50 90 1

Zwiggelaar 1999 54 70 0.01

Liu 2001 38 84.2 1

Campanini 2004 512 88 1.7

Zheng 2009 512 90 1.21

Proposed system 2010 322 97 3.6
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5 Conclusions and Future Work

It is well known that mammogram interpretation is a very difficult task even for
experienced radiologists. The key concept of our proposed mass detection and
diagnosis is to use all the information available on raw images to perform the
detection step. Indeed, instead of using a set of characteristics prefixed by experts,
the system is able to extract automatically a set of discriminate features from scratch
by means of statistical analysis through a dataset of images which contain diag-
nosed lesions. To locate suspicious lesion, region growing segmentation technique
was used, features are extracted from GLCM and shape features together to fully
represent the ROIs. Once the descriptors are extracted, k- nearest neighbor (k-NN)
was used for classifying the detected masses. It was found that the best results
appeared from k-NN classifier when k = 1 for both the sensitivity and the speci-
ficity. Each region depict mass define category type that belong to it. Experiments
show that GLCM features are effective and efficient for false positive reduction
even at different mass sizes. The results show that the GLCM at 0, 45, 90 and 135
with a block size of 64 � 64 give significant texture information to identify
between masses and non-masses tissues with Sensitivity 98 % for of detecting
cancer while there is really cancer in the image and Specificity 96 % for detecting
normal breast while the true state of the breast is normal. This simplicity leads to
less computational time. Thus, this approach is suitable for automated real time
breast cancer diagnosis system. The result of ROC curve analysis is the AUC 94 %
with standard error 0.11, this result is excellent test.

In future work, the efforts are directed to increase the performance of the
algorithms. In this sense, a set of different directions are possible: to improve the
false positive reduction approach, to reduce the computational time, to change the
initial breast profile segmentation algorithm, or also to use more than one mam-
mographic view in order to increase the performance of the full algorithm. Also we
will focus to enrich the feature vector with new features and to improve the net-
works models that allow better abnormalities classification.

Table 5 A summary of a
representative selection of
mass diagnosis algorithms
applied on ROIs compared
with the proposed CAD
system

Author No. of ROI AUC (Area under
ROC curve)

Wei 168 0.92

Edwards 495 0.93

Tourassi 1465 0.87

Sahiner 678 0.87

Proposed
system

329 0.94
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Automated Segmentation
and Classification of Hepatocellular
Carcinoma Using Fuzzy C-Means
and SVM

Mai R. Ibraheem and Mohammed Elmogy

Abstract For successful classification of Hepatocellular Carcinoma (HCC) in
ultrasound (US) images, effective preprocessing steps are highly desirable. Most of
Computer Aided Diagnostic (CAD) systems miss the most important steps of image
preprocessing and image segmentation. In such a framework, only some texture
features, which are obtained directly from the images or ROIs, are used as inputs of
classifiers. Image preprocessing and segmentation of US images are useful for
better judgment of normal and cancerous cases. Although, there are many studies
on the classification of medical images, the fully automatic classification is still a
difficult task. In this work, we propose an automated classification of US liver
tumors using SVM with the aid of Fuzzy c-means (FCM) and level set method.
A large number of features were extracted by using statistical, textual, and
histogram-based features to discriminate the HCC maximally by developing an
SVM classification system. SVMs work on maximizing the margin between the
separating hyperplane and the data to minimize upper bound of the generalization
error. The proposed Fuzzy C-SVM based system is compared with the K-Nearest
Neighbor (KNN) based approach. Experimental results demonstrated that the Fuzzy
C-SVM based system greatly outperforms KNN-based approach.
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1 Introduction

Disease diagnosis based on medical imaging is an invaluable tool for medical
experts to plan a patients’ rehabilitation process. Imaging modalities, including US
imaging, MRI, CT, and digital mammography, help physicians diagnosing the
disease accurately in a non-invasive way. However, as the volume of medical
images has exponentially grown, manual analysis and interpretation of these images
is no more feasible. A CAD system is highly desirable to provide additional support
to the radiologists. Particularly, efficient computer algorithms are required to
illustrate automatically the structures and region of interest (ROI) [12, 13].
Although, there are many studies on the classification of medical images, the fully
automatic classification is still a difficult task. Most of the CAD systems require
user intervention [1, 7, 8, 15, 25, 31]. Sometimes intervention from an inexperi-
enced user may lead to false results.

For successful classification of HCC in liver US images, effective preprocessing
steps are highly desirable. HCC is the most common liver malignancy [3]. It can be
single or multiple, and it has a variable, imprecise delineation. It may have a very
pronounced circulatory signal and has a heterogeneous structure. However, US
images are contaminated with an inherent noise called ‘speckle.’ It tends to have a
granular effect on the image, thereby degrading its visual quality [30]. The US
images should have a minimum amount of noise for simplifying the therapeutic
decision-making and diagnosis. It calls for the development of speckle filtering
techniques over past decades.

To extract the subtle sonographic features, the contrast of the US image is
enhanced by using a bilateral filter. It is a non-linearly filter that considers both
similarities of gray level and geometric closeness of the neighboring pixels [16]. In
some present work, a large number of features are extracted by using statistical,
textual, and histogram-based techniques to discriminate the HCC maximally by
developing an SVM classification system [19, 21–24]. SVMs work on maximizing
the margin between the separating hyperplane and the data to minimize upper
bound of the generalization error. To help radiologists to decide the normal and
cancerous cases, a new approach to the two-phase FCM clustering is developed to
classify the liver tumor with high performance. The proposed Fuzzy C-SVM based
system is compared with the KNN based approach. Experimental results have
demonstrated that the Fuzzy C-SVM based system outperforms KNN-based
approach.

This paper is organized into six sections. Section 2 reviews the current literature
on the interpretation of US images. Section 3 describes the used material and the
proposed methodology. Section 4 reviews the proposed diagnostic system.
Section 5 refers to the obtained experimental and the classification results. The
conclusion and future work are discussed in Sect. 6.
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2 Related Work

Many researchers proposed and implemented CAD systems for analyzing liver
images. For example, Mittal et al. [18] proposed a CAD system to assist in iden-
tifying focal liver lesions in B-mode US images. The proposed system discrimi-
nated focal liver diseases, such as Cyst, Hemangioma, HCC, and Metastases,
against the normal liver. The images were enhanced using a new methodology that
simultaneously operates both an enhancement and speckle reduction process.
Subsequently, 208-texture based features are extracted using spectral, statistical,
and TEM methods. A two-step neural network classifier is designed for the clas-
sification of five liver image categories. Classification using two-step neural net-
work showed correct decisions of 432 out of 500 images with a classification
accuracy of 86.4 %.

Sohail et al. [25] presented a combined method of content-based retrieval and
classification. The used medical US images include three different types of ovarian
cysts: Simple Cyst, Endometrioma, and Teratoma. The features were a combination
of histogram moments and Gray Level Co-Occurrence Matrix (GLCM) that based
on statistical texture descriptors. The classification performed by using Fuzzy KNN
classification technique. Features were extracted from 200 images of the databases.
They used to train the classifier by applying “k-Fold Cross-Validation” technique
with k = 5. The performance of the proposed method is compared with other
popular classification techniques namely, SVM (with RBF, Sigmoid, and
Polynomial kernels), ordinary KNN, and ANN.

Ribeiro et al. [24] proposed a semi-automatically liver segmentation system. It
helped in identification and diagnosis of diffuse liver diseases. The extracted fea-
tures from the liver contour were used with clinical and laboratory data. Using the
despeckle image, the liver surface contour was obtained using a snake technique.
The classification results were compared with the SVM, a Bayesian, and a KNN
classifier. Using Leave-one-out cross-validation strategy, the best results are
obtained using the KNN classifier, with an accuracy of 80.68 %.

Ribeiro et al. [21] addressed identification and diagnosis of the chronic liver
diseases. They used commonest features described in the literature including first
order statistics, co-occurrence matrices, wavelet transform, attenuation, and
backscattering parameters and coefficients. The classification results of an SVM, a
decision tree, and a KNN classifier are compared. The best results were obtained
using the SVM with a radial basis kernel, with 73.20 % of overall accuracy.

Ribeiro et al. [23] proposed a semi-automatic procedure for the stage based on
US liver images, clinical, and laboratory data. The proposed algorithm was based
on a set of laboratory and clinical features from The US. The classification was
tested using two classifiers: a KNN and an SVM, with different kernels. The SVM,
polynomial kernel, outperformed the others classifiers in every class studied,
achieving a sensitivity of 91.67 %. From the attained results, the SVM with
polynomial kernel outperformed the KNN and the SVM with the radial basis kernel
classifier.
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The previously mentioned studies show that the SVM and other methods are
used as classifiers for the tissue in US images. However, these systems miss the
image preprocessing and image segmentation components. Thus, the features
extracted from ROIs directly may not provide accurate performance. The proposed
method outperforms these studies and the study of James and Skowron [14] which
reported with 77.31 % accuracy, and Garla et al. [10] which reported sensitivity
94.3 %.

3 Materials and Methods

3.1 Data Acquisition

The research in the area of liver diseases using US images had been carried out
using some collected individual databases due to non-availability of benchmark
image database.

From 150 different liver diseases pictures, we have chosen 94 of the best quality
and applicability in pattern recognition area. The age of the patients in the dataset
ranges from 38 to 78 years. Further, patient’s privacy has been protected by
labeling the data with numeric dummy values and keeping patients’ credential
undisclosed. We have obtained data from the Egyptian Liver Research Institute and
Hospital in Sherbin, Dakahlia Governorate, Egypt. Figure 1 shows some pictures
for the chosen diseases with the different appearance of hepatocellular carcinoma.

It is critical to processing the liver tumor US images by image preprocessing and
image segmentation stages for better judgment of normal and cancerous cases.
These two stages will facilitate and increase the performance of the classification
stage in liver tumor applications.

Fig. 1 Ultrasound liver images with different appearance of Hepatocellular carcinoma, a small
HCC, b large HCC, and c multiple masses
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3.2 Pre-processing Stage

3.2.1 Image Enhancement and Noise Removal

To improve the visualization of US images, the process of image enhancement is
done in such a way that the visual details of the texture should remain preserved.
Since image noise and artifacts often impair the performance of the classification, it
would be attractive to incorporate spatial information into the classifier. Spatial
filters have been widely used for noise elimination in the presence of additive noise.
The Gaussian filter is a local and linear filter. It smoothes the whole image irre-
spective of its details or edges. Whereas the bilateral filter is also local but
non-linearly that considers the gray level similarity and geometric closeness without
smoothing edges [16].

Bilateral filtering is a non-linear filtering technique introduced by Tomasi et al.
[29]. It extends the technique of Gaussian smoothing by weighting the coefficients
of the filter with their corresponding relative pixel intensities. Bilateral Filter
considers intensity and spatial information between each point and its neighboring
points. It is unlike the conventional linear filtering where only spatial information is
considered. It preserves the sharp boundaries well and averages the noise out as it
average pixels belonging to the same region as the reference pixel. Mathematically,
the bilateral filter output at a pixel location p is calculated as follows [16]:

IFðpÞ ¼ 1
W

X

q� S

Grsð p� qk kÞGrr IðpÞ � IðqÞj jð ÞIðqÞ ð1Þ

Grsð p� qk kÞ ¼ e
�p�q2

2r2s ð2Þ

Grr IðpÞ � IðqÞj jð Þ ¼ e
� IðpÞ�IðqÞj j2

2r2r ð3Þ

W ¼
X

q � S

Grsð p� qk kÞGrr IðpÞ � IðqÞj jð Þ ð4Þ

Equation (2) represents a geometric closeness function, whereas Eq. (3) is a gray
level similarity function. Equation (4) is a normalization constant, whereas p� qk k
is the Euclidean distance between p and q. The two parameters rs and rr control the
behavior of the bilateral filter. Also the optimal rs value is relatively insensitive to
noise variance compared to the optimal rr value and is chosen based on the desired
amount of low-pass filtering. A large rs blurs more, i.e., it combines values from
more distant image locations [28].
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3.2.2 Segmentation of Region-of-Interest

FCM is an unsupervised fuzzy segmentation technique. The clusters are obtained
iteratively by minimizing a cost function that depends on the distance of pixels to
the cluster centers. Each data point may belong to more than one cluster with
certain degrees of membership [9]. Therefore, it is especially useful for medical
image segmentation where objects in the images do not have well-separated
boundaries [9, 32]. FCM assigns pixels to clusters based on their fuzzy membership
values. It strives to minimize the following cost function [9]:

J ¼
X

N

j¼1

X

c

i¼1

umij xj � ci
�

�

�

�

2
; 1�m�1 ð5Þ

where uij shows the membership of pixel xj to ith cluster 8 xj 2 X, where X
represents the set of points that an image is composed. C and N represent a total
number of clusters and data points in X, and vi is the centroid of the ith cluster. The
constant m is also known as the degree of fuzziness and is usually set to 2 for most
applications. The following mathematical expressions [4] are used to update the
fuzzy membership functions and cluster centers, respectively:

uij ¼ 1

Pc
k¼1

xj�cik k
xj�ckk k

� � 2
m�1

ð6Þ

ci ¼
PN

j¼1 uijxj
PN

j¼1 u
m
ij

ð7Þ

In this work, FCM image segmentation was employed to extract the contours of
liver tumors automatically from US images. It integrates FCM with ‘level set’
technique to extract contours of liver tumors from US images with high reliability.

3.3 Feature Extraction and Selection

Feature extraction and selection are the most critical steps in CAD systems [2, 7,
17, 23–25, 31]. For the liver, the most commonly used features are textural mea-
sures by constructing spatial gray level dependence matrices, also termed as
co-occurrence matrices that were introduced by Haralick et al. [11]. These features
are normalized [0, 1] and then used as input to the SVM classifier.

In the proposed CAD system, five kinds of features (statistical, textural, run
length, difference method, and histogram based features) were analyzed and
extracted from the suspicious areas and ROIs. Usually, many features are extracted,
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and we need to select the significant ones. In this paper, we apply the rough set
theory [27] to select an optimal subset of features. These five sets of texture features
were calculated for each ROI and combined into one set of features for image
characterization. The five sets of texture features are listed as follows.

(1) First order statistics (FOS): First order texture measures are statistically
calculated from the original image values, such as variance. They do not
consider pixel neighborhood relationships. Based on the image histogram, six
features are used [26, 31]. Average gray level, standard deviation, entropy, the
coefficient of variance, skewness, and kurtosis are obtained from each ROI
[19].

(2) Textural: It based on co-occurrence matrices of the texture information also it
is called the spatial gray-level dependence (SGLD) matrices. The gray level
co-occurrence matrix (Second-order statistical model) gives relevant infor-
mation about the inter-pixel relationship, periodicity, and spatial gray level
dependencies. The analysis consists of the construction of sixteen different
GLCM considering angles between pixels of 0°, 45°, 90° and 135°, for an
inter-pixel distance equal to 1, 2, 3, and 4. Twenty-two descriptors have been
extracted from each ROI, producing 325 features (22 GLCM features � 16
different GLCM). According to [24], it is using only the “near” and “far”
displacements, which are enough to capture the spatial properties of the texture
for the liver. It produces 88 features (22 GLCM features � 2 different
GLCM).

(3) Gray-Level Run Length Matrix Features: Another measure of texture is
based on run length. The image is scanned line by line and the length in pixels
of each line is noted. Then, the relationship between each run length is
identified. This relationship of all these statistical parameters run length makes
a pattern. This pattern is a measure of the image texture. The average of all the
line lengths (in pixels) in a region gives a measure of coarseness of the texture.
GLRLM expresses the number of the consecutive image elements that have
the same gray level (gray level run) [2]. Seven features are computed from
GLRLM, as long run emphasis, short run emphasis, low gray level run
emphasis, high gray level run emphasis, run length non-uniformity, gray level
non-uniformity, and run percentage [7]. Feature values are averaged over four
basic angular directions, 0°, 45°, 90°, 135°.

(4) Gray-Level Difference Method (GLDM): The GLDM is based on the
probability of occurrence that two pixels separated by a particular displace-
ment vector have a given difference [26]. Four kinds of displacement vectors
are considered, such as (0, d), (−d, d), (d, 0), (−d, −d), where d is the
inter-sampling spacing distance. The five textural features used in the exper-
iments are contrasted, angular second moment, entropy, mean, and inverse
difference moment. In this study, the probability density functions are com-
puted according to four kinds of vector displacements and textural features for
each probability density function.
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(5) Histogram-Based Features: It provides many clues to describe the charac-
teristics of the image. Six statistical features are extracted from the histogram.
They are mean, variance, skewness, kurtosis, energy, and entropy. The mean
is the average intensity level, whereas the variance implies the variation of
intensities around the mean. The skewness shows whether the histogram is
symmetric about the mean. The kurtosis is a measure of whether the data are
peaked or flat about a normal distribution. Entropy is a measure of the system
disorder.

Many features are extracted with a strong correlation with each other. To select
the significant ones from them. Feature selection is a very effective preprocessing
step to the data mining in reducing dimensionality, increasing learning accuracy,
and improving comprehensibility. To find the optimal subsets of the feature, the
Rough set theory provides a mathematical approach to finding optimal feature
subset. The Rough Set Theory (RST) was applied to reduce these features suc-
cessfully and decide the most efficient ones.

Most classification problems involve a large set of potential features that must
identify feature selection. Principal component analysis (PCA) is the most widely
adopted traditional statistical method. However, the features selected using PCA are
variable-independent but may not be the most benefit for a particular problem [32].
RST deals with the approximation of sets assembled from empirical data. RST is
helpful in discovering the decision rules and minimizing the conditional attributes
[27].

After extracting and selecting of the histogram features, FOS, GLDM, GLRM,
and GLCM based texture features are calculated for the processed image. They are
organized into a single feature vector. Each feature vector xk consists of 112 fea-
tures. Then, it is normalized and used as an input to the SVM classifier.

3.4 SVM Classification

SVMs are a new type of pattern classifier based on a novel statistical learning
technique that recently proposed by Asa and Jason [2] and Ng [20]. Unlike (e.g.
Neural Networks), which works on minimizing the empirical training error [20].
The criterion used by SVMs is based on maximizing the margin between the
separating hyperplane and the data. The maximum margin classifier is the dis-
criminant function. It maximizes the geometric margin 1= wk k; which is equivalent
to minimizing wk k2. It leads to the following constrained optimization problem:

Minimize 1
2 wk k2

w; b

subject to: yiðwTxiþ bÞ� 1 i ¼ 1; . . .; n

ð8Þ
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Maximizing the margin, means searching for the classification function that can
most safely separate the two data classes. The threshold separating two data classes
is the line in the middle between the two margin boundaries, which are represented
as xTw + b = 1 and xTw + b = −1. Thus, margin is 2/||w||, where ||w|| is the norm
of the vector w. To determine the separating hyperplane, the margin between
positive class and a negative class has to be maximized to produce good general-
ization ability [5]. In general, the RBF kernel maps samples into a higher dimen-
sional space nonlinearly. Unlike the linear kernel, which handles the nonlinear case
between class labels and attributes [6].

K(xi; xjÞ ¼ expð�c xi � xj
�

�

�

�

2Þ; c[ 0 ð9Þ

Gauss radial basis function SVM classification system was developed to dis-
criminate the HCC. Five objective measurements (accuracy, sensitivity, specificity,
positive predictive value, and negative predictive value) are used to evaluate the
classification results. The higher the five measurements are, the more reliable and
valid the CAD system is.

4 The Proposed Diagnostic System

The developed CAD system architecture is composed of four modules: prepro-
cessing steps, feature extraction, feature selection and Multi-SVM classifier
(Fig. 2).

The performance of the proposed CAD system was evaluated using the overall
accuracy that expresses the correct percentage of classifier predictions. We have
used the k-fold method to perform the cross-validation testing. The 10-fold
cross-validation method randomly divides the dataset into ten groups. Nine groups
of them are used for training and rest group for classifiers testing. This procedure is
repeated until all groups have been used in the testing. The final result corresponds
to the average accSX1uracy estimated for each iteration [17].

The classification performance is in terms of the four objective measurements
Classification accuracy (ACC), sensitivity, specificity, and Negative Predictive
value (NPV) were used to test the performance of classifiers models. ACC, sen-
sitivity, specificity, and NPV are defined as follows according to the confusion
matrix that is shown in Table 1 as follows [32]:

Accuracy ¼ TP þ TN
ðTP þ FP þ TN þ FNÞ � 100 ð10Þ
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Sensitivity ¼ TP
TP þ TN

ð11Þ

Specificity ¼ TN
TN þ FP

ð12Þ

Fig. 2 Overall procedure of the proposed HCC multi-SVM-based diagnostic system
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NPV ¼ TN
ðTN þ FNÞ � 100 ð13Þ

In the confusion matrix, TP is the number of true positives, which means that
some cases with ‘HCC’ class are correctly classified as HCC. FN is the number of
false negatives, which means that some cases with the ‘HCC’ class are classified as
healthy persons. TN is the number of true negatives, which means that some cases
with the ‘Healthy’ class are correctly classified as healthy persons. FP is the number
of false positives, which means that some cases with the ‘Healthy’ class are clas-
sified as HCC [32].

5 Results and Discussion

The liver tumor US images are segmented and classified by our proposed technique.
Figure 3a shows one of the original HCC ultrasound images. To reduce the speckle
noise and improve the visualization of US images, bilateral filter, and non-linear
noise reduction is applied to the original image, as shown in Fig. 3b.

As previously described, contours for tumor initialization has been determined
automatically using the Level set, as shown in Fig. 3c. These contours are used for
initializing FCM to obtain an accurate segmentation of HCC US images, as shown
in Fig. 3d. The proposed approach of classifying the liver tumor US images is
automatic, and hence no user intervention is required.

Higher classification accuracy has been obtained corresponding to images seg-
mented by the mentioned technique that verify the positive influence of the pro-
posed FCM-SVM algorithm for the classification process. For the liver case, the
most commonly used features are related to textural measures by constructing
spatial gray level dependence matrices also termed as co-occurrence matrices that
were introduced by Haralick. These features are normalized in the range of [0, 1]
and then used as input to the SVM classifier.

In this work, a total of 112 features has been extracted from each ROI of liver
ultrasound images, namely six histogram features, 6 FOS, 5 GLDM, 7 GLRM and

Table 1 Confusion matrix

Predicted label

Positive Negative

Known label Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)
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88 GLCM based texture features. These features have been measured from ROI for
every normal and abnormal image. After dimensionality reduction using rough sets,
38 features were obtained. These features are used to train and test SVM classifier
using k-fold cross validation (Table 2).

Table 3 shows the classification results based on 38 features obtained. It can be
observed from Table 3 that classifying HCC using these features shows significant
performance in terms of the four objective measurements accuracy, sensitivity,
specificity, and Negative Predictive value (NPV). Furthermore, to check the per-
formance of our proposed approach, KNN have been applied on the given dataset.

Table 3 shows a comparison between the proposed approach and KNN at dif-
ferent quality measures. From Table 2, it is clear that SVM gives superior per-
formance compared to other techniques. Figure 4 shows the graphical performance
comparison of KNN and Fuzzy C-SVM at various validity measures. Classification

Fig. 3 The results using our proposed approach to automatic segmentation and classification
system. a The original HCC image, b image enhanced by the bilateral filter, c initial contour of the
level set, d segmented image by FCM
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using SVM outperforms KNN technique at all validity measures. Image classifi-
cation is one of the most important steps to know about the presence of HCC in
liver images. In the proposed approach, SVM has been used for the classification of
normal and abnormal images (Fig. 5).

Table 3 The performance of the proposed approach compared with KNN approach

Accuracy
(%)

Sensitivity
(%)

1-Specificity
(%)

NPV
(%)

Classifier Fuzzy C-SVM 84.44 97.3 75.00 66.66

K-nearest
neighbor

71.11 75.68 50.00 30.76

Image 
class

Original image Initial contour Segmented image

A1 A2 A3

HCC

B1 B2 B3

Hem

C1 C2 C3

Cyst
Cyst

Hemangioma

Hepatocellular 
Carcinoma

Fig. 4 Original, initialized, and segmented ultrasound images of three liver image categories
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6 Conclusion

This paper proposes using the image processing and image segmentation compo-
nents prior to classification to improve decision accuracy. Another contribution of
this work is developing an automatic classification system for HCC ultrasound
images. Therefore, it is useful to discriminate normal and cancerous cases. The
proposed approach of automatic contour initialization by level set shows the
effectiveness of the method. The estimated features extracted from statistical, his-
togram, difference method, run length and textural approaches have led to
encouraging results as inputs of the used classifiers. In our proposed approach, we
have used SVM for the classification of normal and abnormal images. Different
types of validity measures are calculated to show the effectiveness of the proposed
approach. Using k-fold cross-validation to train and test Fuzzy C-SVM classifier,
we have obtained 84.44 % classification accuracy and sensitivity 97.3 % using a
10-fold cross-validation method. A numerical comparison is made with K-nearest
neighbor at different validity measures. In the future, we intend to extend the
automatic classification system for various types of medical images to show the
seriousness of other diseases. Further, exploring various types of features, which
may be used to improve the accuracy of the classifier.
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and Case Studies



Ultrasound Based Three Dimensional
Computer Aided Diagnosis (CAD) Tool
for the Diagnosis of Anterior Talofibular
Ligament

Vedpal Singh, Irraivan Elamvazuthi, Varun Jeoti, John George,
Norashikin Yahya and Dileep Kumar

Abstract Ultrasound imaging is an investigative tool to imagine the internal
organisms of human beings. Ultrasound imaging has benefits such as low cost,
portability, non-ionization and real time nature. However, ultrasound imaging has
limitations also like homogenous intensity regions, homogeneous textures and low
contrast regions. To overcome these investigated problems, this research is devel-
oped a Computer Aided Diagnosis (CAD) system that helped in the achievement of
efficient segmentation and three dimensional reconstruction of anterior talofibular
ligament to enhance the diagnosis. The developed CAD system would provide the
information about the input dataset, segmented results and statistical analysis of
injured anterior talofibular ligament. The analysis based on the obtained results
indicates the improved performance of the developed CAD system with more than
94 % accurate results. In addition, this research opens new research dimensions for
efficient musculoskeletal ultrasound modelling that makes it useful in clinical set-
tings with accurate and cost effective diagnosis of anterior talofibular ligament
injuries.

1 Introduction

1.1 General Introduction

Human beings are increasingly surrounded by injuries and abnormalities in various
anatomical parts specifically ankle ligaments. Ankle ligament is a short band of
tough fibrous connective tissues made by long, strongly collagen fibers. Generally,
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ligaments connect bones to the other bones for making a joint [1]. Although
ligaments by nature are very strong and rigid, but sometimes strains and sudden
forces may be the main causes of injuries such as tear, bruise, rupture etc. [2].
Ligament injuries were frequently seen in association with joint debris and diffuse
bone marrow edema. Indeed, there was often coexistence of these features, so it was
difficult to determine which may have occurred first in the patients [3].

Basically, ankle comprises of four (4) kinds of ligaments such as Anterior
Talofibular Ligament (ATFL), Posterior Talofibular Ligament (PTFL),
Calcaneofibular Ligament (CFL) and Deltoid Ligament (DL) [3] that are illustrated
in Fig. 1.

Figure 1 is indicating the location of all four ligaments as well as fibula, tibia and
talus bones of ankle. Generally, ankle ligaments prone to injuries due to sports,
accidents, high ankle sprains and inflammation [4]. The most common cause of
injuries in ankle ligaments is due to the inversion of foot [3, 5] that mostly damaged
the ATFL ligament [6]. However, a total rupture involves the injuries in CFL and
PTFL as well [7]. Another kind of injury is eversion that leads to damage in DL
ligament [8], which is rare. Generally, ankle can be visualized into lateral and
medial views. In lateral view, only ATFL, PTFL and CFL ligaments are visualized,
but DL ligament can be seen in medial view [9, 10]. The causes of injuries in lateral
and medial views of ankle [11] is presented in Fig. 2.

Fig. 1 Ankle ligaments

Fig. 2 Causes of ligament injury [11]
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1.2 Prevalence of ATFL Injuries

ATFL is a most injury prevalent ligament of ankle during sports, accidents and
active life style. However, sport is an important recreational and professional
activity, which is growing worldwide, which are the main causes of injuries. In
earlier studies, it was estimated that 20 % sports persons sustain injuries every year
[12]. Moreover, it was reported in earlier studies that 15–20 % of the sports injuries
are belong to ankle and out of these 80 % injuries related to ligaments. Therefore,
the ATFL is found to be the most injury prevalent ligament of ankle [3, 13, 14].
Ankle distortions and ligament injuries are among the most frequent of all injuries.
The incidence in general population was estimated that 1 ankle injury per 10,000
people per day [5]. It means, approximately 23,000 patients in the USA and
approximately 5,000 patients in Great Britain have to receive medical treatment for
ankle injuries every day [13]. Moreover, in Netherlands, the number of ankle
injuries at an annual incidence rate of 12.8 persons per 1000 is estimated at
approximately 200,000 per year [14]. Applying these figures to Malaysia means
approximately 3000 ankle injuries can be expected per day, which equals more than
1 million patients per year [5, 6]. Acute ankle injuries are the most frequent in all
kinds of injuries due to the rapid changes in foot direction, high jumps and contact
with opposing objects are especially risky for the ankle ligaments. In all kinds of
sports, high incidence of acute ankle injuries in football (20–25 %), basketball and
volleyball (25–30 %) [15]. Surprisingly enough, there does not appear to be a
significant difference in the injury rates among recreational and professional athletes
[16].

The earlier studies are estimated that the ankle injury rates duration the training
of rugby (4.2 injuries per 1000 h of training), football (2.52 injuries per 1000 h of
training), volleyball (1.99 injuries per 1000 h of training), and basketball (1.00
injuries per 1000 h of training) [15]. The frequency of injuries rises significantly
during competitions up to 11.68 injuries per 1000 h of play in football [16].
However, occurrences of injuries are also depends on anatomical regions as shown
in Fig. 3 [17, 18].

Figure 3 illustrated the injury frequency in specific anatomical portions such as
abdomen, arm, head, knee, ankle, hands, shoulder, foot, leg, wrist, dorsal region
and lumber region of spinal cord [19–21]. In recent studies, many researchers [22–
25] investigated some current problems such as ligament laxity, damage, inflam-
mation and calcification related to ankle using 2D ultrasound imaging.

1.3 Current Imaging Methods for Diagnosis

Currently, Magnetic Resonance Imaging (MRI), X-Ray and Computed Tomography
(CT) are capable to visualize the injuries in ATFL ligament, but they have some
limitations such as limited availability, high cost, long examination time and patient
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agitation [26]. Alternatively, ultrasound imaging is emerged as a popular imaging
modality in a number of medical imaging applications due to its lower cost, wide
reach, flexibility, lack of radiation, and intra-operability nature [14, 27, 28]. In
addition, earlier studies [29–33] have been stated that inflammation in joints and
ligaments can easily detected by ultrasound method with good specificity and sen-
sitivity. In general, the ATFL ligament is indicated by green boundary in 2D
ultrasound image with labelling of ligament, bones and cartilages as shown in Fig. 4.

As shown in Fig. 4, ultrasound image introduces the difficulties for
less-experienced clinicians to estimate the location of injuries in ATFL during
diagnosis. Therefore, clinicians are demanding more advancement in 2D ultrasound
imaging. The investigated problems can be resolved by image processing like
segmentation and 3D reconstruction of desired region.

Fig. 3 Injury frequency according to specific anatomical regions (in percentage) [17]

Fig. 4 Ultrasound image of ATFL ligament: irregular shape and structure of ATFL represented
by green boundaries
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2 Problem Formulation

As seen earlier in Fig. 4, ATFL ligament is indicated in ultrasound image by the
green color boundary with diverse thickness at different locations that turn to wrong
interpretation. The some other main causes of wrong interpretation in ultrasound
images of ATFL exhibit homogeneous texture and homogeneous signal intensities
compared to surrounded organs as shown in Fig. 5a, b, respectively. Moreover, low
contrast in some regions of ATFL makes it difficult to interpret the defects in ATFL
as shown in Fig. 5c. Due to the issues existing with ultrasound images of ATFL,
direct interpretation and visualisation of defects associated with injured ATFL is not
recommended that requires involvement of computation methods to delineate the
ATFL from ultrasound images, which leads to produce enhanced results prior to
start the treatment.

Fig. 5 Ultrasound image of Ankle ATFL ligament. a Ultrasound image of ATFL and
corresponding intensity graph showing homogeneous nature between ATFL and surrounding
tissues, b homogeneous texture in ATFL and surrounding tissues is represented region of interest
highly by red circles and c low contrast within ATFL region represented by region of interest in
red color
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Due to the challenges mentioned above, segmentation of ATFL from ultrasound
images remains a challenging task that has not been studied at wide, but it can lead
to disease diagnosis in therapy and image guided interventions. Research has shown
that there are numerous methods such as region based, edge based, thresholding
based, wavelet based, pattern or texture classification based and deformable based,
which are available for the segmentation [26, 34]. However, each method have own
limitations such as dependency based on edge, region and thresholding. In addition,
a specific association of segmentation methods such as non-parametric probabilistic
model with shape driven based methods are researched earlier [18, 35]. Likewise,
this research used the association of region of interest initialization, adaptive his-
togram equalization, Darwinian Particle Swarm Optimization (DPSO), Chan-Vese
method and morphological operations to achieve the better results. This unique
association would leads to enhanced diagnosis of ATFL by producing the 2D
segmented results. However, segmented ultrasound images introducing some
problems such as limited view visualization, inaccurate qualitative and quantitative
estimation during diagnosis [14]. In order to resolve these problems, this research
developed a CAD system that uses the integration of data acquisition, segmentation
and 3D reconstruction approaches. Computer Aided Diagnosis (CAD).

3 The Developed Computer Aided Diagnosis
(CAD) System

This section demonstrates the process flow of the developed CAD system that
comprises of data acquisition, segmentation and 3D reconstruction as shown in
Fig. 6. The functionalities of the segmentation include data acquisition using
readily available device, pre-processing, optimization and ROI (Region of Interest)
extraction, morphological operations that would produce the accurate segmented
results. Furthermore, the 3D reconstruction involved four steps such as image
registration, enhanced Marching Cube method to reconstruct a 3D mesh, which is
followed by patching and rendering to reconstruct a 3D model. The reconstructed
3D model is used in volume calculation.

Table 1 demonstrated the pseudocode of the developed CAD system, which
provides the process information about each step. Furthermore, the CAD system is
tested on acquired datasets using Matlab version 2012b [36–39]. The total images
that represent the ATFL ligament at different locations, contrast and patterns are
processed using the developed CAD system. In addition, performance evaluation of
this CAD system is carried out on the basis of obtained results to validate this
research.
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Fig. 6 Flow chart of the developed CAD system
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4 Validation Metrics

4.1 Performance Evaluation Metrics for Segmentation

4.1.1 Peak Signal to Noise Ratio (PSNR)

PSNR is the ratio between the maximum possible power of signal and power of
corrupted noise that presents the accuracy of the image as presented in Eq. 1 as
follows:

Table 1 Pseudocode of the developed CAD system

if acquired data is accurate
Go for _image segmentation

else
Collect data again

end

if _image segmentation is successful 

Adjust the images through _image registration
else

Apply _image segmentation
end
if _image registration is accurate

Apply 3  smoothingD

else
Apply _image segmentation

end
if 3  smoothingD is successful

Apply 3  median filteringD

else
Try to smooth again 

end
if 3  median filteringD is successful

Apply tan _ _s dard marching cube method 

else
Filter using 3  median filteringD

end
Patching is performed on the obtained 3D mesh 

Patched 3D mesh is smoothed by the Rendering method for better 

visualization
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PSNR ¼ 10 � log10
MAX2

I

MSE

� �

¼ 20 � log10
MAXIffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

¼ 20 � log10ðMAXIÞ � 10 � log10ðMSEÞ

ð1Þ

where,MAXI represents the maximum possible pixel value in image and MSE is the
Mean Square Error [40, 41].

4.1.2 Standard Deviation (SD)

Standard deviation determines the variation of a set of data values. Low value
represents the closeness to the mean and standard deviation indicates the extreme
gap to the mean, which is described in Eq. 2.

SN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � �xÞ2
vuut ð2Þ

where fx1; x2; . . .; xNg are the observed values of the sample items and �x is the
mean value of these observations, while the denominator N stands for the size of the
sample: this is the square root of the sample variance, which is the average of
the squared deviations about the sample mean [42].

4.1.3 Root Mean Square Error (RMSE)

RMSE helps in the calculation of the root of power two (2) for Standard Deviation
that measures the difference between predicted and actual values as demonstrated in
Eq. 3:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ð�yi � yiÞ2

n

vuuut ð3Þ

where, �yi depicts the predicted value and yi presents the actual value. n indicates the
total number of predictions [40].
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4.1.4 Universal Image Quality Index (UIQI)

UIQI is an integration of three elements such as loss of correlation, luminance
distortion and contrast distortion as presented in Eq. 4:

Q ¼ rxy
rxry

� �
� 2�x�y

ð�xÞ2 þð�yÞ2
 !

� 2rxry
r2xr

2
y

 !
ð4Þ

where, x ¼ fxiji ¼ 1; 2; . . .;Ng and y ¼ fyiji ¼ 1; 2; . . .;Ng. The rx and ry are the
estimate of the contrast of x and y [40].

4.1.5 Mean Absolute Error (MAE)

MAE used to measure how close forecasts or our predictions are to the eventual
outcomes, which is defined in Eq. 5 [40]:

MAE ¼ 1
n

Xn
i¼1

fi � yij j ¼ 1
n

Xn
i¼1

eij j ð5Þ

where fi is the predicted value and yi is the actual value. The ei depicts the absolute
error and n is the total number of predictions [40].

4.1.6 Normalized Absolute Error (NAE)

NAE measures the closeness between the two digital images by exploiting the
difference in the statistical distribution of the pixel values as presented in Eq. 6.

NAE ¼
PM

i¼1

PN
j¼1 ½�Iði; jÞ � Iði; jÞ�PM

i¼1

PN
j¼1 Iði; jÞj j ð6Þ

where �Iði; jÞ represents the pixel values of original image and Iði; jÞ depicts the pixel
values of enhanced image [40].

4.1.7 Normalized Cross Correlation (NCC)

In image processing, normalization is required in variable circumstances of
brightness, lighting and exposure situations. It can be done by the NCC method,
which is represented in Eq. 7:
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1
n

X
x;y
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1
n

P
x;y

f ðx; yÞtðx; yÞ � �f :�t

rfrt
ð7Þ

where tðx; yÞ represents the cross-correlation of template and f ðx; yÞ is the sub
image. The number of pixels is n in tðx; yÞ and f ðx; yÞ, �f is the average of f and rf is
standard deviation of f . In functional analysis terms, this can be thought of as the
dot product of two normalized vectors [40].

4.1.8 Sensitivity

Sensitivity is the proportion of true positives that are correctly identified by a
diagnostic test. It shows how good the test is at detecting a disease, which is
illustrated in Eq. 8 [43].

Sensitivity ¼ TP
TPþFN

ð8Þ

where, True Positive (TP) is the number of pixels correctly labelled as ATFL
region, False Negative (FN) is the number of pixels incorrectly labelled as
non-ATFL region.

4.1.9 Specificity

Specificity is the proportion of the true negatives correctly identified by a diagnostic
test. It suggests how good the test is at identifying normal condition (see Eq. 9)
[43].

Specificity ¼ TN
TNþFP

ð9Þ

where, True Negative (TN) is the number of pixels correctly labelled as non-ATFL
region, False Positive (FP) is the number of pixels incorrectly labelled as ATFL
region.

4.1.10 Accuracy

Accuracy is the proportion of true results, either true positive or true negative, in a
population. It measures the degree of accuracy of a diagnostic test on a condition
(see Eq. 10) [43].
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Accuracy ¼ TPþ TN
TPþFPþFN þ TN

ð10Þ

4.2 Performance Evaluation Metrics for 3D Reconstruction

This research used the MINKOWSKI measures [44] to validate the performance of
the proposed method. The utilized parameters are explained in Eqs. 11–15 as
follow.

4.2.1 Volume Calculation

The ordinary way for volume estimation is to determine the total number of voxels
in reconstructed 3D model and multiply with the size of a voxel. Likewise,
MINKOWSKI measures also used the similar method to calculate the volume as
defined in Eq. 11:

VdðBÞ ¼ D1D2D3# Xd \Bf g B � Ld ð11Þ

where V represents the volume, d depicts the dimensions (for 3D model d ¼ 3), B
indicates the used 3D model to calculate the volume. D1D2D3 and # Xd \Bf g are
presents voxel size and number of voxels in the 3D model, respectively. X indicates
the digitized structure of a 3D model and Ld represents the rectangular grid, where
d ¼ 3 [44].

4.2.2 Thickness Calculation

MINKOWSKI measurement is also used in the calculation of thickness of the
reconstructed 3D model as presented in Eqs. 12 and 13:

AT ¼ Sv
pLv

ð12Þ

Sv ¼ S
W

ð13Þ

where, AT represents the Average Thickness of the 3D model. S depicts the surface
and W is the sampling window of volume. Lv indicates the edge density and Sv is
the surface density of 3D model [45].
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4.2.3 Roughness Calculation

Surface roughness (R0
zi) is a component of surface texture, which can be calculated

as presented in Eqs. 14 and 15:

R0
z ¼

PN�M

i¼0
R0
zi

N �Mþ 1
ð14Þ

R
0
zi ¼ max piþ 1; . . .; piþMf g �min piþ 1; . . .; piþMf g ð15Þ

where, R
0
zi represents the surface roughness. M is the measured amplitudes from the

total of N amplitudes p1; . . .; pN [46].

5 Results and Analysis

5.1 Segmentation of ATFL Ligament Through
Developed CAD System

The performance of the developed CAD system is determined by the implemen-
tation on 25 patients’ datasets. However, only one sample image is used to
demonstrate the complete process flow of segmentation with the corresponding
results as depicted in Fig. 7.

Initially, the input image is pre-processed using the ROI initialization as shown in
Fig. 7a. Thereafter, the obtained image is enhanced by the contrast enhancement
method (e.g. adaptive histogram equalization method) as shown in Fig. 7b, in which
theATFL region is visualizedmore clearly than the original image. The pre-processed
results are further used in optimization and ROI extraction as illustrated in Fig. 7c, d,
respectively that aim to extract the desired ATFL region more accurately through the
energy minimization and curve evolution process. The extracted ATFL region is
illustrated Fig. 7e, whose boundaries are not smooth enough. To overcome this issue,
morphological operation is applied that produced the more accurate results (see
Fig. 7f). Furthermore, the smoothed image is overlaid on the input image to get the
better and actual visualization, which is presented in Fig. 7g.

5.2 3D Reconstruction of ATFL Ligament Through
Developed CAD System

The obtained segmented results further used in 3D reconstruction of ATFL liga-
ment for better diagnosis. In this study, only 50 images per patient were used in the
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experiments. For 3D reconstruction, this research initially used the image regis-
tration algorithm to adjust the orientation of segmented images with respect to one
reference image as shown in Fig. 8a.

As illustrated in Fig. 8a, the accurately oriented images are further processed by
the enhanced marching cube algorithm to design the 3D mesh model. The obtained
3D mesh is efficiently converted into the 3D model by the patching operation (see
Fig. 8c), which is not smooth enough. To produce the smooth 3D models need to
use rendering as described in Fig. 8c. For better understanding, the reconstructed
3D model is depicted in Fig. 9.

Figure 9 illustrated the reconstructed 3D model of the ATFL ligament that
comprises of ligament, both side cartilage and bones, which are labelled by the
different colors for better understanding. Ligament is indicated by light brown color
and cartilage is presented by red color. Likewise, green color is used for the
presentation of bones.

Fig. 7 The developed CAD segmentation processing
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5.3 Graphical User Interface (GUI) of the Developed CAD
System

Figure 10 shows the main GUI of the developed CAD system that comprises of
main information, segmentation, 3D reconstruction, volume calculation, statistical
analysis, input dataset, repository of segmented results, 3D models, and contact us
facility.

Figure 10 presents the key buttons of the GUI for the developed CAD system
that consists of more functions insides to perform the corresponding action.
Moreover, Fig. 11 presents the CAD system with specific operations such as seg-
mentation, 3D reconstruction and volume calculation.

(a) (b) (c)

Fig. 8 3D reconstruction of ATFL. a Segmented and accurately oriented images, b 3D mesh
image and data patching by the marching cube algorithm, c rendering

Fig. 9 Reconstructed 3D model by the developed CAD system
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Fig. 10 GUI of the developed CAD system

Fig. 11 2D segmentation, 3D reconstruction and volume calculation
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5.4 Performance Evaluation of the Developed CAD System
Based on Image Features

In order to evaluate the performance of the developed CAD system, this research
used some parameters such as Peak Signal to Noise Ratio (PSNR), Standard
Deviation (SD), Root Mean Square Error (RMSE), Universal Image Quality Index
(UIQI), Mean Absolute Error (MAE), Normalized Absolute Error (NAE) and
Normalized Cross Correlation (NCC) that are demonstrated in Table 2.

The Table 2 presents the quantitative analysis of the developed CAD system that
provides information regarding the noise ratio, image energy, error rate and cor-
relation between the original and resultant images. The PSNR and RMSE value
varies from minimum 30.20 to maximum 30.29 and minimum 7.79 to minimum
7.85, respectively, which are indicating the better signal strength and lowest error
ratio of the obtained results produced by the developed CAD system. Likewise, SD
range from 42 to 43 that show variance. In addition, other parameter such as MAE

Table 2 Statistical analysis of the developed CAD system for ankle ATFL ligament

Image ID PSNR SD RMSE UIQI MAE NAE NCC

1 30.22 42.62 7.85 0.5835 17.16 1.06 0.2026

2 30.21 42.71 7.86 0.5805 17.16 1.06 0.2110

3 30.21 42.76 7.86 0.5778 17.14 1.06 0.2167

4 30.21 42.76 7.86 0.5828 17.13 1.06 0.2157

5 30.20 42.75 7.87 0.5771 17.16 1.06 0.2135

6 30.20 42.76 7.87 0.5899 17.12 1.06 0.2151

7 30.24 42.81 7.83 0.8039 17.03 1.06 0.2204

8 30.25 42.81 7.83 0.5880 17.04 1.06 0.2205

9 30.26 42.84 7.82 0.5867 17.00 1.05 0.2227

10 30.25 42.83 7.83 0.5840 17.05 1.06 0.2205

11 30.26 42.82 7.81 0.5863 16.98 1.05 0.2220

12 30.28 42.85 7.80 0.5848 16.96 1.05 0.2228

13 30.27 42.85 7.81 0.5848 16.93 1.05 0.2272

14 30.27 42.85 7.81 0.5842 16.97 1.05 0.2273

15 30.29 42.92 7.79 0.5877 16.90 1.05 0.2344

16 30.29 42.95 7.79 0.5873 17.04 1.05 0.2282

17 30.29 43.00 7.79 0.5877 17.05 1.05 0.2297

18 30.29 43.02 7.79 0.5909 17.06 1.05 0.2300

19 30.29 43.00 7.79 0.5911 17.07 1.05 0.2299

20 30.29 43.00 7.79 0.5852 17.01 1.04 0.2355

21 30.25 43.06 7.83 0.5888 17.07 1.04 0.2421

22 30.27 43.38 7.81 0.5902 16.97 1.02 0.2571

23 30.29 43.76 7.79 0.5928 17.04 1.02 0.2699

24 30.28 43.91 7.80 0.5896 17.05 1.01 0.2761

Ultrasound Based Three Dimensional Computer Aided Diagnosis … 229



is varied from 16 to 17, which depicted the absolute error rate of the obtained
results. To identify the similarity correlation of segmented image with respect to
input image, this research used the NCC that ranges from 0.2110 to 0.2761. The
parameter NAE has shown the values 1.01–1.06. These are provided the infor-
mation about the error and anatomical similarity index. Therefore, obtained results
are indicating the better performance of the developed CAD system.

5.5 Performance Evaluation Against the Existing Methods

Quantitative performance evaluation of the proposed method is accomplished by
the calculation of sensitivity, specificity and accuracy metrics results as compared to
the existing methods such as Chan-Vese method [47], Kass’s method [48], Yuan’s
method [49] and Achuthan’s method [50] that are demonstrated in Table 2.

As illustrated in Table 2, the estimated sensitivity (by Eq. 2) of the proposed
method (84.68 ± 2.92 %) is highest as compared to the Chan-Vese method
(82.67 ± 3.67 %), Kass’s method (76.43 ± 4.09 %), Yuan’s method
(80.23 ± 3.72 %) and Achuthan’s method (72.34 ± 3.19 %), which indicated the
better performance of the proposed method as compared to existing methods.
Similarly, specificity is calculated by Eq. 3 to evaluate the performance of the
proposed method as compared to existing methods. As depicted in Table 2, the
specificity of the existing methods (Chan-Vese method (89.78 ± 3.04 %), Kass’s
method (71.12 ± 4.87 %), Yuan’s method (74.09 ± 3.23 %) and Achuthan’s
method (67.54 ± 4.07 %)) is not better than the proposed method
(94.83 ± 1.47 %). Furthermore, estimated accuracy (by Eq. 4) of the proposed
method is 91.67 ± 2.23 %, which is higher than the accuracy of the existing
Chan-Vese method (85.56 ± 3.82 %), Kass’s method (78.45 ± 4.12 %), Yuan’s
method (81.05 ± 4.10 %) and Achuthan’s method (74.23 ± 3.81 %). Therefore,
on the basis of obtained results, the proposed method is found as a more optimal
method with more than 91 % accuracy and less than 3 % standard deviation, which
indicates its applicability in clinical settings.

After the segmentation performed by the developed CAD system, three experts
are requested to do the manual segmentation based on their experience. The results
obtained from the developed CAD system are compared with manual segmented
results by the use of sensitivity, specificity and accuracy metrics as demonstrated in
Table 3.

Table 3 Performance evaluation of the proposed method as compared to existing methods

Proposed
method

Chan-Vese
method [47]

Kass’s
method [48]

Yuan’s
method [49]

Achuthan’s
method [50]

Sensitivity 84.68 ± 2.92 82.67 ± 3.67 76.43 ± 4.09 80.23 ± 3.72 72.34 ± 3.19

Specificity 94.83 ± 1.47 89.78 ± 3.04 71.12 ± 4.87 74.09 ± 3.23 67.54 ± 4.07

Accuracy 91.67 ± 2.23 85.56 ± 3.82 78.45 ± 4.12 81.05 ± 4.10 74.23 ± 3.81
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As presented in Table 3, sensitivity ranges from 73.69 to 85.94 %. Similarly,
specificity varies from minimum 95.78 % to maximum 97.40 %. The obtained
accuracy is lies between 92.98 and 94.85 %. Thus, on the basis of all obtained
outcomes, the average sensitivity, specificity and accuracy of the proposed method
are 80.73 %, 96.29 % and 94.12 %, respectively. Therefore, obtained outcomes are
indicating the better performance of the developed CAD system that produced the
more accurate results (more than 94 %).

Furthermore, in order to determine the performance of the developed CAD
system based on the reconstructed 3D models, this research estimated the volume,
thickness and roughness of the reconstructed 3D models for 5 patients for illus-
tration, which are presented in Table 4.

As demonstrated in Table 5, the estimated volume ranges from minimum
1023.38 mm3 to maximum 1095.54 mm3. Similarly, thickness varies from mini-
mum 2.07 mm to maximum 2.20 mm. Furthermore, surface roughness of the
reconstructed 3D model is minimum 0.101 mm and maximum is 0.178 mm, which
indicated the smoothness of the obtained results. Therefore, obtained results are

Table 4 Performance
evaluation: sensitivity,
specificity and accuracy
measurements

Image ID Sensitivity Specificity Accuracy

1 81.28 96.04 93.79

2 80.49 96.13 93.74

3 79.51 96.14 93.60

4 84.23 96.24 94.51

5 82.03 96.04 94.00

6 85.94 95.78 94.43

7 81.83 96.34 94.15

8 82.75 96.27 94.28

9 81.09 96.73 94.29

10 83.59 96.51 94.62

11 83.64 96.62 94.70

12 84.71 96.62 94.85

13 83.15 97.00 94.84

14 80.93 96.66 94.23

15 82.25 96.65 94.47

16 75.28 97.01 93.39

17 74.34 96.83 93.07

18 73.69 96.87 92.98

19 76.89 96.74 93.62

20 76.39 97.30 93.81

21 79.23 96.39 93.87

22 82.29 97.10 94.85

23 78.53 97.40 94.36

24 83.51 96.29 94.52

Average 80.73 96.29 94.12

Ultrasound Based Three Dimensional Computer Aided Diagnosis … 231



indicated the promising performance of the developed CAD system that would lead
to accurate and enhanced diagnosis of ATFL (Table 5).

5.6 Clinical Significance of the Developed CAD

The estimated optimal values of the measurements metrics (such as PSNR, SD,
RMSE, UIQI, MAE, NAE, NCC, sensitivity, specificity, accuracy, volume,
thickness and roughness) used in this study are indicating the strong clinical sig-
nificance of this research. The obtained segmentation and 3D reconstruction results
would greatly help in accurate assessment and better visualisation of ATFL injuries
and abnormalities that can further be adopted for the diagnosis of ATFL at
orthopedic clinics and hospitals. Moreover, this research opened new dimensions
for ATFL diagnosis that may assist clinicians to locate the damaged region as well
as the feasibility to measure the degree of damages associated with the estimation of
volume, thickness and surface roughness, which would be helpful is the estimation
of healing rate of the incurred injury.

6 Conclusions and Future Directions

This research developed a novel CAD system for accurate diagnosis of ATFL
injuries by segmentation and 3D reconstruction from 2D ultrasound images. This
research uses the integration of data acquisition, segmentation and 3D recon-
struction approaches for enhanced results. The obtained results are indicated the
promising performance of the developed CAD system. Since, ATFL segmentation
and 3D reconstruction from 2D ultrasound images have not been investigated
earlier. Therefore, the developed CAD system has opened new entrances for clin-
icians, radiologists, orthopedist, rheumatologists and sports physician to diagnosis
the injuries of ATFL ligament more accurately. In future, the developed CAD
system would be extended to other musculoskeletal anatomical parts such as knee,
shoulder and wrist with some amendments.

Table 5 Volume, thickness
and roughness calculation

Dataset Volume
(mm3)

Thickness
(mm)

Roughness
(mm)

1 1095.54 2.09 0.110

2 1023.38 2.16 0.101

3 986.67 2.07 0.103

4 1129.12 2.20 0.150

5 1089.78 2.12 0.178
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Electroanatomical Mapping Systems.
An Epochal Change in Cardiac
Electrophysiology

Carlo Pappone, Carmine Garzillo, Simonetta Crisà
and Vincenzo Santinelli

Abstract In the last two decades new mathematical and computational models and
systems have been applied to the clinical cardiology, which continue to be developed
particularly to quantify and simplify anatomy, physio-pathological mechanisms and
treatment of many patients with cardiac arrhythmias. The Authors report our large
experience on electroanatomical mapping systems and techniques that are currently
used to quantify and analyze both anatomy and electrophysiology of the heart. In the
last 15 years the Authors have performed more than 15,000 invasive catheter
ablation procedures using different non-fluoroscopic three-dimensional (3D) elec-
troanatomical mapping and ablation systems (CARTO, Ensite) to safely and accu-
rately treat many patients with different cardiac arrhythmias particularly those with
atrial fibrillation with a median age of 60 years (IQR, 55-64). The Authors have also
developed and proposed for the first time a new robotic magnetic system to map and
ablate cardiac arrhythmias without use of fluoroscopy (Stereotaxis) in >500 patients.
Very recently, epicardial mapping and ablation by electroanatomical systems have
been successfully performed to treat Brugada syndrome at risk of sudden death in a
series of patients with a median age of 39 years (IQR, 30-42). Our experience
indicates that electroanatomic mapping systems integrate several important func-
tionalities. (1) Non-fluoroscopic localization of electrophysiological catheters in
three-dimensional space; (2) Analysis and 3D display of cardiac activation
sequences computed from local or calculated electrograms, and 3D display of
electrogram voltage; (3) Integration of ‘electroanatomic’ data with non-invasive
images of the heart, such as computed tomography or magnetic resonance images.
The widespread use of such 3D systems is associated with higher success rates,
shorter fluoroscopy and procedure times, and accurate visualization of complex
cardiac and extra-cardiac anatomical structures needing to be protected during the
procedure.
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Keywords Cardiac arrhythmias � Atrial fibrillation � Electroanatomical mapping
and ablation systems � Robotic magnetic system

1 Introduction

Recent progress in biomedical engineering and imaging technology [1–6] is pro-
viding an ever-increasing body of knowledge on the mechanism and onset of
cardiac disease, with new options for accurate detection and effective treatment. In
the last years, considerable progress has been made in mathematical and compu-
tational models/systems, which provide further insights into clinical electrophysi-
ology imaging processing in order to better quantify/simplify from the acquired
image data both anatomy and mechanisms of complex cardiac arrhythmias,
including but not limited to atrial fibrillation. The development of relatively inex-
pensive computer systems that have the capacity to process signals rapidly has
allowed the development of mapping systems that reliably localize intracardiac
catheter positions [7–10]. One such system is the CARTO system (Biosense
Webster, Diamond Bar, CA). The system uses a magnet mounted under the
catheterization table coupled with a proprietary catheter placed in the intracardiac
chamber of interest. The magnet under the table locates the catheter tip in
three-dimensional space when an endocardial signal is measured and the system
stores the spatial and electrical information. The computer then constructs a virtual
three-dimensional electroanatomic map of the chamber. The catheter tip location
within the mapped space is displayed on the computer screen allowing catheter
manipulation without fluoroscopy. In current versions of CARTO, real-time
structural data from intracardiac ultrasound (CartoSound) or changes in impedance
(CARTO 3) can be integrated to refine the displayed image. The LocaLisa
(Medtronic Inc, St. Paul, MN) system was used in early studies of non-fluoroscopic
procedures. The technology was acquired by Endocardial Solutions, which sub-
sequently was acquired by the St. Jude Medical Corporation. The technology was
incorporated into the EnSite NavX system (St. Jude Medical, St Paul, MN). Patches
are placed on the skin and used to generate an electrical signal sensed by the
catheters inside the body. A catheter in a stable position is used as a reference for
creating the geometry. The ablation catheter is manipulated within the chamber of
interest and when contact with the wall is demonstrated by the measured electrical
signal, the catheter position is recorded. Electrical impedance changes are sensed by
the system and indicate a change in catheter position, and the system then displays
the new catheter position. The system then can simultaneously track 64 separate
electrodes on up to 12 different catheters. Their positions are displayed relative to
each other within a virtual representation of the cardiac chamber(s) of interest.
Although both the CARTO and EnSite systems produce a virtual image of the
cardiac chambers and catheter(s), there are differences in them. However, with both
systems, there are increased equipment costs associated with both the CARTO and
NavX systems. Because the CARTO system is based on changes within a magnetic

238 C. Pappone et al.



field, the ablation catheter has to be magnetically active. This proprietary catheter is
more expensive to purchase than commonly used ablation catheters. The NavX
system is compatible with most commonly used catheters, but the patches applied
to the skin are one-time use only and must be purchased for every case. It is difficult
to make a global statement about the absolute cost increase as there may be dif-
ferences based on volume and specific center preferences. Initially, their use has
been in arrhythmias in which the ablation target was difficult to identify, such as
ventricular tachycardias in structural heart disease, atypical atrial flutters, or
arrhythmias in patients with complex congenital heart defects. In the recent years,
electroanatomic mapping systems have also been used to guide catheter-based
isolation of the pulmonary veins, an important component of the modern man-
agement of atrial fibrillation. Electroanatomic mapping systems integrate three
important functionalities, namely (i) non-fluoroscopic localization of electrophysi-
ological catheters in three-dimensional (3D) space; (ii) analysis and 3D display of
activation sequences computed from local or calculated electrograms, and 3D
display of electrogram voltage (‘scar tissue’); and (iii) integration of this ‘elec-
troanatomic’ information with non-invasive images of the heart (mainly computed
tomography or magnetic resonance images). Although better understanding and
ablation of complex arrhythmias mostly relies on the 3D integration of catheter
localization and electrogram-based information to illustrate re-entrant circuits or
areas of focal initiation of arrhythmias, the use of electroanatomic mapping systems
in atrial fibrillation is currently based on integration of anatomic images of the left
atrium and non-fluoroscopic visualization of the ablation catheter. Currently
available registration techniques rely on preprocedural 3D computed tomography or
magnetic resonance imaging (MRI) data sets which are aligned with or superim-
posed to intraprocedural electroanatomical information. Although a reasonable
accuracy and usability can be achieved with these techniques, preprocedural ana-
tomic images carry inherent disadvantages: atrial volumes are variable and may
change between the imaging session and atrial fibrillation ablation session.
Especially in larger atria, the integration error is considerable. Three-dimensional
transesophageal ultrasound systems have already been used to guide catheter-based
septal defect closures. Although image integration is a fascinating and easily
adopted addition to electroanatomical mapping, especially in atrial fibrillation, it
has to be appreciated that left atrial anatomy is variable and depends, among other
factors, on cardiac rhythm, volume status, respiration, and deformation of the left
atrium by electrophysiological catheters during the procedure. Image fusion and
non-fluoroscopic catheter visualization can therefore probably not fully replace
fluoroscopy or other forms of direct catheter visualization during catheter ablation
procedures. About two decades ago, Haissaguerre et al. and Pappone et al. [11–17]
firstly reported a potential role of radiofrequency catheter ablation in the treatment
of patients with atrial fibrillation, which required an accurate reconstruction of
complex anatomic structures. Therefore, continuous technology progresses have
been made to realize and perform safer and more effective catheter ablation pro-
cedures. The wide area circumferential ablation, as initially proposed by Pappone
et al. [12–16], firstly used electro-anatomic systems and this approach was
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associated with lower rates of atrial fibrillation recurrence than the initially pro-
posed approach by ostial pulmonary vein isolation [17]. In the last ten years, thanks
to further technology advancements many multicenter randomized studies world-
wide reported higher success rates in maintaining a stable sinus rhythm in patients
with refractory paroxysmal recurrent atrial fibrillation [17–31]. Unfortunately,
despite technology progresses, currently less consensus exists as to the most
appropriate approach strategy in persistent long-standing atrial fibrillation [22, 23],
in which there are multiple substrates for re-entry outside pulmonary veins (PVs) or
multiple rotors, both of which are difficult to identify and eliminate. As a result,
multiple complex lesions are required in a step-wise fashion, which require their
accurate anatomic localization with longer procedure times. As a result, further
technical advancements are required in persistent atrial fibrillation to overcome
these important limitations while refining the best ablation approach in terms of
both safety and efficacy. Despite these limitations, if performed in a modern
electrophysiology laboratory, catheter ablation of atrial fibrillation may be con-
sidered as an effective and safe procedure and this is at least in part due to the use of
new tools.

2 An Epochal Change of Cardiac Electrophysiology.
Evolution of Electro-anatomic Three-Dimensional
Mapping Systems from 2000 to 2015

Currently, the traditional X-ray imaging and catheter diagnostic mapping methods
are increasingly being complemented by recent 3D mapping imaging modalities,
each with specific strengths and options for improving diagnostic accuracy and
effectiveness. High-quality data points offer electrical and anatomical detail in
simple and complex cases by traditional and advanced diagnostic catheters.
Advanced 3-D mapping modules can integrate multiple data sets and images into
one resource for highly detailed, real-time information by image integration tools,
as well as several tachyarrhythmias—specific software. With the broadest portfolio
of catheters available it is possible deliver optimal treatment, whether it’s to ablate
or wait by irrigated ablation technology. As a result, currently, chronic antiar-
rhythmic drug therapy has been replaced in patients with complex arrhythmias by
catheter-based interventions. This development is supported by continuous devel-
opments in 3D imaging and navigation techniques with newer devices, which
enable more complex percutaneous procedures with improved outcomes. In the last
15 years the rapid expansion of indications for catheter ablation from supraven-
tricular tachycardia to very complex tachyarrhythmias, such as atrial fibrillation and
ventricular tachycardia led electrophysiologists to face prolonged procedure times
with excessive fluoroscopy exposure and the need for stable and reproducible
catheter movement, all of which require significant and continuous improvements
in the existing traditional 2D mapping technology, and new developments.
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3 Current Electroanatomical Mapping Systems

The most commonly used systems are CARTO® System (Biosense Webster, Inc.,
Diamond Bar, CA, USA) (Figs. 1, 2, 3, 4 and 5) and EnSite NavX™ (St. Jude
Medical, Inc., St. Paul, MN, USA) (Figs. 6, 7, 8, 9 and 10, 11). These mapping
systems have helped to decrease procedural complexity, procedure time, and
improve safety. The CARTO and EnSite NavX system use magnetic or impedance
measurements between the individual catheter electrodes and the patches usually
placed on the patient’s chest and abdomen. Bipolar mapping is the gold standard
technique to characterize substrate, and a bipolar voltage amplitude of � 1.5 mV
identifies healthy tissue and areas with voltage of 0.5–1.5 mV are considered border
zones. Electroanatomical mapping systems accurately depict in different colors
(color-coded maps) such areas. During the activation sequence mapping, data
points are acquired as the catheter moves across the chamber of interest and the
timing of these electrograms are compared with a predetermined reference. As this
process continues, a color scheme begins to emerge. Currently, areas of red color
usually indicate sites of “early activation” and activation becomes progressive later
proceeding through the colors of the rainbow to yellow-green, and finally the blue
and purple one that define the sites of late activation relative to the reference
electrogram. These colors are displayed as an isochronal time bar adjacent to the
3D map.

Fig. 1 Pre-ablation endocardial anatomical map of the left atrium in right lateral view obtained by
the CARTO system in a patient undergoing atrial fibrillation ablation. The map was created during
coronary sinus pacing, as a stable reference point
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Fig. 2 Pre-ablation endocardial anatomical map of the left atrium in left anterior oblique
projection by the CARTO system. Note the mitral valve annulus

Fig. 3 Pre-ablation endocardial anatomical map in the superior view to validate continuity of the
lesion set around the superior pulmonary veins. The map was reconstructed by the CARTO system
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Fig. 4 The figure shows an endocardial anatomical map of the left atrium in the antero-posterior
view and the typical lesion set encircling the four pulmonary veins (red dots) with superimposed
grid points due to every single catheter contact count. The map was reconstructed by the last
version of CARTO system

Fig. 5 Same map in the same patient without red ablation points. The endocardial map was
reconstructed by CARTO system
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4 Electroanatomic Mapping Systems. Newer Advanced
Versions

Recent technical advances resulted in the development of new versions of both
systems. Carto Express version allows quicker mapping and reconstruction of heart
cavities and great vessels geometry as compared to previous versions of
Carto XP. EnSite Velocity system incorporates more precise catheter visualization,

Fig. 6 Electroanatomic color-coded voltage map of the left atrium in postero-anterior (left panel)
and antero-posterior view (right panel) by CARTO system. Red color represents low-voltage areas
due to radiofrequency applications while green and blue colors depict higher voltage areas.
Post-ablation areas within and around the ablation lines, involving to some extent the left atrial
posterior wall, show lo-amplitude electrograms. This purely anatomic approach yields a profound
atrial electroanatomic remodeling, as expressed by the voltage abatement inside the encircled areas

Fig. 7 Anatomical maps of the left atrium geometry in LAO (left) and RAO (right) view obtained
by the NavX EnSite mapping system. The white line markers correspond to the lesions indicating
the path of RF ablation for the modified pulmonary vein isolation
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Fig. 8 Postero-anterior view of the left atria geometry created by the EnSite mapping system. The
complete set of lesions created during RF ablation are evidenced by the white lesions markers
around the pulmonary veins and posterior wall line

Fig. 9 Postero-anterior view of a color-coded activation map of the left atrium created by the
EnSite mapping system in a patient with incessant atrial tachycardia. The color scale is expressed in
msec, corresponding to the earliest area of activation (red color) located on the posterior left atrium

Electroanatomical Mapping Systems … 245



and allows Fig. 3. One kernel at xs (dotted kernel) or two kernels at xi and xj (left
and right) lead to the same summed estimate at xs. This shows a figure consisting of
different types of lines. Elements of the figure described in the caption should be set
in italics, in parentheses, as shown in this sample caption.

Quicker mapping as compared to previous version of EnSite. The CARTO
system utilizes magnetic location technology to provide accurate visualization of
the magnet sensor-equipped catheter tip. The original electroanatomic 3D Carto®
system is essentially based on three active weak magnetic fields (5x10-6 to
5x10-5 T), generated by a 3-coil location pad placed underneath the patient’s
thorax. Magnetic field strengths are measured with mini-sensors embedded in the
catheter tip on a continuous basis providing data about the real time and exact
position and orientation of the sensor in space. One sensor attached to the patient’s
skin within the working space of interest serves as a location reference. Patient
movement or dislocation of the location pad may lead to uncorrectable map shifts.
Recent versions of Carto System (Carto3®) integrate a hybrid of magnetic and
current-based catheter localization technology enabling visualization of multiple
catheters simultaneously without fluoroscopy use. For this, six electrode patches
positioned at the patient’s back and chest continuously screen the current emitted at
a unique frequency from different catheter electrodes. Localization of the

Fig. 10 Postero-anterior views of electroanatomical color-coded maps of the left atrium created
by the Ensite mapping system in a patient with atrial fibrillation. The map on the left shows the
regions that have the most regular cycle length with the fast “rotor” activity (red/orange color
scale corresponding to 180 ms) representing the ablation targets. Note that the regular rotor
activity is characterized by short cycle length or fractionated potentials (right panel)
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non-magnetic electrodes can be calibrated by the detection of the magnetic sensor
within the coordinate system in order to overcome distortions from non-uniform
intrathoracic resistances. Other newer development of the Carto3® system is the
fast anatomical mapping (FAM) which allows real time accurate reconstruction of
detailed shells by a multipolar mapping catheter simply moving the catheter all
around in the chamber of interest, thus providing a better reconstruction than the
point-by-point maps in the earlier Carto® versions. Another development targeting
the accuracy of surface reconstructions is accomplished by a unique type of res-
piratory gating in which varying thoracic impedances are measured throughout the
respiratory cycle. The new developments in the current Carto3® version have
already been shown beneficial in terms of fluoroscopy requirements, when com-
pared to the older CartoXP® version. The other electroanatomical mapping systems
currently used is the EnsiteNavX® system, which is essentially based on the
LocaLisa® technology using six skin electrode patches to create high frequency
electric fields (approximately 8 kHz in the current version) in three orthogonal
planes. The 3D-localization of conventional electrophysiology catheters is calcu-
lated based on an impedance gradient in relation to a reference electrode. The
body’s non-linear impedance may be partially corrected by a process called field

Fig. 11 The map shows color-coded left atrial activation time in a patient with atrial fibrillation
obtained by the EnSite mapping system. The activation time is calculated from a reference marker
(in this example the coronary sinus catheter distal to second electrode signal), allowing identifying
the propagation path of the arrhythmia. Note post-ablation dense scar low voltage areas in grey
(right panel) in the posterior wall and residual very fast rotor activity in the anterior septum
(left panel)
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scaling. To improve compensation for cardiac and respiratory motion artifacts, a
stable reference catheter in the proximal coronary sinus is placed to avoid uncor-
rectable map shifts. The advantage of the EnSiteNavX® system over the Carto®
system is that it allows for visualization of multiple catheters from different man-
ufacturers and that all electrodes of any catheter can be used simultaneously for a
relatively quick reconstruction of cardiac chambers providing not only anatomical
information but also electrophysiological mapping data. In the last 15 years the
Authors have performed more than 15,000 invasive catheter ablation procedures
using both CARTO and Ensite systems (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11),
particularly in patients with atrial fibrillation with a median age of 60 years (IQR,
55-64). Our experience indicates that multi-electrode mapping represents a signif-
icant advancement in mapping technology, allowing physicians to acquire multiple
mapping points simultaneously with a high level of detail and accuracy. Combined
with the new Pentarray Navigation Catheter, it is possible to reduce the number of
required catheter maneuvers to quickly diagnose any arrhythmia. (Unpublished
observations). This would further support the safety, effectiveness and efficiency of
cardiac ablation procedures.

5 Electroanatomic Mapping Systems. Image Integration

Image integration is a new tool which can be used to further increase the under-
standing of the patient’s complex atrial anatomy, such as the pulmonary vein-atrial
junction and the ridge between the left pulmonary veins and the left atrial appen-
dage. CT or MRI data, which are acquired prior to the procedure, are integrated in
the EAMS. After image processing (segmentation), 3D images are either merged or
fused with the 3D reconstructions with fusion usually requiring a more extensive
registration process. Utilization of intracardiac echocardiography (ICE) is less
frequently used for guidance of transseptal puncture, and early detection of com-
plications such as pericardial effusion, thrombus formation, or tissue overheating
(microbubble formation). The most widely used ICE technology runs integrated in
the Carto® system (CartoSound®, Biosense Webster). It uses a phased-array
ultrasound tipped catheter consisting of a 64-element transducer (Sound29Star®
Catheter, Biosense Webster). The high-resolution, multiple-frequency transducer
(5–10 MHz) is incorporated into a 10F steerable catheter and provides 90° sector
images with depth control [31]. The CartoSound® module is capable of creating 3D
models by combining multiple 2D ultrasound cross sections generated by the
transducer. The latter can be merged with segmented CT/MRI left atrial models.
The technology allows improvement in success and complication rates as well as
shortening of LA catheter dwell and fluoroscopy times when compared with the
fluoroscopy-only approach [31]. Use of intracardiac ultrasound requires an addi-
tional 11F sheath for transducer introduction, potentially raising the risk of femoral
access complications as well as adds a non-negligible cost to the procedure all of
which strongly limit its widespread use.
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6 Electroanatomic Mapping Systems. Remote
Navigation/Ablation

Remote-controlled navigation technology provides for precise navigation with the
hope that this translates to improved lesion contiguity. Recently, remote-controlled
robotic catheter ablation has emerged as a new ablation approach to achieve these
goals [20, 21]. Two remote-controlled systems, which have the added benefit of
reducing the physician’s radiation exposure, have been developed to facilitate
catheter navigation and ablation by increasing catheter stability. The first one
available for clinical use is a magnetic navigation system (Niobe II system,
Stereotaxis, St. Louis, Missouri) and the second one is a robotic navigation system
(Sensei system, Hansen Medical, Mountain View, California). Although both
systems have shown the feasibility and safety of remote-controlled ablation, further
technological innovations are required to expand applicability and research is
needed to establish non-inferiority to manual approaches. Therefore, technical
innovations are clearly warranted which could: a) minimize the physician’s
fluoroscopy exposure; b) reduce physical demands on the operator by allowing for a
more relaxed ablation procedure from within the control room; c) improve catheter
stability and reproducibility of the procedure; and d) increase patients’ safety by
avoiding serious complications. The Stereotaxis navigation system includes two
large external magnets positioned on either side of the fluoroscopy table to generate
a uniform magnetic field (0.08 T) of approximately 15-cm diameter within the
patient’s chest [20, 21]. The ablation catheters are extremely floppy along their
distal end with small magnets embedded at the tip of the catheter. The catheter tip
aligns with the orientation of the generated magnetic field. Using a software
interface, the operator can manipulate the magnetic field and, by extension, the tip
of the ablation catheter, providing the first level of freedom of movement with this
new system. The other level of freedom of movement is the ability remotely to
advance or retract the catheter tip by a computer-controlled catheter advancer
system (CardioDrive), which consists of a disposable plastic unit positioned at the
femoral catheter insertion site. The catheter shaft is affixed to a CardioDrive unit
where it enters the sheath, and can transduce the remote operator instructions to
advance or retract the catheter appropriately. This combination of remote catheter
advancement-retraction and magnetic field manipulation allows the operator a great
deal of flexibility for navigation, mapping and ablation. The magnetic navigation
system is integrated with one of the electroanatomic mapping systems (CARTO
RMT, Biosense Webster, Diamond Bar, CA), which also allows integration of
3-dimensional computed tomography or MRI models. Once integrated, the mag-
netic field can be directly controlled with the computer mouse. The mapping system
can precisely localize the catheter tip in space to a submillimeter resolution. By
precisely tracking the catheter location, the combination of mapping and navigation
systems allows automated chamber mapping. The operator can remotely manipulate
the magnetic catheter within the left atrium to a predefined anatomic location,
such as PV ostia or mitral valve annulus. Based on these parameters, the system
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automatically manipulates the catheter throughout the chamber to facilitate gener-
ation of an electroanatomic map. New software allows the system to manipulate the
catheter tip automatically to create linear ablation lesions with in the chamber as per
the operator’s wishes. The efficiency and accuracy of these automatic software
solutions, however, remain to be demonstrated. The other significant advance is the
ability to incorporate pre-acquired 3-dimensional MRIs or computed tomography
scans into the system to allow mapping on a realistic model of the heart. With the
current generation software, clinical data are available on its efficacy for atrial
fibrillation ablation. In more than 500 patients with atrial fibrillation, the Authors
have demonstrated that electroanatomic maps are accurate and have recently
reported that the standard set of lesions with remote PV isolation can be repro-
ducibly achieved using an irrigated ablation catheter [24, 25].

7 Clinical Benefit of Electroanatomic Mapping Systems

In patients with complex tachyarrhythmias such as atrial fibrillation and/or atrial
tachycardia electroanatomical mapping systems are useful for substrate identifica-
tion and successful ablation. The accurate identification and modification of com-
plex arrhythmogenic substrates is considered as primary ablation strategy in
contemporary ablation procedures. Comparative studies have shown that by means
of the 3D electroanatomic mapping systems both, radiation exposure and procedure
duration can be significantly shortened versus conventional fluoroscopy-guided
atrial fibrillation ablation procedures. Small single-center studies comparing the two
systems in atrial fibrillation ablation directly demonstrated similar clinical results,
but advantages of Carto® over EnsiteNavX® in terms of fluoroscopy use and
procedure durations. There are many limitations of integration of virtual models:
(1) different volume status during CT/MRI and during the procedure may result in
mismatches of image integration; (2) additional radiation exposure due to CT scans,
potential kidney damage or allergic reactions induced by contrast agents; (3) addi-
tional logistic and economic burden.

8 Discussion

It has become clear that the introduction and advances of the electroanatomical
mapping system technology have facilitate many ablation strategies including but
not limited to PV isolation serving as a prerequisite for more complex substrate
modification followed by successful treatment of several and different tach-
yarrhythmias including incessant refractory primary or post-interventional atrial
tachycardias. The two most widely used contact-based electroanatomic mapping
systems worldwide in the context of atrial fibrillation ablation are the Carto® and
EnsiteNavX® systems, which have evolved as the standard electroanatomic
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mapping systems today leading to EAMS-based strategies [14–21]. In the last few
years, although the electroanatomical mapping technology has been enhanced by
integrating data from other imaging modalities, such as computed tomography and
cardiac magnetic resonance, the contact-based electroanatomic mapping systems
remains the standard of care in most patients, while non-contact and/or multipolar
catheters enable high-density mapping of arrhythmias in as few as a single beat.
More recently, the remote technology applied to electroanatomic mapping systems
has made the ablation procedures shorter in duration, easier, less dependent on
fluoroscopy, safer, and last but not least more effective but have reasonable additive
costs for hardware installations [25]. Image integration and precise autoregistration
of 3D models may result in (1) less fluoroscopy use due to improved awareness of
the individual anatomy, and (2) in prevention of complications like pulmonary vein
stenosis or esophageal thermal damage [32–39]. Although these potential advan-
tages have not yet been proven in clinical trials, further clinical benefits of image
integration remain controversial. Indeed, there are significant limitations of inte-
gration of virtual models, which require to be considered and discussed. First,
contemporary 3D models represent static representations of a moving organ and not
all motion artifacts from the beating heart or respiration can currently be entirely
compensated. Second, the different volume status during CT/MRI and during the
procedure may result in mismatches of image integration. Further disadvantages
relate to the additional radiation exposure due to CT scans, to potential kidney
damage or allergic reactions induced by contrast agents, or to an additional logistic
and economic burden. In our experience activation mapping using multielectrode
catheters should be considered as a standard tool in a modern electrophysiology
laboratory particularly in treating complex arrhythmic substrates in patients with
cardiomyopathies, who are increasingly referred for catheter ablation. In such
patient population enhanced efficacy should be associated with lower risks of the
procedure remaining one of the most important goals of future advances in ablation
tools.

9 Conclusion and Future Work

The introduction and advancements of electroanatomic mapping systems have
facilitated many complex catheter ablation procedures, such as atrial fibrillation
ablation or incessant atrial tachycardia. The newer versions of Carto® and
EnsiteNavX® systems are very effective and safe and currently are considered
worldwide as the standard electroanatomic mapping systems making mapping and
ablation procedures shorter, easier, less dependent on fluoroscopy, safer, and more
effective with reasonable costs. Due to improved awareness of the individual
anatomy, prevention of major complications of complex procedures, such as atrial
fibrillation ablation, may be expected, as demonstrated in large multicenter studies.
In conclusion, electroanatomical mapping systems have three major clinically
relevant advantages. They visualize catheter positions in 3D space during the
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procedure without ionizing radiation. They allow the detailed analysis of arrhyth-
mia mechanisms and to guide ablation procedures in patients with complex
arrhythmia substrates such as atrial fibrillation. Finally, they allow movement of
electrophysiological catheters in a ‘virtual anatomy’ showing the catheter position
visualized onto preprocedural and, in the near future, in accurate intraprocedural
anatomic images (‘image fusion’). Although the first advantage has been demon-
strated in controlled trials, the latter two did so far not undergo rigorous clinical
testing. Real-time feedback on tissue-catheter contact and multi-electrode
high-resolution mapping with automatic point annotation further increase current
mapping tools. Our primary future goal should be to improve effectiveness of
mapping with the help of electroanatomic mapping systems through advancement
of technologies available, along with implementing state-of-the-art technology in as
many electrophysiology labs worldwide with rational cost. In the future, substrate
modification in atrial fibrillation ablation should move toward individualized
patient-tailored ablation procedures. Magnetic resonance imaging could play a
major role for noninvasively describing the localization and extent of fibrotic areas.
Specific new strategies that could be used include precise localization and ablation
of rotors that maintain the arrhythmia using multielectrode mapping during atrial
fibrillation and box isolation of fibrotic areas guided by electroanatomic voltage
mapping during sinus rhythm. Predicting the future is hard, but that doesn’t stop us
from trying. Advances are getting bigger and bigger and happening more and more
quickly.
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Image Quality Assessment: A Case Study
on Ultrasound Images of Supraspinatus
Tendon

Rishu Gupta, I. Elamvazuthi and J. George

Abstract With the advancement of technologies on visual contents and the rate at
which data is being captured, viewed, stored, and shared, the importance of
assessment of quality of the contents has major importance. Image quality
assessment has remained a topic of research over the last several decades for optical
as well as medical images. User oriented image quality assessment is playing a key
role in the assessment of visual contents. Studies are conducted to imitate the
accuracy of human visual system for assessment of images. This chapter details
about the approaches for development of methods for image quality assessment
followed by brief introduction on existing image quality assessment methods. Later
in the chapter, challenges for validation and development of image quality
assessment metric for medical images are briefly discussed followed by the case
study for assessment of ultrasound images of supraspinatus tendon.

1 Introduction

Digital imaging and image processing technologies have constructively changed the
way in which the visual contents is captured, stored, viewed, received and trans-
ferred over decades. With the advent of the technology sharing of images, videos or
online streaming of the high definition videos have become a reality which was
unthinkable two decades back. Despite the emerging technologies and advance-
ments, the consumer or the human visual system has remain unchanged, although
with time persons perception towards the visual contents may change due to
underlying neural circuitry and its biological processing strategies. Digital imaging
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can alter images in ways which can be perceived as detrimental or beneficial for
impact on visual quality of images.

Because of occurrence of alterations in the visual contents due to various reasons
such as the system properties of capturing device, noise or disturbance introduced
by medium of transfer, or by disturbance introduced by system on consumer end, it
is utmost important to keep track of the image quality. To meet this requirement,
several algorithms and methods for image quality assessment has been developed
over decades. The preliminary efforts to explain the quality evaluation of optical
imaging systems and display systems can be found in [1]. Although no image
quality assessment metric was proposed in [1], but many recent IQA metric do
apply the factors such as definition, contrast range, gradation, brilliance, flicker,
geometric distortion, size, color and noise introduced in this work. In [2], Fellgett
and Linfoot introduced two key factors for assessment of image quality: “assess-
ment by similarity and assessment by information”. Indeed, many IQA algorithms
have used these ideas or their variation for development of image assessment
algorithms. It is interesting to note that idea of incorporating human visual system
properties such as luminance, contrast, and visual making for the assessment of
quality of images was put forward by researchers [3–5] in early 1970s but yet no
metric was proposed. Although it was established that full evaluation of the quality
of images is impossible yet but in the foreseeable future these metric are very likely
to develop. Looking at the development after 45 years remarkable progress has
been made for quality evaluation but still technology is far from being accurate.

At first instance, the development of IQA algorithm does not seem to be an
intimidating problem because image is basically a collection of pixels and any
alteration in the image can be traced by numerical mapping of the pixels. However
to develop algorithm that incorporates characteristics of human visual system
perfectly is difficult task as humans do not perceive images in the form of collection
of pixels but the perception depends on image and type of processing and on the
psychological interaction between these two factors and many more numerous
features. It is mentioned by Schade [6] that image quality is a subjective judgment
made by mental comparison of an external image with image impressions off
external image with impression stored and remembered more or less distinctly by
observer. Moreover, the rating given to an image may be greatly influenced by the
availability of reference image, if much better or worse image for comparison
purposes is provided.

The IQA algorithms can be categorized into three types based on the quality
assessment with respect to the reference images [7]:

1. Full reference
2. Reduced reference
3. No reference

In full reference category the original image is provided for comparison with the
processed image whereas in reduced reference for the evaluation of image quality
original image is not provided rather some of the features from original image are

258 R. Gupta et al.



provided [7–9]. In the case of no reference IQA neither any information regarding
the original image nor the original image is provided to evaluate the quality of the
processed images.

Most of the IQA algorithms developed takes into consideration full-reference
category which evaluates the processed image in comparison with that of the
original image. All the three categories of IQA algorithm can produce good results
for predicting the quality of the image but some of full reference IQA algorithm has
matured compared to that of reduced or no reference IQA algorithms. However,
with the recent advancements in the technology, reduced or no reference IQA
methods have shown to produce results which are very close to human visualization
ratings. Further in the chapter attributes of human visual system is briefly explained
followed by detail discussion regarding the three categories of IQA techniques.
Thereafter, challenges faced by research community in development of image
quality assessment technique are also discussed briefly. In the end of the chapter,
assessment method for medical images is also discussed in short with focus on
ultrasound imaging.

2 Approaches for Development of IQA

The development of IQA algorithm can generally be categorized into two
approaches. In first approach IQA metric is a result of considering physical attri-
butes of images that human visual system finds intriguing or distinct. With the
understanding of how the physical changes in the images are perceived by human
visual system, an algorithm can be developed to assess the quality of image based
on the changes occurring in images. Several studies have been conducted to
understand and quantify the visual response of humans based on psychophysical
and neural impact with changes in the images. As a result of these studies, detailed
insights about the human visual system and its response is provided and further
used for the development of IQA metrics.

Second approach for incorporating the human visual system response for cre-
ating the quality ratings is by allowing the evaluation of several images and their
variations by group of human subjects or experts and save their ratings. Many of the
quality rating studies have been conducted to build a database of images based on
human perception and evaluation which could be further used to assess the quality
of images. These generated databases contain reference images and their various
versions of transformed images with their ratings included. This type of approach is
very common for medical images such as ultrasound images or MRI images where
lack of ground truth image is an impediment and also the images are used for the
examination of human subjects, therefore, the quality of the images should be with
the standards of the medical practitioners. Brief discussion regarding the human
visual system attribute followed by validation method or development of IQA for
assessment of medical images is provided in subsequent sections.
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2.1 Attributes of Human Visual System for IQA

The purpose of study on the visual psychophysics is to understand the physical
attributes of human visual system that can be monitored to better understand how
the changes in the visual scenario can be mapped to the perception and cognition of
humans. The study involves carefully designed protocols for human subjects in
controlled environment with exact understanding of visual stimuli and viewing
condition. Most of the visual perception parameters that are used for development
of IQA are designed with the help of these studies. The primary goal for study on
visual psychophysics is to understand the knowledge and functionality of human
visual system with less emphasis on its image quality. As a result, it is a respon-
sibility of the developer of IQA to utilize the findings of these studies [10–15] and
incorporate them to develop an algorithm to monitor image quality. The psy-
chophysical attributes that are incorporated in the development of IQA algorithms
are briefly discussed below with referred articles for detailed understanding:

(1) Contrast sensitivity function: The study conducted on human visual system
revealed that minimum contrast needed for detection of target is depended on
the spatial frequency of target [16]. The minimum needed contrast is termed as
contrast detection threshold (CST) and inverse of CST is contrast sensitivity.
A thorough investigation of using contrast sensitivity function for develop-
ment of IQA is provided in [17].

(2) Visual Masking: The understanding of fact, using studies on the human visual
system, that some parts of images can conceal the information or distortions
better than others [18] are used in the development of IQA algorithms. The
visual masking is phenomenon where the presence of mask deters the per-
ception of object in the image by observer. The visual masking can be cate-
gorized into three types: (1) noise masking (2) Contrast masking (3) Entropy
masking [19]. Due to the simplicity of computation of contrast sensitivity,
contrast masking is exploited in many IQA algorithms [20, 21]. The quan-
tification of noise and entropy masking is difficult and henceforth less com-
mon in IQA algorithms [22].

(3) Model of human visual system: Based on the studies conducted on human
visual system [23, 24] it was concluded that HVS decomposes the image’s
local spatial frequency which are further independently detected by multiple
spatial frequency channels known as multichannel model of human visual
system [25], this information is further processed in the form of multiscale
decomposition methods for assessment of images.

(4) Computational neural models: The multichannel model of HVS has inspired
researchers to develop neural model for human visual cortex. The developed
neural models (V1 model) have been used for development of IQA algorithms
[20, 26, 27]. The method first develops the reference image, then model neural
responses for distortions and then assigns the detectable distortion if different
sets of neural responses have sufficient difference.
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Second approach for the development of image quality database for the
assessment of images is qualitative assessment by humans which is discussed
subsequently.

2.2 Qualitative Assessment by Human

To determine the quality of images another approach is development of image
quality database based on the human interpretation of images and its several
variations. The ratings for individual images should be provided by group of
peoples or subjects and should be recorded to evaluate the image quality and also to
refine the existing IQA algorithms. Image quality database contains ground truth
information regarding the reference images and altered images with the average
rating from several users. The information for the existing database of images can
be found in [28].

The human observer plays a vital role in the validation of medical images as it
involves the examination and diagnosis for human pathologies. Not only the val-
idation from single observer but multiple observers and cross validation of the
responses should be recorded for inter and intra-observer variability which is
variability between two different observers and variability within the same observer
respectively when observation is performed at different time intervals. Validation of
research in medical imaging is of utmost importance. For validation purposes,
phantoms, animal model, clinical studies based on the manual delineation per-
formed by radiologists are generally preferred. In some of the cases of medical
imaging it is very difficult to obtain the phantoms or animal models for validation,
therefore assessment by medical practitioners plays vital role. In ultrasound
imaging, very little work is performed using phantoms or simulated images which
clearly explain the difficulty faced to procure realistic phantoms and simulations for
tissues. Another impediment for validation of research on ultrasound images is
non-availability of standard database for images for comparison of results. Field II
ultrasound simulation package is used in limited cases in some of the applications
[29, 30] for validation purposes. Details about validation method for developed
algorithms for enhanced, focused assessment of ultrasound images of supraspinatus
tendon is discussed later. Challenges faced by researchers for development of image
quality assessment metric is briefly described in subsequent section.

3 Challenges for Image Quality Assessment Metric

The challenges in the development of image quality assessment metric are directly
related to development in the understanding of the human visual system. The current
understanding of the visual cortex is based on the primary visual cortex, the com-
putation model developed for imitating primary visual cortex (V1) are very complex
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due to the fact that response of visual neurons for different images is different in
controlled environment and open environment. Due to the non-linear nature of
neural response it is very difficult to estimate the response of human visual system
towards natural or medical images. Apart from understanding of the human visual
system the absence of ground truth data for natural images and medical images is
also crucial for development of IQA, there is no available database for contrast
detection threshold for natural images (related work can be found in [31, 32]). The
database for images such as low contrast images, high contrast images, blurry
images, natural scene images, medical images and other variations are necessary to
develop database that can assist for the development of improved IQA metric.

For medical images the development of IQA metric is a relatively more chal-
lenging task due to unavailability of database for ground truth images and also
variation in the anatomy with patients and its response towards different imaging
modality. Medical imaging modalities such as magnetic resonance imaging (MRI),
computed tomography (CT), positron emission tomography (PET), single photon
emission computed tomography (SPECT), ultrasound (US) show different response
towards different anatomical part. The interpretation of the images is highly
dependent on the expertise of the medical practitioner and final assessment relies on
radiologist delineation of the images. The IQA for ultrasound images can be done
using several metrics such signal to noise ratio, similarity index, structural index,
image quality index. Not one index can incorporate the details of medical images,
[33] introduced a method for quantitative assessment of calcium lesion in
intravascular ultrasound images. Further discussion on image assessment for
ultrasound images are detailed in Sect. 5.

Some of the medical imaging modalities show better contrast compared to other,
however others have different added advantages such as the images taken from MRI
have good contrast but imaging is difficult for claustrophobic patients or patients
with metal transplants and is also expensive compared to ultrasound which has
relatively lower contrast and resolution but patient acceptability is high and is cost
effective. For medical images inter-variability and intra-variability exist in the
assessment of images by different medical practitioners at varied time intervals. The
subsequent sections briefly provides the limitations of IQA techniques.

4 Limitations of Image Quality Assessment

The image quality assessment metric are the result of imitating HVS for assessment
of quality of images. HVS is capable to perceives different kinds of image in a
different and efficient manner and evaluate them on quality, developing an IQA
which incorporates variations in images is not yet available due to our lack of
understanding of HVS. Some of the limitations of IQA techniques are as follows:

1. Assessment of image quality in absence of ground truth or reference image.
2. Limited understanding of human visual system
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3. Computational cost of the metric incorporating the details of HVS
4. Lack of ground truth database for individual form of images such as for optical

images and medical images. In case of medical images, diagnostics are mostly
dependent on observers experience and knowledge.

For ultrasound images, evaluation of quality of speckle is assessed using
ultrasound despeckling assessment index (USDSAI) [34], however different
application of ultrasound images cannot be assessed using single metric. Therefore
for medical applications use of multiple relevant metrics is introduced. In the
subsequent section of this chapter a case study on enhancement and segmentation
of supraspinatus tendon ultrasound images is provided along with its impact on
assessment of supraspinatus tendon using statistical analysis and metric values.

5 Proposed Method Adopted for Assessment of SSP
Tendon Ultrasound Images

Lack of standardized measures for quantitative assessment of ultrasound images
and also absence of ground truth database makes it difficult to compare results
obtained using different methods. Therefore by far, most extensively used technique
for validation of results in ultrasound imaging is manual delineation of clinical data
with the help of radiologist [35]. In most of the recent literature [35–40], for
validation of segmentation in ultrasound images, models manually delineated by
radiologist are used as ground truth. Numerous literature, suggests use of manual
delineation being used as a reference for research validation in applications on
different anatomical part such as cardiac, prostate, IVUS, kidney and many others
[30, 36, 40, 41]. Inter- and intra- variability is a concern because manual seg-
mentation is not the task radiologist intends to do often. Therefore, the comparisons
for the results are performed by statistical methods generally using the clinical
assessment of images with delineation performed by different radiologists. Inter and
intra variability for diagnosis is calculated based on radiologist’s assessment of
several images at different time intervals. After the procurement of assessment
results statistical methods are used to validate the results of the algorithm. The total
of 116 images of supraspinatus tendon were included in the study with following
details shown in Table 1.

Table 1 Summary of dataset

Pathological condition Number of patients Number of images

Normal 11 31

Tendinosis 13 29

Tear 15 29

Tear within Tendinosis 12 27

Total 51 116
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5.1 Enhancement

For medical ultrasound images, to be able to design the reliable and accurate
algorithm for assessment of ultrasound images, it is necessary that images are
relevant as per radiologist satisfaction. When observing an image, the quality
depends on many factors such as sharpness, contrast, viewing angle, resolution and
other factors [42]. For ultrasound images, unfortunately subjective quality of an
image cannot be explained figuratively, and hence final opinion depends on expert’s
evaluation of the image. The evaluation of image by radiologist also depends on
expertise. Although, ultrasound imaging modality contains artifacts and is subjected
to the radiologist assessment; on several occasions it has been verified that ultra-
sound tend to provide comparable accuracy with that of MRI or arthroscopy [43,
44]. The validation methods espoused in the literature [45–47] have been used in
this research work. This observation regarding the nature of ultrasound images
motivates use of different image quality assessment and expert’s assessment for
outcome of different algorithms to quantify the quality of algorithm.

5.1.1 Method

Assessment for enhancement of SSP tendon ultrasound image is performed using
qualitative and quantitative methods.

Qualitative Assessment

The performance of the proposed techniques was evaluated based on the radiolo-
gist’s assessment of the enhanced images. The algorithms were tested for ensuring:
(1) consistence performance of method; (2) reliability of the method; (3) overall
estimate to check the significance of enhancement. Three rounds of assessments
were performed by two radiologists on enhanced images using different methods
[48, 49]. The blind evaluation was conducted for each image; the assessment was
performed using three enhanced and one original image. The resultant images were
provided to radiologist with no prior information given regarding clinical history of
patient. All four images were shown to radiologist at the same time for evaluation
with no mention about the technique used for enhancement. For intra-observer
variability, readings from the same radiologist were taken again after the period of
three weeks. The total of three evaluations for each image was performed and
images were shown in random manner to radiologist at every evaluation. The
assessment sheet for evaluation of the established techniques is shown in Table 2.
The sheets were provided for every enhanced technique and image. Therefore, for
each image four assessment sheets were given to radiologists one for each tech-
nique. The assessment sheets obtained with the help of radiologist was then further
evaluated using statistical method to report the accuracy of the method.
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The sheet contains information regarding three different pathological conditions
i.e. tear and tendinosis and the pathological conditions were classified as

True Positives (TP)—Pathological condition present and diagnosed correctly
True Negatives (TN)—Pathological condition not present and not diagnosed
False Positives (FP)—Pathological condition not present but diagnosed
False Negatives (FN)—Pathological condition present but cannot be diagnosed

The final row for rank assessment is over-all assessment of the enhancement of
image on the scale of 1–4 where 1 was given to worst performer and 4 was given to
best performer.

Inter-observer and intra-observer variability was calculated to estimate the
enhancement in the images and its relevance to the diagnosis. The analysis was
performed based on the overall assessment of the images. The Cohen (j) value is
calculated to determine the inter-observer agreement [45]. Cohen ðjÞ values [50]
greater than 0.80 shows almost complete agreement and less than 0.20 shows no
agreement, whereas 0.21–0.40 gives fair, 0.41–0.60 indicates moderate and 0.61–
0.80 specifies considerable level of agreement among radiologists The formula for
computing j value is given below,

j ¼ p0 � pe
1� pe

ð1Þ

where, p0 overall agreement between two observer, pe is agreement expected to
occur by chance, p0; pe can be calculated as follows,

p0 ¼
Ppos þ Pneg

T
ð2Þ

where, Ppos is the positives in agreement, Pneg is the negatives in agreement, T is the
total number of images and pe is calculated as the joint positive and joint negative
responses from both radiologists, the calculation for pe is done using formula

pe ¼
Ppos1
T

� Ppos2
T

þ Pneg1
T

� Pneg2
T

ð3Þ

where, Ppos1 and Ppos2 is the total number of positives for radiologist 1 and radi-
ologist 2 respectively, Pneg1 and Pneg2 are the total number of negatives for radi-
ologist 1 and radiologist 2 respectively. For intra-observer variability, separate
assessment for tear and tendinosis was performed. Percentage agreement between
the readings taken from radiologist was computed, the computation was performed

Table 2 Assessment sheets
for radiologists

Tissue classification TP FP TN FN

Tendinosis

Tear in normal SSP

Rank

Image Quality Assessment: A Case Study on Ultrasound Images … 265



by taking the average of percentage agreement found in first round-second round
(FR-SR), second round-third round (SR-TR) and third round-first round (TR-FR)
agreement for both the radiologists.

Quantitative Assessment

The quantitative assessment was further performed using various image metrics to
correlate the results obtained qualitatively. For synthetic or optical image, where
original image Xi;j are available, various quantitative parameters are used to validate
the outcome of the resultant image Y

0
i;j which we have introduced to quantify the

performance of enhancement. In the below equations from (4)–(8), µ and r are
respectively the mean and variance within the images. The different quantitative
measurement indices investigated are:

(1) Universal quality index (UQI): This performance measure models distortion in
image as factor of three components [51], contrast distortion, luminance dis-
tortion, and loss of correlation. The numerical formula for the metric is given by

UQI ¼ rXY

rXrY
� 2lXlY

lXð Þ2 þðlYÞ2
� 2rXrY

r2
X þr2

Y
ð4Þ

Metric provides information about extent of structure preservation, luminance
variance and contrast dependence of two images.

(2) Mean square error (MSE): estimates the overall change in the quality of the
image in original and enhanced image. The computation is performed using

MSE ¼ 1
NM

X

N;M

i;j¼1

Xi;j � Yi;j
� �2 ð5Þ

Although mean square error is often used to judge image quality, it does not
sufficiently correlate to the perceptual quality of image. Therefore, it is advised
to use it in combination with other parameter metrics.

(3) Signal to noise ratio(SNR): although sensitivity to signal and noise are
important for algorithms by themselves, what really matters is the ratio of
signal to noise which is calculated as

SNR ¼ 10 log

PN;M
i;j¼1 X

2
i;j

PN;M
i;j¼1 Xi;j � Y

0
i;j

� �2

0

B

@

1

C

A

ð6Þ
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(4) Structural similarity index (SSI): measures any distortion in the image into
three factors: luminance, contrast distortion and loss of correlation. The for-
mula for computation of SSI is given by

SSI ¼ 2lXlY þ c1ð Þ 2rXrY þ c2ð Þ
l2X þ l2Y þ c1ð Þ r2

X þr2
Y þ c2ð Þ ð7Þ

where, c1 ¼ 0:01ðDRÞ and c2 ¼ 0:03ðDRÞ are that depends on the dynamic
range (DR = 255) of the image and used to stabilize the division with weak
denominator. The range of output values from SSI is from −1 to 1 where −1
stands for poor similarity and 1 stands for good similarity between the original
image and enhanced image.

(5) Structural content (SC): explains the similarity between enhanced and the
original image; higher value suggests that algorithm employing image
enhancement have lenient effect on structures.

SC ¼
PN

i¼1

PM
j¼1 X

2
i;j

PN
i¼1

PM
j¼1 Y

2
i;j

ð8Þ

5.1.2 Enhancement Results

The results obtained after enhancement performed using three different techniques
are presented in Fig. 1 for visualization. In the first set of images shown in Fig. 1a–
d, the tendon is shown to be suffering from a tear in the interim section of tendon. In
all the three enhanced images, the pathological condition has become more
prominent after enhancement. In Rayleigh enhanced image, the tear is enhanced at
the same time contrast for nearby structures follow the same pattern and does not
lead for poor diagnosis or false diagnosis. Whereas in Weibull and normal
enhanced image the enhancement for pathological condition is comparatively
higher but leads to enhancement of neighborhood region which accounts for false
diagnosis.

In second set of images shown in Fig. 1e–h, the SSP tendon of patient is in
healthy condition and has no existing pathologies. The Rayleigh enhancement
confirms the diagnosis with no false interpretation, whereas for Weibull and normal
enhancement of image leads to false interpretation of patients pathological condi-
tions. The diagnosis performed using Weibull and normal enhanced method details
the patient to be suffering from calcification which is deposit of calcium in a tendon.

In third set of images shown in Fig. 1i–l, as per the initial diagnosis of the
radiologist, the patient is suffering from tear within tendinosis. The Rayleigh
enhanced image makes the diagnosis more accurate and definitive. As per radiol-
ogist, loss of the tendons and inflammation in the tissue structure is clearly evident
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in enhancement performed using Rayleigh method. Whereas the enhancement
performed using Weibull and normal method in some cases leads to false diagnosis
of patient suffering from tear.

Last set of images shown in Fig. 1m–p, the patient is suffering from tendinosis;
the region can be seen just above humeral cortex. In Rayleigh enhanced image, the
region of tendinosis is clearly dominant but at the same time the contrast in
neighboring structure is maintained thereby not giving any false indications for
non-existent pathologies. On the other hand, the enhancement performed by
Weibull and normal method provides good interpretation for tear in tendon but at
the same time, it also provides hints for calcification in the region of tendon which
is false and misleading for radiologists. With the enhanced images, the diagnosis is
more evident for junior medical officers thereby decreasing the variability in the
operator’s assessment of ultrasound images. The qualitative and quantitative
assessment of 116 set of images with different pathological conditions was carried
out. The assessment method and results for qualitative and quantitative assessment
are presented in following sections.

Fig. 1 Column wise enhanced Images for visual analysis (a, e, i, m) Original image; (b, f, j,
n) Rayleigh enhanced image (c, g, k, o) Weibull enhanced image (d, h, l, p) Normal enhanced
image
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Qualitative Assessment

The resultant images from the three algorithms along with original image were
produced in front of radiologist for blind evaluation. Three assessments of all
images were performed at three different time intervals. The result for first
assessment of images by radiologist is shown in Table 3. Table 3a–d shows the
assessment results of diagnosis based on enhancement performed using Rayleigh
distribution method, Weibull distribution method, Normal distribution method and
original image respectively. The table is created based on the information filled by
radiologist in the assessment sheet provided to them for image visualization.
Similarly, Tables 5 and 7, shows the result from the second and third assessment of
images by radiologist. The values for overall agreement p0 between two observers,
pe agreement expected to occur by chance and cohen j, the chance corrected
agreement between the radiologists are calculated to understand the interobserver
agreement between the radiologists for three assessments.

The statistical analysis of the results of first assessment obtained from radiologist
is summarized in the Table 4.

Table 3 Joint results for first assessment of images

First radiologist Second radiologist Tot.

Positive for disease Negative for disease

(a) Rayleigh enhancement technique

Positive for disease 72 8 80

Negative for disease 9 27 37

Total 81 35 116

(b) Weibull enhancement technique

Positive for disease 63 9 72

Negative for disease 10 34 44

Total 73 43 116

(c) Normal enhancement technique

Positive for disease 60 11 71

Negative for disease 9 36 45

Total 69 47 116

(d) Original image

Positive for disease 54 8 62

Negative for disease 13 41 54

Total 64 52 116

Table 4 Indices of agreement between radiologists for first assessment

Agreement index Type of agreement Rayleigh Weibull Normal Original

p0 Overall 0.853 0.836 0.8276 0.819

pe Chance 0.577 0.531 0.521 0.504

j Chance corrected 0.7139 0.7058 0.6033 0.6855
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Table 4 suggests the performance of Rayleigh distribution to be higher with the
j value of 0.7139 compared to Weibull-0.7058, normal-0.6033 and original
image-0.6855. The values obtained using Rayleigh, Weibull and original image
falls under the category of considerable agreement among radiologist whereas the
agreement obtained from normal enhanced image gives moderate agreement. The
overall agreement between the radiologist and agreement to occur by chance follow
the same trend as observed by cohen ðjÞ value. Table 5 shows the assessment result
of the radiologist for second assessment of images. The tabulated assessment is
further used to statistically determine the quality of enhancement technique.

Similar analysis for images from second and third assessment is performed and
results are provided as follows. Table 6, summarizes the findings of radiologist
assessment in the second round of assessment.

Table 6 indicates, second round of assessment to confirm higher agreement
among radiologist for the use of Rayleigh distribution enhanced image for diagnosis
of SSP tendon. The chance corrected agreement or cohen ðjÞ value for Rayleigh
distribution is 0.7212, followed by Weibull-0.7013, original-0.6855, and normal
enhanced image-0.6033 at the last position. The three images Rayleigh, Weibull and

Table 5 Joint results for second assessment of images

First radiologist Second radiologist Tot.

Positive for disease Negative for disease

(a) Rayleigh enhancement technique

Positive for disease 72 7 79

Negative for disease 7 30 37

Total 79 37 116

(b) Weibull enhancement technique

Positive for disease 66 9 75

Negative for disease 7 34 41

Total 73 43 116

(c) Normal enhancement technique

Positive for disease 59 11 70

Negative for disease 11 35 46

Total 70 46 116

(d) Original image

Positive for disease 55 7 62

Negative for disease 11 43 54

Total 66 50 116

Table 6 Indices of agreement between Radiologists for second assessment

Agreement index Type of agreement Rayleigh Weibull Normal Original

p0 Overall 0.879 0.862 0.81 0.844

pe Chance 0.566 0.538 0.521 0.504

j Chance corrected 0.7212 0.7013 0.6033 0.6855
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original provides considerable agreement among radiologist whereas normal
enhanced image gives moderate agreement for the diagnosis of SSP tendon. Table 7,
shows the assessment result of radiologist for enhanced method in third assessment.

From the observed results in Table 8, it can be concluded that Rayleigh distri-
bution gives highest chance corrected value or cohen ðjÞ value of 0.7831 followed
by Weibull-0.7624, original-0.6947 and normal enhanced image-0.5983. The
results obtained using Rayleigh, Weibull and original image shows considerable
agreement between the experts whereas the agreement between the radiologists for
normal enhanced image is moderate. All the three assessment performed by radi-
ologist suggests Rayleigh enhanced ultrasound image to provide better diagnostic
value compared to other two methods and original image.

Further intra-observer agreement within the radiologists is computed based on
the percentage agreement of radiologist among themselves in first round-second
round, second round-third round and third round-first round of assessment. Table 9
summarizes the results of assessment agreement within the radiologist in different
rounds for the assessment of pathological condition tear.

Table 7 Joint results for third assessment of images

First radiologist Second radiologist Tot.

Positive for disease Negative for disease

(a) Rayleigh enhancement technique

Positive for disease 73 6 79

Negative for disease 5 32 37

Total 78 38 116

(b) Weibull enhancement technique

Positive for disease 68 8 76

Negative for disease 4 36 40

Total 72 44 116

(c) Normal enhancement technique

Positive for disease 61 8 69

Negative for disease 14 33 47

Total 75 41 116

(d) Original image

Positive for disease 62 7 69

Negative for disease 9 38 47

Total 64 52 116

Table 8 Indices of agreement between radiologists for third assessment

Agreement index Type of agreement Rayleigh Weibull Normal Original

p0 Overall 0.905 0.89 0.81 0.862

pe Chance 0.562 0.537 0.527 0.503

j Chance corrected 0.7831 0.7624 0.5983 0.6947
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The average value of the agreement was calculated for Rayleigh enhanced image,
Weibull enhanced image, normal enhanced image and original image. Observing the
results obtained in Table 9, it was found that the percentage agreement with in the
radiologist for Rayleigh is comparatively higher compared to other method. The
average value of agreement within the radiologist for enhancement performed by
Rayleigh is 76.33 % for expert 1 and 80.33 % for expert 2, which was followed by
Weibull with percentage agreement of 76 % by expert 1 and 77 % by expert 2,
original image shows the agreement of 72.66 % by expert 1 and 76.33 percent by
expert 2. The enhancement performed by normal enhanced image gives within
agreement for expert 1 to be 69.33 % and for expert 2 to be 68.66 % which is lower
than that for original image. The graphical representation of the results for
intra-observer agreement for the pathological condition tear is shown in Fig. 2.

Figure 2, shows the average value for both the radiologist for the diagnosis of
pathological condition tear is maximum for Rayleigh enhanced method, followed
by Weibull, original image and normal enhanced image.

Table 10, summarizes the result of agreement within radiologist for three
assessments for pathological condition, tendinosis, using first-second round,
second-third round, and third-first round agreement.

The observation of results obtained in Table 10, suggests Rayleigh to be having
higher percentage agreement within radiologist with 80 % for expert 1 and 83 %

Table 9 Intra-observer variability in radiologists assessment for tear

IA round Percentage agreement (%)

Expert 1 Expert 2

(a) Original image

FR-SR 79 72

SR-TR 74 77

TR-FR 65 80

Average (%) 72.66 76.33

(b) Rayleigh adaptive enhanced

FR-SR 81 76

SR-TR 77 81

TR-FR 72 84

Average (%) 76.33 80.33

(c) Weibull adaptive enhanced

FR-SR 77 72

SR-TR 76 77

TR-FR 75 82

Average (%) 76 77

(d) Normal adaptive enhanced

FR-SR 71 70

SR-TR 76 72

TR-FR 61 64

Average (%) 69.33 68.66

*FR—First round, SR—Second Round, TR—Third Round, IA—Image Assessment
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for expert 2 followed by original with agreement of 73.33 % by expert 1 and
79.33 % from expert 2, Weibull with agreement of 72.33 % and 76.33 % for expert
1 and expert 2 respectively. Normal enhanced image gives the lowest percentage for
within agreement between three rounds. The graphical representation of average
value of percentage agreement between expert 1 and expert 2 for pathological
condition tear can be seen in Fig. 3.

Rayleigh Weibull Normal Original
Pe

rc
en

ta
ge

 a
gr

ee
m

en
t

Enhancement Methods

Expert 1

Expert 2

Fig. 2 Average value for
intra-observer agreement for
tear using different methods

Table 10 Intra-observer variability in radiologists assessment for tendinosis

IA round Percentage agreement (%)

Expert 1 Expert 2

(a) Original image

FR-SR 73 79

SR-TR 76 78

TR-FR 71 82

Average (%) 73.33 79.66

(b) Rayleigh adaptive enhanced

FR-SR 75 81

SR-TR 84 86

TR-FR 81 82

Average (%) 80 83

(c) Weibull adaptive enhanced

FR-SR 72 77

SR-TR 74 73

TR-FR 71 79

Average (%) 72.33 76.33

(d) Normal adaptive enhanced

FR-SR 69 65

SR-TR 72 69

TR-FR 70 71

Average (%) 70.33 68.33

*FR—First round, SR—Second Round, TR—Third Round, IA—Image Assessment
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Figure 3 again confirms the diagnosis of pathological condition tendinosis can
be better performed using Rayleigh enhanced method, followed by Weibull, orig-
inal image and normal enhanced image.

Quantitative Assessment

The summary of the quantitative evaluation of enhancement techniques based on
universal quality index, signal to noise ratio, structure similarity index, structural
content and mean square error parameter metrics is tabulated in Table 11.

The evaluation metrics are calculated for the resultant images from different
techniques. The results are consistent with the findings of radiologist with Rayleigh
distribution performing best and, conflicts exist in Weibull and original image for
number two and number three positions. Weibull is ranked number two by uni-
versal quality index, structural similarity index and structural content whereas
signal to noise ratio and mean square error is at number two for original image,
followed by normal enhanced image which is at number four. The plot for eval-
uation metrics are shown in Figs. 4, 5, 6, 7, and 8 for universal quality index, signal
to noise ratio, structure similarity index, structural content and mean square error
respectively.

Figure 4, shows the results for the evaluation of images based on universal
quality index. The maximum value of universal quality index is obtained for
Rayleigh enhanced ultrasound image which depicts the methods capabilities to
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Fig. 3 Average value for
intra-observer agreement for
tendinosis using different
methods

Table 11 Rank of techniques quantitatively

Measurement index Rayleigh rank Weibull rank Normal rank Original rank

Quality index 1 2 4 3

SNR 1 3 4 2

SSI 1 2 4 3

SC 1 2 4 3

MSE 1 3 4 2
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preserve the tissue structures in ultrasound image better than the other methods. The
Rayleigh enhancement is followed by Weibull which was qualitatively also sug-
gested by experts as the second best enhancement method after the Rayleigh
method. Original ultrasound image results to be at number 3 which again justifies
the qualitative analysis followed by the normal enhancement at the last. The
average value of universal quality index for Rayleigh enhancement is 0.54 followed
by 0.49 for Weibull enhanced image and 0.47 for original and 0.43 for normal
enhanced image.

Figure 5, shows the result obtained by signal to noise ratio measurement index
with maximum average SNR value of 1.98 for Rayleigh enhancement SSP tendon
image followed by original image at number 2 with the average SNR value of 1.71
and Weibull enhanced image with very slight difference of 0.03 in the values of
SNR with original image at number 3 and finally the performance of normal

Fig. 4 Universal quality index

Fig. 5 Signal to noise ratio
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enhanced image is last with the average SNR value of 1.27. The results from SNR
values rates Rayleigh enhanced ultrasound image to contain more signal to noise
ratio compared to other methods for enhancement.

Figure 6, shows the result of four considered algorithms with respect to the
structure similarity index parameter metric. The average value of Rayleigh
enhanced image is 0.512 followed by 0.49 for Weibull, 0.43 for normal enhanced
image and 0.35 for original image. The results obtained from the SSIM index shows
the best preservation of the structure details in Rayleigh enhanced image which is
similar to the results obtained from qualitative analysis performed with the help of
experienced radiologists.

Figure 7 gives the quantitative result of the algorithm based on the structural
content parameter with average value of 13.76 for Rayleigh enhancement followed

Fig. 6 Structural similarity index

Fig. 7 Structural Content
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by 10.4 for Weibull enhancement, 9.74 for original image and 9.61 for normal
enhanced ultrasound image. The results are consistent for Rayleigh enhanced
ultrasound image showing maximum diagnostic capabilities for detection of
pathological region in SSP tendon. The results are also consistent with the radi-
ologist assessment of the ultrasound images.

Figure 8 shows the results from last quantitative parameter introduced based on
the error introduced in the images after the enhancement. Mean square error for all
the enhanced images was calculated and average value of MSE for Rayleigh is
1.601 followed by 1.78 by Weibull enhanced image, 1.87 from original image and
2.10 from norm enhanced ultrasound image. The MSE for Rayleigh enhancement is
lowest suggesting the maximum enhancement and minimum introduction of the
unnecessary details to ultrasound images after enhancement.

The qualitative and quantitative analysis performed on the ultrasound images
based on the four different distributions suggests Rayleigh enhanced ultrasound
image to perform best for assistive diagnosis of the pathological condition in SSP
tendon by radiologist. The detailed results obtained at every step in mask extraction
for SSP tendon and pathological advantage of using focused SSP tendon image for
assessment has been provided subsequently.

5.2 Assessment of Segmentation

For the assessment of region of interest segmentation, qualitative measures were
adopted both for performance of the algorithm and improvement in diagnostic
capabilities.

Fig. 8 Mean square error
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5.2.1 Performance of Segmentation Algorithm: Qualitative
Assessment

The quantitative method uses three parameter metrics: (1) False positive rate (FPR);
(2) True positive rate (TPR) [52]; (3) Accuracy (ACC). The measurement metrics
were calculated based on the area of segmentation. The regions were classified as
true positives, false positives, and false negatives. Pictorial representation for cor-
responding area is shown in Fig. 9.

The performance metrics can be calculated using the formula below,

TPR ¼ TP
TPþ FN

; ð9Þ

FPR ¼ FP
FPþTN

; ð10Þ

ACC ¼ TPþTN
TPþ FPþTNþ FN

ð11Þ

where, TP is region of SSP tendon accurately segmented by algorithm, FP is the
region segmented by proposed method but does not exist in radiologist delineation,
FN is the region delineated by radiologist and not existent in region segmented by
proposed method, TN do not exist for assessment of segmentation. The images for
visualization were also provided.

5.2.2 Performance on Diagnostics: Qualitative Assessment

The SSP tendon segmentation from ultrasound image results in the focused
assessment of the tendon for pathological condition. The results were validated by
providing the segmented image to radiologist and performing the assessment based
on the radiologist interpretation of pathologies from focused images. The patho-
logical conditions considered for evaluation in this case were tears, which could be

Manual Segmentation 
by Radiologist 

Automatic Segmentation 
using AlgorithmTrue Positive

False
Negative

False Positive

Fig. 9 Corresponding areas for false positive, false negative and true positives
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partial thickness tears (PTTs) or full thickness tears (FTTs). The specificity and
sensitivity values were calculated from radiologist assessment of the segmented
image using the formula,

Sensitivity ¼ TP
TPþ FN

; Specificity ¼ TN
FPþTN

ð12Þ

Also, the results of evaluation performed by radiologist were compared to that of
existing results for the evaluation of PTTs and FTTS using ultrasound image.

5.2.3 Results of Segmentation

Out of the total 116 images, 109 images were correctly classified. In 3 images
algorithm failed to extract SSP tendon and outliers were more prominent. In 4
images, the complete tendon was segmented but with outliers accompanied with it.

Figure 10, shows visualization of the results using manual segmentation by
radiologist and result obtained using proposed algorithm. Figure 10a shows the true
positive results wherein accurate segmentation as per radiologist requirement was
attained followed by Fig. 10b it can be seen that the region segmented by radiol-
ogist is present in the result with an outlier region shown. The false positives arise
because of the inaccurate detection of muscle fat outlier which plays important role
in segmentation. In Fig. 10c, result shows inaccuracy of the algorithm in the form
of detection of false negatives, wherein the reason for inaccuracy is poor visibility
of bursae. No cases of true negatives were found (true negatives are cases when the
segmentation area completely lies outside the region manually segmented by
radiologists).

True positives False Positive 

NA 

False negatives True Negative 

Fig. 10 Results from manual segmentation of radiologist and automatic segmentation using
proposed algorithm

Image Quality Assessment: A Case Study on Ultrasound Images … 279



Performance of Segmentation Algorithm: Qualitative Assessment

The quantitative assessment of results obtained using proposed algorithm was
performed using true positive rate, false positive rate and accuracy of segmentation.
Table 12 shows the measurement values of the algorithm for true positive rate, false
positive rate and accuracy. The accuracy of the algorithm obtained for the provided
data set was 94.82 % i.e. out of 116 images taken, the proposed algorithm was able
to segment SSP tendon from 103 images successfully. And the true positive rate of
91.37 % which is number correct segmentation over total correct segments and
false negatives and false positive rate of 8.62 % which is total number of false
positive over conditional negatives.

The performance of the algorithm was also tested based on the improvement in
the diagnostic capabilities due to focused SSP tendon image generated by algo-
rithm. The assessment was performed with the help of radiologist and discussed in
next section.

Performance on Diagnostics: Qualitative Assessment

The qualitative assessment was performed to estimate the improvement in diagnosis
of pathologies such as partial thickness tears (PTTs) and full thickness tears (FTTs).
The radiologist assessment was performed for the diagnosis of SSP tendon for PTTs
and FTTs. The result of radiologist assessment is shown in Table 13.

In [53], 40 images were used to compute the sensitivity and specificity of the
diagnosis of PTTs and FTTs in SSP tendon, whereas Singh [54] uses 36 images to
quantify the diagnosis of PTTs and FTTs in SSP tendon and Rutten et al. [55] uses a
database of 68 images to quantify the diagnosis of PTTs and FTTs in SSP tendon
using ultrasound images. In this work, 116 ultrasound images were considered to

Table 12 Performance result
of the algorithm

Performance metric Evaluation result

True positive rate (TPR) 0.9137

False positive rate (FPR) 0.0862

Accuracy (ACC) 0.9482

Table 13 Comparison of
results for focused pathology
(PTT—Partial thickness tear;
FTT—Full thickness tear)

Author Images Partial
thickness
tear

Full
thickness
tear

Sens. Spec. Sens. Spec.

E. ElGawad et al.
[53]

40 92.3 92.6 92.6 94

Singh [54] 36 66.7 93.5 92.3 94.4

Rutten et al. [55] 68 92 33.5 94 94

Prop. method 116 94 93.6 95.6 95
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qualitatively evaluate the performance of proposed method for assessment of PTTs
and FTTs in ultrasound images. The sensitivity and specificity values for PTTs
computed using [53–55] are 92.3 % and 92.6 %, 66.7 % and 93.5 %, 92 % and
33.5 % whereas using the proposed method the values are 94 and 93.6 %.
Similarly, for FTTs sensitivity and specificity for [53–55] are 92.6 % and 94 %,
92.3 % and 94.4 %, 94 % and 94 % respectively whereas sensitivity and specificity
for diagnosis of FTTs using segmented SSP tendon are 95.6 % and 95 %
respectively.

6 Summary

Image quality assessment (IQA) is of utmost importance with the increasing amount
of usage of digital media for communication. The data is being transferred at a very
high pace and therefore the quality check is very important at the receiver end. Most
of the IQA techniques developed attempt to imitate the human visual system which
is by far considered as best visual system due to the randomness in the neurons and
its response towards particular images at different time interval with different ref-
erences.. Researchers are attempting to estimate the parameters of HVS and their
behavior towards different kind of images. So far much has been done regarding
development of IQA algorithms but still we are very far from accurately imitating
the human visual system. The validation in medical images is subjective to oper-
ators experience and no benchmark database is available for assessment of ultra-
sound medical images. In presented work, the qualitative and quantitative
assessment is performed to testify the results of algorithms. The qualitative and
quantitative results are in accordance thereby suggesting the efficacy of the method.
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Abstract This study discusses a human-computer interface (HCI)- based novel
approach for designing a computer-aided control and communication system using
electrooculogram (EOG) and electromyogram (EMG) signals for people with
severe hindrance to motor activities and communication. The EOG and EMG
signals were attributed to eye movements and voluntary eye blinks, respectively.
The acquired signals were processed and classified in a MATLAB-based graphical
user interface (GUI) to detect different eye movements. A couple of Hall-effect
sensors were conditioned to be used concurrently with multidirectional eye
movements or voluntary eye blinks to generate multipurpose serial commands to
control the movement of a robotic vehicle (representative assistive aid) and com-
munications support systems. The user details were registered and the system
operability was monitored in the same GUI. Due to multitasking and ease of use of
the proposed device, the quality of life of the incapacitated individuals can be
improved with greater independence.
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1 Introduction

1.1 Motivation

In recent years, there has been an enormous rise in the research on the development
of assistive technologies for providing support to the individuals with severe dis-
abilities. This has been made possible due to the advancements in the field of
control and communication technologies, which has facilitated the improvement of
the quality of the human-machine interface (HMI) or human-computer interface
(HCI) devices [1]. This discipline of technology has a great potential to enable the
severely disabled persons to operate computer and other assistive gadgets directly
by biopotentials (e.g. electroencephalogram (EEG) [2–4], electrooculogram
(EOG) [5, 6], electromyogram (EMG) [7, 8] etc.). These biopotentials are also used
for wireless tele-monitoring [9, 10]. Individuals suffering from amyotrophic lateral
sclerosis (ALS), brain or spinal cord injury, multiple sclerosis and muscular dys-
trophies have been reported to have severe inabilities to perform speech and/or
motor activities [11, 12]. Therefore, they face difficulties in locomotion as well as
conveying their intentions. This significantly reduces their ability to interact, which
in turn, compromises the quality of life of such individuals. Due to this reason,
these individuals are forced to rely on the peripheral aids like computer-aided
assistive and augmentative communication systems for conveying their intentions
to others and to perform other daily activities. In these individuals, it has been found
that the functionality of the muscles responsible for ocular movement remains intact
[13]. These muscles are responsible for the significant voluntary activity associated
with the eye movement. The biopotential generated due to the movement of the
eyes regarded as EOG. Hence, EOG has been used as the input signal for control
and communication interactive assistive devices.

1.2 Literature Review

Several methods, based on EOG controlled man-machine interfaces (multimode
controller communication assistive devices), have been reported [11–23]. EOG has
been employed to control the prosthesis for footdrop correction [24]. Robotic
prosthetic arms have also been guided by EOG signals [23, 25]. A lot of research
has been carried out in the movement of wheelchairs, a major mobility aid for the
motor disabled individuals [5, 15, 26–29]. Additionally, EOG has found tremen-
dous applications in facilitating communications by controlling keyboards, mouse
and joystick functions [6, 13, 18, 19, 30–32]. In the last decade, home automation
using EOG has also found substantial attention [20, 31, 33–36]. Though different
technologies are available for expressing the intentions of the severely disabled
individuals using EOG based HCIs, many of them are quite expensive [37],
unreliable, inaccurate [38] and are complex to operate [38]. Further, none of the
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studies has reported the concurrent use of the assistive devices for both control and
communication purposes.

1.3 Contribution and Benefit Over Existing System

Taking inspiration from the above, in this paper, we propose a novel real-time EOG
based computer assistive technology to develop a robust hardware-software system
that combines the control activities with communication activities. The device can
be effectively used by the severely disabled individuals having volitional eye
movement and minimum finger movements. In this study, EOG signal was acquired
from a dual channel (horizontal and vertical) bioamplifier and was band-limited
(0.16–33.88 Hz). The band-limited signal was acquired in a computer, processed
and finally classified using a MATLAB program. The classification of the EOG
signals helped in detecting various eye movements. As a representative mobility
aid, an electromechanical robotic vehicle was designed. The first-stage activation
and the end-stage deactivation of the robotic vehicle were achieved using voluntary
eye blink. The functioning (movements) of the robotic vehicle was controlled by
up, down, left and right movements of the eye. To avoid any accidental initiation of
the tasks, a switching system was introduced using a couple of HE sensors, attached
to the index and middle fingers. The signals obtained from the eye movements,
voluntary blink and triggering of the HE sensors were used in different combina-
tions to control either the functioning of the robotic vehicle or initiating commu-
nication (making calls and sending emails). A GPRS shield, piggybacked on
Arduino Mega ADK, was used to facilitate the control of the communication unit
for making voice calls through serial communication. The control signals were
generated with the help of a customized graphical user interface (GUI) designed in
MATLAB. Conscious efforts were made to make the device robust, partially
intricate and user-friendly to render a disabled individual to lead an independent
lifestyle for social integration. The implementation of the multimodal control sys-
tems, i.e., controlling the assistive device (robotic vehicle) and alerting the attendant
or the health caregivers through mobile and internet communication system is the
key advantage of the proposed study over existing similar studies.

1.4 Organization of the Paper

The paper has been organized into five different thematic sections. Following the
first introductory sections, the second section briefly presents the generation of
electrooculogram signal. Section three describes the materials and methods.
Section four discusses the results of the study. Finally, section five provides a
closing discussion and conclusion. All the referred research works are cited in the
text and are listed under the reference section.
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2 Electrooculogram: A Brief Introduction

Human eye can be depicted as a fixed dipole that allows the generation of electric
field. The cornea behaves as the positive pole, whereas the retina behaves as the
negative pole. The relative electric potential in the retina is due to the higher
metabolic rate rather than its excitable nature. This corneo-retinal potential, which
gives rise to a fixed dipole, is in the range 0.4–1.0 mV [39]. This difference in
potential, due to the rotation of the eye, can be acquired by surface electrodes
placed around the eye at specific locations. This signal is known as electrooculo-
gram (EOG). The EOG can be generated both in darkness and closing the eyes.
The EOG signal can be employed by the researchers for developing real-time
assistive devices. The EOG signals can also be recorded and analyzed by the
optometrists to diagnose different ophthalmic disorders.

3 Materials and Methods

3.1 Materials

AD-620 (Analog Devices, India) [5], NI USB-6008 (National Instruments, USA)
[40], Arduino ADK Mega (Arduino, Italy) [41], Arduino UNO (Arduino, Italy) [5],
Arduino wireless proto shield (Arduino, Italy) [42], Xbee-S1 wireless transceiver
module (Digi International, USA) [42], GPRS Shield V1.0 (Seeed Technology
Limited, China) [41], AH-34 Hall effect sensor (Triax Corporation, Japan) [41],
Ag/AgCl disposable electrodes (BPL, India) with connecting clips [24], freeware
EAGLE PCB Design Software (CadSoft Inc., USA) and licensed MATLAB®

R2014a (MathWorks, USA) were used in this study. A laptop, with processor
specification Intel (R) Core (TM) i7-2600 CPU @ 3.40 GHz, was used in this
study.

3.2 Informed Consent

15 volunteers from National Institute of Technology Rourkela, India, of either sex,
were selected for this study. All the volunteers were in the age group of 22–
30 years. Prior to experimental involvement, all the volunteers were verbally made
aware of the study and the experimental procedure. The volunteers had to sign an
informed consent form to participate in the experiment. None of the volunteers was
suffering from any health issues or had any adversity to the experimental condi-
tions. A prior ethical clearance was obtained from the Institute ethical clearance
committee vide order No. (NITR/IEC/FORM/2/25/4/11/002).
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3.3 Development of EOG Acquisition System

The EOG biopotential amplifier reported in [5] was modified for the present study.
The improvement in the circuit was achieved through modifications in the power
supply section. The circuit was developed using the commercially available
instrumentation amplifier IC AD-620. A resistor of 560Ω (gain resistor) was used to
achieve a 1st stage gain of 90. Like EEG [43] and EMG [44], the EOG signal is also
a random process. Hence, the presence of unpredictable noise is obvious. It has
been reported that the frequency range of the EOG signal is 0.1–30 Hz [45]. Hence,
the amplified signal was filtered using a 1st order passive band-pass filter with
lower and upper cut-off frequencies of 0.16 and 33.88 Hz [46], respectively.
Subsequently, the pre-amplified signal was smoothened using a 2nd order low-pass
filter with cut-off frequency of 33.88 Hz. The smoothened band limited EOG signal
was further amplified using AD-620 with a gain of 12. The signal was further
processed through a 2nd order low-pass filter with a cut-off frequency of 33.88 Hz.
This constituted the first EOG amplifier (EOG-I). Similar to the EOG-I amplifier,
EOG-II amplifier was designed having similar specifications.

EOG-I amplifier was used for recording the vertical eye movements (up and
down) by placing the electrodes in the orbital position. EOG-II amplifier was used
to record the horizontal eye movements (left and right) by placing the electrodes in
the canthi position. The output of both the amplifiers was acquired into a laptop
(operating in battery mode) using a NI USB-6008 data acquisition system. The
sampling rate of the USB-6008 was set at 10 KS/s. The output of the EOG-I
amplifier was acquired from the AI0 input terminal, whereas, the output of the
EOG-II amplifier was acquired from the AI1 input terminal. The biopotential
amplifier circuit was powered by a ±12 V power supply. The power supply was
developed using a DC-DC converter (IC MAU-108) [47]. The MAU-108 accepts
an input voltage of +5 V and generates an output of ±12 V. The MAU-108 was
powered from the USB-6008. The circuit diagram of the biopotential amplifiers
(EOG-I and EOG-II) and the functioning circuit of MAU-108 to generate ±12 V
have been shown in Fig. 1. The V-channel in the Fig. 1, signifies the conditioned
output of the vertical (up-down) eye movements. Similarly, the H-channel denotes
the conditioned output of the horizontal (left-right) eye movements.

3.4 Acquisition of the EOG Signals

A 5-marker panel was designed. It has been reported that the accommodation of the
eye up to a distance of 2 m produces important cues that influences the space
perception [48]. Hence, based on the space availability, the distance between the
patient and the panel was fixed to 150 cm. The central marker was at the level of the
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eyes of the volunteers. The horizontal markers were at a distance of 140 cm on
either side of the central marker. The vertical markers were 75 cm apart on either
side of the central marker. This arrangement (Fig. 2) created an angel of ±30° and
±50° [13] in the vertical and horizontal directions, respectively. The volunteers
were verbally commanded to look at the specific markers and the corresponding
EOG signals were recorded. By default, the volunteers were pre-advised to always
look at the central marker always. If only the distance between the central marker
and the subject will increase (fixing the distance of the peripheral markers), there
will be a significant change in the height and width of the signal.

Fig. 1 Circuitry assemblage a power supply circuit, and b EOG biopotential amplifier
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3.5 Processing of EOG Signal for Generation of Control
Signals

500 samples of the EOG signals were used for processing. The acquired EOG
signals were initially processed to remove the baseline drift by subtracting the mean
of the acquired signal from the original signal. Thereafter, the signal was processed
using a moving averager (triangular method). The width of the moving average was
10. Subsequently, the averaged signal was filtered using a moving-average filter
which was implemented as a direct from II transposed structure. This filter was used
to calculate the rolling average of the moving averaged EOG signal using a window
size of 500. The filtered signal was used for further classification of the eye
movements. Dual threshold comparison logic was employed to detect the move-
ment of the eye. The signals from EOG-I was used for the detection of voluntary
blink and up-down movements of the eye. The signal from EOG-II was used for
detecting the left -right movement of the eye.

3.6 Development of GUI

The graphical user interface design environment (GUIDE) in MATLAB provided a
way to design customized user interfaces using the in-built interactive tools. All the
user interfaces, used in this study, were graphically designed in the GUIDE Layout

Fig. 2 Markers location for EOG recording
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Editor. As per the layout construction, MATLAB codes were generated automat-
ically. The auto-generated MATLAB codes were edited and modified to behave as
per the desired applications. A password protected GUI was designed to avoid any
unauthorized access (Fig. 3a). Provisions were made to save the patient history in
an Excel file and to save the contact details of the persons to whom the patient may
make calls and send emails. The above functions were implemented through two
sub-GUIs. The sub GUI for saving communication details was also password
protected (Fig. 3b). The primary GUI contains two major sections, namely, control
unit and communication unit (Fig. 4). The control unit showed the generation of the
control signals used for controlling the functionality of the robotic vehicle. The

Fig. 3 Password protection for the GUIs a password protected primary GUI, and b password
protected sub-GUI

Fig. 4 Primary GUI showing the entire user interface controls
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detailed explanation to the demonstration of Fig. 4 has been given in the result
section via Figs. 12, 13, 14, 15, 16, 17 and 18. On the other hand, the control
signals generated for the communication unit was used for sending emails and
making voice calls to particular persons. Also, provisions were made to abort a call
if anybody calls to the patient.

3.7 Development of Control System

The generated classified eye movement signals, in combination with the HE sen-
sors, were used to control the functioning of the robotic vehicle and to initiate
communication. The control unit for the robotic vehicle was activated by simul-
taneous voluntary blink and activation of the HE-I sensors at a time. During the
process of activation, the inputs of the two H-bridges of the motor shield were
enabled. Thereafter, the movement of the eye in the specific directions helped in
generating the control signal for specific functions of the robotic vehicle. The
control signals were generated only if the HE-I sensor was triggered within 10 s of
activating the device. Otherwise, the control unit was deactivated, i.e., the inputs of
the two H-bridges of the motor shield were disabled. The movement of the eye, in
addition to an activated HE-I sensor, initiated the functioning of the robotic vehicle.
The deactivation of the HE-I sensor for more than 10 s deactivated the control unit
as well. Similar to the program made for the movement of the control unit, a
program was made for controlling the communication unit under the primary GUI.
The HE-I sensor was used as a supplementary switch for operating the control unit,
whereas, HE-II sensor was used as the supplementary switching device for the
functioning of the communication unit. The developed system needs a laptop to
process the EOG signals and to generate the control commands.

4 Results

4.1 Development of EOG Acquisition System

The EOG acquisition system was developed as per the circuit given in Fig. 1.
A PCB was designed on a copper clad board by carbon transfer and etching of the
copper layer. The PCB layout was designed using the freeware Eagle software
(version 7.3.0). The designed PCB layout has been shown in Fig. 5a. A PCB was
designed from the layout, and the picture of the designed PCB has been shown in
Fig. 5b. The designed circuit had a theoretical combined gain of 1080 (A1st

stage = 90 and A2nd stage = 12). A differential sinusoidal signal of 1 mVP-P was
used as the input and the output of the EOG amplifier was measured to be 1.01 VP-P

with an error of 6.48 %. This confirmed the practical gain of the amplifier to be
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*1000. The picture of the input and the output signals, as observed on the
oscilloscope, has been shown in Fig. 5c, d. From the results, it can be concluded
that the circuit was functioning as desired.

4.2 Acquisition of the EOG Signals

The EOG signals were acquired using the developed EOG amplifier. The output of
the signal was taken into a laptop using USB-6008 data acquisition system. The
complete setup of the EOG signal acquisition system which was used for the
acquisition of the signal into the system has been shown in Fig. 6a. The orbital
electrodes were placed on the either side of the right orbit. The canthi electrodes
were placed at the lateral side of each eye. The reference electrode was placed on
the left-hand side of the forehead [15]. The placement of the electrodes has been
shown in Fig. 6b. The placement of the HE sensors and their functional activation
has been shown in Figs. 6c1–c4. The volunteers were asked to sit on a chair in a
relaxed position and were instructed to look at the central marker in the 5-marker
panel without any head movement. Subsequently, they were advised to move the
eyes in different directions as per the verbal instructions. The corresponding EOG

Fig. 5 EOG bioamplifier design and analysis a PCB layout diagram in Eagle b developed PCB
c differential input to the circuit, and d amplified output
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signals were recorded. Figure 6d–f shows a representative output from EOG-I and
EOG-II amplifiers when the volunteers were asked to move their eyes left, right, up,
down and voluntary blink.

4.3 Processing of EOG Signals for Generation of Control
Signals

The baseline of the EOG signal varies due to imperfect electrode-skin interface
during electrode placement and movement of body parts [49, 50], which degrades
the biosignals [51]. The acquired EOG signal was processed so as to remove the
baseline drift, which appeared in the acquired EOG signal. Baseline drift was
eliminated by the conventional baseline drift elimination method, i.e., subtracting
the mean of the signal from the acquired signal. Thereafter, the signal was averaged
using a moving average (triangular method). The triangular moving average
(TMA) is a simple moving average (SMA) that has been averaged again, i.e.,
averaging the average. It produces an extra smooth moving average plot. The small
ripples superimposed on the EOG signals were abolished after smoothening [52].
The equations of the averaging process are given below:

Fig. 6 Experimental compilation a setup of the EOG signal acquisition system, processing and
control unit b electrode placement c HE sensor placement and functional activation d unprocessed
voluntary blink signal e unprocessed horizontal signal, and f unprocessed vertical signal
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SMA = x1 þ x2 þ x3 þ � � � xNð Þ=N ð1Þ

TMA = SMA1 þ SMA2 þ SMA3 þ � � � þ SMANð Þ=N: ð2Þ

where
N No. of periods
x1……xN ‘N’ number of data samples
SMA1……SMAN Simple moving average of x1……xN number of samples

Subsequently, the signal was filtered using a moving average filter having a
window size of 500. Figure 7 shows the output of the processed signal at different
stages of processing. The final processed EOG signals has been showed in Fig. 8
and the flowchart for classifying the up, down, left, right and voluntary blink using
the threshold limits has been showed in Fig. 9. Each kind of eye movements and
voluntary blink were associated with specific control commands (numerical values).
These commands were used to activate a specific function in the control unit and
were serially transmitted to the Arduino Mega ADK to achieve particular com-
munication tasks through the GPRS shield. The multidirectional eye movements
and HE sensor triggering in logical combination with voluntary eye blinks con-
currently produced a set of commands responsible for accomplishing control and
communication protocols. Tasks like making voice calls, aborting a call, and
sending emails were programmed under communication protocol. The control unit
guided the direction of the robotic vehicle in four different directions. The logical
combination for activation of the control and the communication protocols has been
given in Table 1.

Fig. 7 EOG signal processing a unprocessed horizontal signal with vertical channel response
b horizontal signal isolation and baseline drift removal c triangular moving averaged signal, and
d moving average filtered signal
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4.4 Functionality of the Developed GUI

A MATLAB based password protected GUI was developed such that only the
authorized personnel can access the GUI by entering a correct password. After the
successful login, a patient history GUI will automatically pops-up. It allows to save
the address, contact and official (ward name and bed no.) details are entered in the
GUI. Clicking the continue button in the GUI allows the user to save the patient

Fig. 8 Final processed EOG signals a voluntary blink b horizontal movement, and c vertical
movement
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Fig. 9 Analogy for eye movement classification a flowchart for voluntary blink, up and down eye
movement detection b flowchart for left and right eye movement detection

Table 1 Logical combination of eye movements and HE sensors in control and communication
protocol activation

HE-I
sensor

HE-II
sensor

Types of eye
movements

Proposed tasks Figure demonstration

√ √ Voluntary blink Activates the motor shield 12a

x – – Deactivate the motor shield 12b

√ x Left Left movement 13a

√ x Right Right movement 13b

√ x Up Forward movement 13c

√ x Down Backward movement 13d

x √ Up Call to attendant 14

x √ Right Call to nursing station 15

x √ Left Call to doctor 16

x √ Down Email to doctor, nursing
station and attendant

17

x √ Voluntary blink Abort a call 18b

√ = activated; x = deactivated; – = idle
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history in a particular excel file (under a new tab). Subsequently, the GUI is opened.
The sub-GUI for saving patient history has been shown in Fig. 10. The main GUI
contains two segments, namely, control unit and communication unit. The com-
munication segment includes an edit contact button. Clicking the edit contact
button results in the opening of another sub-GUI, which allows the users to change
and save the contact details of the person to whom the communication to be made
(Fig. 11). This GUI is also password protected for authorized access only.

The control unit has seven virtual indicators (virtual LEDs) displaying left, right,
forward, backward, stop, HE-I sensor and HE-II sensor. A couple of pushbuttons at
the bottom of the GUI are intended for activating (ON) and deactivating (OFF) the
unit. The unit is activated just by a by pressing th START button but does not
initiate the tasks. The unit does not start functioning unless a simultaneous signal
from HE-I and HE-II sensors and a voluntary blink is detected. The activation is
confirmed by a display note (“ACTIVATED...!!!”) in the same unit (Fig. 12). As
per Table 1, the virtual indicators are activated (change in background color) during
specific operations associated with different eye movements, voluntary blink and

Fig. 10 Sub-GUI-I a patient history entered b history saved in a separate tab as per the patient
name in an excel sheet “patient history”
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triggering of HE sensors (Fig. 13). STOP button makes the unit dormant. Due to
line-of-sight communication, the duration lapse between the initiations of the
control signal to the actual response/action time for the robotic vehicle is 117 ms.

Fig. 11 Sub-GUI-II a contact options, and b enter contact details and save

Fig. 12 a Activation of control unit, and b deactivation of control unit
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Fig. 13 Control task execution and hardware realization a left eye movement-left command
b right eye movement-right command c up eye movement- forward command, and d down eye
movement- backward command
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Like control unit, the communication unit too has activation and deactivation
processes. The communication operations are set off by software switches. A GPRS
Shield V1.0 instilled into the Arduino Mega ADK provides a way to use the GSM
cell phone network. It is controlled via AT commands (GSM 07.07, 07.05 and
SIMCOM enhanced AT Commands). Each communication protocol in the GUI
generates a specific serial data which gets transmitted to the microcontroller.
The GSM shield starts doing particular functions like making voice calls, abort a
call, etc. when a specific serial command reaches the Arduino Mega ADK. All the
voice calls were directed to the saved contacts. The patient mobile number should
be saved in the recipients’ (attendant, nursing station and doctor) mobile as <Ward
Name>, <Bed No. (BN)> during the process of patient registration. Due to the vast
usage of smartphones, email facility was employed as one of the prime commu-
nication protocols in our study. All the emails are programmed to be sent through
NIT-RKL Cyberoam server client that supports Post Office Protocol (POP). The
content of subject in the mail is like—“Please attend the patient—<Patient Name>,
<Ward Name> <Bed No. (BN)>”. The content is sent in the subject line for quick
viewing. The patient name, ward name and bed number were accessed from the
patient history saved earlier. As per Table-1, all the communication tasks were
carried out in the GUI. Figures 14, 15, 16 show the incoming call to the attendant,
nursing station and doctor and their respective GUI demonstration, respectively.

Fig. 14 Calling attendant a, b GUI demonstration, and b an incoming call on the attendant’s
mobile

302 B. Champaty et al.



Fig. 15 Calling nursing station a, b GUI demonstration, and b an incoming call on the nursing
station mobile

Fig. 16 Calling doctor a, b GUI demonstration, and b an incoming call on the doctor’s mobile
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Figure 17 shows the email delivery to the attendant, nursing station and the doctor.
An incoming call to the patient’s mobile number and the aborting the call has been
shown in Fig. 18.

Fig. 17 E-mail delivery a delivered to attendant b delivered to nursing station, and c delivered to
doctor
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4.5 Development of Control System

A control system was developed using the five control signals produced as a result
of eye movements. Signals from the two HE sensors were acquired into the laptop
and were integrated with the program for doing specific tasks (control and com-
munication tasks). The HE-I sensor (accompanied by eye movements) was used to
control the control unit, whereas, HE-II sensor (attached to the middle finger) was
used to initiate tasks in control unit. In this study, a robotic vehicle was used as the
representative assistive device. After switching on the HE-I sensor, a voluntary eye
blink activated the control unit. The movement of the eye in different directions was
detected by the EOG signal processing program, which in turn, generated control
signals. The generated control signals were visualized in the control unit segment of
the GUI. Virtual indicators like left, right, forward, backward, stop, HE-I sensor
activation and HE-II sensor activation were activated (change in background color).
This segment can be used by the patients for proper training from time to time. It
has been reported that visual feedback of biosignals helped the disabled persons to
strengthen their ocular activities. Also, the control signals were transmitted to a
robotic vehicle via a pair of wireless XBee shields. The various control signals were
used to control the movement of the robotic vehicle. As mentioned earlier, after the
activation of the control unit (switching on the HE-I sensor and voluntary blink
concurrently), the movement of the eye to the right, left, up and down directed the

Fig. 18 a Incoming call to the patient’s mobile number, and b aborting the call
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robotic vehicle to move right, left, forward and backward, respectively. The
switching-off of the HE-I sensor halts the movement of the robotic vehicle. If the
HE-I sensor is in the switched off condition for more than 10 s, the control unit is
deactivated. The functioning of the control unit for controlling the movement of the
robotic vehicle was successfully tested. The activation and the movement of the
robotic vehicle in different directions have been showed in Fig. 19. All the 15
volunteers were trained for 20 min to get familiar with the working of the device.
Therefore, all of them were able to complete the tasks without any false positive
result. No movement was observed in the robotic vehicle, if the eye motion wasn’t
one of the specified five cases reported in the control unit.

Fig. 19 Robotic vehicle movements a activated at the centre b forward c backward d left, and
e right
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5 Conclusion

The purpose of the study was to develop a robust EOG based HCI device, which
can be diversified both as a control system for the functioning of the assistive
devices and for initiating communication with the healthcare and non-healthcare
personnel in case of any emergency and need. The proposed hardware-software
device can be used for the severely disabled persons who have limited motor
activity. Excluding the cost of the laptop, the total cost of the system is nearly $267.
This has been reported that the energy required for moving the eyes are much lower
as compared to the other motor activities in the disabled person. Also, the indi-
viduals suffering from neuromuscular diseases are left with the activities of the
ocular muscles even in the late stages of the disease. Due to these reasons, EOG
based HCIs gained much importance in the development of assistive devices. In this
study, as a representative assistive device, the robotic vehicle was directed to dif-
ferent directions using the EOG signal and helped in testing of the developed
control system. The successful testing of the control of the robotic vehicle
throughout the study concluded that the control system developed using the EOG
signals may be used for controlling robotic arms, wheelchairs, home automation
systems etc. in future. In addition to the existing control commands, more control
commands can be generated by moving the eyes in diagonal directions like
up-right, up-left, down-right and down-left. The developed EOG biopotential
amplifier has the capability to record these additional eye movements. Additionally,
by slightly modifying the hardware components, it was possible to initiate various
communication protocols for the severely disabled persons.

In gist, in this study, EOG signals were used to manipulate a robotic vehicle and
a communicationdevice suggesting that the proposed device can be used for
multi-tasking.
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Theory of Parallel MRI and Cartesian
SENSE Reconstruction: Highlight

Joseph Suresh Paul, Raji Susan Mathew and M.S. Renjith

Abstract Magnetic resonance imaging (MRI) is a well-known medical imaging
technique, that exclusively uses the response of the hydrogen nucleus which is
abundant in the human body. In recent years, parallel MRI techniques have been
developed to accelerate image acquisition. A notable development in parallel MRI
was the introduction of SMASH by Sodicksen and Manning. Since then, great
progress in the development and improvement of parallel imaging reconstruction
methods has taken place. The Sensitivity Encoding (SENSE) proposed by
Preussmann and Weiger is the most widely used image-domain parallel MR image
reconstruction technique. SENSE uses an initial estimate of the coil sensitivity in
combination with an SNR optimized noise inversion to obtain the final recon-
structed image. This chapter starts with a brief history of the parallel imaging,
discusses the estimation of sensitivity and SENSE reconstruction.

1 Introduction to Parallel Imaging

Magnetic resonance imaging (MRI) is a well-known medical imaging technique
that exclusively uses the response of the hydrogen nucleus which is abundant in the
human body [1]. Variation of hydrogen density and specifically its molecular
binding in different tissues produces a much better soft tissue contrast than CT. MRI
has some further advantages if compared with x-ray and CT: (i) MRI does not use
ionizing radiation. (ii) Images can be generated with arbitrary slice orientation
including coronal and sagittal views. (iii) Several different functional attributes can
be imaged with MRI. (iv) Capability to provide risk-free diagnostic assessment.
However, rapid switching of magnetic field gradients often causes severe dis-
comfort to the subject being scanned. This forms a serious impediment requiring
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scanning protocols to be implemented in a shorter period of time, simultaneously
maintaining the image quality. Imaging speed is a crucial consideration for mag-
netic resonance imaging (MRI). The speed of conventional MRI is limited by
hardware performance and physiological safety measures. In the recent years,
parallel MRI techniques have been developed that utilize radiofrequency (RF) coil
arrays to accelerate image acquisition beyond these previous limits [2–10].

“Parallel” MRI is a new technique that circumvents these limitations by utilizing
arrays of radio frequency detector coils to acquire data in parallel, thereby enabling
still higher imaging speeds. In parallel MRI, coil arrays are used to accomplish part
of the spatial encoding that was traditionally performed by magnetic field gradients
alone. A schematic representation of parallel MRI is given in Fig. 1. The term
parallel imaging comes from the fact that signals are acquired simultaneously from
multiple coils. The effective use of multiple coils in parallel has been shown to
multiply imaging speed, without increasing gradient switching rate or RF power
deposition. In parallel imaging, the acquisition is speeded up by under-sampling the
data received from the multiple coils. Under-sampling is described by factor called
acceleration factor. The resulting data loss and consequent aliasing is compensated
by the use of additional spatial information obtained from several receiver coils.

Spatial localization in conventional MRI is accomplished using a set of magnetic
field gradients. The spatially varying fields resulting from the application of each
gradient pulse spatially encodes the received signal, and generates an image using
Fourier approximation. In conventional MR acquisition, the Fourier space is
scanned line-by-line [11, 12]. This considerably limits the speed of image acqui-
sition. Protocols with delayed scan times are not desirable, particularly for imaging
applications involving repeated acquisitions. This includes functional imaging,
perfusion and diffusion imaging, and imaging of the beating heart. Even though
methods are available for tracking motion [13, 14], or reduction of accompanying

Fig. 1 Schematic representation of parallel imaging
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motion induced artifacts [15], accelerated MRI provides better solution for above
applications.

Parallel MRI (pMRI) uses spatially separated receiver coils to perform spatial
encoding. Though the theoretical foundation of pMRI was established in 1980s
[16], not much was done in terms of its implementation due to the inability to
design parallel coils capable of providing high Signal-to-Noise Ratio (SNR) images
in a large enough Field Of View (FOV). Due to this, several attempts were made to
accelerate MR acquisition using alternate means such as minimization of TR
(Repetition Time) by increasing the gradient strength, and single shot imaging [17].
However, the performance of above methods was limited by the allowable strength
of gradient pulse amplitudes. The idea of using phased array coils for MRI dates
back to the early eighties, wherein the design efforts were largely concentrated in
building array coils with reduced coil-to-coil coupling [18, 19]. The phased array
coils are beneficial due to their ability to generate high SNR signals with reduced
motion artifacts. The first phased array MRI system implemented by Roemar et al.
[20] in the form of two inductively coupled resonant rings, electrically isolated from
each other with a decoupling element connected between the rings. In this, dif-
ferential weighting of signals from the two coils were used for signal localization,
thereby reducing the need for time consuming gradient-encoding steps.
Enhancement of SNR was achieved by means of the decoupling circuitry. For nc
independent coils in the absence of mutual coupling, the SNR is increased by a
factor of square root of nc. A detailed description of phased-array MRI technology
is provided in the review article [21]. Recent advances in the design of MRI
equipment and imaging procedures is described in [22].

In conventional MR imaging, the phase-encoding steps are performed in
sequential order by switching the magnetic field gradient step-by step, which in turn
determines the speed of acquisition. Since the switching is expensive, acceleration
is achieved by skipping alternate phase encoding lines. This was first implemented
in 1989 by under sampling the k-space in PE (Phase Encode) direction [23].
Since SNR is dependent on the number of phase encoding steps used, accelerated
image acquisition can be achieved only at the expense of reduction in SNR.
However, the reduced SNR is compromised by elimination of phase related dis-
tortion. Irrespective of the MRI sequence used, parallel imaging maintains image
contrast without need for higher gradient system performance.

We now come to the question of how parallel MRI makes imaging faster.
Assume the number of voxels, the number of receiver channels, the number of
frequency encoding steps and the number of phase encoding steps are nv, nc, Nfe

and Npe, respectively. Obviously, the number of measured samples is
nc � Nfe � Npe = nc � nk = Ns (where nk is the number of sampling positions in
k-space). To make reconstructions feasible, it is necessary that

Ns � nv ð1Þ

In conventional single channel MRI,Ns = Nfe � Npe = nv. For example, to obtain
a 256 � 256 image, the acquisition matrix is also 256 � 256. In parallel MRI, since
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nc > 1, it is possible that we reduce the number of frequency encoding or phase
encoding steps while still having enough information for a feasible reconstruction.
Usually, the k-space is evenly under-sampled in the phase encoding direction to
reduce the scanning time. The rate at which under-sampling is performed is called
acceleration factor or acceleration rate [3, 4]. An obvious implication of Eq. (1) is that
the largest possible acceleration rate is equal to the number of channels.

In summary, if an array of RF coils is used to acquire MR signals simultaneously
and the coil sensitivities are available, the spin density may be determined from a
reduced set of phase encodings. This is the basic principle of parallel imaging.

2 Background

2.1 History of Parallel Imaging Methods

The performance of pMRI is largely determined by the coil geometry. For instance,
large coils cover large areas of the subject, resulting in low SNR due to small
fraction of the sensitive volume occupied by the sample. The coil sensitivity can be
considered as a point spread function that serves to degenerate the received signal,
in addition to the additive noise. However, the spatial sensitivity profiles of each
receiver coil serve to provide an additional encoding in pMRI. Better image
reconstruction becomes possible only with prior knowledge of the coil sensitivities.

The first step towards pMRI was proposed by Carlson [16] in 1987. His method
consisted of a uniform sensitivity pattern in one coil while applying linear gradient
in the other. In this fashion, a Fourier series expansion was used to reconstruct the
unfolded image data in k-space. Kelton et al. [22] proposed a second method of
reconstruction in the spatial domain, wherein a matrix inversion was employed to
unalias the image. Subsequently, this method was further modified to include
reduction factors greater than two, but less than the number of coils used [2].
Theoretically, imaging time reduces by number of array coils, but practically lesser
due to sensitivity noise, and increased coupling between coils. The basic limitation
for all the above studies was the need for a reliable method to determine the
individual coil sensitivity function.

A notable development following this period was the introduction of
Simultaneous Acquisition of Spatial Harmonics (SMASH) method by Sodickson
and Manning [3]. SMASH is the first experimentally successful parallel imaging
technique that uses linear combinations of coil sensitivity profiles to generate
low-order spatial harmonics of the desired FOV. Sodickson and Griswold then
presented a successful in vivo implementation of pMRI using the SMASH tech-
nique, thereby starting the rapidly growing field of parallel imaging [24]. Only one
year later, Pruessmann and Weiger proposed the concept of sensitivity encoding
(SENSE) [3] which is strongly related to the early proposals of Kelton [23], Ra and
Rim [2]. The difference between the two is that SENSE uses an SNR optimized
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matrix inversion in combination with an initial estimate of the coil sensitivity
mapping. Since then, great progress in the development and improvement of par-
allel imaging reconstruction methods has taken place, thereby producing a multi-
tude of different and somewhat related techniques and strategies [3–5, 9, 10, 24–
26]. Currently, the best-known are SMASH [3], SENSE [4] and GRAPPA [9].
However, various other techniques, such as AUTOSMASH [25], VD-AUTO-
SMASH [26], Generalized SMASH [10], mSENSE [27], PILS [6] and SPACERIP
[5] have also been proposed.

2.2 Spatial Encoding and Image Reconstruction

The general equation of multi-channel MR acquisition can be expressed as

slðkx; kyÞ ¼
ZZ

x y
Clðx; yÞqðx; yÞ e�i2pðkxxþ kyyÞdxdy ð2Þ

where Clðx; yÞ denotes the coil sensitivity profile of the lth channel [28]. Here, the
signal comprises an integration of the spin density qðx; yÞ against the spatial
encoding function consisting of coil sensitivity and gradient modulation. Unlike
Fourier encoding where off-resonance frequencies are determined in accordance
with spatial positions, the sensitivity encoding functions serve to differentially
sample the image based on the spatial positions closer to the respective coils. These
functions may be regarded as representing different “views” or “projections” of the
image to be reconstructed, with each measured signal point representing the
appearance of the image from the corresponding perspective, as illustrated in Fig. 2.

Gradient encoding

O
B

JE
C

T

Sensitivity encoding K-space

Fig. 2 Encoding scheme in pMRI
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In multi-channel acquisition, the received signal in each coil is weighted by the
coil sensitivity function Cl (r), and the magnetic field B(r). In terms of the weighting
functions, the spatial encoding function of MR acquisition can be expressed as

E1ðrÞ ¼ c2�h
4kBT

ClðrÞ BðrÞ e�ic BðrÞ�B0½ �t
t¼tf

�

� ð3Þ

The discrete time measured signal can be generalized to be the inner product

sf ¼ Ef rð Þ; q rð Þh i ð4Þ

For a k-space with N points, the basis vectors then produce a signal vector with
N elements

s ¼
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For each discretized location r, Eq. (5) can be represented in the matrix form

s = Eq ð6Þ

where s and q contain the measured samples and image pixels, respectively. E is
referred to as the generalized encoding matrix (GEM) [8] with dimension Ns � np.
Equation (6) shows that the encoding of MRI is essentially a linear transform, and
the reconstruction in general involves inverse problems, namely,

q̂ ¼ E�1s ð7Þ

The major difficulty is that the dimension of the GEM E, is in general, rather
large and direct inversion is prohibitively time-consuming and memory-intensive.
The inversion operation is simplified using different pMRI reconstruction methods.
In further discussions, the number of voxels, the number of receiver channels, the
number of frequency encoding steps and the number of phase encoding steps are
denoted by nv, nc, Nfe and Npe, respectively. Obviously, the number of measured
samples will be nc � Nfe � Npe = nc � nk = Ns (where nk is the number of sam-
pling position in k-space) and the encoding matrix E is of dimension Ns � nv. To
make reconstructions feasible, it is necessary that Ns � nv.
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2.3 Sensitivity Calibration to Obtain the Encoding Matrix E

At a given sampling location, the encoding function and coil sensitivity are related
in the form

Ek;lðrÞ ¼ c2�h2

4kBT
ClðrÞ eik:r ð8Þ

The coil sensitivities are calculated from the knowledge of coil array geometry. For
flexible coil arrays, the coil sensitivity functions are to be recalibrated due to
scan-to-scan changes in the coil locations. The coil modulated images are given by

qlðrÞ ¼ ClðrÞqðrÞ ð9Þ

The coil images have a non-unifrom intensity distribution due to the spatially
varying sensitivity values. Meaningful information about the image can only be
obtained once the individual coil images are combined so as to have a uniform
spatial sensitivity C0 at all spatial location. The uniform spatial profile is obtained in
practice by using a bird-cage body coil. The ratio of channel image to the body coil
image, therefore, yields

qlðrÞ
qbody�coilðrÞ

¼ ClðrÞ
C0

ð10Þ

Alternatively, a sum-of-squares combination yields

qlðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

l qlðrÞj j2
q ¼ ClðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

l ClðrÞj j2
q ð11Þ

Since the multiplication of 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

l
ClðrÞj j2

p is common to all coils, it can be incor-

porated in the formulation of an effective encoding function which differs from the
original encoding Eq. (8) as follows:

~Ek;lðrÞ ¼ Ek;lðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

l ClðrÞj j2
q ð12Þ

All pMRI methods effectively reconstruct the image ~qðrÞ given by

q̂ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

l
ClðrÞj j2

q

qðrÞ ð13Þ
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Calibration data, used to reconstruct the coil images can be obtained from a
separate scan before or after the image acquisition. Because of the requirement of
external information, this approach is generally known as external calibration.
Alternatively, the calibration scan can be incorporated as a part of the image
acquisition, and the calibration data can be extracted from the image dataset. This
approach is called auto-calibration or self-calibration. The crucial difference
between the external- and self-calibration approaches lies in the timing of the
acquisition of calibration data relative to the image acquisition.

SENSE reconstruction methods require a prior knowledge of the coil sensitivity
profiles. The SENSE method is mathematically an exact reconstruction method
proposed by Pruessmann et al. [4]. SENSE is the most popular image-space based
pMRI technique, which is being offered by many companies particularly Philips
(SENSE), Siemens (mSENSE), General Electric (ASSET), and Thoshiba
(SPEEDER). SENSE is the most used pMRI method for clinical applications due to
its broad availability and the enhanced image acquisition capabilities.

The SENSE method addresses the most general case of combined gradient and
sensitivity encoding. The two reconstruction approaches in SENSE include strong
reconstruction for optimal voxel shape and weak reconstruction for approximate
voxel shape using Dirac function [4] accompanied by SNR reduction. The recon-
struction algorithm for both the approaches are numerically demanding due to the
hybrid encoding nature. Use of FFT (Fast Fourier Transform) is possible only in the
case of weak reconstruction for Cartesian SENSE.

3 SENSE Methods

3.1 Representation of Aliased Images

For achieving scan time reduction in pMRI, phase encoding lines are
under-sampled by an acceleration factor R. Therefore, the distance between phase
encoding lines is increased by R. Even though number of phase encoding steps Npe

is reduced, the maximum gradient strength Npe � Gy remains same. This results in
aliased image reconstruction. The k-space srl retrieved with an acceleration factor R
is identical to complete k-space sl excluding the unacquired lines. The FOV is
reduced only in the phase encoding direction, because the 2D Fourier transfor-
mation is separable. The aliased image is obtained by an inverse Fourier trans-
formation of srl in y direction.
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qrl ðx; yÞ ¼ DFT �1
y srl ðx; kyÞ

� �

¼ R
Npe

X

Npe�R

ky¼0;R;2R;���
slðx; kyÞ eikyy

¼ R
Npe

X

Npe�R

ky¼0;R;2R;���
eikyy

X

Npe�1

y0¼0

qðx; y0Þ e�ikyy0

¼ R
Npe

X

Npe�1

y0¼0

qðx; y0Þ
X

Npe�R

ky¼0;R;2R;���
eikyy e�ikyy0

¼ R
Npe

X

Npe�1

y0¼0

qðx; y0Þ
X

Npe
R �1

ky¼0;1;2;���
eikyy e�ikyy0

ð14Þ

Since eikyy and e�ikyy0 are orthogonal, the sum over ky for R = 1 gives zero for all
y 6¼ y0. R

Npe
is assumed to be an integer for simplicity. For R > 1 the exponential

functions can be represented as the sum of R Kronecker delta functions.

qrl ðx; yÞ ¼
X

Npe�1

y0¼0

X

R�1

m¼0

dðy0; ymod
Npe

R
þm� Npe

R
Þ qðx; y0Þ

¼
X

R�1

m¼0

qðx; ymod
Npe

R
þm� Npe

R
Þ

ð15Þ

Each value in aliased image qrl is a superposition of R values from the original
image.

3.2 SENSE Reconstruction Using Encoding Matrix
Formulation

The ideal image q and k-space values slðkx; kyÞ are related using the encoding
matrix E.

slðkx; kyÞ ¼
X

kx;ky

qðx; yÞEl;kx;kyðx; yÞ ð16Þ

where the encoding matrix E is

El;kx;kyðx; yÞ ¼ e�ipðkxxþ kyyÞClðx; yÞ ð17Þ
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The image reconstruction is performed using the linear reconstruction matrix F

q̂ðx; yÞ ¼
X

l;kx;ky

Fl;kx;kyðx; yÞ slðkx; kyÞ ð18Þ

The reconstruction matrix F is estimated using weak voxel criterion, where the
voxel functions are approximated using Dirac function. The F½x;y;l;kx;ky� and
E½l;kx;ky;x;y� related by

FE = Idnv ð19Þ

where Idnv is an nv � nv identity matrix. Equation (19) is valid only under ideal
conditions when the data is fully sampled and the receiver coils have no
overlap. However, the latter condition is not fully valid for phased arrays for which
the relation between reconstruction and encoding matrices are determined by a
sample noise matrix. A detailed discussion of these effects are presented in the next
section.

3.3 Phased Arrays

One of the basic requirement of parallel MRI is to acquire MR signals simulta-
neously using multiple coil elements from a receiver coil array. The coil arrays are
conventionally called “phased array”, had been invented and widely used in MRI
even before the advent of parallel imaging. It was developed in 1990 by Roemer
[29], improve SNR for large FOV applications.

The concept of phased array was first introduced in phased array radar and
ultrasound. In an array data is acquired simultaneously and combined subsequently
from a multitude of closely positioned receive coils so that SNR and resolution of
small surface coils can be obtained over a large FOV normally associated with body
imaging with no increase in imaging time. An important issue compared to the
design of a single surface coil is that there may be interactions among nearby coil
elements, commonly called “mutual coupling”. To minimize the coupling effect
various techniques, such as overlapping [29], low impedance preamplifier [29],
interconnecting capacitors/inductors have been proposed.

Figure 3a shows a schematic of a 4-element phased array using Shepp-Logan
phantom image. Each receiver acquires MR signals independently. The absolute
magnitude single-coil images from the four channels are displayed in Fig. 3b. It is
shown that for each channel, high SNR is observed in a certain region of the FOV;
after combination, it is expected that we can obtain high SNR over the entire FOV.
The data combination algorithms are discussed as follows.

For an N-element phased array, let Y denote the N � N receiver noise matrix,
with the m-nth entry representing noise correlation between the mth and the nth
channel, and the mth diagonal element representing the noise level of the mth
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channel. For a given point (x, y), let pi denote the pixel value from the ith channel
and P = [p1 p2 p3 … pN]

T, let ci denote the complex sensitivity of the ith coil at that
point and C = [c1 c2 c3 … cN]. The combined pixel value with optimized SNR,
according to [19], is expressed as

pcombine ¼ kPTW�1C ð20Þ

where k is a constant scaling factor. The optimum data combination can be obtained
as a linear combination of data from individual channels with appropriate
weightings to each position. When the noise correlation is negligible, it is easily
shown that the SNR-optimized composite image is a combination of single-coil
images weighted by their respective sensitivities.

The accurate knowledge of sensitivity is required to combine the data as shown
in Eq. (20). Since in some cases, measuring the sensitivity of each coil is excessive,
it is desirable to have a technique which combines the data without detailed
knowledge of the coil sensitivity while at the same time preserves high SNR. For
this purpose, the coil sensitivities in Eq. (3) are approximated by the single-coil
images themselves. This leads to the more commonly used “sum-of squares”
combination [29], which takes a simpler form

pcombine ¼
ffiffiffiffiffiffiffiffi

PHP
p

ð21Þ

where the superscript H denotes conjugate transpose.
If the different coils have a significant overlap, the matrix inversion in Eq. (7) is

challenging because the rows of the sensitivity matrix Cl becomes linearly
dependent. This leads to noise amplification in the reconstructed image. The noise
arises due to the reduced amount of acquired data. Due to the mutual coupling
between coils, this noise is spatially varying. The spatial variation in noise is

4 element array

Receiver 1

Receiver 3

Receiver 2

Receiver 4

Coil 1 Coil 2

Coil 3 Coil 4

(a) (b)

Fig. 3 a Schematic of a phased array coil using Shepp-Logan, b Absolute magnitude single-coil
images from the four channels
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quantified using a noise covariance matrix. With qp representing a vector consisting
of signals ql,p from the same location in each coil element, SNR of the Root
Sum-of-Squares (RSoS) image is expressed as

SNRRSoSðp) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qHp w
�1qp

q

ð22Þ

where w denotes the noise covariance matrix, that is approximated by summing the
scalar dot product of coil sensitivities over a number of points. The (i, j)th element
of this matrix is obtained as

wi;j¼
X

nv

p¼1

CiðpÞ�CjðpÞ; for i; j ¼ 1; 2; . . .; nc: ð23Þ

The w is the nc � nc receiver noise matrix which denotes the variance in each coil as
well as correlation between coils. The propagation of noise from k-space to
image-space is described by the sample noise matrix ~w ¼ w� Idnk and image noise
matrix X in which the pth diagonal element represents the noise variance in the pth
image value and off-diagonal elements provides noise correlation between image
values. The relation between sample noise and image noise matrices are given by

X ¼ F~wFH ð24Þ

This variance is minimized for each pixel using the Lagrangian multipliers,
using the constraint in Eq. (19) yielding the SENSE solution

F ¼ ðEH ~w�1EÞ�1EH ~w�1 ð25Þ

3.4 Cartesian SENSE

In the standard cartesian sampling, k-space is undersampled with a reduction factor
R in the Fourier domain and aliased reduced FOV image q̂rl is obtained in the spatial
domain for each of the nc array coils. Each pixel in the aliased image contains the
local coil sensitivity weighted by signal contribution from the R pixels in the
original full-FOV image q. From Fig. 4, it is clear that the contributing pixel
positions form a cartesian grid corresponding to the size of the reduced FOV.

To reconstruct the full-FOV image q̂, one must undo the signal superposition
underlying the fold-over effect Fig. 3. The SENSE reconstruction process is sket-
ched in Fig. 5.

The time and space complexity of Eq. (27) is reduced using cartesian SENSE.
From Eq. (15), it is clear that value of each aliased pixel is a linear combination of
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R pixel values. Therefore, the encoding matrix E becomes block diagonal. Let

qr
ðiÞ
l ,C

ðiÞ
l , q

ðiÞ represent the ith column of qrl , Cl, and q respectively. Each column
consists of R blocks. Each block represents a partitioning of signals into R aliasing
components under cartesian sampling.

Aliased pixel

Full FOV

Reduced FOV

Fig. 4 Aliasing in 2D cartesian sampling

(x , y+ y)

(x , y)

1
r( x , y )

2
r( x , y )

8
r( x , y )

Coil 1

Coil 2

Coil 8

Fig. 5 Fold over in SENSE
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qðiÞ ¼
qðiÞ1
qðiÞ2
..
.

qðiÞR

2

6

6

6

6

4

3

7

7

7

7

5

; CðiÞ
l ¼

CðiÞ
l;1

CðiÞ
l;2

..

.

CðiÞ
l;R

2

6

6

6

6

4

3

7

7

7

7

5

ð26Þ

As illustrated in (Fig. 6), the jth element of rth block (r = 1, …, R) of the ith
column of image q is given by

qðiÞr ðjÞ ¼ qðiÞðNpe

R
� ðr � 1Þþ jÞ; where j ¼ 1; . . .;

Npe

R
ð27Þ

The corresponding element of sensitivity vectors for each coil l 2 1; . . .; ncf g are
given by

CðiÞ
l;r ðjÞ ¼ CðiÞ

l ðNpe

R
� ðr � 1Þþ jÞ; where j ¼ 1; . . .;

Npe

R
ð28Þ

diag ðCðiÞ
l;r Þ represents a diagonal matrix of size Npe

R � Npe

R . These diagonal matrices

from one column are now cascaded to form a Npe

R � Npe matrix representation of the

Unfolding process

C
oil 1

C
oil 8

C
oil 2

Coil 1 Coil 2 Coil 8

Sensitivity maps

FFT

FFT

FFT

Undersampled
K-space data

Aliased
images

Unaliased
image

Fig. 6 The SENSE process
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ith column in the lth coil. The encoding matrix elements of the lth coil El is now
constructed by cascading the above diagonal matrix blocks of size Npe

R � Npe cor-
responding to all the columns. The stack representing each coil is now cascaded
row-wise to form the encoding matrix E,

E ¼ Er
l

� �

where r ¼ 1; . . .;R

l ¼ 1; . . .; nc
ð29Þ

This is depicted in Fig. 7.
The inversion of each block corresponding to each pixel can be done indepen-

dently. The encoding process given by Eq. (17) is then simplified to

qrl ðx; yÞ ¼
X

R�1

m¼0

qðx; ymod
Npe

R
þm� Npe

R
Þ � Clðx; ymod

Npe

R
þm� Npe

R
Þ ð30Þ

In matrix form, this becomes

q̂r1ðx; yÞ
q̂r2ðx; yÞ

..

.

q̂rncðx; yÞ

0

B

B

B

@

1

C

C

C

A

¼

C1ðx; yÞ; C1ðx; yþNpe=RÞ; . . .;C1ðx; yþðR� 1ÞNpe=RÞ
C2ðx; yÞ; C2ðx; yþNpe=RÞ; . . .;C2ðx; yþðR� 1ÞNpe=RÞ

..

.

Cncðx; yÞ; Cncðx; yþNpe=RÞ; . . .;Cncðx; yþðR� 1ÞNpe=RÞ

0

B

B

B

@

1

C

C

C

A

qðx; yÞ
qðx; yþNpe=RÞ
..
.

qðx; yþðR� 1ÞNpe=RÞ

0

B

B

B

@

1

C

C

C

A

ð31Þ

Coil 1

Coil 2

Coil 8

RaliasesFig. 7 R aliases in SENSE
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where Npe:Nfe is the FOV size in pixels, x ¼ 1; . . .;Nfe and y ¼ 1; . . .; Npe

R

When the c ¼

C1ðx; yÞ; C1ðx; yþNpe=RÞ; . . .;C1ðx; yþðR� 1ÞNpe=RÞ
C2ðx; yÞ; C2ðx; yþNpe=RÞ; . . .;C2ðx; yþðR� 1ÞNpe=RÞ
..
.

Cncðx; yÞ; Cncðx; yþNpe=RÞ; . . .;Cncðx; yþðR� 1ÞNpe=RÞ

0

B

B

B

@

1

C

C

C

A

matrix is non-singular for all x and y, the reconstruction problem will not be ill
posed.The unfolding matrix U is then given by

U ¼ ðcHw�1cÞ�1cHw�1 ð32Þ

Therefore, the R reconstructed pixels in vector form is given by

q̂ðx; yÞ
q̂ðx; yþNpe=RÞ
..
.

q̂ðx; yþ ðR� 1ÞNpe=RÞ

0

B

B

B

@

1

C

C

C

A

¼ U

q̂r1ðx; yÞ
q̂r2ðx; yÞ
..
.

q̂rncðx; yÞ

0

B

B

B

@

1

C

C

C

A

ð33Þ

3.5 SENSE for Optimum SNR Imaging

Parallel acquisition techniques suffer from loss in SNR when compared with
optimum array imaging. In general, the SNR in the parallel MR reconstructed
image is decreased by the square root of the reduction factor R as well as by an
additional coil geometry dependent factor-geometry factor (g-factor) [30–32].
In SENSE, the loss in SNR arises due to ill-conditioning of the matrix inverse in
SENSE reconstruction, and depends on the acceleration rate, the number of coils,
and coil geometry. This loss can he explained through additional constraints
imposed on the choice of array weighting factors. In standard array coil imaging,
weighting factors are chosen to maximize SNR at a given point P. SENSE
reconstruction has the same requirement, but in addition to that, SNR has to be
minimized at a number of points P. The ultimate sensitivity limit for SENSE
reconstruction can he calculated from sensitivity maps for optimum SNR imaging.

4 Conclusion

This approach of parallel MRI, the under-sampled MR data acquired with a set of
phased-array detection coils are combined using reconstruction techniques.
In SENSE, the spatial sensitivity information of the coil array needs to be deter-
mined for spatial encoding. It is very important that the calculated sensitivities are

326 J.S. Paul et al.



accurate, otherwise can result in aliasing artifacts. Apart from this, parallel acqui-
sition techniques suffer from loss in SNR when compared with optimum array
imaging. All these factors need to be well addressed for optimum reconstruction in
parallel MRI.
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Abstract Discovery of genome as well as protein sequencing aroused interest in
bioinformatics and propelled the necessity to create databases of biological
sequences. These data are processed in useful knowledge/information by data
mining before storing into databases. This book chapter aims to present a detailed
overview of different types of database called as primary, secondary and composite
databases along with many specialized biological databases for RNA molecules,
protein-protein interaction, genome information, metabolic pathways, phylogenetic
information etc. Attempt has also been made to focus on drawbacks of present
biological databases. Moreover, this book chapter provides an elaborate and
illustrative discussion about various bioinformatics tools used for gene prediction,
sequence analysis, phylogenetic analysis, protein structure as well as function
prediction, molecular interactions prediction for several purposes including
discovery of new gene as well as conserved regions in protein families, estimation
of evolutionary relationships among organisms, 3D structure prediction of drug
targets for exploring the mechanism as well as new drug discovery and
protein-protein interactions for exploring the signaling pathways.
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1 Introduction

Bioinformatics presents one of best example of interdisciplinary science. Actually,
it is the mixture of various disciplines such as biology, mathematics, computer
science and statistics. The term ‘Bioinformatics’ was given by a Dutch
system-biologist Paulien Hogeweg, in the year of 1970 [1]. For the last few dec-
ades, it has become an important part of biological research to process the bio-
logical data quickly. Nowadays, bioinformatics tools are regularly used for
identification of novel genes and their characterization. Bioinformatics is also used
for calculating physiochemical properties, prediction of tertiary structure of pro-
teins, evolutionary relationship and biomolecular interactions. Although these
bioinformatics tools cannot generate as reliable information as those generated by
experimentation. But the experimental techniques are difficult, costly and time
consuming. Therefore the in silico approach facilitates in reaching an approximate
informed decision for conducting the wet lab experiment. The role of bioinfor-
matics is not only limited to generation of data but also extended to storage of large
amount of biological data, retrieval, and sharing of data among researchers. The
design of databases, development of tools to retrieve data from the databases and
creation of user web interfaces are the major roles of bioinformatics scientists. Life
sciences researchers are using these databases since 1960s [2]. In mid 1980s,
bioinformatics came into existence and National Center for Biotechnology
Information in 1988 was established by USA government.

There are many types of biological databases which are called primary, sec-
ondary and composite databases. Primary databases contain gene and protein
sequence information as well as structure information only. Secondary databases
contain derived information from primary databases and composite databases
contain criteria for searching multiple resources. Along with theses databases
Literature databases, Structural databases, Metabolic pathway databases, Genome
databases for specific organisms, protein-protein interaction databases, phylogenetic
information databases, RNA molecules databases and protein signalling databases
are also discussed in detail.

Bioinformatics is also used to integrate the data mining techniques e.g. Genetic
algorithms, Support vector machines, Artificial intelligence, Hidden Markov model
etc. for developing software for sequence, structure and function based analysis.

Due to flooding of genome sequencing projects, vast amount of data have been
accumulated at very high rate. However, pure data are not meaningful because
knowledge/information in such data is hidden. Knowledge/information is much
more valuable than data many times. Thus, a new technology field has emerged in
mid 1990s to extract knowledge/information from raw data which is called
knowledge discovery in databases (KDD) or simply data mining (DM) [3, 4]. First
of all, Data which is the raw material and related to some specific problem are
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collected, checked and finally selected. After careful selection of data, prepro-
cessing of data is required i.e. erroneous data which is also called outliers are
identified and removed. After preprocessing, algorithms or mathematical models
are applied to extract the useful patterns, which are called data mining. These
patterns are interpreted by experts and thereafter evaluated for by their novelty,
correctness, comprehensibility and usefulness. Finally, information in graphics or
presentable form is available to the end user in databases. The systematic diagram
of KDD process in the form of flow chart is shown in Fig. 1.

A number of reviews and scientific articles related to databases have been
published in the specialized area of Bioinformatics [5, 6]. However, none of these
articles prove useful for a scientist who is not from bioinformatics/computational
biology discipline. Therefore in the present chapter, we proceed to introduce var-
ious bioinformatics databases to a non-specialist reader to help extract useful
information regarding his/her project. In this chapter every section contains a basic
idea of each area supported by the literature and a tabulated summary of related
databases, where necessary, towards the end of each section.

Fig. 1 Systematic diagram of
KDD process
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2 Biological Databases

Due to advancement in the high throughput sequencing techniques, sequencing of
whole genome sequence of organisms are quite easy today and thereby leading to
production of massive amount of data. Storage of large amount of biological data,
retrieval and sharing of data among researchers are efficiently done by creation of
databases which is a large, organized body of persistent data in a meaningful way.
These databases were usually associated with computerized software designed to
update, query, and retrieve the various components of the data stored in databases.
There are different types of databases, which is based on the nature of the information
being stored (e.g., sequences, structures, 2D gel or 3D structure images, and so on) as
well as on the manner of data storage (e.g., whether in flat-files, tables in a relational
database, or objects in an object-oriented databases. The sequence submission and
storage of this information turn out to be freely accessible to the scientific world has
directed to develop a number of databases worldwide. Respectively, every database
becomes an autonomous illustration of a molecular unit of life.

Biological sequence database refers to a massive collection of data which have
biological significance. Each biological molecule such as nucleic acids, proteins
and polymers is identified by a unique key. The stored information can be used for
future but also serves as an important input which for sequence and structure
analyses. Biological Databases are mainly categorized into primary, secondary and
composite databases and are discussed in detail in following sections.

2.1 Primary Databases

In primary database, the data related to sequence or structure are obtained through
experiments such as yeast-two hybrid assay, affinity chromatography, XRD or
NMR approaches. SWISS-PROT [7], UniProt [8–10], PIR [11], TrEMBL (trans-
lation of DNA sequences in EMBL) [7], GenBank [12], EMBL [13], DDBJ [14],
Protein Databank PDB [15] and wwPDB (worldwide Protein DataBank) [16] are
the well known examples of primary databases. A primary database is basically a
collection of gene, protein sequence and structure information only. GenBank
(USA), EMBL (Europe) and DDBJ (Japan) exchange data on a daily basis to ensure
comprehensive coverage of these databases. SWISS-PROT is a protein sequence
database which was established in 1986, collaboratively by University of Geneva
and the EMBL [17]. SWISS-PROT includes annotations which has made it the
database of choice for most of the researchers. The SWISS-PROT [17] contains
information of its entries, which has been produced both by wet lab work as well
dry lab. It is also interconnected to several other databases such as GenBank,
EMBL, DDBJ, PDB and several other secondary protein databases. The protein
data in SWISS-PROT mainly focuses only on model organisms and human only.
On the other hand, the TrEMBL provides information on proteins from all
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organisms [7]. Similarly, the PIR is one more inclusive collection of protein
sequences which provides its user several attractive features like enabling to search
for a protein molecule through text search. PIR also provides facility for web based
analyses such as sequence alignment, identification of peptide molecules and
peptide mass calculations [11, 17, 18]. The PIR Protein Sequence Database was
developed by National Biomedical Research Foundation (NBRF) in 1960 s by
Margaret Dayhoff. PIR is a database of protein sequences for investigating evo-
lutionary relationships among proteins [11, 17, 18]. UniProt is another compre-
hensive collection of protein sequence which is available freely. The UniProt
database is combination of SWISS-PROT, PIR and TrEMBL [8–10]. The world-
wide Protein Data Bank (wwPDB) contains over 83,000 structures and they
planned to provide each single 3D structure of protein molecules freely to the
scientific community.

2.2 Secondary Databases

A secondary database is based on derived information from the primary database
i.e. it contains information about the conserved sequence, active site residues of the
protein families, patterns and motifs [19, 20]. Examples of secondary databases are
SCOP [21], CATH [22], PROSITE [23], PRINTS [24] and eMOTIF [25]. The first
secondary database to be developed was PROSITE, which is maintained by Swiss
Institute of Bioinformatics. Within PROSITE, motifs are encoded as regular
expressions which are also called patterns. PRINTS fingerprint database is another
secondary database, which is maintained in University College London (UCL) and
contains motifs as ungapped, unweighted local alignments [24]. The SCOP
(Structural Classification of Proteins) database is maintained by MRC Laboratory
and Centre for Protein Engineering which describes structural and evolutionary
relationships among proteins for which structure are known [21]. In SCOP, proteins
are classified in a hierarchical fashion to reflect their structural and evolutionary
relationship. This hierarchy basically describes the family, superfamily and fold.
The CATH (Class, Architecture, Topology, and Homology) is another secondary
database which is a hierarchical classification of protein structures maintained at
UCL [26]. CATH includes five levels within the hierarchy which are as follows:

• Class includes secondary structure content and packing. Four classes of domain
are recognised: (i) mainly-a, (ii) mainly-b, (iii) a−b, which includes both
alternating a/b and a + b structures, and (iv) Protein structures with low sec-
ondary structure content.

• Architecture includes arrangement of secondary structures, without connectiv-
ities; (e.g., barrel, roll, sandwich, etc.).

• Topology describes the overall shape and the connectivity of secondary
structures.
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• Homology includes domains that share 35 % sequence identity and are thought
to share a common ancestor, i.e. are homologous.

• Sequence is the last level, where structures are clustered on the basis of
sequence identity.

2.3 Composite Databases

Composite database is basically an amalgamation of variety of different primary
database sources, which are meant to search multiple resources by putting different
criteria in their search algorithm. Example of composite database is National Center
for Biotechnology Information (NCBI) which is an extensive collection of
nucleotide, protein sequence and many other databases providing free access to
research community. NCBI provides interconnections between genetic sequence
data, protein sequence data, structure data, phylogenetic tree based data, Genomes
data and literature references. These links may also be between the same types of
records in different databases, for example, literature articles in literature database
Pubmed provide gene sequences, protein sequences, 3D structure, genome infor-
mation and their links. Links between genetic sequences records are based on Blast
sequence comparisons [27] while structure records are based on Vast structure
comparisons [28]. NCBI includes one of the literature database called PubMed
contains citations for biomedical literature from MEDLINE, journals and online
books. NCBI also includes nucleotide sequence database called GenBank [12]
which is collection of genome sequences of more than 2,50,000 species and these
data can be retrieved by the NCBI’s integrated retrieval system, i.e. Entrez, whereas
the literature is easily accessible via PubMed [12, 29, 109]. It provides the infor-
mation for related literature, organism, untranslated regions, exons/introns, repeat
regions, coding regions, terminators, translations, promoters, bibliography etc. for
each sequence. Sequence submission in GenBank can be done by individual lab-
oratories along with large-scale genome sequencing projects. Protein sequence
database in NCBI contains sequences from several sources which includes trans-
lations from annotated coding regions in GenBank, RefSeq. It also contains data
records from SwissProt, PIR, PRF and PDB. The genome database in NCBI con-
tains information on genomes which includes sequences, maps, chromosomes,
assemblies as well as annotations. Protein structure databases at NCBI is called
Molecular Modeling Database (MMDB) which contains data from experimentally
resolved proteins structures, RNA and DNA molecules which are derived from
the Protein Data Bank (PDB). MMDB also aid value-added features such as
computationally identified 3D domains which can be used to identify similar 3D
structures, as well as links to literature and information about chemicals/
drug bound to the structures. Small chemical structure database integrated with
NCBI is called Pubchem which includes small chemical structure and their bio-
logical activity (Fig. 2).
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NRDB (Non-Redundant DataBase) is another composite database which con-
tains data from GenPept (derived from automatic GenBank CDS translations),
SWISS-PROT, PIR, GenPeptupdate (the daily updates of GenPept), SPupdate (the
weekly updates of SWISS-PROT) and PDB sequences. Similarly, INSD
(International Nucleotide Sequence Database) is another composite database, which
is collection of nucleic acid sequences from EMBL, GenBank and DDBJ. The
UniProt (universal protein sequence database) which is also a composite database
which contains sequences derived from various other databases such as PIRPSD,
Swiss-Prot, and TrEMBL. In the same way, wwPDB (worldwide PDB) is a com-
posite database of 3D structures which is maintained by RCSB (Research
Collaboratory for Structural Bioinformatics), PDB, MSD and PDBj [30].

2.4 Specialized Databases

The Rfam database contains secondary structure of RNA molecules and their gene
expression pattern. This database is introduced by the Wellcome Trust Sanger

Fig. 2 Circles represent various databases; straight lines between circles represent links between
different data types among different databases
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Institute and it is similar to the Pfam database for annotating protein families [31].
There are numerous curated databases which are accessible worldwide such as
IntAct contains data of various protein interactions. MINT (Molecular INTeraction
database) is another curated database which is merged with IntAct database
maintained by EMBL-EBI [32]. MINT is basically a database that stores infor-
mation about protein-protein interactions derived from published articles [33]. For
the metabolic pathway analysis in human, Reactome is one of the freely available
databases which provide the diverse information regarding metabolic pathway and
signal transduction pathways in human [34].

The Transporters Classification Database (TCDB) is a database of membrane
transporters [35] which is based on Transport Classification (TC) system for the
classification of protein similar to that of Enzyme Commission [36]. Similarly, the
Carbohydrate-Active enzyme Database (CAZy) is a database of carbohydrate
modifying enzymes and relevant information related to them. These enzymes are
classified into different families which are based on the amino acid similarities or
the presence of various catalytic domains [37].

Xenbase is a specialized database which contains genomic and biological
informations about frogs [38], whereas the Saccharomyces Genome Database
(SGD) provides complete information about yeast (Saccharomyces cerevisiae)
which also offers web based bioinformatics tools to analyse the data available in
SGD [39]. The SGD may be used to study functional interactions among gene
sequence and gene products in other fungi including eukaryotes. Likewise,
WormBase is a specialized database which is developed and maintained by an
international consortium to make available precise, recent data related to the
molecular biology of C. elegans and other associated nematodes. Wormbase also
provides some web based tools for analysis of the stored information. Another
up-to-date database is “FlyBase” devoted to provide information on the genes and
genomes of Drosophila melanogaster along with various web based bioinformatics
tools to search gene sequences, alleles, different phenotypes as well as images of the
Drosophila species [40]. Similarly, wFleaBase provides information on genes and
genomes for species of the genus Daphnia (water flea). Daphnia is considered as a
model organism to study and understand the complex interplay between genome
structures, gene expression and population level responses to chemicals and envi-
ronmental changes. Although, wFleaBase contains data for all Daphnia species but
the primary species are D. pulex and D. magna.

MetaCyc is a curated database of metabolic pathways which were taken from
published literatures from all domains of life. It contains 2260 pathways from 2600
different organisms. MetaCyc contains pathways which are involved in both primary
and secondary metabolism. It also includes their reactions, enzymes and associated
genes [41]. PANTHER (Protein ANalysis THrough Evolutionary Relationships) is
another metabolic pathway which consists of over 177 primarily signaling pathways.
It contains different pathway components where component is basically a single
protein/group of proteins in a given organism [42]. Pathway diagrams are interactive
which also includes bioinformatics tools for visualizing gene expression data.
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database of many
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databases which was developed and maintained by Bioinformatics Center of Kyoto
University and the Human Genome Center of the University of Tokyo [43]. KEGG
covers metabolic pathways in yeast, mouse and human etc. KEGG has expanded
these days by the addition of signaling pathways for cell cycles and apoptosis.
Reactome is a collection of metabolic and signaling pathways and their reactions
[34]. Theses pathways and reactions can be viewed but not edited through a web
browser. Although humans are the main organism catalogued, but this database also
contains data for 22 other species such as mouse and rat.

TreeBASE is a collection of phylogenetic trees and the data associated to con-
struct them. TreeBASE accepts all types of phylogenetic data for species tree as
well as gene tree from all domains of life [44]. PhylomeDB [45] is another public
database of phylogenetic information based on genes which allows users to explore
evolutionary history of genes. Moreover, phylomeDB provides automated pipeline
used to reconstruct trees of different genomes based on phylogenetic trees. Table 1
illustrates a list of genomic, protein sequences and specialized databases.

Table 1 List of gene and protein based databases, their description along with their webpage’s
URL

Databases Description Web link

Nucleotide databases

DDBJ [14] It is the member of International Nucleotide
Sequence Databases (INSD) and is one of the
biggest resources for nucleotide sequences

http://www.ddbj.
nig.ac.jp/

European
Nucleotide Archive

It captures and presents information relating to
experimental workflows that are based around
nucleotide sequencing

http://www.ebi.ac.
uk/ena

GenBank [29] It is the member of International Nucleotide
Sequence Databases (INSD) and is a nucleotide
sequence resource

http://www.ncbi.
nlm.nih.gov/
genbank/

Rfam [31] A collection of RNA families, represented by
multiple sequence alignments

http://rfam.xfam.
org/

Protein databases

InterPro [46] Describes the protein families, conserved
domains and actives sites

http://www.ebi.ac.
uk/interpro/

Pfam [19] Collection of protein families http://pfam.xfam.
org/

Prosite [23] Provides information on protein families,
conserved domains and actives sites of the
proteins

http://prosite.
expasy.org/

Protein Data Bank
2000 [15]

This is the most popular database of
experimentally-determined structures of
nucleic acids, proteins, and other complex
assemblies

http://www.rcsb.
org/pdb/home/
home.do

Proteomics
Identifications
Database [47]

A public source, contain supporting evidence
for post-translation modification and functional
characterization of proteins and peptides

http://www.ebi.ac.
uk/pride/archive/

(continued)
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Table 1 (continued)

Databases Description Web link

SWISS-PROT [7] A section of the UniProt Knowledgebase
containing the manually annotated protein
sequences

www.ebi.ac.uk/
swissprot/

Uniprot [8–10] One of the largest collection of protein
sequences which contains curated as well as
automated generated entries about protein
sequences

http://www.uniprot.
org/

PIR [11] An integrated public resource to support
genomic and proteomic research

http://pir.
georgetown.edu/

Specialized databases

Ensembl [48] It is a database containing annotated genomes
of eukaryotes, including human, mouse and
other vertebrates

http://www.
ensembl.org/index.
html

DictyBase [49] DictyBase is an online bioinformatics database
for Dictyostelium discoideum

http://www.
dictybase.org/

Medherb [50] An important resource database for medicinally
important herbs

https://www.
medherbs.de/site/

TAIR [51] The Arabidopsis Information Resource (TAIR)
maintains a database of genetic and molecular
data for the model plant Arabidopsis thaliana.
This database also provides information on
gene structure, gene product, gene expression,
genome maps, genetic and physical markers

http://www.
arabidopsis.org/

TextPresso [52] This database provides full text literature
searches of model organism research which
helps database curators to identify and extract
biological entities which include new allele and
gene names and human disease gene orthologs

http://www.
textpresso.org/

Reactome [34] A peer-reviewed resource of human biological
processes i.e. metabolic pathways

http://www.
reactome.org/

CMAP [53] Complement Map Database is a novel and
easily accessible research tool to assist the
complement community and scientists. This
database explores the complement network and
discovers new connections

http://www.
complement.us/
labweb/cmap/

HMDB [54] The Human Metabolome Database (HMDB) is
the most comprehensive curated collection of
human metabolite and human metabolism data
in the world

http://www.hmdb.
ca/

KEGG [43] KEGG is a suite of databases and associated
software for understanding and simulating
higher-order functional behaviours of the cell
or the organism from its genome information

http://www.
genome.jp/kegg/

(continued)
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2.5 Drawbacks of Biological Databases

Many times life sciences researchers are interested not only in a few entries of a
database but in huge amount of entries or large amount of data, which needs to be
processed further, searching through web interfaces are not good options. To
support large amount of data, the collection of relevant data and its processing must
be automated. Therefore, each database should have programming options which
make bioinformatics software developers to query and search databases from their
own programs [57]. Modern database management systems such as ODBC (Open
Database Connectivity) and JDBC (Java Database Connectivity) provide these web
interfaces for bioinformatics programmers to query, search and analyze data. But
the major limitation is that database providers allow public access only sometimes
to these interfaces. These databases are DDBJ (DNA Data Bank of Japan) and
KEGG (Kyoto Encyclopedia of Genes and Genomes). Apart from lacking in pro-
viding the programming interfaces, present biological databases also contain other
limitations/drawbacks such as description of the database contents and authenticity
of data produced and data sources. One of the drawbacks associated with these web
interfaces is that these interfaces don’t allow to be searched by using all fields in a
database. These search modes such as ‘and’, ‘or’ and ‘not’ are not supported at all.
Mostly theses modes are supported only in a limited way. Hence desired results for
the query are not obtained. It is observed that in primary nucleotide and sequence
databases, redundancy of many nucleotide and protein sequences are present, which
should be removed. Biologists are usually not familiar with the principles of
database design languages. Biologists are mostly ignorant about database query
languages also and they should have knowledge of the database schema. In bio-
logical databases, in most of the cases flat files are used for data exchange which
does not have standardized format. There are many formats for thousands of

Table 1 (continued)

Databases Description Web link

PID [55] The Pathway Interaction Database (PID) is a
collection of curated and peer-reviewed
pathways. It is mainly composed of human
molecular signaling and regulatory events and
key cellular processes related to cancer

http://pid.nci.nih.
gov/

SGMP [56] The Signaling Gateway Molecule Pages
(SGMP) database which provides highly
structured data on proteins. It also identifies
different functional states of the proteins which
participate in signal transduction pathways

www.signaling-
gateway.org/
molecule
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biological databases which create problem in biological data preprocessing. Many
types of information are often missing in biological databases which include
functional annotations of genes and proteins. Many biological databases also pro-
vide missing information in terms of genotype phenotype relationships along with
detailed pathway information and their reactions.

3 Gene Identification and Sequence Analyses

Due to lack of genome annotation and high-throughput experimental approaches
computational gene prediction has become challenging and interesting area for
bioinformatics/computational biology scientists. Gene prediction is very crucial
especially for disease identification in human. Computational gene prediction can be
categorized into two major classes which are ab initio methods and similarity/
homology based methods [58]. These types of analyses are mainly useful for gene
expression analysis. Gene expression is directly or indirectly related to the identi-
fication of promoter, terminator and untranslated regions. These regions are involved
in the expression regulations, recognition of a transit peptide, introns/exons as well
as an open reading frame (ORF). These regions are also involved in identification of
variable regions which are used as signatures for various diagnostic purposes.
Therefore, sequence analyses are one of the commonly used analyses for gene
prediction in bioinformatics.

Gene prediction is relatively more difficult in eukaryotes as compared to
prokaryotes due to presence of introns. Homology based gene predictions depend
on complementary DNA (cDNA) and Expressed Sequence Tags (ESTs), though,
the cDNA/ESTs information is often unusual and incomplete, and thus makes the
task of finding novel genes extremely difficult. Homology based on sequence based
information has been shown to be useful for better identification of prokaryotic and
eukaryotic genes with higher accuracy. Local and global sequence alignments are
performed by BLAST and NEEDLE respectively which is widely used in
homology/similarity based gene prediction. These days protein homology has been
introduced in many gene prediction programmes such as GENEWISE [59] and
GENOMESCAN [60] GeneParser [61] and GRAIL [62]. Novel gene finding is
often possible by ab initio gene identification. Examples of ab initio programs are
GENSCAN [63], GENIE [64], HMMGene [65] and GENEID [66]. These methods
were used in Drosophila melanogaster where it showed a very low rate of
false-positive. These methods also predict 88 % of exons (already verified) and
90 % of the coding sequences [67]. Due to high accuracy, this methodology could
be used for annotating large genomic sequences and prediction of new genes.
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Recently, Lencz et al. identified an intergenic single nucleotide polymorphism
(SNP; rs11098403) at chromosome 4q26 which was linked with schizophrenia and
bipolar disorder. They performed a genome wide association study (GWAS) which
was coupled with cDNA as well as RNA Seq on a set of 23,191 individuals [68].
Similarly, Peng and co-workers predicted 31,987 genes from Phyllostachys hetero-
cycle draft genome by gene prediction approaches based on FgeneSH ++ [69].
Sequence analyses refer to the understanding of various features of biomolecules like
nucleic acids and proteins, which are responsible for providing unique function(s).
The first step is retrieval of sequences from public databases which are subjected to
analysis by various tools which help in the prediction of specific features whichmight
be associated to their function, structure, evolutionary relationship or identification of
homologs with high accuracy. The database should be selected depending upon the
nature of analysis. For example, Entrez of PubMed [70] allows one to search about
different patterns in the given data. Also, pattern discovery can be performed by
Expression Profiler [71], GeneQ [72] which allow scientists to search out different
patterns in the given data. A different set of databases are dedicated to carry out
sequence comparison like BLAST (Basic Local Alignment Search Tool) [27],
ClustalW [73], for data visualization Jalview [74],GeneView [75], TreeView [76] and
Genes-Graphs [77] allowing researchers to visualize data in graphic representation.
Table 2 illustrates a list of databases used in primary sequence analyses.

4 Phylogenetic Analyses

Phylogenetic analysis help to determine the evolutionary relationship among a
group of related organism or related genes and proteins [83, 84], to predict the
specific feature of a molecule with unknown functions, to track the gene flow and
also to determine genetic relatedness [85]. Phylogenetic analysis is mainly based
similarity at sequence level i.e. higher is the similarity; the closer will be the
organisms on a tree. Phylogenetic tree is constructed by various methods which are
distance, parsimony and maximum likelihood methods. None of the methods is
perfect; each one has its own strengths and weaknesses. For example, the distance
based methods performs average whereas the maximum parsimony and maximum
likelihood methods are accurate. The major disadvantage of maximum parsimony
and maximum likelihood methods is these methods takes more time to run as
compared to distance based methods [86]. Among the distance-matrix methods
Neighbour Joining (NJ) or Unweighted Pair Group Method with Arithmetic mean
(UPGMA) are the simplest. Table 2 illustrates a list of phylogenetic analyses
programmes. (Table 3).
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In functional genomics where a function of a particular gene is not known
phylogenetic analysis is used to find their relative genes which ultimately help to
the identification their function and other features of that particular gene.

Table 2 List of gene identification and sequence analyses programmes and their description
along with their webpage’s URL

Software
tools

Description Web link

BLAST
[27]

Used for database sequence searching for
protein and DNA homologs

http://blast.ncbi.nlm.nih.gov/
Blast.cgi

Clustal
Omega [78]

Used for Multiple sequence alignments of
DNA and protein sequences

http://www.ebi.ac.uk/Tools/
msa/clustalo/

Genscan
[63]

Used to predict the exon-intron sites in
genomic sequences

http://genes.mit.edu/
GENSCAN.html

HMMER
[79]

A tool which is used for homologous protein
sequence search

http://hmmer.janelia.org/

JIGSAW
[80]

Used for identification of gene and their splice
site prediction in the selected DNA sequences

http://cbcb.umd.edu/software/
jigsaw

novoSNP
[81]

Used to find the single nucleotide variation in
the DNA sequence

http://www.molgen.ua.ac.be/
bioinfo/novosnp/

ORF Finder The putative genes may be subjected to this
tool to find Open Reading Frame (ORF)

http://www.ncbi.nlm.nih.gov/
projects/gorf/

PPP Prokaryotic promoter prediction tool used to
predict the promoter sequences present
up-stream in the gene

http://bioinformatics.biol.rug.
nl/websoftware/ppp/ppp_start.
php

ProtParam
[82]

Used to predict the physico-chemical
properties of proteins

http://web.expasy.org/
protparam/

Sequerome The tool which is mainly used for sequence
profiling

www.bioinformatics.org/
sequerome/

Softberry
Tools

Several tools are specialized in annotation of
animal, plant, and bacterial genomes along
with the structure and function prediction of
RNA and proteins

http://www.softberry.com/

Virtual
Foorprint

Whole prokaryotic genome (with one regular
pattern) may be analyzed using this program
along with promoter regions with several
regulator patterns

http://www.prodoric.de/vfp/

WebGeSTer The database which is composed of sequences
of transcription terminator sequences and is
used to predict the termination sites of the
genes during transcription

http://pallab.serc.iisc.ernet.in/
gester/dbsearch.php
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5 Predicting Protein Structure and Function

Protein molecules initiate their life as amorphous amino acid strings, which finally
fold up into a three-dimensional (3D) structure. The folding of the protein into a
correct topology is needed for proteins to perform its biological functions. Usually,
3D structures are mostly determined by X-ray crystallography and NMR which are
costly, difficult and time taking. X ray crystallography method fails if we do not get
good crystals. Moreover NMR is limited to small proteins [88]. There are very few
structures submitted monthly using NMR and XRD in NCBI. Correct prediction of
secondary and tertiary structure of proteins is one of the challenging tasks for
bioinformatics/computational biologist till date. Predicting the correct secondary
structure is the key to predict not only a good/satisfactory tertiary structure of the
protein but also helps in prediction of protein function [88]. Protein structure
prediction is classified into three categories: (i) Ab initio modeling [89]
(ii) Threading or Fold recognition [90] and (iii) Homology or Comparative mod-
eling (Šali and Blundell 1993 [91]. Threading and comparative modeling build
protein models by aligning query sequences with known structures which are
determined by X-ray crystallography or NMR. When templates having iden-
tity � 30 % are found, high resolution models could be built by the template-based
methods. If templates are not available from the protein data bank (PDB), these
models are built from scratch, i.e. ab initio modeling [92]. Homology modeling is
the most accurate prediction method so far and it is used frequently. In one of our
studies good quality homology models of superoxide dismutase (SOD) has been
obtained by Modeller software package in antarctic cyanobacterium Nostoc

Table 3 List of phylogenetic analyses programmes and their description along with their
webpage’s URL

Software tools Description Web link

JStree An open-source library for viewing and editing
phylogenetic trees for presentation improvement

www.jstree.com/

MEGA [87] A tool to construct phylogenetic trees to by
parsimony, distance based and maximum
likehood based tree construction and to study the
evolutionary relationships

http://www.megasoftware.
net/

MOLPHY Phylogenetic analysis tool based on maximum
likelihood method

http://www.ism.ac.jp/
ismlib/softother.e.html

PAML A phylogenetic analysis tool based on maximum
likelihood

http://abacus.gene.ucl.ac.
uk/software/paml.html

PHYLIP A complete software package for phylogenetic
tree generation for DNA and protein sequences

http://evolution.genetics.
washington.edu/phylip.
html

TreeView
[76]

It is a tool for visualisation of the phylogenetic
trees

http://taxonomy.zoology.
gla.ac.uk/rod/treeview.
html
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commune which aids to cope with environmental stresses prevailing at its natural
habitat [93]. Bioinformatics tools can also identify secondary structure elements
such as helices, sheets and coils. Protein tertiary structures are stabilized by the
presence of helices, sheets and coils which play an important role in establishing
weaker electrostatic forces. Table 4 illustrates a list of tools to predict the secondary
structure of protein molecules.

6 Predicting Molecular Interactions

Biomolecules interacting with each other affect various biological activities which
has nowadays become one of the popular areas for research [100]. For example,
protein-protein interaction, protein-DNA or protein-RNA interaction etc.
Protein-protein interactions play an essential role in various cellular activities like
signalling and transportation. Protein-protein interactions also play major role in
homeostasis, cellular metabolism etc. [101]. In this regard, bioinformatics helps to
predict the 3D structure of proteins and also helps in predicting the interaction
pattern between different biomolecules. These predictions are based on various
parameters such as interface size, amino acid position, types of chemical groups
involved. These predictions are also based on vander wall forces, electrostatic
interaction and hydrogen bonds. Table 5 illustrates a list of tools to study protein-
protein interactions.

Table 4 List of protein structure and function predictions programmes their description along
with their webpage’s URL

Software tools Description Web link

RaptorX [94] It facilitates the user to predict protein
structure based on either a single- or
multi-template threading

http://raptorx.uchicago.edu/

JPRED [95] Used to predict secondary structures of
proteins

http://www.compbio.
dundee.ac.uk/www-jpred/

HMMSTR
[96]

A hidden Markov model for the prediction
of sequence-structure correlations in
proteins

http://www.bioinfo.rpi.edu/
bystrc/hmmstr/server.php

APSSP2 [97] Predicts the secondary structure of proteins http://omictools.com/
apssp2-s7458.html

MODELLER
[98]

Predicts 3D structure of protein based on
comparative modelling

https://salilab.org/modeller/

Phyre and
Phyre2 [99]

Web-based servers for protein structure
prediction by threading algorithm

http://www.sbg.bio.ic.ac.
uk/phyre2/html/page.cgi?
id=index
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7 Discussion, Conclusion and Future Prospects

Bioinformatics has emerged as a challenging discipline which has developed very
fast in the last few years due to generation of large amount of data generated by
various genome sequencing projects. Such a large amount of data needs
pre-processing to extract useful knowledge/information by data mining techniques.
These processed data are not only stored but also retrieved in a meaningful manner
from biological databases. These biological databases containing nucleotide and
protein sequences are called primary databases. These primary databases have a
drawback that these databases contain redundant sequences. Secondary database
has solved this issue to a greater extent which contain derived information from
primary databases and redundancy is also minimized at lowest in Swiss-Prot
database. Composite databases e.g. NCBI provides better search criteria to search
multiple primary resources at a time. NCBI also provides the linking with literature,
structure, chemical molecules, genome information, gene and protein sequences
databases. Apart from these databases, various specialized databases are also
available these days which provide informations about protein-protein interactions,

Table 5 List of molecular interactions database and programmes, their description along with
their webpage’s URL

Software tools Description Web link

SMART [102] A Simple Modular Architecture Retrieval Tool;
describes multiple information about the protein query

http://smart.
embl-heidelberg.
de/

AutoDock
[103]

Predicts protein-ligand interaction and is considered as
reliable tool

http://autodock.
scripps.edu/

HADDOCK
[104]

Describes the modelling and interaction of
bio-molecular complexes such as protein-protein,
protein-DNA

http://haddock.
science.uu.nl/

STRING
[105]

A database of both known and predicted protein
interactions

http://string-db.
org/

IntAct [32] It is an open source database system which is used for
molecular interaction data

http://www.ebi.
ac.uk/intact/

Graemlin
[106]

It is capable of scalable multiple network alignment
with its functional evolution model that allows both
the generalization of existing alignment scoring
schemes. This tool also model the location of
conserved network topologies other than protein
complexes and metabolic pathways

http://graemlin.
stanford.edu/

PathBLAST
[107]

This tool is to search protein-protein interaction
network of the any selected organism and extracts all
interaction pathways that align with the query

http://www.
pathblast.org/

CFinder [108] This tool is capable of finding and visualizing the
overlapping dense groups of nodes in networks, and
quantitative description of the evolution of social
groups

http://www.
cfinder.org/
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protein families, experimentally known metabolic pathways, genome sequence,
protein structure and phylogenetic tree for evolutionary relationship. These data-
bases also have few drawbacks e.g. lack of description of data contained, redun-
dancy of sequences etc. One of the major drawbacks of most of the databases is that
they don’t provide the programming interface so that researchers can write their
programmes to download and process huge amount of stored data from the data-
base. Bioinformatics is not only used in designing the biological databases but also
used in developing software tools for sequence, structure and evolutionary analysis
of genes/proteins etc. which save our time, energy and cost in biological research.
A number of bioinformatics softwares were designed to predict the correct genes in
genomic sequences which use various machine learning approaches like artificial
intelligence, genetic algorithm, support vector machine, hidden markov model,
dynamic programming etc. However, the best predictors are based on hybrid
methods which use more than one machine learning approaches to predict the
correct genes. Bioinformatics tools were also developed to construct parsimony,
distance based and maximum likelihood based trees to explore the evolutionary
relationship among species. Parsimony method is successful when sequence
identity is high while maximum likelihood performs well when sequence variation
is high. Bioinformatics have proved to be a boon in structure based drug design by
predicting the structure of drug targets immaterial of whether template structure are
available in PDB or not by different approaches. Homology modelling proved the
best predictor among all the methods. Moreover, bioinformatics tools also predict
protein-protein interactions which play an essential role in various cellular activities
like signalling, transportation, homeostasis, cellular metabolism and also various
biochemical processes. It can also be expected, based on the developments in the
field of bioinformatics, that the bioinformatics tools and software packages would
be able to give more specific, more accurate and more reliable in upcoming years.
In future the field of bioinformatics will contribute in functional understanding of
whole genome of organisms which will lead to enhanced discovery of gene
expression, their interaction pattern, individualised gene therapy and new drug
discovery. Thus, bioinformatics and other scientific disciplines should move
together in order to flourish for the welfare of humanity.
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Abstract This paper presents a work consisting in realizing a decision support
system based on the technique of case-base reasoning and dedicated to the diag-
nosis of a very dangerous pulmonary pathology: lung cancer. The system is realized
for the oncology department of Ibn roch hospital of Annaba (Algeria) and will help
young oncologist physicians in their activity by providing them with the experience
of experts in the same domain. The principle issue in this work is the missing data
in the system memory relating to the patient’s state. Indeed, missing values prevent
the achievement of the diagnosis process. The problem is treated by proposing two
statistical approaches in addition to re-evaluate in this new domain some ones
which have been already proposed and evaluated in a previously domain. The
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1 Introduction

The lung cancer is a very dangerous disease which represents the cause of 1.3
million deaths a year in the world. Its principal cause is the chronic exposure to
tobacco smoke, including passive smoking. The incidence of lung cancer among
no-smokers, represents 15 % of cases and is often attributed to a combination of
genetic factors and pollution air. According to the World Health Organization, the
lung cancer is the most frequent cause of cancer death among men, and after breast
cancer among women. The lung cancer is characterized by a set of clinical
symptoms. Its diagnosis needs in addition some radiological examinations to search
data required for accurate diagnosis. So physicians may ask for different exami-
nations like thoracic scanner, abdominal scanner, endoscopy, MRI (Magnetic
Resonance Imaging), and thoracic radiograph. Provide assistance to physicians in
the diagnosis of this disease is the aim of the system presented in this paper.

To solve problems of daily life, we naturally use our old experiences, by
remembering similar situations already encountered, which are compare with the
current situation for building a new solution which in turn, be added to our
experience. This human reasoning is often used by physicians during their activity
of diagnose and treat patients. Since Artificial Intelligence (AI) is interesting in
reproducing human reasoning on machine, there was a technique named
Case-Based Reasoning (CBR) which reproduces the human behavior in his
recourse to his past experiences to solve his new problems. So, the global idea of
CBR is to solve a new problem by finding similar case(s) in a knowledge base and
to adapt it (them) to the new situation.

This work is a continuation of a former one presented in [1], which involved the
development of a support system dedicated to the medical decision. It was applied
to the diagnosis of a dangerous respiratory disease caused by tobacco: Chronic
Obstructive Pulmonary Disease (COPD). The system is called RESPIDIAG and is
based on CBR technique principles. As its name suggests, RESPIDIAG (for
RESPIRATORY diseases DIAGNOSIS) is supposed go beyond the diagnosis of COPD for
extending to other pathologies of the same field. In this vision, the work is
expanded this time to the diagnosis of lung cancer. However, and currently, the
implementation of the system is done separately of RESPIDIAG pending its inte-
gration in a future step.

In this work, we are cooperating with specialist physicians of the oncology
department in Ibn Rochd hospital of Annaba (Algeria) for giving a decision support
system that can help young clinicians in the diagnosis of lung cancer. The system
will give help for future oncologist physicians because it gathers experiences of
many experts in the domain who are not always available. Some statistical methods
are integrated in this system for managing the problem of missing data in its case
base.

Knowing that the aim of the work is twofold: first, the realization of the CBR
decision support system with the implementation of all phases of CBR cycle, and
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secondly, the managing of the problem of missing data that can appear in the case
base and/or in the new problem, the paper is organized as follows: Sect. 2 provides
an overview on some cbr medical systems that can be found in the literature, while
Sect. 3 presents principles and cycle of the CBR technique. Section 4 presents the
work methodology and the application field.

The contribution of the paper begins in Sect. 5 that describes all the details on
the CBR process with all similarity metrics proposed and used in the system. The
same section introduces the problem of missing data, and gives all details on the
second contribution of the paper with the proposed approaches for managing the
missing data. Experimentations results are presented, compared and evaluated in
Sect. 6. The paper is concluded by the last section.

2 Related Works

In the literature, many works focalized on the medical CBR systems can be found.
This is motivated mainly by the fact that the case-based reasoning is very similar to
clinical reasoning. Indeed, given a patient to diagnose, physician uses his past
experiences to look for any resemblance between former patient’s symptoms and
those of the new patient. Such resemblance (if it exists) can help immensely in the
decision about the new patient, in term of making the most precise diagnosis or
proposing the most efficient treatment. And it is in this way that the competence of a
physician relies heavily on his own experiences. So, CBR systems which modelise
very well the reasoning on experiences, can be so helpful to support physicians in
their decision about diagnoses/therapies.

Many medical fields of diagnosis or therapy, have benefited of CBR decision
support systems. Each of these ones have targeted a specific problem with the CBR
process or the considered field.

Among many medical CBR systems we can mention some ones as CASEY [2]
dedicated to the diagnosis of heart failure, FM-Ultranet [3] which diagnoses fetal
deformations, KASIMIR [4] which provides a treatment for breast cancer, the
system developed in [5] for the diagnosis of acute bacterial meningitis and
RESPIDIAG [1] for the diagnosis of COPD.

In the last one, the retrieval phase has been developed in depth and saw the
proposal of some similarity metrics for specific attributes to the field of COPD, for
which conventional metrics were inappropriate. Another problem has been studied
in the same phase, that of the missing data which prevented the completion of its
process. The work has seen the proposal and the evaluation of several approaches to
manage it. And the present work is a continuation for RESPIDIAG that would see an
enlargement to other respiratory diseases (as its name suggests).

In [6], it can be found a work that compares bayesian inferences and CBR
applied to the diagnosis of acute bacterial meningitis. The comparison of results
shows that the CBR system diagnosis was more accurate than the bayesian system
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one. Results of the CBR system before and after the reuse phase were compared too
and conclude that the adaptation step gives more flexibility and more robustness to
the system.

3 The Case-Based Reasoning

The main idea of CBR consists of reusing the solution of a former similar problem
to solve a new one. All past experiences are gathered in the memory system called
“case base”, where the case is a couple of descriptors of the problem and its
solution. In this technique, the new problem is called “target case” and the former
cases which are already solved and saved in the case base are named “source
cases”. When we develop a CBR system, we don’t need to know how the expert
thinks for resolving the problem, because the knowledge in such system consists
just of establishing a description of a problem and its solution.

CBR cycle is identified by Aamodt and Plaza in [7] as a process of four steps:

• The Retrieval phase: which is the most important phase of the cycle. It consists
of calculating the similarity between the current problem and all previous
problems gathered in the case base, in order to retrieve one or more most similar
case(s). The number of retrieved cases depends on the decision of the con-
structor of the system. The process of this first phase is mainly based on sim-
ilarity metrics,

• The Reuse phase: it is the most delicate step; it consists in adapting (if need be)
the solution of the most similar source case to the target problem. Its difficulty is
mainly due to the strong dependence of the heuristics and knowledge adaptation
of the application fields. For this reason, the collaboration of experts is required
during all throughout the conception process of these heuristics that are usually
in rules form. For certain CBR systems dedicated particularly to the medical
diagnosis, this phase is ignored, and the process consists just in finding the most
similar diagnosis,

• The Revise phase: during which the adapted solution is presented to the user
who will decide on his validity. In the affirmative case the last phase is begun.
This step gives then, the possibility to the user of changing the details of
proposed solution according his opinion. It will be a new experience for the
system.

• The Retain phase: it consists of adding the new problem with its validated
solution to the case base. And so the system learns of its new experiences!

Figure 1 gives the CBR cycle.
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4 Methodology

The system presented in this work is based on CBR principles, and its process
involves the four phases of CBR cycle that are detailed in Sect. 3. And so, the first
step is consisting in estimating similarity between the new problem and former
situations gathered in the knowledge base of the system, in order to select the most
similar one. This step is realized in this work by proposing general and some
specific metrics for the field in question. The second phase is the reuse which adapts
the retrieved solution to the new problem. it is conceived in the system by modeling
a set of rules established with the collaboration of experts. The last two phases are
realized in a simple way and their details are not subject of this paper.

The principal issue in this work is that the completion of the retrieval phase is
prevented by a very common problem in medical systems, which is the missing data
relating to patient’s informations. This issue was already addressed in RESPIDIAG

where two types of strategies have been proposed. The first one is called online
approaches and aims to find an outcome for the retrieval process of the system by
assigning values to local similarities when missing data appears. It’s about pes-
simistic, optimistic and medium approaches.

Fig. 1 CBR cycle
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The second strategy type is called offline approaches, and aims for its part to fill
the void in the case base with plausible values estimated according to the principle
of the proposed approaches. It’s about the statistical, and CBR approaches.

The current work re-evaluates former approaches in the new case base con-
taining lung cancer cases with different missing data rates of those in the first
application. The work proposes also two others statistical methods. They are
variants of the first ones which see changes made in their principles to obtain the
online statistic and the offline statistic* approaches. A comparison is dressed at the
end of the evaluation of all these strategies.

4.1 Considered Data and Symptoms

The following set of data and symptoms is considered in the work:

• age: lung cancer patients are generally aged over 40 years. For physicians, this
data is also necessary to specify the treatment,

• sex: in Algeria, men are more exposed to attrap lung cancer than women,
because the majority of smokers are men,

• profession: this data informs physicians on the possibility for the patient to
attrap lung cancer due to its polluted workplace,

• toxic exposure: this data informs that the patient is or not alcoholic, because
alcohol increases the risk of developing lung cancer,

• smoking: including passive smoking,
• packet number per year: it is the average of number of smoked packets per year.

The danger starts when this number exceeds 120 packets.
• former health disorders: that can be asthma, pulmonary tuberculosis, diabetes…

etc.
• chronic tiredness,
• anorexia: that means loss of appetite,
• sudden weight loss,
• night sweat,
• fever,
• cough: that does not disappear and that intensifies with time,
• thoracic pain: that is constant and that is intensifies when breathing deeply,
• dyspnea: that intensifies with effort,
• pleural effusion: that means accumulation of fluid around the lungs,
• hemoptysis: that is rejection of blood from the respiratory tract following

coughing,
• swollen lymph nodes: in the neck or over the clavicle,
• opacity: that means the presence of opaque spots on the thoracic radiograph,
• hyper intensity: that means the presence of an hyper intensity on the scanner

image. We distinguish here hyper intensity on the thoracic scanner, named in
this work hyperintensity and the hyper intensity on the abdominal scanner,
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named in this work hyper intensity’s that indicates the presence of adrenal,
biliary or liver cancer which has metastasized to the lungs,

• tumor mass: this data informs on the presence/absence of the tumor mass seen in
a review of endoscopy,

• mass length, mass width and mass height: are the measures of the tumor mass,
• hyper fixation: this data informs on the fixation of slightly radioactive substance

(injected in the body) seen on the review of the bone scintigraphy. It indicates
that the cancer has bone origin and has metastasized to the lungs,

• hyper signal: that indicates the presence of brain cancer that has metastasized to
the lungs. This information is located on the review MRI,

• metastasis: this data informs on if the lung cancer has or not metastasized, it can
be brain, liver, liver, bone biliary or adrenal metastasis. There may also be
multiple metastases at the same time.

4.2 Considered Diagnoses

Two types of lung cancer are essentially considered, they are of variable severity:

• small-cell lung carcinoma [8]
• non-small-cell lung carcinoma [9] which are essentially of three types:

– adenocarcinoma
– squamous cell lung carcinoma
– large cell lung carcinoma

With the aim not to encumber the reader with medical information, details
on these diagnoses are given in the Appendix.

5 The System Process

As already mentioned, the work aim to realize a decision support system for the
diagnosis of lung cancer based on the principles of case-based reasoning. For the
representation of cases, a set of 29 symptoms (descriptors) of the patient state is
established with the collaboration of physicians. It is denoted in this work by
Attributes. The new problem is denoted tgt where the former case is denoted
srce.

A case is a couple of descriptions of the problem and its solution: case = (pb,
sol(pb)) where pb is a problem describing the patient’s conditions and sol(pb)
is a diagnosis solution associated to pb:

• pb is described by the following set of attributes: age, sex, fever, cough,
dyspnea, profession, pollutedWorkplace, toxicExposure,
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chronicTiredness, formerHealthDisorders, nightSweat,
anorexia, suddenWeightLoss, smoking, packetNumberPerYear,
pleuralEffusion, thoracicPain, opacity, hemoptysis,
swollenLymphNodes, hyperIntensity, hyperIntensitys,
hyperFixation, hyperSignal, tumorMass, massLength, metas-
tasis, massWidth and massHeight.

• sol(pb) is one of following diagnoses: small cell lung carcinoma, pulmonary
adenocarcinoma, bronchial adenocarcinoma, broncho-pulmonary adenocarci-
noma, squamous cell lung carcinoma, large cell lung carcinoma and solitary
fibrous tumor.

The attribute pollutedWorkplace is added intentionally as a binary data
for the need to estimate similarity between different values of the attribute
profession. See Sect. 5.1.1 for more details. So in total we have a set of 29
Attributes.

5.1 The Retrieval Phase

By entering data of the tgt problem, the system will extract the most similar srce
case existing in the CaseBase. This process is realized by comparing the attributes
of tgt to attributes of srce and the comparison is done by assessing similarity
expressed by:

Sðsrce; tgtÞ ¼
P

a2Attributes
wa � Saðsrce : a; tgt . aÞ

P

a2Attributes
wa

ð1Þ

where wa [ 0 is the weight of the attribute a and Sa is a similarity measure defined
on the range of a. The estimation of Sa depends on the type of a.

5.1.1 Similarity Metrics for Different Types of Attributes

When the type of a is boolean, it is defined by:

Sa x; yð Þ ¼ 1 if x ¼ y
0 else

�

for x, y 2 false; truef g ð2Þ

It’s the case of following attributes: sex, pollutedWorkplace, smoking,
dyspnea, fever, nightSweat, pleuralEffusion, cough, hemopty-
sis, toxicExposure, chronicTiredness, anorexia,
suddenWeightLoss, thoracicPain, opacity, swollenLymphNodes,
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hyperIntensity, hyperIntensitys, hyperFixation, hyperSignal,
and tumorMass.

If the attribute a is of a numeric type, Sa is defined by

Sa x; yð Þ ¼ 1� y� xj j
Ba

ð3Þ

where Ba is the “breadth” of the range of a, i.e., it is the difference between the
maximal value of this range and its minimal value.

This equation is valid for the following numerical attributes: age,
packetNumberPerYear, massLength, massWidth and massHeight.

In this application we dispose of three symbolic attributes which are pro-
fession, metastasis and formerHealthDisorders. Each of these
attributes has an enumerated list of possible values.

For the estimation of similarity between the values of the attribute profes-
sion, we propose the following formula based on the profession value in
addition to the information given in the attribute pollutedWorkplace. So, for
the attribute profession we use:

Sa tgt; srceð Þ ¼
1 if tgt : profession ¼ srce : profession
0:8 if tgt : profession 6¼ srce : profession and

tgt : pollutedWorkplace = srce . pollutedWorkplace
0 else

8

>

>

<

>

>

:

ð4Þ

The attribute metastasis contains the name of the organ where the lung
cancer has metastasized. Knowing that the basic values of the attribute: liver,
adrenal, bone, biliary, or absence of metastasis, we note that can contain multiple
informations at the same time. Indeed, cancer metastasis may be in one or more
organs at once.

The separation between these different values for the same patient, is done
simply by commas. We have chosen that the similarity between two elementary
values of this attribute is to be estimated by the formula 2.

In order to calculate the similarity between composed values of srce. metas-
tasis and tgt. metastasis, we proposed using the following formula:

Saðsrce; tgtÞ ¼
P

a2Attributes
Saðsrce . a; tgt . aÞ
MaxCard

ð5Þ

where MaxCard is the maximum number of elementary values in srce. metastasis
and tgt. metastasis.

For the attribute formerHealthDisorders, the same principle used for the
metastasis attribute is kept. So, binary similarity is calculated between each
two basic values in tgt and srce, after, the sum of all these is estimated and
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divided by the maximum cardinality of the two sets of composite values in srce
and tgt.

5.2 Attributes Weights

The Attributes weights have been estimated with the collaboration of experts
according to the respective importances of each one for the diagnosis. Table 1
shows the importance of attributes estimated by physicians who have expressed
importance by the following expressions:

Table 1 The weights
estimated by physicians

Attribute Type Weight

age Numeric 0.4

sex Boolean 0.8

profession Symbolic 0.1

pollutedWorkplace Boolean 0.1

formerHealthDisorders Symbolic 0.4

smoking Boolean 0.8

packetNumberPerYear Numeric 0.8

dyspnea Boolean 0.4

fever Boolean 0.2

nightSweat Boolean 0.2

pleuralEffusion Boolean 0.8

cough Boolean 0.2

thoracicPain Boolean 0.4

hemoptysis Boolean 0.8

chronicTiredness Boolean 0.2

toxicExposure Boolean 0.2

suddenWeightLoss Boolean 0.8

anorexia Boolean 0.4

swollenLymphNodes Boolean 0.8

opacity Boolean 0.4

metastasis Symbolic 0.8

hyperIntensity Boolean 0.8

hyperIntensitys Boolean 0.8

hyperFixation Boolean 0.8

hyperSignal Boolean 0.8

tumorMass Boolean 0.8

massLength Numeric 0.2

massWidth Numeric 0.2

massHeight Numeric 0.2
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• Very High Importance (VHI) reflected into the system by the value 0.8
• Average Importance (AI) reflected in the system by the value 0.4
• Low Importance (LI) reflected into the system by the value 0.2

It is noteworthy that the importance of profession data is relative to the
working environment which can be polluted, so it becomes a risk factor for catching
a lung cancer. In the system object of this paper, this data was reinforced by another
information pollutedWorkplace of the binary type (yes, no). Thus the
weighting coefficient of the attribute profession which was estimated by
physicians to 0.2 (low importance), was divided by two: between profession
and pollutedWorkplace with the aim to maintain balance between the weights
estimated by physicians.

5.3 The Problem of Missing Data

During cases collecting from the archive of oncology department of Annaba, it has
been observed that patient’s files contain missing data which can be about different
informations. Indeed, sometimes physicians may avoid certain examinations for a
given patient, depending on its state or on its examinations results already obtained.
It is noteworthy here that patient’s files on which this work has been done are even
in paper format. Naturally, the missing data in patient’s files are reflected in the case
base of the system by missing values that can be appeared in different attributes.

The problem of missing data raises a difficulty to achieve the case retrieval
process. Indeed, the similarity value Sðsrce; tgtÞ cannot be computed if for at
least one attribute a, srce : a and/or tgt . a is unknown. In the following, the
notation “pb . a ¼ ?” (resp., “pb . a 6¼ ?”) means that the value of a for the problem
pb is unknown (resp., is known).

The case base is structured in twenty nine attributes corresponding to the
problem descriptors plus one attribute corresponding to the solution descriptor (the
diagnosis). With the collaboration of physicians, 40 real cases were collected from
the archive of the oncology department. This set of cases has been selected so as to
have maximum diversity in symptoms for the same diagnosis, it is the set of the
source cases. In the following, the case base is denoted by CaseBase. Table 2
shows some statistics on the CaseBase.

Another set of 20 real cases has been selected from the same archive. This set
will serve as a test sample for the system. Cases of this set also contain gaps left by

Table 2 Statistics on the
CaseBase

Number Percentage

Cases 40

All data required 1160 100 %

Present data 872 75.17 %

Missing data 288 24.82 %
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missing data, and constitute the targets cases that will allow us to compare and
evaluate results of all proposed approaches.

Table 3 shows some statistics on the sample test.

5.4 Previously Approaches Re-evaluated in This Application

In this section, some approaches proposed and evaluated in the previously work [1]
are summarized. They aim to manage the problem of missing data simultaneously
in the case base and in the new problem. These selected approaches are included in
this work for a second evaluation in the new application field which has another
rates of missing data. This work propose in addition its own two new statistical
approaches which are presented in Sect. 5.5.

In [1], can be found the online approaches, which are invoked during the system
retrieval process, and each time where a missing value in the tgt/srce case
appears. These online approaches are intended to assign a value to the local sim-
ilarity without filling the gap left by the missing value. Three online strategies of
them named each according to its principle, the optimistic, pessimistic, and medium
approaches are reused in this work.

In the same reference, it has been proposed another type of strategies called
offline approaches which aimed to fill the gaps in the case base. These approaches
are executed outside of the system process, hence their name of offline, and are only
concerned with the missing data in the case base (and not in the target problem). So,
they consist in attributing a plausible value t to srce . a, when srce . a = ?. This
attribution is denoted by srce . a :¼ t.

5.4.1 The Online Optimistic Approach

This approach proposes to give the most possible optimistic value to the similarity
assumption that the missing value can be as close as possible to the present value,
and the contribution of the local similarity Sa srce : a; tgt : að Þ to the global sim-
ilarity S srce; tgtð Þ is maximal, so:

Sa srce : a; tgt : að Þ :¼ 1 ð6Þ

Table 3 Statistics on the
sample test

Number Percentage

Cases 20

All data required 580 100 %

Present data 447 77.06 %

Missing data 133 22.93 %
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5.4.2 The Online Pessimistic Approach

A pessimistic strategy would consist in assuming that Sa srce : a; tgt : að Þ is
minimal:

if srce : a ¼ ? and tgt : a 6¼ ?Sa srce : a; tgt : að Þ :¼ inf
x2range að Þ

Sa x; tgt . að Þ

if srce : a 6¼ ? and tgt : a ¼ ?Sa srce : a; tgt : að Þ :¼ inf
y2range að Þ

Sa srce : a; yð Þ

if srce : a ¼ ? and tgt : a ¼ ?Sa srce : a; tgt : að Þ :¼ inf
x;y2range að Þ

Sa x; yð Þ
ð7Þ

5.4.3 The Online Medium Approach

This approach considers the balance between the last two approaches. So, it consists
in estimating the average of the pessimistic value (denoted by tp in the following)
and the optimistic one (i.e., 1):

Sa srce : a; tgt : að Þ :¼ 1þ tp
2

ð8Þ

5.4.4 The Offline Statistical Approach

This approach is based on statistics. Let SPWKVa be the set of the source problems
with known values for attribute a:

SPWKVa ¼ srce0 srce0; sol srce0ð Þð Þ 2 CaseBase and srce0 : a 6¼ ?jf g

When a is a numerical attribute, the value of the attribute a for srce consists
simply in estimating the average of all values of a for the source problems for which
these values are known:

srce : a :¼

P

srce02SPWKVa
srce0 : a

card SPWKVa
ð9Þ

where card X is the number of elements of the finite set X.
When a is non numerical (i.e., boolean or symbolic), the statistical approach

consists in making a vote:

srce : a: ¼ argmax
t2range að Þ

card srce0 2 SPWKVaj srce0 : a ¼ tf g ð10Þ
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5.4.5 The Offline CBR Approach

In this approach, the CBR process itself is used to propose a value to srce . a. In
this way, a source case is decomposed in a different way as before: a problem is
defined by all the attributes of srce except a and a solution is a value for a.

A new similarity measure Sa has been defined between these new source cases.

Sa srce1; srce2ð Þ ¼

P

b2Attributesn af g
wa
b � Sb srce1 : b; srce2 : bð Þ

P

b2Attributesn af g
wa
b

ð11Þ

The main difference between the offline statistical approach and the offline cbr
approach one is that the values srce0. a are weighted by Sa srce0; srceð Þ.

That means that if a is a numerical attribute, then:

srce : a :¼

P

srce02SPWKVa
Sa srce0; srceð Þ � srce0 : a
P

srce02SPWKVa
Sa srce0; srceð Þ ð12Þ

And if a is a non numerical attribute, then a weighted vote approach is used:

srce : a :¼ argmax
t2range að Þ

X

Sa srce0; srceð Þjsrce0 2 SPWKVa and srce
0: a ¼ tf g

ð13Þ

where
P

X ¼ P

x2X
x for any finite set of numbers X.

5.5 New Proposed Approaches

We were inspired by these last offline approaches, to propose and evaluate two new
strategies in this work. The first one, is a variant of the offline statistic approach but
is used during the online process of the system, while the second is a variant of the
offline CBR approach and used outside the system process.

5.5.1 The Online Statistic Approach

This approach is inspired by the offline statistical approach, whose principle is
detailed in Sect. 5.4.4. Indeed, in this strategy, the principle of the average of all
informed values of a in source problems is kept. So, the same formula (9) men-
tioned in the precedent section for the numerical attributes is used here. The
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principle of the vote concerning binary or symbolic attributes (formula 10) is also
kept.

The first modification brought to the offline statistical approach is that it is
executed during the online system process, specifically during the retrieval phase,
hence its name online statistical approach. It treats simultaneously the missing
value in tgt and srce cases, while the first one concerned only the missing data
in the case base.

The second change is in the method principle itself. Indeed, when a missing
value appears in the tgt and/or srce case, it will be replaced by a plausible value
virtually and not physically as in the first approach. The virtual replacement of a
missing value means that the plausible value is considered in the calculation of local
similarity without being stored in the concerned attribute. So the gap is still
existing, whereas the retrieval process can be completed and therefore the most
similar case can be selected from the case base despite the missing data.

Note here that if we have the missing data to both in the same attribute of tgt
and srce cases, gaps will be replaced virtually by the same value, hence the local
similarity will necessarily be equal to 1, which joined here the principle of the
optimistic approach.

The virtual replacement is motivated primarily by the fact that the case base is in
permanent enrichment, which can give better estimates of the missing values for
future needs and therefore more reliable and more accurate diagnoses. The disad-
vantage of this approach is the requirement to recalculate averages that may slow
down the system response time.

5.5.2 The Offline CBR Approach*

This offline approach is executed outside the system process and is concerning only
the missing data in the case base. It’s inspired of the strategy summarized in the
Sect. 5.4.5. A modification is brought on its principle consisting in reusing the
value srce0 : a of the srce case closest to srce, according to Sa, instead of taking
into account all the source cases srce0 2 SPWKVa like in our old cbr approach.

Indeed, in this new approach, the cbr principle is used: it consists in estimating
similarity between srce cases and tgt case, for selecting the most similar cases to
the tgt one. In this approach the number of retrieved cases depends of the type of
missing data to bridge. It is equal to 2 when the missing value is of numerical type
and so, their average is considered for filling the gaps. If this missing value is
binary, three (3) most similar cases are retrieved from the case base, and the
approach proceeds to the vote for selecting the value whose number of occurrences
is maximal and which will replace the gap. When the missing value is symbolic,
only one most similar case is selected, and its value fills the gap.
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5.6 The Reuse Phase

This phase consists in adapting the solution of the most similar case retrieved from
the case base to the tgt case. It is the most delicate phase of the cbr process
because of its strong dependence on the application field. With the collaboration of
the experts physicians, a set of rules is established for adapting the diagnosis of the
retrieved case (srce, sol(srce)). These rules are based mainly on the attributes
having the highest weights. An example of rules is given below.

if solðsrceÞ ¼ bronchial� adenocarcinoma and

tgt : tumorMass;¼ ‘‘no00 and
tgt : hyperIntensity;¼ ‘‘Yes00 and
tgt : opacity;¼ ‘‘no0 then
sol : ðtgtÞ ¼ ‘‘broncho� pulmonary� adenocarcinoma00

Some work remains to be done about the adaptation process. However, the
adaptation rules acquired so far have improved the performance of the system,
when compared to a null adaptation approach (see Sect. 6).

6 Evaluation, Comparison and Discussion

The evaluation of the system considers three case bases: Base A, Base B and
Base C. Only the first one contains missing data, whereas the two others are
completely filled.

• Base A is the original case base which contains missing data (cf. Table 2),
• Base B is obtained by applying the offline statistical approach on Base A

(cf. Sect. 5.4.4),
• Base C is obtained by applying our new offline cbr approach* on Base A

(cf. Sect. 5.5.2).

The evaluation consists first in gathering the diagnoses given by the system.
These diagnoses correspond to each CaseBase 2 BaseA, Base B, Base Cf g each
of the four online approaches (Sects. 5.4.1–5.4.3 and 5.5.1) each of the 20 tgt
problems taken from the sample test.

Thus 3� 4� 20 ¼ 240 diagnoses are generated by the system. Then, these
diagnoses are compared to the real diagnoses of the sample test given in the
following section.

The evaluation of the system is conducted in two steps:

• after the input of data relating to the target problem, the most similar diagnosis is
given without the application of adaptation rules. It is saved with the aim to
evaluate the online approaches.
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• In the second time adaptation is launched on the same diagnosis to give the final
result of the system.

6.1 Results of Approaches

Tables 4, 5 and 6 show the different diagnoses given by the online statistic
approach when applied on bases A, B and C (respectively). Tables 7, 8 and 9 show
the different results given by the online pessimistic approach when applied on the
bases A, B and C (respectively), while Tables 10 and 11 show the different results
given by the online medium approach when applied on the bases A and B
(respectively).

6.2 Comparison and Discussion

The following (Tables 12, 13, 14, 15, 16, 17, 18 and 19) gives the different per-
centages of each response quality, of each approach applied on the three bases. Note
here that to assess the results quality of the system before and after the adaptation
process, diagnoses were grouped into class according to their likeness. A diagnosis
result is considered “good” when it is exactly the same as the real diagnosis of the
test case. It is considered “average” when it belongs to the real diagnosis class, and
it is “low” when it is out this class.

By observing the first and the second Tables 12 and 13, we can see that the
online statistical approach is combined, significantly better with the offline statis-
tical approach that fulfilled the base B, where it gives its best rate of “Good
response” that reaches 30 % before the adaptation and which passes to 45 % after
adaptation. This can be interpreted by the rapprochement between the principles of
the two statistical approaches offline and online which apparently complement well.
We note that the second approach was inspired from the first one.

The results of this approach in this context is not absolute, a future evaluation of
it can be done by considering some existing data as missed and compare this data
with the virtual values estimated by the approach. An estimation of response time is
also possible in a future work to assess the potential slowdown when the case base
is growing in number of records.

For the pessimistic approach (Tables 14 and 15), note that adaptation was able to
double the rate of correct responses on the bases B and C. Indeed it rises from 20 to
40 % and from 15 to 30 % (respectively), while for the base A that contains the
missing data, rates made a big leap from 10 to 15 %. This brings into focus the
efficacy of rules adaptation that are established in the system. We also can see that
the pessimistic approach gives its better score of good response when it is applied
on the base B.
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Finally, for the medium and optimistic approaches (Tables 16, 17, 18 and 19), it
can observed that before adaptation, they give almost the same rate of good
responses on the three bases, neighboring 15 %, whereas they give a rate of 45 % if
we consider responses of average quality, which all become good ones after the
adaptation process.

Table 4 Results of the online statistic approach on the Base A

Attribute Real diagnosis Diagnosis before
adaptation

Similarity Diagnosis after
adaptation

1 Broncho-pulmonary
adenocarcinoma

Bronchial
adenocarcinoma

0.71 Broncho-pulmonary
adenocarcinoma

2 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.90 Broncho-pulmonary
adenocarcinoma

3 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.74 Bronchial
adenocarcinoma

4 Lung
adenocarcinoma

Lung
adenocarcinoma

0.83 Broncho-pulmonary
adenocarcinoma

5 Bronchial
adenocarcinoma

Broncho-pulmonary
adenocarcinoma

0.78 Broncho-pulmonary
adenocarcinoma

6 Bronchial
adenocarcinoma

Lung
adenocarcinoma

0.80 Lung
adenocarcinoma

7 Squamous cell
carcinoma

Small cell carcinoma 0.77 Small cell carcinoma

8 Squamous cell
carcinoma

Squamous cell
carcinoma

0.93 Squamous cell
carcinoma

9 Squamous cell
carcinoma

Lung
adenocarcinoma

0.85 Lung
adenocarcinoma

10 Small cell carcinoma Clear cell carcinoma 0.74 Clear cell carcinoma

11 Small cell carcinoma Lung
adenocarcinoma

0.80 Lung
adenocarcinoma

12 Pulmonary small cell
carcinoma

Small cell carcinoma 0.88 Small cell carcinoma

13 Bronchial carcinoma Small cell carcinoma 0.88 Small cell carcinoma

14 Solitary fibrous tumor Small cell carcinoma 0.90 Small cell carcinoma

15 Pulmonary small cell
carcinoma

Squamous cell
carcinoma

0.71 Squamous cell
carcinoma

16 Squamous cell
carcinoma

Squamous cell
carcinoma

0.88 Squamous cell
carcinoma

17 Small cell carcinoma Lung
adenocarcinoma

0.82 Lung
adenocarcinoma

18 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.93 Broncho-pulmonary
adenocarcinoma

19 Lung
adenocarcinoma

Lung
adenocarcinoma

0.86 Lung
adenocarcinoma

20 Bronchial
adenocarcinoma

Lung
adenocarcinoma

0.81 Lung
adenocarcinoma
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For the offline cbr approach*, we can observe that the rate of good responses is
always between the rates corespondent to the bases A and B, which means that this
approach that gave the base C completely filled, improved the quality of results
regarding the original case base that contains the missing data.

Table 5 Results of the online statistic approach on the Base B

Attribute Real diagnosis Diagnosis before
adaptation

Similarity Diagnosis after
adaptation

1 Broncho-pulmonary
adenocarcinoma

Bronchial
adenocarcinoma

0.71 Broncho-pulmonary
adenocarcinoma

2 Broncho-pulmonary
adenocarcinoma

Lung adenocarcinoma 0.90 Broncho-pulmonary
adenocarcinoma

3 Lung
adenocarcinoma

Lung adenocarcinoma 0.74 Broncho-pulmonary
adenocarcinoma

4 Lung
adenocarcinoma

Lung adenocarcinoma 0.81 Broncho-pulmonary
adenocarcinoma

5 Bronchial
adenocarcinoma

Broncho-pulmonary
adenocarcinoma

0.79 Broncho-pulmonary
adenocarcinoma

6 Bronchial
adenocarcinoma

Lung adenocarcinoma 0.80 Lung adenocarcinoma

7 Squamous cell
carcinoma

Small cell carcinoma 0.78 Small cell carcinoma

8 Squamous cell
carcinoma

Squamous cell
carcinoma

0.87 Squamous cell
carcinoma

9 Squamous cell
carcinoma

Squamous cell
carcinoma

0.83 Squamous cell
carcinoma

10 Small cell carcinoma Bronchial
adenocarcinoma

0.71 Bronchial
adenocarcinoma

11 Small cell carcinoma Lung adenocarcinoma 0.75 Lung adenocarcinoma

12 Pulmonary small cell
carcinoma

Small cell carcinoma 0.86 Small cell carcinoma

13 Bronchial carcinoma Small cell carcinoma 0.85 Small cell carcinoma

14 Solitary fibrous
tumor

Squamous cell
carcinoma

0.89 Small cell carcinoma

15 Pulmonary small cell
carcinoma

Squamous cell
carcinoma

0.71 Squamous cell
carcinoma

16 Squamous cell
carcinoma

Squamous cell
carcinoma

0.81 Squamous cell
carcinoma

17 Small cell carcinoma Lung adenocarcinoma 0.82 Lung adenocarcinoma

18 Broncho-pulmonary
adenocarcinoma

Lung adenocarcinoma 0.87 Broncho-pulmonary
adenocarcinoma

19 Lung
adenocarcinoma

Lung adenocarcinoma 0.86 Lung adenocarcinoma

20 Bronchial
adenocarcinoma

Lung adenocarcinoma 0.82 Lung adenocarcinoma
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Table 6 Results of the online statistic approach on the Base C

Attribute Real diagnosis Diagnosis before
adaptation

Similarity Diagnosis after
adaptation

1 Broncho-pulmonary
adenocarcinoma

Bronchial
adenocarcinoma

0.71 Broncho-pulmonary
adenocarcinoma

2 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.90 Broncho-pulmonary
adenocarcinoma

3 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.74 Bronchial
adenocarcinoma

4 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.83 Broncho-pulmonary
adenocarcinoma

5 Bronchial
adenocarcinoma

Broncho-pulmonary
adenocarcinoma

0.78 Broncho-pulmonary
adenocarcinoma

6 Bronchial
adenocarcinoma

Lung
adenocarcinoma

0.80 Lung
adenocarcinoma

7 Squamous cell
carcinoma

Lung
adenocarcinoma

0.77 Small cell carcinoma

8 Squamous cell
carcinoma

Squamous cell
carcinoma

0.93 Squamous cell
carcinoma

9 Squamous cell
carcinoma

Lung
adenocarcinoma

0.85 Lung
adenocarcinoma

10 Small cell carcinoma Clear cell carcinoma 0.74 Clear cell carcinoma

11 Small cell carcinoma Lung
adenocarcinoma

0.80 Lung
adenocarcinoma

12 Pulmonary small cell
carcinoma

Small cell carcinoma 0.88 Small cell carcinoma

13 Bronchial Carcinoma Squamous cell
carcinoma

0.88 Small cell carcinoma

14 Solitary fibrous tumor Squamous cell
carcinoma

0.90 Small cell carcinoma

15 Pulmonary small cell
carcinoma

Lung
adenocarcinoma

0.71 Squamous cell
carcinoma

16 Squamous cell
carcinoma

Lung
adenocarcinoma

0.84 Squamous cell
carcinoma

17 Small cell carcinoma Bronchial carcinoma 0.82 Lung
adenocarcinoma

18 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.93 Broncho-pulmonary
adenocarcinoma

19 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.86 Lung
adenocarcinoma

20 Bronchial
adenocarcinoma

Small cell carcinoma 0.81 Lung
adenocarcinoma
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Table 7 Results of the pessimistic approach on the Base A

Attribute Real diagnosis Diagnosis before
adaptation

Similarity Diagnosis after
adaptation

1 Broncho-pulmonary
adenocarcinoma

Bronchial
adenocarcinoma

0.53 Broncho-pulmonary
adenocarcinoma

2 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.80 Broncho-pulmonary
adenocarcinoma

3 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.63 Bronchial
adenocarcinoma

4 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.69 Bronchial
adenocarcinoma

5 Bronchial
adenocarcinoma

Bronchial
adenocarcinoma

0.44 Bronchial
adenocarcinoma

6 Bronchial
adenocarcinoma

Lung
adenocarcinoma

0.57 Lung
adenocarcinoma

7 Squamous cell
carcinoma

Lung
adenocarcinoma

0.67 Lung
adenocarcinoma

8 Squamous cell
carcinoma

Squamous cell
carcinoma

0.74 Squamous cell
carcinoma

9 Squamous cell
carcinoma

Lung
adenocarcinoma

0.68 Lung
adenocarcinoma

10 Small cell carcinoma Clear cell
carcinoma

0.59 Clear cell carcinoma

11 Small cell carcinoma Lung
adenocarcinoma

0.57 Lung
adenocarcinoma

12 Pulmonary small cell
carcinoma

Squamous cell
carcinoma

0.68 Squamous cell
carcinoma

13 Bronchial carcinoma Squamous cell
carcinoma

0.67 Squamous cell
carcinoma

14 Solitary fibrous
tumor

Squamous cell
carcinoma

0.70 Squamous cell
carcinoma

15 Pulmonary small cell
carcinoma

Squamous cell
carcinoma

0.57 Squamous cell
carcinoma

16 Squamous cell
carcinoma

Solitary fibrous
tumor

0.66 Solitary fibrous
tumor

17 Small cell carcinoma Lung
adenocarcinoma

0.55 Lung
adenocarcinoma

18 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.67 Broncho-pulmonary
adenocarcinoma

19 Lung
adenocarcinoma

Squamous cell
carcinoma

0.64 Squamous cell
carcinoma

20 Bronchial
adenocarcinoma

Squamous cell
carcinoma

0.52 Squamous cell
carcinoma
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Table 8 Results of the pessimistic approach on the Base B

Attribute Real diagnosis Diagnosis before
adaptation

Similarity Diagnosis after
adaptation

1 Broncho-pulmonary
adenocarcinoma

Bronchial
adenocarcinoma

0.53 Broncho-pulmonary
adenocarcinoma

2 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.80 Broncho-pulmonary
adenocarcinoma

3 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.63 Bronchial
adenocarcinoma

4 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.69 Bronchial
adenocarcinoma

5 Bronchial
adenocarcinoma

Bronchial
adenocarcinoma

0.44 Bronchial
adenocarcinoma

6 Bronchial
adenocarcinoma

Lung
adenocarcinoma

0.57 Lung
adenocarcinoma

7 Squamous cell
carcinoma

Lung
adenocarcinoma

0.67 Lung
adenocarcinoma

8 Squamous cell
carcinoma

Squamous cell
carcinoma

0.74 Squamous cell
carcinoma

9 Squamous cell
carcinoma

Lung
adenocarcinoma

0.68 Lung
adenocarcinoma

10 Small cell carcinoma Clear cell
carcinoma

0.59 Clear cell carcinoma

11 Small cell carcinoma Lung
adenocarcinoma

0.57 Lung
adenocarcinoma

12 Pulmonary small cell
carcinoma

Squamous cell
carcinoma

0.68 Squamous cell
carcinoma

13 Bronchial carcinoma Squamous cell
carcinoma

0.67 Squamous cell
carcinoma

14 Solitary fibrous
tumor

Squamous cell
carcinoma

0.70 Squamous cell
carcinoma

15 Pulmonary small cell
carcinoma

Squamous cell
carcinoma

0.57 Squamous cell
carcinoma

16 Squamous cell
carcinoma

Solitary fibrous
tumor

0.66 Solitary fibrous
tumor

17 Small cell carcinoma Lung
adenocarcinoma

0.55 Lung
adenocarcinoma

18 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.67 Broncho-pulmonary
adenocarcinoma

19 Lung
adenocarcinoma

Squamous cell
carcinoma

0.64 Squamous cell
carcinoma

20 Bronchial
adenocarcinoma

Squamous cell
carcinoma

0.52 Squamous cell
carcinoma
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Table 9 Results of the pessimistic approach on the Base C

Attribute Real diagnosis Diagnosis before
adaptation

Similarity Diagnosis after
adaptation

1 Broncho-pulmonary
adenocarcinoma

Bronchial
adenocarcinoma

0.53 Broncho-pulmonary
adenocarcinoma

2 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.80 Broncho-pulmonary
adenocarcinoma

3 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.63 Bronchial
adenocarcinoma

4 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.69 Bronchial
adenocarcinoma

5 Bronchial
adenocarcinoma

Bronchial
adenocarcinoma

0.44 Bronchial
adenocarcinoma

6 Bronchial
adenocarcinoma

Lung
adenocarcinoma

0.57 Lung
adenocarcinoma

7 Squamous cell
carcinoma

Lung
adenocarcinoma

0.67 Lung
adenocarcinoma

8 Squamous cell
carcinoma

Squamous cell
carcinoma

0.74 Squamous cell
carcinoma

9 Squamous cell
carcinoma

Lung
adenocarcinoma

0.68 Lung
adenocarcinoma

10 Small cell carcinoma Clear cell
carcinoma

0.59 Clear cell carcinoma

11 Small cell carcinoma Lung
adenocarcinoma

0.57 Lung
adenocarcinoma

12 Pulmonary small cell
carcinoma

Squamous cell
carcinoma

0.68 Squamous cell
carcinoma

13 Bronchial carcinoma Squamous cell
carcinoma

0.67 Squamous cell
carcinoma

14 Solitary fibrous
tumor

Squamous cell
carcinoma

0.70 Squamous cell
carcinoma

15 Pulmonary small cell
carcinoma

squamous cell
carcinoma

0.57 Squamous cell
carcinoma

16 Squamous cell
carcinoma

Solitary fibrous
tumor

0.66 Solitary fibrous
tumor

17 Small cell carcinoma Lung
adenocarcinoma

0.55 Lung
adenocarcinoma

18 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.67 Broncho-pulmonary
adenocarcinoma

19 Lung
adenocarcinoma

Squamous cell
carcinoma

0.64 Squamous cell
carcinoma

20 Bronchial
adenocarcinoma

Squamous cell
carcinoma

0.52 Squamous cell
carcinoma
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Table 10 Results of the medium approach on the Base A

Attribute Real diagnosis Diagnosis before
adaptation

Similarity Diagnosis after
adaptation

1 Broncho-pulmonary
adenocarcinoma

Bronchial
adenocarcinoma

0.65 Broncho-pulmonary
adenocarcinoma

2 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.86 Broncho-pulmonary
adenocarcinoma

3 Lung adenocarcinoma Bronchial
adenocarcinoma

0.73 Bronchial
adenocarcinoma

4 Lung adenocarcinoma Lung
adenocarcinoma

0.78 Bronchial-pulmonary
adenocarcinoma

5 Bronchial
adenocarcinoma

Bronchial
adenocarcinoma

0.65 Bronchial
adenocarcinoma

6 Bronchial
adenocarcinoma

Bronchial
adenocarcinoma

0.73 Lung adenocarcinoma

7 Squamous cell
carcinoma

Lung
adenocarcinoma

0.79 Lung adenocarcinoma

8 Squamous cell
carcinoma

Squamous cell
carcinoma

0.83 Squamous cell
carcinoma

9 Squamous cell
carcinoma

Lung
adenocarcinoma

0.82 Lung adenocarcinoma

10 Small cell carcinoma Clear cell
carcinoma

0.76 Clear cell carcinoma

11 Small cell carcinoma Lung
adenocarcinoma

0.72 Lung adenocarcinoma

12 Pulmonary small cell
carcinoma

Lung
adenocarcinoma

0.77 Squamous cell
carcinoma

13 Bronchial carcinoma Lung
adenocarcinoma

0.78 Squamous cell
carcinoma

14 Solitary fibrous tumor Squamous cell
carcinoma

0.80 Squamous cell
carcinoma

15 Pulmonary small cell
carcinoma

Squamous cell
carcinoma

0.68 Squamous cell
carcinoma

16 Squamous cell
carcinoma

Squamous cell
carcinoma

0.74 Squamous cell
carcinoma

17 Small cell carcinoma Lung
adenocarcinoma

0.72 Lung adenocarcinoma

18 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.77 Broncho-pulmonary
adenocarcinoma

19 Lung adenocarcinoma Squamous cell
carcinoma

0.78 Squamous cell
carcinoma

20 Bronchial
adenocarcinoma

Squamous cell
carcinoma

0.72 Squamous cell
carcinoma
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Table 11 Results of the medium approach on the Base B

Attribute Real diagnosis Diagnosis before
adaptation

Similarity Diagnosis after
adaptation

1 Broncho-pulmonary
adenocarcinoma

Bronchial
adenocarcinoma

0.65 Broncho-pulmonary
adenocarcinoma

2 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.88 Broncho-pulmonary
adenocarcinoma

3 Lung
adenocarcinoma

bronchial
adenocarcinoma

0.72 Bronchial
adenocarcinoma

4 Lung
adenocarcinoma

Bronchial
adenocarcinoma

0.84 Bronchial
adenocarcinoma

5 Bronchial
adenocarcinoma

Bronchial
adenocarcinoma

0.65 Bronchial
adenocarcinoma

6 Bronchial
adenocarcinoma

Lung
adenocarcinoma

0.70 Lung
adenocarcinoma

7 Squamous cell
carcinoma

Lung
adenocarcinoma

0.74 Lung
adenocarcinoma

8 Squamous cell
carcinoma

Squamous cell
carcinoma

0.88 Squamous cell
carcinoma

9 Squamous cell
carcinoma

Lung
adenocarcinoma

0.83 Lung
adenocarcinoma

10 Small cell carcinoma Clear cell
carcinoma

0.73 Clear cell carcinoma

11 Small cell carcinoma Lung
adenocarcinoma

0.74 Lung
adenocarcinoma

12 Pulmonary small cell
carcinoma

Squamous cell
carcinoma

0.84 Squamous cell
carcinoma

13 Bronchial carcinoma Squamous cell
carcinoma

0.84 Squamous cell
carcinoma

14 Solitary fibrous
tumor

Squamous cell
carcinoma

0.83 Squamous cell
carcinoma

15 Pulmonary small cell
carcinoma

Squamous cell
carcinoma

0.66 Squamous cell
carcinoma

16 Squamous cell
carcinoma

Solitary fibrous
tumor

0.80 Solitary fibrous
tumor

17 Small cell carcinoma Lung
adenocarcinoma

0.72 Lung
adenocarcinoma

18 Broncho-pulmonary
adenocarcinoma

Lung
adenocarcinoma

0.87 Broncho-pulmonary
adenocarcinoma

19 Lung
adenocarcinoma

Squamous cell
carcinoma

0.78 Squamous cell
carcinoma

20 Bronchial
adenocarcinoma

Squamous cell
carcinoma

0.70 Squamous cell
carcinoma
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Table 12 Results quality of the online statistic approach before adaptation

Base Good response (%) Average response (%) Low response (%)

Base A 20 40 40

Base B 30 35 35

Base C 15 35 50

Table 13 Results quality of the online statistic approach after adaptation

Base Good response (%) Average response (%) Low response (%)

Base A 40 20 40

Base B 45 20 35

Base C 30 20 50

Table 14 Results quality of the pessimistic approach before adaptation

Base Good response (%) Average response (%) Low response (%)

Base A 10 30 60

Base B 20 45 35

Base C 15 30 55

Table 15 Results quality of the pessimistic approach after adaptation

Base Good response (%) Average response (%) Low response (%)

Base A 25 15 60

Base B 40 25 35

Base C 30 15 55

Table 16 Results quality of the medium approach before adaptation

Base Good response (%) Average response (%) Low response (%)

Base A 20 30 50

Base B 20 45 35

Base C 20 35 45

Table 17 Results quality of the medium approach after adaptation

Base Good response (%) Average response (%) Low response (%)

Base A 40 10 50

Base B 40 25 35

Base C 35 20 45
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7 Conclusion

This article presents a case-based decision support system dedicated to the diag-
nosis of lung cancer, which is a very lethal disease caused mainly by tobacco. The
system describes a patient thanks to 29 numerical, boolean and symbolic attributes.
The retrieval phase of the CBR process of the system is based on a similarity
measure S defined as a weighted average of local similarity measures Sa associated
with each attribute a, while the adaptation phase is based on a set of rules.

The main issue for this application is related to the missing data in the case base
(about 25 %) and in the target problem (about 23 % in the sample test). In order to
manage this problem, 2 approaches are defined in this paper, and are inspired by the
previously strategies presented in [1], where some approaches are selected to be
re-evaluate in the new domain of lung cancer diagnosis. All these approaches are
distinguished into 2 categories: online and offline strategies. The first one aims at
estimating, at runtime, the value of the local similarity of an attribute for which the
values in the source case and/or in the target problem are unknown. The evaluation
has shown that the new proposed approach online gives the best results on the
sample test with a rate of 45 % of “Good responses” which coincide with the real
diagnoses made by experts.

The second category is the offline strategies which aim at filling the gaps in the
case base. The evaluation has shown that the new CBR offline approach* always
gives the best results regarding the base case containing the missing data, but of
lower quality relative to the base case filled with former statistical method of work.

All these results are related to a well-defined context data/absent and with
well-defined rates. When these rates increase, the possibility of degradation of
performance of one or the other approach is here. The same work can be redone,
increasing the rate of missing data with the objective to evaluate the behavior of
these approaches.

Table 18 Results quality of the optimistic approach before adaptation

Base Good response (%) Average response (%) Low response (%)

Base A 15 35 50

Base B 20 45 35

Base C 20 35 45

Table 19 Results quality of the optimistic approach after adaptation

Base Good response (%) Average response (%) Low response (%)

Base A 40 10 50

Base B 40 25 35

Base C 35 20 45
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Appendix

Considered Diagnoses

There are essentially two types of lung cancer of variable severity:

• small-cell lung carcinoma [8] (SCLC): is a type of highly malignant cancer that
arises most commonly within the lung, although it can occasionally arise in
other body sites, such as the cervix, prostate, and gastrointestinal tract.
Compared to non-small cell carcinoma, SCLC has a shorter doubling time,
higher growth fraction, and earlier development of metastases. SCLCs represent
about 20 % of lung cancers and are difficult to treat. They grow rapidly and,
when diagnosed, it is common that cancer cells are already scattered throughout
the rest of the body to form metastases (secondary tumors). In 95 % of cases,
lung cancers are small cell linked to smoking.

• non-small-cell lung carcinoma [9] (NSCLC): is any type of epithelial lung
cancer other than small cell lung carcinoma. As a class, NSCLCs are relatively
insensitive to chemotherapy, compared to small cell carcinoma. When possible,
they are primarily treated by surgical resection with curative intent, although
chemotherapy is increasingly being used both pre-operatively and
post-operatively. NSCLCs represent about 80 % of lung cancers and heal more
easily because they grow more slowly. Lung cancer NON-small cell are
essentially of three types:

– adenocarcinoma (ADC), which account for 40 % of non-small cell cancers,
sometimes affecting the alveoli and are slightly more common among
non-smokers and women.

– squamous cell lung carcinoma, which are more common in men than in
women. They also represent 40 % of non-small cell cancers, they reach the
bronchi and are associated directly to smoking,

– large cell lung carcinoma, which represent 20 % of non-small cell cancers,
with a faster growth than the other two types, that are caused by 90 % of
tobacco consumption.

Each of these lung cancer may be bronchial, pulmonary or bronco-pulmonary.
We note that there is another type of lung cancer benign, which is named solitary
fibrous tumor.
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Abstract The flooding of gene sequencing projects lead to the deposition of large
amount of genomic data in public databases. These public databases contribute in
genome annotation which helps in discovering the new genes and finding their
function. Due to lack of genome annotation and high-throughput experimental
approaches, computational gene prediction has always been one of the challenging
areas for bioinformatics/computational biology scientists. Gene finding is more
difficult in eukaryotes as compared to prokaryotes due to presence of introns. Gene
prediction in very crucial especially for disease identification in human, which will
help a lot in bio-medical research. Ab intio gene prediction is a difficult method
which uses signal and content sensors to make predictions while homology based
method makes use of homology with known genes. This chapter describes various
gene structure prediction programmes which are based on individual/hybrid soft
computing approaches. Soft computing approaches include Genetic algorithm,
Hidden Markov Model, Fast Fourier Transformation, Support vector Machine,
Dynamic programming and Artificial Neural Network. Hybrid soft computing
approaches combine the results of several soft computing programs to deliver better
accuracy than individual single soft computing approaches. Moreover, various
parameters for measuring the accuracy of gene prediction programs will also be
discussed.
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1 Introduction

The announcement of the human genome sequence in 2001 was followed by
flooding of projects targeting sequencing of several other model organisms which
lead to the generation and finally deposition of large amount of genomic data in
public databases [1]. The increase in the amount of genomic sequence data has
increased the numbers of unknown gene [2]. After 12 years of sequencing of
human genome, nearly 23,000 coding genes are documented yet, a number of genes
still remain undiscovered in human. Genome annotation is one of the major pro-
cesses in discovering the new genes and finding their function.

Gene structure refers to the sequential arrangement of exons and introns span-
ning a genomic DNA fragment [3]. Gene finding typically refers to an area of
computational biology/bioinformatics which is concerned with identifying the
stretches of sequences, usually genomic DNA that are biologically significant and
are called genes. Genes are transcribed in mRNA which are finally translated into
protein. Noncoding genes e.g. functional RNA molecules often involved in the
regulation of gene expression and protein synthesis are also present in organisms.
Since, these genes are not translated into proteins and they lack sequence features of
coding sequences, their detection by traditional gene finding programs becomes
difficult.

Gene discovery in prokaryotes is less difficult, owing to higher gene density due
to absence of introns in protein coding regions [4]. Prokaryote gene annotation can
be complicated by overlapping regions which makes identification of translation
start sites difficult [5]. For finding gene sequences that encode protein, it is required
to search the open reading frames which can be defined as contiguous set of codons.
There are six possible set of open reading frames (ORFs) in each DNA sequence.
Three ORFs are in the given sequence from 5′ to 3′ and other three in 5′–3′ direction
in complementary sequence [6]. However it is true that all the ORFs cannot be the
probable gene candidates [7]. In prokaryotes and in some simple eukaryotes (such
as Saccharomyces cerevisiae), genes normally have longest single continuous ORF
and adjacent genes are separated by short intergenic regions. However in
prokaryotes, genes may often overlap each other and thus causing difficulty in
correct prediction of gene. An improved gene prediction tool called GeneScan
which is used frequently for bacterial and organellar genomes has a sensitivity of
100 % for Plasmodium falciparum and 98 % for the Mycoplasma genitaliumand
and Haemophilus influenza [8]. Another new gene prediction algorithm called
PRODYGAL (PROkaryotic DYnamic programming Gene-finding ALgorithm)
with improved gene structure and translation initiation site predictions.
PRODYGAL also reduced false positives in gene prediction which is specially
designed for microbial genomes [9].

The genes in eukaryotes are not contiguous but are often split into alternating
coding and noncoding segments. The main characteristic feature of an eukaryotic
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gene is the organization of its structure into exons and introns. When the gene is
transcribed, the thousands of bases are converted into RNA molecule. The introns
are then cut out in a process called splicing and only exon sequences are attached
together again for being translated into protein. Furthermore, eukaryote coding
segments are subject to alternative splicing in which exons are joined in different
ways during RNA splicing [10]. To determine the gene structure, many attempts are
made to detect either the introns or the exons. In vertebrates, the internal exons are
small in length (*140 nucleotides on average), whereas introns are much larger
(some are even more than 100 kb) in length. Coding segments (CDS’s) of genes are
characterized by four types of signals: start codons (ATG in eukaryotes), stop
codons (usually TAG, TGA, or TAA), donor sites (usually GT), and acceptor sites
(AG). Regions of the gene outside the CDS are called UTR’s (untranslated regions),
and are mostly ignored by gene finders, although they are important for regulatory
functions [11–15]. Recently scientists have developed various methods to predict as
well as validate gene models by using PacBio single-molecule and real-time
(SMRT) cDNA reads [16]. Not only DNA and CDNA sequences, but extensive
RNA sequence data also improved the accuracy as well number of actual genes in
eukaryotes [17, 18]. Gene predictions in eukaryotes have also improved which is
based on only the annotations from another similar species. By aligning the exon
sequences from annotated species to the unannotated genome by (Genome
Annotation based on Species Similarity (GASS) facilitates the detection of the
optimal transcript annotation in unannotated species [19]. Gene prediction tool
called Bagheera is also developed for eukaryotes which use different codons to code
the same amino acid. For example, most Saccharomycetes, including
Saccharomyces cerevisiae, use the standard genetic code which code CUG codon
as leucine in many but not in all. However, one of the Saccharomycetes known as
Candida, translate the same codon as serine [20].

Computational gene finding has evolved steadily over the past 30 years. One of
the first computational gene finding method for identifying protein coding regions
in genomic DNA elucidated that open reading frames (ORFs), start codons, codon
preference, ribosome binding sites, and splice sites were considered as useful
sensors for coding sequence [21]. Computational gene prediction can be catego-
rized into two major classes of techniques for the prediction of genes: ab initio
methods and similarity/homology based methods [22]. A systematic diagramme for
the gene prediction process in the form of flow chart is shown in Fig. 1.

In a nutshell this chapter is broadly divided into seven sections. Section 1 briefly
introduces the chapter. Section 2 throws light on ab intio gene finding methods
which is further divided into sub-sections dealing with consent and signal sensors.
Section 3 describes homology based gene prediction methods. Section 4 is divided
into seven sub-sections which describe various soft computing approaches.
Section 5 elucidates hybrid soft computing methods which are capable of deliv-
ering better results with higher accuracy than individual soft computing approaches.
Section 6 deals with various parameters for measuring the accuracy of the gene
prediction programs. Section 7 throws light on future prospects of soft computing
approaches for gene prediction.
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2 Ab initio Gene Prediction Methods

Ab initio gene prediction methods are categorized mainly as ‘content’ and ‘signal’
sensors [23]. Examples of ab initio programs are GENSCAN [24], GENIE [25],
HMMGene [26] and GENEID [27]. Chemgenome is also ab intio gene prediction
software, which finds genes in prokaryotic genomes in all six reading frames which
follows a physico-chemical approach validated on 372 prokaryotic genomes [28].
The following sub-sections discuss about ‘content’ and ‘signal’ sensors as ab initio
gene-finding methods.

Fig. 1 Flow chart illustrating gene prediction procedure in a stepwise manner
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2.1 Content Sensors

Content sensors help in predicting the gene structure by considering the content of a
candidate gene region, such as the base composition or length distribution of a
candidate exon or intron. Content sensor refers to the coding and non coding region
of the genome. Content sensors can be further categorized into extrinsic and
intrinsic [23]. Extrinsic content based gene prediction programmes are mainly
based on similarity search by optimal Smith-Waterman algorithm or by heuristic
Blast or FastA programmes from the publically available sequence databases [29].
It is estimated that almost 50 % of the genes can be identified by database search.
Intrinsic Content gene finding locates all the gene elements that occur in a genomic
sequence, including possible partial gene structures at the border of the sequence
[30]. The structure of a genome and the density of its genes vary significantly with
the GC-content which can be defined as two light groups (L) and three heavy
groups (H). These light groups are L1 (<38 % GC-content) L2 (38–42 %
GC-content) while heavy groups are H1 (42–47 % GC-content), H2 (47–52 %
GC-content) and H3 (>52 % GC-content) in human. Codon usage is another most
important content sensor used in many computational gene prediction algorithms
[31]. Determination of the exact borders of exon and intron or gene regions is still a
challenging task for computational biologist. Splice site predictions has proved
useful in gene prediction because sequences at boundaries exhibit characteristics
that are different from that of other sequences. Theses sequences provide strong
indicators of boundaries between exons and introns in multi-exon genes by splice
site prediction and finally used as important ingredient in many gene prediction
algorithms.

Expressed Sequence Tags (ESTs) and mRNA (or cDNAs) provides information
to identify (partial) exons. However, ESTs give only local and limited information
on the gene structure as they represent only partial mRNA. An interesting study on
the human genome concluded that EST databases could be an effective probe for
gene detection in the human genome [32].

2.2 Signal Sensors

Signal sensors model the gene prediction by the transition between states which
helps to detect the boundaries between exons and introns in the sequence. Signal
refers to the presence of functional sites in the genome, for example, slice sites,
polyadenylation sites, start and stop codons, branch points, promoters and termi-
nators of transcription and splice junctions etc. Identifying the 5′ end of a gene is
one of the most difficult tasks in gene finding. This is mainly due to the hurdles in
identifying the promoter and the Transcriptional Start Site (TSS) sequences. There
are many promoter-prediction and TSS-prediction programs; however, their per-
formance with respect to the control of false-positive predictions is still
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unsatisfactory. To bridge this shortcoming, a new program, Eponine, performs well
to Promoter Inspector and is able to predict the location of the TSS in a better way
by exploiting significant discriminating features such as the TATA box and CpG
islands [30, 33].

3 Homology/Similarity Based Methods

Several gene-finding methods include the results of sequence similarity searches to
improve the overall prediction accuracy. Homology based informations are useful
for better identification of prokaryotic and eukaryotic genes which increases
accuracy as well. Sequence homology search is a commonly used approach that is
based on finding similarity in gene sequences by direct matching of the genomic
DNA sequence and a reference protein. In other way, matching of ESTs (expressed
sequence tags) to the input genome/DNA segment is done in sequence similarity
searching. Similarity based programs use external information about the input
sequence. EST-based sequence similarity usually has its own limitation because
ESTs only correspond to small portions of the gene sequence i.e. partial mRNA.
Local alignment and global alignment are two methods widely used in similarity
based gene prediction. BLAST and NEEDLE are the most widely used algorithms
for local and global alignment based similarity searches. The method of integrating
protein homology has been applied in many gene prediction programmes such as
GENEWISE [34], GENOMESCAN [35] GeneParser [36], GRAIL [37, 38], Genie
[25] and HMMgene [26]. Similarity-based programs use various nucleic acid and
protein sequence databases. The prediction accuracy of gene prediction methods
increased a lot when ab initio and similarity information both are used together.
However, older methods were purely based on ab initio approaches or homology
based methods [39].

The first generation of programs such as GRAIL was dedicated to identify the
approximate locations of coding regions in genomic DNA [37]. The second gen-
eration programmes, such as Xpound [40] combined splice signal and coding
region identification while third generation of programs GeneID [27], GeneParser
[41] and FGENEH [42] attempted the prediction of complete gene structure in
entire genomic DNA. Low performance of the above programs inspired the
development of fourth generation programmes GENSCAN [43] and AUGUSTUS
[44] which further improved the accuracy and applicability.

Several algorithms are applied for gene structure predictions, such as Dynamic
Programming, Hidden Markov Model, Support vector machine, Fourier
Transformation, Decision Tree and Artificial Neural Network. Among these algo-
rithms, programmes based on Hidden Markov Model are the most accurate and
widely used.
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4 Soft Computing Approaches for Gene Prediction

This section describes various soft computing approaches in its seven sub-sections
which deal with genetic algorithms, fast fourier transform technique, artificial
neural network, and hidden markov model.

4.1 Genetic Algorithm

The Genetic algorithm is machine learning approach which was first proposed by J.
H. Holland which applies the principles of evolution found in nature. It has no
direct relation with biology since it was invented by computer scientists. Genetic
algorithms are suitable for solving problems that need optimization to produce near
to close and approximate solutions. In genetic algorithms, each potential solution to
a problem is represented in the form of a string, which contains parameters of the
solution. A string is either chromosome or an individual, while a parameter refers to
an attribute [45]. A group of strings constitute the population. The degree of
goodness of a string is measured by defining a fitness function. Fitness function
calculation is based on in-frame hexamer frequency and positional weight matrix
using site and content statistics. Furthermore the formation of a new population of
strings for the next generation is further created by applying genetic operators
(crossover and mutation) on the few strings, chosen from the population. The
process of selection, crossover and mutation are repeated in each of the subsequent
generations until a termination condition is reached [45]. In other words, genetic
algorithms are mainly based on the principle of ‘survival of the fittest’.

The basic genetic algorithm is represented by flow chart in Fig. 2 and can be
summarized in a few simple steps as follows:

(i) Start with n number of random population of chromosomes.
(ii) Validate the fitness of each chromosome.
(iii) Create the new population by selection based on fitness, making crossover of

each chromosome for a better offspring and mutate the offspring at each
chromosome position. Finally evaluate the fitness of the new population.

(iv) If the end condition is met, return the highest scoring member as the solution,
if not then repeat the entire process.

In 2001, first attempt was made to use genetic algorithm as a main tool for gene
prediction [46]. Genetic algorithm (GA) is also used in ANN software programme
to decide about the network architecture, and fitness of the hidden layers of artificial
neural network. GA is also used for recognizing promoter regions of eukaryotic
genes in Drosophila melanogaster [47] as well as it used for generating the multiple
sequence alignment [43] and splice site prediction [48]. GA is also used in one
algorithmic framework called EFFECT for automated detection of functional
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signals in biological sequence which could be useful for gene prediction from DNA
sequences [49]. An advantage of genetic algorithms over other methods is that
movement from one generation to another generation is very fast and abrupt. The
major disadvantage of genetic algorithm is that it is biased towards fit individuals
which reproduce more quickly than less fit which finally results in the population of
similar individuals.

Fig. 2 Systematic diagram of genetic algorithm in stepwise manner
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4.2 Fast Fourier Transform

Fast Fourier transform (FFT) is a technique which is based on a distinctive char-
acteristic feature of protein-coding regions of DNA sequences which is known as
the three-base periodicity in the nucleotide arrangement. This feature is illustrated
as a sharp peak at a particular frequency in fourier spectrum. The significance of
Fourier analysis for identification of protein-coding genes in DNA sequence has
been well recognized [50]. The basic FFT can be summarized in a few simple steps
which are shown in flow chart below (Fig. 3).

From extensive spectral analysis of DNA sequences for various organisms, the
relative height of the peak in the Fourier spectrum is indicator of coding region.
These features could be utilized for detecting probable coding regions in DNA
sequences. GENESCAN has emerged as one of the popular gene prediction pro-
grammes utilizing three-base periodicity based Fourier transformation [51]. FFT is
more efficient in detecting the periodicity in a longer sequence in comparison to
shorter sequences. In order to overcome this limitation of FFT, an algorithm called
LENGTHENS– SHUFFLE has been discovered [52]. FTG is a web server for
analyzing nucleotide sequences to predict the genes using Fourier transform tech-
niques which uses Genescan and LENGTHEN–SHUFFLE algorithms to improve
the accuracy of gene prediction [53]. FFT has the advantage over other methods

Fig. 3 Systematic diagram of Fast Fourier transform in gene prediction in stepwise manner
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like Markov models, neural networks and homology-based methods. FFT does not
require a learning set as compared to other gene prediction tools, thus facilitates the
identification of a protein-coding gene with no known homolog.

4.3 Artificial Neural Network

Artificial neural network (ANN) is a soft computing tool which process information
that is used to represent complex input–output relationships. ANN algorithm is
basically a tool which has an ability to learn. The key element of the ANN model is
the novel structure of the information processing system. Gene prediction programs
applied to various organisms, based on Artificial Neural Network (ANN) method
along with their webpage’s URL are listed in Table 1. Being an interconnected
group of artificial neurons ANN is known to be composed of many highly inter-
connected processing elements which are tied together with weighted connections
that are analogous to synapses [54]. ANN is successfully applied to solve a variety
of problems of biological importance such as gene identification as well as protein
structure prediction [55]. Neural network is basically represented as multiple layers
of neurons in parallel which score an exon candidate present in the gene which are
based on local information. Apart from neural network scores, the final exon pre-
diction requires more global information, such as whether exon candidates are
spliceable or not. The architecture of a neural network is usually either feed-forward
or recurrent. A feed-forward network doesn’t have loops and are acyclic, where the
information moves in only one direction, from the input nodes to hidden layers, and
finally to output nodes. On the other hand, its counterpart, recurrent networks,
contain cycles. One node is connected from other node or layers with some weights
based on the training data. Suppose the input values x1, … ,xN in input layer are
fed into the node through edges and associated weights are suppose w1, … ,wN
then integration score (a) will be as follows:

a ¼
X

N

i¼1

wixi ð1Þ

Table 1 List of gene prediction programs applied to genomes of various organisms, based on
Artificial Neural Network (ANN) method along with their webpage’s URL

Software programme and their webpage URL Organisms

GRAILExp [41, 56] http://compbio.ornl.gov/grailexp/ Bacteria and Eukaryotes

NetStart [57] http://www.cbs.dtu.dk/services/NetStart/ Eukaryotes

Grail-II [38] http://compbio.ornl.gov/ Eukaryotes

NetAspGene [58] http://www.cbs.dtu.dk/services/NetAspGene/ Aspergillus sp. (Eukaryote)
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Equation (1) integration score (a) where are xi represent input values and wi
represent the associated weights.

The basic architecture of ANN can be presented as in the following block
diagram as shown in Fig. 4.

This gives a total score of input layer to hidden layer. Similarly weights are
calculated for hidden layers and their edges. The final score associated with output
layer is sum of all theses scores. Most of the applications in computational
biology/bioinformatics e.g., gene prediction, protein secondary structure prediction
etc. use layered feed-forward network models. The use of Neural network for gene
prediction started with the introduction of GRAIL (gene recognition and analysis
internet link) in 1991. GRAIL scores potential exons by combining the scores of a
number of content and signal sensors. The GRAIL neural network consists of 13
input nodes, two hidden layers with seven and three nodes, respectively, and one
output node. GRAIL is available in two versions: GRAIL-I [37] and GRAIL-II
[38]. GRAIL-II finds the protein coding regions, poly (A) sites, promoters, con-
structs gene models, predicts gene and provides database searching capability. Input
for GRAIL-II includes several indicators of sequence patterns. These important
indicators are scores of 6mer in the flanking region, in-frame-6mer score, flanking
region GC composition, markov model score and candidate region GC composi-
tion. In GRAIL-II, DNA sequence is evaluated by calculating the pattern fre-
quencies in terms of values 0 and 1 in neural network. If the value is close to 1, then
the region is predicted as exon and if the value is close to 0 then the region is termed
as intron. Homology information has been incorporated into GrailExp (latest

Fig. 4 Schematic diagram of feed forward neural network
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version of GRAIL) which resulted in improved performance [41, 56]. GrailEXP
provides gene models as well as alternatively spliced constructs for each gene by
making use of sequence similarity with Expressed Sequence Tags (ESTs) and
known genes [56]. GrailEXP is a software package that predicts exons, genes,
promoters, polyas, CpG islands, EST similarities, and repetitive elements within
DNA sequence. NetStart [57] is another gene prediction programme based on
artificial neural networks to predict the start codon in an mRNA sequence.
NetAspGene also uses multiple artificial neural networks to predict both
exon/intron gene structure and splice sites by a combined algorithm [58].

4.4 Hidden Markov Model

Markov models, due to their flexibility emerged as popular model where most
processes can be approximated by a Markov chain. Markov chain is a random
process where the next jump only depends on the current state, and not on the
previous state.

A sequence of random variables X1, X2, X3… which pick values in a countable
set Q, is called a Markov chain of order k � 1 if for all i > k and all x1, x2, x3 …,
xi 2 Q.

P(Xi = xi| X1 = x1, … , Xi−1 = xi−1) = P(Xi = xi| Xi−k = xi−k, … ,Xi−1 = xi−1).
If P(Xi = xk+1 | Xi−k = x1, … , Xi−1 = xk) does not depend on i (x1, … , xk+1 2 Q),
sequence is called a homogenous markov chain.

Markov model is a well studied soft computing tool which is extended further to
Hidden markov model (HMM). A standard Markov model basically consists of
various states. HMM comprises of two interrelated random processes, a hidden
process and an observed process. HMM is a probabilistic model which was first
developed for speech recognition. A major problem with standard HMM is the
intrinsic modeling of duration of states which is sometimes exponential. Thus it is
unsuitable for many applications and is rectified by a Generalized HMM (GHMM)
where length distribution is defined by us [24]. Another extension of markov model
is called as Interpolated Markov Model (IMM) in which the order of the model is
not fixed.

Nowadays, HMMs have become an integral part of bioinformatics having
applications in protein and DNA sequence pattern recognition, multiple sequence
alignment and sequence evolution. In gene finding, it consists of states corre-
sponding to a biological significance (e.g. intron, exon, splice site) which allows
transitions between these states. The model defines a probability distribution of
strings like DNA sequences and gene structure as well as the transition probabilities
between them using a training set of annotated sequences for respective species
[44]. Markov models are ‘hidden’ when one or more states cannot be observed
directly.

One of the examples of a HMM model is a machine that generates a DNA
sequence. In this example, the four states A, T G and C in a set S = {A, C, G, T}
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are represented as circles and the arrows between them represent the transitions
between theses states which is shown in Fig. 5. The machine starts with any state
then moves to new state according to transition probabilities. Model parameters are
known by counting the number of times a particular state is followed by another
state. Number of times of a particular state corresponds to frequency of single and
dinucleotide states which further help in prediction of the next nucleotide in the
DNA sequence.

Various gene finding tool which are accurate for prokaryotic gene finding are
based on hiden markov model algorithms. Gene prediction programs applied to
various organisms based on Hidden Markov Model (HMM) method along with
their webpage’s URL has been listed in Table 2.

Fig. 5 Four states are shown by A, C, G, and T in the DNA alphabet. Arrows indicate the
transition from one state to another where each arrow is also associated with transition probability

Table 2 List of gene prediction programs applied to genomes of various organisms, based on
Hidden Markov model (HMM) method along with their webpage’s URL

Software programs and their webpage URL Organisms

GeneMark [90] http://opal.biology.gatech.edu/GeneMark/ Bacteria, Archaea,
Eukaryotes and Viruses

Glimmer [91] https://ccb.jhu.edu/software/glimmer/ Bacteria, Archaea and
Viruses

AMIGene [61] http://www.genoscope.cns.fr/agc/tools/amiga/
Form/form.php

Bacteria

FGENESH [92] http://www.softberry.com/berry.phtml?topic=
fgenesh&group=help&subgroup=gfind

Eukaryotes

GenScan [24] http://genes.mit.edu/GENSCAN.html Eukaryotes

FragGeneScan reads [59] http://omics.informatics.indiana.edu/
FragGeneScan/

Prokaryotes

HmmGene [26] http://www.cbs.dtu.dk/services/HMMgene Homo Sapiens, C. elegans

Genemark.hmm [93] http://intron.biology.gatech.edu/
GeneMark

Bacteria

EasyGene [62] http://www.cbs.dtu.dk/services/EasyGene Prokaryotes

WebAUGUSTUS [50, 95] http://bioinf.uni-greifswald.de/
webaugustus

Eukaryotes
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The Genie program was the first gene prediction tool which introduced HMM for
gene prediction. AUGUSTUS is another gene prediction programme based on
HMM which performed significantly better for long DNA sequences compared to
programmes based on ab initio methods [44]. The GeneMark.hmm is another HMM
based algorithm designed for the advancement of gene prediction quality in terms of
finding exact gene boundaries as compared to older version called GeneMark [40].
GeneMark.hmm and GeneMark have complementary properties i.e. genes missed by
GeneMark.hmm may be identified by GeneMark. Partial gene predictions which are
made by GeneMark might also be corrected by GeneMark.hmm as well. GLIMMER
(Gene Locator and Interpolated Markov ModelER) is another gene prediction pro-
gram which uses interpolated Markov models to identify coding regions in microbial
DNA. GLIMMER basically consists of two submodules. One of the submodules
builds the IMM from training data while another submodule uses the resulting model
to score new sequences [41]. HMMgene is also based on a hidden Markov model
which predicts whole genes correctly [26]. Gene prediction tools which are devel-
oped for whole genomes (e.g. Glimmer) and metagenomic sequences showed a
significant decline in performance due to increase in sequencing error rates.
FragGeneScan which is comparable to Glimmer and MetaGene for complete gen-
omes is also based on HMM. FragGeneScan combines sequencing error models as
well as codon usages to improve the prediction of protein coding region in short
reads [59]. GeneWise [34] combines a gene-prediction HMM with the
protein-profile HMM (Pfam) in order to achieve simultaneous gene prediction and
alignment. However it predicts accurately one gene per genomic sequence. Multiple
genes prediction on both strands was initially implemented in Genscan. Later on it
was also adopted by other HMM-based algorithms, such as GeneMark and Fgenes.
It is better to consider both strands simultaneously in order to avoid the prediction of
genes that overlap on the two strands as two separate genes in mammalian genomes
[60]. Annotation of MIcrobial Genes (AMIGene) is another prediction tool which
automatically identifies the coding sequences (CDs) in completely sequenced bac-
terial genome sequence. Construction of Markov models that fit the input genomic
data (i.e. the gene model) is followed by the combination of known gene finding
programmes and a heuristic approach for the selection of the most likely CDs [61].
EasyGene is another example of gene prediction tool which is based on HMMwhich
automatically estimates the new genome by checking similarities in Swiss-Prot,
where a high quality training set of genes is automatically extracted from the genome
[62]. SnowyOwl is a new gene prediction tool which was developed for rapid and
accurate prediction of the genes which uses RNA-Seq data to train as well as to
provide clues for the generation of Hidden Markov Model (HMM)-based gene
predictions [63]. These HMM based programs not only predicts gene or exon
regions but can also predict model promoters, poly(A) signals and the 5′ UTRs or 3′
UTRs (including possible introns). Many programs such as Fgenesh, GeneMark,
Genie, Genscan, HMMgene, Morgan and MZEF were the programmes which were
tested on 195 newly sequenced genomes. Accuracy level of gene prediction about
*70–90 % at the nucleotide level and*40–70 % at the exon level were showed by
these two gene prediction tools [64].

396 M. Kesheri et al.



5 Hybrid Soft Computing Approaches for Gene
Prediction

These methods combine two or more machine learning tools or algorithms to solve
a problem. Use of hybrid methods is very popular nowadays due to many reasons.
Hybrid methods improve the performance of any single method used for gene
prediction. Another important reason for using hybrid method is that it improves the
quality of the solutions obtained by any single methods such as genetic algorithm,
dynamic programming or artificial neural network. The last reason for using hybrid
methods is that these hybrid methods can be used for larger systems.

The program GeneParser is a hybrid gene prediction method which scores the
sequence of interest for splice sites and for introns and exon specific content sensors
such as codon usage, local compositional complexity, 6-tuple frequency, length
distribution and periodic asymmetry. GeneParser based on dynamic programming
[65] is used to predict the position of introns and exons adjacent and non over-
lapping to each other in entire sequence length. Dynamic programming
(DP) basically aligns sequences to obtain a most likely alignment for a given
scoring system with scores for matches, mismatches and gaps. GAZE [66] and
GeneBuilder [67] are popular gene prediction programmes which are based on
dynamic programming. GeneParser uses dynamic programming along with feed
forward artificial neural network which are used to generate likelihood score for
each sequence position either in exon or in intron and also predicts the most likely
combination of exons and introns in the entire sequnce. In GeneParser, weights are
calculated by feed forward artificial neural network which increases the number of
correct predictions by the gene prediction programme [41].

mGene is a hybrid method which combines the flexibility of generalized hidden
Markov models (gHMMs) with Support Vector Machines (SVMs). The combina-
tion of these two algorithms showed the excellent performace for the genome of the
nematode Caenorhabditis elegans [68]. Support vector machines (SVMs) [69] are
supervised machine learning algorithm with a strong theoretical foundation typi-
cally used in regression and binary classification problems [70]. The idea of SVMs
is to identify the boundary that best separates the two classes. SVM has been used
to improve classification accuracy in biological research such as the detection of
protein family members [71], RNA and DNA binding proteins [72], functional
classification of gene expression data [73] and gene prediction. MetaGun is one of
the popular gene prediction programme based on support vector machines [74].
SVMs also accurately discriminated cytoplasmic ribosomal protein encoding genes
from all other genes of a known function in Saccharomyces cerevisiae, Escherichia
coli and Mycobacterium tuberculosis. SVM separates two different types of genes
based on codon composition comprising of a fusion of codon usage bias and amino
acid composition [75].

Another hybrid method is GISMO (Gene Identification using a Support Vector
Machine for ORF classification), which also combines the feature of HMM for
searching the protein domains. GISMO combines support vector machine along
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with HMM which is used for composition based identification of protein-encoding
genes [76]. HMM is also used in finding the genes with new order of protein
domains in different proteins. GISMO was evaluated with 165 prokaryotic chro-
mosomes and 223 plasmid sequences. The results obtained by GISMO showed
94.3 % of the genes (98.9 % for genes with annotated function) corresponding to
annotated genes [76].

MORGAN (Multi-frame Optimal Rule-based Gene ANalyzer) is another hybrid
gene finding tool that combines decision trees with dynamic programming and
signal sensor algorithms. Decision trees are simple but powerful soft computing
technique which identifies various ways of splitting a data set into branch like
segments. An advantage of decision tree algorithm is that it converts complex data
sets into simple and comprehensible data structures. However, decision tree tech-
nique doesn’t guarantee to find the optimal solution. Depending on features con-
sidered, there are many ways to build a decision tree from the same training data set.
Decision tree is also used alone to predict genes in many programmes e.g. C4.5 [77]
and Jigsaw [78]. Decision trees were also used to predict S. cerevisiae gene which
could be up or down regulated under different conditions of transcription regulator
expression [79]. MORGAN also uses dynamic programming algorithm to search the
entire sequence. In MORGAN, scoring is done by decision tree algorithm as well as
by signal sensors which score the exons of potential candidate gene [80].

Gene prediction based on hybrid approach is named as Radial Basis Function
Network (RBFN)-combining method. It uses genetic algorithm along with artificial
neural network for the prediction of exon regions in the DNA sequence [81]. This
hybrid method combined three different gene finding tools having different
sequence based features to increase the accuracy. At the first stage high prediction
tools like GenScan, HMMgene and Glimmer were used. After that genetic algo-
rithm (GA) was used to calculate the equitable weighted parameters. Finally, these
results obtained by different tools were used to train RBFN [81].

ZUPLS is another effective linear hybrid method which uses Z-curve and other
sequence-based features. The main aim of ZUPLS was to improve the accuracy and
speed for identification of prokaryotic genes [82]. ZUPUS includes gene size,
frequencies of amino acids as well as codon adaptation index features in order to
predict the potential candidate gene. These features can be calculated immediately
from the DNA/amino acid sequences which are used as input. In predicting the
essential genes of newly sequenced species, ZUPLS was found better as compared
to the other existing approaches [82].

Another hybrid method called Anti-notch/Goertzel algorithm for gene prediction
were found faster in predicting the potential candidate gene as compared to other
conventional methods. This hybrid method identified the coding protein regions
more accurately by Goertzel algorithm. This hybrid algorithm was evaluated for
several genes which also include genes available in databases BG570 and HMR195.
These results are compared to Discrete Fourier Transform (DFT) and Multi-Stage
Filter (MS) methods which showed better performance measured by specificity and
approximate correlation (AC) values and lower computational time [83].
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Along with the hybrid method, nowadays next generation sequencing tech-
nologies have become one of the important tools for disease-gene identification
especially in human [84–87]. A number of gene prediction programs applied to
genomes of various organisms based on hybrid soft computing methods are listed in
Table 3.

6 Gene Predictions Accuracy

Coding nucleotide sequence, gene structure and protein as product are three dif-
ferent levels which are used frequently for determining the accuracy of gene pre-
diction programmes. Very few programmes predict complete gene structure
accurately for genes which have many exons in their structure. Sensitivity and
specificity are the two popular parameters which are used to evaluate the perfor-
mance of many gene prediction programs [54]. This section focuses on measuring
the accuracy of the programs based on exon and nucleotide level. The evaluation of
gene prediction program is mainly based on a number of true positives (where the
gene length and end sequence positions are correctly predicted), false positives
(where the positive predictions are over-predicted), true negative (TN) and false
negatives (where the predictions are either under predicted or missed one).
Sensitivity and specificity [24, 64, 88] at nucleotide level are defined as follows:

Sensitivity =
TP

TPþFN
ð2Þ

Equation (2) Sensitivity where, TP is the true positive and FN is the false
negatives.

Specificity ¼ TP
TPþFP

ð3Þ

Equation (3) Specificity where TP is the true positives and FP is the false
positives.

Table 3 List of gene prediction programs applied to genomes of various organisms, based on
hybrid soft computing methods along with their webpage’s URL

Software programme and their webpage URL Algorithms Organisms

mGene.web [94] http://www.mgene.org/web HMM + SVM Eukaryotes

GeneParser [41] http://stormo.wustl.edu/gslab/?page_id=
376

DP + ANN Eukaryotes

GISMO [76] http://www.CeBiTec.Uni-Bielefeld.DE/
groups/brf/software/gismo.

HMM + SVM Prokaryotes

MORGAN [78] http://www.cbcb.umd.edu/*salzberg/
morgan.html

DP + Decision
Tree

Eukaryotes
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Another method for evaluation of gene prediction programs at nucleotide level is
called Correlation Coefficient (CC). By this coefficient, all correct predictions
would score 1, and worst prediction will score 0 [64, 88]. Correlation Coefficient
can be calculated by following equation.

CC ¼ ½ðTPÞðTNÞ � ðFPÞðFNÞ=½ðANÞðPPÞðAPÞðPNÞ� ð4Þ

Equation (4) Correlation Coefficient (CC), where, AN (Actual
Negatives) = FP + TN, PP (Predicted Positives) = TP + FP, AP (Actual
Positives) = TP + FN, PN (Predicted Negatives) = TN + FN.

Another measure called Approximate Correlation (AC) [64, 88], can be repre-
sented by following equation

AC = ACP� 0:5ð Þ � 2 ð5Þ

Equation (5) Approximate Correlation (AC) where

ACP ¼ 1
4

TP
TPþFN

þ TP
TPþFP

þ TN
TNþFP

þ TN
TNþFN

� �

ð6Þ

Equation (6) ACP where, AN (Actual Negatives) = FP + TN, PP (Predicted
Positives) = TP + FP, AP (Actual Positives) = TP + FN, PN (Predicted
Negatives) = TN + FN.

This coefficient is similar to CC and this could also be used as evaluation of gene
prediction programme. All correct predictions would score 1, and worst prediction
will score −1 [64, 88].

Nucleotide level accuracy mainly measures the content element of the program
while exon level prediction accuracy measures signal element of the programme.
Exon level prediction is also estimated by similar methods which are sensitivity and
specificity [64].

Sensitivity ¼ TE
AE

ð7Þ

Equation (7) Sensitivity, where TE = True exons which is the number of exactly
predicted exons, AE = Annotated exons.

Specificity ¼ TE
PE

ð8Þ

Equation (8) Specificity where TE = True exons which is the number of exactly
predicted exons, PE = Predcited exons.

Rogic et al. analyzed seven recently developed programs FGENES, GeneMark.
hmm, Genie, Genscan, HMMgene, Morgan and MZEF which use only coding and
signal information for computational gene prediction [89]. They used a dataset
named HMR195 containing 195 sequences with single-exon or multi-exons genes
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from Homo sapiens, Mus musculus and Rattus norvegicus. HMR195 dataset is
available at http://www.cs.ubc.ca/� rogic/evaluation/dataset.html. It was observed
that new generations of programs possess significantly higher accuracy than the
programs analyzed by Burset and Guigo [88]. Based on the HMR195 datasets,
results showed that approximate correlation value has improved from 0.78
(FGENEH) to 0.91 (Genscan and HMMgene) i.e. 13 %. Exon sensitivity and
specificity has improved from 0.64 (FGENEH) to 0.76 (HMMgene) i.e. 12 % based
on the results from HMR195 dataset.

7 Conclusion

Gene-prediction soft computing approaches have been steadily improving by var-
ious machine learning soft computing techniques but by the introduction of hybrid
soft computing approaches computational gene prediction methods accuracy has
improved dramatically. High-throughput experimental approaches to identify genes
are still lacking which in turn inspire the bioinformatics/computational biologist to
predict the genes computationally. Bioinformatics is driven mainly by integration of
information technology with the large scale genomic data but still automated
accurate gene prediction pipelines for whole genomes are lacking. Identifying short
exons and prediction of very long exons as well as non-translated exons are still a
challenging task for bioinformatician/computational biologist. Still, multiple genes
are not accurately predicted by many soft computing approaches due to lack our
understanding of various factors which should be taken care of during algorithm
development. Computational prediction of alternatively spliced gene products is
also a major concern that still needs to be extensively explored by computational
biologist or bioinformatics researchers for accurate prediction owing to its impor-
tance as a significant regulatory mechanism in higher eukaryotes.
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Artificial Bee Colony Based Segmentation
for CT Liver Images

Abdalla Mostafa, Ahmed Fouad, Mohamed Abd Elfattah,
Aboul Ella Hassanien and Hesham Hefny

Abstract The objective of this paper is to evaluate an approach for CT liver image
segmentation, to separate the liver, and segment it into a set of regions of interest
(ROIs). The automated segmentation of liver is an essential phase in all liver
diagnosis systems for different types of medical images. In this paper, the artificial
bee colony optimization algorithm (ABC) aides to segment the whole liver. It is
implemented as a clustering technique to achieve this mission. ABC calculates the
centroid values of image clusters in CT images. Using the least distance between
every pixel value and different centroids will result in a binary image for each
cluster. Applying some morphological operations on every binary clustered image
can help to remove small and thin objects. These objects represent parts of flesh
tissues adjacent to the liver, sharp edges of other organs and tiny lesions spots
inside the liver. This is followed by filling the large regions in each cluster binary
image. Summation of the clusters’ binary images results in a reasonable image of
segmented liver. Then, the segmented image of liver is enhanced using simple
region growing technique (RG). Finally, one of ABC algorithm or watershed is
applied once to extract the lesioned regions in the liver, which can be used by any
classifier to determine the type of lesion. A set of 38 images, taken in pre-contrast
phase, was used to segment the liver and test the proposed approach. Testing the
results is handled using similarity index to validate the success of the approach. The
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experimental results showed that the overall accuracy offered by the proposed
approach, results in 93.73 % accuracy.

Keywords Artificial bee colony optimization � Region growing � Filtering �
Segmentation

1 Introduction

Nowadays, many researches have been doing a lot of efforts to support radiologists
decision making in liver diagnosis systems. These efforts try to offer a reliable and
efficient CAD system. Every CAD system is comprised of some main phases,
including image acquisition, preprocessing, segmentation and classification. The
phase of preprocessing is interested in the initial preparation of image for next
segmentation phase. It includes the process of cleaning the image by removing
machine’s bed and the annotation of the patient’s information. It also includes ribs
connection which is a drawn white line to separate the liver from the adjacent flesh
and muscles in the left side of the abdominal image. Enhancing liver segmentation
is a crucial and difficult task in computer-aided diagnosis systems (CAD). Its dif-
ficulty is caused by the similarity between its intensity values and other adjacent
organs as kidney, stomach and spleen. The main key of segmentation is the
intensity value of the grey image. Hounsfield unit (HU) is a quantitative scale that
describes the intensity values used in DICOM images. Its range resides between
−1500 and 1500. JPG is the standardized format of the image from the Joint
Photographic Experts Group. JPG also has its intensity values that range between 0
and 512. Both of these formats could be implemented here [1]. Artificial bee colony
optimization technique (ABC) is used to calculate the centroids of the clusters of
different intensities of the image. Each cluster’s image is manipulated by mor-
phological operations to remove the small objects. These objects represent parts of
dark boundaries between organs, flesh and muscles. The removal of these objects
cuts the connection between liver tissues and other organs. All clusters’ binary
images, except the clusters with highest two centroids, are summed in one image.
The summed clusters image is multiplied by the original image. Then, region
growing is applied on the resulting image to enhance the result of the segmented
liver. ABC is applied once more on the segmented liver to extract the lesioned
regions. Also, watershed can be used for extracting ROIs. The evaluation of the
accuracy of the proposed system is implemented using similarity index measure.

Liver is the largest organ in the body of an adult. It is a reddish-brown colour
organ and weights 1200–1500 grams and anatomically has two lobes with blood
vessels (portal vein, inferior vena cava and hepatic artery) and biliary ducts. It is
situated under the diaphragm in the upper abdominal cavity. It is held in place by
the falciform ligament [2]. It is important to say that, falciform ligament separates
liver’s lobes as a boundary, which could be a kind of difficulty in segmenting the
liver from other regions. Also, some abnormality of liver anatomy may affect the
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liver shape as having an accessory lobe, atrophy of the left lobe and cough furrows
which is caused by the chronic cough and affects the convexity of the right lobe [3].
In brief, falciform ligament, blood supply and anatomical abnormality of liver affect
the segmentation process.

A CT (computed tomography) image is taken by a special scanning machine. It
is a kind of X-ray machine. X-ray machine sends a single X-ray through the body.
But, CT machine simultaneously, sends several beams, from different angles
against the human body. The X-rays from the beams are detected, and their strength
is measured. Beams passing through less dense tissue, such as the lungs will be
stronger, whereas beams passing through denser tissue, such as bone will be
weaker. This way, it is possible for a computer to create an image of different
tissues according to its relative density. Each set of measurements made by the
scanner is considered a cross-section through the body. It is displayed as a
two-dimensional image [4]. CT images have been chosen, because of its reliable
details compared with X-ray and its affordability compared with magnetic rea-
soning image (MRI).

In most CAD systems, preprocessing phase depends on filtering techniques to
increase the reliability and accuracy. The inverse contrast and mean filters proved
efficiency and reliability to aid the preprocessing process. Inverse contrast is used to
aid stressing the ribs, while smoothing mean hides the small details like veins and
ligaments [5].

ABC [6] is an intelligent optimization tool used for solving a computational
problem in different areas. Honey bees are one of themost well studied social pests. In
the early years, many reviews based on the different bee behaviours have been
developed to solve compoundcombinatorial andnumerical optimizationproblems [7].

The artificial bee colony (ABC) is the one which has been most widely studied
and applied to solve the real world problems. Gradually the number of researchers
being interested in ABC algorithm increases quickly [8]. Karaboga used ABC
algorithm (ABC) for solving multi-dimensional and multi-modal optimization
problems. He replicates this algorithm for three continuous functions; Sphere
function, Rosenbrock function and Rastrigin function. The results reached, had
proved a successful optimization for this kind of problems [9].

In [10], ABC is used to search for multiple thresholds. These thresholds are very
close to the optimal ones examined by the exhaustive search method. Compared the
ABC with other famous algorithms; the hybrid cooperative-comprehensive learning
based PSO algorithm (HCOCLPSO), the Fast Otsus method, the honey bee mating
optimization (HBMO) and the particle swarm optimization (PSO), ABC achieved
the best result.

In [11], a CT liver image diagnostic classification system is presented. It auto-
matically extracts the CT liver boundary and classify liver diseases. This system
consists of two phases. First phase finds the liver boundary and second phase uses a
modified probabilistic neural network (PNN) [MPNN] in conjunction with feature
descriptors, generated by fractal feature information and the grey-level co-occurrence
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matrix. This classifies two types of liver tumours, hepatoma and hemangioma. This
system provides efficient result based on 30 liver cases.

In [12], a liver segmentation approach is presented, using fuzzy c-mean clus-
tering and level set. In the first phase, the contrast of original image is enhanced; in
the second phase, a spatial fuzzy c-mean clustering combined with anatomical prior
knowledge is employed to extract liver region automatically. In third phase, a
distance regularized level set is used for refinement. Finally, morphological oper-
ations are used as post-processing. The experiment result showed that this method
can achieve high accuracy.

In [13], liver region in abdominal CT images is segmented based on Snakes
Model and GrowCut algorithm. In [14], an automatic system for liver CT image
segmentation is based on Markov Random Fields to obtain an initial contour of the
liver. It improves the initial estimate and segment the liver using gradient vector
fields (GVF) and active contours. Sharma and Kaur [15] used region approach for
segmenting liver and liver tumour from CT scan images, then compared between
Seeker Optimization algorithm (SOA) and Particle Swarm Optimization (PSO) for
tumour classification using CT scan images.

In [16], a novel segmentation method based on a nested particle swarm opti-
mization (PSO) method is used, to find the optimal number of clusters for seg-
menting a grayscale image. This method has two functions (i) find the most
adequate number of clusters using the silhouette index as a measure of similarity;
and (ii) segment the image using the Fuzzy C-Means (FCM) approach using the
number of clusters previously retrieved.

In [17], an automatic Computer Aided Diagnostic system (CAD) is proposed to
detect some liver diseases like hepatoma and hemangioma from abdominal
Computed Tomography (CT) images using an approach for feature selection. This
paper used adaptive thresholding for liver segmentation, and the Binary Particle
Swarm Optimization (BPSO) is applied to get the best reduced feature set.

The remainder of this paper is ordered as follows. Section 2 gives an overview
about ABC algorithm. Details of the proposed approach is shown in Sect. 3.
Section 4 shows the experimental results and analysis. Finally, conclusions and
future work are discussed in Sect. 5.

2 Artificial Bee Colony Algorithm

In this section, the main concepts and structure of the artificial bee colony algorithm
are highlighted as follows.
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2.1 Main Concepts

While searching the food, the bees in swarm can communicate, share, store and
memorize the information according to changes in the environment. Each bee in the
swarm can update its position according to these information. The behaviour of the
bees can be summarized as follows.
Food sources A flower represents the food source for a bee. A bee collects all
information from the food source such as the amount of nectar in the flower, the
distance and direction to the nest. A bee stores and shares these information with
other bees in the swarm.
Employed bees There are two types of bees, employed bees and unemployed bees.
The employed bees are responsible for exploiting the food source and keep the
profitability of associated food source.
Unemployed bees The unemployed bees represent the other type in the bee colony.
They are sharing the information with the employed bees with a certain probability
in order to select a food source. The unemployed bees are divided into two cate-
gories as onlooker bees and scout bees. The onlooker bees are collecting the
information from the employed bees in order to select a food source for themselves.
The scout bees are responsible for searching about the new food sources when the
existing food sources exhaust. Usually, the employed bee represent 50 % of the bee
swarm, while the unemployed bees represent the rest of the swarm. On average the
scout bees represent 10 % of the total bees.
Foraging behaviour In foraging process, a bee starts searching the food and
extracting the nectar from the food source. The amount of the extracted nectar
depends on the distance of food source from hive and the richness. The bee uses the
enzymes in its stomach in order to make honey. The bee shares its information with
the other bees in the swarm by dancing in various forms.
Dance The bee shares the food source information by dancing in various ways. The
bee uses one of the following three dance forms.

• Round dance. The bee does this type of dance when the food source is near to
hive.

• Waggle dance. The employed bees select this type of dance when the food
source is far from the hive. The speed of dance is proportional to the distance
between the food source and the hive.

• Tremble dance. This type of dance means, the bee takes long time to unload the
nectar and it does not know about the current profitability of its food source.

2.2 ABC Algorithm

The artificial bee colony (ABC) algorithm is a population based meta-heuristics
algorithm based on the foraging behavior of honey bee colonies. It was proposed by
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Dervis Karaboga in 2005 [9, 6]. There are four phases in the ABC algorithms as
follows.
The initial population phase In the ABC algorithm, the initial population is gener-
ated randomly. The population contains NS solutions, where each solution xi is a
D dimensional vector, xi represents the ith food source. Each solution in the population
is generated as follows. The main structure of the ABC algorithm is presented in
Algorithm 1. The steps of the ABC algorithm can be summarized as follows.

xij ¼ xLj þ rðxjU � xjLÞ; j ¼ 1; 2; . . .;D: ð1Þ

where L;U are bounds of xi in jth direction and r is a random number, r 2 ½0; 1�.
The employed bees phase The employed bees modify the current solution
according to the information of fitness values of each solution (nectar amount). The
bee updates its position if the fitness value of the new food source is better than the
old food source. The bee position is updated as follows.

vij ¼ xij þ/ijðxij � xkjÞ: ð2Þ

where /ijðxij � xkjÞ is the step size, k; j are randomly selected indices, k 2
1; 2; . . .;NS; j 2 1; 2; . . .;D and /ij is a random number, /ijðxij � xkjÞ2½�1; 1�.
Onlooker bees phase The employed bees share the fitness values of the food
source and their position information with the onlooker bees. The onlooker bees
select a solution with a probability pi based on the solution fitness value. The
probability can be calculated as follows.

pi ¼ fi
PNS

j¼1 fj
ð3Þ

where fi is the fitness value of the ith solution.
Scout bees phase The food source is abandoned when the position of the food
source is not updated for a predetermined number of cycles. The associated bee
with the abandoned food source (solution) becomes scout bee and it starts to
generate a new food source within the environment (search space). The new
solution is generated randomly as follows.

xij ¼ xLj þ rðxjU � xjLÞ; j ¼ 1; 2; . . .;D: ð4Þ

where L;U are bounds of xi in jth direction and r is a random number, r 2 ½0; 1�.
The steps of ABC algorithm is described as follows.

• Step 1. The ABC generates a randomly distributed initial population of NS
solutions (food source positions), where NS denotes the size of population. Each
solution xiði ¼ 1; 2; . . .;NSÞ is a D-dimensional vector.
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• Step 2. Each solution in the population is evaluated by calculating its fitness
function, and the best solution in the population is memorized.

• Step 3. The cycle counter is initialized, and the following steps are repeated
until termination criteria is satisfied.

• Step 4. A new solution is generated from each old solution as shown in Eq. 1.
• Step 5. Each solution in the population is evaluated by calculating its fitness

function, and the best solution in the population is assigned and memorized as
follows.

f ðxiÞ ¼
1

1þ f ðxiÞ if f ðxiÞ� 0
1þ absðf ðxiÞÞ if f ðxiÞ\0

�

• Step 6. The probability of each solution is calculated in order to generate a new
trail solution vi by an onlooker bees. The associated probability of each food
source pi is defined as shown in Eq. 3.

• Step 7. The trail solution is generated and evaluated, and if it is better than or
equal to the old solution, then the old solution is replaced with the new solution,
otherwise the old solution is retained. The best solution is memorized. If the
food source cannot be improved for a limited number of cycles, which is called
“limit”, the food source is considered to be abandoned, and replaced with a new
food source by scout.

• Step 8. The operation is repeated until termination criteria is satisfied, i.e. the
algorithm reaches maximum cycle number (MCN).

Algorithm 1 describes how ABC is implemented.
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3 Proposed CT Liver Segmentation Approach

The proposed segmentation approach consists of some main phases:

• Pre-processing phase
Using the ABC-based proposed approach makes the preprocessing phase sim-
pler. It depends only on image cleaning for the patient’s information and con-
necting ribs. All printed description of patient and image information are
removed. Then the ribs are connected using contrast stretching filter to stress the
white ribs and trace its pixels. Every two close ribs are connected by drawing a
white line between them.

• Artificial bee colony phase
Artificial bee colony phase is the most important phase in the proposed
approach. It does most of the work by dividing the image into a number of
clusters according to the intensity values. ABC is applied in the proposed
approach using Algorithm 1, which divides the image into a number of clusters.
Each cluster has a centroid intensity value. Each cluster separated in a binary
image, will have either parts of liver and other organs or parts of edges between
the organs. The manipulation of the clustered binary image using the morpho-
logical operations will help to remove the edges and turn it into black pixels.
This operation will stress the boundaries when gathering all clustered images
(except the two highest clusters) in one image.

• Region growing phase
The resulting image of ABC is enhanced using simple region growing tech-
nique. In this technique, some seed points are provided by the user and used to
grow the area. This enhancement results in a whole liver segmented image. The
segmented image is validated using similarity index measure, which compares
the segmented image with a manual annotated image to calculate the accuracy.

• ROI segmentation phase
In this phase, the required regions of interest are extracted using two different
ways. The first is using ABC algorithm once more to separate the low intensity
valued clusters, representing lesions, or using watershed to separate the whole
liver into a number of homogeneous ROIs, which could be normal tissue or
lesioned tissue. Later on, it is possible to calculate texture features for every ROI
to be passed to any classifier.

These phases are described in detail in the following section, including all
involved steps and the characteristics of each phase.

Algorithm 2 shows the steps of the proposed approach.
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3.1 Preprocessing Phase

In this paper, the need for filters is very limited for image preprocessing. Only mean
filter is used in cleaning the image annotation and contrast stretching filter is used
for connecting ribs. The first step of preprocessing is to clean the image from its
annotations. It removes the patient’s information and machine’s bed to make it
easier for the next operation of connecting ribs [18]. In brief, the usage of opening,
closing and erosion, cleans the image in different aspects. It removes the annotation
of the image, erodes the skin and a part of flesh and muscles from the abdomen, and
also removes the machine’s bed. Ribs boundary algorithm can handle the problem
of flesh and muscles. These tissues are close to the liver and have a similar intensity
value. When segmenting the liver, it acts as a bridge or a thin path between the liver
in the left side of the image and other organs as spleen in the right side of the image.
The algorithm uses contrast stretching filter to highlight the bones of the ribs. Then
it uses a threshold close to white colour of ribs to isolate them. The ribs white pixels
are traced and connected by drawing a white line in the original image between the
edges of the ribs. This white line connects the ribs and acts like a wall between the
flesh and muscles and the liver tissues. The bones are replaced by black colour. See
connecting ribs algorithm in details in [18].
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3.2 Artificial Bee Colony Phase

The artificial bee colony is inspired by bee behaviour in nature. It mainly creates a
colony of artificial bees to solve difficult optimization problems. In our proposed
approach, ABC is not used as an optimization technique, it is used as a clustering
technique to segment the liver in CT images. The main sensitive key that should be
handled carefully is the parameter settings of ABC algorithm. First of all, the
number of clusters has an obvious effect on the resulting segmented image. There
are two extreme intensity values in the image, represented by the black background
and white bones. In addition to these values, we have liver boundaries, lesion and
other organs. Seven clusters proved the best efficiency in segmentation as we will
explain later. Also, we need to investigate the number of employed and onlooker
bees in the colony. The last parameter is the number of iterations, used to get the
segmented liver. A fitness function is used to determine the vector of the new
solution in every iteration. The centroids of the required clusters will be the
resulting best solution (global parameters). Algorithm 3 shows the steps of using
ABC as a clustering technique to segment the liver.

The advantage of using ABC this way, is that it is not affected by noise at all.
Since noise is always small pixels, they are filled by morphological operations step.

3.3 Region Growing Phase

Region-based segmentation techniques apply the similarity difference to extract
regions. Level set and fast marching can be used to extract one object using an
initial contour. Watershed uses the idea of water drops to create the boundaries of
all objects in an image [19]. Also region growing can do the same as level set and
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fast marching. The advantages of region growing are its simplicity, speed and low
cost of computational calculations. In this paper, region growing has been chosen to
accomplish the mission of ABC segmentation. The ABC segmented image is
enhanced using region growing.

3.4 ROI Segmentation Phase

The segmentation of regions of interest can be applied using two different methods.
The first method can be done by applying ABC algorithm once again on the whole
liver segmented image using the same idea of ignoring the highest two clusters. To
understand how it works, we must notice that lesion tissue is darker than the normal
liver tissues, and the first cluster represents background and highest clusters rep-
resent the normal tissues. So, excluding the two highest clusters will remove most
of the normal liver tissues. The remaining regions will represent the lesions or the
thin dark boundary of the liver. The second way is to apply watershed technique on
the whole liver segmented image. Watershed divides all the image into homoge-
neous regions. For both methods, every region is extracted to calculate the texture
features to be passed to any classifier.

4 Experimental Results and Discussion

A set of 38 CT images is used to apply the experiments of the proposed approach.
The images were taken in the first phase of CT scan before patient injection with
contrast materials. Figure 1 shows the preprocessing phase including the results of
image cleaning and rib connection.

Fig. 1 Preprocessing phase: a Original image, b Cleaned image, c Connected ribs
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Figure 2 shows a number of different clustered images using ABC algorithm.
Each cluster has a different colour. It shows that ABC resulting clusters can be very
sensitive for the different values in the liver tissues.

Figure 3 shows the extracted binary images of the different clusters resulting
after applying ABC. It shows that some binary images have the boundary fragments
separated from organs. Applying the morphological operations can remove these
small fragments to deepen the edges. Some small fragments might be inside the
liver. When the liver is extracted, these holes can be filled easily.

Fig. 2 Clustered results of different images using ABC

Fig. 3 Clusters’ binary images resulting from ABC
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Figure 4 shows the binary image of ABC and the liver segmented image. The
figure shows that the result of the segmented image is considerably satisfying. It has
the liver and some boundaries, which can be ignored when using any region-base
segmentation method.

Finally, the segmented image using ABC is enhanced using simple region
growing technique. Figure 5 shows the difference between the segmented image
and annotated one. It shows a very thin boundary of the liver as a difference.

Parameters in ABC algorithm is the key in a successful implementation. ABC
uses three main parameters that affect the accuracy and speed of execution. The
algorithm is tested initially using five random CT images. The main parameters are
as follows.

1. Population size:
It represents the total number of bees, used in searching the main clusters
centroids. Table 1 shows the results of testing ABC algorithm using different
values for population size. The first column represents the different tested sizes,
ranging between 10 to 100. The next five columns represent the image number.

Fig. 4 ABC liver segmentation, a Original image, b ABC binary image, c ABC segmented image

Fig. 5 Final liver segmented image compared to the annotated image: a Original image,
b Segmented image, c Difference image
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Finally, the last column represents the average accuracy result for each trial. The
table shows that the best result is 94.26 % for size of 90, and 94.16 % for the
sizes 10, 50 and 60. Size 10 is preferred to be used, because it decreases 89 % of
computational cost and time, compared with the best result. Figure 6 shows the
evaluation of different values of the population size.

2. Number of iterations:
It represents the number of loops used in the algorithm. Table 2 shows the
results of testing ABC algorithm using different numbers of iterations for testing
5 random CT images. The table shows that the best result is 93.80 % for 20
iterations. Figure 7 shows the evaluation of the effect of number of iterations on
the average accuracy.

Table 1 Parameter setting
for population size

Size 1 2 3 4 5 Result

10 0.970 0.916 0.909 0.954 0.959 0.9416

20 0.968 0.916 0.899 0.952 0.953 0.9376

30 0.968 0.917 0.897 0.938 0.956 0.9352

40 0.967 0.916 0.899 0.953 0.958 0.9386

50 0.968 0.916 0.918 0.953 0.953 0.9416

60 0.967 0.916 0.897 0.971 0.957 0.9416

70 0.967 0.916 0.897 0.968 0.957 0.9410

80 0.968 0.916 0.901 0.952 0.957 0.9388

90 0.968 0.916 0.901 0.971 0.957 0.9426

100 0.968 0.916 0.897 0.952 0.957 0.9380

Fig. 6 Evaluating the change of population size
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3. Number of clusters:
It represents the number of centroids of the clusters, used to segment the liver.
The clusters centroids range from 0 to 255. The value of class one which is zero,
represents the black value of the background. The highest class represent bones
and the spots that have the injected radial therapy. The more the clusters, the
more the separation of the intensity values. Table 3 shows the results of testing
ABC algorithm using different cluster’s values. The algorithm is tested for 10
values. The table shows that the best result is 94.2 % for using 7 clusters.
Figure 8 shows the evaluation of different values of the clusters.

Evaluation is performed using similarity index (SI) defined using the following
equation:

SIðIauto; ImanÞ ¼ Iauto
T

Iman
Iauto

S

Iman
ð5Þ

Table 2 Parameter setting
for number of iterations

Iter. 1 2 3 4 5 Result

1 0 0 0 0 0 0

2 0.968 0.917 0.314 0 0 0.4397

3 0.968 0.409 0.899 0.952 0 0.6456

4 0.968 0.911 0.000 0.952 0 0.5662

5 0.977 0.913 0.899 0.727 0.956 0.8944

10 0.968 0.409 0.612 0.953 0.959 0.7802

15 0.976 0.911 0.676 0.968 0.948 0.8958

20 0.984 0.915 0.895 0.938 0.958 0.9380

25 0.968 0.910 0.893 0.952 0.956 0.9358

30 0.982 0.771 0.895 0.968 0.950 0.9132

Fig. 7 Evaluation the change the number of iterations
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where SI is the similarity index, Iauto is the binary automated segmented image,
resulting from the phase of final segmentation of the whole liver in the used
approach and Iman is the binary manual segmented image by a radiology specialist.
The experiments of liver segmentation using ABC proved its efficiency in clus-
tering the image. The highest clusters represent all regions that have intensity values
greater than liver intensity. Applying the morphological operations on every clus-
tered image will remove the small parts which represent boundaries between
objects. That deepens the edges of organs. Also, we noticed that the lesions
intensity values reside in the least clusters less than liver intensity values. Finally
using region growing in the segmented image will enhance the segmented whole
liver. Table 4 shows the results of the proposed approach compared to region

Table 3 Parameter setting
for number of clusters

Cluster 1 2 3 4 5 Result

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0.968 0.852 0.751 0.679 0.959 0.8418

5 0.968 0.806 0.675 0.953 0.944 0.8692

6 0.968 0.91 0.893 0.952 0.956 0.9358

7 0.967 0.915 0.906 0.971 0.951 0.942

8 0.966 0.914 0.906 0.969 0.948 0.9406

9 0.968 0.915 0.905 0.959 0.928 0.935

10 0.968 0.915 0.905 0.967 0.938 0.9386

Fig. 8 Evaluating the change of the number of clusters

424 A. Mostafa et al.



growing method. It shows that the average performance of liver images segmen-
tation is improved using the proposed approach. Segmentation using region
growing has average result of SI = 84.82 %. This result is improved using the
proposed approach with SI = 93.73 %.

Figure 9 shows SI for thirty eight CT liver images, where each point in the figure
represents the similarity of one segmented image, compared to its annotated image.
Table 4 shows the results of the implementation of the proposed approach com-
pared with region growing method. It shows the enhancement of the result using
ABC in the proposed approach. We can mention that using ABC for segmenting the
whole liver is not affected by noise and there is no need for using any filter in the
segmentation process.

Table 5 compares the results of proposed approach to other approaches. The
compared approaches are region growing, level set which is an enhanced
region-based approach, which depends on evolving an initial contour towards the
boundary of the object, and k-means clustering technique. It shows that the pro-
posed approach achieved the best result.

Table 4 Results of proposed approach compared to region growing

Image no. Region growing Proposed Image no. Region growing Proposed

1 0.881 0.981 20 0.880 0.925

2 0.927 0.911 21 0.708 0.924

3 0.831 0.947 22 0.616 0.945

4 0.740 0.910 23 0.696 0.945

5 0.868 0.969 24 0.820 0.913

6 0.849 0.951 25 0.913 0.902

7 0.956 0.949 26 0.930 0.940

8 0.934 0.891 27 0.921 0.951

9 0.923 0.951 28 0.908 0.948

10 0.939 0.945 29 0.920 0.948

11 0.890 0.953 30 0.947 0.945

12 0.893 0.935 31 0.941 0.921

13 0.757 0.940 32 0.942 0.921

14 0.917 0.959 33 0.888 0.905

15 0.902 0.935 34 0.856 0.938

16 0.938 0.948 35 0.855 0.961

17 0.910 0.940 36 0.913 0.942

18 0.898 0.905 37 0.671 0.959

19 0.536 0.917 38 0.661 0.946

Result 84.82 93.73
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Finally, ABC is applied once more on the whole liver segmented image. The
lesion regions is always darker than the normal liver tissues colour. So, removing
the tow highest clusters values results in the lesion’s ROI. Then the image of ROI
can be passed to a classifier later on. Figure 10 shows the results of applying ABC
on the segmented liver.

Also, watershed is applied on the whole liver segmented image. The image is
segmented into a number of segmented closed regions. Then every region is
extracted to calculate texture features to be passed to a classifier later on. Figure 11
shows the results of applying ABC on the segmented liver.

Fig. 9 Similarity index results for 38 segmented images

Table 5 Comparison of
proposed approach with other
approaches

Ser. Approach Result

1 Region growing 84.82

2 Level set 92.10

3 K-means with RG 92.38

4 Proposed approach with RG 93.73
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Fig. 10 Lesion segmentation, a ABC segmented image, b ABC clusters image, c Annotated
image, d ABC segmented lesion
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Fig. 11 Watershed segmentation, a ABC segmented image, b Watershed binary image,
c Annotated image, d Watershed segmented image
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5 Conclusion and Future Work

Any CAD system must include the phase of segmentation. Liver segmentation is
divided into the phases of preprocessing and segmentation. In this paper prepro-
cessing is involved in cleaning image annotations and connecting ribs.
Segmentation phase relies on the ABC algorithm as a clustering technique, dividing
the image into a number of clusters that fills the whole levels of the intensity values
that ranges from 0 to 255. Morphological operations play a significant role, when
applied to each clustered binary image. It removes small unconnected boundaries
and objects. Then, all binary clustered images are summed in one binary image
except the highest clusters. This results in a binary segmented liver, which is
multiplied by the original image. Then region growing is used to enhance the
segmented liver image. The segmented liver can be manipulated by ABC or
watershed to segment ROIs to calculate texture features for each region and pass it
to a classifier. The whole liver segmentation using ABC and region growing has a
considerable average accuracy rate 93.73 % using SI. So, ABC optimization
technique is very promising for being used in classification. It can be used in future
work as a classifier for liver anomalies.
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Nature Inspired Optimization Algorithms
for CT Liver Segmentation

Ahmed Fouad Ali, Abdalla Mostafa, Gehad Ismail Sayed,
Mohamed Abd Elfattah and Aboul Ella Hassanien

Abstract Nature inspired optimization algorithms have gained popularity in the
last two decades due to their efficiency and flexibility when they applied to solve
global optimization problems. These algorithms are inspired from the biological
behavior by swarms of birds, fish and bees. In this chapter, we give an overview of
some of nature inspired optimization algorithms such as Artificial Bee Colony
(ABC), Cuckoo Search (CS), Social Spider Optimization (SSO) and Grey Wolf
Optimization (GWO). Also, we present the usage of ABC and GWO algorithms for
CT liver segmentation. The experimental results of the two selected algorithms
show that the two algorithms are powerful and can obtain good results when
applied to segment medical images.
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1 Introduction

The complexity of segmentation problem in medical imaging is the motivation for
the researchers to find new efficient methods. Observing nature and swarms have
inspired and paved the way to create different metaheuristic algorithms. The indi-
vidual behaviour of the swarms is simple, but with the astonishing co-ordination
and organization, they present a remarkable structured social organization. Swarm
intelligence is a biologically inspired algorithms, focusing on the amazing collec-
tive behaviour of swarms. It tries to mimic the successful capabilities of swarms to
solve a problem, depending on their distributed members behaviour which is
coordinated and collective. Researchers are trying to trace the steps of swarms to
develop sophisticated methods to solve complex optimization problems.

Medical imaging uses different modalities to aid diagnosis of abnormality. The
imaging categories depend on the usage of radiography of x-ray, radio frequencies
pulses, sound waves, and gamma rays. Its application has a wide range in different
branches of medical diagnosis including hepatology, oncology and cardiology…
etc. The most common modality of imaging is CT scan. It depends on the radio-
graphy of x-rays. It sends different surrounding beams of x-rays against the patient.
The reflection of the beams determines the intensity values of the picked image. CT
images are suitable for the diagnosis and detection of hepatic diseases which is
applied in this paper. Magnetic resonance imaging (MRI) is another modality that
uses the radio frequencies for imaging. MRI is very efficient in cardiovascular
diseases. Ultrasound (US) imaging uses sound waves higher than the limit of
human hearing. it is efficient in the detection of pregnancy and blood clotting.
Sometimes, it can help in diagnosis of apparent tumors of organs in the abdominal
cavity as liver. Nuclear medicine can handle both of treatment and imaging. The
gamma rays are the base for the positron emission tomography (PET) and
single-photon emission computed tomography (SPECT).

Liver is the biggest gland in human body. It has some difficult characteristics that
makes the process of segmentation difficult. Liver segmentation difficulties include
having different shapes im different slides of images. Besides, there is a similarity
between the intensity of liver and other organs as spleen, stomach, flesh and
muscles. Another difficulty is the falciform ligament that divided the area of liver
into two regions. Liver segmentation in CT images is the backbone of the discussed
implementation of segmentation methods of bio-inspired optimization techniques.

Sathya et al. used Particle swarm optimization (PSO) for multi-level thresh-
olding in image segmentation. PSO is used to maximize the objective functions of
Kapur and Otsu [1]. Also, E. Cuevas et al. implemented Artificial Bee Colony
(ABC) optimization to compute image threshold for image segmentation [2].
A. Mostafa et al. used ABC algorithm as a clustering technique combined with
simple region growing for the whole liver segmentation [3]. Y. Linag et al. com-
bined the Ant Colony Optimization (ACO) algorithm and Otsu with expectation
and maximization algorithm for selecting multilevel threshold for segmenting the
objects with complex structure. They combined the non-parametric ACO with the
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parametric EM [4]. Sivaramakrishnan et al., designed a system to diagnose breast
tumors in mamograp images using Fish Swarm Algorithm, combined with ABC
algorithm [5]. W. Alomoush et al. built a system depends of hybrid firefly and
Fuzzy C-means to detect brain tumors in MRI images [6]. R. Jagadeesan enhanced
Fuzzy C-means with firefly algorithm in order to segment brain tumor in MRI
images. The Firefly algorithm is optimizes the Fuzzy C-means membership func-
tion to guarantee an efficient segmentation [7]. L. Sankari overcomes the problem
of the maxima in Expectation-Maximization (EM) algorithm by combining
Glowworm swarm optimization (GSO) algorithm with EM algorithm. GSO finds
the initial seed points by clustering the image and pass it to EM algorithm seg-
mentation [8]. S. Jindal presented Bacterial foraging optimization algorithm
(BFOA), which is inspired by a type of bacteria called Escherichia coli. It has an
advantage of needing no thresholding in image segmentation. BFOA reduces the
computational complexity and time [9]. This paper concentrates on four
bio-inspired optimization techniques, Artificial Bee Colony, Cuckoo Search, Social
Spider and Grey Wolf.

The remainder of this paper is ordered as follows. Section 2 gives an overview
about the nature inspired optimization techniques, including Artificial Bee Colony
algorithm (ABC) in Sect. 2.1, Cuckoo Search (CSO) in Sect. 2.2, Social Spider
optimization algorithm (SSO)in Sect. 2.3, and Gray Wolf Algorithm (GW) in
Sect. 2.4. Section 3 presents the implementation of the first application of ABC, its
algorithm and experimental results. Also, Sect. 4 presents the implementation of the
second application of GW, its algorithm and experimental results. Finally, con-
clusions and future work are discussed in Sect. 5.

2 Nature Inspired Optimization Algorithms

Nature inspired algorithms are based on the social behavior of animals and birds
which can be observed in nature, such as ant colonies, flocks of birds, fish schools
and bee hives. In the following subsections, we present four nature inspired algo-
rithms as follow.

2.1 Artificial Bee Colony Algorithm

In this section, we highlight the main concepts and structure of the artificial bee
colony algorithm as follows.

Main concepts While searching the food, the bees in swarm can communicate,
share, store and memorize the information according to changes in the environment.
Each bee in the swarm can update its position according to these information. The
behavior of the bees can be summarized as follows.
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Food sources A flower represents the food source for a bee. A bee collects all
information from the food source such as the amount of nectar in the flower, the
distance and direction to the nest. A bee stores and shares these information with
other bees in the swarm.

Employed bees There are two types of bees, employed bees and unemployed
bees as shown in Fig. 1. The employed bees are responsible for exploiting the food
source and keep the profitability of associated food source.

Unemployed bees The unemployed bees represent the other type in the bee
colony. They are sharing the information with the employed bees with a certain
probability in order to select a food source. The unemployed bees are divided into
two categories as onlooker bees and scout bees. The onlooker bees are collecting
the information from the employed bees in order to select a food source for
themselves. The scout bees are responsible for searching about the new food
sources when the existing food sources exhaust. Usually, the employed bee rep-
resent 50 % of the bee swarm, while the unemployed bees represent the rest of the
swarm. On average the scout bees represent 10 % of the total bees.

Foraging behavior In foraging process, a bee starts searching the food and
extracting the nectar from the food source. The amount of the extracted nectar
depends on the distance of food source from hive and the richness. The bee uses the
enzymes in its stomach in order to make honey. The bee shares its information with
the other bees in the swarm by dancing in various forms.

Dance The bee shares the food source information by dancing in various ways.
The bee uses one of the following three dance forms.

• Round dance. The bee does this type of dance when the food source is near to
hive.

• Waggle dance. The employed bees select this type of dance when the food
source is far from the hive. The speed of dance is proportional to the distance
between the food source and the hive.

• Tremble dance. This type of dance means, the bee takes long time to unload the
nectar and she does not know about the current profitability of its food source.

ABC algorithm The artificial bee colony (ABC) algorithm is a population based
meta-heuristics algorithm based on the foraging behavior of honey bee colonies. It
was proposed by Karaboga [10, 11]. There are four phases in the ABC algorithms
as follows.

The initial population phase In the ABC algorithm, the initial population is
generated randomly. The population contains NS solutions, where each solution xi
is a D dimensional vector, xi represents the ith food source. Each solution in the

Fig. 1 Bee colony types
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population is generated as follows. The main structure of the ABC algorithm is
presented in Algorithm 1. The steps of the ABC algorithm can be summarized as
follows.

xij ¼ xLj þ rðxjU � xjLÞ; j ¼ 1; 2; . . .;D: ð1Þ

where L;U are bounds of xi in jth direction and r is a random number, r 2 ½0; 1�.
The employed bees phase The employed bees modify the current solution

according to the information of fitness values of each solution (nectar amount). The
bee updates its position if the fitness value of the new food source is better than the
old food source. The bee position is updated as follows.

tij ¼ xij þ/ijðxij � xkjÞ: ð2Þ

where /ijðxij � xkjÞ is the step size, k; j are randomly selected indices,
k 2 1; 2; . . .;NS, j 2 1; 2; . . .;D and /ij is a random number, /ijðxij � xkjÞ 2 ½�1; 1�.

Onlooker bees phase The employed bees share the fitness values of the food
source and their position information with the onlooker bees. The onlooker bees
select a solution with a probability pi based on the solution fitness value. The
probability can be calculated as follows.

pi ¼ fi
PNS

j¼1 fj
ð3Þ

where fi is the fitness value of the ith solution.
Scout bees phase The food source is abandoned when the position of the food

source is not updated for a predetermined number of cycles. The associated bee
with the abandoned food source (solution) becomes scout bee and it starts to
generate a new food source within the environment (search space). The new
solution is generated randomly as follows.

xij ¼ xLj þ rðxjU � xjLÞ; j ¼ 1; 2; . . .;D: ð4Þ

where L;U are bounds of xi in jth direction and r is a random number, r 2 ½0; 1�.
The steps of ABC algorithm is described as follows.

• Step 1. The ABC generates a randomly distributed initial population of NS
solutions (food source positions), where NS denotes the size of population. Each
solution xiði ¼ 1; 2; . . .;NSÞ is a D-dimensional vector.

• Step 2. Each solution in the population is evaluated by calculating its fitness
function, and the best solution in the population is memorized.

• Step 3. The cycle counter is initialized, and the following steps are repeated
until termination criteria is satisfied.

• Step 4. A new solution is generated from each old solution as shown in Eq. 1.
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• Step 5. Each solution in the population is evaluated by calculating its fitness
function, and the best solution in the population is assigned and memorized as
follows.

f ðxiÞ ¼
1

1þ f ðxiÞ if f ðxiÞ� 0
1þ absðf ðxiÞÞ if f ðxiÞ\0

�

• Step 6. The probability of each solution is calculated in order to generate a new
trail solution ti by an onlooker bees. The associated probability of each food
source pi is defined as shown in Eq. 3.

• Step 7. The trail solution is generated and evaluated, and if it is better than or
equal to the old solution, then the old solution is replaced with the new solution,
otherwise the old solution is retained. The best solution is memorized. If the
food source cannot be improved for a limited number of cycles, which is called
“limit”, the food source is considered to be abandoned, and replaced with a new
food source by scout.

• Step 8. The operation is repeated until termination criteria is satisfied, i.e. the
algorithm reaches maximum cycle number (MCN).

Algorithm (1) describes how ABC is implemented.

436 A.F. Ali et al.



2.2 Cuckoo Search

Cuckoo search (CS) is a population based metaheuristics algorithm developed by
Yang and Deb [12]. The concepts of the CS algorithm are presented as follow.

Main concepts Cuckoo search algorithm is a population based metaheuristic
algorithm inspired from the reproduction strategy of the cuckoo birds. The cuckoo
birds lay their eggs in a communal nests and they may remove other’s eggs to
increase the probability of hatching their own eggs [13]. This method of laying the
eggs in other’s nests is called obligate brood parasitism. Some host bird can dis-
cover the eggs are not its own and throw these eggs away or abandons its nest and
build a new nest in a new place. Some kind cuckoo birds can mimic the color and
the pattern of the eggs of a few host bird in order to reduce the probability of
discovering the intruding eggs. The cuckoos laid their eggs in a nest where the host
bird just laid its own eggs, since the cuckoo eggs are hatching earlier than the host
bird eggs. Once the eggs are hatching, the cuckoo chick’s starts to propel the host
eggs out the of the nest in order to increase its share of food provided by its host
bird.

Lévy flights Recent studies show that the behavior of many animals when
searching for foods have the typical characteristics of Lévy Flights [14–16]. Lévy
flight [14] is a random walk in which the step-lengths are distributed according to a
heavy-tailed probability distribution. After a large number of steps, the distance
from the origin of the random walk tends to a stable distribution.

Cuckoo search characteristic The cuckoo search algorithm is based on the
following three rules.

• At a time, cuckoo chose a nest randomly to lay an egg.
• The best nest is the nest with high quality eggs and the nest will carry over to the

next generation.
• The number of available host nests is fixed. The probability of discovering an

intruding egg by the host bird is pa 2 ½0; 1�. If the host bird discovers the
intruding egg it throw it away the nest or abandon the nest and starts to build a
new nest elsewhere.

Cuckoo search algorithm In this section, we present in details the main steps of
the CS algorithm as shown in Algorithm 2.
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• Step 1. The standard cuckoo search algorithm starts with the initial values of
population size n, probability pa 2 ½0; 1�, maximum number of iterations Maxitr
and the initial iteration counter t is setting. Lines 1–2

• Step 2. The initial population n is generated randomly and each solution xi in the
population is evaluated by calculating its fitness function f ðxiÞ. Lines 3–6

• Step 3. The following steps are repeated until the termination criterion satisfied

– Step 3.1. A new solution is generated randomly using a Lévy flight as
follow.

xtþ 1
i ¼ xti þ a� L�e vyðkÞ; ð5Þ

where � denotes entry-wise multiplication, a is the step size, and Lévy ðkÞ is
the Lévy distribution. Lines 8–9

– Step 3.2. The new solution is replaced with a random selected solution if its
objective function is better than the objective function of the selected random
solution. Lines 10–13

– Step 3.3. A fraction ð1� paÞ of the solutions selected randomly and aban-
doned and replaced by new solutions generated by using local random walks
as follow.

xtþ 1
i ¼ xti þ cðxtj � xtkÞ; ð6Þ
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where xtj and xtk are two different solutions selected randomly and c is a
random number. Lines 14–15

– Step 3.4. The solutions are ranked according to their objective values and the
best solution is assigned and the iteration counter increases. Lines 16–18

• Step 4. The operation is repeated until the termination criteria are satisfied.Line 19
• Step 6. Produce the best found solution so far. Line 20

2.3 Social Spider Optimization

The social spider optimization (SSO) algorithm is a population based nature
inspired algorithm proposed by Cuevas [17]. In the following subsections, we
highlight the SSO algorithm and its concepts.

Main concepts and inspiration There are two fundamental components of a
social spider colony, social members and communal web. The social members is
divided into males and females. The number of female spiders reaches 70 %, while
the number of male reaches 30 % of the total colony members [18, 19]. Each
member in the colony cooperate in different activities such as building and main-
taining the communal web, prey capturing, mating [20]. Female spiders show a
major tendency to socialize present an attraction or dislike is developed over other
spiders according to their vibrations based on the weight and distance of the
members [21]. Male spiders are divided into two classes, dominate and
non-dominate male spiders [22]. Dominant male spiders, have better fitness char-
acteristics in comparison to non-dominant. Mating operation allows the information
exchange among members and it is performed by dominant males and female.
A dominant male mates with one or all females within a specific range to produce
offspring. In the social spider optimization algorithm (SSO), the communal web
represents the search space, each solution within the search space represents a spider
position. The weight of each spider represents the fitness value of the solution.

Initializing the population The algorithm starts by initializing the population S
of N spider positions (solution). The population contains of females fi and males mi.
The number of females is randomly selected within the range of 65–90 % and
calculated by the following equation:

Nf ¼ floor½ð0:9� randð0; 1Þ:0:25Þ:N� ð7Þ

where rand is a random number between (0, 1), floor(.) maps a real number to an
integer number. The number of male spiders Nm is calculated as follows.

Nm ¼ N � Nf ð8Þ
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The female spider position fi is generated randomly between the lower initial
parameter bound plowj and the upper initial parameter bound phighj as follow.

f 0i;j ¼ plowj þ randð0; 1Þ:ðphighj � plowj Þ ð9Þ

i ¼ 1; 2; . . .;Nf ; j ¼ 1; 2; . . .; n

While the male spider position mi is generated randomly as follow.

m0
i;j ¼ plowj þ randð0; 1Þ:ðphighj � plowj Þ ð10Þ

i ¼ 1; 2; . . .;Nm; j ¼ 1; 2; . . .; n

where j; i and k are the parameter and individual indexes respectively. The function
rand(0, 1) generates a random number between 0 and 1.

Fitness evaluation in the SSO algorithm, the weight of each spider represents
the solution quality. The function value of each solution i is calculated as follow.

wi ¼ JðsiÞ � worsts
bests � worsts

ð11Þ

where JðsiÞ is the fitness value obtained of the spider position si, the values worsts
and bests are the maximum and the minimum values of the solution in the popu-
lation respectively (minimization problem).

Modeling of the vibrations through the communal web The information
among the colony members is transmitted through the communal web. The infor-
mation is encoded as a small vibrations that are critical for the collective coordi-
nation of all individual in the population. The vibrations depend on the weight and
distance of the spider which has generated them. The information transmitted
(vibrations) perceived by the individual i from member j are modeled as follow.

Vibi;j ¼ wj:e
�d2i;j ð12Þ

where the di;j is the Euclidian distance between the spiders i and j.
There are three special relationships of the vibrations between any pair of

individuals as follows.

• Vibrations Vibci. The transmitted information (vibrations) between the indi-
vidual i and the member c ðscÞ which is the nearest member to i with a higher
weight can be defined as follow.

Vibci ¼ wc:e
�d2i;c ð13Þ

• Vibrations Vibbi. The transmitted information (vibrations) between the indi-
vidual i and the member b ðsbÞ which is the best member in the population S can
be defined as follow.
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Vibbi ¼ wb:e
�d2i;b ð14Þ

• Vibrations Vibfi. The transmitted information (vibrations) between the indi-
vidual i and the nearest female individual f ðsf Þ can be defined as follow.

Vibfi ¼ wf :e
�d2i;f ð15Þ

The vibrations Vibci, vibrations Vibbi and vibrations Vibfi are presented in
Fig. 2a–c respectively.

Female cooperative operator The female spiders present an attraction or dislike
over other irrespective of gender. The movement of attraction or repulsion depends
on several random phenomena. A uniform random number rm is generated within
the range [0, 1]. If rm is smaller than a threshold PF, an attraction movement is
generated; otherwise, a repulsion movement is produced as follows.

f tþ 1
i ¼ f ti þ a:Vibci:ðsc � f ti Þþb:Vibbi:ðsb � f ti Þþ d:ðrand � 0:5Þ with probabilityPF

f ti � a:Vibci:ðsc � f ti Þ � b:Vibbi:ðsb � f ti Þþ d:ðrand � 0:5Þ with probability 1� PF

�

where a; b; d and rand are random number between [0, 1], t is the iteration number.
Male cooperative operator The male spider with a weight value above the

median value of the male population is called a dominant D, on the other hand the
other males with weights under the median are called non-dominant ND. The
median weight is indexed by Nf þm. The position of the male spider can be
modeled as follows.

mtþ 1
i ¼

mt
i þ a:Vibfi:ðsf � mt

iÞþ d:ðrand � 0:5Þ if wNf þ i [wNf þm

mt
i þ a:

PNm

h¼1
mt

h:wNf þ h
PNm

h¼1
wNf þ h

� mt
i

� �

8

<

:

where the individual sf represents the nearest female individual to the male member
i.

Mating operator The mating in a social spider colony is performed by the
dominant males and the female members. When a dominant male mg spider locates
a set Eg of female members within a specific range r (range of mating), which is
calculated as follow.

r ¼
Pn

j¼1 ðphighj � plowj Þ
2:n

ð16Þ

The spider holding a heavier weight are more likely to influence the new
product. The influence probability Psi of each member is assigned by the roulette
wheal method as follows:
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Fig. 2 Configuration of each
special relation: a Vibci,
b Vibbi and c Vibfi
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Psi ¼ wi
P

j2Tt wj
ð17Þ

Social spider optimization algorithm In this subsection, we present in details
the main steps of the proposed SSO algorithm as shown in Algorithm 3.
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• Step 1. The algorithms starts by setting the initial values of the number of
solutions N in the population size S, threshold PF and maximum number of
iterations maxitr . Line (1)

• Step 2. The number of females and males are setting as shown in Eqs. 7 and 8.
Line (2)

• Step 3. The initial iteration counter is initialized. Line (3).
• Step 4. The initial population is generated randomly for the females and the

males solutions. Lines (4–13).
• Step 5. The following process are repeated until termination criteria satisfied

– Step 5.1. Each solution in the population is evaluated by calculating its
weight (fitness function as shown in Eq. 11. Lines (15–17).

– Step 5.2. Move female spiders according to the female cooperative operator
after calculating the vibrations of the local and global best spiders as shown
in Eqs. 13 and 14. Lines (18–25).

– Step 5.3. Move the male spiders according to the male cooperative operator
after calculating the median male individual wNf þm from all male spiders.
Lines (27–34).

– Step 5.4. Perform the mating operation after calculating the radius of matting
as shown in Eq. 16. Lines (35–46).

• Step 6. The number of iterations are increased. Line (47).
• Step 7. The best obtained solution is produced. Line (49).

2.4 Grey Wolf Optimization

Grey wolf optimizer (GWO) is a population based meta-heuristics algorithm simu-
lates the leadership hierarchy and hunting mechanism of gray wolves in nature pro-
posed byMirjalili et al. [23]. In the following subsection, we will give an overview of
the main concepts and structure of the grey wolf optimizer algorithm as follow.

Main concepts and inspiration Grey wolves are considered as apex predators,
which they are at the top of the food chain. Grey wolves prefer to live in a group
(pack), each group contains 5–12 members on average. All the members in the
group have a very strict social dominant hierarchy as shown in Fig. 3. The social
hierarchy consists of four levels as follow.

Fig. 3 Social hierarchy of
grey wolf
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• The first level is called Alpha (a) The alpha wolves are the leaders of the pack
and they are a male and a female. They are responsible for making decisions
about hunting, time to walk, sleeping place and so on. The pack members have
to dictate the alpha decisions and they acknowledge the alpha by holding their
tails down. The alpha wolf is considered the dominant wolf in the pack and all
his/her orders should be followed by the pack members.

• The second level is called Beta (b) The betas are subordinate wolves, which
help the alpha in decision making. The beta wolf can e either male or female and
it consider the best candidate to be the alpha when the alpha passes away or
becomes very old. The beta reinforce the alpha’s commands throughout the pack
and gives the feedback to alpha.

• The third level is called Delta (d) The delta wolves are not alpha or beta
wolves and they are called subordinates. Delta wolves have to submit to the
alpha and beta but they dominate the omega (the lowest level in wolves social
hierarchy). There are different categories of delta as follows

– Scouts. The scout wolves are responsible for watching the boundaries of the
territory and warning the pack in case of any danger.

– Sentinels The sentinel wolves are responsible for protecting the pack.
– Elders The elder wolves are the experienced wolves who used to be alpha or

beta.
– Hunters The hunters wolves are responsible for helping the alpha and beta

wolves in hunting and providing food for the pack.
– Caretakers The caretakers are responsible for caring for the ill, weak and

wounded wolves in the pack.

• The fourth (lowest) level is called Omega (x) The omega wolves are con-
sidered the scapegoat in the pack, they have to submit to all the other dominant
wolves. They may seem are not important individuals in the pack and they are
the last allowed wolves to eat. The whole pack are fighting in case of losing the
omega.

In the following subsection, we present the mathematical models of the social
hierarchy, tracking, encircling and attacking prey as follows.

Social hierarchy In the grey wolf optimizer (GWO), we consider the fittest
solution as the alpha a, while the second and the third fittest solutions are named
beta b and delta d, respectively. The rest of the solutions are considered omega x.
In GWO algorithm, the hunting is guided by a, b and d. The x solutions follow
these three wolves.

Encircling prey During the hunting, the grey wolves encircle prey. The
mathematical model of the encircling behavior is presented in the following
equations.

D ¼ jC � XpðtÞ � A � XðtÞj ð18Þ
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Xðtþ 1Þ ¼ XpðtÞ � A � D ð19Þ

where t is the current iteration, A and C are coefficient vectors, Xp is the position
vector of the prey, and X indicates the position vector of a grey wolf.

The vectors A and C are calculated as follows:

A ¼ 2a � r1 � a ð20Þ

C ¼ 2 � r2 ð21Þ

where components of a are linearly decreased from 2 to 0 over the course of
iterations and r1, r2 are random vectors in ½0; 1�.

Hunting The hunting operation is usually guided by the alpha a. The beta b and
delta d might participate in hunting occasionally. In the mathematical model of
hunting behavior of grey wolves, we assumed the alpha a, beta b and delta d have
better knowledge about the potential location of prey. The first three best solutions
are saved and the other agent are oblige to update their positions according to the
position of the best search agents as shown in the following equations.

Da ¼ jC1:Xa � Xj;
Db ¼ jC2:Xb � Xj;
Dd ¼ jC3:Xd � Xj:

ð22Þ

X1 ¼ Xa � A1 � ðDaÞ;
X2 ¼ Xb � A2 � ðDbÞ;
X3 ¼ Xd � A3 � ðDdÞ:

ð23Þ

Xðtþ 1Þ ¼ X1 þX2 þX3

3
: ð24Þ

The search agent position updating process is shown in Fig. 4.
Attacking prey (exploitation) The grey wolf finish the hunt by attacking the

prey when it stop moving. The vector A is a random value in interval ½�2a; 2a�,
where a is decreased from 2 to 0 over the course of iterations. When jAj\1, the
wolves attack towards the prey, which represents an exploitation process.

Search for prey (exploration) The exploration process in GWO is applied
according to the position a, b and d, that diverge from each other to search for prey
and converge to attack prey. The exploration process is modeled mathematically by
utilizing A with random values greater than 1 or less than –1 to oblige the search
agent to diverge from the prey. When jAj[ 1, the wolves are forced to diverge
from the prey to fined a fitter prey. In the following subsection, we present the
GWO algorithm as follows.
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GWO algorithm

• Step 1. The standard grey wolf optimizer algorithm starts by setting the initial
values of the population size n, the parameter a, coefficients A and C and the
maximum number of iterations maxitr . Line 1.

Fig. 4 Position updating in GWO

Nature Inspired Optimization Algorithms for CT Liver Segmentation 447



• Step 2. Initialize the iteration counter t. Lines 2.
• Step 2. The initial population n is generated randomly and each search agent Xi

in the population is evaluated by calculating its fitness function f ðXiÞ. Lines 3–6
• Step 3. Assign the values of the first, second and the third best solution Xa, Xb

and d, respectively. Line 7
• Step 4. The following steps are repeated until the termination criterion satisfied.

Lines 9–14

– Step 4.1. Each search agent (solution) in the population is updated as shown
in Eq. 24. Line 10

– Step 4.2. Decrease the parameter a from 2 to 0. Line 11
– Step 4.3. The coefficients A and C are updated as shown in Eqs. 20 and 21,

respectively. Line 12
– Step 4.4. Each search agent in the population is evaluated by calculating its

fitness function f ðXiÞ. Line 13

• Step 5. The first, second and the third best solutions are updated Xa, Xb and Xd,
respectively. Line 15

• Step 6. The iteration counter is increasing t ¼ tþ 1. Line 16
• Step 7. The overall process is repeated until termination criteria satisfied. Line

17
• Step 6. Produce the best found search agent (solution) so far Xa. Line 18

3 Application 1: ABC Approach for CT Liver
Segmentation

The Artificial Bee Colony (ABC) segmentation approach consists of three main
phases: The usage of ABC makes the preprocessing phase easier and simpler,
depending only on image cleaning for the patient’s information and connecting ribs.
In this phase there is no implementation of any other filters or morphological
operations for preprocessing.

In the second Artificial bee colony phase, the image is clustered into a number of
clusters that represents the centroids of the intensity values in the image. Each
cluster is separated in a binary image. Then, some morphological operations are
implemented on each cluster in a binary image. Finally the images of the clusters
are gathered in one binary image.

In the third phase, the resulting binary image is multiplied by the original image,
and enhanced by using simple region growing technique. The segmented image is
validated using similarity index measure to calculate the accuracy. These phases are
described in detail in the following section, along with the involved steps and the
characteristics of each phase.
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3.1 Preprocessing Phase: Ribs Boundary Connection

The usage of ABC eliminate the need for filtering in image preprocessing. Median
filter is used in cleaning the image annotation and contrast stretching is used for
connecting ribs.

A step of image cleaning starts the preprocessing phase, removing image
annotation and machine’s bed. It facilitates the next step of connecting ribs.
Figure 5 shows the result of this step.

There is a problem of tissues of flesh and muscles which are adjacent and
connected to liver in the left side of CT image. Connecting ribs aids to overcome
this problem, using contrast stretching and a threshold close to white colour of ribs
to isolate the ribs. In the original image, a line is drawn between the edges of the
ribs to connect them. This separates the muscles from the liver tissues. See cleaning
image and connecting ribs algorithms in details in [3, 24]. Figure 6 shows the result
of connecting ribs process.

Fig. 5 Cleaning image. a Original image, b cleaned image

Fig. 6 Connecting ribs in the image: a Original image, b contrast stretching filter, c connected
ribs

Nature Inspired Optimization Algorithms for CT Liver Segmentation 449



3.2 Artificial Bee Colony Phase

The ABC can be used as a clustering technique in the purpose of liver segmenta-
tion. Handling parameters settings of ABC algorithm leads to a better performance.
The number of clusters is very important in this process. Liver CT image has two
extreme intensity values which are the black background and white bones. Besides,
there are intensity values of liver boundaries, lesion and other organs. Also we need
to adjust the number of employed and onlooker bees in the colony, and we need to
reduce the maximum iterations to reduce implementation cost. A fitness function
helps to determine the new solution in every iteration. The resulting solutions of
clusters (global parameters or best solution) will be the centroids of the required
clusters.

The algorithm sets the parameters values and apply the ABC algorithm on the
preprocessed image. ABC results in a number of clusters centroids, which is applied
on all intensity values to determine the cluster that each point in the image belongs
to. The clusters are sorted and extracted in binary images. Morphological operations
are applied on each binary image to remove boundaries and small objects. Then we
exclude the lowest and highest clusters and add other clustered images together.
Finally, the resulting binary images multiplied by the original image to get the
segmented one. Figure 7 shows a number of different clustered images using ABC
algorithm.

Table 1 describes the successful parameter settings when applying the proposed
algorithm.

Fig. 7 Clustered results of different images using ABC

Table 1 Parameters of
proposed approach

Ser. Parameter Setting

1 Population size 50

2 Food 25

3 Number of solutions 50

4 Maximum iterations 30

5 Number of clusters 6

450 A.F. Ali et al.



There is an advantage of using ABC regarding the noise. It is not affected by
noise at all. Because noise is small pixels, filled by morphological operations step.

3.3 Region Growing Phase

Similarity difference concept is used in region-based techniques to extract regions
from the image. Some techniques as level set and fast marching use an initial
contour to extract one region. Watershed technique is used to draw a closed
boundary around all available objects [25]. Also region growing can do the same as
level set and fast marching. Region growing has some advantages against other
techniques. The advantages reside in its simplicity, speed and low cost of com-
putational calculations. In this phase, region growing has been chosen to enhance
the result of ABC segmentation. Figure 8 shows the implementation of region
growing and watershed techniques.

3.4 Experimental Results and Discussion

A set of 38 CT images were used to experiment the proposed approach. The used
images were taken in the first phase of CT scan before the patient is injected with
contrast materials. Figure 9 shows the binary image of ABC and the liver seg-
mented images.

Finally, the ABC segmented image is enhanced using simple region growing
technique. Figure 10 shows the difference between the segmented image and
annotated one.

Fig. 8 Liver segmentation using region growing and watershed techniques: a Original image,
b region growing image, c watershed image
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Evaluation is performed using similarity index (SI) defined using the following
equations:

SIðIauto; ImanÞ ¼ Iauto \ Iman
Iauto [ Iman

ð25Þ

where SI is the similarity index, Iauto is the binary automated segmented image,
resulting from the phase of final segmentation of the whole liver in the used
approach and Iman is the binary manual segmented image by a radiology specialist.

It shows that the average performance of liver images segmentation is improved
using the proposed approach. Segmentation using region growing has average
result of SI = 84.82 %. This result is improved using the proposed approach with
SI = 93.73.

Table 2 compares the results of proposed approach to other methods.

Fig. 10 Final liver segmented image compared to the annotated image: a Original image,
b segmented image, c difference image

Fig. 9 ABC liver segmentation, a original image, b ABC binary image, c ABC segmented image
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4 Application 2: Grey Wolf Optimization for Abdominal
CT Liver Parenchyma Segmentation

4.1 The Proposed Segmentation Approach

The proposed abdominal CT Liver parenchyma segmentation approach is com-
prised of three phases. The three phases are described in detail in the following
section along with the steps involved and the characteristics feature for each phase
and the overall architecture of the introduced approach is described in Fig. 11.

4.2 Preprocessing Phase

Preprocessing is the initial step for CT liver image clustering. It divided to two
steps. They are: CT image resizing and Noise removal.

• CT image resizing. The goal of image resizing the image is to reduce com-
putational time. In this work, CT image is resized to 256 * 256.

• Noise removal. Noise removal of image is most commonly used step in pre-
processing phase. When image transforms from one form to another like
scanning some degradation may occur in this case. Enhancement methods are
needed in order to enhance the degraded image. A kind of these degradations is
image noise. It can be defined as the random variation of color or brightness

Table 2 Comparison of
Proposed approach with other
methods

Ser. Method Result

1 Region growing 84.82

2 Level set 92.10

3 K-means with RG 92.38

4 Proposed approach with RG 93.73

Fig. 11 Proposed
Automatic CT liver
Segmentation Architecture
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information in images [26]. These noises are always undesirable. Removing
these noises with preserving edges of the image plays a vital role in image
processing. Median filter is one of the simplest and most popular approaches for
removing noise like salt and pepper. In this work, median filter with window
size 3 * 3 is applied to remove noise from CT image.

4.3 CT Image Clustering Based on FCM-GWO Phase

FCM is one of most commonly used clustering algorithm. The basic concept of
FCM is to find optimal cluster centroids that minimize dissimilarity function,
however, the main drawback of FCM is the local minimum. In order to solve this
problem, a hybrid approach based on using FCM and GWO is proposed. The main
goal of using GWO in this work is to enhance clustering results produced by using
FCM and find optimal thresholds values. The great significant characteristic of any
particle swarm versions is that it needs less parameter to adjust unlike Genetic
Algorithm (GA). This characteristic obviously can highly influence the precision
and efficiency of the algorithm [27]. Algorithm 5 describes the proposed clustering
algorithm. Moreover, the initial values used for both Fuzzy Logic and GWO
parameters are described in Table 3. These parameters values are found to best
initial values from experimental results.

Table 3 Parameters setting
of FCM-GWO algorithm

Parameter Value (s)

Number of fuzzy clusters 3

Number of search agents 10

Number of iterations 5

Range (boundary of search space) [0 255]

dimension 2
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4.4 Post-pocessing Phase

This phase is divided to two steps. They are: Selection of best cluster image and
Segmented region enhancement.

• Selection of best cluster image. In this step, the best cluster image obtained from
the proposed FCM-GWO approach will be selected based on maximum mean
value, where it found best representative feature of liver region in cluster image.

• Segmented region enhancement. Morphological operation is considered an
important step for enhancement the image. Open, close are the used morpho-
logical operation to enhance the liver cluster image and to focus on liver par-
enchyma. Closing morphological operation defined at Eq. 26 and opening
morphological operation at Eq. 27. Then the largest region will be taken as the
final segmented liver region, as liver is the largest area in the middle cross
sections of the abdominal liver CT image [28].

I�H ¼
\

h2H
I�h ð26Þ

I � H ¼ ðI�HÞ � H ð27Þ

where H structure element and I image.

4.5 Results and Discussion

A set of 62 middle slice abdominal liver CT images taken from different patients are
used to test system performance. The proposed CT image segmentation approach
was programmed in MATLABR 2007 on a computer having Intel Core I3 and
2 GB of memory. Table 4 compares the result of FCM-GWO and PSO and in terms
of Dice Coefficient, Correlation, Precision, Accuracy, Jacard Index, F-measure and
Sensitivity for the used dataset. Table 5 compares the results of proposed system

Table 4 Comparison
between segmentation results
obtained from PSO and GWO

FCM-GWO (%) PSO (%)

F-measure 92.66 89.08

Precision 93.99 94.70

Sensitivity 91.94 84.02

Correlation 91.43 87.00

Accuracy 95.51 94.02

Dice 92.66 88.24

Jacard 86.52 81.22
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with other traditional previous approach on CT liver segmentation from abdominal
CT. As it can be seen, the proposed approach gives better results. Morever It’s fully
automatic system and it can extract for only one liver’s slice in less than 8 s.
Figure 12 shows the result from proposed approach. Figure 12a represent the
middle slice original image, Fig. 12b shows the produced image after applying
median filter, Fig. 12c shows labeled clustered image produced from FCM-GWO
on CT image, Fig. 12d shows produced image after converted to binary image,
Fig. 12e shows the produced image after applying open morphology operators, 12f
shows produced image after selecting the largest objects, Fig. 12g shows produced
image after applying close morphology operators, Fig. 12h shows produced image
after filling holes, Fig. 12i shows final extracted liver region and Fig. 12j shows the
obtained result from proposed approach and ground truth one where the result from
proposed approach colored with purple and ground truth colored with pink. Table 6
shows the system affectiveness for different number of clusters of fuzzy in terms of
Dice Coefficient, Correlation, Precision, Accuracy, Jacard Index, F-measure and
Sensitivity. Figures 13 and 14 show system performance of different number of

Table 5 Comparison with existing work on liver segmentation

Method Accuracy (%)

Level set [29] 70

Intensity-based partation and region-based texture [30] 86

Region Growing [31] 84

Enhanced Level set [32] 92

Adaptive threshold, morphological operators and connected component [33] 93

K-Means clustering, k-medoids clustering and hierarchical clustering [34] 87

FCM-GWO 96

Fig. 12 Results of the proposed approach. a Original image, b image after applying median filter,
c clustering results of FCM-GWO, d binarized clustered image, e image after applying open
morphology, f image after filling holes, g image after applying close morphology, h image after
filling holes, i automated extracted liver region and j the result from proposed approach and
ground truth one
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Table 6 The system affectiveness for different number of clusters of fuzzy

C = 2 (%) C = 3 (%) C = 4 (%) C = 5 (%)

F-measure 93.11 92.66 90.99 90.01

Precision 93.81 93.99 94.39 93.76

Sensitivity 92.74 91.94 89.14 91.52

Correlation 91.96 91.43 89.95 91.22

Accuracy 95.99 95.51 95.19 95.43

Dice 93.11 92.66 90.99 92.01

Jacard 87.17 86.52 84.21 84.51

Fig. 13 The system performance based on different no. of wolves

Fig. 14 The system performance based on different no. of iterations
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iterations and different number of wolves (search agents) in terms of CPU process
time in seconds. As we can see, elapsed time increased almost exponentially as we
increase the number of iterations and number of wolves.

5 Conclusion and Future Work

In this chapter, we presented the main concepts of some of nature inspired algo-
rithms such as Artificial Bee Colony, Cuckoo Search, Social Spider Optimization
and Grey Wolf optimization. We highlighted the CT liver segmentation problem
and how the nature inspired algorithms can be applied to solve this problem. Also,
we described the use of ABC and Grey wolf optimization algorithms to solve the
CT liver segmentation problems with different techniques. The experimental results
showed the efficiency of the two algorithms. In the future work, we will apply more
nature inspired algorithms with different medical imaging applications.
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Optimized Multi Threshold Brain Tumor
Image Segmentation Using Two
Dimensional Minimum Cross Entropy
Based on Co-occurrence Matrix

Taranjit Kaur, Barjinder Singh Saini and Savita Gupta

Abstract The present chapter proposes an automatic segmentation method that
performs multilevel image thresholding by using the spatial information encoded in
the gray level co-occurrence matrix (GLCM). The 2D local cross entropy approach
that has been designed by extending the one dimensional (1-D) cross entropy
thresholding method to a two dimensional (2D) one using the GLCM, serves as a
fitness function. The use of conventional exhaustive search based implementations
for multilevel thresholding are computationally expensive. Under such conditions
evolutionary algorithm like particle swarm optimization (PSO) has been used. The
effectiveness of this method was tested on brain tumor MR images and comparison
was done with seven other level set based segmentation algorithms, using three
different measures (1) Jaccard, (2) Dice and (3) Root mean square error (RMSE).
The results demonstrate that average metric values were equal to 0.881902,
0.936394 and 0.070123 for proposed approach, which were significantly better than
existing techniques.
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1 Introduction

The process of image segmentation refers to the mechanism of extracting different
objects from an image. Segmentation in case of medical images has a variety of
applications ranging from the lesion quantification to surgical planning. Computed
tomography (CT) and MRI are two imaging modalities that help researchers and
medical practitioners to study the brain by looking at it non-invasively [1–3]. MR
imaging is generally a modality of choice for the visualization of various metabolic
brain diseases due to its excellent soft tissue contrast and availability of multispectral
images [4, 5]. The radiologists normally combine the information from these mul-
tiple images in order to give their final decision about the true extent of lesion and the
appropriate therapy treatment. Abnormal regions of interest in images can be either
manually marked by radiologists [6–8] or by the use of computer assisted techniques
which can be automatic or semi-automatic. Since the conventional imaging
modalities like CT and MRI are 3D in nature the manual segmentation is not only
tedious and time consuming but also suffers from the inter observer variability [9–
11]. Also in case of the tumorous MR images the segmentation is even more
challenging because of the unclear and irregular boundaries of the various high grade
tumors [12–14]. A large number of methods exist in the literature for the purpose of
segmentation and the prominent among them are pixel classification [15, 16],
modelbased [17, 18] and thresholding based [19] approaches.

2 Related Work

Caselles et al. [17] introduced a contour based method in which the gradient of the
image was used to compute the force function. The designed method does not
require any regularization term. The proposed method, referred to as the Geodesic
Active Contour combines the classical “snakes” and the geometric active contour
method for the object segmentation. The experiments on the real images including
objects with holes and medical data (MR images with tumor and ultrasound images)
demonstrate its capability for efficient image segmentation. Also, the algorithm
possesses the ability in detecting the interior and exterior boundaries of the object.

Joe et al. [20] proposed a semi-automated threshold based method for computing
the enhancing brain tumor volume in the case of patients with high grade glioma
using T1 images. The efficiency of the proposed method was justified in terms of
lesser computational time in comparison to manual trace methods by an average of
4.6 min per patient. Fletcher-Heath et al. [21] employed Fuzzy C-means clustering
along with knowledge based techniques for the delineation of non-enhancing brain
tumor region from the normal brain tissues using T1, T2 and Proton Density
(PD) images. The efficacy of the proposed method was quantitatively evaluated by
the measures of correspondence ratio and the % age match which were in range from
0.368–0.871 and 0.530–0.909 per volume. Chan and Vese [22] formulated a new
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model for active contour that performs the object detection in a given image based on
the techniques of curve evolution. The stopping term does-not depend on the gra-
dient of the image but is related to the segmentation of the current image. Numerical
results on the various synthetic and real images illustrate the segmentation efficiency
of the method qualitatively. The method also eliminates the need to smooth the
initial image before processing it, in case it was noisy.

Liu et al. [23] devised a fuzzy connectedness algorithm for the segmentation of
Glioblastoma multiforme brain tumor (GBM) using T1, T1-CE and FLAIR images.
The computed coefficient of variation in the computation of volume due to the
specification of the seed points was less than 1 %. Vijaykumar et al. [24] used self
organizing maps for the segmentation of tumor, edema, necrosis, white matter
(wm), gray matter (gm) and cerebral spinal fluid (csf) from the dataset containing
both high and low grade tumors. The images employed were T2, FLAIR and
apparent diffusion coefficient maps and the observed sensitivity and specificity were
0.86 and 0.93 respectively. Corso et al. [9] devised a model based method along
with graph cuts for the delineation of GBM brain tumor and its various constituents
using T1 precontrast, T1-CE, FLAIR and T2 images. The efficacy of the proposed
method was compared with conventional affinity, saliency based extraction, cross
validation and single voxel methods using volume overlap (VO) measure which
was 69 % for tumor training and testing dataset.

Shi et al. [18] proposed a two cycle algorithm to approximate level set based
curve evolution without the need of solving the partial differential equation (PDE).
The authors separated the evolution process into two different cycles, one cycle for
the data dependent term and the second cycle for the smoothness regularization.
Comparison with the PDE-based narrow band algorithm in insight toolkit ITK [25]
on the set of images and video processing applications indicate the designed
algorithm was computationally much faster (nearly 25 times faster than ITK per
iteration).

Li et al. [26] developed a region-based active contour model that draws upon the
intensity information in local regions at a controllable scale to counteract with the
intensity inhomogeneity problem. The experimental results were obtained using the
synthetic and real images from various modalities like CT and MRI. The results
were compared with the PS model and mean shift algorithm on the measures of
computation time and accuracy. The devised algorithm was 15–60 times faster than
the PS model.

Lankton et al. [27] employed a region-based method using the local image
statistics for the evolution of the contour. The algorithm allows for the reformu-
lation of the region based segmentation energy and thereby proves to be efficient in
segmenting images with the heterogeneous feature profiles. The improvements
obtained by the localization was illustrated by its comparison with the global
counterparts using the convergence and timing properties. Although the proposed
algorithm was sensitive to initialization, the experimentation on various natural and
biomedical images like those of heart and brain indicated its proficiency in terms of
the computational time which was 4–5 s.
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Wang et al. [28] devised Fluid vector flow method for the segmentation of
synthetic, pediatric head and brain tumor T1 MRI images taken from Internet Brain
Segmentation Repository (IBSR). The effectiveness of the method was justified by
its ability to extract concave shapes and capture large ranges. The computed
measures i.e. mean, median and standard deviation (SD) were 0.61, 0.60 and 0.05
respectively.

Bernard et al. [29] designed a region based level set approach in which the
implicit function was modeled as a continuous parametric function expressed on a
B-spline basis. Simulated and biomedical images were used for the evaluation of
the designed technique using the dice measure at different levels of the additive
gaussian noise. For a particular leaf image corrupted with the Gaussian noise of
SNR equal to 30 dB, the total running time (seconds), number of iterations, time
required for the estimation of the various parameters (seconds) and dice coefficient
were equal to 15.48, 33, 4.19 and 0.985 respectively using the designed approach.
Comparison with the existing fast two-cycle algorithm (FTC) clearly justifies the
potential of the designed method in terms of the computation time.

Khotanlou et al. [30] employed Fuzzy possibilistic C-Means algorithm (FPCM)
and symmetry analysis method for the segmentation of various cerebral tumors
using T1 and T1-CE images. The final tumor boundary was refined using
deformable models constrained by spatial relations. The efficiency was evaluated by
measures of ratio of correct detection (Tp), ratio of false detection (Fp), similarity
index (s), Hausdorff distance (DH) and average distance (Dm) which were:
−s = 92/90, Tp = 93/90, Fp = 7.92/9.08 %, DH = 4.57/4.92 mm and
Dm = 0.69/0.71 mm respectively for symmetry analysis and FPCM approach.
Iftekharuddin et al. [31] used self-organizing maps for the segmentation of tumors
in the pediatric patients by employing T1-CE, T2 and FLAIR images. The seg-
mentation efficiency using single modality images ranged from 57–95 % and using
multimodality images it was 100 %.

Ahmed et al. [32] used expectation maximization and graph cuts for the seg-
mentation of tumors in the posterior Fossa region using T1, T2 and FLAIR images.
The radar plots for the similarity metrics i.e. Jaccard, Dice, Sokal and Sneath
(SS) and Russel and Rao (RR) ratios were constructed. From the plots the overall
Jacard score and RR measures were about 60 %, Dice overlap measure was >80 %
and SS measure was >60 %.

Dang et al. [33] employed level set method for the meningioma tumor volume
computation using T1-CE images. The results were compared with those obtained
by the modified Mcdonalds (MM) and manual trace method through the measures
of computational time which were 1.20 (mm:s) for level set method, 1.35 for MM
method and 9.35 for the manual trace approach.

Islam et al. [34] proposed a modified adaboost classifier for the separation of
tumor from the non-tumor regions using T1, T2 and FLAIR images of pediatric
patients. The efficiency was computed through the measures of Jaccard coefficient,
Dice similarity index, SS ratio, Roger and Tanimoto index, True positive fraction
and false positive fraction which were 0.71, 0.83, 0.55, 0.73, 0.79 and 0.11
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respectively and its applicability to the publically available low grade glioma
BRATS2012 dataset.

Arakeri and Reddy [35] employed modified FCM (MFCM) for the segmentation
of benign and malignant brain tumors from the T1-CE and T2 images. The MFCM
performs the clustering on the basis of grey level histogram instead of pixels in the
image and it resulted in overall mean value of VO, DH and Symmetric mean
absolute surface distance (SMD) equal to 89.35 %, 3.62 and 0.54 mm respectively.

Hemanth et al. [10] also proposed a modified distance metric based Fuzzy C
Means clustering algorithm for the segmentation of meningiomas, astrocytoma,
gliomas and metastatic brain tumors. The modified FCM reduced the computation
time by a factor of 8 in comparison to the FCM algorithm without compromising
much for the segmentation efficiency which was 97.5 and 98 % using the algorithms.

Thapaliya et al. [36] devised a new level set approach combining the advantages
of the Chan Vese and Geodesic Active Contour (GAC) method. The authors
introduced a new signed pressure function that effectually stops the contour at weak
or blurred edges. The various parameters involved in the algorithm were computed
automatically. The thresholding parameter was adaptively adjusted for different MR
images. The validation dataset consists of eight tumor MR images acquired from
internet repository. The Jaccard, Dice, Root mean square error (RMSE) and com-
putational time were used to access the performance of the proposed approach. The
results of the lesion segmentation for the designed method were compared with the
Chumming, region growing and Singh and Dubey method. Performance estimation
in context to the manually segmented ground truth verifies that the object is
extracted efficiently regardless of the evolution of the contour.

Among all the approaches discussed above, the simplest technique of the
thresholding has been limited explored for tumor segmentation application. The
next discussion pertains to the description about the various existing thresholding
approaches. Threshold based approaches are broadly divided into parametric and
nonparametric methods [37]. The parametric methods works by computing
parameters of the probability density function that will best fit the given histogram
data. This is a nonlinear optimization problem for which the output solution is
computationally expensive and time consuming [38]. The nonparametric techniques
on the other hand determine the optimal thresholds by optimizing certain objective
function [39]. In the category of nonparametric methods the most efficient are the
entropy based approaches such as Kapurs Entropy, Tsallis Entropy, Cross Entropy,
Renyi Entropy, Fuzzy Entropy and the entropies computed from the gray level
co-occurrence matrices [40, 41]. Among these thresholding methods, minimum
cross entropy based approach has been widely adopted for its simplicity and the
measurement accuracy [42].

The minimum cross entropy criteria works well for the bilevel thresholding
problem but suffers from the exponential increase in the computational complexity
when it involves the calculation of the multiple thresholds. For fastening the
threshold selection process and eliminating the exhaustive search mechanism
meta-heuristic algorithms have been incorporated with this entropy measure. Yin
[43] employed a recursive programming technique along with the particle swarm
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optimization (PSO) algorithm to compute the optimal set of thresholds using this
criteria. The estimation of the algorithm effectuality was done using the measure of
computation time.

The experimentations were done on the standard images and the thresholds
nearly equal to those computed by exhaustive search method were obtained at the
minimum computation cost of 0.01 s. Horng [38] proposed a minimum cross
entropy (MCE) algorithm based on Honey bee mating optimization algorithm
(HBMO). The segmentation analysis were done on the set of the five standard
images and the results were compared with the PSO and the quantum PSO (QPSO)
method. The author concluded that the maximum peak signal to noise ratio (PSNR)
was achieved using the HBMO technique and the obtained thresholds were similar
to that obtained using the exhaustive search approach. For a particular Goldhill
image the obtained value of the computational time was 0.504 s at a PSNR value of
20.75 in comparison to the PSO and QPSO based approaches in which they were
0.486 s, 20.73 and 0.417 s and 20.61 respectively. The analysis shows a compa-
rable computational time but the PSNR and the fitness value were significantly
better for the proposed approach.

Later on the same author did the investigation using a new technique called as
firefly (FF) algorithm [44] and concluded that FF based minimum cross entropy
thresholding (MCET) approach was efficient in terms of PSNR value and the
computation time, with respect to PSO, QPSO, HBMO and exhaustive search
methods. The analysis was done on the same set of images, and the results were
compared with the exhaustive search, PSO, QPSO and HBMO techniques. Least
computational time was obtained using the FF based MCET algorithm. For e.g. for
a particular Goldhill image of dimensions 256 � 256 the computational time was
0.134 s at a PSNR value of 20.75. For other approaches, it was 444.569 s,
259.65 ms, 292.84 ms and 258.54 ms respectively.

Tang et al. [42] employed a recursive programming technique along with the real
coded Genetic algorithm (GA) to compute the optimal set of thresholds using the
MCET technique. The efficacy of the approach was justified by its faster compu-
tation time and better uniformity values in comparison to the exhaustive search
technique. For a particular Lena image of dimensions 512 � 512 and a four level
thresholding problem, the CPU time using recursive GA approach was found to be
0.0269 s with a uniformity value of 0.993859. The results were better than
exhaustive search approach for which it was 850.2065 s for a uniformity value
equal to 0.993971.

Sarkar et al. [45] explored the effectiveness of the MCET technique for the color
image segmentation using the Differential Evolution (DE). The superiority of the
approach was justified in terms of lesser number of function evaluations in com-
parison to GA, PSO and Artificial Bee Colony (ABC) algorithm. The analysis were
done on Berkley Segmentation Dataset and the effectuality of the algorithm was
verified both quantitatively and qualitatively with seven existing techniques in
literature. The achieved values of the boundary displacement error (BDE),
Probabilistic Rand Index (PRI), Global consistency error (GCE) and Variation of
information (VOI) were 9.3468, 0.7552, 0.2485 and 2.1675 respectively for a 10
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level segmentation. All the methods which are discussed above employs the
information extracted from the one dimensional (1-D) histogram of the image in
one way or the other. These methods suffer from the drawback that they do not take
into account the image spatial correlation. As a result of which, images having the
same type of histogram resulted in the same value of thresholds. Such a drawback
was mitigated by the evolution of 2D approaches which takes into account the
inter-pixel spatial correlation in different ways. In this category techniques based on
the construction of 2D histogram from the 1D histogram and the local average pixel
values and those based on GLCM are most common. Better performance of the
GLCM based approaches had been verified for the image segmentation in works by
[46–48].

Mokji and Abu Bakar [46] devised an adaptive thresholding technique based on
the co-occurrence matrix (GLCM). The proposed method was tested on starfruit
defect images. Since the images had fuzzy boundaries, they were better segmented
using the designed method as it had more flexibility in edge definition. Comparison
of the designed scheme with three other existing techniques namely Otsu, entropy
based and Li et al. [49] method indicated the superiority of the approach when
estimated visually.

El-Feghi et al. [48] devised an improved co-occurrence matrix information
measure for thresholding the natural images. The improved matrix utilized more
local neighborhood information than the traditional co-occurrence matrix. The
proposed bi-level thresholding method had a high robustness to noise in contrast to
the conventional approach.

Extension of the 1D cross entropy based thresholding into 2D using GLCM to
incorporate the above stated advantages have been verified in the works by [50].
Eight images were used in the experiment, and the bilevel thresholding results were
compared with the eight existing methods. The effectiveness of the proposed
method was demonstrated both visually and quantitatively using the measures of
the uniformity and shape. For a particular Tank image, the uniformity value equal to
0.9908 and shape measure equal to 0.9964 was obtained using the designed
approach. On a thorough analysis, on the computational complexity it was con-
cluded that the time consumption of the proposed method was the most nearly
greater than 1 s for most of the images. Such an approach would lead to an
exponential increase in the computational complexity when applied to a multilevel
thresholding problem. Until now most of such approaches which involve the
GLCM information into a cross entropy framework, were bilevel, no multilevel 2D
entropy based scheme can be found in literature. The endeavor of this chapter is
focused, on developing a multilevel thresholding algorithm which incorporates the
advantages of cross entropy and GLCM to obtain efficient tumor image segmen-
tation when computationally aided with PSO algorithm.

The chapter is organized as follows, Sect. 3 outlines the problem formulation,
Sect. 4 gives the brief review about the PSO algorithm and its incorporation with
the constructed objective function, Sect. 5 presents the database and the perfor-
mance measures, Sect. 6 provides the results and discussions and finally Sect. 7
concludes the chapter.
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3 Problem Formulation Using the Cross Entropy
and GLCM

3.1 Cross Entropy

The concept of the cross entropy was first proposed by Kullback [51] in the year
1968. This entropy was devised as an information theoretic distance between two
probability distributions on the same set [42]. The cross entropy criteria as given by
Li and Lee [52] can be defined as follows:
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X

t

i¼0

ihi logði=l1ðtÞÞþ
X

L�1

i¼tþ 1

ihi logði=l2ðtÞÞ ð1Þ
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Here t denotes the threshold value, hi denotes the frequency of the gray level and
L denotes the total number of the gray levels. The optimal threshold for the bi level
thresholding is chosen as the one which minimizes the Eq. (1). Mathematically it is
given as:

t� ¼ arg min½DðtÞ� ð3Þ

The formula given by Eq. (1) utilizes only the information extracted from the
image histogram but does not take into account the spatial relationship of the pixels
in the image. As a result when thresholds are computed, using the cross entropy
measure for the different images having the same histogram distribution, it would
result in same threshold value which is inappropriate. So in order to account for the
spatial distribution, 2D local cross entropy is defined over the GLCM sub-blocks
which is then minimized for the computation of the optimal thresholds. The next
sub sections outlines the concept of GLCM and construction of 2D local cross
entropy function with its multilevel extension.

3.2 GLCM

The co-occurrence matrix encodes the information about the transition of intensities
between the adjacent pixels. For an image I ¼ ½f ðx; yÞ�MXN with size M � N with
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L gray levels the GLCM matrix is a L� L square matrix denoted by V ¼ ½Rij�L�L
where Rij denotes the ði; jÞth element of the co-occurrence matrix. Mathematically
it is defined as [46]
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The transition probability from a gray level i to j is obtained by:

pij ¼ Rij

PL�1
k¼0

P

L�1

l¼0
Rkl

ð6Þ

3.3 2D Multi-level Local Cross-Entropy Thresholding
Scheme

The brain tumor MRI image primarily comprises of the white matter, gray matter,
cerebral spinal fluid region (CSF), the abnormality (complete tumor area) and the
background region. The goal of the segmentation algorithm would be the efficient
delineation of these constituents. For partitioning the brain tumor image into five
regions, four thresholds would be required.

The reason for using four thresholds was to separate out the four tissue con-
stituents and the background region from the given tumorous MR image, as four
thresholds would partition the image into five regions. As the number of the
thresholds increases the segmented images become more uniform, smoother and
resembles the original image. Also, finer details would more be prominent, and
tumor constituents like necrosis, solid region and edema can also be delineated.
Since the present data set contains only the enhancing tumor region, so a total of
four thresholds are sufficient for tracking the diseased region.

So in the presented work:
Required number of thresholds = Total number of Image constituents −1.
Those set of optimal thresholds are chosen that efficiently partition the GLCM

into twenty five sub-blocks, A to Y as shown in Fig. 1. The sub-blocks A, G, M,
S and Y represents the local transitions within the background and foreground. The
left over sub-blocks are associated with the transitions across the boundaries
between the background and the foreground. So, among the 25 possible sub blocks,
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only the diagonal sub blocks are chosen for the better separation between the object
and the background. Rest all can be neglected as they mostly contain the edges and
the noise, which has also been verified in the works by [50, 53]. So, the transition
probabilities associated with each of the diagonal sub-block are defined as follows:
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t
Y denotes the pixel average value for the segmented sub

blocks which are obtained using the thresholds t1, t2, t3 and t4 and are given by the
expressions below:
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Fig. 1 Sub-blocks of the GLCM for a 5 level segmentation
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The 2D local cross entropy, which is computed between the original and the
thresholded image about the sub-blocks A, G, M, S and Y can be defined as follows:

JðAjtÞ ¼
X

t1

i¼0

X

t1

j¼0

ijpij logðij=ltAÞþ
X

t1

i¼0

X

t1

j¼0

ltApij logðltA=ijÞ ð17Þ
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X
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X
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ltMpij logðltM=ijÞ ð19Þ

JðSjtÞ ¼
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X
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j¼t3 þ 1

ijpij logðij=ltSÞþ
X
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X
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j¼t3 þ 1

ltSpij logðltS=ijÞ ð20Þ

JðY jtÞ ¼
X
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i¼t4 þ 1

X

L�1

j¼t4 þ 1

ijpij logðij=ltYÞþ
X

L�1

i¼t4 þ 1

X

L�1

j¼t4 þ 1

ltYpij logðltY=ijÞ ð21Þ

The criteria for the image thresholding is given as:

JLCEðtÞ ¼ JðAjtÞþ JðGjtÞþ JðMjtÞþ JðSjtÞþ JðY jtÞ ð22Þ

Those set of the four thresholds are chosen which minimizes the above equation
and mathematically it is given as:

ðt1; t2; t3; t4Þ ¼ argminðJLCEðtÞÞ ð23Þ
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The computational complexity of GLCM based method is of the order OðL2Þ for
a bi-level thresholding. It increases exponentially with the increase in the number of
thresholds i.e. for a four level thresholding problem (m = 4), as the present case, the
complexity would be of the order OðL2Þm. Here L denotes the total number of gray
levels used in the image. For the designed approach as seen from the Eqs. (17)–(22)
the computation involves the process of division, logarithmic and multiplication for
each element in the quadrants A, G, M, S and Y of the GLCM. Also, the compu-
tational time depends upon the number of such operations. In our present work, the
PSO algorithm minimized the designed objective function i.e. JLCEðtÞ, resulting in
the reduction of the computational complexity and thereby the computational time.
The run-time complexity of the algorithm will then be of the order of Oðss�
iterationsÞ where ss is the size of the population and iterations is the number of
iterations.

4 Optimized 2D Multilevel Local Cross-Entropy
Thresholding Approach Using Particle Swarm
Optimization Algorithm (PSO)

4.1 PSO

The present work employs PSO algorithm for the minimization of the constructed
fitness function. Least computational complexity of the PSO algorithm had been
verified in the work by Bhandari et al. [41] on satellite image segmentation using
Kapur’s, Otsu and Tsallis functions.

The aim of the study was not to compare different optimization algorithms but to
compare the efficiency of different segmentation methods for the application of
brain tumor segmentation. Since earlier version of the objective function was only
designed for a bi-level thresholding problem with the disadvantage of the algorithm
complexity. The designed approach mitigated this drawback, also highlighting the
capability of the thresholding approach in segmenting the complex tumor images
which has never been examined before.

The PSO algorithm is based upon the collective behavior exhibited by the birds
and termites and was proposed by Kennedy and Eberhart [54] in the year 1995. It
consist of a d dimensional search space in which the set of particles evolve. The
particles explore the search space by adjusting their flying, according to their own
flying experience and that of the neighboring particles. Each particle keeps track of
the coordinates of the solution search space which are associated with best position
each particle has achieved so far, referred to as pbest value and the best position
achieved by any particle in the neighborhood which is represented as gbest value.
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The position (x), velocity (v), pbest value (Pi) and gbest value (Pg) are repre-
sented as d dimensional vector and given as xi = (xi1, xi2, …, xid), Vi = (vi1, vi2, …,
vid), Pi = (pi1, pi2, …,pid) and Pg = (pg1, pg2, …,pgd) respectively. According to the
specified user defined objective function, at every iteration the position and
velocities are updated using the following equations [54]

vijðtþ 1Þ ¼ wvijðtÞþ c1r1ðpijðtÞ � xijðtÞÞþ c2r2ðpgjðtÞ � xijðtÞÞ ð24Þ

xijðtþ 1Þ ¼ xijðtÞþ vijðtþ 1Þ ð25Þ

Here, j varies from (1, 2, …, n), where n represents dimension and i ranges from
(1, 2,…, N) where N defines the number of particles, t denotes the iteration counter;
r1 and r2 denotes the random numbers uniformly distributed within the range of [0,
1], c1, c2 are called the cognitive and social learning parameters respectively.

The basic PSO has the disadvantage of premature convergence as a result of
which the swarm diversity was reduced. To increase the exploration capabilities a
constant called inertia weight was added to the previous velocity term which was
proposed by Shi and Eberhart [55].

The inertia weight w varied linearly from 0.9 to 0.4 and it resulted in faster
convergence to the global optimum solution. The larger value of w in beginning
favors exploration in the early phase of the search and a local search in the later
half, thereby favoring convergence to global best value. In context to values of c1
and c2, for a larger global search higher value of c1 and c2 are favored and for a
more refined local search around the best position, smaller values of c1 and c2 are
chosen [56]. The step by step procedure for the computation of the optimal
thresholds using the PSO algorithm and employing JLCEðtÞ as a fitness function is
given in the next sub-section and the same is summarized in the flowchart shown in
Fig. 2.

Proposed Methodology

1. Set the control parameters of the PSO Algorithm. SS = swarm size; w = inertia
weight; c1 = cognitive component; c2 = social component; iterations = maxi-
mum number of iterations; thr = number of optimal thresholds.

2. The w, c1 and c2 were linearly varied from 0.9 to 0.4, 0.5 to 2.5 and 2.5 to 0.5
respectively. The swarm size was fixed at 10, maximum number of iterations
were fixed at 25 and the dimension of the problem (referring to number of
optimal thresholds) was kept as four.

3. Depending upon the gray levels L present in the image construct a square
GLCM matrix of the order L � L using Eqs. (4) and (5).

4. Compute the transition probability matrix by dividing the every entry of the
GLCM matrix by the total number of transitions in the co-occurrence matrix
using Eq. (6).
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5. The position of every particle was randomly initialized in the range from [0, L-
1] on each dimension with the constraint that the positions in the succeeding
dimensions follow an increasing order (Referring it to t1, t2, t3 and t4 where t
corresponds to the threshold). The velocity was also randomly assigned for each
particle in each dimension.

6. For each particle position value, i.e. for each value of threshold parameters

i. Divide the GLCM matrix into the 25 sub blocks using the thresholds t1, t2,
t3 and t4 as shown in Fig. 1.

ii. Compute the transition probabilities associated with each diagonal
sub-block as given in Eqs. (7)–(11).

iii. Compute the pixels average gray value for the diagonal sub blocks as
defined in Eqs. (12)–(16).

iv. Calculate the 2D local cross entropy measure about the divided sub-blocks
A, G, M, S and Y using the Eqs. (17)–(21).

v. The total fitness measure was then determined by adding all the cross
entropy values computed for the different set of sub blocks as defined in
Eq. (22) and is represented as JLCEðtÞ. Choose the global best particle as
the one for which JLCEðtÞ is minimum.

7. For the first iteration, set the current particle position as the local best position.
8. For each particle and every iteration perform the following operations:

i. Update the velocity and the position of the particle, using the Eqs. (24) and
(25).
where

wðtÞ ¼ wup � ðwup � wlowÞt=Tmax ð26Þ

Here t stands for the current iteration, wlow and wup are the lower and upper
bounds of w and Tmax is the total allowed number of iterations.

ii. Compute the fitness JLCEðtÞ for the new position vectors using step (6).
iii. If the fitness function using the updated position vector value is better than

the fitness for the local best position, then set the updated position of the
particle as the local best position.

iv. Choose the global best particle from the local best particles for which the
fitness value is minimum and that particle position value corresponds to the
optimal set of thresholds.

Repeat the step (9) till the termination criteria, i.e. the maximum number of
iterations is not reached (Fig. 2).
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Fig. 2 Flowchart
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5 Database and Performance Measures

5.1 Database

The performance of the proposed algorithm was examined over the brain tumor
images acquired from the internet repository [3, 57, 58, 59, 60, 61]. Six tumor
images were used in the study. The sizes of various images are as follows
240� 240, 240� 240, 200� 200, 200� 200, 400� 400 and 200� 200.

The attained results were compared with those obtained using the existing level
set algorithms. For the comparison, the methods given by Bernard et al. [29],
Caselles et al. [17], Chan and Vese [22], Lankton et al. [27], Li et al. [26], Shi et al.
[18] and Thapaliya et al. [36] have been used. The source codes for all the methods
except for that by Thapaliya et al. [36] were obtained using the creaseg software
[62].

5.2 Performance Measures

All the obtained results were compared quantitatively with the manual segmenta-
tions provided by the expert radiologist using the following metrics.

Jaccard
The Jaccard measure computes the spatial overlap for the pair of segmentations,

and is computed using the formula [36]:

Jaccard ¼ a
aþ b

ð27Þ

where a represents the number of the pixels which belong to both the manual and
the automatic segmented region and b represents the number of pixels where the
decision mismatches.

Dice
The Dice coefficient also computes the mean overlap between the ground truth

and the automatic segmented results [63]. It is defined as:

Dice ¼ 2a
2aþ b

ð28Þ

where a and b are explained above. The value of Jaccard and Dice coefficient, is 1
if there is exact overlap of the estimated segment to the ground truth, whereas a 0
value signifies a complete disagreement in the matching of the both the masks.

Root Mean Square Error (RMSE)
This measure computes the average magnitude of the error between the pair of

the segmentations. If RM and RA denotes the set of tumor voxels segmented
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manually and using different automatic or semiautomatic methods then RMSE value
is calculated as follows [36]

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1
ðRM � RAÞ2

n

v

u

u

u

t ð29Þ

where n denotes the total number of pixels in the image. Smaller is value of RMSE
better is the correspondence between the segmented output and the ground truth.

6 Experimental Results and Discussions

To evaluate the efficiency of the proposed segmentation technique, which is
referred to as the optimized 2D multilevel local cross entropy approach, the
experimentations were done on six tumor images, the details of which, were given
in the previous section. The segmentation stage is preceded by the skull stripping
mechanism, as the skull region possesses the intensities similar to the normal brain
tissues. The skull region was removed by first converting the MR image to binary
image using Ostu’s method. Thereafter a search was made for the largest connected
component. Finally only the pixels present in that largest component were retained
which corresponded to the brain region. The Table 1 shows the value of the
Jaccard measure for the proposed method and the existing level set methods. The
number of iterations for all the level set methods were kept equal to 200, as further
increase in the number of iterations did not have any significant increase on the
performance metrics. It is significant to mention here that the proposed approach
required only 25 iterations with a particle size equal to 10 to achieve the desired
result of maximum spatial overlap, which clearly highlights its less computational
complexity in terms of the function evaluations as compared to other methods.

Table 1 Comparison of Jaccard measure for tumor dataset using different methods

Images M1 M2 M3 M4 M5 M6 M7 Proposed

Image 1 0.612900 0.652800 0.111000 0.408400 0.156000 0.169500 0.682500 0.838506

Image 2 0.550300 0.666600 0.136300 0.190400 0.075200 0.652800 0.865600 0.866502

Image 3 0.754300 0.941700 0.162700 0.428500 0.156000 0.941700 0.912400 0.951220

Image 4 0.503700 0.834800 0.176400 0.333300 0.212100 0.197600 0.937600 0.942917

Image 5 0.369800 0.851800 0.052600 0.250000 0.058200 0.851800 0.834800 0.890820

Image 6 0.092800 0.694900 0.025600 0.098900 0.036200 0.639300 0.747180 0.801552

Average 0.480600 0.773800 0.110800 0.284900 0.115600 0.575500 0.830000 0.881919

M1—Bernard et al. [29], M2—Caselles et al. [17], M3—Chan and Vese [22], M4—Lankton et al. [27], M5—
Li et al. [26], M6—Shi et al. [18] and M7—Thapaliya et al. [36]
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After analyzing these values it was verified that the devised technique achieved
the highest Jaccard value for the entire set of images as indicated in bold. The
effectuality was also highlighted in terms of the average measure which was
maximum equal to 0.8819 for the developed approach in contrast to the value of
0.4806, 0.7738, 0.1108, 0.2849, 0.1156, 0.5755 and 0.8300 obtained for M1, M2,
M3, M4, M5, M6 and M7. Similar findings were also graphically ascertained for all
the images, as shown clearly in Fig. 3.

The Table 2 shows the value of the Dice measure for the developed technique
and the existing level set methods.

From the tabular findings it can be concluded that the proposed approach
obtained the maximum Dice value for all the images as indicated by bold notation.
Superiority was also justified in terms of the average Dice value which was max-
imum equal to 0.9364 for the proposed approach in comparison to methods M1,
M2, M3, M4, M5, M6 and M7 for which it was 0.6183, 0.8633, 0.1950, 0.4300,
0.2017, 0.6800 and 0.9045 respectively.

Fig. 3 Jaccard measure for the proposed and other level set methods

Table 2 Comparison of Dice measure for tumor dataset using different methods

Images M1 M2 M3 M4 M5 M6 M7 Proposed

Image 1 0.760000 0.790000 0.200000 0.580000 0.270000 0.290000 0.811300 0.912160

Image 2 0.710000 0.800000 0.240000 0.320000 0.140000 0.790000 0.928000 0.928477

Image 3 0.860000 0.970000 0.280000 0.600000 0.270000 0.970000 0.954200 0.975000

Image 4 0.670000 0.910000 0.300000 0.500000 0.350000 0.330000 0.967800 0.970620

Image 5 0.540000 0.920000 0.100000 0.400000 0.110000 0.920000 0.910000 0.942258

Image 6 0.170000 0.820000 0.050000 0.180000 0.070000 0.780000 0.855300 0.889846

Average 0.618300 0.868330 0.195000 0.430000 0.201700 0.680000 0.904400 0.936394

M1—Bernard et al. [29], M2—Caselles et al. [17], M3—Chan and Vese [22], M4—Lankton et al. [27], M5—
Li et al. [26], M6—Shi et al. [18] and M7—Thapaliya et al. [36]
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Graphically the per image analysis can be shown in Fig. 4, which clearly
indicates that the proposed method outperformed all other existing techniques.

The values of the segmentation error which was quantified in terms of the RMSE
value is given in Table 3. From the scrutinization of results it was seen that least
value of RMSE was obtained using the proposed technique which was 0.0701 on an
average in contrast to other methods for which it was 2.2246, 1.6868, 9.4956,
2.6927, 9.5329, 3.7913 and 0.0861 respectively.

The per image trend for the obtained RMSE value for different methods can be
analyzed in Figs. 5 and 6. Graphically it was also ascertained that the least value
was obtained using the developed approach. Since the dynamic range for the RMSE
value is different for the different methods a clear distinction between the M7 and
the proposed method could not be made from Fig. 5. Figure 6 gives a more clear
illustration for the proposed and M7 method error values thereby highlighting the
superiority of the designed approach.

Fig. 4 Dice coefficient measure for the proposed and the other level set methods

Table 3 Comparison of RMSE measure for tumor dataset using different methods

Images M1 M2 M3 M4 M5 M6 M7 Proposed

Image 1 2.100246 2.436521 9.167905 2.595793 7.812141 7.486349 0.130000 0.08599

Image 2 2.403090 2.504783 8.516675 3.197202 12.45289 2.616797 0.076000 0.08700

Image 3 1.701387 0.867567 7.705541 2.551544 7.812736 0.860604 0.075000 0.04949

Image 4 3.264150 1.998803 9.789716 3.756385 8.979871 9.295443 0.074800 0.071951

Image 5 2.134372 1.104765 10.145420 2.318836 10.908630 1.126601 0.078000 0.059412

Image 6 1.744898 1.208565 11.648500 1.736881 9.231454 1.362292 0.083000 0.066895

Average 2.224691 1.686834 9.495626 2.692774 9.532954 3.791348 0.086133 0.070123

M1—Bernard et al. [29], M2—Caselles et al. [17], M3—Chan and Vese [22], M4—Lankton et al. [27], M5—Li
et al. [26], M6—Shi et al. [18] and M7—Thapaliya et al. [36]
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The subjective quality analysis for the proposed method was also performed.
The Fig. 7 shows the output images obtained using the proposed method. In
comparison to the existing methods the proposed algorithm had better output results
when compared visually. The sequence of steps which were followed for the
generation of the final segmented output image involve skull stripping, computation

Fig. 5 RMSE value for the proposed and other level set methods

Fig. 6 RMSE value for M7 and the proposed method
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Fig. 7 Procedure for the extraction of the tumor region using the proposed method. a Original
image. b Skull stripped image. c Output clustered image. d Extracted segmented region. e Output
results overlaid on the original image
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of thresholds using the developed approach, generation of the clustered image,
extraction of region having maximum Dice with respect to ground truth and finally
the overlaying of the results on the original image.

Apart from the quantitative and the qualitative analysis of the results, the
algorithm complexity was also analyzed in terms of the computational time to
validate its applicability for the real time applications. The calculation of the time
complexity was performed in Matlab platform with a 2.40 GHz intel core i7 pro-
cessor. The Table 4 summarizes the time taken by each algorithm to generate the
final segmented output.

From the tabular values it can be concluded that the algorithm takes a compa-
rable computational time equal to 2.465 s on an average in comparison to the other
methods. The advantage of the proposed algorithm is its ability in providing the
best quality solution without the need of the initial contour generation and that also
with a marginal increase in computational cost.

7 Conclusion

In this paper an evolutionary algorithm called PSO has been used for solving the
multilevel thresholding problem in 2D with the endeavor to minimize the 2D local
cross entropy function. Firstly the multilevel extension of the 2D local cross entropy
has been developed and then it was optimized. The applicability of the proposed
algorithm has been demonstrated by considering several tumorous MR images and
the obtained results were compared with that obtained using the seven existing level
set approaches. The experimental results showed its superiority and effectiveness
over other methods in terms of Jaccard, Dice, RMSE and computational time
measures which were 0.881902, 0.936394, 0.070123 and 2.465000 s on an aver-
age. The spatial overlap accuracy and the computational simplicity of the algorithm
makes it suitable as an additional tool for the clinician to consistently evaluate the
tumor progression.

Table 4 Comparison of the computational time required for each of the algorithm in seconds

Images M1 M2 M3 M4 M5 M6 M7 Proposed

Image 1 1.520 1.620 13.840 1.620 38.440 9.310 16.198 2.277

Image 2 1.910 1.750 16.320 1.560 66.370 1.250 13.169 2.715

Image 3 1.260 0.450 10.960 0.870 81.480 0.290 10.814 2.378

Image 4 1.710 1.870 15.630 1.470 44.170 10.030 10.678 2.333

Image 5 4.920 5.200 44.000 2.840 466.420 3.770 8.4100 3.067

Image 6 0.150 0.980 11.420 0.120 25.990 0.390 10.254 2.020

Average 1.912 1.978 18.695 1.413 120.478 4.173 11.587 2.465

M1—Bernard et al. [29], M2—Caselles et al. [17], M3—Chan and Vese [22], M4—Lankton et al.
[27], M5—Li et al. [26], M6—Shi et al. [18] and M7—Thapaliya et al. [36]
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Bio-inspired Swarm Techniques
for Thermogram Breast Cancer Detection

Gehad Ismail Sayed, Mona Soliman and Aboul Ella Hassanien

Abstract Bio-inspired swarm techniques are a well-established paradigm with
current systems having many of the characteristics of biological computers and
capable of performing a variety of tasks that are difficult to do using conventional
techniques. These techniques involving the study of collective behavior in decen-
tralized systems. Such systems are made up by a population of simple agents
interacting locally with one other and with their environment. The system is ini-
tialized with a population of individuals (i.e., potential solutions). These individuals
are then manipulated over many iteration steps by mimicking the social behavior of
insects or animals, in an effort to find the optima in the problem space. A potential
solution simplifies through the search space by modifying itself according to its past
experience and its relationship with other individuals in the population and the
environment. Problems like finding and storing foods, selecting and picking up
materials for future usage require a detailed planning, and are solved by insect
colonies without any kind of supervisor or controller. Since 1990, several collective
behavior (like social insects, bird flocking) inspired algorithms have been proposed.
The objective of this article is to present to the swarms and biomedical engineering
research communities some of the state-of-the-art in swarms applications to
biomedical engineering and motivate research in new trend-setting directions. In
this article, we present four swarms algorithms including Particle swarm opti-
mization (PSO), Grey Wolf Optimizer (GWO), Moth Flame Optimization (MFO),
and Firefly Algorithm Optimization (FA) and how these techniques could be suc-
cessfully employed to tackle segmentation biomedical imaging problem. An
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application of thermography breast cancer imaging has been chosen and the scheme
have been applied to see their ability and accuracy to classify the breast cancer
images into two outcomes: normal or non-normal.

1 Introduction

The breast cancer is considered the most common type of cancer among the
women, and is the second leading cause of cancer-related death for the women. So
the early detection of a breast tumor, before they metastasize and escalate to the
neighboring cells, could minimize mortality rate. However, the breast cancer is a
heterogeneous disease which makes the early detection of the disease as a major
clinical challenge. There are lots of imaging techniques available in the field of
early breast cancer detection. Among them, the most commonly used method, the
gold standard, presently called as X-ray mammography [1, 2].

Mammography considered as the best screening tool that uses low dose X-rays
to create an image of the breast to find breast cancer. Mammography has been
proved to be effective in screening asymptomatic women to reduce mortality by as
much as 30 % [3]. Although mammography proven its effectiveness, it has many
limitations and drawbacks. The cancerous structures have many features in com-
mon with normal breast tissue which make the detection process of breast cancer in
mammograms is a challenging task. This means that a high number of false posi-
tives or false negatives are possible [4]. Dense breast tissue can look white or light
gray on a mammogram. This can make mammograms harder to interpret in younger
women, who tend to have denser breasts. Many breast conditions mimic the
symptoms of cancer and need tests and sometimes a biopsy for diagnosis [3].
Moreover, the major problems with X-ray mammography based breast screening
are that it is an invasive technique, and the electromagnetic radiation itself helps the
growth of breast tumor by 2 % during each periodic inspection [5].

There are other breast-testing options that are more effective and safe.
Thermography, also known as thermal imaging or infrared imaging is a
non-invasive, non-contact system of recording body temperature by measuring
infrared radiation emitted by the body surface [6]. Digital infrared imaging has been
used in medical diagnostics since the 1960s and in 1982 it was approved by the US
Food and Drug Administration (FDA) as an adjunctive tool for the diagnosis of
breast cancer [7], since this time a more effort is given to increasing the sensitivity
of infrared imaging technology. Now thermography, or thermal imaging is con-
sidered a better tool for breast cancer diagnosis [8]. The idea behind using thermal
imaging depend on the fact that the IRT camera visualizes any changes in the bodys
heat caused by abnormalities in the blood flow existed in the surface of diseased
areas. Knowing that cancerous tumors have an increased blood supply and cell
growth, make it possible for using thermal imaging in breast cancer detection. In
thermal imaging there is no compression of the breast so women may find it more
comfortable, thermal imaging does not expose the woman to any radiation, as
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occurs with mammography, fast, low cost and sensitive method [5]. The results of
thermography could be able to apprise women of breast cancer up to 8–10 years
before mammography can detect.

Any Computer-Aided Detection (CAD) system for breast cancer detection can
be divided into mainly three stages: a region of interest segmentation (ROI), feature
extraction, classification and performance analysis. ROI segmentation aims to
separate breast region from the rest of thermal images, after such segmentation
some features are extracted. In order to classify the breast to be normal or abnormal
some kinds of artificial classifications algorithms are applied [9]. Classification
results of breast thermal images depend mainly on segmentation result. Accurate
segmentation of region of interest from medical thermal images still remains as an
open problem. Absence of clear edges, low contrast nature and low signal to noise
ratio are inherent limitations of thermal image. Complex pre segmentation steps
remain a problem due to the more intricate intensity field of breast thermograms.
Many attempts had been done to provide a CAD system for breast cancer detection
but we will limit our focus on research work have done using the DMR-IR database
[10]. These efforts can be classified into: automatic segmentation of breast regions
[11, 12] and classification based on the asymmetry analysis to normal and abnormal
cases [13, 14].

In order to distinguish the normal and abnormal tissues in breast thermal images
[13] proposed the use of Gabor wavelet transform. The proposed work is done to
differentiate the normal and various abnormal conditions such as carcinoma, nodule
and fibro adenoma. Total 20 images are considered among which nine are carci-
nomas, six are nodules and five are fibro adenomas. The primary step is the manual
removal of non-breast and extra regions such as shoulder and hand from underlying
images. Followed by segmentation of breast tissues in thermal images is performed
using ground truth masks and raw images. Normal and abnormal regions are
grouped according to the healthy and pathology conditions. Both the groups are
subjected to Gabor wavelet transform. Features such as energy and amplitude for
different scales and orientations are extracted. Anisotropy index is calculated using
extracted energy information. The results showed that derived features are highly
correlated to the image contrast. Particularly, anisotropy measure of carcinoma
tissues showed the largest energy and high anisotropic nature. It appears that the
Gabor wavelet based features could be one of the structure descriptor in thermal
images for automated and early diagnosis of breast cancer. Another attempt of
asymmetry analysis in breast thermograms is proposed in [14]. In this work Prabha
proposed the use of non-linear total variation diffusion filter and reaction diffusion
based level set method in order to segment the breast tissues using TV edge map as
stopping boundary function. Asymmetry analysis is performed on the segmented
breast tissues using wavelet based structural texture features. Twenty images that
have pathologies either in left or right region are considered. The segmented area of
TV based level set is linear and high correlation 0.99 indicating the better perfor-
mance of this segmentation method. The values of structural texture features
namely, contrast and directionality are found to be distinct for normal and abnormal
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tissues. Structural texture features extracted from the wavelet coefficients are found
to be significant in demarcating normal and abnormal tissues.

Suganthi [11] propose a beast segmentation from breast thermograms using active
contour based level set method. In order to improve signal to noise ratio and contrast
of thermal images before using level set, a statistical based noise removal technique
and contrast limited adaptive histogram equalization were used. Verification and
validation of the segmented results were carried out against the ground truths. Few
overlap measures such as accuracy, sensitivity, specificity, positive predictive value
(PDP) and negative predictive value (PDN) were computed to determine the per-
centage of similarity between the segmented results and ground truths.
A modification of breast cancer ROI segmentation using level set is enhanced in [12].
In the proposed work of [12] the distance regularized level set method is modified by
adopting an improved diffusion rate model. The level set function is evolved based on
phase information of the image. To perform this study, 72 gray scale images of size
320 � 240 pixels are considered. The selected images are subjected to proposed
PBMDRLS method. The segmented region of interests are verified and validated
against the ground truth images. Region based statistics and overlap analysis are
performed. The overlap measures showed 97 % of average similarity between four
sets ground truths and segmented region of interests. A recently research work on
automatic ROI segmentation is proposed in [5, 9]. In [5] an automatic segmentation
and classification is introduced by utilizing both Neutrosophic sets (NS) and opti-
mized Fast Fuzzy c-mean (F-FCM) algorithm In this work, post-segmentation pro-
cess was suggested to segment breast parenchyma (i.e. ROI) from thermogram
images. SVM is used in classification step to classify breast parenchyma into normal
or abnormal cases. The proposed system in [5] was evaluated through recall, accu-
racy, precision, and error rate measurements proving its success compared to other
automatic ROI segmentation methods [15]. A new idea of using data acquisition
protocol parameter in automatic ROI segmentation is proposed in [9]. This method is
based on the data acquisition protocol parameter (the distance from the patient to the
camera) and the image statistics of DMR-IR database. Having ROI segmented some
statistical and texture features were extracted. These features are used with SVM
classifier to detect the normal and abnormal breasts.

The breast cancer research is still in its early stage, and there are no such robust
segmentation methods, and optimum feature extraction techniques are available.
Hence, in this chapter, we have proposed an automatic CAD system that depends on
using automatic ROI segmentation. The segmentation process utilize the benefits of
Bio-Inspired techniques such as Particle Swarm Optimization (PSO), Grey Wolf
Optimizer (GWO), Moth Flame Optimization (MFO), and Firefly Algorithm (FA) in
providing more accurate results. As soon as ROI had been segmented, different
features can be extracted from this region. In this work we successfully extract
different types of features. These features include: statistical, texture and gabor
features. The system will use these extracted features in last stage of the proposed
CAD system. These features will be used to classify breast parenchyma into normal
or abnormal cases. Support Vector Machine (SVM) with different kernel functions
(i.e. polynomial, RBF, Linear and quadratic) will be used as a classifier.
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Bio-Inspired optimization algorithms also known as nature inspired optimization
algorithms is a well-established paradigm with current systems having many of the
characteristics of biological computers and capable of performing a variety of tasks
that are difficult to do using conventional techniques. Bio-Inspired algorithms is
considered as one of themost important increasing fields, which attract a large number
of researchers and scientists working in areas such as neuro-computing, global opti-
mization, swarms and evolutionary computing [16]. Bio-Inspired computing algo-
rithms has been applied to different kinds of optimization problems in computer
networks, control systems, bioinformatics, economics and finance, forecasting
problems, game theory, mu- sic, biometrics, power systems, image processing,
industry and engineering, parallel and distributed computing, data mining, robotics,
applications involving the security of information systems etc. [17]. Optimization can
be defined as an art of selecting the best alternative among a given set of options. The
success of most of the metaheuristics optimization algorithms depends to a large
extent on the careful balance of two conflicting goals, exploration (diversification) and
exploitation (intensification) [18]. While exploration is important to ensure that every
part of the solution domain is searched enough to provide a reliable estimate of the
global optimum; exploitation, on the other hand, is important to concentrate the search
effort around the best solutions found so far by searching their neighborhoods to reach
better solutions [19]. Biologically inspired computing still has much room to grow
since this research community is quite young.

The main contribution of this work is our success in providing automatic ROI
segmentation method using recent bio-inspired algorithms. The experimental
studies showed that it is very promising to use these set of bio-inspiring algorithms
in ROI segmentation and how it improves the CAD system performance in terms of
specificity, sensitivity, precision and accuracy. In this work we use a benchmark
database [10] containing 149 patients of total 63 cases, 29 healthy and 34 malig-
nant. We use leave-one-out cross validation method in order to provide more
accurate results of the proposed CAD system. The reminder of this chapter is
organized as follow. Section 2 will illustrate in more details the basics of nature
inspired optimization algorithms. These algorithms include Particle Swarm
Optimization, Grey Wolf Optimizer (GWO), Moth Flame Optimization (MFO), and
Firefly Algorithm Optimization (FA). In Sect. 3 a full description of our proposed
CAD system for breast cancer detection is given. Experimental results and system
evaluation will be discussed in Sect. 4. Finally, the conclusion and future work are
discussed in Sect. 5.

2 Bio-inspired Swarm Optimization Algorithms

Nature inspired algorithms are algorithms inspired from social behavior of animals
and birds. In the following sections, four nature inspired algorithms including Particle
swarm optimization, Grey Wolf Optimizer (GWO), Moth Flame Optimization
(MFO), and Firefly Algorithm Optimization (FA) will discusses briefly.
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2.1 Particle Swarm Optimization

PSO algorithm originally developed by Eberhart and Kennedy [20], which is taking
advantage of the swarm intelligence concept, for example bird flocks and fish
schools.

Main concepts PSO applies the social interaction concept to problem solving.
The usual aim of the particle swarm optimization (PSO) algorithm is to solve
continuous and discrete optimization problems. It is a population-based method,
that is iteratively changed until a termination criterion is satisfied. It uses a number
of agents (particles) which represents a swarm moving around in the search space in
order to look for the best solution. Each particle is treated as point in N-dimensional
space. In addition, each particle keeps track of its coordinates in the solution that are
associated with best particle solution (fitness). This value called pbest the personal
best. Another best value called gbest which is the best value obtained so far by any
particle in the neighborhood of that particle. The main concept of PSO depends on
accelerating each particle toward pbest and gbest particle locations, with a random
weighted acceleration at each time step.

Each particle update his location based on the current position, current velocity,
distance between the current position and pbest and finally the distance between the
current position and gbest.

Mathematical Model The population of feasible solutions p = p1, p1, …, pn in
PSO are often called a swarm. Each P is called particle. These particles travel
through the search space to find the optimal solution. PSO segmentation based
approach has been one of the most recently used. It has been compared with GA
[21]. The results show that it gives better results in less time also it needs only few
parameters to adjust. As PSO has no parameter of “mutation”, “recombination”, and
no notion of the “survival of the fittest”.

At the beginning of the PSO approach, particle position velocities are set to zero
and their positions are randomly set within the boundaries of the search space.
Global, Local and neighborhood are initialized with small values. Population size
and stopping criteria are very important parameters that need to optimize in order to
get an overall good solution with acceptable time limit. In each step of PSO
algorithm fitness function is evaluated and each particle’s position and velocity are
updated according to Eqs. (1) and (2). The fitness function is used to indicate how
close a particle to the optimal solution.

vniþ 1 ¼ wvni þ/1r1ðgni � xni Þþ/2r2ðpni � xni Þþ/3r3ðnni � xni Þ ð1Þ

xniþ 1 ¼ xni þ vniþ 1 ð2Þ
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where w;/1;/2 and /3 coefficients are assigned weights. w is inertial weight which
represents memory of previous velocity and /1;/2 and /3 are acceleration coeffi-
cients which represent cognitive (personal), social (neighborhood) component
usually set between 0 and 4. the symbols r1; r2 and r3 represent random variables
with uniform distribution between 0 and 1. gni is global best information while nni is
neighborhood best and pni is local best.

A large inertia weight (w), represents a global search while a small inertia
weight, represents a local search. The linearly decreasing the inertia weight from a
large value to a small value relatively through PSO process, it gives the best PSO
performance compared with fixed inertia weight parameter settings.

2.2 Gray Wolf Optimizer (GWO)

Greywolf optimizer (GWO) is a population basedmeta-heuristics approach simulates
the leadership hierarchy and huntingmechanism of graywolves in nature proposed by
Mirjalili and Lewis [22]. In the following section, we will give an overview of the
main concepts and structure of the grey wolf optimizer approach as follow.

Main concepts and inspiration Grey wolves are considered as apex predators,
which they are at the top of the food chain. Grey wolves prefer to live in a group
(pack), each group contains 5–12 members on average. All the members in the
group have a very strict social dominant hierarchy. The social hierarchy consists of
four levels as follow. (1) The first level is called Alpha ðaÞ The alpha wolves are
the leaders of the pack and they are a male and a female. They are responsible for
making decisions about hunting, time to walk, sleeping place and so on. The pack
members have to dictate the alpha decisions and they acknowledge the alpha by
holding their tails down. The alpha wolf is considered the dominant wolf in the
pack and all his/her orders should be followed by the pack members, (2) The
second level is called Beta ðbÞ The betas are subordinate wolves, which help the
alpha in decision making. The beta wolf can e either male or female and it consider
the best candidate to be the alpha when the alpha passes away or becomes very old.
The beta reinforce the alpha’s commands throughout the pack and gives the
feedback to alpha, and (3) The third level is called Delta ðdÞ The delta wolves are
not alpha or beta wolves and they are called subordinates. Delta wolves have to
submit to the alpha and beta but they dominate the omega (the lowest level in
wolves social hierarchy). There are different categories of delta as follows:
(a) Scouts. The scout wolves are responsible for watching the boundaries of the
territory and warning the pack in case of any danger, (b) Sentinels The sentinel
wolves are responsible for protecting the pack, (c) Elders The elder wolves are the
experienced wolves who used to be alpha or beta, (d) Hunters The hunters wolves
are responsible for helping the alpha and beta wolves in hunting and providing food
for the pack, and (e) Caretakers The caretakers are responsible for caring for the
ill, weak and wounded wolves in the pack. (4) The fourth (lowest) level is called
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Omega ðxÞ The omega wolves are considered the scapegoat in the pack, they have
to submit to all the other dominant wolves. They may seem are not important
individuals in the pack and they are the last allowed wolves to eat. The whole pack
are fighting in case of losing the omega.

The mathematical models of the social hierarchy, tracking, encircling and
attacking prey are discussed as follows:

Social hierarchy In the grey wolf optimizer (GWO), the fittest solution is
considered as the alpha a, while the second and the third fittest solutions are named
beta b and delta d, respectively. The rest of the solutions are considered omega x.
In GWO approach, the hunting is guided by a, b and d. The x solutions follow
these three wolves.

Encircling prey During the hunting, the grey wolves encircle prey. The
mathematical model of the encircling behavior is presented in the following
equations.

D ¼ C � XpðtÞ � A � XðtÞ�

�

�

� ð3Þ

Xðtþ 1Þ ¼ XpðtÞ � A � D ð4Þ

where t is the current iteration, A and C are coefficient vectors, Xp is the position
vector of the prey, and X indicates the position vector of a grey wolf.

The vectors A and C are calculated as follows:

A ¼ 2a � r1 � a ð5Þ

C ¼ 2 � r2 ð6Þ

where components of a are linearly decreased from 2 to 0 over the course of
iterations and r1; r2 are random vectors in [0, 1].

Hunting The hunting operation is usually guided by the alpha a. The beta b and
delta d might participate in hunting occasionally. In the mathematical model of
hunting behavior of grey wolves, the alpha a, beta b and delta d have better
knowledge about the potential location of prey. The first three best solutions are
saved and the other agent are oblige to update their positions according to the
position of the best search agents as shown in the following equations.

Da ¼ C1:Xa � Xj j;
Db ¼ C2:Xb � X

�

�

�

�;

Dd ¼ C3:Xd � Xj j
ð7Þ
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X1 ¼ Xa � A1 � ðDaÞ;
X2 ¼ Xb � A2 � ðDbÞ;
X3 ¼ Xd � A3 � ðDdÞ:

ð8Þ

Xðtþ 1Þ ¼ X1 þX2 þX3

3
; ð9Þ

Attacking prey (exploitation) The grey wolf finish the hunt by attacking the
prey when it stop moving. The vector A is a random value in interval ½�2a; 2a�,
where a is decreased from 2 to 0 over the course of iterations. When Aj j\1, the
wolves attack towards the prey, which represents an exploitation process.

Search for prey (exploration) The exploration process in GWO is applied
according to the position a, b and d, that diverge from each other to search for prey
and converge to attack prey. The exploration process is modeled mathematically by
utilizing A with random values greater than 1 or less than -1 to oblige the search
agent to diverge from the prey. When Aj j[ 1, the wolves are forced to diverge
from the prey to fined a fitter prey.

2.3 Moth Flame Optimization (MFO)

Moth Flame Optimization (MFO) is a population based meta-heuristics approach
simulates the navigation method of moths in nature. It proposed by Mirjalili [23]. In
the following section, we will give an overview of the main concepts and structure
of the moth flame optimization approach as follow.

Inspiration The main inspiration of moth is their special navigation methods in
night. They used to fly in night using the moon light which called transverse
orientation. A moth flies to the moon by using a fixed angle regarding to the moon.
The same kind of navigation method can be done by humans. Moths are tricked by
artificial lights and show such behaviour. When the light source is very far, moths
are moving in straight line using a similar angle.

MFO Algorithm Let M with size n � d candidate solutions are the moths n and
the problem variables are the position of moths in the space. The moths can fly in
different or hyper dimensional d space by changing their position vectors. OM is an
array for storing fitness function value. Moreover, F is same asM with same size but
for flames and their corresponding array for sorting their fitness function OF. Each
moth position is updated with respect to the flame using the following formula:

Mi ¼ SðMi; fjÞ ð10Þ

where Mi indicates the ith moth, Fj is jth flame, and S is the spiral function.
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2.4 Firefly Algorithm (FA)

Firefly Algorithm (FA) is population based a meta-heuristics approach was first
developed by Xin-She Yang in 2009 at Cambridge University [24]. It simulates the
flashing patterns and behaviour of fireflies. In the following section, we will give an
overview of the main inspiration and structure of the firefly algorithm as follow:

Concept The main concept of FA is based upon idealizing the fireflies flashing
characteristic. It uses three idealized rules which are: (1) Fireflies are irrespective
and unisex so that one firefly will be attracted to other fireflies with respect to their
sex, (2) The firefly attractiveness is proportional to the brightness. That means for
any two flashing fireflies, the movement of firefly is from the less brighter one
towards the brighter one. If there is no brighter one than a particular firefly, then the
movement will move randomly, and (3) The brightness of a firefly is directly
affected by the landscape of the objective function.

As the light intensity is proportional to a firefly’s attractiveness. The variation of
attractiveness b with the distance r is defined at the following equation.

b ¼ b0e
�cr2 ð11Þ

where b is the attractiveness at r ¼ 0.
Moreover, the movement of a firefly i is attracted to another attractive (brighter)

firefly j is defined by the following equation:

xtþ 1
i ¼ xti þ b0e

�cr2i;jðxtj � xtiÞþ ate
t
i ð12Þ

where at is random parameter and eti is a vector of random numbers taken from a
Gaussian or uniform distribution at time t.

3 Bio-inspired Swarm Techniques for Thermogram
Breast Cancer Detection System

In this section, four swarm optimization approaches will be used in thermal imaging
clustering. These swarms are: PSO, GWO, MFO and FA. Moreover, the clustering
results from each swarm version will be compared with each other. The overall
architecture of the proposed swarm-based segmentation is summarized in Fig. 1.

3.1 Preprocessing Phase

Noises are always undesirable. So removing noise with preserving edges of the
image plays a vital role in image processing. Median filter is one of the simplest and
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most popular approaches for removing noise like salt and pepper [25]. In this work,
the original gray-scale thermal image will be resized in order to reduce computation
time. Then, median filter with window size 3 * 3 is applied to enhance thermal
image.

3.2 Thermal Image Clustering Phase

In this phase four versions of swarm will be adopted and the produced results from
each of them will be compared with each other. For each version of swarm the
adopted fitness function will be the maximum distance between each cluster. The
parameters setting used for each version of swarm is summarized in Tables 1, 2, 3
and 4.

Fig. 1 The overall architecture of the proposed swarm-based segmentation

Table 1 Parameters setting
of PSO

Population size 150

Number of iterations 10

/1 0.6

/2 0.6

xmax 255

xmin 0

vmax 2

vmax −2

w 0.4

Number of levels 3
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3.3 ROI Extraction Phase

In this phase, the best cluster image which is representative of breast region of
interest (ROI) will be selected from each swarm. In PSO, the best cluster image is
selected based on maximum standard deviation calculated from each cluster image.
In GWO, green channel of the produced cluster image is selected as the best cluster
image. In MFO, red channel of the produced clustered image is selected as the best
cluster image. In FA, green channel of the produced clustered image is selected as
the best cluster image. After the best cluster image is selected, morphology oper-
ation like open and close are adopted in order to crop the breast region of interest.
The pseudo steps of ROI extraction is same as in [5].

3.4 Features Extraction Phase

In this phase, several features are extracted from breast ROI. These features are:
statistical, texture and gabor features. Texture feature is the property which represents
the structure of an image. In this work, 22 texture features are calculated from

Table 2 Parameters setting
of GWO

Parameter Value (s)

Number of search agents 10

Number of iterations 5

Range (boundary of search space) [0 255]

Dimension 2

Table 3 Parameters setting
of FA

Parameter Value (s)

Number of fireflies 10

Number of iterations 2

Range (boundary of search space) [0 255]

Light absorption coefficient 1

Attraction coefficient base value 2

Dimension 2

Mutation coefficient 0.2

Mutation coefficient damping ratio 0.98

Table 4 Parameters setting
of MFO

Parameter Value (s)

Number of search agents 10

Number of iterations 5

Range (boundary of search space) [0 255]

Dimension 2
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Haralick GLCM with the distance parameter d = 1 [26]. These features are:
(1) Energy, (2) Entropy, (3) Dissimilarity, (4) Contrast, (5) Inverse difference,
(6) Correlation, (7) Homogeneity, (8) Autocorrelation, (9) Cluster Shade, (10) Cluster
Prominence, (11) Maximum probability, (12) Sum of Square, (13) Sum Average,
(14) Sum Variance, (15) Sum Entropy, (16) Difference variance, (17) Difference
entropy, (18) Information measures of correlation 1, (19) Information measures of
correlation 2, (20)Maximal correlation coefficient, (21) Inverse difference normalized
(IDN) and (22) Inverse difference moment normalized (IDMN). First statistical fea-
tures (FOS) is the property which represents the statistical features of the image [27].
In this work, 5 statistical features are adopted. These features are: mean, standard
deviation, median, mode, skewness and kurtosis. Gabor filters is defined as convo-
lution kernel which is the product of a cosine function and aGaussian. It characterized
by specified orientation and specified spatial frequency [28]. In this work, 40 absolute
Gabor coefficient features were extracted from the Gabor wavelet.

3.5 Classification Phase

In this section, SVM is adopted to classify the breast ROI to abnormal or normal.
SVM is a supervised learning method that transforms input data to high-dimensional
feature space using several kernel functions (i.e. polynomial, RBF, Linear and
quadratic) where the transformed input data becomes more separable. It can solve
linear and non-linear classification problem through finding optimal hyperplane with
maximal margin [29]. Moreover, in order to evaluate the performance of each swarm
version, one of cross validation algorithm is adopted. This algorithm is
leave-one-out. Leave-one-out cross validation is one of the most commons of cross
validation methods. It the degenerate case of K-Fold Cross Validation, where K is
selected the total number of partitions. For a dataset with N points, perform N
partitions, for each partition use N-1 for training and the left point for testing. The
classification model is used to evaluate the error rate for only single point held out.
A generalization error estimates is obtained by repeating the same procedure for each
of training points partitions and then averaging the obtained results [30].

4 Experimental Results and Discussion

4.1 Dataset Description

Abenchmark database [10] was used to evaluate the proposed CAD system. It contains
149 patients with images size of 640 * 480 pixels. Only frontal images are used to test
the proposed CAD system. It contains 63 cases, 29 healthy and 34 malignant.
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4.2 Results and Discussion

The proposed CAD system programmed in MATLAB-R 007 with Intel Core I3 and
2 GB of memory. Figures 2, 3, 4 and 5 show the clustering results and final
extracted breast ROI using different version of swarm with same fitness function,
(a) shows the original grayscale image after resizing it and applying median filter
with size 3 * 3, (b) show the produced cluster results from using PSO, GWO, MFO
and FA, (c) shows the selected cluster image, (d) shows the selected image after
converting it to binary image using ostu’ thresholding, (e) shows the binary image
after applying open morphology and removing the connected regions to the
boundary which are shoulders and stomach, (f) shows the results obtained after
selecting the maximum region and get the maximum y-direction, (g) shows the ROI
rectangle on the produced cluster image and (h) shows the final extracted ROI after
enhancement through removing the background.

Figures 6, 7, 8 and 9 show the obtained classification results produced from each
version of swarm using different kernel functions of svm and leave-one-out cross
validation method in terms of specificity, sensitivity, precision and accuracy. As it
can bee seen in Fig. 6, linear kernel function is best one which gives highest
accuracy rate. It obtains overall Accuracy 85.71 %, Sensitivity 83.33 %, Specificity

Fig. 2 Results of thermal image clustering and ROI extraction phase (PSO results). a Original
thermal image after resizing and applying median filter, b PSO clustering results, c selected cluster
image, d selected cluster image after converting it to binary, e image after remove regions
connected to the boundary, f image after selecting maximum regions, g selected ROI and h final
extracted ROI after enhancement
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Fig. 4 Results of thermal image clustering and ROI extraction phase (MFO results). a Original
thermal image after resizing and applying median filter, b MFO Clustering results, c selected
cluster image, d selected cluster image after converting it to binary, e image after remove regions
connected to the boundary, f image after selecting maximum regions, g selected ROI and h final
extracted ROI after enhancement

Fig. 3 Results of thermal image clustering and ROI extraction phase (GWO results). a Original
thermal image after resizing and applying median filter, b GWO clustering results, c selected
cluster image, d selected cluster image after converting it to binary, e image after remove regions
connected to the boundary, f image after selecting maximum regions, g selected ROI and h final
extracted ROI after enhancement
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88.89 % and Precision 90.91 %. Also Fig. 7 shows linear is best kernel function. It
obtains overall Accuracy 84.12 %, Sensitivity 91.17 %, Specificity 75.56 % and
Precision 81.58 %. For Fig. 8 polynomial is the best kernel function. It obtains

Fig. 6 Leave-one-out cross validation results of using PSO in CAD system

Fig. 5 Results of thermal image clustering and ROI extraction phase (FA results). a Original
thermal image after resizing and applying median filter, b FA clustering results, c selected cluster
image, d Selected cluster image after converting it to binary, e image after remove regions
connected to the boundary, f image after selecting maximum regions, g selected ROI and h final
extracted ROI after enhancement
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overall Accuracy 85.71 %, Sensitivity 97.14 %, Specificity 71.43 % and Precision
80.95 %. However, Fig. 9 shows linear is the best kernel function too. It obtains
overall Accuracy 96.83 %, Selectivity 94.87 %, Specificity 100 % and Precision
100 %. Figure 10 compares the obtained the highest results obtained from using
different swarm versions which mean the obtained results using linear kernel
function for PSO, GWO and FA and the obtained results from polynomial kernel
function for MFO. As it can be seen, FA is the best swarm version as it obtains
highest accuracy, sensitivity, precision and specificity.

Figure 11 compares the elapsed time taken from each swarm in order to produce
the clustering results. As it can be seen, MFO takes less time compared with the
others and FA is in the second place.

Fig. 8 Leave-one-out cross validation results of using MFO in CAD system

Fig. 7 Leave-one-out cross validation results of using GWO in CAD system
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Fig. 10 Leave-one-out cross validation results of using different swarm versions in CAD System

Fig. 9 Leave-one-out cross validation results of using FA in CAD system

Fig. 11 Comparison between swarm versions in terms of processing time
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5 Conclusions and Future Work

In this chapter, an automatic computer aided diagnosis scheme that uses four swarms
techniques has been presented. An application of thermography breast cancer
imaging has been chosen and the scheme have been applied to see their ability and
accuracy to classify the breast cancer images into two outcomes: normal or
non-normal. Support Vector Machine with its kernel functions was used to detect the
normal and abnormal cases. Based the experimental results, it was found that the
SVM-linear kernel function is best one which gives highest accuracy rate in all
proposed swarms algorithms. Comparing different swarm versions with obtained
results using linear kernel functions for PSO, GWO and FA andMFO is performed. It
can be seen that, FA is the best swarm version as it obtains highest accuracy, sen-
sitivity, precision and specificity. In the future, there is a research direction of
increasing the dataset used in order to test the reliability of the proposed CAD system.
Also, more enhancements could be provided to the system by using modified ver-
sions of different swarms algorithms. The modifications aim to reduce number of
swarm parameters in order to limit user interaction with the automatic system.
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