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Abstract A natural language interface can improve human-computer interaction
with Geographic Information Systems (GIS). A prerequisite for this is the mapping
of natural language expressions onto spatial queries. Previous mapping approaches,
using, for example, fuzzy sets, failed because of the flexible and context-dependent
use of spatial terms. Context changes the interpretation drastically. For example,
the spatial relation “near” can be mapped onto distances ranging anywhere from
kilometers to centimeters. We present a context-enriched semiotic triangle that allows
us to distinguish between multiple interpretations. As formalization we introduce
the notation of contextualized concepts that is tied to one context. One concept
inherits multiple contextualized concepts such that multiple interpretations can be
distinguished. The interpretation for one contextualized concept corresponds to the
intention of the spatial term, and is used as input for a spatial query. To demonstrate
our computational model, a next generation GIS is envisioned that maps the spatial
relation “near” to spatial queries differently according to the influencing context.
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1 Introduction

A fundamental question in the field of Geographic Information Science concerns
the development of a natural language interface for GIS (Montello and Freundschuh
2005). In order to establish a natural language interface for GIS, spatial terms (i.e.
spatial relations and spatial regions (Montello et al. 2003) have to be mapped onto
spatial queries. In this paper we address the mapping of spatial relations. Previ-
ous approaches to model spatial terms concluded that their interpretation is mostly
context–dependent (Wang 1994; Raubal and Winter 2002; Yao and Thill 2006). For
example, the spatial relation “near” can be mapped onto distances ranging from thou-
sands of kilometers (e.g. “the moon is near the Earth”) to a few centimeters (e.g. “the
cup is near the milk bottle”).

A central question is always: what is context? In the scope of this work we consider
context to be any piece of ancillary or surrounding information that influences the
interpretation of a concept of interest. The semiotic triangle (Ogden and Richards
1946) (reviewed in Sect. 2) explains the process of interpretation in a triadic mode,
including an object in reality, a concept formed by a cognitive agent, and a term. We
introduce an enriched version of the triangle that also includes context, and show how
such a modification allows for disambiguating the interpretation of spatial concepts.

A cognitive agent refers to objects in reality by externalizing a context-influenced
concept. A concept is, by its very nature, an abstract entity that only exists in the
human mind. It therefore cannot be measured in terms of, or categorized by, physical
properties. Concepts have been proven (Rosch and Mervis 1975) to be fuzzy, and
to include prototypes. This also holds true for spatial concepts, e.g. downtown1

(Montello et al. 2003), north south (Montello et al. 2014), near (Fisher and Orf
1991; Wang 1994). Prototypes change with the influence of context (Osherson 1999;
Aerts and Gabora 2005). For example, a prototypical example for the concept tree is
different in Sweden and in Greece. We argue that the interpretation of a spatial term
relates to the prototype of a concept. To account for the possibility that a concept can
inherit multiple prototypes we introduce the notion of contextualized concepts. One
concept is represented by many contextualized concepts, where each contextualized
concept has one prototype and is linked to one context. A contextualized concept
is built from grounded observations of reality (Kuhn 2009) observed in a particular
context.

Many possible interpretations are narrowed down to a single one by making
context explicit for concepts and observations. This resulting interpretation is used
as mapping from a spatial term onto a spatial query.

1Throughout the paper we will use special formatting to indicate when a term is used to denote a
concept.
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In summary the contributions of this paper are:

• enrichment of the semiotic triangle with context
• derivation of an abstract model
• formalization of the abstract model as a computational model

This paper is structured as follows: First, the semiotic triangle is reviewed to show
how representations (terms) are connected with concepts that refer to observations in
reality in Sect. 2. Next the properties for concepts are pointed out, and we emphasize
the influence context has on concepts. Second, the idea and a formalization of it are
presented in Sect. 3. Third, this formalization is translated into a computational model
in Sect. 4. Fourth, the model is initialized with data, and the usage of the algorithms is
demonstrated in mapping the spatial relation “near” according to contexts: walking,
driving, and going uphil are mappedl into different spatial queries in Sect. 5.

2 State of the Art

To achieve mapping from spatial relations or general spatial terms to spatial queries,
it is necessary to understand how spatial terms represent reality. Spatial relations
are symbols that refer to spatial configurations, such as near or above. The semiotic
triangle by Ogden and Richards (1946) is a conceptual model that links symbols (e.g.
a word, a drawing, a map, or a gesture), reality, and concepts (see Fig. 1). Each edge
of this triangle represents one of the three main phases of representation: abstraction,
externalization, and interpretation. On the right corner of the triangle lies physical
reality. Physical reality is experienced in the form of exemplars, and abstracted to
form a concept in our mind (represented by the top corner of the triangle). When we
want to externalize a concept, for example during a communication process, we use
a symbol. Symbols are located on the left corner of the triangle, and are successfully
interpreted (as are the corresponding concepts) if they are grounded (Kuhn 2009) to
the subsets of physical reality (the exemplars) that we intended to refer to (indicated
by the dotted line).

Possible misunderstandings or misinterpretations arise if the same symbol does
not evoke the same typical exemplar in different subjects. One reason is the many-
to-many connection between a symbol and the exemplars that it refers to Chandler
(2007). For example, in mathematics there is the concept of neutral element for a

Fig. 1 Semiotic triangle
from Ogden and Richards
(1946)

SYMBOL
Interpretation

EXEMPLAR

Abstraction

CONCEPT

Externalization
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binary operation. Without specifying the operation (e.g. addition, multiplication) it
is not clear which exemplar it refers to (e.g. 0, 1). Another reason is that concepts are
formed and adjusted over time from repeated observations of reality (Von Glasersfeld
1995). Since no two persons have identical experiences, the “same” concept can never
be completely aligned in two person’s minds.

It was already suggested in the past (Von Glasersfeld 1995; Fisher 2000; Wor-
boys 2003) that context plays a role in aligning concepts. Fisher (2000) studied the
case of directional concepts and suggested that one way to avoid (or reduce) mis-
interpretations is to make explicit the frame of reference (context) that the given
directional concepts are embedded in. More generally, Von Glasersfeld (1995) states
that successful interpretation is only possible if the context of the speaker and that
of the listener are compatible; which means that the speaker and the listener must
have experienced exemplars of a concept in “similar” contexts (cf. Weiser and Frank
2013).

2.1 (Spatial) Concepts

A concept is an abstract entity that only exists in the human mind; according to
Seiler (2001), it is “primarily a cognitive structure” that helps us to make sense of
the world. The entities from which a concept is derived are called, throughout this
work, instances or exemplars.

According to Freksa and Barkowsky (1996), spatial concepts are all those “notions
that describe spatial aspects of a subset of the world”. Examples of spatial concepts
are near, downtown, and lake. Spatial concepts are central to human cognition
(Mark et al. 1999) as they help us to distinguish, categorize, and thus make sense of
the physical stimuli we perceive through our senses.

Psychological experiments showed that concepts include prototypes. By using a
category–membership verification technique, cognitive psychologist Rosch (1973,
1999) showed that concepts posses a graded structure. Within this structure, a proto-
type is abstracted from the experienced exemplars (Rosch and Mervis 1975) based on
a typicality judgment function. Another modeling approach represents a concept as
multiple experienced exemplars (Nosofsky 2011). Both theories share that the mem-
bership of an exemplar to a concept is judged within their typicality to the existing
concept.

In the field of geographic information science, several studies have previously
aimed at characterizing (geo)spatial concepts. Mark et al. (1999) empirically demon-
strated that people judge mountains, lakes, and oceans as typical exemplars of the
generic concept geographical feature. Further studies (Mark et al. 1999) revealed
that spatial concepts are typically organized according to a hierarchical structure, and
have vague boundaries. For example, it was shown by Smith and Mark (1998) that
geographical factors like size or scale induce conceptual hierarchies—as in the case
of bodies of water: pond, lake, sea, ocean. Also, it has been shown (Mark and Turk
2003; Mark 1993) that linguistic, cultural, and individual variability influences the
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creation and the structuring of spatial concepts. Montello et al. (2014, 2003) investi-
gated the fuzziness of the extension of spatial concepts. They showed that the spatial
concept downtown Santa Barbara is conceived differently by different subjects.

In the field of geoinformation, multiple approaches have been used to model spatial
concepts, such as, for example: qualitative spatial reasoning (Frank 1992), fuzzy
sets (Wang 1994; Robinson 2000), multi-valued logic (Fisher 2000; Duckham and
Worboys 2001; Worboys 2001), formal concept analysis (Frank 2006), and more. All
these formalizations do not account for context explicitly, and scientists concluded
that context has a major impact. In contrast, we use context as the base formal drive
to determine the interpretation.

2.2 Context and Its Influence on Concepts

According to Kuhn (2005), “context is an overloaded term and has many aspects.
Some of them are relatively easy to handle through domain separation […]. Others
are much harder to deal with […]”. Bazire and Brézillon (2005) analyzed 150 dif-
ferent definitions of context collected on the Web. They find that, although different,
they all share some common structure, and conclude that the definition of context
is highly domain–dependent. This is also true for the spatial domain (Huang et al.
2014).

According to Freksa and Barkowsky (1996), there are three main types of relations
that determine the meaning of a concept: (i) relations between a concept and its
exemplars, (ii) relations between concept and context, and (iii) relations between
concept exemplars and context.

Like any other type of concept, spatial concepts are influenced by context.
Several studies have been carried out to study the context–concept influence. Burgio
et al. (2010) and Tversky (2003) investigated the influence of context on spatial ter-
minology. Both studies show that context influences spatial descriptions at the level
of scale and granularity. Egenhofer and Mark (1995) investigated how different con-
texts influence the concept geographic space. They found, for example, that in a
“city” context the interpretation evokes typical exemplars such as streets, buildings,
and parks, while in a “country” context these become mountains, lakes, and rivers.
Talmy (2003, p.231) argued that the spatial relations “on” and “in” are used for
vehicles differently, depending on the existence of a walkway in the vehicle—e.g.
on a bus versus in a car. Smith and Mark (1998) showed that the relation “in” in
the context “the island is in the lake” means the island protrudes from the surface
of the lake while in the context “the submarine is in the lake” the interpretation is
the submarine is completely submerged within the corresponding three-dimensional
volume.

Aerts and Gabora (2005) presented a quantum-mechanical model for concepts
and influencing contexts. Their model showed that context is also the driving factor
in modeling concept combination.
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Fig. 2 Semiotic triangle from Ogden and Richards (1946) used for geographic information science
by Kuhn (2005), enriched with context. The exemplars of the same concept, observed in different
contexts. If the context is not explicitly reported with symbolic externalization, the symbol can
be misinterpreted (many-to-many relation). Misinterpretations vanish if the context is specified,
because a one-to-one connection between an exemplar and the symbol is created

3 An Abstract Model for Context–Dependent Concepts

In the scope of this work we consider context to be any piece of ancillary or sur-
rounding information that influences the interpretation of a concept of interest. This
means that the same concept is possibly associated to different typical exemplars in
different contexts.

The core idea is to establish a one-to-one connection between a symbol (with
ambiguous semantics) and an observed exemplar based on the context. Context
selects from the many interpretations of the symbol a single applicable one—i.e.
it reduces a many-to-many relation to a simple one-to-one. This idea is schematized
in Fig. 2, which describes the process of abstracting one spatialConcept2 from two
experiences (exemplars) observed in two different contexts: context 1 and context
2 . Exemplar 1 is experienced in context 1, while exemplar 2 is experienced in
context 2 . This generates for the given concept what we call contextualized con-
cepts, denoted by spatialConcept@context 1 and spatialConcept@context 2 ,
respectively. Externalizing spatialConcept without also giving context does not
allow for a definitive interpretation, as the symbol used can refer to many of the
exemplars we have experienced. If, conversely, we clearly state that the spatial term
is in a particular context, the ambiguity vanishes, and it becomes clear that we intend
either exemplar 1 or exemplar 2.

Through the use of contextualized concepts, context structures observed exem-
plars. The use of contextualized concepts falls into the class of “compose-and-
conquer” of context uses (Bouquet et al. 2003). This compose-and-conquer approach
“takes a context to be a theory of the world that encodes an agent’s perspective of it
and that is used during a given reasoning process” (Akman and Surav 1996). Every

2In order to remove ambiguity we use special formatting to indicate a context , an exemplar of a
concept, or a concept in a specific context (denoted concept@context ).
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context partitions the mental contents, which is similar to Fauconnier’s idea of mental
spaces (Fauconnier 1994).

In order to formalize the idea sketched in Fig. 2 we model context with a lattice
structure. In general, a lattice is a partially ordered set under a partial order relation
with two binary functions: ∧ called meet and ∨ called join (Gratzer 2009). Given
two elements a and b of the lattice, the function meet creates an infimum such that
a ∧ b = in f {a, b} meaning that there exists a greatest element that is lower or equal
to a and b. The function join creates a supremum of two elements: a ∨ b = sup{a, b}
meaning that there exists a least element that is bigger or equal to both elements. A
bounded lattice is a lattice with an upper bound element (i.e. �) and a lower bound
(i.e. ⊥) element.

The partial order relation “is stronger than or equal to”, denoted ≤, applies for
context. An example for a context lattice is shown in Fig. 3. The � element is called
universal context, meaning the absence of context. The contexts “stronger” than the
� element are called basic contexts (e.g. ctx 1, ctx 2 , and ctx 3 in Fig. 3) and these
are used to derive through the meet operation any other context combination (e.g.
ctx 1 ∧ 2). The last element (“strongest” context) of the lattice is the ⊥ element
which is called empty context and indicates nonsense—i.e. meaningless context.

Note that not all the infima in the lattice of contexts correspond to contexts that
make sense, or that are realizable. In Fig. 3, these contexts are represented in grey.
One is ctx 1 ∧ 3 , and, consequently, every infimum of this context does not make
sense. In Fig. 3 there is only one such infimum: ctx 1 ∧ 2 ∧ 3 . An example for two
contexts that do not make sense is included in the example presented in Sect. 5.

The number of contexts (including top and bottom elements) in the lattice obeys
the rule 2n + 1, where n is the number of basic contexts. Let us look at the lat-
tice as consisting of n + 2 levels: level 0 corresponds to the top element and level
n + 1 corresponds to the bottom element. Level l comprises the lattice elements

Ctx 3Ctx 1 Ctx 2

Ctx 2∧3Ctx 1∧3Ctx 1∧2

Ctx 1∧2∧3

Ctx 3

Ctx 1

Ctx 2
x

x

o o
o

o
o

o

x
x

x

x
x

x
x

o o
o

o
o

o

x

o

exemplar 2o
examplar 1x

exemplar 3

Exemplar Legend

Fig. 3 Relation between observations of exemplars in reality (on the right) and contexts (on the
left) for one concept. Contexts are organized in a lattice where infimum contexts corresponds to
intersections of the former contexts. Some infima can be impossible in reality, which results in an
empty mapping λ. Impossible contexts (ctx 1 ∧ 3 and ctx 1 ∧ 2 ∧ 3) are reported in gray
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corresponding to l-combinations of the base contexts. Then, the number of elements
at level l is equal to

(n
l

)
and the total number of elements is

∑n
l=1

(n
l

) = 2n − 1. This
is the number of all possible combinations except the void ones. Counting top and
bottom elements as well, we obtain the formula: 2n + 1, which is in the order of
O(2n).

Contexts are linked to concepts via contextualized concepts. One context links to
one contextualized concept, which is composed of a set of exemplars. The selection of
the exact subset of exemplars is achieved by the mapping λ (Aerts and Gabora 2005).
In Fig. 3 the mapping λ is represented by styling the borders of contexts in the lattice
and subsets of exemplars for one concept in the same way. The mapping λ can be used
to represent a concept in a tabular form. We call this table observation table because
the exemplars are observed in reality. The connection to reality guarantees that other
agents can make the same observations grounded in reality (Kuhn 2009). The columns
of this table denote contextualized concepts, the rows denote exemplars. The entries
indicate how many times a given exemplar has been observed in a given context. For
example, Table 1 represents an observation table for the spatialConcept abstracted
from observations shown in Fig. 3.

Frequency values for each exemplar in the contexts ctx 1 ∧ ctx 3 and ctx 1 ∧ ctx
2 ∧ ctx 3 are zero. A zero frequency value reflects that no exemplar was observed.
This can occur either in the case of a meaningless context, or if there has been no
observation yet. The model does not distinguish between meaningless contexts and
not-yet-experienced contexts. It resembles what can also be found in child learning
processes (Twaroch and Frank 2005).

The observation frequencies from the observation table are used to calculate the
prototypical exemplar for a contextualized concept. As a typicality measure for exem-
plars, the amount of observations per exemplar is used. The exemplar with the most
observations is considered the prototypical exemplar for the contextualized concept.
Depending on the context, different typical exemplars can be calculated. For example,
consider the data from Table 1, the typical exemplar for the contextualized concept
spatialConcept@� is exemplar 2, and for the spatialConcept@context 3 it
is exemplar 3.

The prototypical exemplar of a contextualized concept is used as a mapping from
a spatial term onto a spatial query. By making the context explicit, a one-to-one

Table 1 Observation table for a spatialConcept for different contexts according to the example
depicted in Fig. 3

Spatial concept @� @ ctx 1 @ ctx 2 @ ctx 3 @ ctx 1
∧ ctx 2

@ ctx 2
∧ ctx 3

@ ctx 1
∧ ctx 3

@ ctx 1
∧ ctx 2
∧ ctx 3

Exemplar 1 10 5 7 3 3 2 0 0

Exemplar 2 13 6 6 7 0 6 0 0

Exemplar 3 12 1 9 10 0 8 0 0

Values indicate how many times an exemplar of a spatialConcept (in the rows) has been observed
in different contexts (in the columns)
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relation between grounded observations and the spatial term is achieved. Having a
one-to-one relation, the observations experienced in the same context are selected
and used to calculate the prototypical exemplar. The prototypical exemplar is then
used as input for a spatial query.

4 A Computational Model for Context-Dependent
Concepts

The formalization of the previous approach results in a computational model. The
implementation includes three parts: the context lattice, the mapping (λ) from
contexts to observations, and the calculation of the prototypical exemplar. The nec-
essary operations and data structures are described with pseudocode and can be
implemented in a variety of programming paradigms (e.g. object-oriented, relational
algebras, functional). Our implementation using a functional paradigm can be down-
loaded here: https://hackage.haskell.org/package/ContextAlgebra.

Context is implemented as a list of elements:

context : [context Name1, context Name2, . . . , context Namen]

An element is an arbitrary data type that supports equality comparison, for simplicity
assume that these are names (e.g. character or string). Basic contexts include one
entry in the list (e.g. [context 1]), while infima contexts include multiple entries (e.g.
[context 1, context 2]). The context lattice is implemented as a container for all
contexts as well as the empty and universal contexts. The lattice operations meet3

and join are implemented as an intersection and union of lists.
A contextualized concept is implemented as a multiset4 of observations that map

to a context in the context lattice. The observation data type is realized as a pair
consisting of the observed exemplar and a context:

exemplar : exemplar Name

observation : (exemplar, context )

The context is built with the same structure and types as the contexts included in the
context lattice which provides the mapping λ. A particular contextualized concept of
interest is the spatialConcept@� which includes all observations for all contexts.
All other contextualized concepts refer to a subset of observations.

The calculation of the prototypical exemplar for a contextualized concept is
achieved by the functions: Filter and ComputeTypicality.

3Algorithms are indicated with a small caps typeface.
4The multiset is capable of holding the same entry multiple times, in contrast to a set.

https://hackage.haskell.org/package/ContextAlgebra
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The function Filter takes a context (ctx ) as input parameter and returns a contex-
tualized concept (spatialConcept@ctx ). All the observations listed in the spa-
tialConcept@� are checked, and if one is found whose context coincides with
the filter context it is added to spatialConcept@ctx . This function relies on the
equality operator and on a function Context that returns the context of an obser-
vation given in input. All contextualized concepts can possibly be stored for ease of
accessibility.

Algorithm 1 Given an exemplar and a contextualized concept, the function Com-
puteTypicality computes the typicality of the exemplar in the context associated
to the contextualized concept.
1: function ComputeTypicality(exemplar, spatialConcept@context )
2: obsForExemplar ← ∅
3: for ∀ observation ∈ spatialConcept@context do
4: if exemplar == Exemplar(observation) then
5: obsForExemplar ← obsForExemplar ∪ observation
6: return Amount(obsForExemplar) / Amount(spatialConcept@context )

The function ComputeTypicality takes an exemplar and a contextualized con-
cept as input parameters, and returns the typicality of the given exemplar for the
context corresponding to the contextualized concept in input. This is called con-
textual typicality and takes values in the range [0, 1]. It is computed by counting
the number of exemplars equal to the one given, and by dividing this number by
the number of elements in the contextualized concept. This function relies on the
equality operator for exemplars (denoted ==), the Amount( ) function to enumerate
exemplars, and on the function Exemplar( ) returning the exemplar of an observa-
tion given in input. ComputeTypicality is further used to calculate the prototypical
exemplar of a contextualized concept.

5 Case Study: Mapping the Spatial Relation “near”
onto Spatial Queries

There exist many scenarios where context plays an important role, and to which the
presented model could therefore be applied. Some of these include:

• Detection of landmarks has to be context-aware because landmarks depend on
context (e.g. night or day (Winter et al. 2005)).

• Different map layers can be displayed depending on context, e.g. the request “I
need a map to find the pub” intends a city street map, in contrast to the request “I
need a map for hiking” where hiking paths should be included.

• Interpreting spatial relations has to make use of context for mapping to a metric
distance.
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In the following section we apply the model as a case study of the spatial relation
“near”, and show how such a concept can be encoded in spatial queries according
to context. The aim is to show how “near” is mapped onto different metric distances
according to the influencing context.

5.1 The Case Study of “near”

In general, spatial terms are influenced by many contexts, e.g. weather, mobility,
time of the day, neighborhood, transportation mode, terrain. In this case study the
reasonable set of exemplary basic contexts are the following: walking , driving ,
and uphill . These contexts can be derived by information obtained from sensors
commonly available in modern smartphones. For example, the difference between
walking and driving can be derived from speed data computable either from GNSS
or accelerometers, while the uphill context can be derived by matching position and
elevation information. The whole lattice of contexts that can possibly influence the
interpretation of near is generated by recursively executing the function meet on
the available contexts—shown in Fig. 4. Note that the context walking ∧ driving
obtained by combining the basic contexts walking and driving is not realizable, as
one cannot drive and walk at the same time. This is indicated by the grey border.
Accordingly, any infima deriving from this context (in this example walking ∧
driving ∧ uphill and ⊥) are also not realizable.

The corresponding observation table is given in Table 2. The reported observations
are an educated guess driven by common sense and by the results presented by
Wallgrün et al (2014), who evaluated the interpretation of near in a corpus of web
documents. How observations can be reliably collected is not the focus of this work,
however in Sect. 6 we outline some possibilities that could lead to future work.

Fig. 4 Bounded context
lattice for the case study of
“near”. Grey boundaries
indicate impossible contexts

drivingwalking uphill

walking∧driving∧uphill

driving∧uphillwalking∧drivingwalking∧uphill
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Table 2 Observation table for the concept near for different contexts

near (m) @� @walking @uphill @driving @walking
∧ uphill

@driving
∧ uphill

@walking
∧ driving

@walking
∧ driving
∧ uphill

50 4 4 4 0 4 0 0 0

100 10 5 7 3 3 2 0 0

150 10 6 3 4 2 1 0 0

300 13 7 6 6 1 5 0 0

450 13 6 6 7 0 6 0 0

1000 14 4 8 9 0 7 0 0

5000 12 1 9 10 0 8 0 0

10000 7 0 5 7 0 5 0 0

Sum 83 33 48 46 10 34 0 0

The last row shows the sums of observations in different contexts, and is provided to compute
exemplar typicality

Given the context lattice and the observation table, typicality values and prototyp-
ical exemplars for the contextualized concepts are generated through the functions
Filter and ComputeTypicality (introduced in Sect. 4) as follows. The observa-
tion sets for each contextualized concept (near@ctx ) are obtained by executing
the function Filter(ctx ) for each context ctx in the lattice. The contextual typi-
cality values are then computed by executing the function ComputeTypicality(e,
near@ctx ) for each ctx in the lattice and each observed exemplar e in near@�.
The exemplar with the highest contextual typicality is selected as the prototypical
exemplar. Typicality values for the contextualized concepts we will be using in our
example are plotted in Fig. 5, where the prototypical exemplars are colored in black.

50 100 150 300 450 1,000 5,000 10,000
0

0.2

0.4

0.16

0.21
0.18

0.4

Distance (m)

T
yp

ic
al

ity

�
uphill
walking

walking uphill

Fig. 5 Contextual typicalities for the concept near in different contexts; different line styles denote
different context as reported in the legend. Points with filled markers indicate prototypical exemplars,
and thus the interpretation for the concept in a given context
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5.2 Examples for the Mapping of “near”
onto Spatial Queries

Imagine a next–generation personalized geographic information system (Personal-
izedGIS (Abdalla et al. 2013)) installed on a user’s smartphone. The GIS part has
access to classical geographic information (particularly, points of interest and eleva-
tion data). The personalized part is an implementation of the computational model
presented in Sect. 4. Also, imagine that the system has seen the same situations as
its user, in the sense that the observations given in Table 2 match with a high level of
precision the concept near in the user’s mind.

The user attends a conference in Lisbon (Portugal) and needs to find a restau-
rant near his or her current position. The user asks the PersonalizedGIS: “Please
show all the restaurants near me”. Imagine a natural language processing algorithm
that extracts the spatial relation “near” as well as the influencing contexts for such
inputs. The result for this input is “near” and no influencing context. The absence
of context indicates that every observation from the observation table (Table 2) has
to be considered, which is represented by the contextualized concept near@�. The
prototypical exemplar for near@� is 1000 m (conduct Fig. 5) which is included as
a metric value in the following (pseudo SQL) spatial query by the PersonalizedGIS:

SELECT coords FROM restaurants
WHERE distance(actual_coords , coords) <= 1000 m;

Assume further that the smartphone with the PersonalizedGIS is equipped with an
accelerometer that detects the mode of transportation. Now the user asks the above
query while moving with the smartphone. The acceleromters detects the motion
“walking”, which prompts the PersonalizedGIS to influence near by walking . So,
rather than retrieving the prototypical exemplar for near@�, it retrieves the pro-
totypical exemplar for near@walking . The prototypical exemplar is 300 m which
can be used in the spatial query shown above by the PersonalizedGIS.

The PersonalizedGIS can narrow down the interpretation even further by tra-
versing the context lattice automatically. Assume the function getStrongerCon-
texts for the context lattice outputs all infima for a given context. For this example
the function is executed with getStrongerContexts(walking) which outputs the
infima: walking ∧ uphill and walking ∧ driving . The walking ∧ driving context
is nonsense and is not taken into further account. The walking ∧ uphill context
is used to narrow down the interpretation of the spatial term. For both contexts
(near@walking ∧ uphill and near@walking) prototypical exemplars are 50 m
and 300 m. These metric values are used as input to a refined spatial query. The
refined query the PersonalizedGIS then executes, retrieving all those restaurants that
are closer than 300 m, but excluding those that are uphill in respect to the current
location (actual_elevation <= rest.elevation), unless they are closer
than 50 m:
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SELECT rest.* FROM (
SELECT coords , elevation FROM restaurants
WHERE distance(actual_coords , coords) <= 300 m

) AS rest WHERE
actual_elevation <= rest.elevation
AND distance(actual_coords , rest.coords) <= 50 m

6 Conclusions and Outlook

In this paper a computational model to map spatial terms onto spatial queries is
introduced. In the review of the semiotic triangle, the problem of the many-to-
many relation of symbols to objects in reality is identified as a main problem for
computational models. We argue that context establishes a one-to-one connection
between symbols and objects in reality. Our formalization is inspired by a quantum-
mechanical approach presented by Aerts and Gabora (2005). The computational
model integrates context and connects it to a concept underlying the externalized
spatial term. In an envisioned next-generation GIS, the computational model is used
to map the spatial term “near” onto different spatial queries dependent on context.

The envisioned GIS for the spatial relation “near” draws upon a set of observations
that were assumed to be given. This is an important aspect that must be addressed
in future work. In a realistic scenario the contexts can be derived from smartphone
sensors. For example, the contexts: walking, driving, biking, etc. can be detected
through accelerometer data or a mix of sensors, provided that ranges for the sensor
values are detected that correspond to different contexts. Another mechanism that
remains to be solved is aligning the observation base with the observations in the
mind of a user. Feedback from the user can be used to gradually align the observations
with the concepts in a user’s mind, as for example: “Was this distance near for you?”.
It remains an open question how to get a user properly involved in such a mechanism.
Perhaps via some sort of gamification process?

A more theoretical direction for future work concerns the investigation of the
relations between the model presented in this paper—especially the distributions
that exemplars take in a given context—and fuzzy membership functions (Zadeh
1965). Can the model be reinterpreted with classical fuzzy set theory? Would this
add some benefits to operations and inferences that can be made when consider-
ing several contexts? Some previous work that addressed the problem of modeling
concepts like near and far with fuzzy membership functions is presented by Wang
(1994). Wang finds that near cannot be opportunely represented with a unique
membership function. Rather, he suggests that more functions must be conceived as
context information changes.

The mutual influence of several (contextualized) concepts warrants further inves-
tigation. Some previous work about concept combination for GIS is presented, for
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example, by Hahn and Frank (2014) where thematic maps are selected on the basis
of context.

Finally, for real usage of the model in applications it would be necessary to
determine which contexts must be considered that can effectively influence a spatial
concept.
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