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Abstract Many drives in crowded cities end with a challenging parking search,

and visitors often do not know which streets allow on-street parking. Therefore, we

present a learning-based approach to automatically generate on-street parking maps

from parked vehicle positions detected by sensing vehicles. Multiple sets of fea-

tures are proposed to describe the occupancy of every small road segment and its

surroundings at different time instances. The usage of k-means algorithm as unsu-

pervised learning and random forests as supervised learning are compared by apply-

ing these feature sets. The proposed approach is evaluated with repeated LiDAR

measurements on more than five kilometers of potential parking space length. Our

approaches, while keeping the model more generic, reveal slightly better results than

an approach from literature. In particular, the unsupervised approach does not need

a training data set and is free of any area specific parameter choice.

Keywords Map generation ⋅ Parking management ⋅ Crowd-sensing ⋅ Machine

learning

1 Motivation

The search for a parking space is often very time-consuming and costly for drivers in

crowded cities. Van Ommeren et al. (2012) estimate based on a nation-wide survey

that 30 % of trips in the Netherlands (excluding residential and employer-provided
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parking) end with parking search. Considered from a traffic management view, the

amount of traffic due to parking search is measured by several studies to be between

8 and 74 % of the total traffic in congested areas (Shoup 2006). This traffic also leads

to a huge amount of CO2 pollution. Shoup (2007) estimates that a small district in

Los Angeles with less than 500 on-street parking spaces causes more than 700 tons

of CO2 per year by 950,000 miles of parking search.

Parking search is not only fostered by missing information about parking avail-

ability. Visitors also need information about the locations of parking facilities. While

traffic signs often exist that guide to large off-street parking facilities, only a few cities

provide central information about on-street parking opportunities. Even if maps of

on-street parking spaces exist, they need to be updated continuously as parking reg-

ulations change from day to day. Such parking maps could be used inside the car

in navigation systems that visualize parking opportunities close to the destination.

Also looking further into the future, automated valet parking (e.g. Furgale et al. 2013)

needs the latest knowledge about parking space locations.

To provide up-to-date information about on-street parking spaces for a large

number of cities, automated methods are very beneficial. Once set up, they come

with lower costs and effort compared to manual recording. Also, they can easily

be extended to additional areas. Modern vehicles, equipped with sensors that detect

parked vehicles or empty parking spots (e.g. Park et al. 2008), can be used as data

sources. Aggregation of this information can be used to estimate the parking regu-

lations automatically. However, this task is not trivial due to challenges arising from

human behaviors. While some legal parking spaces might be used only infrequently,

vehicles are parked more often in other spots where parking is not allowed. As such,

it is necessary to learn typical characteristics of valid parking spaces.

To the best of our knowledge, there is very few literature about the automated

generation of on-street parking maps. Both Ge et al. (2013) and Coric and Gruteser

(2013) use parking information from the ParkNet project (Mathur et al. 2010) where

ultrasonic sensors are mounted on passengers’ side of the vehicle to record data on

specified tracks. Ge et al. (2013) count the vehicles parked at a certain position in

different time windows and use an absolute threshold to decide on the position’s

legality. Coric and Gruteser (2013) developed an algorithm that decides the legal-

ity based on a weighted occupancy average. This value is compared to a threshold

followed by a post-processing to smooth the results. Both approaches have the dis-

advantage that they depend on manually defined parameters and thresholds which

may vary a lot for different investigation areas. Furthermore, weak assumptions are

presumed for the length of parking prohibitions and for data importance at different

occupancy levels.

Our approach turns the identification of legal parking areas into a machine learn-

ing problem. This way, we reduce or even avoid the need for manual parameter

optimization. Furthermore, we use LiDAR sensors instead of ultrasonic sensors

which allow the explicit identification of vehicles. In addition to the occupancy

measure used in Coric and Gruteser (2013), we propose several additional features.

These features include more details of the sensed parking information in space and

time. For example, the average occupancy of a spot is compared to the average
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occupancies in its vicinity. With the calculation of these features for different length

scales, we avoid further assumptions on the parking characteristics.

The features are used to compare a supervised (classification) and an unsuper-

vised (clustering) approach. The random forest algorithm (Breiman 2001) is chosen

for classification and the k-means algorithm for clustering as both are established and

robust machine learning methods. For the clustering approach, an additional step is

necessary, since clustering only assigns data points to groups (clusters). It does not

provide information on which cluster corresponds to legal parking spaces. However,

a simple decision is possible if the number of clusters is set to two (legal/illegal): the

cluster with the higher average occupancy rate of parked vehicles corresponds to the

legal parking spaces. This unsupervised approach has the strong benefit that there is

no need for a training step with elaborate training data.

Summarized, the contributions of this paper are

(1) the description and evaluation of multiple features for distinguishing between

legal parking spaces and no-parking zones,

(2) the comparison of a method from the literature with the classification method

which uses the new features, and

(3) the proposal and evaluation of an unsupervised approach that shows a similar

performance to the supervised approaches.

The rest of the paper is structured as follows: in Sect. 2, we place our work in relation

to further literature. Section 3 contains the description of the methodology including

the data preprocessing, the feature definition, and the learning part. In Sect. 4, we

present the evaluation of the results of proposed clustering and classification methods

and analyze the relevance of the different features. Finally, a conclusion is given in

Sect. 5 as well as an outlook on future work.

2 Related Work

For the observation of parking spaces, there are several approaches for both static and

mobile sensors. While static sensors allow for a continuous observation of specific

parking spots with high accuracy, they usually come with high costs and little flex-

ibility (used e.g. in SFMTA 2014). Therefore, mobile sensors are favored in many

situations. Modern vehicles are often equipped with cameras and ultrasonic sensors

that can be used for the detection of parked vehicles or gaps in parking lanes. Ultra-

sonic sensors are already widely spread for automatic parking assistance systems in

series vehicles (Bengler et al. 2014). They also provide information about parking

gaps during driving (Mathur et al. 2010; Park et al. 2008). An approach for sensor

fusion of ultrasonic sensors and cameras is proposed by Choi et al. (2014). For more

precise measurements, laser scanning systems can be used. Combined with a high-

precision global navigation satellite system (GNSS) unit, they are able to provide

precise positions of parked vehicles with a high detection quality (Thornton et al.

2014; Bock et al. 2015). Furthermore, smart phones can also serve as a sensor when
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they are carried with the driver. Stenneth et al. (2012) detect the moving patterns of

different travel modes of the smart phone owner and concludes parking events for

travel mode transitions from driving to walking.

The generation of maps is present in many domains. While maps were created

manually in recent times, more and more maps are generated automatically nowa-

days. In robotics, a main task is the perception of the environment and the generation

of obstacle maps both for localization and collision avoidance (e.g. Thrun 2002). In

traffic context, a main focus lies on the automatic generation of road networks from

GPS trajectories and from further in-vehicle sensors to keep navigation maps up-to-

date (e.g. Davies et al. 2006). Compared to that research field, research about parking

map generation is very rare. Ge et al. (2013) and Coric and Gruteser (2013) gener-

ate on-street parking maps using data from ultrasonic sensors of the ParkNet project

(Mathur et al. 2010). Ge et al. (2013) simply count the number of vehicles parked at

each position. If the number reaches a certain threshold, this position is assumed to

allow parking.

A more sophisticated solution is proposed by Coric and Gruteser (2013). They

first divide the road into segments of one meter. Then they calculate a weighted

average of occupancy for these road segments. The weights depend on the general

occupancy level of the road. They assume that more occupied roads provide more

information about parking space legality. While this assumption might be true in

many situations, this does not hold for situations with high parking demand. Then,

illegal parking grows considerably with increasing occupancy level (White 2007)

which disturbs the algorithm. The weighted average is compared to a fixed thresh-

old. In the post-processing, they smooth the result to get rid of small areas of legal

or illegal parking up to a fixed length threshold. While it is reasonable that a park-

ing spot shorter than a vehicle length is implausible, parking prohibition also exists

for shorter distances in our investigation area. Both thresholds are manually defined

and no calibration method is proposed. This weighted occupancy rate thresholding

approach (called WORT in the following) is applied to our data set (Sect. 4) to com-

pare the results with our proposed methods.

3 Methodology

3.1 Overview

The generation steps for on-street parking maps consist of the assignment of parked

vehicle positions to small road segments, the aggregation of information from mul-

tiple time instances to features, and the classification based on several features (see

Fig. 1). The positions of parked vehicles at different times (described in Sect. 3.2)

and a road network from OpenStreetMap are used as inputs. The pre-processing

step (Sect. 3.3) contains the separation of the road network into small road segments

(called road subsegments in the following) and the assignment of the parked vehicle
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Fig. 1 Overview of the steps for the generation of the on-street parking map from parked vehicle

positions

information to them. This occupancy information of all road subsegments is used

to calculate various features based on the occupancy of the road subsegments them-

selves and the occupancy in the neighborhood. Finally, the decision whether parking

is legal is made in the learning step (Sect. 3.4). Here, both supervised and unsuper-

vised approaches are described. This procedure results in a set of road subsegments

with parking legality information which can be fused to a complete parking map.

3.2 Description of Required Data

For the generation of on-street parking maps, the main input is the position of parked

vehicles at different time instances (e.g. at different times of the day or various days).

This information can be generated with several sensors as described in Sect. 2. Our

approach is assumed to work properly for all of these sensor types. While laser scan-

ners, cameras, and ultrasonic sensors provide information about the position and

the extent of the vehicle directly, GPS trajectories from smart phones or in-vehicle

recordings only provide a single position. In the latter case, a typical length for a

vehicle can be assumed. Furthermore, each vehicle detection needs to be annotated

with a timestamp.

3.3 Data Preprocessing

The road network for the region of interest is obtained from OpenStreetMap. It is

processed to obtain road segments with nodes at every intersection. Each road seg-

ment is then split into small subsegments to learn the parking legality individually

for each of them. We chose a length of 10 cm, but a coarser partition should also
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Fig. 2 Projection of a detected vehicle on the road subsegments (small strokes). The color rep-

resents the occupancy: the occupancy value is 1 for completely occupied road subsegments (red),

between 0 and 1 for partially occupied road subsegments (yellow), and 0 for not occupied road

subsegments (green)

be feasible as long as small parking prohibition areas can be represented. The road

subsegments are connected to a graph to determine neighborhood relations. Then,

the extent of the detected vehicles is projected on the road subsegments (see Fig. 2).

In addition, a flag is set whether the vehicle is parked on the left or right side of the

road in digitalization direction.

3.4 Feature Set Definitions

We use eight feature sets for learning. They contain both raw and aggregated data

based on the road subsegment itself and its neighboring road subsegments. An

overview is given in Table 1. Many of the feature sets contain a distance parame-

ter for the relevant neighborhood. As we want to keep the model generic and avoid

parameter optimization, we extend the feature sets for multiple generic values. The

distance parameter of the features is set to 0.5 m, 1 m, 3 m, 5 m, 10 m, 20 m, and 40 m

to cover the effects in both the short and distant neighborhood.

Table 1 Overview of all feature sets used in our evaluations

Feature set number Name Size of feature vector

1 Raw occupancy #(measurement drives)

2 Occupancy rate 1

3 Weighted occupancy rate 1

4 Raw neighbor occupancy #(measurement drives) *

#(distance values)

5 Average neighbor occupancy #(measurement drives) *

#(distance values)

6 Gaussian average neighbor

occupancy

#(measurement drives) *

#(distance values)

7 Segment saturation #(measurement drives)

8 Road subsegment

attractiveness

#(distance values)
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FS1: Raw occupancy This is basically the input data by itself. At each road sub-

segment, we take the occupancies for each time instance and for each road side

as features. Therefore, this feature set contains a feature column for each time

instance.

FS2: Occupancy rate This feature set, by its name, is the average occupancy of the

road subsegment over all time instances.

FS3: Weighted occupancy rate Weighted occupancy rate is the concept suggested

in Coric and Gruteser (2013). It contains the average occupancy over all time

instances for each road subsegment weighted by the average occupancy of the

full road segment at each time instance.

FS4: Raw neighbor occupancy After having all of the low and high level infor-

mation about the road subsegment, we include information about its neighbors.

This is done by traversing the road subsegment graph, and calculating the average

occupancy of all the neighbors at a certain distance for each time instance. Note

that there are usually two neighbors of the same distance because there are two

directions (to the left and right) where the neighbors can be. In some special cases

like at intersections, the number of neighbors, that are at the same distance to the

current subsegment, can be even larger than two. To cope with these situations

where the number of neighbors can vary, we define that, for each distance, we

only have one feature for each time instance which is the average occupancy of

all the possible neighbors at that distance for that particular time instance.

FS5: Average neighbor occupancy For each time instance, we take the average

occupancy of all the neighbors within a predefined range. The identification of

neighbors is calculated by traversing the neighborhood graph like in the previous

feature set.

FS6: Gaussian average neighbor occupancy The weighted average occupancy of

neighbors is similar to the ordinary average occupancy of neighbors. The only dif-

ference is that when calculating the average, we apply a Gaussian function over

the neighbors’ occupancy rates based on their distance to obtain the weighted

average occupancy of neighbors. The width of the Gaussian function is chosen

such that its value is 10 % of the maximal value at the distance limit. This weight-

ing is applied assuming that closer road subsegments give a stronger hint on the

parking legality, but the occupancy of distant road subsegments still provide some

valuable information.

FS7: Segment saturation The segment saturation describes the occupancy level of

a complete road segment. The number of occupied road subsegments of a road

segment at one time instance is divided by the maximal number of occupied road

subsegments of all time instances on the specific road segment. It is assumed that

the maximum value represents the fully occupied road segment. If the value of

this feature is low, parking demand is low at this time instance while the parking

demand is high if this value is high.

FS8: Road subsegment attractiveness The road subsegment attractiveness repre-

sents the occupancy rate of the specific road subsegment compared to the road

subsegments in the neighborhood. The occupancy rate is divided by the maxi-

mum occupancy rate of the neighbors within a certain range. A low value means
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that this road subsegment is less attractive than others in the neighborhood. This

is a clue that parking might be not allowed there. If this value is high, this road

subsegment is comparably attractive as the most occupied subsegment. Therefore,

it is more likely that parking is allowed there.

3.5 Learning the Parking Legality of Road Subsegments

The decision whether parking at a given road subsegment is legal is a typical classi-

fication problem. Each road subsegment belongs to the classes “legal” or “illegal”.

Therefore we investigate the use of a classification algorithm. However, classifica-

tion belongs to the group of supervised learning algorithms. This means a training

data set with labeled data is always needed before application to an unknown area.

Clustering methods as a subset of unsupervised learning algorithms do not have this

requirement. They group objects to clusters based on their similarity. Some of the

clustering algorithms provide the possibility to define the number of clusters (two in

our case). For the assignment to the correct class, however, a manual or automatic

post-processing step is necessary. Nevertheless, it has the strong advantage that it

can be applied to different areas without the need to generate representative training

data. In the following, both approaches are described.

3.5.1 Unsupervised Learning: K-Means

We used the k-means algorithm (implementation from MATLAB) for unsupervised

learning as a basic and established clustering algorithm. This algorithm iteratively

improves the assignment of the observations to the clusters based on their distance

to the cluster centers. The decision boundaries of the clusters are hyperplanes in the

middle between the cluster centers. The k-means algorithm has the advantages of

being fast and allowing users to define the number of clusters. The latter is important

in our problem setting since we have the two classes “legal” and “illegal”, but we do

not know which cluster represents the legal parking spaces. The idea in this paper

is the assumption that legal parking spaces have a higher average occupancy rate

than parking prohibitions. That means our algorithm assigns the cluster with higher

average occupancy rate to the legal parking spaces.

3.5.2 Supervised Learning: Random Forests

For supervised learning, we used a random forest classifier (Breiman 2001, imple-

mentation from MATLAB). Since the training data is assigned to the two classes

“legal” or “illegal”, the classifier directly estimates the classes for the test data and

we do not need to guess the class assignment. The random forest algorithm is based

on the generation of a large set of different decision trees. The diversity of these trees
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results from the random choice of a subset of training data and a random choice of

features for each decision step. The benefits of random forests are that they are fast,

quite intuitive to interpret, and robust against overfitting.

4 Evaluation

4.1 Evaluation Approach

4.1.1 Test Scenario

A mobile mapping system equipped with a light detection and ranging (LiDAR)

sensor is used to record the streets of a test track nine times during the course of

a day. In an offline procedure, the positions of parked vehicles are extracted from

sensor data. Two examples of the extracted data are shown in Fig. 3. Precision and

recall of the detection were both higher than 95 %. The test track has an effective

length of more than 2.5 km in a large city. This means a length of more than 5 km

of potential parking space is evaluated, since both sides of the road are observed. As

Fig. 3 Example for input

data of a one measurement

drive and b all nine

measurement drives. The

black lines represent the

extent of the parked vehicles,

red (illegal) and green (legal)

are the ground truth classes

of the road subsegments

(a)

(b)
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the detection procedure cannot distinguish between parking and stopping vehicles,

the test track is chosen to cover single lane roads to reduce the impact of stopping

vehicles at intersections. It possesses parking spaces on a total length of 3.1 km for

about 500 vehicles parallel to the road. Road subsegments for areas with parking

perpendicular to the road as well as parking areas for special groups like taxi parking

spaces are excluded from the evaluation.

4.1.2 Ground Truth Recording

The ground truth of the parking space map is obtained by a combination of

approaches. For most of the roads, we used a handheld differential GPS device to

record the starting and ending positions of the legal parking spaces. The standard

deviation of the GPS device measurements ranges from a few centimeters to multi-

ple meters in our measurement. For the streets with low GPS accuracy due to limited

sky view, we used Google satellite images for a first estimation, as well as 3D point

clouds from our laser scan data for a precise measurement of the ground truth. Mea-

surement accuracy and precision of the laser scanning itself is 10 and 5 mm, respec-

tively. The positioning unit of the mobile mapping system has an accuracy of 20 cm

in horizontal directions for urban scenarios. Boundaries of the parking area like curb

stones or traffic signs can be clearly identified from the laser scan point clouds.

4.1.3 Uncertainty in Ground Truth

In addition to the measurement inaccuracy of the equipment, the start and end of a

parking space often cannot be identified precisely. For example, the curb at the end

of a parking lane is often not perpendicular to the road. In order to account for both

uncertainties, we do not evaluate the borders of the legal and illegal parking spaces

in the output. More precisely, 0.5 m to each side of the borders between the legal and

illegal parking spaces is not evaluated and not counted in the quality measures.

4.1.4 Quality Measures

There are four basic types of quality measures, namely the count of true positives

(TP), false positives (FP), true negatives (TN), and false negatives (FN). Each road

subsegment is assigned to one of these counts. Based on these counts, we calculate

the false positive rate FPR = FP

TN+FP
and the true positive rate TPR = TP

TP+FN
. Also,

we can calculate the overall accuracy by the formula:

acc = TP + TN

TP + TN + FP + FN
(1)
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4.1.5 Cross Validation

For better evaluation of the limited evaluation data set, a three-fold cross validation

is applied to the supervised learning and the weighted occupancy rate thresholding

(WORT) with smoothing (Coric and Gruteser 2013). The k-means approach is also

evaluated for different subsets of the data set to investigate the impact of the buffer

size. To this end, each road segment is assigned to one of three similar sized sets.

To investigate the generalization of the models, we generated two kinds of cross

validation sets. The first cross validation sets are based on the geographical location

of the road segments (called regional road subsets in the following). For the second,

the road segments are assigned randomly in such a way that the length of all three

sets is about the same. Note that cross validation with a random split of subsegments

would lead to an improper evaluation since adjacent subsegments have very similar

neighborhood features (features 4–6).

4.2 Results

4.2.1 Overview of Results

A comparison of results for our supervised and unsupervised learning approaches as

well as for the weighted occupancy rate thresholding (WORT) approach (Coric and

Gruteser 2013) is shown in Fig. 4 and Table 2. The table contains both the accuracy

without variation of cost weights and optimal accuracy values of each approach for

different choices of the cross validation sets. Since WORT does not suggest a method

to choose proper threshold values, we applied a brute-force search for the best para-

meters with cross validation and cost function c = FP + 𝛼 ⋅ FN (𝛼 is a weighting

parameter). The quality measures in Table 2 reveal the best results for random for-

est with random road subsets, but also similar results for nearly all other approaches

Fig. 4 Receiver Operating

Characteristic (ROC) curve

for comparison of random

forest, k-means, and WORT

with smoothing
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Table 2 Results for all methods with different choice of data subsets, parameters, and feature sets

Method Choice of data subsets,

parameters, and

feature sets

Accuracy

(unweighted) (%)

Optimal accuracy (%)

Random forest Regional road subsets 90.1 90.3

Random road subsets 93.0 93.1

k-means Regional road subsets 91.3 92.2

Random road subsets 91.8 92.5

Full data set clustered 91.8 92.1

Weighted occupancy

rate thresholding

(WORT) with

smoothing (Coric and

Gruteser 2013)

Suggested parameters 85.5 –

Optimized (regional

road subsets)

92.0 92.3

Optimized (random

road subsets)

92.3 92.3

with values larger than 90 %. Only if the suggested parameters of Coric and Gruteser

(2013) are used with their approach, the result is significantly worse. We assume that

their observation area has very different parking characteristics than ours. Figure 4

compares the Receiver Operating Characteristic (ROC) curves. For random forests,

this curve is generated changing the threshold for the estimated class probabilities.

Shifting the separation plane between the cluster centers is used for k-means. For

WORT, the relative weight of FP and FN is varied with parameter 𝛼 in the brute-force

search. The plot in Fig. 4 shows that k-means and random forest with random sub-

sets have the best results for nearly the complete curve. Clearly worse are the curves

for WORT and random forest with regional subsets. The clear difference between

the two random forest results is discussed in Sect. 4.2.2. A qualitative comparison is

presented in Sect. 4.2.3. Finally, we discuss details about the feature importance in

Sect. 4.2.4 and the necessary number of measurement drives in Sect. 4.2.5.

4.2.2 Impact of Subset Choice for Cross Validation

The results show clear differences in the supervised learning approach for different

subsets in the cross validation. If the roads are divided into three sets according to

their geographical locations, the ROC curve is clearly worse than a random split of

roads into three sets as shown in Fig. 5a. The area under the curve is 0.953 compared

to 0.966 for the random split of roads. Such clear differences between different sub-

sets in the cross validation do not exist for k-means and WORT (see Fig. 5b, c). We

assume that this effect is caused by different parking characteristics for the differ-

ent regions of our evaluation data subsets. If the roads are chosen randomly for the
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Fig. 5 Comparison of

different subsets for cross

validation with a random

forest, b k-means, and c
WORT with smoothing.

Only for the random forest

calculations, a clear impact

of different subset choice is

visible
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subsets, all subsets have about the same characteristics and are therefore more repre-

sentative for the other subsets. Since the random forest classifier is able to learn finer

differences than k-means with its linear separation hyperplane in the feature space,

the results depend more on the representative choice of training data than the other

methods.

4.2.3 Qualitative Evaluation of Methods

Qualitative comparison of the results reveals several similarities. All methods pro-

vide a reliable decision for parking legality in most situations. In particular, long

parking lanes and highly occupied parking spaces are well identified. However, false

positives mainly occur in small areas of parking prohibition like in front of garage

entrances if some vehicles are parked there during observation time (e.g. right road

in Fig. 6). False negatives are less frequent. They appear at rarely parked places like

at the end of parking lanes (e.g. Fig. 7a). Also, at few places, the detection method

systematically misses parked vehicles leading to locations without parked vehicles

at any time instance. The algorithms differ in determining the beginning of illegal

zones. The random forest approach often still classifies a few meters as legal in the

illegal zone. In situations with only one vehicle parked illegally for a few hours,

k-means and random forest interpret these situations correctly while the WORT

approach marks these spots as legal (see Fig. 7b).

4.2.4 Evaluation of Features

To compare the relevance of the feature sets, we evaluate their impact both for unsu-

pervised and supervised learning. For unsupervised learning with k-means cluster-

ing, we compare the results for runs with all and with a subset of feature sets (see

Fig. 8). If only feature sets 1–3 are used, i.e. the neighborhood features are ignored,

Fig. 6 Example for the

resulting parking map. Blue
is the estimated parking

space, red (illegal) and green
(legal) show the ground truth
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(a) (b)

Fig. 7 Examples for wrong results (estimated parking space in blue, ground truth for legal/illegal

parking in green/red): a shows false negative results at the end of a parking zone. b Visualizes two

false positive parking spaces for WORT with smoothing. The black lines represent the raw vehicle

detections. At the two wrong parking spaces, the same vehicle was detected two and four times,

respectively

Fig. 8 ROC curve for

different feature sets with

k-means
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the resulting ROC curve is considerably worse than the curve for all features. The

main reason for this result stems from marked parking spaces where the gaps between

the parked vehicles are always at the same positions and cars rarely cover that space.

If only the neighborhood features (feature sets 4–8) are used, the result is very simi-

lar to the usage of all features. Most differences are only at the end of parking lanes,

where this result is less accurate than using all features.

For supervised learning, the random forest method has the advantage of already

providing the feature importance already after the training step because it leaves out

a part of the training data for each tree. A plot of the feature importance is given

in Fig. 9. The most important feature sets are the average neighbor occupancy (5),

weighted neighbor occupancy (6), and segment saturation (7). For the feature sets

4–6, we see an increasing trend for increasing feature index. In these cases, the max-

imal distance of the neighborhood is chosen increasingly. This means that the first
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Fig. 9 Feature importance

from random forest training.

The intervals of the feature

index correspond to the

feature sets separated and

named in red

values are for very short distances (in this case 0.5 m) and the last values are for

long distances of 40 m. So, the neighborhood features are more important for farther

distances, but still relevant for shorter distances.

4.2.5 Evaluation of Required Number of Measurement Drives

To investigate the influence of the number of measurement drives on the parking map

result, we compare the presented methods for every number of measurement drives

using nine random drive subsets. The result is shown in a boxplot in Fig. 10. The
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Fig. 10 Boxplot showing the accuracy of different methods for different numbers of measurement

drives. Note that for nine drives, there is no variation for different permutations since all drives are

used in the calculation
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plot reveals mostly increasing values with increasing number of measurement drives

for all methods. For a low number of measurement drives, the random forest shows

significantly better results than the other two methods. If only one measurement drive

is used, k-means is also clearly worse than WORT with smoothing. For seven or more

measurement drives, only small improvements can be observed for all approaches.

5 Conclusion

This paper presents a novel approach for the generation of on-street parking maps

from parked vehicle positions using supervised and unsupervised learning methods.

We propose multiple feature sets to describe the occupancy characteristics of small

road subsegments and their surroundings. Furthermore, we compare our methods

to an implementation of the method from Coric and Gruteser (2013). Parked vehi-

cle detections from repeated LiDAR measurements are used to evaluate the meth-

ods on more than 5 km of potential parking space. We have shown that both of our

approaches show slightly better results than the method from the literature while

keeping the model more generic. Most interestingly, the main advantage of our unsu-

pervised approach is the total avoidance of parameter choice and optimization while

still providing results comparable to the supervised learning. Also, it is very robust

against the variation of parking characteristics for different areas. The random forest

method also provides reliable results in general and the best results for low numbers

of measurement drives. However, it reveals a clear dependence on the representative

choice of the training data set.

All approaches show weaknesses for untypical input data. If a legal parking space

is never occupied in the data set, it can hardly be identified. The same holds for

parking prohibition areas which are occupied by parked vehicles most of the time.

The latter often leads to wrong results at garage entrances. Since the evaluation is

based on data from only one day, the data set is biased for situations where parking

spaces are occupied for a long time by the same vehicle.

In the future, we plan to investigate more elaborate clustering algorithms like

EM clustering to further improve the result for the unsupervised approach. Further-

more, an extension of the approaches for more parking classes like special parking

legislation (e.g. parking for handicapped people) is an interesting challenge. Since

the occupancy characteristics are less distinct in this case, the supervised approach is

assumed to be superior over the other described approaches. Finally, it would be very

interesting to evaluate our approach for low-cost automotive ultrasonic sensor data.

Since more and more sensor-equipped vehicles are able to communicate their data

to a server, our methods hold high potential to provide up-to-date and inexpensive

on-street parking maps in an industrial scale.
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