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Preface

Since 1998, the Association of Geographic Information Laboratories in Europe
(AGILE) has promoted academic teaching and research on geographic information
at the European level. Its annual conference reflects the variety of topics, disci-
plines, and actors in this research area. It provides a multidisciplinary forum for
scientific knowledge production and dissemination and has gradually become the
leading Geographic Information Science Conference in Europe.

For the tenth consecutive year, the AGILE Conference’s full papers are pub-
lished as a book by Springer-Verlag. This year, 48 documents were submitted as
full papers, of which 23 were accepted for publication in this volume, after a
thorough selection and review process. We congratulate the authors for the quality
of their work, and thank them for their contribution to the success of the AGILE
Conference and the book series. We also want to use this opportunity to
acknowledge the numerous reviewers for providing us with their thorough judge-
ments. Their work was fundamental to select the very best papers, and ultimately
for the quality of this volume.

Under the title Geospatial Data in a Changing World, this book aims to envision
the ways in which GIScience may contribute to the ever-growing need for
geospatial data, when resolving the emerging challenges of our society, from cli-
mate change to people’s mobility.

The scientific papers published in this volume cover a wide range of associated
topics. The first part covers the challenges of cognitive and computational aspects
on spatial concepts, giving the foundation to understand and perceive our envi-
ronment in the future. The second part focuses on crowdsourcing and social net-
works reflecting the change in people’s everyday relation and involvement with
geospatial data. The third part gives foresights on how to analyze and visualize
(big) spatial data to understand spatial phenomena. The fourth part covers pedes-
trian and vehicle mobility studies, emphasizing people’s mobility and the
requirements to develop more intelligent solutions for smart cities. The fifth, and the
last part, gives insight related to the utilization of new data sources in information
retrieval, modelling, and analysis.



vi Preface

Organizing a programme for an international conference and editing a volume of
scientific papers takes time, effort and support. The input from the AGILE Council
and Committees has been an important asset for us, and we are grateful to all
members for their contributions.

We would also like to thank our sponsors for their kind contributions to the 19th
AGILE Conference on Geographic Information Science and Springer-Verlag for
their willingness to publish the accepted full papers in their academic series,
Springer Lecture Notes in Geoinformation and Cartography.

Masala Tapani Sarjakoski
Guimaraes Maribel Yasmina Santos
Helsinki L. Tiina Sarjakoski

February 2016
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Part 1
Cognitive and Computational Aspects on
Spatial Concepts



A Computational Model for Context
and Spatial Concepts

Juergen Hahn, Paolo Fogliaroni, Andrew U. Frank
and Gerhard Navratil

Abstract A natural language interface can improve human-computer interaction
with Geographic Information Systems (GIS). A prerequisite for this is the mapping
of natural language expressions onto spatial queries. Previous mapping approaches,
using, for example, fuzzy sets, failed because of the flexible and context-dependent
use of spatial terms. Context changes the interpretation drastically. For example,
the spatial relation “near” can be mapped onto distances ranging anywhere from
kilometers to centimeters. We present a context-enriched semiotic triangle that allows
us to distinguish between multiple interpretations. As formalization we introduce
the notation of contextualized concepts that is tied to one context. One concept
inherits multiple contextualized concepts such that multiple interpretations can be
distinguished. The interpretation for one contextualized concept corresponds to the
intention of the spatial term, and is used as input for a spatial query. To demonstrate
our computational model, a next generation GIS is envisioned that maps the spatial
relation “near” to spatial queries differently according to the influencing context.

Keywords Computational model for context - Context + Spatial concepts *
Contextualized concept - Near
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4 J. Hahn et al.

1 Introduction

A fundamental question in the field of Geographic Information Science concerns
the development of a natural language interface for GIS (Montello and Freundschuh
2005). In order to establish a natural language interface for GIS, spatial terms (i.e.
spatial relations and spatial regions (Montello et al. 2003) have to be mapped onto
spatial queries. In this paper we address the mapping of spatial relations. Previ-
ous approaches to model spatial terms concluded that their interpretation is mostly
context—dependent (Wang 1994; Raubal and Winter 2002; Yao and Thill 2006). For
example, the spatial relation “near” can be mapped onto distances ranging from thou-
sands of kilometers (e.g. “the moon is near the Earth”) to a few centimeters (e.g. “the
cup is near the milk bottle™).

A central question is always: what is context? In the scope of this work we consider
context to be any piece of ancillary or surrounding information that influences the
interpretation of a concept of interest. The semiotic triangle (Ogden and Richards
1946) (reviewed in Sect. 2) explains the process of interpretation in a triadic mode,
including an object in reality, a concept formed by a cognitive agent, and a term. We
introduce an enriched version of the triangle that also includes context, and show how
such a modification allows for disambiguating the interpretation of spatial concepts.

A cognitive agent refers to objects in reality by externalizing a context-influenced
concept. A concept is, by its very nature, an abstract entity that only exists in the
human mind. It therefore cannot be measured in terms of, or categorized by, physical
properties. Concepts have been proven (Rosch and Mervis 1975) to be fuzzy, and
to include prototypes. This also holds true for spatial concepts, e.g. downtown'
(Montello et al. 2003), north south (Montello et al. 2014), near (Fisher and Orf
1991; Wang 1994). Prototypes change with the influence of context (Osherson 1999;
Aerts and Gabora 2005). For example, a prototypical example for the concept tree is
different in Sweden and in Greece. We argue that the interpretation of a spatial term
relates to the prototype of a concept. To account for the possibility that a concept can
inherit multiple prototypes we introduce the notion of contextualized concepts. One
concept is represented by many contextualized concepts, where each contextualized
concept has one prototype and is linked to one context. A contextualized concept
is built from grounded observations of reality (Kuhn 2009) observed in a particular
context.

Many possible interpretations are narrowed down to a single one by making
context explicit for concepts and observations. This resulting interpretation is used
as mapping from a spatial term onto a spatial query.

IThroughout the paper we will use special formatting to indicate when a term is used to denote a
concept.
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In summary the contributions of this paper are:

e enrichment of the semiotic triangle with context
e derivation of an abstract model
e formalization of the abstract model as a computational model

This paper is structured as follows: First, the semiotic triangle is reviewed to show
how representations (terms) are connected with concepts that refer to observations in
reality in Sect. 2. Next the properties for concepts are pointed out, and we emphasize
the influence context has on concepts. Second, the idea and a formalization of it are
presented in Sect. 3. Third, this formalization is translated into a computational model
in Sect. 4. Fourth, the model is initialized with data, and the usage of the algorithms is
demonstrated in mapping the spatial relation “near” according to contexts: walking,
driving, and going uphil are mapped] into different spatial queries in Sect.5.

2 State of the Art

To achieve mapping from spatial relations or general spatial terms to spatial queries,
it is necessary to understand how spatial terms represent reality. Spatial relations
are symbols that refer to spatial configurations, such as near or above. The semiotic
triangle by Ogden and Richards (1946) is a conceptual model that links symbols (e.g.
a word, a drawing, a map, or a gesture), reality, and concepts (see Fig. 1). Each edge
of this triangle represents one of the three main phases of representation: abstraction,
externalization, and interpretation. On the right corner of the triangle lies physical
reality. Physical reality is experienced in the form of exemplars, and abstracted to
form a concept in our mind (represented by the top corner of the triangle). When we
want to externalize a concept, for example during a communication process, we use
a symbol. Symbols are located on the left corner of the triangle, and are successfully
interpreted (as are the corresponding concepts) if they are grounded (Kuhn 2009) to
the subsets of physical reality (the exemplars) that we intended to refer to (indicated
by the dotted line).

Possible misunderstandings or misinterpretations arise if the same symbol does
not evoke the same typical exemplar in different subjects. One reason is the many-
to-many connection between a symbol and the exemplars that it refers to Chandler
(2007). For example, in mathematics there is the concept of neutral element for a

Fig. 1 Semiotic triangle CONCEPT
from Ogden and Richards
(1946)

SYMBOL === -smmmmmmmmmmmm e > EXEMPLAR
Interpretation
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binary operation. Without specifying the operation (e.g. addition, multiplication) it
is not clear which exemplar it refers to (e.g. 0, 1). Another reason is that concepts are
formed and adjusted over time from repeated observations of reality (Von Glasersfeld
1995). Since no two persons have identical experiences, the “same” concept can never
be completely aligned in two person’s minds.

It was already suggested in the past (Von Glasersfeld 1995; Fisher 2000; Wor-
boys 2003) that context plays a role in aligning concepts. Fisher (2000) studied the
case of directional concepts and suggested that one way to avoid (or reduce) mis-
interpretations is to make explicit the frame of reference (context) that the given
directional concepts are embedded in. More generally, Von Glasersfeld (1995) states
that successful interpretation is only possible if the context of the speaker and that
of the listener are compatible; which means that the speaker and the listener must
have experienced exemplars of a concept in “similar” contexts (cf. Weiser and Frank
2013).

2.1 (Spatial) Concepts

A concept is an abstract entity that only exists in the human mind; according to
Seiler (2001), it is “primarily a cognitive structure” that helps us to make sense of
the world. The entities from which a concept is derived are called, throughout this
work, instances or exemplars.

According to Freksa and Barkowsky (1996), spatial concepts are all those “notions
that describe spatial aspects of a subset of the world”. Examples of spatial concepts
are near, downtown, and lake. Spatial concepts are central to human cognition
(Mark et al. 1999) as they help us to distinguish, categorize, and thus make sense of
the physical stimuli we perceive through our senses.

Psychological experiments showed that concepts include prototypes. By using a
category—membership verification technique, cognitive psychologist Rosch (1973,
1999) showed that concepts posses a graded structure. Within this structure, a proto-
type is abstracted from the experienced exemplars (Rosch and Mervis 1975) based on
a typicality judgment function. Another modeling approach represents a concept as
multiple experienced exemplars (Nosofsky 2011). Both theories share that the mem-
bership of an exemplar to a concept is judged within their typicality to the existing
concept.

In the field of geographic information science, several studies have previously
aimed at characterizing (geo)spatial concepts. Mark et al. (1999) empirically demon-
strated that people judge mountains, lakes, and oceans as typical exemplars of the
generic concept geographical feature. Further studies (Mark et al. 1999) revealed
that spatial concepts are typically organized according to a hierarchical structure, and
have vague boundaries. For example, it was shown by Smith and Mark (1998) that
geographical factors like size or scale induce conceptual hierarchies—as in the case
of bodies of water: pond, lake, sea, ocean. Also, it has been shown (Mark and Turk
2003; Mark 1993) that linguistic, cultural, and individual variability influences the
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creation and the structuring of spatial concepts. Montello et al. (2014, 2003) investi-
gated the fuzziness of the extension of spatial concepts. They showed that the spatial
concept downtown Santa Barbara is conceived differently by different subjects.

In the field of geoinformation, multiple approaches have been used to model spatial
concepts, such as, for example: qualitative spatial reasoning (Frank 1992), fuzzy
sets (Wang 1994; Robinson 2000), multi-valued logic (Fisher 2000; Duckham and
Worboys 2001; Worboys 2001), formal concept analysis (Frank 2006), and more. All
these formalizations do not account for context explicitly, and scientists concluded
that context has a major impact. In contrast, we use context as the base formal drive
to determine the interpretation.

2.2 Context and Its Influence on Concepts

According to Kuhn (2005), “context is an overloaded term and has many aspects.
Some of them are relatively easy to handle through domain separation [...]. Others
are much harder to deal with [...]”. Bazire and Brézillon (2005) analyzed 150 dif-
ferent definitions of context collected on the Web. They find that, although different,
they all share some common structure, and conclude that the definition of context
is highly domain—dependent. This is also true for the spatial domain (Huang et al.
2014).

According to Freksa and Barkowsky (1996), there are three main types of relations
that determine the meaning of a concept: (i) relations between a concept and its
exemplars, (ii) relations between concept and context, and (iii) relations between
concept exemplars and context.

Like any other type of concept, spatial concepts are influenced by context.
Several studies have been carried out to study the context—concept influence. Burgio
et al. (2010) and Tversky (2003) investigated the influence of context on spatial ter-
minology. Both studies show that context influences spatial descriptions at the level
of scale and granularity. Egenhofer and Mark (1995) investigated how different con-
texts influence the concept geographic space. They found, for example, that in a
“city” context the interpretation evokes typical exemplars such as streets, buildings,
and parks, while in a “country” context these become mountains, lakes, and rivers.
Talmy (2003, p.231) argued that the spatial relations “on” and “in” are used for
vehicles differently, depending on the existence of a walkway in the vehicle—e.g.
on a bus versus in a car. Smith and Mark (1998) showed that the relation “in” in
the context “the island is in the lake” means the island protrudes from the surface
of the lake while in the context “the submarine is in the lake” the interpretation is
the submarine is completely submerged within the corresponding three-dimensional
volume.

Aerts and Gabora (2005) presented a quantum-mechanical model for concepts
and influencing contexts. Their model showed that context is also the driving factor
in modeling concept combination.
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spatialConcept

spatialConcept@ context 2
spatialConcept@ context 1

SPATIAL TERM -==z227""""7 7777~ Interpretation

Iﬂlerpremli()n “~---» exemplar 1 in context 1

Fig.2 Semiotic triangle from Ogden and Richards (1946) used for geographic information science
by Kuhn (2005), enriched with context. The exemplars of the same concept, observed in different
contexts. If the context is not explicitly reported with symbolic externalization, the symbol can
be misinterpreted (many-to-many relation). Misinterpretations vanish if the context is specified,
because a one-to-one connection between an exemplar and the symbol is created

3 An Abstract Model for Context-Dependent Concepts

In the scope of this work we consider context to be any piece of ancillary or sur-
rounding information that influences the interpretation of a concept of interest. This
means that the same concept is possibly associated to different typical exemplars in
different contexts.

The core idea is to establish a one-to-one connection between a symbol (with
ambiguous semantics) and an observed exemplar based on the context. Context
selects from the many interpretations of the symbol a single applicable one—i.e.
it reduces a many-to-many relation to a simple one-to-one. This idea is schematized
in Fig. 2, which describes the process of abstracting one spatialConcept” from two
experiences (exemplars) observed in two different contexts: context 1 and context
2. Exemplar 1 is experienced in context 1, while exemplar 2 is experienced in
context 2. This generates for the given concept what we call contextualized con-
cepts, denoted by spatialConcept@ context 1 and spatialConcept@ context 2,
respectively. Externalizing spatialConcept without also giving context does not
allow for a definitive interpretation, as the symbol used can refer to many of the
exemplars we have experienced. If, conversely, we clearly state that the spatial term
is in a particular context, the ambiguity vanishes, and it becomes clear that we intend
either exemplar 1 or exemplar 2.

Through the use of contextualized concepts, context structures observed exem-
plars. The use of contextualized concepts falls into the class of “compose-and-
conquer” of context uses (Bouquet et al. 2003). This compose-and-conquer approach
“takes a context to be a theory of the world that encodes an agent’s perspective of it
and that is used during a given reasoning process” (Akman and Surav 1996). Every

2In order to remove ambiguity we use special formatting to indicate a context, an exemplar of a
concept, or a concept in a specific context (denoted concept@ context).
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context partitions the mental contents, which is similar to Fauconnier’s idea of mental
spaces (Fauconnier 1994).

In order to formalize the idea sketched in Fig.2 we model context with a lattice
structure. In general, a lattice is a partially ordered set under a partial order relation
with two binary functions: A called meet and Vv called join (Gratzer 2009). Given
two elements a and b of the lattice, the function meet creates an infimum such that
a AN b = inf{a, b} meaning that there exists a greatest element that is lower or equal
to a and b. The function join creates a supremum of two elements: a VvV b = sup{a, b}
meaning that there exists a least element that is bigger or equal to both elements. A
bounded lattice is a lattice with an upper bound element (i.e. T) and a lower bound
(i.e. 1) element.

The partial order relation “is stronger than or equal to”, denoted <, applies for
context. An example for a context lattice is shown in Fig. 3. The T element is called
universal context, meaning the absence of context. The contexts “stronger” than the
T element are called basic contexts (e.g. ctx 1, ctx 2, and ctx 3 in Fig. 3) and these
are used to derive through the meet operation any other context combination (e.g.
ctx 1 A 2). The last element (“strongest” context) of the lattice is the L element
which is called empty context and indicates nonsense—i.e. meaningless context.

Note that not all the infima in the lattice of contexts correspond to contexts that
make sense, or that are realizable. In Fig. 3, these contexts are represented in grey.
One is ctx 1 A 3, and, consequently, every infimum of this context does not make
sense. In Fig. 3 there is only one such infimum: ¢tx 7 A 2 A 3. An example for two
contexts that do not make sense is included in the example presented in Sect. 5.

The number of contexts (including top and bottom elements) in the lattice obeys
the rule 2" + 1, where n is the number of basic contexts. Let us look at the lat-
tice as consisting of n 4 2 levels: level 0 corresponds to the top element and level
n + 1 corresponds to the bottom element. Level / comprises the lattice elements

Exemplar Legend
Ctx 1 X examplar 1
""""""" 0 exemplar 2
M Oexemplar 3
X
e __Ctx 2
o o T ; BN
- ~
° o 7 x ! x ™
o / ; X \
e s ~~ 0w © A N
{ Cctx 1A2 > ( ctx 2A3 ) o ! ,/ o \
- - ~ — ! g !
N ~N—___—- [ |
| ............ e e ]
x” x o o ~. !
/N x o O_ 0 0N /
/ \N" pobB o o .
S o o o o _X
! M -~ ) -
\ -——— |
N /
< 9o o s
-
~
~ - —_— -
Ctx 3

Fig. 3 Relation between observations of exemplars in reality (on the right) and contexts (on the
left) for one concept. Contexts are organized in a lattice where infimum contexts corresponds to
intersections of the former contexts. Some infima can be impossible in reality, which results in an
empty mapping A. Impossible contexts (¢tx 1 A 3 and ¢tx 1 A 2 A 3) are reported in gray
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corresponding to I-combinations of the base contexts. Then, the number of elements
at level [ is equal to ('I’) and the total number of elements is > _,_, (';) = 2" — 1. This
is the number of all possible combinations except the void ones. Counting top and
bottom elements as well, we obtain the formula: 2" + 1, which is in the order of
o@2").

Contexts are linked to concepts via contextualized concepts. One context links to
one contextualized concept, which is composed of a set of exemplars. The selection of
the exact subset of exemplars is achieved by the mapping A (Aerts and Gabora 2005).
In Fig. 3 the mapping X is represented by styling the borders of contexts in the lattice
and subsets of exemplars for one concept in the same way. The mapping A can be used
to represent a concept in a tabular form. We call this table observation table because
the exemplars are observed in reality. The connection to reality guarantees that other
agents can make the same observations grounded in reality (Kuhn 2009). The columns
of this table denote contextualized concepts, the rows denote exemplars. The entries
indicate how many times a given exemplar has been observed in a given context. For
example, Table 1 represents an observation table for the spatialConcept abstracted
from observations shown in Fig. 3.

Frequency values for each exemplar in the contexts ¢tx 1 A ¢tx 3 and ctx 1 A cix
2 A ctx 3 are zero. A zero frequency value reflects that no exemplar was observed.
This can occur either in the case of a meaningless context, or if there has been no
observation yet. The model does not distinguish between meaningless contexts and
not-yet-experienced contexts. It resembles what can also be found in child learning
processes (Twaroch and Frank 2005).

The observation frequencies from the observation table are used to calculate the
prototypical exemplar for a contextualized concept. As a typicality measure for exem-
plars, the amount of observations per exemplar is used. The exemplar with the most
observations is considered the prototypical exemplar for the contextualized concept.
Depending on the context, different typical exemplars can be calculated. For example,
consider the data from Table 1, the typical exemplar for the contextualized concept
spatialConcept@T is exemplar 2, and for the spatialConcept@ context 3 it
is exemplar 3.

The prototypical exemplar of a contextualized concept is used as a mapping from
a spatial term onto a spatial query. By making the context explicit, a one-to-one

Table 1 Observation table for a spatialConcept for different contexts according to the example
depicted in Fig. 3

Spatial concept | @T|@cix1|@ctx2|@cix3|@cix1|@ctx2|@cix1|@ cix 1

AcCtx2 |Actx3 |Actx3 |Actx2

Actx 3
Exemplar 1 10 |5 7 3 3 2 0 0
Exemplar 2 13 |6 6 7 0 6 0 0
Exemplar 3 12 |1 9 10 0 8 0 0

Values indicate how many times an exemplar of a spatialConcept (in the rows) has been observed
in different contexts (in the columns)
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relation between grounded observations and the spatial term is achieved. Having a
one-to-one relation, the observations experienced in the same context are selected
and used to calculate the prototypical exemplar. The prototypical exemplar is then
used as input for a spatial query.

4 A Computational Model for Context-Dependent
Concepts

The formalization of the previous approach results in a computational model. The
implementation includes three parts: the context lattice, the mapping (i) from
contexts to observations, and the calculation of the prototypical exemplar. The nec-
essary operations and data structures are described with pseudocode and can be
implemented in a variety of programming paradigms (e.g. object-oriented, relational
algebras, functional). Our implementation using a functional paradigm can be down-
loaded here: https://hackage.haskell.org/package/ContextAlgebra.
Context is implemented as a list of elements:

context : [contextName;, context Name,, ..., context Name,]

An element is an arbitrary data type that supports equality comparison, for simplicity
assume that these are names (e.g. character or string). Basic contexts include one
entry in the list (e.g. [context 1]), while infima contexts include multiple entries (e.g.
[context 1, context 2]). The context lattice is implemented as a container for all
contexts as well as the empty and universal contexts. The lattice operations MEET"
and JOIN are implemented as an intersection and union of lists.

A contextualized concept is implemented as a multiset* of observations that map
to a context in the context lattice. The observation data type is realized as a pair
consisting of the observed exemplar and a context:

exemplar : exemplar Name
observation : (exemplar, context)

The context is built with the same structure and types as the contexts included in the
context lattice which provides the mapping A. A particular contextualized concept of
interest is the spatialConcept@ T which includes all observations for all contexts.
All other contextualized concepts refer to a subset of observations.

The calculation of the prototypical exemplar for a contextualized concept is
achieved by the functions: FILTER and COMPUTETYPICALITY.

3 Algorithms are indicated with a small caps typeface.
“4The multiset is capable of holding the same entry multiple times, in contrast to a set.
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The function FILTER takes a context (Ctx) as input parameter and returns a contex-
tualized concept (spatialConcept@ ctx). All the observations listed in the spa-
tialConcept@T are checked, and if one is found whose context coincides with
the filter context it is added to spatialConcept@ ctx. This function relies on the
equality operator and on a function CONTEXT that returns the context of an obser-
vation given in input. All contextualized concepts can possibly be stored for ease of
accessibility.

Algorithm 1 Given an exemplar and a contextualized concept, the function COM-
PUTETYPICALITY computes the typicality of the exemplar in the context associated
to the contextualized concept.

1: function COMPUTETYPICALITY(exemplar, spatialConcept@ context)

2:  obsForExemplar <

3:  for V observation € spatialConcept@ context do

4 if exemplar == EXEMPLAR(observation) then

5: obsForExemplar <— obsForExemplar U observation

6 return AMOUNT(obsForExemplar) / AMOUNT(spatialConcept@ context)

The function COMPUTETYPICALITY takes an exemplar and a contextualized con-
cept as input parameters, and returns the typicality of the given exemplar for the
context corresponding to the contextualized concept in input. This is called con-
textual typicality and takes values in the range [0, 1]. It is computed by counting
the number of exemplars equal to the one given, and by dividing this number by
the number of elements in the contextualized concept. This function relies on the
equality operator for exemplars (denoted ==), the AMOUNT( ) function to enumerate
exemplars, and on the function EXEMPLAR( ) returning the exemplar of an observa-
tion given in input. COMPUTETYPICALITY is further used to calculate the prototypical
exemplar of a contextualized concept.

5 Case Study: Mapping the Spatial Relation “near”
onto Spatial Queries

There exist many scenarios where context plays an important role, and to which the
presented model could therefore be applied. Some of these include:

e Detection of landmarks has to be context-aware because landmarks depend on
context (e.g. night or day (Winter et al. 2005)).

e Different map layers can be displayed depending on context, e.g. the request “I
need a map to find the pub” intends a city street map, in contrast to the request “I
need a map for hiking” where hiking paths should be included.

e Interpreting spatial relations has to make use of context for mapping to a metric
distance.
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In the following section we apply the model as a case study of the spatial relation
“near”, and show how such a concept can be encoded in spatial queries according
to context. The aim is to show how “near” is mapped onto different metric distances
according to the influencing context.

5.1 The Case Study of “near”

In general, spatial terms are influenced by many contexts, e.g. weather, mobility,
time of the day, neighborhood, transportation mode, terrain. In this case study the
reasonable set of exemplary basic contexts are the following: walking, driving,
and uphill. These contexts can be derived by information obtained from sensors
commonly available in modern smartphones. For example, the difference between
walking and driving can be derived from speed data computable either from GNSS
or accelerometers, while the uphill context can be derived by matching position and
elevation information. The whole lattice of contexts that can possibly influence the
interpretation of near is generated by recursively executing the function MEET on
the available contexts—shown in Fig.4. Note that the context walking A driving
obtained by combining the basic contexts walking and driving is not realizable, as
one cannot drive and walk at the same time. This is indicated by the grey border.
Accordingly, any infima deriving from this context (in this example walking A
driving A uphill and L) are also not realizable.

The corresponding observation table is given in Table 2. The reported observations
are an educated guess driven by common sense and by the results presented by
Wallgriin et al (2014), who evaluated the interpretation of near in a corpus of web
documents. How observations can be reliably collected is not the focus of this work,
however in Sect. 6 we outline some possibilities that could lead to future work.

Fig. 4 Bounded context
lattice for the case study of
“near”. Grey boundaries
indicate impossible contexts
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Table 2 Observation table for the concept near for different contexts

near (m) | @T | @walking | @uphill | @driving | @walking | @driving | @walking | @ walking
A uphill A uphill A driving | A driving
A uphill
50 4 4 4 0 4 0 0 0
100 10 | 5 7 3 3 2 0 0
150 10 | 6 3 4 2 1 0 0
300 13 | 7 6 6 1 5 0 0
450 13 6 6 7 0 6 0 0
1000 14 4 8 9 0 7 0 0
5000 12 1 9 10 0 8 0 0
10000 710 5 7 0 5 0 0
Sum 83 |33 48 46 10 34 0 0

The last row shows the sums of observations in different contexts, and is provided to compute
exemplar typicality

Given the context lattice and the observation table, typicality values and prototyp-
ical exemplars for the contextualized concepts are generated through the functions
FILTER and COMPUTETYPICALITY (introduced in Sect.4) as follows. The observa-
tion sets for each contextualized concept (hear@ cix) are obtained by executing
the function FILTER(Ctx) for each context ctx in the lattice. The contextual typi-
cality values are then computed by executing the function COMPUTETYPICALITY(€,
near @ cix) for each ctx in the lattice and each observed exemplar € in hear@T.
The exemplar with the highest contextual typicality is selected as the prototypical
exemplar. Typicality values for the contextualized concepts we will be using in our
example are plotted in Fig. 5, where the prototypical exemplars are colored in black.

- T
04 N -0 uphill
. -O- walking
o i - walking uphill
=
£ 02

50 100 150 300 450 1,000 5,000 10,000
Distance (m)

Fig.5 Contextual typicalities for the concept near in different contexts; different /ine styles denote
different context as reported in the legend. Points with filled markers indicate prototypical exemplars,
and thus the interpretation for the concept in a given context
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5.2 Examples for the Mapping of “near”
onto Spatial Queries

Imagine a next—generation personalized geographic information system (Personal-
izedGIS (Abdalla et al. 2013)) installed on a user’s smartphone. The GIS part has
access to classical geographic information (particularly, points of interest and eleva-
tion data). The personalized part is an implementation of the computational model
presented in Sect.4. Also, imagine that the system has seen the same situations as
its user, in the sense that the observations given in Table 2 match with a high level of
precision the concept hear in the user’s mind.

The user attends a conference in Lisbon (Portugal) and needs to find a restau-
rant near his or her current position. The user asks the PersonalizedGIS: “Please
show all the restaurants near me”. Imagine a natural language processing algorithm
that extracts the spatial relation “near” as well as the influencing contexts for such
inputs. The result for this input is “near” and no influencing context. The absence
of context indicates that every observation from the observation table (Table 2) has
to be considered, which is represented by the contextualized concept near @ T. The
prototypical exemplar for near@ T is 1000 m (conduct Fig. 5) which is included as
a metric value in the following (pseudo SQL) spatial query by the PersonalizedGIS:

SELECT coords FROM restaurants
WHERE distance (actual_coords, coords) <= 1000 m;

Assume further that the smartphone with the PersonalizedGIS is equipped with an
accelerometer that detects the mode of transportation. Now the user asks the above
query while moving with the smartphone. The acceleromters detects the motion
“walking”, which prompts the PersonalizedGIS to influence near by walking. So,
rather than retrieving the prototypical exemplar for near@ T, it retrieves the pro-
totypical exemplar for near @ walking. The prototypical exemplar is 300 m which
can be used in the spatial query shown above by the PersonalizedGIS.

The PersonalizedGIS can narrow down the interpretation even further by tra-
versing the context lattice automatically. Assume the function GETSTRONGERCON-
TEXTS for the context lattice outputs all infima for a given context. For this example
the function is executed with GETSTRONGERCONTEXTS(Walking) which outputs the
infima: walking A uphill and walking A driving. The walking A driving context
is nonsense and is not taken into further account. The walking A uphill context
is used to narrow down the interpretation of the spatial term. For both contexts
(near@ walking A uphill and near@ walking) prototypical exemplars are 50 m
and 300 m. These metric values are used as input to a refined spatial query. The
refined query the PersonalizedGIS then executes, retrieving all those restaurants that
are closer than 300 m, but excluding those that are uphill in respect to the current
location (actual_elevation <= rest.elevation),unlessthey are closer
than 50 m:
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SELECT rest.* FROM (
SELECT coords, elevation FROM restaurants
WHERE distance (actual_coords, coords) <= 300 m
) AS rest WHERE
actual_elevation <= rest.elevation
AND distance (actual_coords, rest.coords) <= 50 m

6 Conclusions and Outlook

In this paper a computational model to map spatial terms onto spatial queries is
introduced. In the review of the semiotic triangle, the problem of the many-to-
many relation of symbols to objects in reality is identified as a main problem for
computational models. We argue that context establishes a one-to-one connection
between symbols and objects in reality. Our formalization is inspired by a quantum-
mechanical approach presented by Aerts and Gabora (2005). The computational
model integrates context and connects it to a concept underlying the externalized
spatial term. In an envisioned next-generation GIS, the computational model is used
to map the spatial term “near” onto different spatial queries dependent on context.

The envisioned GIS for the spatial relation “near”” draws upon a set of observations
that were assumed to be given. This is an important aspect that must be addressed
in future work. In a realistic scenario the contexts can be derived from smartphone
sensors. For example, the contexts: walking, driving, biking, etc. can be detected
through accelerometer data or a mix of sensors, provided that ranges for the sensor
values are detected that correspond to different contexts. Another mechanism that
remains to be solved is aligning the observation base with the observations in the
mind of a user. Feedback from the user can be used to gradually align the observations
with the concepts in a user’s mind, as for example: “Was this distance near for you?”.
It remains an open question how to get a user properly involved in such a mechanism.
Perhaps via some sort of gamification process?

A more theoretical direction for future work concerns the investigation of the
relations between the model presented in this paper—especially the distributions
that exemplars take in a given context—and fuzzy membership functions (Zadeh
1965). Can the model be reinterpreted with classical fuzzy set theory? Would this
add some benefits to operations and inferences that can be made when consider-
ing several contexts? Some previous work that addressed the problem of modeling
concepts like near and far with fuzzy membership functions is presented by Wang
(1994). Wang finds that near cannot be opportunely represented with a unique
membership function. Rather, he suggests that more functions must be conceived as
context information changes.

The mutual influence of several (contextualized) concepts warrants further inves-
tigation. Some previous work about concept combination for GIS is presented, for
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example, by Hahn and Frank (2014) where thematic maps are selected on the basis
of context.

Finally, for real usage of the model in applications it would be necessary to
determine which contexts must be considered that can effectively influence a spatial
concept.
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Inferring Complex Geographical Concepts
with Implicit Geometries Using
Ontologies: A Case of Peninsulas

Xiang Zhang, Tinghua Ai and Jantien Stoter

Abstract Ontology-driven concept inference has the merit of high flexibility and
transparency. Users can composite and reuse atomic primitive concepts and rela-
tionship to interpret complex geographical concept without the need to retouch or
even know the technical details. The major issue that we are focusing on is the
implicit geometry problem. That is, the geometries corresponding to some primitive
concept defining the complex geographic concept are missing or not fully repre-
sented in a spatial database, making it impossible to inferring the high-level
semantics of the objects. This paper combines terminological/assertional inference
(for general logic reasoning) and spatial operations (for making implicit geometries
explicit), therefore enabling an ontology-driven inference of complex concepts that
can handle cases where some concept has no explicit geometries. In the end, the
concept of peninsula is used to demonstrate the proposed methodology.
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1 Introduction

Inferring geographical concepts is concerned with finding the most specific
semantics of the spatial objects. For instance, it is possible to infer house types (e.g.
terraced house) or land-use types from bare geometry data (Liischer et al. 2008).
This is typically useful when users want to retrieve specific types of geographic
features from a spatial database or via a spatial-enabled search engine.

However, information in current spatial databases typically covers basic topo-
graphic features and primitive semantics which are nonetheless not sufficient for the
increasing need for complex spatial queries and semantic interoperation across
information communities (Kuhn 2005; Klien 2007). Those queried spatial infor-
mation usually includes complex geographic concepts (e.g. floodplain,
terraced/semi-detached house) that commonly appear in natural languages, but that
are not explicitly available in spatial databases. One challenge is thus concerning
the semantic enhancement of geospatial data.

This paper takes one step further. We claim that, besides the lack of explicit
semantics, the geometries required directly or indirectly for the spatial inference
tasks are not always explicitly available in spatial databases, too. This brings about
new challenges, e.g., triggering spatial algorithms during the logic inference to
detect the implicit geometry. The implicit geometry issue in ontology-driven spatial
data interpretation is a common issue in spatial information retrieval and semantic
interoperation (Bennett et al. 2008), and may eventually decline the usefulness of
the above-mentioned semantic enhancement practice.

This paper follows an ontology-driven approach to concept inference. We
address the implicit geometry issue by combining the terminological inference with
spatial operations. Specifically, certain algorithms are triggered on-demand to make
implicit geometries explicit, before the reasoning proceeds with inferred semantics.
Section 2 reviews related work. Section 3 is the core of the paper and describes the
method in detail. Section 4 shows the feasibility of the method by applying it to the
interpretation of peninsulas from spatial databases. The paper ends with discussion
and conclusions (Sect. 5).

2 Related Work

2.1 Algorithmic Approach to Concept Inference

Many of the earlier spatial data interpretation techniques were motivated by the
need of complex spatial information retrieval tasks. A basic assumption is that a lot
of implicit information can be drawn from the geometric, topological and semantic
relations encoded in spatial data (Sester 2000). Some of the techniques are based on
graph theory, pattern recognition and statistical approaches, while some others
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adapt methods from spatial data mining (e.g. Regnauld 1996; Christophe and Ruas
2002; Steiniger et al. 2008).

However, these approaches consist of algorithms where the knowledge is
hard-coded, and they can hardly be reused in a different context. Hence we consider
them in the class of algorithmic approach. Furthermore, Liischer et al. (2008)
argued that it is doubtful whether the comprehensive interpretation of more general,
higher-level geographic concepts can be accomplished by the purely algorithmic
approach.

2.2 Ontology-Driven Spatial Data Interpretation

In automated map generalization, interpretation of hidden semantics is closely
related to ‘data enrichment’ (Neun et al. 2008). Traditionally, data enrichment
techniques were developed and tightly coupled into sophisticated algorithms for
specific tasks; see for example (Regnauld 1996; Christophe and Ruas 2002;
Steiniger et al. 2008). This algorithm-driven approach was recognized by Sester
(2000) and Liischer et al. (2007) to have various weaknesses in applications where
knowledge have to be made explicit.

In contrast, ontology-based approaches to the interpretation of geographic
concepts have been increasingly adopted in recent years, where the interpretation is
viewed as building a formal knowledge base for a domain on which reasoning
processes are applied. The viewpoint is supported by recent developments in arti-
ficial intelligence (Baader et al. 2003; Moller and Neumann 2008). In the spatial
domain, Liischer et al. (2008) proposed an ontology-based model for urban pattern
recognition. Later, they re-implemented the concepts using supervised Bayesian
network (Liischer et al. 2008), where the recognition process was manually
translated from the ontology. This approach does not use the reasoning capability
underlying ontologies. Similarly, Thomson and Béra (2007, 2008) showed the use
of concept hierarchy to represent geographical concepts, and recommended
Description Logics (DLs), a knowledge-formalism from artificial intelligence
(Baader et al. 2003), but they did not implement the process. Nevertheless, we
found that DLs is insufficient for the inference of geographical concepts because
many concepts can only be recognized with algorithms that detect the spatial and/or
part-whole relations between spatial objects. Hence to enable spatio-terminological
reasoning, the inference process should be enriched with spatial computations.

In automated reasoning, the notion of spatio-terminological reasoning was
proposed by Haarslev et al. (1994, 1998) aiming at integrating spatial calculation
with logic-based reasoning process. The notion looks promising and we decide to
follow this approach, but we will focus more in this paper on the issue of implicit
geometries and how can it be integrated with the spatio-terminological inference.
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3 Method

The idea of our proposed method is as follows. Our method firstly formalizes the
primitive concepts and relationships by a set of generic spatial operations (including
algorithms), and then formalizes complex concepts with an ontological language.
This formalization declares the complex concept as a formal structure of primitive
concepts. In the next step the complex concepts are automatically inferred using the
spatially enriched reasoning techniques. This approach is highly flexible since the
generic spatial operations can be reused when inferring different geographical
concepts by only altering the knowledge defined in the formal language (knowledge
driven rather than algorithm driven).

3.1 Generic Algorithms to Detect Primitive Relations
and Implicit Geometries

Here we outline a triangulation-based data structure, on top of which proximity
relations and implicit geometries (especially the part-whole geometries) can be
obtained on the structure (Fig. 1). For example, it is easy to use this structure to
model spatial proximity: any two objects that are connected by a triangle edge are
immediate neighbors (e.g. [ and p in Fig. 1b); narrow part (sub-region with implicit
geometries) between two parallel roads [ and m can be identified also on this
structure (¢ in Fig. 1b). For a more detailed explanation to the structure and its
operations, one may refer to Ai (2006).

Due to the relevance to the subject matter of this paper, we describe in more detail
the shape descriptor and algorithm concerning a bend structure. The descriptors are
derived with Delaunay triangulation based algorithms (Fig. 2a). The bend segment
is the curve between pl and p2; the link from p1 to p2 defines the base line which
can be used to depict the mouth of the bend; the extent of the bend region (gray area
in Fig. 2a) is enclosed by the bend segment and the base triangle 7. The trend line is

(b) 1

Fig. 1 Triangulation-based structure that supports structural knowledge a sub-region and shape
description for a meandering line; b spatial relations and narrow region detection
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Fig. 2 The descriptors of (a)
bend structure (a), which can Trend Ii
rend line

be used to describe the shape Bend segment
of micro bends at different 4
levels of hierarchy (b)

derived through triangulating and skeletonizing (Zhang et al. 2008; Ai et al. 2014)
the bend region. The trend line of a bend region reflects the main orientation of the
bend region which can be measured by the trend line pointing from the base to the
end of the bend region. Properties like compactness and elongation can be derived
based on these descriptors. Note that with the hierarchical bend structure described
in Ai et al. (2014), any bend in the structure can be characterized by these descriptors
(Fig. 2b) so that we can find needed ones in the hierarchy.

Since the above-mentioned operations are not built-in functions in spatial
databases, we implemented them as database extensions so that they can be used
together with those built-in functions.

3.2 Formalizing Geographical Concepts with Description
Logics

While there are many knowledge formalisms (e.g. frames, semantic networks,
rules), we decided to use Description Logics (Baader et al. 2003) as knowledge
formalism for the description of concepts and relationships in the geospatial
domain. DLs provide abstract syntax, which forms the foundation of many ontol-
ogy languages such as the Web Ontology Language (OWL'"). Note that the abstract
syntax of DLs is used in the paper for clarity and OWL, a concrete syntax of DLs,
is employed for implementation purposes (see Sect. 4).

To understand the DL syntax used, we briefly introduce the basics of the syntax.
The syntax consists of concepts (unary predicates), roles (binary relations) and
restrictions on roles. A role links an individual in a domain to an individual or
property in a range which is also called role filler. The following axioms (a.k.a
TBox) show a possible description of knowledge in the spatial domain:

"hitp://www.w3.org/TR/owl-guide/.
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SpatialObject L. TopConcept(T) (1)
SpatialRelation L, SpatialObject x SpatialObject (2)
Building L. SpatialObject (3)
hasNearbyNeighbor Lr SpatialRelation (4)
ClusteredBuilding =c Building (5)

[1(22 hasNearbyNeighbor.Building)

Axiom (1) expresses that SpatialObject is subsumed by the top concept (which is
never subsumed by other concepts), where Cc is the concept subsumption construct.
Similarly, Axiom (2) describes a role subsumption (Cr). The role SpatialRelation has
a domain: SpatialObject and a range: SpatialObject (an object mapped to another
object). Since hasNearbyNeighbor is subsumed by SpatialRelation, this implies the
former inherits the domain and range of the latter. Axiom (5) describes the concept
ClusteredBuilding with the concept definition construct (=), expressing that a
clustered building is a building which has at least two nearby neighbors. The state-
ment also implies that ClusteredBuilding is subsumed by Building. The intersection
construct (1) is used when composing a complex concept from different atomic ones.
In Axiom (5), atomic concepts are Building and (> 2 hasNearbyNeighbor.Building).
The latter statement can be seen as an anonymous concept, which restricts the
intension of ClusteredBuilding in Axiom (5). In the anonymous concept, the un-
qualified number restriction construct (>) is used to specify the cardinality of the
role: hasNearbyNeighbor.Building, meaning that each clustered building must have
at least 2 nearby neighbors which are instances of Building.

Other constructs like the role definition (=R), the existential quantifier (3), the
universal quantifier (¥) and the negation (—) will also be used in the remaining
sections to define high-level cartographic concepts and complex roles. Details of all
notations, their semantics and interpretations refer to Baader et al. (2003).

3.2.1 Reasoning with Description Logics

DLs can be used to describe the knowledge bases (KB) for a concrete domain.
A knowledge base consists of a set of terminological axioms (TBox) and a set of
assertional axioms (ABox). A TBox forms a priori knowledge of the domain
by defining concepts and their relations (e.g. Axioms (1)-(5)), while an
ABox describes the known facts about the world. An example ABox may look like:
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Building(a) - concept assertion
hasNearbyNeighbor (a, b) - role assertion

where a, b are data instances, and the ABox asserts that a is a building and b is a’s
nearest neighborhood. Reasoning with KB is an important ability of DL systems. It
can be used to infer implicit knowledge (semantics) hidden in TBoxes and ABoxes,
and make them explicit (Baader et al. 2003). The inference capabilities that are
concerned in this paper are Realization (i.e. finding the most specific concept of
which an object is an instance) and Retrieval (i.e. finding all objects that are
instances of a given concept).

The interpretation task can be viewed as a realization process, which aims at
finding the most specific concept of which an individual is an instance (Méller and
Neumann 2008). However, the interpretation of complex geo-concepts from spatial
databases cannot be addressed simply based on the logic-based reasoning. Take the
interpretation of ClusteredBuilding for example. If a, b, and c are asserted as
instances of Building in an ABox, the realization will not work as the reasoner does
not know the relation between the three objects. This therefore calls for a
spatio-terminological reasoning.

3.3 Concept Interpretation as Reasoning
Over Knowledge Bases

To address the spatial related reasoning problem, we adopt the notion of
spatio-terminological reasoning to integrate spatial algorithms with logic-based
automated reasoning process. However we implement the notion in a different way
than Haarslev et al. (1994). In the alternative integration the spatial functionalities
are loosely coupled with DL systems. The design is shown in Fig. 3.

Fig. 3 The proposed design Primiti d .
g . p. P . & FLMILVES an Terms in the KB
of spatio-terminological low-level knowledge
reasoning process P I \\(/‘3
[
; ~
c{O C{Ob\\i“appmg 3hQ
iE ——————— L35 0
Generic algorithms @ s ~
for low-level TBox |«-{-1 Reasoning |
structural knowledge < N g/ /
® o

4|0,
> ABoOX

Spatial component Knowledge Base
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The spatio-terminological reasoning process in our design has two general
components, namely the spatial component and the DL system (including a
knowledge base and a reasoning engine). The basic idea of this
spatio-terminological reasoning is to design a workflow to control the communi-
cation between the spatial component and the DL system to facilitate the automatic
interpretation process. In Fig. 3 ‘Terms in the KB’ is directly connected to the
TBox in the knowledge base. It represents the defined structures of any high-level
concept of interest. ‘Spatial component’ consists of a spatial database and a set of
generic operations (algorithms) to detect low-level structural knowledge. Here, we
assume that the basic operations such as geometric, topological predicates and
non-spatial queries are available in the spatial database. Hence the spatial compo-
nent is sufficient to detect the low-level knowledge, including primitive entities,
low-level properties and structural relationships. The vocabulary of the spatial
component is marked by ‘Primitives and low-level knowledge’. The ‘Reasoning’
component is a standard reasoner which is responsible for the consistency of both
the TBox and the ABox and other reasoning services.

The automated interpretation of a high-level concept is decomposed into four
major steps (see also Fig. 3):

1. Mapping: all Parent Concepts (PC) which subsume the high-level concept, all
Roles (R) and Role Fillers (RF) appeared in the axioms of the concept definition
are firstly identified. Then PC, R and RF are mapped to the vocabulary provided
by the spatial component. This results in a list of database concepts and spatial
relationships needed for the next step;

2. Spatial processing: according to the list resulted from step (1), database objects
that are instances of PC and RF are retrieved. Then, the identified spatial
relationships are tested with spatial operations (either built-in predicates or
enriched algorithms) between the objects belonging to PC and the objects
belonging to RF. The test subjects are always the objects from PC. The number
of object pairs for each testing can be reduced using the range in each role
specified by DLs;

3. Assertion: all the retrieved database objects (O) in the last step are asserted as
the instances of PC and RF and then added to the ABox. In the case of role
assertion, the object pairs that pass the relationship testing in the last step are
added to the ABox as new role assertions. After this, ABox becomes ABox’,
which is well prepared for the realization step;

4. Reasoning: by realization service, the high-level concept (hidden semantics) is
inferred automatically with the ABox’ and the TBox. The interpretation process
is by then terminated.

Note that, step (1) and step (3) are the communications between spatial com-
ponent and the DL system, whereas step (2) and step (4) are carried out within the
spatial component and the DL system respectively.
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(a) (b)

candidate bend

regions
b / g
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Fig. 4 a Example data set in Australia; b candidate bend regions generated for the interpretation
task

4 Case Study: Interpreting Peninsulas
from Spatial Databases

A prototype encompassing the spatial component and DL system was implemented
to validate the proposed methodology. Besides the spatial operations available in the
database, the generic algorithms that detect the proximity relationships, generate
parts from wholes, and forming wholes from parts were implemented on top of a
Delaunay triangulation (DT) based model. We used Pellet® as the underlying DL
reasoner, which can be readily accessed by its OWL APL> The API was used for
practical reasons: it enables programmers to define OWL-based knowledge bases
(though they can be defined using an ontology editor like Protégé®), to access or
modify concepts/roles axioms in a TBox, and to add known facts (e.g. Sea(a),
Neighbor(a, b)) to or remove them from an ABox. Moreover, one can invoke almost
all automated reasoning services available in the underlying reasoner via the APL

4.1 Setting the Scene

A simple test dataset of coastal area is depicted in Fig. 4a, where peninsulas, harbors,
bays, mainland, island, sea, cities are visible to human beings on the map. People
usually asks, e.g., which cities/places are inside a peninsula? Here peninsula is
understood as a region with implicit boundaries. Therefore, features like peninsulas

Zhttp://clarkparsia.com/pellet/.
3http://owlapi.sourceforge.net/ .
*http://protege.stanford.edu/.
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Fig. 5 A schematic diagram of the ontology of peninsulas (left) and its OWL description (right)

should be firstly retrieved before one can answer such questions. We applied the
proposed method to identify instances of concepts like ‘peninsula’ and ‘bay’.

4.2 Initializing the Knowledge Base

We first built up the initial TBox using Protégé and check its consistency. Atomic
concepts in the case consist of Region, Land, Island, Sea, and City; complex ones
include Peninsula, Bay, CityInPeninsula, and OtherCity which are formed based on
the atomic concepts, attributes, and their relationships. Then, a mapping table was
established so that the declared concepts can be linked to database classes and
spatial operations. Finally, all the spatial objects in the database are added as initial
known facts to the ABox. This is done by first searching the objects in the spatial
database according to the classes appeared in the mapping table, and then add the
identifiers of these objects to the ABox, using OWL APIL. Example assertions are
Sea(Austrilia_sea) and Land(Austrilia_land).

Peninsula is defined based on explanations in Wikipedia®: “[...] it is a region,
with shape and size restrictions, contained by land and sharing common boundary
with sea.” Figure 5 shows its ontology and OWL document.

As a proof-of-concept, ‘Peninsula’ is defined in DLs in Listing (6). However, we
are by no means to say that this is the only way to define peninsulas. For instance,

Shttp://en.wikipedia.org/wiki/List_of_peninsulas.
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a peninsula needs not to be at the national scale. We add this constraint here only to
demonstrate the formalism and the inference process.

Peninsula = Region
M JisPartOf.Land
N JhasBorderWith.Sea (6)
M JhasShape.Elongated
M JhasSize.NationalScale

4.2.1 Characterization of Peninsula Candidates

The inference starts by parsing the OWL document of Peninsula using the API. The
program informs the spatial component that only one parent concept (i.e. Region)
is needed for the subsequent reasoning. However, only ‘Austrilia_sea’ and
‘Austrilia_land’ regions are available in the database (Fig. 4a), which fail to pass
the isPartOf.Land test. Therefore, we generated the candidate bend regions using
the algorithm described in Sect. 3.1 and fed the detected sub-regions {a, b, ¢, d, e, f,
g h, i, j} (Fig. 4b) into the ABox.

After the high-level concept is formalized with DLs, the next step is the
detection of the required low-level knowledge. The formal definition of Peninsula
(Listing (6)) informs the spatial component that knowledge of topology, shape, and
size are needed. The knowledge on these three concepts is detected as follows.

hasShape is characterized using Elongation ratio (i.e. length (trend line)/length
(base line)) based on the bend descriptors introduced in Sect. 3.1. Two qualitative
descriptors are derived here: Elongated (Elongation ratio > 0.6) and Flattened
(Elongation ratio < 0.6). These reflect only roughly the shape property of penin-
sulas as well as bays, rather than definitive values.

hasSize is determined by the size of bend region. Since the size of any peninsula
in reality has a lower and an upper bound, NationalScale, a value restriction, is
specified tentatively as size €[80, 250] x 10> km?®. Likewise, Local: [0, 201,
Regional: [20, 80] and Global: [250, —] are specified as tentative values charac-
terizing different sizes.

isPartOf and hasBorderWith were mapped to topological operations (e.g. con-
tain and meet) in the spatial database. Such relationships are tested between the
detected bend regions and other objects specified in the range of the relationships,
and the new role assertions are formed (e.g. isPartOfie, Austrilia_sea)).

After the above knowledge was tested for all bend regions and between the
regions and other individuals, the asserted knowledge was added to the ABox via
OWL APL Finally, the automated interpretation was launched by invoking the
realization service in Pellet, also through the API. This process is fully automated.
The size and shape values of all the candidate regions are displayed in Table 1.
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Table 1 Characteristics (Char.) of the bend regions derived using the descriptors mentioned in
Sect. 4.2.1 (L-Local; R-Regional; N-National; G-Global; E-Elongated; F-Flattened)

Instance a b c d e f g h i j
Size 57 196 11.7 |38 |554 |486 |691 |246 156 |72.8
(x 107 km?)

Char. L L L L G G G N L R
Shape 02 |05 |04 04 |03 0.8 0.9 1.0 0.6 0.3
Char. F F F F F E E E E F

4.2.2 Refined Results

The automated interpretation identifies % as the only peninsula from the candidate
regions. This result is not very promising as we also observe other peninsulas in
Fig. 4a. There are several reasons for the misinterpretations. First, the use of crisp
condition such as NationalScale is too restrictive. Second, the inference did not
make use of all bend regions detected at different levels of detail.

In this experiment, the inference made use of all bend regions in the hierarchy
(using the technique in Ai et al. 2014). The inference traverses the hierarchy from
the root until it finds the largest bend regions that satisfy conditions defined in
Listing (6). Some bend regions that originally had branches are decomposed into
separated bend regions (e.g. the bend g and h in Fig. 4b). The shape and size of
these generated sub-regions are shown in Table 2 (some small bends are excluded
for clarity). The refined result was more satisfactory. Regions {f1, i1, h2} are now
recognized as peninsulas and regions: {gl, g2} are recognized as bays (bay differs
from peninsula only in that it is part of sea and adjacent to land; its formal definition
is not shown due to limited space). The results of automated interpretation are
visualized in Fig. 6. As a consequence, the described interpretation task also
identifies instances of CitylnPeninsula and OtherCity.

To get more insight into the reasoning process we can look at different states of
the knowledge base during the inference process (visualized in Fig. 7 Protégé with
Ontoviz plug-in). For clarity, only subsumption and instance-of relationships are
displayed.

Table 2 The characteristics of the sub-regions refined from regions f, g, and h

f g h
Instance' fl 2 gl 22 23 hl h2
Size 187 12 223 81 106 96 54
Char. N L N N N N R
Shape 0.9 0.7 2.3 1.9 0.5 2.6 0.9
Char. E E E E F E E

"Instances obtained using hierarchical bend structure, listing only the changed instances
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peninsulas

Fig. 6 Visualized results of the interpreted instances

Fig. 7 Different states of the knowledge base (‘isa’—subclass of; ‘io’—instance of) a individuals
and their asserted types in initial state; b the state after refinement to candidate bend regions; ¢ the
state after automated reasoning—most specific concepts of instances inferred

The bend regions are originally instances of the concept Region. After the
realization process, some of them are inferred as instances of more specific con-
cepts such as Peninsula and Bay (Fig. 7c).
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5 Main Findings and Outlook

In this paper we proposed a method to automatically interpret complex geo-
graphical concepts from low-level knowledge. A practical spatio-terminological
reasoning process was designed and implemented by enhancing existing DL rea-
soners with spatial functionalities. Combining the spatial and terminological
components and applying them to the example of peninsula showed the potential of
this methodology.

The use of Description Logics enables a more transparent modeling and better
maintenance of spatial knowledge. A domain expert or knowledge engineer does
not need to dive into the implementation level in order to revise the condition for
inferring a different concept. The ultimate goal is that one can find a set of atomic
spatial operations that are reusable and composable in flexible ways, so that query
over any complex geographic concept can be achieved by chaining those atomic
operations and primitive facts, as described in the knowledge base. But the harder
question is whether there exists such a set of atomic spatial operations, and how to
semantically annotate the operations such that they can be found and matched to
foster a fully automated inference process. Further research along this line of
thought should also contribute to the endeavor of semantic web and service
chaining. In addition, future work will see how the proposed approach performs
with real world datasets.

In addition, the proposed method does not consider the uncertainty in the
knowledge modeling process. Uncertainty is unavoidable even in our toy example,
where crisp thresholds, such as shape (Elongated) and size (NationalScale) in the
peninsula case, are limiting factors and should be address in the future. We have to
adopt the workaround because the inference tools available to us at the moment
were not capable of making uncertainty reasoning.

In the past few years, there are many proposals that aim to extend DLs to be able
to handle uncertainty (Haarslev et al. 2006). The uncertainty can be handled at the
language, knowledge base, and reasoning levels. The underlying reasoning model
can be based on Fuzzy logic, probabilistic theory or others (Baader et al. 2003;
Haarslev et al. 2006). This trend is also taken by the W3C working group on
uncertainty reasoning,® and may become the foundation for the next generation web
(semantic web). Although uncertainty reasoning using DLs has been proposed in
recent years (e.g. Carvalho et al. 2010), there is still a lack of tools for practical use.
Upon the perfection of such inference techniques, geospatial information retrieval
would benefit most from it as geographic concepts are inherently vague.
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Question-Based Spatial
Computing—A Case Study

Behzad Vahedi, Werner Kuhn and Andrea Ballatore

Abstract Geographic Information Systems (GIS) support spatial problem solving
by large repositories of procedures, which are mainly operating on map layers. These
procedures and their parameters are often not easy to understand and use, especially
not for domain experts without extensive GIS training. This hinders a wider adop-
tion of mapping and spatial analysis across disciplines. Building on the idea of core
concepts of spatial information, and further developing the language for spatial com-
puting based on them, we introduce an alternative approach to spatial analysis, based
on the idea that users should be able to ask questions about the environment, rather
than finding and executing procedures on map layers. We define such questions in
terms of the core concepts of spatial information, and use data abstraction instead
of procedural abstraction to structure command spaces for application programmers
(and ultimately for end users). We sketch an implementation in Python that enables
application programmers to dispatch computations to existing GIS capabilities. The
gains in usability and conceptual clarity are illustrated through a case study from eco-
nomics, comparing a traditional procedural solution with our declarative approach.
The case study shows a reduction of computational steps by around 45 %, as well as
smaller and better organized command spaces.
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1 Introduction

Geographic Information Systems (GIS), whether proprietary or open source, have
evolved into large and complex toolboxes that require expert technical knowledge
to be applied to real-world spatial problems. This evolution toward greater com-
plexity happened primarily because of the growing demand for spatial computing in
business and government operations. The demand for more functionality has mostly
been addressed through “creeping featurism”, i.e., incremental extensions to exist-
ing tools rather than a comprehensive approach to designing the next generation of
spatial computing systems (Tomlinson 2007).

As a result, scientists and decision makers can often only benefit from GIS after
prolonged training. Moreover, domain competence tends to get separated from tech-
nological prowess, producing disjointed and potentially sub-optimal solutions to
problems. It is then often impossible or too time consuming to iterate solution pro-
cedures or explore alternatives.

GIS users and application programmers who wish to ask questions using spatial
data are forced to write procedures to generate and manipulate maps that, hopefully,
will answer the questions. Domain questions are often lost in translation during the
formulation and execution of these procedures. We believe that an approach based
on the idea of asking spatial questions will create new and greater opportunities
for programmers to develop applications and eventually allow users to interact with
spatial computing systems in a way that is more interrogative and, thus, more natural
and productive. Clearly, the challenge to address is to define the vocabulary in terms
of which such questions can be asked and answered.

This paper proposes a novel approach to address this challenge and, more gen-
erally, the fragmented landscape of spatial computing. To do so, it utilizes the core
concepts of spatial information presented earlier (Kuhn 2012; Kuhn and Ballatore
2015) and Abstract Data Types (ADTs) built on them to propose a new style of
computational solution to spatial problems, in terms of spatial questions to be asked
rather than procedures to be executed. The approach is illustrated by a case study
from economics, in which a domain expert evaluates economic activity in China by
assessing nocturnal luminosity around roads. All source code is available online. !

The remainder of this paper is organized as follows. Section 2 explains the idea
of question-based computing and the differences to procedural approaches. Section 3
presents a summary of related work and is followed by Sect. 4 on the notion of core
concepts of spatial information and the pertinent computations. The case study is
presented and its Python-based implementation is shown in Sect. 5, before conclud-
ing with a discussion of results and ongoing research (Sect. 6).

Thttps://github.com/spatial-ucsb/ConceptsOfSpatialInformation.
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2 Question-Based Spatial Computing

We posit that users want to find answers to spatial questions when they use GIS.
These questions might stem from different domains, ranging from economics to ecol-
ogy and public health, but they usually reflect some form of spatial thinking and rea-
soning used by humans (Gao and Goodchild 2013). Yet, GIS are not designed in a
way that would allow users to find and understand answers without going through
procedures that are often complicated and difficult to assemble. GIS users do not
really want to assemble chains of procedures, but have to learn to do so, often with
difficulty, because there is no alternative. Application developers, in turn, find it hard
to develop question-answering tools, because the computations available to them are
not organized around contents and questions, but around layers, data formats, and
historically grown commands and parameters.

A system organized around questions rather than procedures could be beneficial
for end users since it would be closer to their needs and thus easier to understand.
Users of such a system would not need to worry about the procedures and their some-
times numerous input parameters, often resulting from implementation details. The
ideal situation could be compared to the realm of relational databases where Edgar F.
Codd in the 1970s defined an algebra with a well-founded semantics for asking ques-
tions about the data stored in relational databases (Codd 1970). He defined tables as
the “core concept” of data in databases and then defined five “core computations”
on tables, namely selection, projection, Cartesian product, set union, and set differ-
ence (Codd 1970). These operations form the Relational Algebra that is the foun-
dation for the Structured Query Language (SQL). SQL allows users to access data
by SELECTing attributes FROM tables WHERE some conditions hold. This is a
purely declarative approach, focusing on questions and answers rather than (at the
user level) on procedures to operate on data. We are seeking a similar approach for
GIS, enabling users to ask questions without concerning themselves about particular
spatial data structures and their procedures.

To achieve this longer term goal, we propose an abstraction on GIS information
contents, borrowing the concept of Abstract Data Types (ADT) from computer sci-
ence (Liskov and Zilles 1974) and applying it to the user level. An ADT has been
defined as a “class of objects whose logical behavior is defined by a set of val-
ues and a set of operations” (Dale and Walker 1996). ADT specifications capture
a wide range of implementations, but users of the ADT only need to understand
the specification, rather than the implementation, to know how instances of the type
behave (Guttag and Horning 1978). Relational algebra can be seen as a user-level
ADT for databases. Applying this idea to GIS, we use the core concepts of spatial
information as classes of objects and define core computations as operations captur-
ing their behavior. These classes and operations can then be used to ask and answer
spatial questions; each concept has a set of specific computations, answering ques-
tions and defining its behavior.
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3 Related Work

To the best of our knowledge, the realization of a question-based approach to spatial
computing with user-level abstract data types has no direct predecessors or competi-
tors, although there are a number of related initiatives and technologies that deserve
discussion.

The communities of the Semantic Web and of Applied Ontology? have produced
innovative ways to express and query spatial information, mainly based on the par-
adigm of Linked Data (Kuhn et al. 2014). Analytical capabilities, however, are not
normally available with these approaches. Geospatial ontologies specify key appli-
cation domains and data, e.g., land cover or hydrology (Ahlgvist 2005; Ames et al.
2012), but without the level of generalization sought here. The deeper semantic ques-
tions, concerning what contents users want to talk about and manipulate at a GIS user
interface, have hardly been addressed so far in the form of implemented approaches.
More generally, there is still no commonly accepted classification of the types of
spatial (or even just geographic) information—contrasting with the vast literature on
data types and structures to store that information.

Standardization has mainly focused on service-based data exchange, such as
through the Geography Markup Language GML,? to some extent abandoning the
original aspiration of defining spatial computing services independently of encod-
ing formats (Kottman 2001). The idea of a software-independent essential model of
geospatial computing (Cook and Daniels 1994) was not pursued, and the language
of geographic information standards became one of software technologies and data
transfers, rather than one of spatial information contents, questions, and computa-
tions. While this may have been a good choice for existing GIS technology vendors
and user communities, it resulted in voluminous standards with heavy doses of jar-
gon and acronyms, severely limiting outreach to and adoption by new communities.

One reason for this situation is the lack of theory on how to structure spatial com-
putations in order to serve actual application needs. Attempts at devising a theoretical
basis for GIS operations (Tomlin 1990b; Albrecht 1998) produced useful groupings
of GIS functions, but have not attained a theoretical power and simplicity compara-
ble to Codd’s relational algebra for databases. Thus, the obligation to improve the
situation is primarily that of researchers, not of vendors and standards bodies.

Relational algebra itself, although efficient for tabular data, is not sufficient for
spatial data, since the nature and structure of spatial data is different from that of
tables. Spatial databases have been an essential component in GIS and related infor-
mation systems for two decades now, providing efficient data structures to index and
query spatial data. However, from the user’s perspective, systems such as PostGIS,*

Zhttp://semantic-web-journal.org—All URLSs cited in this article were accessed on December 4,
2015.

http://www.opengeospatial.org/standards/gml.
“http://postgis.net.
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Oracle Spatial,’ and Spatial Hadoop® offer only spatial extensions of SQL, forcing
their users to formulate their questions in the language of tables, which does not suf-
ficiently capture the spatial nature of the data. Specialized graph and array databases,
such as SciDB,’ can be used for spatial computing, but focus on one particular view
of data, without providing the necessary additional abstractions for asking spatial
questions independently of data structures. The same comment applies to the spatial
extensions of the statistical package R (Lovelace and Cheshire 2014). Finally, spa-
tial computing libraries such as GDAL? provide specific raster and vector views of
contents. While they are powerful for complex data manipulations and format con-
versions, these tools tend to lock users into particular representational choices and
burden them with implementation details.

By contrast, our mission is to enable question-based spatial computing through
information content and quality abstractions. These abstractions are provided by the
core concepts of spatial information and the computations on them, as summarized
in the next section.

4 Core Concepts and Computations for Spatial
Information

Core concepts of spatial information have been defined as concepts to interpret spa-
tial data and to bridge the gap between spatial thinking and spatial computing (Kuhn
and Ballatore 2015). They initially started as ten concepts and were later reduced to
the following seven:

1. Location—The idea of locating something relative to something else, applicable
to instances of the following four content concepts.

Field—A property with a value for each position in space and time.

. Object—An individual that has properties and relations with other objects.
Network—A set of objects (nodes) linked by a binary relation (edges).
Event—Something that happens and involves fields, objects, and/or networks as
participants.

Granularity—The level of detail in some spatial information.

Accuracy—The correspondence of some spatial information with what is con-
sidered a true state of affairs.

DL

_a

Location is a base concept, applicable to the next four concepts, which in turn can be
seen as “‘content concepts.” Granularity and accuracy are “quality concepts’ that can
be applied to the base and content concepts, in order to set and assess the quality of

Shttp://www.oracle.com/database/big- data-spatial-and- graph.
Shttp://spatialhadoop.cs.umn.edu.
Thttp://www.paradigm4.com.

8hitp://www.gdal.org.
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spatial information (see Kuhn 2012). The core concepts provide a conceptual foun-
dation for spatial computing, which is still evolving. However, merely translating
GIS commands and data structures into core concept terms would not yield useful
results. Rather, GIS applications should be reorganized around questions posed in
terms of core concepts.

For this purpose, we define a set of core computations for each core concept.
These core computations should form a minimal yet powerful and complete set of
operations that are applicable across different application domains. Defining a large,
open set of operations would go against the central philosophy of the core concepts
and would be similar to existing, bloated GIS command sets. Core computations
allow for extension by combining with computations of other core concepts and they
get implemented through existing GIS functions; this allows for a small set of com-
putations. The definition of core computations is ongoing research, and the initial set
formalized in Kuhn and Ballatore (2015) has changed. A new field operations, called
restrict domain and a new granularity operation, called coarsen, will be introduced
in Sect. 5.2.

Defining core concepts and core computations in this way creates Abstract Data
Types (ADTs) for GIS users. This kind of data abstraction will enable users to formu-
late spatial questions to be answered by existing GIS. The real world entities captured
in a GIS application can be seen as instances of the different concepts, which then
suggests computations to be applied in GIS projects.

Spatial questions may be answered directly with one or a set of core computations,
but in most cases they need to be decomposed into simpler questions, each of which
could be answered by one or a set of operations. This process can be seen as a case
of problem decomposition, which in existing GIS platforms has to be performed in
terms of data structure manipulations. By contrast, with the core concepts, users can
ask questions and find answers by using a smaller set of computations organized
around spatial concepts, not their representations. This difference is the essence of
our approach to question-based computing.

The goal of our work is not to reinvent or replace existing GIS or any other spatial
computing platforms, but to make the computations easier to discover, understand,
and use. From an object-oriented implementation perspective, core concepts and
core computations can act as wrappers for existing GIS and library functions. To
achieve this goal, we specify and test the core computations in a Python implemen-
tation, articulating our approach through a real-world case study.

5 A Case Study from Economics

MIT economist Matt Lowe provides a striking recent example of the difficulties and
frustrations that a domain scientist encounters when using GIS (Lowe 2014). Lowe
uses nocturnal luminosity observed by satellites as a proxy measure of development
and welfare, noting that light density has a fairly strong correlation with local eco-
nomic activity.
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He proposes computations on four pieces of spatial information: (1) satellite
imagery that captures global nocturnal luminosity, (2) a global map of gas flares,
(3) the boundaries of all the countries in the world, and (4) roads in China. Gas
flares are of industrial origin and outside of Lowe’s economic scope of interest, so
they are intentionally excluded from the luminosity analysis. As for the data layers,
the first is imported as raster data and the following three are imported as vector data.

Ultimately, Lowe wants to answer the spatial question: What was the level of
economic activity near roads in China in 1994, based on nighttime luminosity as
a proxy? In his description of the ArcGIS procedure he has used, and based on the
ArcPy scripting library, Lowe repeatedly puzzles over the amount of complex details
involved in executing this seemingly simple spatial analysis (Lowe 2014). In order
to address the reasons for this complexity and then a remedy, we first present Lowe’s
procedural approach and then our alternative approach based on core concepts driven
by spatial questions.

5.1 Solution with Procedural GIS

The procedural steps that Lowe uses to answer his spatial question are as follows:

. Erase gas flares from the data of countries

. Calculate the average luminosity

. Clip the luminosity data (output of 2) to the output of step 1

. Extract the data in China from the output of step 3

. Create a buffer around the China roads

. Clip the output of step 4 to the extent of buffered roads

. Clip the luminosity data to the extent of the output of step 6

. Create a grid

. Apply a zonal mean operator to each grid cell to calculate mean luminosity

O 0 3O LN B~ Wi —

This recipe of nine steps is a typical example of the procedural approach currently
necessitated by spatial computing: in order to obtain an answer to a question, users
have to apply a sequence of steps on specific data formats, which are not trivial to
locate in the complex toolboxes of modern GIS.

An examination of Lowe’s analysis illustrates how users without substantial
expertise have difficultly finding, understanding, and correctly applying GIS pro-
cedures. Some of Lowe’s analysis choices reveal confusions or inefficiencies that a
GIS user might face. For instance, to determine the luminosity inside China, exclud-
ing the gas flares, he first erases the gas flares from the global map of countries, then
clips the luminosity data of the world to the output of the previous process, and again
clips the resulting data set to the extent of China. Whereas first clipping the global
map of countries to the extent of China and then clipping the luminosity data to the
extent of China would have been a more expedient technique.
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Fig. 1 The final result of Lowe’s ArcPy procedure

The final results of Lowe’s procedure is shown in Fig. 1. Dark areas have no lumi-
nosity, while light areas have high luminosity. Cross-hatched areas are outside of the
road buffer and have been excluded from analysis.

5.2 Solution Based on Spatial Questions

In order to demonstrate the potential of core concepts for simplifying spatial com-
puting, we propose an alternative approach to answer Lowe’s question. The main
question is decomposed into three smaller questions that can be answered with one
or two computations each. This captures the idea of question-based computing, in
which computations are designed to answer specific spatial questions and are there-
fore more “declarative” than procedural. Figure 2 shows the ArcPy scripts developed
by Lowe on the left with the alternative solution based on core concepts, also written
in Python, on the right.

We utilize Python for several reasons. Python is popular among application pro-
grammers and users, has the capacity to implement ADTS, and is interoperable with
existing GIS tools and libraries. For the back-end implementation of our approach,
we work with ArcPy to keep consistency with the original solution and to compare
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ArcPy Core Concepts

# Get China less gas flares polygon # load input data
arcpy.Select_analysis("countries_nogas"”, "chinal.shp", china_boundary = MakeObject('data/china.shp")

"\"NAME\" = 'China'") china_lights_1 = MakeField('data/lights_1994a.tif')
# Average two satellites for 1994 .restrict_domain(china_boundary, ‘inside')
outRaster = (Float("F101994")+Float("F121994"))/2 china_lights_2 = MakeField('data/lights_1994b.tif")
outRaster.save("FXX1994") .restrict_domain(china_boundary, 'inside')

) gas_flares = MakeObject('data/china_flares.shp')

# Use buffer tool and roads to make polygon of China roads = HakeObject (" data/china_roads.shp')
# close to roads, then clip chinal t -

arcpy.Buffer, analysls( 32016 _final _pr 3",
DecimalDegrees", "FULL", "ROUND", "ALL"

arcpy Clip_analysis("H: /Resear‘ch/Data/nghts/chmal shp" ;
"H:/Research/Data/Lights/roadbuff.shp”, "china2.shp", "")

" oadbuff.shp“, "0.5

the luminosity in year 1994 in China, excluding
gas flares?

# Clip each lights raster to extent of china2 average_luminosity = china_lights_1
rasterList = arcpy. ListRasters("F*") .local(china_lights_2, ‘average')
for raster in rasterList: luminosity_noGas = average_luminosity
arcpy.Clip_management(raster, "-179.9999 -90.0 180.0 .restrict_domain(gas_flares, 'outside')
83.62741", "G"+str(raster[1:]),
“H:/Research/Data/Lights/china2.shp", "", # What is the luminosity within @.5 degrees from roads?
"ClippingGeometry") roads_buffered = buffer(roads, .5, 'Decimal Degrees')

luminosity_around_roads = luminosity_noGas

# Create grid to extent of one of new .restrict_domain(roads_buffered, inside')

ar‘cpy.CreateFishnetimanagement
18.15416", "73.5541 28.15416"
"134.77916 53.5625" “"NO_| LABELS POLYGON") # What is the mean luminosity in a @.1 by 0.1 degree area?

arcpy RasterToPolygon converslon( 6101992 5 6101992p shp", final_results = luminosity_around_roads.coarsen(0.1,0.1))
"NO_SIMPLIFY", "Value")

# Process: Clip grid to perimeter of polygon

arcpy.Clip_analysis("H:/Research/Data/Lights/ch_grid.shp",
"H:/Research/Data/Lights/G101992p.shp", "china_grid.shp",
y

# Zonal statistics on each year
rasterList = arcpy.ListRasters("G*")
for raster in rasterList:
arcpy.gp.ZonalstausncsAsTable sa("H:/Research/Data/Lights/
china_grid.shp", "FID", r'aste
“1"4sTr(raster[5:])+" . dbf", "DATA", "MEAN")

Fig. 2 Comparison between the procedural and core concepts solutions to the China luminosity
study (Lowe 2014)

on a fair and relevant basis. In fact, the computations used here, act as wrapper for
ArcPy functions.

Before starting the actual computations, the preliminary step is always to provide
the required input data. This process is conventionally done by loading data layers
as raster or vector data into the chosen GIS. This perspective tends to lock users
into conceptualizations associated with the data formats, limiting the set of available
computations to those defined for each data type and contributing to unnecessary
format conversions. For instance, in order to clip the grid to the extent of the lumi-
nosity data in China, Lowe had to convert the luminosity raster to vector data. The
decision to convert from raster to vector is encouraged by the chosen GIS framework
and not inherent (in fact rather contrary) to the question.

Alternatively, core concepts allow users to decide which concept is most appro-
priate for framing the problem and interpreting the data sets, given the questions to
be answered. For instance, a user could treat the Chinese road data as a network or
instead as set of road objects. The only computation that needs to be performed on
the road data involves determining which areas lie within a certain distance from
roads. Therefore, the most appropriate (simplest) choice is to treat the roads as a
set of objects to which a buffer operation can be applied. Thus, the road data are
interpreted and subsequently loaded as a set of objects.
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Similarly, China and the gas flares are each interpreted as objects and the two
raster files containing the luminosity data for 1994 as fields. The following Python
code is used to load these data. In Lowe’s solution, these operations were performed
in a pre-processing stage.

china_boundary = makeObject ('data/china.shp’)

china_lights_1 = makeField(’data/lights_1994a.tif’)
.restrict_domain (china_boundary, ’'inside’)

china_lights_2 = makeField(’data/lights_1994b.tif’)
.restrict_domain (china_boundary, ’'inside’)

gas_flares = makeObject (‘data/china_flares.shp’)

roads = makeObject ('data/china_roads.shp’)

A considerable number of steps applied by Lowe (four out of nine) are spent on

limiting the spatial coverage (extent) of his data. He uses “select by attribute” in the
fourth step and “clipping” in the third, sixth, and seventh steps. Through the core
concepts, limiting coverage is a much easier task achieved by restricting the domain
of a field. By definition, each field has a domain for which it is defined (Kuhn and
Ballatore 2015) and when creating a new instance of a field, its domain is inferred
from the extent of the loaded data. Since clipping in fact only reduces the domain of
a field, it is conceptually easier to restrict the domain by the new boundary, avoiding
the need to modify or create any values. Our restrict_domain computation
restricts the domain of a field in this way. In fact, there is not even a need for any
computations in such a domain restriction, as one can just add or subtract spatial
extents to the domain definition. In the second and the third commands of the above
code, the domain of the fields (that are being created from a tif file) are restricted to
the inside of the boundary of China, at the time of creation.

Once the data have been interpreted and loaded as core concept instances, we can
start asking spatial questions. Lowe’s overall question is naturally subdivided into
three simpler questions:

o What is the average luminosity in 1994 in China, excluding gas flares?
o What is the luminosity within 0.5° from roads?
o What is the mean luminosity at a coarser (0.1 by 0.1°) granularity?

In order to answer the first question, the luminosity in the year 1994 is aver-
aged from two satellite data sources for that year. Then the domain of this field gets
restricted to the region outside of the gas flares. As the luminosity data have been
interpreted as fields, a local field operation can be used for averaging the values.
Local operations are well-known from map algebra (Tomlin 1990a). To restrict the
domain of the resulting field to the outside of gas flares, the restrict_domain
function is applied.

average_luminosity = china_lights_1
.local (china_lights_2, ’"average’)
luminosity_noGas = average_luminosity

.restrict_domain (gas_flares, ’outside’)
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Answering the second question requires determining the luminosity near roads
(within a 0.5° buffer). Buffering is a core computation on objects, requiring objects
and the buffer distance as input. After applying it, the domain of the luminosity field
can be reduced to the buffered region.

roads_buffered =roads.buffer (0.5, ’'DecimalDegrees’)

luminosity_around_roads = luminosity_noGas
.restrict_domain (roads_buffered, ’inside’)

To address the third question, the luminosity field can simply be coarsened. Lowe
defined a vector grid to aggregate the raster into larger cells. This approach is com-
putationally expensive and necessitates a raster to vector conversion on the lumi-
nosity data. Our alternative solution uses the concept of granularity, as a quality
concept applicable to all content concepts, including fields. Two core computations
for granularity, coarsen and refine, allow for decreasing and increasing, respectively,
the granularity of fields, objects, networks, and events (here shown for the case of
fields):

final_results = luminosity_around_roads.coarsen (0.1, 0.1)

To do the same process in ArcPy, Lowe had to undertake a multi-step process:
convert the luminosity raster to a polygon layer, clip the luminosity polygons to the
extent of the grid, and then apply zonal statistics.

5.3 Implementation

To implement the core computations, we have constructed an hierarchy of abstract
and concrete classes that leverages the classes defined by Kuhn and Ballatore (2015)
and existing spatial computation platforms (currently only ArcPy). Abstract class
constructors generate subclass instances to appropriately type and handle the loaded
data. This removes common but unnecessary choices and parameters from user com-
mands. The CcField abstract class, for example, points to the GeoTiffField subclass
(hidden from the user), an instance of which is generated when a user loads “.tiff”
data as a field. Within the same GeoTiffField subclass, functions for retrieving the
domain and for reading in raster data allow 1ocal to execute and optimize the map
algebra local operation in a number of ways (see Sect. 5.2).

5.4 Comparison and Discussion

Our core concept solution is not replicating the step-wise procedure that Lowe had
to undertake, which was chaining together tools operating on data formats. It is also
an improvement over a standalone use of ArcPy, which restricts users to fragmented
step-wise operations on raster and vector data. As shown, the procedure used by
Lowe contained nine analytical steps, some consisting of multiple operations. In
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contrast, our method based on core concepts has only three analytical steps, with
five operations in total, thus being 45 % shorter overall. A further improvement is that
our computations should be simpler to understand, as they contain fewer parameters,
the user does not have to deal with format conversions, and the steps follow a logical
order established by the three sub-questions. We also expect overall command spaces
to end up smaller and more usefully organized by the core concepts, though the
current state of our work cannot yet demonstrate this effect.

6 Conclusions

This paper proposed a new approach to spatial computing based on asking ques-
tions rather than performing data manipulation procedures. Inspired by the notion of
Abstract Data Types (ADT) from computer science, and leveraging the idea of the
core concepts of spatial information and the language designed based on them, our
approach allows for answering spatial questions by using core computations defined
for each core concept.

In a first attempt of putting this approach into practice, we used a case study from
economics, in which a domain expert had used ArcGIS (through its scripting lan-
guage, ArcPy), to determine aggregated nocturnal luminosity in China near roads.
We answered this spatial question by interpreting the input data in terms of core con-
cepts and performing core computations on them. We see the case study as a realistic
scenario to test the idea of question-based spatial computing and the underlying core
concepts and computations for spatial information. Despite the encouraging results,
this case study is only an initial step, and more real-world scenarios are needed to
demonstrate the power and to identify the potential weaknesses of our approach.

Furthermore, a spatial question can either be answered directly by a core compu-
tation or the user decomposes it into smaller, answerable questions. Formulating a
method to decompose spatial questions into smaller units will be pursued in future
research, while further developing the core computations. We believe that this is an
ambitious but achievable goal that will expand the range of spatial questions answer-
able through the core concepts and computations, without the need to grow their
number.

This research also helped us extend and improve the formal specifications of core
concepts and modify the computations defined on them. For instance, the granularity
concept did not have a rigid formal specification beforehand, but now has a clearer
definition and two core computations (refine and coarsen). The method proposed in
this paper ends up being remarkably shorter than the published GIS solution and
appears easier to understand. It uses just over half the number of computations used
by Lowe.

Our ADTs were implemented in Python, currently using the ArcPy library,
because of Python’s interoperability with existing GIS tools and its growing usage
within and outside GIScience. The core computations implemented for each con-
cept are not yet complete, and defining new operations as well as modifying existing
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ones continues, based on additional case studies. Also, the method used in this
paper has its limitations, as some of the operations were not fully compatible with
ArcPy, requiring several workarounds. This problem will be addressed in future work
leveraging multiple platforms beyond ArcPy, including commercial and open source
GIS. Another line of future research will study transitions from one core concept to
another, and their implementation as constructor functions.

We foresee our research to eventually lead to an open source Application Pro-
gramming Interface (API) for spatial computing, based on core concepts and com-
putations and dispatching to commercial or open source spatial computing platforms.
This API will provide higher-level access to existing commands on these platforms
and thus support a broader community of users, ranging from GIS experts to domain
users or application programmers without technical GIS training.
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Measuring Space-Time Prism Similarity
Through Temporal Profile Curves

Harvey J. Miller, Martin Raubal and Young Jaegal

Abstract Space-time paths and prisms based on the time geographic framework
model actual (empirical or simulated) and potential mobility, respectively. There are
well-established methods for quantitatively measuring similarity between
space-time paths, including dynamic time warping and edit-distance functions.
However, there are no corresponding measures for comparing space-time prisms.
Analogous to path similarity, space-time prism similarity measures can support
comparison of individual accessibility, prism clustering methods and retrieving
prisms similar to a reference prism from a mobility database. In this paper, we
introduce a method to calculate space-time prism similarity through temporal
sweeping. The sweeping method generates temporal profile curves summarizing
dynamic prism geometry or semantic content over the time span of the prism’s
existence. Given these profile curves, we can apply existing path similarity methods
to compare space-time prisms based on a specified geometric or semantic prism.
This method can also be scaled to multiple prisms, and can be applied to prisms and
paths simultaneously. We discuss the general approach and demonstrate the method
for classic planar space-time prisms.
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1 Introduction

Space-time paths and prisms based on the time geographic framework model actual
and potential movement, respectively, of an object through geographic space with
respect to time (Hégerstrand 1970). Path similarity measures quantitatively assess
the resemblance between two space-time paths, with greater similarity indicating
mobility and activity patterns that are more alike. Path similarity can provide
insights into dynamic phenomena such as traffic congestion and crime (Yuan and
Raubal 2014), identify similar patterns of environmental exposure (Briggs 2005;
Sinha and Mark 2005), and analyze collective movement patterns (Gudmundsson
et al. 2012). Other applications of path similarity measures include path clustering
(finding groups of similar paths), path aggregation (forming composite represen-
tative paths), and mobile objects database (MOD) queries to find paths that
resemble a reference path.

The space-time prism (STP) is the envelope of all possible space-time paths
between two anchor locations with known departure and arrival times respectively.
STPs are measures of space-time path uncertainty when a moving object’s locations
are undersampled with respect to time (Pfoser and Jensen 1999). They are also
measures of individual accessibility and exposure within an environment and have
been widely applied in human and ecological science (Espeter and Raubal 2009;
Long and Nelson 2012). As extensions of space-time paths, STP similarity indicates
similar patterns of accessibility and potential exposure within an environment. As
with path similarity, we may wish to measure STP similarity to cluster or aggregate
prisms as well as search for corresponding prisms within a MOD. However, no
methods for measuring STP similarity exist.

This paper develops a time-based approach to measuring STP similarity. Our
approach sweeps a STP with respect to time, recording its geometric and/or semantic
properties at discrete moments. This allows us to construct one-dimensional temporal
profile curves that summarize the properties with respect to time. These curves can be
compared visually or quantitatively using existing path similarity measures. We
restrict our attention to classic planar STPs in this paper but discuss how to extend
these measures to other prism types, including network time prisms (Kuijpers and
Othman 2009; Miller 1991) and field-based prisms (Miller and Bridwell 2009).

The next two sections of this paper provide background to our methods. Sec-
tion 2 reviews existing approaches to measuring path similarity while Sect. 3
describes geometric and semantic properties of STPs that can be measured ana-
Iytically. Section 4 presents our generic method for generating temporal profile
curves. Section 5 provides an example using planar STPs. Section 6 identifies
future research steps and Sect. 7 concludes the paper with a brief summary.
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2 Space-Time Paths and Path Similarity

The space-time path represents a history of individual movement with visited
locations, and sequence of the movement. Figure 1 shows a space-time path in
two-dimensional space and time corresponding to a person moving among three
locations with corresponding departure and arrival times at locations. The vertical
line segments represent the duration that the person stayed at the same location for a
certain amount of time. This integrated view of space and time provides an effective
visual environment to understand human movement, activities and accessibility in
space and time (Pred 1977).

In addition to visualization there is a wide range of analytical descriptions and
summaries for space-time paths. Basic path measures include both moment-based
descriptors (such as the time, location, direction and speed at any moment) and
interval-based descriptors (such as the minimum, maximum and mean speed, the
distribution and sequence of speeds and directions, and the geometric shape of the
path over some time interval) (Andrienko et al. 2008).

Path similarity measures allow quantitative comparisons among space-time
paths, particularly with respect to geometric similarity in space-time and with

Fig. 1 A space-time path in Time 4
two-dimensional space and
time

Space
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respect to semantics. Geometric similarity captures the resemblance of the mobile
objects in terms of their patterns in space with respect to time. Semantic similarity
(Janowicz et al. 2011) refers to the characteristics and activities of the moving
object, such as commuting, shopping and socializing (in the case of humans)
(Raubal et al. 2004), or foraging and migration (in the case of animals). Similarity
measures also support path clustering and aggregation methods for identifying
synoptic spatio—temporal patterns from large collections of mobile objects (Long
and Nelson 2013).

Two types of path similarity measures are shape-based measures and time-based
measures (Yuan and Raubal 2014). Shape-based measures focus on the geometry
of the paths; these include the average Euclidean distance between corresponding
locations on the paths, and the Hausdorff distance or maximum of the minimum
distances between the paths. Time-based measures take into account the temporal
aspects of paths by considering them as multidimensional time series data. They
include synchronized Euclidean distance, Fréchet distance, dynamic time warping,
longest common subsequences, and edit-distance functions. Fréchet distance is the
shortest of the set of closest distances that connects the objects moving along their
paths at any speed without backtracking.

The time-based measures discussed above focus on path geometry including
time stamps of points and order, but more general time-based measures such as
dynamic time warping, longest common subsequences and edit-distance functions
can capture both geometry and semantics. Required is some coding that translates
path geometry and/or semantics into an ordered and exhaustive sequence of states
with their time durations (see, for example, Dodge et al. 2012). Dynamic time
warping measures the similarity between two sequences or trajectories by local
stretching or compressing to match the time series and compute the sum of the
paired distances (Yuan and Raubal 2012). Longest common subsequence (LCSS)
methods measure similarity based on the length of the longest common subse-
quence in a set of sequences (Nanni et al. 2008). Edit-distance functions generalize
LCSS: these measure similarities between sequential patterns based on the cost of
the insertion, deletion and substitution operations required to transform one
sequence into the other. Such functions can also account for spatial and temporal
information in their cost functions (Yuan and Raubal 2014).

3 Analytical Space-Time Prisms

A space-time prism (STP) is the envelope of all possible paths in space with respect
to time between two anchoring locations and corresponding departure and arrival
times, subject to a maximum travel speed and any stationary activity time. STP
parameters are {x[,xj, ti, tj, s,-j,a,-j} where x;,x; are the first and second anchor
locations with associated departure and arrival times ¢, respectively, s; is the
maximum travel speed and a; is the stationary activity time (if any). The spatial
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Fig. 2 A planar space-time Time
prism
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footprint of a STP is the potential path area (PPA): in general, this is an ellipse with
the two anchors as foci. Figure 2 illustrates a general STP.

Although it is the intersection of simple objects such as cones and cylinders (see
Burns 1979), it is difficult to analytically describe the entire STP. However, it is
easy to describe its spatial extent at a moment in time; this can serve as the basis for
a wide range of prism analytics. At a moment in time ¢ € (7;, #;), the spatial extent of
a STP (denoted by Z;(r)) is the intersection of three convex spatial sets: (i) the
Suture disc f;(t) comprising all locations that can be reached from the first anchor by
time #; +1; (ii) the past disc p;(t) encompassing all locations at time ¢ that can reach
the second anchor by time # —t; and, (iii) the potential path area g;; that constrains
the prism locations to account for any stationary activity time:

Z;i(1)={£(1) npi(1) N gy} (1)

Si@) ={x}lx = xil| < (1 = 1:)s 2)

pi(t) = {x}[[x=xi[| < (5= 1)sy 3)

gij= {x}|[x = xil| +[[x = x| < (1 1 = ay) sy (4)

Figure 3 provides an illustration. This definition of the STP is not limited to
two-dimensional space. In one-dimensional space, the sets described by Eqgs. (2)—(4)
are line segments. In two-dimensional space, the discs are circles and the geo-ellipse
is an ellipse. In three-dimensional space, the discs are spheres and the geo-ellipse is a
spheroid. There are scalable methods for calculating these objects and their inter-
sections. Also, the intersection geometry of a STP at a moment in time never requires
finding the intersection of all three spatial sets since the future and past disc change
size and can be enclosed by the other two sets for part of the prism’s existence. This
will be discussed in more detail below (Miller 2005).
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Fig. 3 Analytical construction of a STP at a moment in time

In addition to the prism boundaries, the prism interior also has intrinsic and
extrinsic properties of interest. Intrinsic properties relate to the prism itself. The
probabilities of the object visiting different locations within the prism interior are
not equal: the object is more likely to visit locations near the axis connecting the
two anchors relative to locations near the prism boundaries since there are more
possible paths through the former rather than the latter (Winter and Yin 2010a). We
can simulate the visit probability distribution within a prism interior using simple
random walks or Brownian Bridges methods, truncated to account for STP con-
straints (Song and Miller 2014). Alternatively, the prism visit probability distri-
bution at a moment in time can be approximated using a clipped bivariate normal
distribution (Winter and Yin 2010b).

Related to the visit probability distribution within the prism interior is the dis-
tribution of possible speeds at each location at a moment in time. The speed dis-
tribution at a given location and time within the prism is Markovian in the sense that
the history that precedes it is irrelevant: the location and remaining time determines
the possible speeds. Locations near the prism interior tend to have a wider range of
possible speeds while locations near the boundaries are more constrained, with
locations on the prism boundary constrained to only the maximum speed.

Extrinsic properties of the prism interior relate to type of activity locations,
resources, environmental features and other individuals encompassed by the spatial
region. This external content describes the possible activities and experiences for
the individual and therefore supports derivation of accessibility semantics. At a
moment in time these properties comprise a two-dimensional spatial distribution
that can be described using spatial statistics. Point pattern measures including
density-based approaches or distance-based measures, such as the K function that is
based on counting points within a series of distances of each point (O’Sullivan and
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Unwin 2010), can be applied to a spatial distribution of activity locations such as
restaurants or movie theaters. With entropy measures such as spatial entropy, one
can quantitatively determine the uncertainties about the structure of
two-dimensional spatial distributions (Batty 2010). Furthermore, spatial autocor-
relation can be measured for these distributions, for example, through indices such
as Moran’s I, which is usually applied to areal units representing environmental or
epidemiological data (O’Sullivan and Unwin 2010).

Other properties of a prism include its relationship with other space-time paths and
prisms. Calculating the binary query if a path lies in a prism at a given moment in time
only requires testing if a point (the path at a moment in time) lies within a disc, ellipse,
or a disc—ellipse intersection. We also can easily test if a prism-prism intersection
exists at a given moment in time by evaluating a small set of linear inequalities. More
complicated but still tractable is solving for the intersection region at a given moment
in time: this requires solving for the intersection of two, three, or four simple spatial
sets based on the prisms’ morphologies at that moment. The worse-case for two prisms
is a four-set intersection involving two discs and two ellipses (Miller 2005). Finally, it
is also possible to solve for the Euclidean, Hausdorft and other distances between two
prisms at a moment in time since these are simple spatial sets.

4 Measuring Space-Time Prism Similarity Using
Temporal Profile Curves

The basic idea behind our method is to reduce the dimensionality of the space-time
prism by sweeping it with respect to time and summarizing its geometric and/or
semantic properties at discrete moments in time using the methods outlined in
general above. This generates a temporal profile curve for the given attribute. These
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Fig. 4 Temporally sweeping a space-time prism
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profile curves can be compared visually. We can also apply existing path similarity
measures to determine their resemblance based on the chosen parameter, as well as
apply clustering and aggregation methods based on these curves. Figure 4 illus-
trates the core idea for a single STP. It is also possible to sweep multiple STPs
simultaneously to compare their properties within the same time frame. We could
also sweep multiple STPs independently and compare the prisms after normalizing
the time horizons of each prism.

As noted above, the intersection geometry of a STP at a moment in time never
requires finding the intersection of all three spatial sets since the future and past disc
change size and may be enclosed by the other two sets during subintervals of the
prism’s existence. With a general prism as in Fig. 2 we only need to solve (in the
following order) the future disc alone, the intersection of the future disc with the
potential path ellipse, the potential path ellipse alone, the intersection of the
potential path ellipse with the past disc intersection and finally the past disc alone
(Miller 2005). Figure 5 illustrates these subintervals for a general prism. The
temporal subinterval boundaries are:

*
(ti+tj—tij—a,-j)

£= 2 )
{ = M (6)

. (l‘i+lj+t;)
t =—— =~ 7
. )

(ti+(;+tf+aij)
t =+ (8)

Fig. 5 Temporal subintervals t
for analytically calculating
planar STPs at a moment in
time
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where t;kj is the minimum travel time between the anchors. If stationary activity time
a;; is zero then Egs. (5) and (8) are irrelevant and the prism simplifies to only three
subintervals that require solving for the future disc, future disc-past disc intersection
and the past disc, respectively. Forming these sets and intersections are simple
operations that can be performed using standard buffering and overlay techniques
available in most GIS software shortcuts. In the examples below, we calculate these
intersections and their properties at discrete moments in time using off-the-shelf
overlay tools available in ArcGIS 10.1.

5 Examples

This section illustrates the temporal sweeping method for planar STPs. We first
demonstrate the technique for generating temporal profile curves for summarizing
geometric prism properties, specifically, prism area. We then demonstrate the
technique for summarizing prism semantics for an empirical example.

Geometric similarity. Figure 6 provides four prisms with varying activity times
but speed limits fixed at s = 5. Figure 7 provides four prisms with varying speed
limits but with stationary activity times fixed at a = 10. Stationary activity times
refer to minimum times required for immobile activity, such as shopping or dining.
All prisms have anchors at (0, 0) and (100, 100) and time budgets of 60. Also note
that the prism with s = 5 and a = 10 is the same in both figures.

Figures 8 and 9 provide the corresponding temporal profile curves for the prism
areas in Figs. 6 and 7, respectively. As expected, lower activity times and higher
speeds correspond to larger prism areas and shifts in the locations of the curves
positively with respect to the y-axis. Changes in STP speed limit have a larger
impact on the locations of the curves relative to changes in activity time (note the

Fig. 6 Four prisms with
varying activity times

5=5a=0

s=5a=20 s=5,a=30
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s=10,a=10

s=15,a=10 5=20,a=10

Fig. 7 Four prisms with
varying speed limits

difference in y-axis scale between the two curves). This corresponds to the more
dramatic changes in STP size evident from comparing Figs. 6 and 7, as well as time
geographic theory that suggests relaxing speed limits has a bigger impact on
accessibility than reducing stationary activity time (see Burns 1979). However, in
addition to shifts in the curve locations there are changes in the curve morphology.
Figure 8 indicates that a lower activity time results in the shapes of the curves to
become more rounded. In contrast, Fig. 9 indicates that higher speed limits cor-
respond to the curves becoming more peaked. These differences in profile curve
locations and morphology can be exploited when measuring prism similarity or
performing related analysis such as prism clustering and aggregation.

35,000
30,000
25,000
20,000 -
— =5, 3=0
area
sesees5=5 3=10
15,000 -
=== 5=5, a=20
-« 5=5 3=30
10,000 -
5.000
0 -

1 S 9 13 17 21 25 29 33 37 41 45 49 53 57
time

Fig. 8 Profile curves for the varying activity time prisms in Fig. 6
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Fig. 9 Profile curves for the varying speed limit prisms in Fig. 7

Table 1 provides a summary of inter-curve distances calculated via the dynamic
time warping (DTW) procedure in R using the Sakoe-Chiba band window with a
maximum time deviation between matched pairs of 4 (Giorgino 2009; Sakoe and
Chiba 1978). We normalized these distances using the symmetric2 procedure in R:
this gives a higher weight to diagonal transition relative to horizontal or vertical
transitions (see Giorgino 2009). As Table 1 indicates, the DTW distances distin-
guish between STPs with different activity times and speed limits. However, dis-
tances between STPs with different speed limits are greater than STPs with different
activity times due to the greater effect of speed limit than activity time on STP area.
This is not necessarily true of all STP geometric properties; an open research
question is to identify and assess STP geometric properties with respect to changes
in the STP parameters (see Burns 1979). Also, DTW captures differences in curve
locations better than curve morphology; another open research question is deter-
mining curve similarity measures that can capture morphological differences.

Table 1 DTW inter-curve distances

Speed limit changes Activity time changes
s=5a=0 s=5,a=10 s=15,a=20 s=5,a=30

s=5,a=10 528.4 - 2,501.2 9,441.9
s=10,a=10 51,092.3 53,026.6 58,132.1 65,820.8
s=15a=10 145,217.3 147,151.6 152,264.4 160,036.4

s=20,a=10 2717,258.9 279,193.2 284,306.2 292,114.5
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Semantic similarity. Figure 10 provides an empirical example for calculating
semantic similarity: walking to Derby Hall on The Ohio State University campus
from two different neighborhoods in Columbus, Ohio, USA. The Short North
neighborhood to the south is a denser urban setting while Glenn Echo to the
northeast is a more suburban neighborhood. Figure 10 shows the potential path
areas for two prisms with origin anchors in the centers of the Short North and Glen
Echo neighborhoods but with a common destination anchor at Derby Hall. Both
prisms reflect a speed limit of 6.4 kph (a brisk walk) with a total time budget of one
hour, and stationary activity time of 30 min for stopping at a restaurant. The map
also shows the location of all restaurants in the respective areas.

Figures 11 and 12 show the prisms’ profile curves for two semantic properties:
the restaurant density (relative to prism area at each moment in time) and the
average nearest neighbor ratio calculated as the observed average distance divided
by the expected average distance based on a null model of complete spatial ran-
domness. In Fig. 12, values less than 1 indicate spatial clustering while values
greater than 1 indicate spatial dispersion.
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Figures 11 and 12 suggest that the profile curves distinguish well between the
semantic content of the two prisms. The profile curve for the Short North prism
suggests an accessible environment with initially a high density of spatially clus-
tered restaurants that becomes less dense and clustered with time and movement
towards the destination. In contrast, the profile curve for the Glen Echo prism
suggests an accessible environment with initially a low density of spatially dis-
persed restaurants that becomes denser and more clustered with time and movement
towards the destination. In the last stages of both prisms the profile curves converge
as the two prisms converge on the common destination. However, except for an
early spike in the Glenn Echo nearest neighbor curve, the nearest neighborhood
profiles appear more similar than the density profiles for both prisms. Normal-
ized DTW distances for the profile curves of 10.1 and 0.2 for density and nearest
neighbor, respectively, support this qualitative result.

6 Future Steps

The preliminary analysis in this paper suggests the value of the temporal profile
curves for distinguishing among STPs. With respect to geometry, the STP area
profiles indicate that changes in prism morphology can be reflected in changes in
both the locations and shape of the profile curves. The semantic example of
restaurant density and spatial clustering also generated profile curves that distin-
guish between the content of prisms. A next step is to explore different geometric
and semantic STP indicators, such as shape measures (e.g., compactness versus
elongation), physical properties such as average speed, and spatial statistics
describing prism content at a moment in time, and assess their effectiveness at
distinguishing among STPs under different conditions.

As noted earlier in this paper, similarity measures can facilitate the analysis of
prism collections by supporting summarization methods. A next step after deter-
mining appropriate geometric and semantic indicators is to develop scalable STP
clustering and aggregation methods. STP clustering is more straightforward than
STP aggregation since the latter requires procedures for generating a composite
STP that reflects the common properties of the disaggregated STPs. A simple
approach for space-time paths is to use vector averaging: treat each segment of the
polyline as a vector and find the average of the corresponding vectors (see
Kobayashi and Miller 2014). Additional investigation is required to determine
aggregation methods for the more complex case of STPs.

We restrict our attention to classic planar STPs in this paper. A longer term
research task is to develop similar methods for the important case of network time
prisms (NTPs). These methods can be based on graph theoretical measures of the
spatial footprint at each moment in time in a NTP. Another possibility is to calculate
geometric properties for the NTP using its trapezoidal and triangular regions in
space and time (see Kuijpers and Othman 2009). With respect to NTP semantics,
the profile curves can exploit address-matched and other network-referenced data
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combined with network-based spatial analytical methods (Okabe and Sugihara
2012). Another future step is to develop methods for the more complex geometry of
field-based prisms where speeds vary continuously in space. These methods can
exploit properties of the lattice approximation for field-based prisms (Miller and
Bridwell 2009).

7 Conclusion

This paper develops an approach to measuring space-time prism (STP) similarity in
a manner similar to methods for measuring path similarity. Our method reduces the
dimensionality of a STP by temporally sweeping it to generate one-dimensional
profile curves that summarize changes in geometric and/or semantic properties with
respect to time. We demonstrate this approach using the example of prism area
under varying activity times and speed limits, as well as the semantic content for an
empirical example of a travel and activity episode. Preliminary results suggest that
this approach is promising: the locations and morphologies of the profile curves
reflect changes in prism geometry and semantics, and differences between the
curves can be summarized effectively using distance measures such as Dynamic
Time Warping. We outline several next steps to continue this research, including
determining effective geometric and semantic indicators for STPs, developing STP
clustering and aggregation methods that exploit these profile curves and distance
measures, and extending these methods to other types of prism, such as network
time prisms and field-based prisms.
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Deriving the Geographic Footprint
of Cognitive Regions
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Abstract The characterization of place and its representation in current Geographic
Information System (GIS) has become a prominent research topic. This paper con-
centrates on places that are cognitive regions, and presents a computational frame-
work to derive the geographic footprint of these regions. The main idea is to use
Natural Language Processing (NLP) tools to identify unique geographic features
from User Generated Content (UGC) sources consisting of textual descriptions of
places. These features are used to detect on a map an initial area that the descriptions
refer to. A semantic representation of this area is extracted from a GIS and passed
over to a Machine Learning (ML) algorithm that locates other areas according to
semantic similarity. As a case study, we employ the proposed framework to derive
the geographic footprint of the historic center of Vienna and validate the results by
comparing the derived region against a historical map of the city.
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1 Introduction

The characterization of place and its representation within Geographic Information
System (GISs) are becoming prominent research topics in the field of geographic
information science (Gao et al. 2013; Goodchild 2011; Scheider and Janowicz 2014,
Kuhn 2001). The notion of place is strictly related to people’s conceptualization of
space, and may correspond to different things, e.g. points of interest, geographic
regions (Montello 2003), or settings (Schatzki 1991) (i.e., aggregations of spatial
features).

A place is generally regarded as a region of space that is homogeneous with
respect to certain criteria. We adopt the taxonomy for geographic regions proposed
in Montello (2003) and focus on the category of so—called cognitive regions: concep-
tual regions derived by people as they experience the world. The geographic inter-
pretation of cognitive regions may (and usually does) differ slightly among several
individuals, as shown, for example, with the cognitive regions of downtown Santa
Barbara (Montello et al. 2003), and Southern and Northern California and Alberta
(Montello 2014).

In this paper we propose a novel approach to derive the geographic footprint
(i.e. the location and extension) of a cognitive region from User Generated Content
(UGC) sources containing textual descriptions of places. We argue that this type of
UGC is a valuable knowledge base to derive an approximated geographic footprint of
a cognitive region from, as it contains the conceptualizations that several people have
of that region. In particular, we focus on a special type of cognitive regions: those
that are conceptualized as homogeneous areas in terms of the activities they allow
to be performed. To derive the geographic footprint of these regions we propose a
novel framework that employs Natural Language Processing (NLP) tools to extract
from textual descriptions of a place a set of named geographic features. These are
used to detect on a map an initial area that the descriptions refer to, and to retrieve
the activities one can perform in it. These activities provide a simplified semantic
representation of the cognitive region of interest that is passed over to a Machine
Learning (ML) algorithm to extend the initial area by locating other areas offering
similar opportunities.

To the best of our knowledge, this is the first computational approach that exploits
NLP and ML techniques based on the categorical attributes to derive an approxima-
tion of the geographic footprint of cognitive regions. As a case study we used the sug-
gested framework to derive the geographic footprint of the cognitive region historic
center of Vienna. Indeed, while the historic center of Vienna is clearly a concept that
is widely referred to by people and has even a dedicated entry in Tripadvisor,' it is
generally not retrievable from current GISs, at least at the time of writing this paper.
As a preliminary evaluation we compared the derived area with a historic map of
Vienna dating back to 1850, and we found that the two mostly coincide. Meanwhile,

Thttp://www.tripadvisor.at/.
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we are designing a questionnaire to assess the quality of the derived region as done
in Montello et al. (2003). A pilot investigation showed that the region we derived
matches very well with the conceptualizations of the subjects interviewed so far. We
plan to publish the final results of this more detailed evaluation in a further paper.

The remainder of this paper is structured as follows. In Sect. 2, we review related
work in the fields of place representation, Geographic Information Retrieval and
Natural Language Processing. We present the framework in Sect. 3 and discuss the
implementation and the results for the case study in Sect. 4. Section 5 concludes the
paper, also discussing limitations of the presented approach and sketching future
work.

2 Related Work

In this section, we discuss related work in the fields of Place and Vague Regions and
Geographic Information Retrieval and Natural Language Processing.

2.1 Place and Activities

The notion of place plays a relevant role in everyday life (Winter et al. 2009; Winter
and Truelove 2013). In the field of geographic information science, different research
directions have emerged which investigate the representation of places (Goodchild
2011), classify and categorize various forms of places (Schatzki 1991), and model
places according to their relations to activities and affordance theory (Jordan et al.
1998). According to Schatzki (1991): “[...] places are defined by reference to human
activity”. Such a statement is supported by further research (Alazzawi et al. 2012;
Montello et al. 2003; Rosler and Liebig 2013; Scheider and Janowicz 2014) implying
that place semantics are closely related to activities.

In Schatzki (1991) it is argued that places organize into settings, local areas,
and regions. This general notion of a hierarchical structuring of space is relatively
undisputed and supported by findings of other researchers (Couclelis and Gale 1986;
Freundschuh and Egenhofer 1997; Montello 1993; Richter et al. 2013). More specifi-
cally, Schatzki (1991) distinguishes two types of settings: those demarcated by barri-
ers (e.g. apartment building), and those identified by bundles of activities that occur
in them (e.g. playing in a park, shopping at a mall). Recently, the idea of equipping
next-generation geographic search engines and recommendation systems with mod-
els that view places as aggregated entities has been receiving increasing attention
(Ballatore 2014; Hobel et al. 2015).
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2.2 Geographic Information Retrieval and Natural
Language Processing

Geographic Information Retrieval (GIR) is a specialization of traditional informa-
tion retrieval supported by geographic knowledge bases that enables the retrieval
of geographic information and geotagged objects. The respective tools enable the
identification and disambiguation of place names, the mapping of place names onto
spatial features and vice versa, and the derivation of place semantics. Regarding
the latter, the literature is mainly focused on the identification and classification of
places (Tversky and Hemenway 1983; Smith and Mark 2001) and on the automatic
generation of ontologies (Popescu et al. 2008).

To enhance the capabilities of the next generation of geographic search engines,
different approaches are currently being pursued to facilitate the retrieval of geo-
related content. Applications range from the conceptualization of space into a metric
space algebra (Adams and Raubal 2009), to the contextualization of unstructured
text (Adams et al. 2015; Adams and McKenzie 2012) to relate concepts to places, to
the development of content-rich knowledge bases and vocabularies (Ballatore 2015),
and to semantic similarity measures for geographic terms (Ballatore et al. 2013).

Interesting approaches of automatically mapping spatial content is pursued in
different fields. Jones et al. (2008) focused on modeling vague regions by statisti-
cal density surfaces and mining place descriptions in natural language to infer the
approximate region. Grothe and Schaab (2009) exploited freely available georefer-
enced photographs to derive the geographic footprint of imprecise regions by using
Kernel Density Estimation and Support Vector Machines. Cunha and Martins (2014)
derived imprecise regions by exploiting machine learning for interpolating from a set
of point locations. Liischner and Weibel (2013) concentrated on using characteristics
of topographical data to delineate regions.

The current focus on similarity measures for geographic terms (Ballatore 2015;
Ballatore et al. 2014) is further proof that there is an interest in the disambiguation of
places and place descriptions. One of the goals is to prepare shared and universally
accepted vocabularies to facilitate the interpretation and the resolution of spatial
requests. For instance, if the task is to search for a place where one can get something
to eat, there are more possible matches than just restaurants. Coffee shops, pubs, or
even supermarkets may also fulfill the requirements of the request.

The availability of mature Natural Language Processing (NLP) tools (Manning
et al. 2014) allows for advanced processing of textual spatial descriptions (Chang
etal. 2015, 2014; Chang 2014; Coyne and Sproat 2001) where tokenization and part-
of-speech taggers are used to automatically break text into meaningful symbols—a
selection of Part-of-Speech Tags (POST) is shown in Table 1. Two recent interest-
ing approaches are presented in Alazzawi et al. (2012) and McKenzie et al. (2013).
The former builds upon current state-of-the-art NLP to extract spatial activities from
unstructured text; the latter presents a model to derive user similarity from spatial
topics they discuss on social media.



Deriving the Geographic Footprint of Cognitive Regions

Table 1 A selection of part-of-speech tags (POST) (Santorini 1990)

71

POST POST

Tag Definition Tag Definition
CC Coordinating conjunction DT Determiner
IN Preposition or subordinating conjunction WRB Adverb

1 Adjective WP Pronoun
NN Noun, singular or mass TO To

NNP Proper noun, singular VB Verb

3 Deriving the Geographic Footprint of Cognitive Regions

In the following, we outline a processing workflow (see Fig. 1) to derive the geo-
graphic footprint of a given cognitive region from textual descriptions of that region.

Details of the single steps involved are given in further sections.

The proposed approach relies on two types of data sources (depicted as white
databases in the figure): (i) a User Generated Content (UGC) database containing
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Fig. 1 Schematic illustration of the proposed workflow to derive the geographic footprint of cog-

nitive regions
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textual descriptions of a given cognitive region, and (ii) a Geographic Information
System (GIS).

The workflow consists of three main stages labeled in Fig. 1 as Natural Language
Preprocessing, Geo Matching, and Machine Learning, respectively. First, the tex-
tual descriptions undergo a natural language processing phase in order to extract
from them a set of nouns referring to geographic features. In the next step, this set is
compared to the geonames available in the spatial database in order to assign each a
location on the map. Finally, a grid of regular cells is superimposed onto the map and
the cells containing at least one of the geographic features mentioned in the textual
descriptions are selected. These, together with a different set of cells selected ran-
domly from the grid as counterexamples, are used as training samples for a machine
learning algorithm that categorizes all other cells according to the activities they
allow. As a result, each cell is associated to either of the two training sets, unless too
little information is known about it—in which case it is marked as “unclassified”.

3.1 Natural Language Preprocessing

The natural language preprocessing stage relies on the Stanford CoreNLP Natural
Language Processing Toolkit (Manning et al. 2014). More specifically, it relies on
three of the tools it provides: the sentence splitter, the part-of-speech tagger, and the
dependency parser.

The sentence splitter tokenizes each UGC description into sentences (step 1 in
Fig. 1) that are passed over to the part-of-speech tagger and the dependency parser
(step 2 in Fig. 1). The tagger classifies every word in a sentence according to its
syntactical class, e.g. noun (NN), verb (VB), adjective (JJ) (see Table 1 for a more
complete list of syntactical classes and tags). The parser generates a so—called depen-
dency tree whose nodes denote the syntactical class of each word in a sentence, with
edges representing the hierarchical structure of grammatical relations between the
words. For example, given the sentence “The Karntner Strasse? is a bit touristy, but
generally the area is where one could spend most of one’s time in Vienna.”, the part-
of-speech tagger and the dependency parser produce the tree shown in Fig. 2. Note
that each term is also lemmatized, i.e. it is transformed into its base form.

Given a dependency tree, it is easy to extract from it the set .#” of common and
proper nouns—tagged NN and NNP, respectively. Possibly, this set contains any
reference to geographic features contained in the textual description that we are
interested in locating on the map. Since the name of a geographic feature may be
a compound noun (e.g. Kirntner Stralle, St. Stephen’s Cathedral), we need to further
process the set of nouns before trying to match them with geonames available in the
geographic database.

2The correct spelling in German language is Kirntner StraBe. This comment has been retrieved
from the web and is purposely reported in its original, wrongly spelled, form.
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Fig. 2 The dependency tree generated by the Stanford’s part-of-speech tagger and dependency
parser (Manning et al. 2014) for the sentence “The Karntner Strasse is a bit touristy, but generally
the area is where one could spend most of one’s time in Vienna”

Algorithm 1 Finding candidate compound geonames

Input

N = {nouns in UGC descriptions},

x = maximum number of words making up a compound geoname
Output ¢ = {%),,n € A} = {candidate geonames for each noun n in N}
1: procedure COMPOUNDGEONAMES
2 C 0
3 for alln € ./ do
4: 6, <9
5: 2 « {n} U RetrieveDependencies(n, x)

6.
7
8

for all d € 27 do
€, < 6, U {PermutationsOf (d)}
C —CU%G,

We propose the procedure reported in Algorithm 1 that, given the set of nouns
A, produces a set € consisting of simple and compound nouns that we refer to as
candidate geonames. For each noun n € .4 we access again the dependency tree to
retrieve other nouns that, together with n, might make up a compound noun. This is
done through the function RetrieveDependencies(n, x) (line 5) which, starting from
the node corresponding to n, traverses the tree upwards (towards the root) and down-
wards (towards the leaves) and retrieves up to x € N other nouns in both directions.
These nouns, together with n, are stored in the set Z. The final set €, of candidate
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compound nouns associated to n consists of all possible permutations of the power-
set of Z (lines 6-7). The complete set of candidate geonames consists of the union
(line 8) of all such sets of candidate geonames: ¢ = |, 4 .

In our example, from the dependency tree in Fig. 2 we derive:

N = {Strasse, Karntner, bit, area, time, Vienna}
And for the noun n = Karntner we have:

D arnmer =1 Karntner, Strasse}

Crarnmer =19, Karntner, Strasse, Karntner Strasse, Strasse Karntner}

Note that in this case the number x of dependencies to be retrieved does not influence
the sets of candidate compound names, as far as x > 0.

3.2 Geographic Matching

This stage does not rely on any external tool. The objective is trying to match every
candidate geoname obtained in the previous stage against a unique feature in the
geographic database according to name comparison (step 3 in Fig. 1). The result is
a set ¢ that, for each noun n € .4/, contains at most one geographic feature from
the database: the one whose name best matches the candidate geonames for n (i.e.,
in €,). This implies that we also discard nouns referring to categorical features (e.g.
street, square), as our final goal is to pinpoint an initial area on the map that the
textual descriptions refer to.

Algorithm 2 Geographic matching
Input
AN = {nouns in UGC descriptions},
¢ = {¢,,n € N} = {candidate geonames for each noun n in A"},
& = threshold
Output & = {matched geonames}
1: procedure GEOMATCHING
2 G0
3 foralln € ./ do
4: P « patternMatch(n)
5: p,d) < (nil, +c0)
6.
7
8
9

for all (c,p) € €, x # do
d « Levenshtein(c, p.name)
if d < & - WordsIn(c) A d < d then
: P.d) < (p.d)
10: if p # nil A IsUnique(p) then
11: Ty e—guflp)
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We propose the procedure reported in Algorithm 2 that works as follows. For
each noun n € .4 we retrieve (line 4) from the geographic database a set &2 of
features whose names pattern-match (i.e. via regex expression) against n. In defining
the regex expressions, particular attention must be given to encode case-insensitivity
and special characters (e.g. vowel mutations) to deal with spelling issues occurring
when people write place names in a non-native language (e.g. the German word
Strafle vs. Strasse). Of all the retrieved features & we are only interested in selecting
(lines 5-9) one whose name best matches against the set 4, of candidate geonames
associated to n. For each candidate geoname ¢ € %, and for each feature p € &
we compute the Weighted Levenshtein distance® between ¢ and the name of p (line
7). The Weighted Levenshtein distance is a reasonable choice in case of UGC as
it allows to cope with incompleteness and irregularities typical of UGC. To find
possible matches (line 9) we enforce (line 8) the distance not to be bigger than a given
threshold €. Since a candidate geoname might be a compound name, we multiply
€ by the number of words making up the candidate geoname. The best matching,
then, is the one with the smallest Levenshtein distance. At the end of the loop the
variable p is either empty or it contains a geographic feature. In the first case no
match has been found. Otherwise we must make sure that the feature is unique in the
geographic database (line 10). This might not be the case for features like e.g. shops
or restaurants that have several branches in the same city.

Let us resume the example sentence introduced in Sect. 3.1 and whose depen-
dency tree is shown in Fig.2. Assume that for the noun n = Karntner and for
the case-insensitive regex expression “k(alaeld)rntner” the function patternMatch
(line 4) returns only one feature named ‘Kirntner Straie’. The following table then
shows the resulting Levenshtein distance for each candidate geoname in €, and the
threshold (assumed to be € = 3) multiplied by the number of words in each noun:

CET, Levenshtein distance € - WordsIn(c)
/] 15 0
‘Karntner’ 8 3
‘Strasse’ 11 3
‘Karntner Strasse’ 3 6
‘Strasse Karntner’ 12 6

It is easy to see that there is only one entry in this table whose distance is admis-
sible and is minimum: the entry ‘Karntner Strasse’.

3The Levenshtein distance is a string metric that measures similarity by the minimal number of
required editing steps to transform one string into the other string.
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Fig. 3 A schematic representation of the classification process—given training vectors for the
cognitive region of interest (purple cells in (a)) and for the counter-examples (orange cells in (a)),
the machine learning classifier associates each other cell to one of the two classes (light purple and
light orange in (b)). a Initial configuration. b Classified area

3.3 Machine Learning

This stage relies on a machine learning model called Multinomial Naive Bayes: a
probabilistic approach mainly used for text classification that learns from a given set
of pre-classified samples (called training vectors) how to classify other, unclassified
feature vectors according to their similarity with the given training vectors.

We adapt Multinomial Naive Bayes to classify geographic areas as either being
part of the cognitive region of interest (class 1) or not being part of it (class 2). The
training vectors are obtained by tessellating the map with a regular grid (step 4 in
Fig. 1) and retrieving the cells .#, containing at least one of the geographic features
¢ derived in the previous stage. Such cells are the training vectors for the first class.
The training vectors .#, for the second class consist of the same number of randomly
selected cells that do not contain any of the geographic features in ¢.

We adopt a bag-of-words model* to obtain a simplified ‘semantical’ represen-
tation of the training cells by extracting certain categorical attributes from all the
geographic features contained in each such cell (step 5 in Fig. 1). Let .7 1= {f;: i =
1,...,n} be a vocabulary containing all categorical attributes of interest from the
whole map. Then, each cell is represented by a vector (x|, ...,x,), where x; is the

4The bag-of-words model is typically used for text classification. A text is represented as the bag
(multiset) of its words and the frequency of occurrence of each word is used as a feature vector for
training a classifier.
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frequency of the categorical attribute ¢; in this cell. Since our focus is on cognitive
regions conceptualized as homogeneous areas in terms of the activities they allow
to be performed, we only (so far manually based on an educated guess of the most
typical activities for a cognitive region such as historic city centers®) select cate-
gorical attributes proper of geographic features that offer a service (e.g. bars, shops,
restaurants, banks, ...).

Given the two training sets .#, and .#, as described above, the machine learn-
ing procedure is capable of classifying all the remaining cells (step 6 in Fig. 1) as
graphically exemplified in Fig. 3.

4 Evaluation

This section describes an implementation of the processing workflow described in
Sect. 3 and the results we obtained for the case study of the cognitive region historic
center of Vienna.

As data sources (see Fig. 1) we selected two well-known UGC and Volunteered
Geographic Information (VGI) projects: TripAdvisor® and OSM.” By means of a
customized crawler we retrieved English textual descriptions of the historic center
of Vienna from a dedicated comment page on TripAdvisor. For the geographic data-
base we used the OSM extract of Vienna as provided by Mapzen Metro Extracts.?
OSM provides spatial data in the form of points (e.g. a park bench), ways (e.g. streets
and buildings), and relations (e.g. spatial entities consisting of several parts). Seman-
tic information such as name and categorical attributes are defined as ‘tags’, which
are key-value pairs. For example, OSM contains an entry for the “Hofburg Imperial
Palace” that includes the name of the feature in several languages and is described
by the following tags (among others): (building, yes), (historic, castle), (castle_type,
palace), (tourism, attraction). The spatial dataset (see Fig.4) was stored in a ded-
icated database where the geometry of ways and relations was simplified by their
centroid.

Finally, for the implementation of the machine learning stage (see Sect.3.3) we
resorted to a hexagonal grid with uniform cells with an edge-length of 0.0025°,” and
we used the MatLab implementation of the Multinomial Naive Bayes!? classifier.

SWe are working on an extension to select activities from textual descriptions.
Shttp://www.tripadvisor.com/.

7https://www.openstreetmap.org/.

8https://mapzen.com/.

The cell size can be shrinked or enlarged to obtain finer-grained or coarser results, respectively.
10http://de.mathworks.com/help/stats/naive-bayes-classification.html.
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Fig.4 Visualization of the OpenStreetMap (OSM) dataset of Vienna as used in our experiments—
the whole dataset consists of 290,586 nodes, 368,112 ways, and 810,145 relations, for a total of
1,468,843 features

4.1 Experimental Results

We ran our workflow implementation on two experimental scenarios. Both scenarios
use the same data sources with the following difference: in the first scenario (see
Fig.5), the training vectors have been kept in their integrity. In the second scenario
(see Fig. 6), we manually removed outlier cells from the training vector associated
to the cognitive region—i.e., those cells that fall far away from the actual city center
(compare the distribution of dark purple cells in Figs. 5 and 6).

For the pictorial representations of the results we adopted the following color
scheme: dark purple cells represent training vectors for the cognitive region historic
center of Vienna as extracted from the textual descriptions; dark orange cells rep-
resent training vectors for the counter-example. Light purple and light orange cells
show the areas classified as historic center of Vienna and counter-example, respec-
tively. White cells denote areas that have not been classified because of insufficient
semantic information.

Since counter-examples are selected randomly from the grid we decided to per-
form several runs for each scenario. Figure 5 shows the results obtained for five runs
on the first scenario. Figure 6 shows similar results for the second scenario, where
outlier cells were removed from the training vector of the cognitive region. The
results for the two scenarios mostly coincide, and the cells classified as similar to the
cognitive region historic center of Vienna form a region approximately correspond-
ing to the central district of the city and its immediate surroundings. Interestingly,
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Fig.5 Visualization of classification results for the first scenario (several runs)—dark purple cells
represent training vectors for the cognitive region historic center of Vienna; light purple cells are
classified as historic center of Vienna; dark orange cells represent training vectors for the counter-
example; light orange cells are classified as counter-example; white cells are unclassified

the cells that were manually removed in the second scenario are associated to the
class corresponding to the cognitive region anyway.

To mitigate the effects of using randomly selected counter-examples, we per-
formed ten runs for each scenario and intersected the results to obtain ‘robust’ results:
only cells classified as historic center of Vienna that occur in the result of each run
form the robust results, as shown in Fig. 7.

4.2 Preliminary Evaluation

A sound evaluation of the results would require investigating how the derived cog-
nitive regions fit to human conceptualization. To that end we are currently in the
process of designing a questionnaire similar to that used in Montello et al. (2003).
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Fig. 6 Visualization of classification results for the second scenario (several runs)—dark pur-
ple cells represent training vectors for the cognitive region historic center of Vienna; light purple
cells are classified as historic center of Vienna; dark orange cells represent training vectors for the
counter-example; light orange cells are classified as counter-example; white cells are unclassified

Fig.7 Visualization of robust results. a Scenario 1. b Scenario 2
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A pilot study with a small user group already showed that the footprint derived for
the cognitive region historic center of Vienna fits well to human conceptualization.
We plan to publish the final results of this study in a future publication.

Meanwhile, we present here a preliminary qualitative evaluation of the outcomes
by comparing the obtained robust results with a historical map of the city of Vienna
that dates back to 1850. For that, we geographically overlaid the derived regions with
the map, as shown in Fig. 8 for the first scenario. It is easy to see how the shape and
extent of the derived region nicely fit with the city boundaries of 1850: The outer
boundary of the main part of the classified area coincides with a physical separation
which is now a major street of the city, while the few outlier cells correspond to his-
torical sites that are not reported in the historical map (e.g. the Schonbrunn Palace).

In summary, the approach, which relied solely on a knowledge base derived from
VGI and crowdsourced information sources, shows promising results.

Fig. 8 Approximate overlay of the robust result (Scenario 1) over a historic representation of
Vienna (map retrieved from http://www.valentina.net)
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5 Conclusion and Future Work

We presented a novel automated approach to derive the geometric extent of “cog-
nitive regions” by utilizing solely crowd-sourced geographic information as the
fundamental knowledge bases. Based on Natural Language Preprocessing and a
combinatorial place matching procedure tailored to identify unique geonames, the
conceptualization of regions perceived as a whole based on the activities they allow
is translated into a machine-processable form.

The proposed approach builds upon a representation of semantic attributes of
geographic features, and allows for the automated clustering of cities into “cognitive
regions”. We pointed out that the classification problem can be efficiently solved by
utilizing the Multinomial Naive Bayes model as classifier. For that, a bi-classification
approach was discussed that operates on initial seeding cells identified by the com-
binatorial place matching procedure. Counter-examples are derived using a Monte
Carlo approach.

While the method presented in this paper reveals promising results, it presents a
number of limitations that we plan to overcome in future work.

First, our approach relies on uniquely identifiable places to derive the initial cells
for the machine learning model, while non-unique features (like shops with several
branches) are completely discarded and not used to create the training vectors. Dif-
ferent approaches can be devised to also exploit such non-unique features, according
to wether they are mentioned in a comment together with uniquely identifiable fea-
tures or not. In the first case, one approach would be to use the dependency tree to
locate the syntactically closest unique feature mentioned in the text. This could be
used as a reference point to locate on the map the spatially closest feature matching
the non-unique reference. In the second case, a solution would be to run a two-step
geomatching. In the first step only uniquely identifiable features are used (as done
in the current approach) to generate a starting set of training cells. In the second
step this initial set is recursively extended by disambiguating non-unique features
according to their vicinity to the training cells.

It could be argued that the random selection of counter-examples for the machine
learning model can be improved by applying sophisticated methods. For example,
one could derive an ontology of cognitive regions and select counter-examples from
those that are semantically furthest away from the region of interest.

We adopted a bag-of-word model as a semantical approximation of the training
cells. This is a rather coarse semantical representation, as it only accounts for the
frequency of categorical attributes in a given cell. An improvement would be to resort
to a model that also takes into consideration the ontological relations among the
attributes as well as their spatial distribution and configuration.

Finally, we are working on a further extension of this approach that also exploits
verbs and other syntactical classes to derive the activities that can be carried out
at a given place. This extension may allow for a variety of more advanced applica-
tions such as the enrichment and/or validation of semantic attributes in geographic
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databases, as well as enabling natural language interfaces for Geographic Informa-
tion Retrieval (GIR) systems.
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Android-Based Multi-Criteria Evaluation
Approach for Enhancing Public
Participation for a Wind Farm

Site Selection

Pece V. Gorsevski and Alberto Manzano Torregrosa

Abstract This project presents a hypothetical case study of an interactive
mobile-based Public Participation Geographical Information Systems (PPGIS)
prototype for selection of best alternative for new offshore wind farm development
in Lake Erie, northern Ohio. The prototype implements a client-server architecture
where Android operating system is used for the client side, and Google Cloud
Platform services and GeoServer/PostgreSQL for the server side. The potential
benefits from this prototype are demonstrated through an interactive Android
interface where the importance of three decision alternatives is evaluated by mul-
tiple participants using different evaluation criteria. The individual evaluation
scores are aggregated by using a mathematical Pairwise comparison voting method
while the sum of all individual Pairwise comparison scores yields the group
solution. The results from the group solution are interactively returned and used for
building consensus and to aid understanding of potential solutions coalesced from
multiple participants’ perspectives.

Keywords Spatial decision support system - Wind farm siting - Multi-criteria
evaluation - PPGIS - Mobile GIS - Android GIS

1 Introduction

Traditional Geographical Information Systems (GIS) have been adopted in many
wind farm suitability applications, such as wind farm siting (Al-Yahyai et al. 2012;
Baban and Parry 2001; Tegou et al. 2010; Voivontas et al. 1998), evaluation of
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visual impacts (Aydin et al. 2010; Berry et al. 2011; Hurtado et al. 2004; Rodrigues
etal. 2010; Yeo et al. 2013) and other ecological impacts on birds and their habitats
(Aydin et al. 2010; Baban and Parry 2001; Farfan et al. 2009; Gorsevski et al. 2013).
However, one of the shortcomings is that traditional GIS alone has limited func-
tionality because it lacks the analytical modeling capabilities and does not support
complex spatial planning activities such as the involvement of multiple participants
(Bishop and Stock 2010; Gorsevski et al. 2012, 2013; Simao et al. 2009).

In the last decade, the evolution of spatial decision support systems (SDSS)
added new capabilities intended for solving complex problems that often involve a
large number of decision alternatives including economic, social, or environmental
and for enhancement of variety of management solutions (Malczewski 1999a,
2006a, b). The primary goal of those SDSS is to integrate GIS capabilities with
multiple criteria evaluation (MCE) methods used to support decision making and
complex spatial planning problems (Boroushaki and Malczewski 2008, 2010a, b;
Donevska et al. 2012; Gorsevski et al. 2012). However, current SDSS include
complex methodological computer applications and are mostly designed for
advanced GIS uses but they lack support of a multi-user interface and do not
support access for general public participation.

Public participation in wind farm planning problems is a very important process
that helps to facilitate consensus building and to ensure future legitimacy and
acceptance of such projects (Gorsevski et al. 2013; Jankowski and Nyerges 2001;
Mekonnen and Gorsevski 2015; Nyerges and Jankowski 2009; Simao et al. 2009).
However, some of the difficulties with the inclusion of public participants are
conflicting views, diverse interests, values, and objectives that are inherent to dif-
ferent community members involved in the process. Such problems are referred as
“ill-defined” or “wicked” decision problems, which result in an infinite number of
solutions that are driven by differences in values, motives, and/or locational per-
spectives (Malczewski 1999b). Because of this complexity, alternative methods that
involve public participation are needed.

A recent GIS development, coined the Public Participation Geographical
Information Systems (PPGIS) concept, aims to provide broad public accessibility
by using a web-based environment that can support an unlimited number of users
who are free to participate at their own convenient time and location (i.e., asyn-
chronous distributed interaction model) (Berry et al. 2011; Boroushaki and Mal-
czewski 2010b; Simdo et al. 2009). While several current web-based systems exist
for visual and computational decision support that can support an ample number of
participants, the exponential growth of cell phone usage and ubiquitous infras-
tructure creates even more opportunities for wider public involvement.

The latest development of smartphones such as iPhone, Windows 10 Mobile,
Ubuntu Touch OS, and Android-based phones, offer a large amount of storage
capacities, high processing and memory capabilities, advanced connectivity though
Wi-Fi or other 3G/4G networks, and are easy to use, deploy and scale (Saeed et al.
2013; Weng et al. 2012). However, smartphone applications typically require
backend components and services to feed applications with relevant and interactive
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user data. Google Cloud Platform' is one of the popular solutions that can easily
integrate and support Android and other iOS devices as a backend platform for
different mobile solution tasks such as storage, retrieval, and processing data
externally of the mobile devices (Anon n.d.).

Given the capabilities of mobile applications to integrate to current PPGIS tools
and the surge in mobile phone growth, in this research project we demonstrate a
custom-built, Android based prototype that is intended for aiding public participation
for wind farm site selection. Although this research was implemented on an Android
platform, other hardware platforms, operating systems, or cross-platform software
could be considered. In this research, the PPGIS prototype tool integrates mobile,
cloud and local server technologies for enabling visualization of decision criteria and
alternatives, and efficient timely data collection/communication, which can play a
vital role in participatory decision making. The potential of the tool is illustrated by
evaluating three predefined decision alternatives using various evaluation criteria in
the southwestern part of Lake Erie, Ohio. The four main components that are
emphasized in the illustrated tool include: a discussion forum, mapping, decision,
and result visualization tool. The discussion forum is used to facilitate communi-
cation and debate among participants regarding different criteria before they use the
decision tool. The map tool is used in conjunction with the discussion forum for
exploration and visualization of the decision alternatives associated with different
criteria while the decision tool allows participants to make their personal decisions by
ranking the decision alternatives using different sets of criteria and casting their votes.
Finally, the result visualization tool is used to display charts with real-time results of
the voting process. The methodology, the proposed conceptual framework, and the
system architecture are discussed in the sections below.

2 System Architecture

This project implements a client-server architecture that uses Android Operating
System (OS) with JavaScript Object Notation (JSON) and Remote Procedure Calls
(RPC) communication. The Android OS is specifically designed for mobile devices,
and it is developed and trademarked by Google’s Android Developers.” JSON,
which is an alternative for Extensible Markup Language (XML), is a lightweight
data-interchange format that uses readable text to transmit data objects. JSON is
widely used in Java or Android applications for communication and exchange of
data over the internet (Nurseitov et al. 2009). On the other hand, RPC is a powerful
technique for constructing distributed, client-server based applications that extends
local procedure calling and provides transfer of data across the communication
network. Such architecture is an ideal environment for mobile devices, especially

1https://cloud.google.com, accessed 5 April 2014.
2http://developer.android.com, accessed 5 April 2014.
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Fig. 1 System architecture

because it offers powerful built-in services. Such services include a large storage
capacity, computational capabilities, and connectivity used for continuous data
manipulation and interaction, which are deployed by minimal customization and
coding.

Figure 1 shows the conceptual framework of the proposed client-server archi-
tecture and the connectivity between the components that comprise the framework.
The Android OS is used for the client side, while Google Cloud Platform Services
are used for the server side. The Google Cloud Platform Services integrate the
Google App Engine that provides a cloud computing platform for developing and
hosting web or mobile applications in Google-managed data centers. In addition, the
Google Charts, which are used for creating charts for the Android interface, are also
services provided by Google Cloud Platform. The Google Chart API’s are tools for
creating charts from the user input data which are consequently embedded in the web
application. Finally, GeoServer® completes the set of tools in this architecture that is
used to add geospatial capabilities for serving custom maps to the client (Young-
blood 2013). In our application, the spatial database extender PostGIS* was used to
connect GeoServer with PostgreSQL,” which is an open source object-relational
database management system that stored the decision criteria layers associated with
the proposed alternatives (Krosing 2013; Llario 2013). The following subsections
will describe each part of the implemented architecture.

3http://geoserver.org, accessed 8 April 2014.
4http://postgis.net, accessed 8 April 2014.
Shttp://www.postgresql.org, accessed 8 April 2014
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2.1 Client Design

The client side for this project aims to develop an interactive mobile application
where participants can request a variety of integrated services including: using
Google and custom-built maps; accessing a forum to interact with other participants;
implementing a multi criteria decision analysis and data processing tool; and visu-
alizing of real-time graphical chart data. The proposed approach uses an Android OS
development framework for the client side, which is an open source mobile oper-
ating system created by Google with a large community of active developers.
Google provides developers with an Android Software Development Kit (Android
SDK), for building Application (App) for Android-powered devices. The Android
App development used Java® programming language with Eclipse’ as the integrated
development environment (IDE). The Android Development Tools (ADT) Plugin
and Android SDK were integrated for the development of the PPGIS interface.
Android OS provides developers with extensive tutorials and a great variety of
examples completely free in order to make the most out of its operating system. In
addition, Google also provides design recommendations with an objective of cre-
ating intuitive, easy to use, and visually attractive mobile applications. Some of the
design recommendations relate to icons design, animations, performance enhance-
ments, layouts design, dashboards design, and Google Maps integration.

2.2 Server Design

Google Cloud Platform was used for the server side in conjunction with the Google
App Engine, which is a cloud computing platform. The Google App Engine is a
Platform as a Service (PaaS) where developers can host and execute their appli-
cations in Google managed data centers. Google App Engine is designed for
real-time dynamic application and offers multiple services such as social net-
working sites, mobile applications, survey applications, project management, col-
laboration, publishing, and other traditional website content (i.e., documents and
images) (Sanderson 2012). The App Engine involves three parts: the runtime
environment, the data management tool (i.e., datastore), and the scalable service
which is the management console.

The runtime environment initiates into existence when the request handler begins
(client contacts the application with an HTTP request) and disappears when it ends.
The App Engine receives the request from the domain/subdomain name that is used
for registering and setting up Google Apps and distributes traffic among multiple
servers by giving every request the same treatment. Applications run in a secure
environment, where requests are distributed across multiple servers and applications

6http://www.java.com, accessed 31 March 2014.
"http://www.eclipse.org, accessed 31 March 2014.
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run within its own secure, reliable environment that is independent of the hardware,
operating system, or physical location of the server. Python® is one of the pro-
gramming languages supported by Google App Engine and used with Python
Software Development Kit (SDK) in this project (Fig. 1). The Python datastore is
the tool used for storing and retrieving data generated by applications running on this
platform. The datastore resembles an object database design which differs from
traditional relational databases models. A typical arrangement for a small project
involves a single database server, and one or more web clients that connect to the
database to store or retrieve data. As with the runtime environment, the datastore
allows App Engine to handle the details of distributing and scaling the application
for better code performance. The advantage of the datastore is to optimize compu-
tational performance for applications experiencing high traffic. The Google Query
Language (GQL), which is simplified version of the Structured Query Language
(SQL), is used to provide an alternative method for accessing the data.

Finally, the Google App Engine contains a management console that gives
administrators full control of their application. For instance, some of the main
features in the Administration Console are used to manage the application and view
its access, resource usage, statistics, and message logs. In addition, the console
gives access to real-time performance about data application usage as well as access
to log data emitted by the use of the application.

2.3 Geospatial Integration and Study Area

The geospatial data was acquired for a hypothetical study area located in northern
Ohio along the western Lake Erie shore. The study area for this project encom-
passes mostly the western basin of Lake Erie. The Western Erie Basin represents
just a small subset of the entire Great Lakes system, which is the largest fresh
surface water system in the world. The long, narrow orientation of Lake Erie
parallels the direction of the prevailing southwest winds while the western basin is
relatively shallow having an average depth of 7.4 m and a maximum depth of only
19 m. The study area is characterized by strong winds with an annual average speed
of 7-7.5 m/s, which is highest in November and lowest in July, and is favorable for
offshore wind farm development. The characteristics surrounding the lake are
unique where hydrology, soils, vegetation, land uses and land cover of the study
area are highly variable in space and time that contribute to the unique wetlands that
create dwelling and migratory habitats for a variety of avian species. The Ottawa
National Wildlife Refuge (ONWR),9 which is known for its rich biodiversity, is
part of the study area and includes different species such as raptors including bald
eagle and osprey, bats, waterfowl, wading birds, shorebirds, gulls and terns, and

8https://www.python.org, accessed 13 July 2014.
“http://www.fws.gov/refuge/ottawa, accessed 19 March 2014.
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Q) Fo e

Fig. 2 Study area and decision criteria a fish habitat, b wind speed, ¢ geology, d navigable
waterways, e power stations, f reef sholes, g bathymetry, h distance from shore, and i important
bird habitat

perching birds which use the surrounding wetlands for migration, stopover, nesting,
and feeding (Mekonnen 2014; Mekonnen and Gorsevski 2015; Mirzaei et al. 2011,
2012a, b, c). The large concentration of population is another factor associated with
the lake and which needs to be considered in wind energy production.

Figure 2 also shows multiple criteria data layers of the study area and the three
site locations (decision alternatives) considered for the selection of a new wind farm
development. The background map information in the Android client application is
powered by the Google Maps interactive map interface (API). The Google Maps
were used because of general public’s familiarity with the interface and its potential
to allow higher participation in such complex decision making planning settings. In
this demonstration, the criteria that were used are limited to currently available data
which address different wind farm development planning issues that impede the
decision making process. Table 1 shows a brief description of the criteria used in
the client. However, (ODNR 2012) the methodology is flexible and other decision
criteria could be considered for different site-specific purposes. In this project the
Android client interface used a Web Map Service (WMS) protocol that handles
HTTP requests in order to retrieve geo-registered map layers generated by the
GeoServer mapping server and the PostgresSQL spatial database.
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Table 1 Evaluation criteria for wind farms

Criteria

Description

Fish habitat

These areas are habitat for larval and young-of-year fishes that support
different classes of fish including walleye nursery, adult walleye,
walleye/perch, and dead zone (absence of habitat). The walleye
nursery class is considered as the least suitable, adult walleye and
walleye/perch are moderately suitable, while the dead zone class is the
most suitable habitat for wind farms

Wind speed

Energy output of wind turbines increases as wind speeds increase until
nominal wind speed is reached, which is the speed that maximizes the
energy production. Therefore, areas classified with higher wind speeds
are more suitable than areas classified with lower speeds. The data is
partitioned in four categories of annual average wind speeds classified
by the NREL ranging from poor (1) to good (4).

Geology

Different types of geology can affect the installation costs especially
foundation design of a wind farm when a potential location does not
contain adequate lakebed conditions that can support large structures
like wind turbines

Navigable
waterways

Offshore wind sites that are located further away from navigable
waterways are more suitable and they will not affect any transportation
routes. The data is organized as buffers at 1, 2, and 3 miles from
existing navigable waterways

Power stations

The proximity to power stations and transmission lines is an important
consideration for wind farm development for minimizing the cost of
delivered electricity to the consumer. Point data was used to represent
the spatial locations of existing power stations.

Reef Sholes The reef effects are important to local fish habitats because create
opportunities for larvae and other foods in a sheltered-like habitat.
Point data was used to represent the spatial locations of existing reef
shoals

Bathymetry The bathymetry is the measurement of the depth of water in the lake

and important criteria that affects the installation and transmission
costs. Also, it is a limiting factor for the size of vessels that are used for
transporting the wind turbine components during the installation phase

Distance from shore

As the distance from shore increases the visibility of the farm
diminishes and potentially public approval is assumed to increase. On
the other hand, increased distances affect transmission and efficiency
costs as well as making operation and maintenance more challenging
and restrictive

Important bird
habitat (IBA)

The significance of designated important bird habitat is intended to
minimize collisions and mortality of birds and bats by operating wind
turbines. A major concern is avian collisions near bird habitats and
migratory routes and the change of air pressure around a wind turbine
that is fatal especially for bats. A digital map published by the Ohio
Audubon Society (OAS) (2009) that depicts all the IBAs located in the
state was used to represent the locations of those areas
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The three decision alternatives for participant’s consideration are shown in
Fig. 2, where “Site 17 is located near Maumee Bay, “Site 2” is located east of
Kelley’s Island, and “Site 3” is located off the far northwestern corner of Lorain
County. These decision alternatives were identified since they fulfill the wind
resource required for offshore wind farm development, which is at least 7 m/s at a
turbine height of 90 m above the lake surface. To demonstrate the functionalities of
this prototype tool and to illustrate the potential application for evaluation of
alternatives for wind farm selection, the simple hypothetical scenario is detailed
through the description of the Android client interface.

3 Wind Farm Siting: Implementation of an Android
Spatial Decision Support Tool

3.1 User Interface

The intention of the prototype was to provide a simple interface for mobile
applications and non-experienced GIS users. The main components that comprise
the prototype were organized under different themes, including a main page, a
criterion selection and mapping tool, discussion forum, and a decision tool for
voting and communicating results.

Figure 3a shows the default parent application page that is used for smooth,
slider-like transitions and navigation between different subset levels and to acquaint
the participants with the project and the process of selection of alternatives for
suitable offshore wind farms. The dashboard layout of patterns, which is a Google
I/O (2013) design, is implemented to simplify the navigation process. The grid-like
organization of the dashboard layout is used to automatically organize the elements
in vertical and horizontal screen orientation and to allow optimized view for
accessing the modules.

Figure 3b is the mapping interface that contains basic mapping functionalities.
The mapping interface uses a combination of Google Maps and GeoServer capa-
bilities to provide users with visual information of the study area and the available
decision criteria. The contribution from the GeoServer, which is an open source
server for sharing geospatial data, is that it allows for customization of different
spatial raster or vector layers. For instance, this module allows for the visualization
of the geospatial data layers in Fig. 2. In the figure the first layer (Fig. 2a) is the
“Fish Habitat” layer showing the legend and the distribution of the four main
species, including walleye nursery, adult walleye, walleye/perch, and dead zone,
each of which is separated by different colors. In addition, Fig. 3b is the initial
screen for the voting module that is used for ranking of the decision alternatives
associated with the selection of a given wind farm location. The voting tool is the
one of the most important components of the system that is used for collecting
ballots from the participants. Here, the participants can vote on the importance of
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criteria (i.e., select the top five) and rank the alternatives. The details and the steps
for implementing the voting module are further discussed below.

Figure 3c represents the forum module that is used to facilitate discussion among
participants for exchanging views and ideas such as impacts on the local com-
munity as influenced by the selection of different criteria and alternatives. The
module allows for an ongoing, asynchronous discussion, so it can help each par-
ticipant to better formulate his or her opinion. In addition, in a case of moderated
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discussions that take place before the voting process occur, the module can increase
the background knowledge of the participants, which may evolve their personal
opinion related to the wind farm siting issue.

The basic implementation of this module uses ProBoards,'® which is the largest
host of free forums on the internet. The main themes used in this research include
general discussion, announcements for facilitating the decision process, and a
feedback section that enables generation of new ideas or concerns through each
participant’s responses.

Figure 3d, e show the results from the votes associated with the best three
alternatives and the most preferred criteria from all the participants. The scores are
generated when the Android application client connects to the Python backend
server deployed on Google App Engine, using the RPC method that is embedded
directly in the Uniform Resource Locator (URL) and executed with an HttpClient.
The response from the Google App Engine is then represented by JSON
data-interchange format, which is parsed and analyzed for subsequent integration of
the Google Charts module that accommodates real-time visualization of the results.
Finally Fig. 3f shows the help and tutorial module that contains a brief explanation
of how to utilize the different components in this prototype. Additional information
such as basics of wind energy, pros and cons associated with wind farms, the basis
of the PPGIS concept and voting are also included in this section. For instance,
although the voting process is intuitive and includes simple instructions that guide
participants, the tutorial section integrates small thumbnails that can be executed by
a simple click to animate the steps and the process for the participants.

3.2 Voting and Decision Making Process

The flow chart in Fig. 4 highlights the data flow process behind the voting tool.
After the participant initiates the voting module, the decision module requires the
participant to select the five most important criteria, which are used for the ranking
of the three decision alternatives. Before the information is submitted to the data-
base that is the Google App Engine Datastore, the system computes the scores and
checks for errors such as required selection of criteria and ranking information.
Figure 5 shows the sequential steps for the voting process. The individual process
starts with a blank form Fig. 5a that requires a selection of a total of five criteria.
For simplified use of the form, the current implementation limits the selection to the
top five most important criteria, but this can be altered based on different needs and
requirements. When a participant selects the five criteria, the “Next” button located
at the bottom right of the screen in Fig. 5b is activated for initiating the ranking
process. The individual steps for casting the votes for the five criteria are shown in
Fig. 5c through d. For each criterion, the most important alternative from the

http://www.proboards.com, accessed 13 July 2014.
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Fig. 4 A flow chart of the voting process

ranking process is placed first while the least important alternative is placed third by
each participant. For example, Fig. 5d displays a ranking outcome where the par-
ticipant ranked “Site 2” as most important for the “Wind Speed” criterion, “Site 1”
is ranked on the second position, and “Site 3” is ranked on the third position or
being the least important alternative.

3.3 Calculation of Suitability Scores

In this study, the decision alternatives were ranked from first to third position in
terms of preferred importance for each of the selected five criteria. The Pairwise
comparison voting method was used to select the best alternative by treating the
comparison as a series of paired alternatives where the preferred alternative gets one
point and in the case of a tie each alternative gets one half of a point. The par-
ticipants’ ranking preferences for each criterion (i.e. Fig. 5g) are first computed by
the Pairwise comparison before individual evaluation scores are aggregated into a
group score that would yield the solution for the best three alternatives.
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To get a clear understanding of this Pairwise comparison, the method is further
explained using a numerical example. For a set of n decision criteria, the formula
for the total comparison of each possible pair is n (n — 1)/2 that determines the
number of comparisons for selecting the best alternative from the Pairwise com-
parison voting method. For instance, 3 alternatives Pairwise comparison requires a
total of 3 (3 — 1)/2 = 3 comparisons. Thus in our example the comparison includes
the following pairs: “Site 1 versus “Site 27, “Site 1" versus “Site 3”, and “Site 2”
versus “Site 37.

Figure 6 illustrates an example from the calculation using the Pairwise com-
parisons method. As shown in the figure, the score for alternative ‘Site 1’ is the
highest and 2 points are assigned based on the vote from a single participant. For
instance, the comparison between “Site 17 versus “Site 2” shows that “Site 1” has
received higher voting ranks for the Fish Habitat (FH), Power Stations (PS), and
Distance from Shore (DS) while “Site 2” has received higher voting ranks for the
Wind Speed (WS) and Reef Shoals (RS). Finally, the scores by personal prefer-
ences from the participants are summed to produce a group solution and determine
the best alternative.
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Site 1 vs, Site 2 => Site 1 wins (3- 2) => 1 point
Site 1 ranked ahead 3 times (FA, PS, DS)
Site 2 ranked ahead 2 times (WS, RS)

Fish Habitat (FH)

Site 1 vs. Site 3 => Site 1 wins (3 - 2) =>1 point
Site 1 ranked ahead 3 times (FH, PS, RS)
Wind Speed (WS) Site 3 ranked ahead 2 times (WS, DS)

Site 2 vs, Site 3 => Site 3 wins (1-4) =>1 point
Power Stations (PS) [ i i Site 2 ranked ahead 1 time (RS)
Site 3 ranked ahead 4 times (FH, WS, PS, DS)

Reef Shoals (RS) TOTAL SCORES:
Site 1=2 points
. . ] ) Site 2 =0 points
Dist. Shore (DS) Site 3 =1 point

Fig. 6 Participant’s vote example and score calculation using Pairwise comparison method

Figure 3d shows an example of the group results associated with the three alter-
natives and generated by participant’s votes. For example ‘Site 3’ has received the
highest score from the aggregated result from all participants’ votes. The chart in
Fig. 3e shows the importance of the criteria valued by the participants. The figure
shows that the most preferred criterion for all participants is the Power Stations, while
Important Bird Areas and Fish Habitat are the most controversial criteria used for the
selection of this hypothetical example. It is also important to note in this particular
example that the summed solution used equal importance for each criterion but a
weighted solution could be generated based on the selection of the most preferred
criteria. Of course, a successful implementation of this prototype requires an adequate
selection of participants and stakeholders, which is one of the critical considerations
to maintain justice, equity and trust in the voting process (Devine-Wright 2005;
Gorsevski et al. 2013; Wolsink 2000). For example, for implementation of local level
policy-making, key participants and stakeholders can vary by location and policy
regulations that are in place, but adequate selection should involve interest groups
who are directly affected by a decision and its planning consequences.

4 Conclusions

This research presents an application of a smartphone-based Android approach to
enhance public participation for Multi-Criteria Evaluation for assessing decision
alternatives for a potential wind farm development. The potential implementation
was illustrated by using a hypothetical case study to show the strengths and the
benefits from this Android driven PPGIS in facilitating suitable offshore wind farm
site selection in Lake Erie. The hypothetical case study demonstrated a standard
decision-making scenario by ranking three predefined sites or decision alternatives
using nine different spatial criteria.
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The Android client application prototype provides multiple modules to guide the
participants during the decision-making process by integrating simplified
user-friendly graphical interface using familiar Google Maps and GIS capabilities
that are simplified for non-expert users. Some of the featured modules integrated in
the Android client include a mapping tool, a discussion forum, a voting and
decision-making tool, and results modules. The mapping tool is used for visual-
ization, exploration and comparison of decision alternatives and their corresponding
properties, such as total score and rank. The discussion forum is used to facilitate
communication and debate among participants while the voting and
decision-making tool is used to perform ranking of the decision alternatives based
on the evaluation criteria using the Pairwise comparison method. The calculated
individual scores for each decision alternative from the Pairwise comparison
method are used for subsequent group scores. In this hypothetical example, the
relative importance of the criteria was not considered in the final solution, but
weighed outcome along with sensitivity analysis ought to be the focus of future
development. Finally, the participants can visualize the voting results at any time by
accessing the results modules which shows charts that are generated in real-time.

The implementation of the server side framework used the Google App Engine
application called Mobile Backend Starter that is a part of the Google Cloud
Platform. The simplified server-side development provides a number of cloud
services such as easy-to-use libraries for storing data in the cloud, sending
device-to-device push notifications, event driven programming, user authentication,
and infrastructure to accommodate scalability with a multi-user environment. The
Google APIs libraries for Python were used to improve efficiency with data
interchange and to store the voting results from the JSON-RPC communication.

The evaluation criteria used in the case study were limited to currently available
data but the presented methodology is flexible, so different evaluation criteria could
be added based on site specific problems and requirements. In addition, the pro-
posed methodology could be used to determine and evaluate decision alternatives
for other conflicting issues that affect decision-making and planning consequences.
For instance, other conflicting issues that can be incorporated may include criteria
that address problems related to landscape aesthetics, turbine noise, avian impact,
shadowing and flickering and other environmental or socioeconomic issues. The
main aim of this study was to show the potential of this Android-based PPGIS for
offshore wind suitability analysis; another key objective was to present the potential
of this integrated tool that can facilitate effective public involvement and it can be
used for complex planning problems and building consensus. Moreover, the syn-
ergetic potential that integrates mobile technologies to facilitate decision-making
through group collaboration and flexible problem-solving environments creates
opportunities for robust public-private collaborations and formulation of public
policies that consider socio-political influence. Thus the contribution of the pro-
posed approach is to demonstrate a new decision making tool that can increase the
potential of a participatory planning process, especially through empowerment of
key players who are directly affected by a decision and its planning consequences at
the local level.
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Presenting Citizen Engagement
Opportunities Online: The Relevancy
of Spatial Visualization

Thore Fechner and Christian Kray

Abstract Public administrations and cities increasingly use modern information
and communication technologies to enhance their processes and services. As the fab-
ric of cities becomes more complex, and collaboration and participation are empha-
sized, citizens thus need to be empowered to find available engagement opportunities
and citizens need to identify those that they want to engage with. We report on the use
of an online information platform that offered citizen engagement opportunities in
a traditional textual form and via an interactive geo-visualization. The platform was
deployed in a real-world study and integral component in a campaign to raise vol-
unteer engagement in a medium-sized German city. We first introduce our approach
to letting citizens explore engagement opportunities and follow up with an analysis
of how people used the platform. Subsequently, evidence is presented and discussed
that spatial visualization and interaction is relevant for informing citizens online.
Since we released the information platform as open source, others can easily benefit
from our insights.

Keywords Geo-visualizations * Maps * Citizen engagement

1 Introduction

Citizens are called upon to partake in political processes on different levels as pub-
lic administrations face several challenges. Creating livable and sustainable envi-
ronments or calls for greater transparency and participation are just some of them.
Modern information and communication technologies (ICTs) increasingly govern
the interaction between public administrations, cities, and citizens. ICTs can also
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help to lay the foundation for smart cities (Ferro et al. 2013) and are an essential part
of open government movements (Maier-Rabler and Huber 2011). Both movements
play a crucial part in tackling the challenges cities, and public administrations are
facing.

One key question in this context is how information should be disseminated and
presented to citizens digitally. Before any citizen engagement can happen, citizens
need to be aware of engagement opportunities.

In this article, we thus discuss the relevancy of spatial visualization and interac-
tion for informing citizens about engagement opportunities. Based on a real-world
deployment we examine the use of an online portal that informed citizens about
engagement opportunities. The portal was an integral part of a campaign of 25 non-
governmental organizations (NGOs) to raise volunteer engagement in a medium-
sized German city. Two distinct and interactive ways of representing engagement
opportunities were present: A classical grid-based mosaic-view with photographs
and accompanying textual information, and an interactive geo-visualization that
tightly coupled the textual information with the geo-visualization.

Our contributions in this article are threefold: (i) We propose an approach to
tightly couple spatial interaction and visualization with textual information about
engagement opportunities. (ii) We present evidence that spatial interaction and
visualization is relevant for citizens while informing themselves about engagement
opportunities. Our analysis is based on a two and a half month real-world study
within a medium-sized German city. We also discuss potential reasons why citizens
used the geo-visualization to explore available engagement opportunities, and why
they did not use the available feedback and discussion component of the information
portal. (iii) We provide our implementation as open-source application.'

In the remainder of this article, we first discuss the theoretical background and
review related work in the fields of citizen engagement and Geographic Information
Systems (GIS) in general. Section 3 present the use-case. Details on the study and
the citizen information portal we implemented are outlined in Sect. 4. Results are
reported in the subsequent Sect. 5 and discussed afterward, looking at limitations of
our study and approach. We conclude with a summary and by outlining future work.

2 Related Work

The following section provides a short review of related work in the area of partici-
pation, citizen engagement and GIS. Furthermore, we provide the motivation to use
interactive geo-visualizations to inform citizens about engagements opportunities by
examining the intertwined nature of the spatial dimension and engagement.

Thttps://github.com/ubergesundheit/dialogmap.
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2.1 Participation and Geographic Information Systems

Research regarding GIS and participation is mostly being conducted in the area
of Public Participation GIS or Participatory GIS (hereafter PPGIS). Early PPGIS
research focused on GIS technology and ease of use to involve the public in the
process of official decision-making (Sieber 2006; Obermeyer 1998). Most PPGIS
use-cases revolve around aspects of urban planning or resource management. Due to
the aim to involve the public in the decision-making process the concept of PPGIS
has been investigated from several viewpoints: PPGIS role in governance (McCall
and Dunn 2012), its potential for democratization of spatial decision-making (Dunn
2007), and forming consensus in a structured process (Bailey and Grossardt 2010)
were discussed.

By relying on digital technology the risks to digitally divide and marginalizes
parts of the population is present. Elwood (2006b) discusses barriers that hinder
the use of PPGIS systems and how diverse PPGIS are used by experts and non-
experts alike.

Public participation, engagement or collaboration are often mentioned together
in the context of smart cities or in open government initiatives. While a vast body
of knowledge exists that examines different forms of participation, deliberation, and
engagement (see Carpini et al. 2004 for a survey) it is important to note that techno-
logical openness does not imply political openness that allows citizen engagement
(Yu and Robinson 2012). Nonetheless, citizen participation tends to produce posi-
tives effects as a meta-case study shows (Gaventa and Barrett 2010).

An early and well-known topology for different levels of citizen participation is
provided by Arnstein (1969). She uses the analogy of a ladder to describe eight levels
of increasing citizen participation—ranging from categories like non-participation,
tokenism to citizen power, increasing with each step on the ladder. Her initial con-
cept and analogy was adopted and updated by several researchers (e.g. Connor 1988;
Steinmann et al. 2005). Rowe and Frewer (2005) established a “working model”
topology to overcome the imprecise usage of public participation and review differ-
ent mechanism classes for public engagement.

2.2 Spatial Dimension and Engagement

In general, geo-visualizations can foster communication, facilitate rapid insights into
what is known by whom, how it is understood, and they encourage reasoning (Hopfer
and MacEachren 2007; Andrienko et al. 2007, 2010). Maps are ubiquitously present
to provide information at our fingertips (Weiser 1991), e.g., on our smartphones to
help us navigate, allow us to contextualize information on web pages or visualize
facts. Elwood (2006a) notes that the spatial analysis function is not the most valu-
able function of PPGIS systems for activists and NGOs. Instead, they produce car-
tographic spatial narratives to support political projects and characterizations.
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The role of the spatial dimension for citizen engagement is also documented for
local citizen activism: Taylor et al. (2015) report on how data is tied to a place, both
in terms of physical and social geography. They reported on engagement projects
for civic activism in one specific neighborhood and observed tight knight relations
between people, place and data and how data materializes differently to people and
places. Similarly, other reports (Crivellaro et al. 2015) highlight how the spatially
situated discovery of issues can connect city residents with the processes of their
cities. Hecht and Gergle (2010) show that user generated content has a strong link
to space and place. Due to this, we consider space and its depiction in the form
of geo-visualizations as a well-suited medium to convey a message or narrative. It
can form part of a canvas that relays or highlights information—similar to Sui and
Goodchild (2011) who recognize that GIS technology can be used as a medium and
that it converges with social media.

The idea to present engagement opportunities spatially to citizens is motivated by
the observation that geo-visualizations can help to experience and explore content by
providing structure to the experience (Elwood and Leszczynski 2013). We designed
the geo-visualization that is presented in Sect. 3 around the notion that spatial and
textual interaction should equally help to structure, explore and filter the content.
While all functionalities and components that we use are well-known and much used
individually, we argue that their combination and composition substantially increase
their value and usefulness.

3 Presenting Engagement Opportunities Spatially

In previous work, we argued that geo-visualizations can serve as a catalyst on dif-
ferent levels of citizen engagement and as an integrator for open data (Fechner and
Kray 2014). We also reported on techniques to achieve this and resulting citizen
behavior in the context of real-time collaboration on maps (Fechner et al. 2015). In
this article, we present a user interface (UI) to facilitate exploration and interactivity
via a synchronized and integrated geo-visualization approach. The UI intertwines
spatial representation of engagement opportunities with their textual descriptions in
real-time. This results in the entire exploration process becoming highly responsive,
and it allows for different strategies of exploration and to seamless switch between
them. Figure 1 shows the interface while the mouse pointer is hovering over a textual
description of an engagement opportunity.

The largest portion of the interface is a map-view displaying the locations or
affected areas of citizen engagement opportunities. A vertical sidebar shows textual
information and images about the available opportunities. Selecting entities in one of
them automatically selects or highlights the corresponding entities in the other view.
Spatial references within the textual descriptions are directly linked to the map-view
and visually emphasized in the text. Non-spatial filtering capabilities such as instan-
taneous full-text search or filtering through preferences are also available.
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Fig. 1 The interactive interface consists out of an interactive map-view (a), a sidebar featuring
non-spatial filters like a full-text search (b) and textual descriptions with images of the engagement
opportunities (c). User interactions in any of the parts automatically update the entire interface

A hovering cursor over a textual description of an engagement opportunity auto-
matically results in highlighting the corresponding locations that are currently within
the viewport of the map-view. The spatial references in the textual description are
also emphasized. We do not update the spatial extent to encompass all spatial ref-
erences that are linked to the textual description, though. As mouse hovering over
textual description frequently occurs this would produce a lot of disturbance in the
map-view. This is one example of the intertwining of textual components and the
spatial dimension.

The map view supports standard operations like zooming, panning and hovering
over spatial references. Interacting with the map view affects the textual descrip-
tion of the engagement opportunities in the sidebar: Hovering over a spatial refer-
ence in the map-view highlights that particular reference and shows its title over the
marker. At the same time, the sidebar will display the corresponding textual content
or images of the corresponding citizen engagement opportunity. Zooming and pan-
ning the map-view do not automatically update the sidebar, for example, to display
only descriptions of engagement opportunities that are currently shown in the map-
view. This behavior would result in rapid and unexpected changes and could thus
irritate users. Refer to Fig. 2 for an illustration of some the functions.

Clicking either on a spatial reference or a textual description updates the map-
view and triggers the expanded, “detailed-view” of that particular engagement oppor-
tunity in the sidebar. Expanded content is then displayed on its own in the map-view
and sidebar.

Users can now leave comments, ask a question or voice an opinion that relates to
the selected engagement opportunity. Comments can be enriched by links to exist-
ing spatial reference or uploaded materials. This function is heavily inspired by the
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Fig.2 Some functions of the geo-visualization: detailed-view, detailed-view with opened feedback
function and the textual search that updates displayed content immediately. a Detailed-view: shows
one particular engagement initiative. b Detailed-view: opened feedback function and a referenced
location. ¢ Textual search interface: displays all content without a search term. d Textual search
interface: displays matches immediately in the geo-visualization

concept of argumentation maps that was originally introduced by Rinner (1999) and
then developed further (e.g. Kessler et al. 2005; Cai and Yu 2009; Sidlar and Rinner
2009). The implementation also enables users to create new engagement opportuni-
ties or to create activities for a certain period. However, these features were disabled
in this case. The focus of the campaign that we participated in to evaluate the inter-
face was on recruiting volunteers for existing initiatives rather than creating new
ones. Deployment and use case are described in Sect. 4.

The user interface provides two further functions: an instantaneous full-text
search and filters for citizen engagement preferences. Preference filters are collapsed
by default and can be expanded on demand. The full-text search enables users to
search for an individual or combined search terms. Results are shown immediately
after the user typed the first two characters and updated continuously as they type.

Search terms filter the textual descriptions, and sidebar and map-view update to
display matches. This creates a highly interactive experience driven by user input. As
users type search terms, the search space is reduced, and only matches are displayed
both in the sidebar and the map-view. Hence, users can assess search results rapidly
from a spatial and textual point of view. Filtering for citizen engagement preferences
(e.g. children and youth, supporting the elderly or sustainability) is straightforward
and works identically. All functions work in combination, granting users the power
to easily and quickly explore the available engagement opportunities.
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Colors and icons are consistently used across the entire user interface to provide
additional clues and to tie the different UI elements together. Specific colors indi-
cate different preferences of engagement opportunities. The background color of the
textual descriptions in the sidebar corresponds to the color of their depictions on
the map.

4 1000 h for Miinster

We cooperated with the “Stiftung Biirger fiir Miinster” (hereafter SBM) in a cam-
paign to raise citizen engagement in the city of Miinster, Germany. The SBM is a
foundation aiming to cultivate and support citizen engagement backed up by 260
private and corporate donors. The campaign offered the chance to evaluate the geo-
visualization in cooperation with established NGOs that address several topics (e.g.
sustainability, elderly, children and youth). As Gaventa and Barrett (2010) note cit-
izen engagement does not occur automatically, and active involvement of NGOs is
needed.

The two and a half month campaign was called “1000 Stunden fiir Miinster” which
translates to “a 1000 h for Miinster”” and was a joint undertaking of non-governmental
partners from the city. Citizens should be made aware of the various citizen engage-
ment opportunities that are available across town and incentivized to partake. Total
preparation time of the campaign was a year, it took place from mid-January to end
of March in 2015. Two research institutes, a professional graphic artist, a journal-
ist, and 25 NGOs participated in the campaign. It was undertaken as a SBM survey
revealed that a portion of the population did not feel sufficiently informed about
existing citizen engagement opportunities.

The objective of the campaign was to make citizen aware of the available opportu-
nities and to incentivize them to volunteer time. Although the claim of the campaign
was “a 1000 h for Miinster”, the cooperation partners knew that reaching this bar
would not be likely and hard to measure. Nonetheless, the claim was used as it was
catchy. The city in which the study took place has roughly 300000 inhabitants, a high
student density, and active civic community with various NGOs.

The use-case allowed gaining new insights, as the targeted user base is diverse
and in an actual citizen engagement context. Therefore, the study is not controlled
in the sense of lab-based research. It was performed out in the “wild” with actual
citizens, granting insights into their preferences.

Research interest: The research interested was to evaluate the relevancy of spa-
tial visualization and interaction for presenting citizens engagement opportunities
online. We wanted to investigate whether citizens would rather rely on the spatial
dimension to explore potential engagement cases or if they preferred a categorized
and gridded mosaic-view.

Citizen information portal: To evaluate the research interest we embedded the geo-
visualization in a citizen information portal that we developed for the campaign. The
basis of the citizen information portal is a content management system featuring
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general information about the campaign and partners. Its primary function was to
allow citizens to inform themselves online about the offered engagement opportuni-
ties.

Two possibilities were present for that: The first option was the mosaic-view,
a visualization form frequently encountered in citizen engagement portals. Such
mosaic-views are quick to realize and mimic a content organization form that is usu-
ally found in non-digital media, e.g., booklets that present their content structured
through categories or some other linear representation. The second option was the
geo-visualization, intertwining the spatial dimension of citizen engagement opportu-
nities with their textual descriptions. While both options could be used individually,
they were also linked: Users could click on a link in the details page of the mosaic-
view opening up the same detailed-view in the geo-visualization, or go back to the
mosaic-view via the header of the website.

The mosaic-view displayed 25 engaging images of the offered activities in a grid,
see in Fig. 3. Engagement opportunities were clustered linearly by preference in the
grid and color coded. Each picture showed the title of the engagement activity below
the image. A short description would be displayed on top of an image if a user hov-
ered over the image with the mouse. Detailed-views could be reached via a mouse
click, providing descriptions about the initiative, who was organizing it, where it
would take place, and when. The geo-visualization was not placed prominently com-
pared to the gridded mosaic-view. The header of the information portal displayed
seven entries in this order: A click-able logo to return to the landing page, “1000 h”
with general information, “25 Offers” displaying the engagement opportunities in the
mosaic-view, “News,” “Map” offering the geo-visualization, “Partners”, and “SBM.”

The mosaic-view would open up if a user clicked on the second tab while the
geo-visualization could be accessed via the fourth tab. We suspected that the mosaic-
view would often be examined first, due to the ordering of the navigation bar. This
assumption is confirmed by the logging system (see Sect.5). The SBM insisted on
this order to prominently display the pictures in the mosaic-view and slightly longer

(a) (b)

Stiftung Stiftung

A e e e

Fig.3 Main view for the mosaic-view and a detailed-view for the mosaic-view. a Overview of the
gridded mosaic-view displaying all engagement opportunities. b Detailed information (what, who,
when, where) in the mosaic-view
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textual descriptions in the mosaic view. We agreed to this ordering to avoid favoring
the geo-visualization.

Data Logging: We used an automated logging system to capture user actions. Google
Analytics provided a baseline and was complemented by an event-driven custom
logging framework to capture user interactions in the browser. With this custom log-
ging, we were able to capture user interactions such as zooming, panning, hovering
or typing as Google Analytics does not support these actions.

Recruiting Participants: We can only report on the advertisement actions of the cam-
paign and cannot report on age or gender, as we logged the use of the citizen infor-
mation portal without additional questionnaires, as this study was “in the wild”. Ten
thousand glossy a6 booklets with 48 pages each were printed and 9250 distributed
in first two weeks. Booklets described engagement opportunities and included some
additional material about the partners. Some the booklets (1400) were mailed to
partner organizations of the SBM. Aside from the booklets citizen were informed
via 25 posters in university buildings, theaters, and exhibition halls. The campaign
was featured once in the local newspaper and during a broadcast of the local radio
station. Online advertisement included Facebook posts, university-wide newsletters,
blog posts and a 50s YouTube video that was distributed via social networks. All
materials included a link to the portal.

5 Results

In the following we present the findings of our study, starting with logged data from
the citizen information portal (Sect.5.1). Interactions in the mosaic-view and geo-
visualization are looked at in Sect. 5.2, while we close with a user-flow analysis that
identifies usage patterns.

5.1 Citizen Information Portal

Due to the present ordering of the navigation bar we suspected that the mosaic-view
would receive a lot more hits through the navigation bar than the geo-visualization.
This assumption holds true: The sub-page that displayed the engagement opportuni-
ties in the gridded mosaic-view entitled “25 Offers” was accessed 10.3 (51.3 %) times
as much as the entry “Map” (5.0 %). See Table 1 for a compilation of the general data
from the website.

We consider 468 out of 713 users as active users, as they did not leave the cit-
izen information portal after glancing at it. The geo-visualization was accessed by
223 active users—roughly every second active user (47.76 %). Considering all users,
227 of the 713 users accessed the geo-visualization (31.83 %), every third user. These
access numbers of the geo-visualization are comparatively high, considering the fact
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Table 1 Aggregated data about website usage from January, 15th to March, 31st 2015

Unique users 713 total users; 245 user left after displaying the landing page

User acquisition 47.90 % via direct URL; 43.19 % via referrals from other
websites; 8.91 % via social networks or search engines

Visitors 70.9 % new visitors; 29.1 % returning visitors

Geo-ip 97.74 % of visits originated in Germany, 92 % of these visits
originated from the federal state in which the city is located

Total pageviews 6627

Number of sessions 998 total; 654 these occurred in the first month

Dropped sessions 26.82 % were dropped after displaying the fist page and 7.51 %
after displaying two pages

Average session time 03:34 min

Click distribution on Landing page: 17.0 %, 1000 h: 13.7 %, 25 Ofters: 51.3 %, News:

navigation entries 6.5 %, Map: 5.0 %, Partners: 3.1 %, SBM: 2.9 %, Imprint: 0.6 %

that the entry in the navigation bar was accessed ten times less than the entry for
the mosaic-view concerning pageviews. The fact that still 47.76 % of all active users
accessed the geo-visualization can be attributed to the link “display on a map”, which
was present on each detailed-page of the engagement opportunities in the mosaic-
view. Active users who did not access the geo-visualization (245) viewed on aver-
age 5.6 sub-pages in the citizen information portal before leaving. The interactions
with the mosaic-view were limited as well as those 245 users opened up 2.4 engage-
ment opportunities on average during their stay on the site. Users that accessed the
geo-visualization were more active: They viewed on average 11 sub-pages and 3.1
engagement opportunities within the mosaic-view.

5.2 Interactions Mosaic-View and Geo-Visualization

The mosaic-view was accessed in 45 % of all sessions with the first interaction, prob-
ably due to its placement the navigation bar. The geo-visualization was only accessed
in 1.7 % of all sessions with the first interaction, still 47.76 % of all active users
accessed it during their stay on the citizen information portal. Users accessed vari-
ous citizen engagement opportunities in the mosaic-view and looked at the detailed-
page, switching back and forth between the overview and the detailed pages. Most
views in the mosaic-view were accumulated by engagement opportunities that are
already known in the city in the area of children and youth work, international activ-
ities that organize meet-ups or environment and sustainability initiatives.
Interactions in the geo-visualization are clearly focused on the map-view.
Zooming and panning account for 39.9 % of the actions in the map-view, 57.4 %
interactions were mouse hovers, and 2.7 % were clicks on markers to access the
detailed-view with the interface for giving feedback. A lot of mouse hovers are not
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surprising as this is an interaction that only required users to remain with the mouse
cursor over a spatial reference on the map for a few milliseconds. Zooming and pan-
ning require a mouse click or scrolling, a more determined interaction in compari-
son to a mouse hover. The amount of performed actions in each of the areas of the
geo-visualizations can serve as indicator to gain a first insight into their importance:
4476 interactions (78.83 %) (zooming, panning, hovering and clicking) occurred in
the map-view, while 1141 interactions (20.10 %) occurred in the textual descriptions
of the sidebar (hovering over textual spatial references, clicks to access the detailed
view, scrolling). The least amount of interactions occurred in the textual filter func-
tion that was located on top of the sidebar. In total 61 interactions (1.07 %) were
performed with it.

The filter functions were accessed by 14 users; filters were toggled 20 times.
Full-text search was used by four users. Each of the users searched for one search
term individually, and all occurring searches aimed at one specific and well-known
engagement opportunity that helps children to learn to read.

The feedback mechanism that could be accessed in the detailed-view in the geo-
visualization was not used. No user wrote a comment, asked a question or referenced
an additional area. Seven users clicked the button to open up the feedback form in
the detailed-view but did not write or send anything. The feedback form was opened
up for six different engagement opportunities.

In total 2527 interactions were recorded for the mosaic-view, while 5678 were
recorded for the geo-visualization. While both presentation forms offered interaction
possibilities, the geo-visualization offered a wider variety of functions for interac-
tion. Both values are hard to compare directly, still the total interaction counts show
that users engaged with the geo-visualization.

5.3 User Flow

For the comparison of the geo-visualization and mosaic-view we look at the user
flow—the sequence of accessed sub-pages and interactions on each sub-page per
user. If a user accessed the site multiple times, we aggregate the behavior that
occurred during multiple sessions and report on the predominant pattern for the par-
ticular user. We limit the user flow analysis to active users of the citizen information
portal that accessed the geo-visualization. Active users that did not access the geo-
visualization amount to 245 users. They only looked at the mosaic-view and did
not access the geo-visualization. We do not include them in the user flow analysis as
they accessed on average 5.6 sub-pages and on average 2.4 engagement opportunities
directly in the mosaic-view. They are still counted as active users as they spent time
and did access the mosaic-view, although they interacted overall in a fairly lim-
ited fashion with the citizen information portal. Active users that accessed the geo-
visualization viewed on average 11 sub-pages and interacted with 3.1 engagement
opportunities in the mosaic-view.
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Table 2 User flow

‘ . . Pattern Total users
categories that were identified — —_—
in a semi-automatic 1. Mosaic-view — geo-visualization 114
classification process for 2. Mosaic-view < geo-visualization 80
users that accessed the 3. Only geo-visualization 21
eo-visualization T -
& 4. Geo-visualization — mosaic-view 8
Y 223

We were able to identify four user flow patterns for active users that used the geo-
visualization. In a semi-automatic classification process, we sorted and pre-classified
all user interactions for all active users that accessed the geo-visualization. Based on
the sequence of the interactions with the citizen information portal we grouped and
classified the users into four patterns and verified them manually in a subsequent
step. Table 2 provides a breakdown for each pattern.

In the first user flow pattern with the largest amount of users, a user started to
explore the engagement opportunities in the mosaic-view. At some point during the
exploration the user decided to either click on the link “display on a map” in the
detailed-view or clicked on the “Map” entry in the header and started to use the geo-
visualization to explore the engagement opportunities. In this pattern, users did not
access the mosaic-view afterward again. A total amount of 114 users employed this
pattern.

Switching between mosaic-view and geo-visualization is the second user flow
pattern we identified with the second largest amount of users (80). Users started
to investigate engagement opportunities by accessing the mosaic-view and followed
up to use the geo-visualization. Subsequently, they accessed the mosaic-view and
geo-visualization again switching between them.

In the third user flow pattern users only used the geo-visualization, without
accessing the mosaic-view at all. Those users started by clicking on the “Map” entry
in the navigation bar and used the geo-visualization exclusively. We counted 21 users
that used this pattern.

The fourth user flow pattern is the reversed first pattern, but it does not occur
often. Eight users started by investigating the geo-visualization first. After inter-
acting with the geo-visualization, they followed up by investigating the mosaic-
view. Figure 4 displays patterns one and two for two selected users. Reoccurring
interactions are clustered for the mosaic-view and the geo-visualization. Pattern one
displays a user that switched from the mosaic-view to the geo-visualization and pat-
tern two depicts a user that switched between mosaic-view and geo-visualization
repeatedly.

We computed dwelling times for the total amount of time spent on the geo-
visualization and the mosaic-view. Dwelling times for the mosaic-view are slightly
higher compared to the geo-visualization. For 117 users (52.5 %) the mosaic-view
was displayed longer in the browser compared to the 106 users (47.5 %) were the
geo-visualization was active longer in the browser. The computed dwelling times
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Pattern 1:
Ol OM [ DM M [STMTST ™M T3] M [S ™| ]

Pattern 2:
[OJCOM | DM [ OM [ DM | OM | DM JOM] DM | oM [DM][ M ][oMI[_ M _ ][]

Interactions with the overview in the mosaic-view Interactions with the map-view in the geo-visualization
Interactions with a detailed-view in the mosaic-view Interactions with the sidebar in the geo-visualization

Fig. 4 Example of two user-flow patterns (one and two) that occurred most often. The figure is
based on two actual users

for each presentation form account only for the presentation form, time on general
information pages (landing page, news, etc.) were not counted and excluded.

6 Discussion

Spatial visualization and interaction seem to be relevant for citizens while explor-
ing engagement opportunities online. The first indicator for this conclusion is that a
not prominently placed geo-visualization (fourth entry in the navigation menu) was
still accessed by roughly every second active user (47.76 %). In terms of raw clicks,
the second entry in the menu that lead to the mosaic-view was accessed 10.3 times
more than the entry for the geo-visualization. This is probably an effect due to the
ordering of the navigation menu. That still a large portion of the user accessed the
geo-visualization, although the textual descriptions had all the needed information
including addresses, is one indicator that users were interested in spatial visualiza-
tion of engagement opportunities.

The second indicator is that the total amount of recorded interactions within the
geo-visualization is higher than the number of recorded interactions in the mosaic-
view. While both presentation forms were interactive, direct comparisons are tricky
as different types of interactions were possible. The geo-visualization allowed, for
example, to zoom and pan within a map-view to find engagement opportunities.
These are interactions that have no counterparts in the mosaic-view.

The third indicator is that a total of 114 users from 223 active users used the
geo-visualization without accessing the mosaic-view again after they found it. These
users from the first user-flow pattern started with the mosaic-view and did not return
to it after discovering the geo-visualization. An additional 21 user interacted only
with the geo-visualization, accessing the “Map” entry in the navigation bar directly,
without accessing the mosaic-view at all. These users seem to value spatial visual-
ization greatly.

Another indicator that is worth considering is that 80 users repeatedly switched
between views. One potential reason for this behavior is that they needed infor-
mation from both presentation forms. The geo-visualization offered a better spatial
overview, allowing users to find engagement opportunities quickly that are close to
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each other or located in a particular part of town. The mosaic-view offered slightly
longer textually descriptions. This has likely affected and promoted this user behav-
ior and is a limitation of our study. Nonetheless, switching between presentation
forms also indicates engagement with both presentation forms. Only eight users
started with the geo-visualization and switched to the mosaic-view afterward.

We reported on dwelling times for both presentation forms for active users that
used the geo-visualization at least once. Slightly more users (52.5 %) had opened
up the mosaic-view longer than the geo-visualizations in the browser. However,
dwelling times can not indicate if users favored a particular presentation form, espe-
cially in light of tracking limitations and form of information presentation. Reading
textual information might take more time than looking at a spatial representation, or
a user might need to learn to interact with a spatial representation. The interpretation
of the dwelling times for both presentations forms is therefore just another indicator.
Despite these known issues, we find that the number of active users staying longer
on the geo-visualization is quite high (47.5 %).

Our results show that users did not engage with the spatial discussion features in
this particular citizen engagement case. One might argue that this is not surprising,
as citizens were not called upon to voice opinions, and the entire campaign was not
framed to provide feedback. Still, the total absence was unexpected and might indi-
cate that the implementation of was too obscure or hidden away. Another potential
reason is that it takes an active, organized civic community for this kind of engage-
ment (Gaventa and Barrett 2010) and that volunteering time is an individual choice.
Apparently citizens were satisfied, in this case, with informing themselves. They did
not need to ask questions or exchange information. Krek (2005) found that citizen
ignore PPGIS sometimes with rational ignorance—as the cost to learn a PPGIS is
too high and the potential gain to small. This idea of rational ignorance might be
employed here as well. Another feature that was largely unused were the filter func-
tions. As the map was not crowded, users could easily distinguish between markers
by zooming and panning. Supporting this assumption is the fact that users mostly
used the map-view (78.83 %) in comparison to the filter functions and sidebar.

6.1 Limitations and Implications

A number of limitations are present in our evaluation: Our study is not comparative
in the sense that we had a within subject design or exposed the geo-visualization or
mosaic-view exclusively to specific users only and compared the results. To take part
in the campaign and to avoid losing potential volunteers both presentations forms
were accessible while the mosaic-view was favored in its placement in the naviga-
tion bar. Furthermore, pure data collection through logging actions in the browser is
limiting as well. The most obvious limitation is that dwelling times can only be con-
sidered very carefully as there is no certainty of what the user did while the website
was active. While we used two independent user logging systems to cross-validate
our results the data can not be taken at face value. The unique user count of both
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systems is identical and session times and dwelling times are similar, but the user
count is based on the used device. Multiple users can share a device, distorting the
identified patterns, or one user might use different devices at home or work. Ad-
and tracking blockers that technology affine users use need consideration as well.
Technology affine users that could have particular interaction preferences may have
blocked the logging system entirely.

Controlling such effects can only be done in a lab-based environment. We are
considering to run a lab-based study with a refined system that also accounts for
the discrepancies in the displayed content and functions: The mosaic-view could
feature a similar sidebar as the geo-visualization and offer filter functions. There
is an amount of users that felt the need to switch between mosaic-views and geo-
visualization, and the reasons for this behavior would certainly be interesting.

A couple of limitations arise from the concept itself: Online platforms have the
risk to divide the population, as such they can always only be one part of the equa-
tion in citizen engagement cases. As Crampton (2009) notes aspects regarding the
digital divide and net neutrality are important for the use of maps for any engage-
ment. Unequal access to technological infrastructure and different knowledge levels
within the population are likely to lead to an uneven use of such systems. Further-
more, it has to be ensured that websites used for citizen engagement are not treated
differently based on the content. Online portals rely on the Internet to disseminate
the data of such websites. Net neutrality is crucial to avoid favoring information that
expresses views that are more in line with current political and societal agendas.

By using geo-visualizations to expose citizen engagement opportunities citizens
have to have a solid understanding of maps. Map literacy is important, as every geo-
visualization is an abstraction and simplification. The most popular projection in web
applications is a simple spherical Web Mercator projection and unfolding a three
dimension object to a two-dimensional plane can not be done without distortions.
There are always trade-offs of some kind and citizens need to be aware that distances,
shapes, and areas are distorted, and their perception is affected (Wright 2009).

Overall, the attending NGOs were satisfied with the campaign, press coverage,
and citizen information portal. They formulated the wish to repeat the campaign in
the next years. The SBM’s view on the campaign was favorable as well and the 2016
campaign is underway with our continued support.

7 Conclusions

We presented and motivated an approach to tightly couple spatial interaction and
visualization with textual information about engagement opportunities in this arti-
cle. Our approach was evaluated based on an extensive real-world deployment
with actual citizens. We participated in a campaign to raise citizen engagement in
a medium-sized German city partnering with 25 NGOs that offered engagement
opportunities. Citizens could inform themselves in an information portal we devel-
oped in corporation with the NGOs and a foundation. Two distinct ways to find
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engagement opportunities were present: The first was a more traditional gridded
mosaic-view that displayed representative images of the opportunities and the sec-
ond was geo-visualization that exposed and visualized the engagement opportunities
spatially.

Based on the presented indicators in Sect. 6 we conclude that spatial visualization
and interaction are relevant for citizens who explore citizen engagement opportuni-
ties online. The map-view had by far the highest interaction count and seems to be
the most relevant part of spatial interactions in the geo-visualization. A good portion
of active citizens switched to the geo-visualization from the mosaic-view and contin-
ued to use it in the exploration process. Spatial feedback and discussion mechanisms
seem unimportant in this particular case and setup. We do not claim that spatial
interaction and visualization are more important than the traditional text-based pre-
sentation. However, this initial study—based on a large real-world deployment with
actual citizens—indicates that citizen did engage with the geo-visualization consis-
tently and in a structured fashion. Further controlled studies are needed to examine
if there are users that prefer one presentation form over the other. Still, our results
point out that designers of citizen information portals should consider including geo-
visualizations to allow citizens to explore engagement opportunities spatially.

Acknowledgments We would like to thank the Stiftung Biirger fiir Miinster, all participating
NGOs and other partners that helped in the project 1000 Stunden fiir Miinster. We give thanks
to Gerald Pape, as the implementation of the information portal was based on his M.Sc. Thesis.
The research reported here was partly funded by con terra GmbH.

References

Andrienko G, Andrienko N, Jankowski P, Keim D, Kraak MJ, MacEachren A, Wrobel S (2007)
Geovisual analytics for spatial decision support: setting the research agenda. Int J Geogr Inf Sci
21(8):839-857

Andrienko G, Andrienko N, Demsar U, Dransch D, Dykes J, Fabrikant SI, Jern M, Kraak MJ, Schu-
mann H, Tominski C (2010) Space, time and visual analytics. Int J Geogr Inf Sci 24(10):1577—
1600

Arnstein SR (1969) A ladder of citizen participation. J Am Inst planners 35(4):216-224

Bailey K, Grossardt T (2010) Toward structured public involvement: justice, geography and col-
laborative geospatial/geovisual decision support systems. Ann Assoc Am Geogr 100(1):57-86

Cai G, Yu B (2009) Spatial annotation technology for public deliberation. Trans GIS 13(1):123-146

Carpini MXD, Cook FL, Jacobs LR (2004) Public deliberation, discursive participation, and citizen
engagement: a review of the empirical literature. Ann Rev Polit Sci 7(1):315-344

Connor D (1988) A new ladder of citizen participation. Nat Civic Rev 77(3):249-257

Crampton JW (2009) Cartography: maps 2.0. Prog Hum Geogr 33(1):91-100

Crivellaro C, Comber R, Dade-Robertson M, Bowen SJ, Wright PC, Olivier P (2015) Proceedings
of the 33rd annual ACM conference on human factors in computing systems—CHI *15. ACM
Press, New York, pp 2853-2862

Dunn CE (2007) Participatory GIS a people’s GIS? Prog Hum Geogr 31(5):616-637

Elwood S (2006a) Beyond cooptation or resistance: urban spatial politics, community organiza-
tions, and GIS-based spatial narratives. Ann Assoc Am Geogr 96(2):323-341



Presenting Citizen Engagement Opportunities Online ... 121

Elwood S (2006b) Critical issues in participatory GIS: deconstructions, reconstructions, and new
research directions. Trans GIS 10(5):693-708

Elwood S, Leszczynski A (2013) New spatial media, new knowledge politics. Trans Inst Br Geogr
38(4):544-559

Fechner T, Kray C (2014) Geo-referenced open data and augmented interactive geo-visualizations
as catalysts for citizen engagement. eJ eDemocracy Open Gov 6(1):14-35

Fechner T, Wilhelm D, Kray C (2015) Ethermap—real-time collaborative map editing. In: Pro-
ceedings of the 33rd annual ACM conference on human factors in computing systems—CHI
’15. ACM Press, New York, pp 3583-3592

Ferro E, Caroleo B, Leo M (2013) The role of ICT in smart cities governance. In: Parycek P,
Edelmann N (eds) Proceedings of 13th international conference for E-democracy and open gov-
ernment. Donau-Universitidt Krems, pp 133-145

Gaventa J, Barrett G (2010) So what difference does it make? Mapping the outcomes of citizen
engagement. IDS Working Pap 2010(347):01-72

Hecht BJ, Gergle D (2010) On the “localness” of user-generated content. In: Proceedings of the
2010 ACM conference on Computer supported cooperative work—CSCW ’10. ACM Press, New
York, pp 229-232

Hopfer S, MacEachren AM (2007) Leveraging the potential of geospatial annotations for collabo-
ration: a communication theory perspective. Int J Geogr Inf Sci 21(8):921-934

Kessler C, Rinner C, Raubal M (2005) An argumentation map prototype to support decision-making
in spatial planning. Proc AGILE 5:26-28

Krek A (2005) Rational ignorance of the citizens in public participatory planning. 10th symposium
on Information-and communication technologies (ICT) in urban planning and spatial develop-
ment and impacts of ICT on physical space, CORP 5

Maier-Rabler U, Huber S (2011) Open: the changing relation between citizens, public administra-
tion, and political authority. eJ eDemocracy Open Gov 3(2):182-191

McCall MK, Dunn CE (2012) Geo-information tools for participatory spatial planning: fulfilling
the criteria for good governance? Geoforum 43(1):81-94

Obermeyer N (1998) The evolution of public participation GIS. Cartography Geogr Inf Syst
25(2):65-66

Rinner C (1999) Argumaps for spatial planning. In: Laurini R (ed) Proceedings of teleGeo’99. First
international workshop on telegeoprocessing, Lyon, France, pp 95-102

Rowe G, Frewer LF (2005) A typology of public engagement mechanisms. Sci Technol Hum values
30(2):251-290

Sidlar CL, Rinner C (2009) Utility assessment of a map-based online geo-collaboration tool. J
Environ Manage 90(6):2020-2026

Sieber R (2006) Public participation geographic information systems: a literature review and frame-
work. Ann Assoc Am Geogr 96(3):491-507

Steinmann R, Krek A, Blasche T (2005) Can online map-based applications improve citizen par-
ticipation? In: Bohlen M, Gamper J, Polasek W, Wimmer MA (eds) E-government: towards
electronic democracy, vol 3416., Lecture notes in computer scienceSpringer, Heidelberg

Sui DZ, Goodchild M (2011) The convergence of GIS and social media: challenges for GIScience.
Int J Geogr Inf Sci 25(11):1737-1748

Taylor AS, Lindley S, Regan T, Sweeney D, Vlachokyriakos V, Grainger L, Lingel J (2015) Data-
in-place: thinking through the relations between data and community. In: Proceedings of the
33rd annual ACM conference on human factors in computing systems—CHI *15. ACM Press,
New York, pp 2863-2872

Weiser M (1991) The computer for the 21st century. Scientific American

‘Wright DR (2009) Towards fair world maps? A journey in our unfair world. Int Res Geogr Environ
Educ 18(1):1-4

Yu H, Robinson DG (2012) The new ambiguity of “open government”. SSRN Electron J 59:178—
208



Spatial Data Relations as a Means
to Enrich Species Observations
from Crowdsourcing

Stefan Wiemann

Abstract The general fascination of nature has always been a major driver for
studies on living animal and plant species. A large number of professionals and
especially volunteers are organized in related initiatives and projects from the local
to the global level, leading to the vast amount of species observations nowadays
available on the Web. This article seeks to enhance this knowledge base by the
determination, management and analysis of feature entity relations among the
observations. Those relationships are considered important for comprehensive
biological monitoring and, in general, facilitate the integrated use of existing data
sources on the Web. Particular emphasis is put on crowdsourcing, which increas-
ingly receives attention and support by citizen science initiatives. The Linked Data
paradigm, representing the core of the Semantic Web, is applied to describe, handle
and exploit relations in a standardized and thus interoperable manner. Method-
ologies to determine and validate relationships are developed and implemented. The
implementation combines the analysis of spatio-temporal behavioral patterns of
species with a crowdsourcing approach for the validation of determined relations.
The vagueness of results is addressed by assessing the probability of a relation.

Keywords Crowdsourcing < Species observation - Linked data - Spatial data
relations

1 Introduction

Many people hold fascination for the study of natural history and the observation of
nature. From initially being very popular among ancient scholars, the observation of
species reached out to a wide public and is meanwhile subject to numerous
crowdsourcing campaigns. One of the first and very prominent examples is the
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Christmas bird count in the US, which established a regular annual census of birds
since 1900. On the Web, the Global Biodiversity Information Facility' (GBIF)
represents a kind of central repository for species observations worldwide. As of
October 2015, the platform provides access to around 580 mio occurrences of circa
1.6 mio different species obtained from 767 different data publishers. It contains
archeological, historic and up-to-date observations collected by various research
institutes, national data centers as well as crowdsourcing projects. Prominent
examples for the latter are Naturgucker’ (~4.3 mio observations), iNaturalist’
(~730.000 observations) and Artenfinder* (~260.000 observations).

Whereas spatial data on the occurrence of species, such as provided by GBIF,
already forms an important biodiversity knowledge base, relations among the
observations as well as relations to external data sources on the Web do merely
exist. However, such relations are considered a significant extension allowing for
more sophisticated data analysis, data enrichment and the inference of spatial
information for decision making. In this context, the Linked Data paradigm offers
the opportunity to formalize, maintain and analyze spatial data relations on the Web
in a flexible and interoperable manner (Wiemann and Bernard 2015). An added
incentive is that the combination of geospatial and Semantic Web standards is
currently advanced in a collaboration between the Open Geospatial Consortium
(OGC) and the World Wide Web Consortium (W3C), the main standardization
bodies in the respective areas (Taylor and Parsons 2015). With respect to existing
crowdsourcing campaigns, those developments pave the way for the establishment
of an interlinked observations knowledge base as the foundation for comprehensive
species analysis.

In OGC (2013), an observation is defined as an “act of measuring or otherwise
determining the value of a property”. Although an observation is also considered a
feature in the sense of ISO, the term feature hereinafter refers to the observed
organism, which is the property described by an observation. Hence, the feature
views and feature relations described in this paper refer to the occurrence of a
particular species, rather than the observation process.

In the following Sect. 2, different views on a feature and corresponding relations
are described. A conceptual workflow for the determination of feature entity rela-
tions and possible application scenarios are outlined in Sect. 3. A prototypical
implementation for the determination and validation of crowdsourced species
observations is described in Sect. 4. The paper concludes with a summary and
outlook in Sect. 5.

"http://www.gbif.org.
Zhttp://www.naturgucker.de.
3https://www.inaturalist.org.
*http://www.artenfinder.rlp.de.
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2 Differentiation of Relationships Between Species
Observations

The modelling of geographic information is usually organized and structured on a
number of different abstraction levels, from the physical world to the computational
representation in software. With respect to the reference model for geographic
information standardized by ISO (2014), and with particular focus on possible
relations between species observations, four distinct views on a feature are here-
inafter distinguished (Fig. 1).

e The concept view describes the general idea of the real-world phenomenon
represented by a feature; the feature concept is often represented by an ontology
and can be further divided into high-level, domain-specific and application-
driven concepts (Guarino 1997). With respect to species observations, this could
be the concept of an animal as a living thing.

e The feature type view represents the translation of the feature concept into an
application schema and is accordingly constrained by the concept; the feature
type defines a number of feature properties that describe a feature. This could be
the intention to describe an animal by its name, size and color.

e The feature entity view is a realization of the feature concept and refers to a
particular real-world phenomenon; the feature entity is based on the concept of
feature identity as a “unique characteristic that distinguishes one object from
another” (Hornsby and Egenhofer 2000). Accordingly, every individual animal
is considered a separate entity.

e The feature representation view is the computational representation of a feature
entity in a spatial dataset; the feature representation implements the feature
properties that are defined by the corresponding feature type. With reference to
the example, this refers to the description of an individual animal by its name,
size and color value.
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The described feature views are not bound to a single feature instance but can be
related to an arbitrary number of features. However, while there are usually a lot of
features sharing the same concept or type, there are rarely features sharing the same
representation.

With respect to the different feature views, two kinds of relations are distin-
guished: internal and external. Internal relations are used to link the four different
views on a single feature to each other and are thus ideally created during the
feature modelling process. External relations, hereinafter referred to as feature
relations, are used to link two distinct features on the same feature view level; they
are accordingly classified into conceptRelation, typeRelation, entityRelation and
representationRelation (Fig. 2).

The observation of species by volunteers is touched by a multitude of concepts
either in the narrower or the broader sense. Concerning a comprehensible definition,
the HumanObservation defined by the Darwin Core Vocabulary as an “output of a
human observation process” can be used. However, if textual definitions are
insufficient, e.g. for semantic reasoning, a more comprehensive conceptualization of
the observation process, the Semantic Sensor Network Ontology, is introduced in
Compton et al. (2012). A third example with explicit focus on interoperability is the
Species Distribution Vocabulary for INSPIRE® developed within the SmartO-
penData project. Relations between those different concepts can be used to bridge
semantic dissimilarities and are therefore especially important for cross-domain
applications. With regard to Web-based applications, they can best be expressed
using the W3C SKOS vocabulary,7 which recommends a set of Linked Data
properties to express hierarchical and associative concept relations.

Type relations define hierarchical (e.g. inheritance) and associative (e.g. aggre-
gate, spatial, temporal or thematic) relations between different feature types. In
addition to the qualification of relationships, they may also include schema trans-
formation rules for the mapping of feature properties. Concerning crowdsourced
species observations, the majority of projects use their own feature type based on

Shttp://rs.tdwg.org/dwe.
6http://www.w3 .org/2015/03/inspire/sd.
"http://www.w3.org/TR/skos-reference.
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Fig. 3 Feature entity relations between species observations; a a parthood relationship and
b identical and homologous feature entities

the particular data or application needs. GBIF provides global species observation
data in a plain CSV structure following the Darwin Core vocabulary. A more
generic observation schema for citizen science based on the OGC Observations and
Measurements standard (OGC 2013) is currently under development, led by the
OGC.? In addition, the INSPIRE directive defines a data type specification for the
obligatory exchange of species information among the EU member states (INSPIRE
2013). However, crowdsourcing projects often introduce custom properties, such as
observer profile information, user and expert validation or comments. In conse-
quence, the mapping of crowdsourced observations towards the GBIF repository
currently involves a respective loss of information.

Entity relations describe the relationships between real-world phenomena, which
are not bound to a particular representation, and are thus hard to quantify. Examples
include the mereological (parthood) relations described by Varzi (2007) and the
temporal transition of objects modelled by Hornsby and Egenhofer (2000). An
important distinction is hereinafter made between identical feature entities, which
refer to real-world phenomena that are equal in value, i.e. belong to the same
species, and homologous feature entities, which actually refer to the same
real-world phenomenon, i.e. represent the same feature entity. Figure 3 exemplarily
shows two observations with (a) a parthood relation and (b) an identical and
homologous feature entity relation.

Relations between feature representations are primarily based on similarity
measurements between location, spatial, thematic, temporal or metadata properties
(cf. ISO 2005), which are usually derived from geographic, temporal, network,
numeric, string or artificial distance measurements. The qualification of represen-
tation relations is accordingly based on the comparison of property values on an
ordinal, interval or ratio scale. Examples include the topological relations in
Egenhofer and Franzosa (1991), the distance and directional relations in Frank
(1992) and the temporal relations in Allen (1983). With respect to species

8https://github.com/opengeospatial/swedcitizenscience.
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observations, common properties of an observation are: (1) the spatial localization
using geometry primitives, usually points, (2) the timestamp or, less often, the time
interval and (3) the taxon of the observed organism, which specifies the name and
phylogenetic classification of the corresponding species. As mentioned earlier,
crowdsourcing induces additional properties, such as information on the observer,
the validation status or supplementary material, like photos or comments.

An important aspect for relation modelling, in particular for crowdsourced
species observations, is the expression of uncertainty. The uncertainty of a relation
is caused by the uncertainty of the observation measurement itself, e.g. determined
by the spatial accuracy of the positioning system, and the inherently uncertain
events that occurred between two observations. Both can be quantified using
confidence measurements, €.g. on a probabilistic basis. A corresponding qualifi-
cation of a relation can be realized using vague qualifiers, such as geographically
‘near’ (cf. Worboys 2001) or semantically ‘close’ (cf. SKOS closeMatch).

3 Determination and Application of Species Entity
Relations

There are basically three ways to determine a feature relation: (1) the relation is
inferred from existing relations, (2) the relation is determined by relation mea-
surements or (3) a combination of the above. An exception to this is the entity
relation, which can hardly be measured, and thus needs to be derived from other
relations. In practice, an entity relation between two species observations is easier to
exclude than to determine exactly. Accordingly, identified relationships are quali-
fied from impossible, the negation of a relation, to certain, the absolute guarantee of
a relation, with intermediate steps, such as likely, even and unlikely. The capability
to reliably determine an entity relation significantly depends on the information
content of the considered observations and the general characteristics of the
observed species. Whereas the first comprises the captured properties of an
observation including observer and observation quality metrics, the latter comprises
contextual information on the species, such as typical movement patterns, the social
and territorial behavior or the estimated population density in the area.

An entity relation between two species observations cannot unambiguously be
inferred from concept or type relations. Nevertheless, both can assist the match-
making process by imposing limitations on applicable entity relations or relation
measurements. For example, features following the Darwin Core concept of a
LivingSpecimen cannot be homologous to features following the disjoint concept of
FossilSpecimen. Yet, they can be related based on the underlying taxon or even be
identical in the case of a ‘living fossil’. In a similar manner, feature type relations
define associated feature properties that can be used to compare and relate features
on the representation level.
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Fig. 4 Basic workflow for the determination of feature entity relations, in particular parthood,
identical and homologous

Figure 4 shows the basic workflow for the identification of an entity relationship
between two species observations, revolving around four major decision steps. First
of all, two observations need to be observations of the same species, which is
evaluated based on the underlying taxon. The attached probability P, expresses the
probability of both species being equal, including the likeliness of a misclassifi-
cation if the underlying taxon provides corresponding similarity information on
species. In the second step, the count of observed feature entities is compared. If the
numbers are neither exact nor approximately equal, the possible feature relation is
limited to identical or parthood. The third and fourth step of the workflow deal with
the identification of possibly homologous feature entities. In the third step, the two
observations are analyzed with respect to known species characteristics in order to
assign the probability P,, which expresses the estimated probability of the two
observations representing the same entity. Since autocorrelation in species move-
ment data is reported to be omnipresent (Cushman 2010), valuable information can
be derived from the spatio-temporal distance between observations. Figure 5 shows
a corresponding evaluation scheme based on the geographic distance (d) and the
time interval (At) between two observations. It presumes the following:

e Aty;, = f(d): a minimum time interval for each species exists that is required to
move a certain distance. Features observed below this threshold cannot be
homologous.
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Fig. 5 Determination of the A time distance threshold | impossible or
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species observations being (At)
homologous m . :
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e P = f(d, At): for each point in the quadrant, there is a function that determines
the probability of a relation depending on the spatial and temporal distance.

® 04, G, Within a defined spatial and temporal uncertainty, two observed entities
have a high probability of being homologous.

In consequence, the probability P, is significantly influenced by the movement
pattern of a species. However, the probability assignment significantly varies with
different species and habitat types. As an example, spatial movement can be largely
excluded for stationary species, i.e. plants. Moreover, there is an inverse propor-
tional relationship between the probability of two observed features being homol-
ogous and the estimated population size of the particular species in the area. Finally,
the time of an observation needs to be taken into account with respect to the typical
daily routines of the observed species.

In the fourth step of the workflow (cf. Fig. 4), the probability of two observed
features being homologous, needs to be determined. This decision relies on unique
characteristics of the observed organism, such as a tracking marker, an individual
coat pattern, visible injuries or a known non-overlapping territory. Although this
information is usually very hard to capture and formalize in an observation,
crowdsourcing has a great potential, especially because of the widespread use of
mobile devices that facilitate the application of multimedia content. By means of
this data, the potentially related observations that were identified before can be
selected for further substantiation by experts or the crowd, e.g. using a gamification
approach similar to the one described and successfully implemented in the
Geo-Wiki project (Fritz et al. 2009).
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To demonstrate the feasibility of the estimation of feature entity relations, the
spatio-temporal distance patterns are exemplarily computed for existing animal
tracking data, in particular:

e Four red kites (Milvus milvus) tracked between 2012 and 2013 by the red kite
project Rettet die Roten.” In total 5279 observations are analyzed with in
average 11 observations per day.

e Seven zebras (Equus burchellii) tracked in northern Botswana obtained from the
Movebank'® database (Bartlam-Brooks and Harris 2013). It contains about
54.000 GPS fixes for the years 2007-2009.

e 15 grey seals tracked at Sable Island in the years 2011 and 2012 with about
125.000 observations from the Movebank database (Lidgard et al. 2015)

e 25 wild baboons (Papio anubis) tracked in Kenya for a period of 14 days in
2012, with tracking data obtained from the Movebank database (Crofoot et al.
2015)

Figure 6 shows the calculated patterns, which represent the typical daily
movement of the observed species entities. As can be seen from the plots, each
species has very specific spatio-temporal movement characteristics. Although the
variance between different entities of the same species should not be underesti-
mated, the determination of a basic probability of two observed feature entities
being homologous seems reasonable.

Once identified, the relations can be used to derive a value-added information.
This is true not only for the explicit relations, but also for implicit relations, which
are induced by transitive, symmetric, equivalent, disjoint and inverse relation
characteristics. They allow for the inference of implicit information by the uti-
lization of pre-defined composition tables, e.g. for temporal relations (Allen 1983),
distance and directional relations (Frank 1992), topological relations (Egenhofer
1994) or feature class relations (Mds 2008). The transitive inference of a homol-
ogous feature relation is exemplarily shown In Fig. 7, whereby the probability of
the conclusion Pac is a function of the probabilities of the premises Pag and Pyc.
However, the logical inference of a relation does not, per se, imply an explicit
propagation rule for the attached probabilities (Pfeifer and Kleiter 2009).

As a general rule, identical entity relations add information on the observed
species, while homologous and parthood entity relations add information on the
particular organism or group of organisms. Since crowdsourcing inherently follows
the open-world assumption, which assumes that everything that is not observed is
simply not known, the absence of a relation does not entail disjoint feature entities.
Thus, if it cannot be deducted from the applied inference rules, the explicit deter-
mination of disjoint entities supports subsequent analysis and reasoning. In the
following, two applications are outlined that benefit from the exploitation of feature
entity relations between species observations: (1) the estimation of a species

thtp://rotmilane.eu.
"https://www.movebank.org.
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Fig. 6 Spatio-temporal movement pattern for selected species; x-axis = spatial distance to
starting point in kilometer; y-axis = temporal distance to starting point in days; histograms show
the spatial (x-axis) and temporal (y-axis) density distributions of the observations; plot colors
indicate the density of observations from red (many observations) to dark blue (no observation).
a 4 Red Kites, 1 day. b 7 Zebras, 1 day. ¢ 15 Grey Seals, 1 day. d 25 Wild Baboons, 1 day

population distribution and (2) the determination of the behavioral pattern of an
observed organism.

Species population counts and density estimations are important biodiversity
indicators with significant influence on nature conservation, resource management
and policy making (INSPIRE 2013). The choice on an optimal counting procedure
depends on the application scope and prior knowledge (Krebs 1999), which
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Fig. 7 Transitive inference of a homologous feature relation with probability propagation

demands a consistent and coherent effort by expert ecologists. Crowdsourcing is
different from this in terms of the organizational structure, the average observer
expertise, the applied recording methods and the spatio-temporal coverage.
Although expert field studies can hardly be replaced, their costs can be lowered by
integrating crowdsourced observations, e.g. for the densification, update or
enrichment of existing datasets (Wiemann and Bernard 2014). In theory, the total
count of organisms belonging to a certain species is the sum of all observations
reduced by the count of homologous observations. Hence, both the distribution of a
species and the actual density of a population are based on the number of identical
and homologous entity relations (Fig. 8). However, as mentioned before, crowd-
sourced data must be considered as incomplete. Whereas the single occurrence of a
species observed by the crowd can be determined relatively well, the density, i.e.
count, remains rather uncertain. This also affects information on the absence of a
species, which can hardly be verified using solely crowdsourced data.

The identification and study of the behavioral pattern of an observed organism
relies on homologous feature relations and primarily deals with observed spatial and
temporal changes. Whereas a change in location gives an indication of possible
movement paths (Fig. 9), a change in the appearance can provide information on
different phenological stages of the organism. However, as described in the pre-
vious section, the known typical behavioral pattern of a species may support the
identification of feature relations in the first place. Thus, to prevent circular rea-
soning, caution must be exercised when interpreting feature relations with respect to
the determination of behavioral patterns.

Fig. 8 Influence of (a) (b)
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4 A Crowdsourcing Approach to Validate Species Entity
Relations

The prototypical implementation developed in the course of this study demonstrates
the technical feasibility of the described approach, and provides an example for the
validation of feature entity relations using the crowd. For this purpose, observations
with referenced multimedia files, i.e. photos, are obtained from GBIF (2015). With
regards to the feature views described in Sect. 2, all of the observations follow the
concept of a HumanObservation as defined by the Darwin Core vocabulary. The
feature type is a plain attribute-value structure defined by GBIF, which in large
parts uses Darwin Core terms for the definition of observation properties. The
representation of the observed species occurrences include the spatial location given
as geographic coordinates, the timestamp, a reference to the GBIF Backbone
Taxonomy and the associated photos.

The software environment for the identification, maintenance and analysis of
relations between the species observations is adapted from previous work described
in Wiemann and Bernard (2015) and builds on the following components (Fig. 10):

o A Web-client is used to access existing observations and relations and allows for
adding user ratings and comments to both of them. The application is mainly
written in Java and JavaScript.

e The pre-processing analyzes species movement patterns to support the initial
matchmaking between observations. Currently, it takes existing animal tracking
data and generates spatio-temporal movement patterns (see Sect. 3) using the
statistics software R.

e The evaluation component processes the user ratings and adds them to an
existing relation. The reasoning allows conclusions on the probability of a
match, the estimation of species distributions and the inference of possible
movement paths (see Chap. 4). The processes are implemented in Java and can
be invoked by the client.
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e A Linked Data triple store is used to store and query identified relations using
SPARQL (SPARQL Protocol and RDF Query Language) and is based on
Apache Jena."' To uniquely identify observations in RDF (Resource Descrip-
tion Framework), a reference identifier is created by the combination of GBIF
provider and observation id.

e The architecture in principle allows the use of open interface standards for the
access to observations. However, since GBIF does not provide any services, the
observations are directly read from the downloaded GBIF dataset for testing
purposes.

e External data sources can be used to derive observation statistics, e.g. for dis-
tribution mapping, or enhance existing data sources with crowdsourced obser-
vations (Wiemann and Bernard 2014). The implementation currently supports
access to external data via the OGC Web Feature Service (WFS) and the OGC
Web Coverage Service (WCS).

Observations of the red kite are chosen as an application showcase, because of
the good data availability and the prominent status as an indicator species for
biodiversity analysis in Europe. Whereas the observations are assumed to be likely
identical based on the underlying GBIF taxon, the probability of being homologous
is first assessed using the identified spatio-temporal pattern in Sect. 3 (Fig. 6a). The
corresponding probabilities are set to very likely if d < 100 m and At < 5 min, to
likely if d < 1 km and At = same year and to even if d < 3 km and At = same
year. As can be seen, the temporal relation does only play a minor role. This is due
to the fixed breeding grounds of the red kite. The movement threshold is set to
40 km/h; below this threshold a relation is set to impossible. All remaining relations
are classified as unlikely. The latter two relations, impossible and unlikely, are not

"https://jena.apache.org.
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explicitly stored in the triple store. The same is true for non-entity relations, i.e.
between the concept, type and representation of a feature. Whereas concept and
type relations are not required, because of the same origin of data, the representation
relations can easily be inferred from the referenced observations

In total 186 red kite observations with referenced media files are available
from GBIF (2015). Based on the previously described movement pattern for the
determination feature entity relations, no observation pair is classified as very likely
being homologous, 46 pairs are classified as likely and 365 pairs are classified
as even; the rest is classified as unlikely or impossible. The identified relations
are queried by the client for further validation. For this purpose, two possibly
homologous features are shown to the user with occurrence descriptions, refer-
enced photos, previously identified relations and, if applicable, existing user rat-
ings (Fig. 11). Users can rate and comment on both the observations and the

1st Observation Comparison 2nd Observation
Source: iNaturalist Source: iNaturalist
Location: lat = 50.477; lon = 6.493 distance: 1,5km Location: lat = 50.465; lon = 6.504
Timestamp: 10.05.2015 time difference: 1 day Timestamp: 11.05.2015
Taxon: Red Kite (Milvus milvus) Taxon: Red Kite (Milvus milvus)

Current relations

sameSpecies (likelv); homologous (even

Your Rating

same species? | verylikely || fWkely | | cvcn | unikely | impossible | skip decson |
same organism? | very fkely | fkely | cucn || unikely || impossible | | skp decson |

Comments

Fig. 11 Screenshot of the Web-client application for rating and commenting on the relation
between two crowdsourced species observations; the original observations from this example are
https://www.inaturalist.org/observations/1473756 (left) and https://www.inaturalist.org/observa
tions/1477623 (right)
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https://www.inaturalist.org/observations/1477623
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corresponding relation, or skip the decision. If included in the GBIF dataset, a link
to the original observation is added to allow direct responses to the provider, e.g. in
the case of a potential misclassification. Upon submitting the form, the user rating
and comment are added to the relation via SPARQL Update query. The corre-
sponding RDF encoding of a relation between two observations is depicted in
Listing 1.

Listing 1 RDF Turtle encoding scheme for a homologous relation between two
species observations with user rating

@[base and prefix definitions]
_:relation [uid]
a featureRelation ;
hasReference [l1st Observation URI] ;
hasTarget [2nd Observation URI] ;
hasRelationType [
a relationType ;
type homologous ;
probability [value]”"[value typel

for each user rating
hasUserRating [

a userRating ;

user [user URI] ;

xsd:dateTime [timestamp] ;
probability [value]”"[value type] ;
comment [comment]”"xsd:string

Currently, there are too little observations and relations available to perform
reliable movement or species distribution analysis. However, queries on the rela-
tions and basic validity checks can be performed using SPARQL on top of the
provided triple store. As an example, the request shown in Listing 2 returns all
potentially homologous observations for a defined reference observation with
associated estimated and user probability ratings. Moreover, all observations can be
accessed by the unique identifier and thus be linked to external data sources fol-
lowing the data fusion approach described in Wiemann and Bernard (2015).
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Listing 2 SPARQL request for all relations that have [input Observation URI] as
reference, with associated system and user probability ratings

[prefix definitions]

SELECT ?observation ?probability ?userRatingValue WHERE ({
?relation a pre:featureRelation
?relation pre:hasReference [input Observation URI]
?relation pre:hasTarget ?observation
?relation pre:hasRelationType ?relationType
?relationType pre:type pre:homologous
?relationType pre:probability ?probability .
?relation pre:hasUserRating ?userRating
?userRating pre:probability ?userRatingValue
?userRating pre:comment ?comment

5 Conclusion and Outlook

Feature relations between species observations are considered an important means
to enhance crowdsourced species observations for environmental analysis and
decision making. Whereas the determination and validation of identical features is
already addressed by most crowdsourcing projects, e.g. by expert ratings, the
detection of homologous feature entities among the observations remains chal-
lenging. The approach described in this paper represents a first attempt to address
this issue by the combination of a semi-automatic estimation procedure that relies
on characteristic movement patterns of a species and a crowdsourcing approach for
the validation of the estimated relations. It enables a standards-based way to
determine, formalize and analyze relations between species observations and thus
demonstrates the conceptual and technical feasibility. However, there is still a great
potential for further developments:

e The estimation procedure for feature relations needs to be improved in order to
include more species, in particular species with no trajectory movement data
available. Moreover, a review of additional parameters should be carried out to
extend the current spatio-temporal approach, e.g. with prevailing environmental
or meteorological conditions in the area of the observation.

e The components of the prototypical implementation can be enhanced from both
the functional and the esthetical perspective. For example, image enhancement
and analysis tools from computer vision could support the determination of
relations in the Web-Client. Furthermore, a mobile implementation would
facilitate the immediate application in the field.
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e A direct connection to existing crowdsourcing platforms on a technical and
participatory basis is required to raise awareness and interest in the determi-
nation and validation of feature relations. Once linked to an existing application,
relations offer additional user feedback mechanisms in the field. For example,
the observer can be asked to pay attention to certain characteristics that were
observed earlier for a potentially homologous feature to facilitate an ad hoc
determination and validation of a relationship.

e A general engagement strategy is required to gather a reasonable amount of data
for substantial analysis of and reasoning on identified relations. In this context,
gamification is often reported to have positive effects on citizen engagement and
participation (Morschheuser et al. 2016). In addition, further user studies need to
evaluate the general capabilities of laymen and experts to distinguish species
and organisms based on the provided observation information, including mul-
timedia files

The approach described in this paper stands and falls with the capability to
uniquely identify particular feature entities and distinguish them from another. This
depends on many factors and will certainly not work for a large number of species,
e.g. a population of small insects. Nevertheless, the determination and validation
rate of relations is expected to increase with the continuous enhancement of camera
systems, e.g. concerning the geometric resolution or anti-blur filters, the integration
of specialized image matching strategies and the general awareness for unique
characteristics of organisms belonging to a certain species. Thus, the ‘wisdom of
the crowd’ is expected to significantly contribute to existing knowledge and
methodologies in the field of biological monitoring.
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Cross-Linkage Between Mapillary Street
Level Photos and OSM Edits

Levente Juhasz and Hartwig H. Hochmair

Abstract Mapillary is a VGI platform which allows users to contribute crowd-
sourced street level photographs from all over the world. Due to unique information
that can be extracted from street level photographs but not from aerial or satellite
imagery, such as the content of road signs, users of other VGI Web 2.0 applications
start to utilize Mapillary for collecting and editing data. This study assesses to
which extent OpenStreetMap (OSM) feature edits use Mapillary data, based on tag
information of added or edited features and changesets. It analyzes how spatial
contribution patterns of individual users vary between OSM and Mapillary. A better
understanding of cross-linkage patterns between different VGI platforms is
important for data quality assessment, since cross-linkage can lead to better quality
control of involved data sources.

Keywords Volunteered geographic information « Mapillary - Openstreetmap -«
User contributions « Cross-linkage

1 Introduction

In recent years, technological developments in computer, sensor, and communi-
cation technology together with an increase in citizen’s interest in sharing spatial
information led to a significant growth of crowdsourced geographic information,
often referred to as Volunteered Geographic Information (VGI) (Goodchild 2007),
which became accessible on Web 2.0 platforms and social media. Contribution
patterns for individual VGI applications, such as OpenStreetMap (OSM), photo
sharing services, or drone imagery portals, have already been extensively analyzed
in the Geoscience literature (Neis and Zielstra 2014; Hochmair and Zielstra 2015;
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Hollenstein and Purves 2010). However, it is less understood if and how users
participate in several crowdsourcing platforms, whether an individual contributor’s
activity spaces in different VGI platforms are spatially co-located or spatially dis-
tinct, and how data are cross-linked.

Mapillary provides a crowdsourced alternative of street-level photographs to
Google Street View. Since its public launch in February 2014 members of this
project have so far provided more than 45 million street level photographs along a
total of 1,250,000 km of roads and off-road paths. Besides being a crowdsourced and
therefore free alternative to Google Street View, Mapillary has also the advantage
that its users can take photographs with a smartphone and upload them with an app,
without the need of professional camera equipment. This makes Mapillary partic-
ularly suitable for image collection on off-road paths, such as hiking or cycling trails.
Since street level photographs provide supplemental information to other free
alternative data sources, such as aerial photographs, satellite imagery, or census data,
they are beginning to be used in other VGI platforms. For example, source tags of
OSM edits indicate that Mapillary imagery is already used to edit OSM features.
Mapillary image content can be used to identify features or feature attributes that
cannot be seen on the aerial imagery but are visible on ground level photos only,
such as names of bus stops or buildings. Therefore, Mapillary provides “local”
knowledge for OSM remote mappers who do not map in the field. Mapillary imagery
is included as a layer option in two of the common OSM editors (iD and JOSM),
making it easier for mappers to use street level photos for data editing in OSM.

The overall objective of this study is to determine to which extent Mapillary
imagery is currently used for OSM feature editing. More specifically, it aims to
determine how the use of street level photos for this purpose varies between dif-
ferent parts of the world, which OSM features are primarily mapped and edited
based on Mapillary imagery, how spatially distinct OSM and Mapillary contribu-
tions for an individual mapper are, and how cross-linkage to Mapillary is provided
in OSM, i.e. which tags are used to reference this connection. This topic is relevant
for VGI research since we assume that cross-linkage between different VGI data
sources can improve data quality, both by increasing completeness of linked data
sources, but also through quality control and review of the original data source,
such as the location of an image in the linked platform.

The remainder of this paper is structured as follows: The next section provides a
review of related literature, which is followed a description of the study setup. After
this, analysis results are presented, which is followed by conclusions and directions
for future work.

2 Literature Review

Understanding user contribution patterns is important in the context of spatial data
quality of VGI (Budhathoki and Haythornthwaite 2013; Coleman et al. 2009).
Therefore numerous studies examined data growth patterns for various
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crowdsourced geographic data platforms and identified mapper types and mapping
communities. Due to the topic of the presented paper the literature review section
will focus on community and cross-linkage analysis in previous studies, where
OSM is one of the most frequently analyzed VGI platforms. One study analyzed
community development in OSM between 12 selected urban areas of the world and
found that for cities with lower OSM community member numbers a significant
percentage of OSM data contributions (up to 50 %) came from mappers whose
main activity area was more than 1000 km away from these particular urban areas
(Neis et al. 2013). The interaction between users in OSM was measured for seven
selected cities in Europe, the United States, and Australia, by analysis of co-editing
patterns in OSM (Mooney and Corcoran 2014). Results showed that high frequency
contributors, so called senior mappers, perform large amounts of mapping work on
their own but do interact, i.e. edit and update contributions from lower frequency
contributors as well. A related study analyzing the OSM editing history for London
revealed that there was limited collaboration amongst contributors with a large
percentage of objects (35 %) being edited only once or twice (Mooney 2012). An
earlier AGILE workshop focused on the activities and interactions which occur
during VGI collection, management and dissemination on various VGI platforms
(Mooney et al. 2013), including the semantic aspect of the integration of VGI
datasets with authoritative spatial datasets. Community analysis among contributors
was also conducted for other crowdsourcing and social media platforms. For
example, a field experiment on the online encyclopedia Wikipedia showed that
informal rewards (e.g. a thumbs-up) increase the incentive to continue contributing
only among already highly-productive editors, but lower the retention of less-active
contributors (Restivo and van de Rijt 2014). Another study on Wikipedia identified
collaboration patterns that are preferable or detrimental for article quality, respec-
tively (Liu and Ram 2011). For example, articles with contribution patterns where
all-round editors played a dominant role were often of high quality. Analysis of the
network of Twitter users and their followers shows that, although users can connect
to people all over the world, the majority of ties from US based users are domestic
(Stephens 2015). That is, the Twitter network in the US is spatially constrained and
bound by national borders and population density. The connection between the
Twitter online social network and the underlying real world geography is also
discernable by the fact that 39 % of Twitter ties are shorter than 100 km, i.e.
roughly the size of a metropolitan area, and that the number of airline flights
emerges as a better predictor of non-local twitter ties than spatial proximity
(Takhteyev et al. 2012).

Although contribution patterns and specifically contributor communities within
various VGI and social media platforms have been recently discussed, as described
above, comparison of contribution patterns of individual users across platforms and
data-linkage across platforms has so far not been analyzed in great detail in the
literature. Some studies do compare the density and spatial footprints of data
contributions between different VGI and social media platforms, such as between
Flickr and Twitter (Li et al. 2013), or between several photo sharing services
(Antoniou et al. 2010). However, these studies do not analyze individual
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contributor behavior or discuss how contributions of one data source are related to
contributions from another. Recent trends show that linkage of geographic data
across different VGI and social media platforms is a real phenomenon. For example,
FourSquare/Swarm users use an OSM background layer to add new check-in
places. Therefore OSM positional accuracy directly affects the positional accuracy
of FourSquare/Swarm venues. Flickr, a prominent photo-sharing service, has about
30,000 photos tagged with OSM objects. These so-called machine tags potentially
allow machine algorithms to automatically extract descriptive information from
OSM for Flickr photos. Mapillary uses OSM for reverse geocoding as well. That is,
for each photo and photo sequence, the name of the corresponding road is deter-
mined by the OSM Nominatim geocoder tool which provides descriptive infor-
mation of the image locations. In turn, Mapillary photos can be used as a source to
derive information for OSM mapping purposes.

It has been shown that OSM positional accuracy is better where high-resolution
imagery is available (Haklay 2010). Also, data imports to OSM have clear benefits for
areas with a smaller contributor base (Zielstra et al. 2013). Since the Mapillary
licensing policy allows OSM contributors to derive information from its imagery, itis a
valuable source of geographic information for OSM and other VGI platforms. Within
its first year, Mapillary reached significant coverage in some selected cities, and even
outperformed Google Street View in terms of completeness in some cases (i.e., in some
rural areas and on some off-road segments) as of early 2015 (Juh4sz and Hochmair
2016). This explains why a growing number of OSM users utilize Mapillary data for
OSM data editing, which will be more closely analyzed in the remainder of the paper.

3 Study Setup

The study is split into two parts. The first part uses worldwide data and is conducted
at the aggregated level to get insight into how OSM contributors cross-tag feature
edits and changesets to express the Mapillary source. It analyzes also which OSM
primary features (e.g. highways or amenities) are mostly associated with Mapillary,
and whether Mapillary information is used to create new features or to edit attri-
butes of existing features. The second part of the study reviews in more detail the
mapping behavior of individual users. More specifically it analyses for users that
contribute to both platforms to which extent the areas they map in OSM and
Mapillary overlap, and whether one of the two VGI platforms is preferred over the
other as a mapping platform. This second part of the study is conducted for Europe.

Following the study design, the data retrieval process is also separated into two
parts. The first part extracts from an 11 week period all OSM feature editing events
and changesets worldwide that are associated with Mapillary according to their
tags. The second part identifies, based on user names, users who contributed to both
platforms in Europe. For these users, geometries of OSM changesets and edited or
added OSM features, as well as Mapillary photo locations are extracted for sub-
sequent comparison.
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3.1 Extraction of Mapillary Related OSM Events

For the extraction of Mapillary related OSM events we used OSM diff files. These
files contain all changes made to the OSM database over some time period and can
be downloaded at different time granularities from the OSM Website in the com-
pressed OsmChange format. In addition to the daily summary of changes in OSM
diffs, we considered also OSM changesets. All these data were extracted between
August 31, 2015 and November 15, 2015, covering an 11 week period of OSM
edits.

We relate to an OSM event as an insertion or modification of an OSM feature
that has an explicit reference to Mapillary. Such references are usually source tags,
descriptions, comments or URLs. We consider an OSM event Mapillary related if
the expression “Mapillary” (or “mapillary”) can be found in a reference. A software
tool, which we developed in Python and Bash, starts with downloading a diff file or
changeset. After decompressing the file, the tool converts it into the OPL' format
with the Osmosis tool. The resulting text files contain OSM edits in rows. Therefore
it is possible to search and filter edits with UNIX grep commands. If a line (event) is
associated with Mapillary (i.e. “Mapillary” or “mapillary” keywords can be found
in tag names or values), it is inserted into a spatially enabled PostgreSQL table.
Node and changeset geometries can be reconstructed from the object itself. How-
ever, way geometries were extracted from the OverpassAPIL. As a result of this
process, separate tables for OSM nodes, OSM ways and OSM changesets were
available for analysis. Each table contains the unique OSM ID of the object (node,
way, or changeset), username and ID of the OSM user that made the edit, tags in
hstore format, and timestamps of the event.

3.2 Extraction of Mapillary and OSM Features
Jrom Across-Platform Users

For comparing the spatial editing and contribution behavior between Mapillary and
OSM users, users from both platforms were extracted using string matching of
usernames. We used a Mapillary database dump of photo sequences that is a
suitable representation of the spatial coverage of photo mapping to extract user-
names (Juhasz and Hochmair 2016). To reduce the chance of extracting two dif-
ferent users who by coincidence share the same user name, only usernames that are
longer than 7 characters were considered for this task. Next, it was checked whether
the username from the Mapillary database dump exists also in the OSM database
using the main API. Since this is not the intended use of the API, we limited our
search to 100 matches. Then we reconstructed the OSM editing history of these

'OPL file manual—http://docs.osmcode.org/opl-file-format-manual/.


http://docs.osmcode.org/opl-file-format-manual/

146 L. Juhasz and H.H. Hochmair

(a)

50000-

40000+

30000-

Frequency

20000+

10000~

0 50 100 150 200
Area (sq km)

Fig. 1 Histogram of filtered changeset areas (a) and selected changesets in Europe colored by user

b)

OSM users using their changesets. A changeset contains the map edits and their
bounding area that are submitted by a user to the OSM database, which is typically
done on a regular basis to avoid losing completed edits. We limited OSM contri-
butions to the time period after a user signed up to Mapillary, ensuring that both
data sources cover the same time range. Since changesets occasionally cover large
areas, concealing details about a user’s primary regions of edits we excluded
changesets larger than 225 km”. Using an exploratory approach we found that
eliminating the upper tail of the area distribution (Fig. 1a) results in a fairly accurate
spatial representation of a user’s OSM editing history, for which retained
changesets are shown in (Fig. 1b).

To spatially match OSM and Mapillary contributions, a 10 by 10 km grid was
created for Europe, limited to the region within the dashed boundaries shown in
Fig. 1b. For each cell, OSM and Mapillary edits were extracted for all users that
were active in that cell. Results were stored in a PostgreSQL table with unique cell
IDs, allowing to spatially match user contributions from both sources. Based upon
examination of OSM and Mapillary contributions (areas, descriptions and times-
tamps) we identified one username which clearly did not refer to the same individual
(e.g. editing OSM based on local survey while uploading Mapillary photos from a
distant country at the same time). This user was removed from the dataset. The final
dataset, after limiting OSM contributions to after the Mapillary signup date and the
geographic area to Europe, contained 83 individual users who uploaded photos to
Mapillary, edited OSM data, and were most likely the same person.
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4 Results

4.1 Contribution Patterns for Cross-Tagged OSM Features

4.1.1 Cross-Linkage Between OSM Event Types and Mapillary

In a first step it was analyzed how and to which extent the OSM community uses
Mapillary as a source of information. The analysis was conducted for tags in
Mapillary related OSM events, i.e. node and way edits, and changesets (see
Sect. 3.1), that explicitly mentioned “Mapillary” or “mapillary”. For OSM nodes,
1930 events were identified, consisting of new insertions or edits. These events
occurred in connection with 1660 unique OSM nodes and were carried out by 68
unique users. For OSM ways, we found 1694 events relating to 1330 unique features
that were edited by 96 individuals. Furthermore, the “Mapillary” or “mapillary”
keywords appear in 5110 changesets submitted by 209 mappers. The weekly
aggregated number of events is shown in Fig. 2. The number of users editing nodes
or ways, or submitting changesets (smaller than 225 km?) with reference to Map-
illary, together with the number unique users per week are summarized in Table 1.
The table shows for the different weeks also the total number of OSM users who
submitted any changes. Among this group, the percentage of OSM users who
submitted changes based on Mapillary images is shown in the last column. Values
between approximately 0.5 and 0.6 % indicate that the sub community that uses
Mapillary images for OSM data contribution is still a small fraction.

To avoid storing redundant information, OSM users oftentimes attach source
information to the changeset rather than to each individual feature. This approach is
also recommended when editing multiple features in a mapping campaign. This
explains the higher number of committed changesets and the higher number of
changeset users with a reference to Mapillary compared to users associated with
feature edits. However, it should be noted that not all edits in such tagged
changesets are necessarily based on Mapillary alone, although the “Mapillary” or
“mapillary” terms appear in the tag. For example, one changeset had a source tag
value “bing”, referring to the available Bing imagery, accompanied by several
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Fig. 2 Number of weekly OSM events cross-tagged to Mapillary
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Table 1 Weekly aggregated number of OSM users

Week Users associated with Mapillary All OSM users | % OSM users
Node | Way |Changeset | Unique (Mapillary)
Aug 31-Sept 6 (36) |10 12 55 67 11,701 0.63
Sept 7-Sept 13 (37) |12 14 52 63 10,918 0.58
Sept 14-Sept 20 (38) |13 11 47 56 10,476 0.53
Sept 21-Sept 27 (39) | 10 14 40 55 10,298 0.53
Sept 28-Oct 4 (40) 9 9 38 49 10,108 0.48
Oct 5-Oct 11 (41) 8 17 56 66 10,606 0.62
Oct 12-Oct 18 (42) |9 13 48 59 10,270 0.57
Oct 19-Oct 25 (43) 18 19 51 68 10,607 0.64
Oct 26-Nov 1 (44) 17 20 52 69 10,872 0.63
Nov 2-Nov 8 (45) 14 13 47 58 11,185 0.52
Nov 9-Nov 15 (46) |7 15 41 54 11,305 0.48

comments, including “Added crossing from Mapillary and bing” or “Side-
walk + surfaces etc. from bing, mapillary and local knowledge”. Analysis of
changeset source tags revealed that 29 % of identified changesets” rely solely on
Mapillary, local knowledge and surveys, without indicating any other available
sources, such as Bing or Mapbox imagery in OSM source tags. We checked also
whether Mapillary images overlapped with cross-tagged OSM changesets and
found that only 5 % of these changesets were more than 50 m away from the
nearest available Mapillary imagery. 84 % of these changesets not located in the
proximity of Mapillary imagery were created by the JOSM editor which does not
reset the source tag when submitting a new changeset. Therefore these occurrences
may be the result of this editor feature, and not of deliberately provided source
information by the user. At least one changeset discussion confirms this.’

The spatial distribution of events (individual nodes, ways and changesets com-
bined) is shown in the world map in Fig. 3. Table 2 summarizes relative frequencies
of event counts by continent together with user numbers. The map shows that in all
regions where Mapillary is mostly contributed, i.e. in Europe and the United States,
Mapillary is frequently used as a data source for OSM edits as well. This is also
confirmed by user numbers in Table 2, which are higher for Europe and the United
States (as part of North and Central America) than for other continents. Table 2
reveals that over 61 % of all node edits and over 44 % of all way edits in OSM during
the analyzed 11 week period occurred in Asia, which is surprisingly high given that
the share of mapped tracks in Mapillary in Asia from all world contributions is only 4
% as of the beginning of 2015 (Juhasz and Hochmair 2016). However, the user
numbers for node and way edits in Asia are still much lower than those for Europe,
which means that this pattern stems from a relative small group of OSM mappers that
apply a source tag to edited individual OSM features rather than to changesets.

20SM changeset—www.openstreetmap.org/changeset/35291204.
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Fig. 3 Spatial distribution of identified OSM events with reference to Mapillary

Table 2 Identified OSM events with reference to Mapillary by continent

Continent Nodes Ways Changesets

Event (%) |Users |Event (%) |Users |Event (%) |Users
Africa 0.05 1 0.00 0 0.08 1
Asia 61.63 11 44.29 16 8.59 19
Europe 37.28 48 50.43 66 45.08 139
North and Central America |0.73 7 491 11 43.51 38
Australia and Oceania 0.16 2 0.25 1 0.50 5
South America 0.16 1 0.12 2 2.24 15
Total 100 70 100 96 100 217

Contributions to North and Central America show that only very few mappers tag
individually edited features (nodes, ways), but primarily tag changesets. OSM events
cross-linked to Mapillary occur in all five continents. It should also be noted that the
sum of users over aggregated continent data is greater than the number of users
extracted from all nodes or changesets, which implies cross-continent mapping
activities.

An analysis of tag distribution for OSM nodes and ways referencing Mapillary
shows that the 10 most common tags, including the “source” tag, represent 60.4 %
of all tag occurrences. These can be described as power tags (Peters and Stock
2010; Vandecasteele and Devillers 2015), i.e. tags used frequently by many users.
The most common tag was “source”, which was attached to 1507 nodes and 1285
ways.



150 L. Juhasz and H.H. Hochmair

Table 3 Distribution of OSM features All OSM features

primary features cross-linked referencing

to Mapillary Mapillary
Nodes # (%) (%)
Amenity 736 44.34 5.06
Natural 199 11.99 6.34
Highway 174 10.48 6.20
Tourism 102 6.14 0.81
Barrier 83 5.00 1.45
Leisure 74 4.46 0.31
Public transport 47 2.83 0.74
Ways
Highway 620 46.62 28.07
Leisure 239 17.97 0.82
Barrier 194 14.59 1.27
Landuse 76 5.71 4.42
Amenity 50 3.76 1.06
Emergency 49 3.68 0.02

4.1.2 Cross-Linkage for OSM Primary Features

The next step of the analysis examined the distribution of cross-linkages to Map-
illary for OSM primary feature categories. For ways and nodes, features from 21
out of the 26 primary feature categories showed a reference to Mapillary in our
dataset. Missing primary features are aerialway, boundary, craft, military, and
office. Table 3 shows the most frequently used OSM primary features that were
cross-linked to Mapillary. The tags of these OSM features show a clearly different
frequency distribution than that of the complete set of OSM features, which was
extracted from OSM Taginfo.> As an example, for node events OSM amenity
features are frequently derived from Mapillary (44 %) as opposed to only around
5 % of amenity features that are present in the entire OSM dataset. For way events
highway, leisure and barrier OSM features referenced to Mapillary occur at a higher
relative frequency than this is the case for the corresponding primary features in the
entire OSM dataset.

In addition to primary features, 64 OSM features with a key “traffic_sign” that
are cross-tagged with Mapillary (3.86 % of nodes) were also found. This de facto
tag is also related to transportation and often used outside the “highway =*"
tagging scheme. With Mapillary extracting and displaying traffic signs on their
website, it is convenient to map traffic signs in OSM.

Surprisingly, some aeroway features, which fall into the category to map air
travel related features, appeared in the OSM event list. Although this is outside the

30SM Taginfo—http://taginfo.openstreetmap.org.


http://taginfo.openstreetmap.org

Cross-Linkage Between Mapillary Street ... 151

(a) (b)

Fig. 4 Using street level imagery in OSM: Mapping runway features (a), indoor mapping (b),
deriving descriptive information (c), and deriving new road pattern (d)

focus of typical street level imagery, the flexibility of Mapillary allows users to take
and upload photos from virtually anywhere. As a result of this, some airport
taxiways have been mapped on the London Heathrow airport based on the imagery
(Fig. 4a). Another innovative use of Mapillary that can be seen in the analyzed
dataset is indoor mapping. Since it is not possible to obtain GPS coordinates inside
a building, postprocessing of images allows users to geolocate their imagery and
upload it to Mapillary. The presence of an additional “indoor” OSM tag and
negative “layer” and “level” values indicate object positioning through Mapillary
indoor-imagery (Fig. 4b). In fact, 191 nodes and 161 ways were tagged as indoor or
below surface features. For better integration of Mapillary images into the OSM
tagging scheme, a new key called “mapillary” has also been introduced to the OSM
community, which allows mappers to reference the corresponding Mapillary image
in the OSM feature key. A new initiative, OneLevelUp, already renders this
information to a web map. Users also tend to use namespaces, indicating from
which direction a Mapillary photo shows the object in question (e.g. “mapillary:
NE”). In addition, street level imagery provides the ability to capture descriptive
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information of features, such as the name of a business (Fig. 4c), the surface type of
a road or the material of street furniture. Furthermore, the crowdsourced nature of
Mapillary and the ability to capture the rapidly changing world is sometimes a
helpful source to obtain an update on geometry information, such as on a modified
road layout (Fig. 4d). Interestingly, OSM features highlighted in Fig. 4d do not
have a source tag indicating Mapillary, but the following note assigned to them:
“PLEASE DO NOT EDIT if you don’t live here. Roads have been completely
reconfigured. High-zoom-level imagery is out-of-date (low zoom level imagery is
correct). Consult Mapillary.com sequences for this area to see correct road
configuration”.

4.1.3 OSM Activity Types Associated with Mapillary

In another step the version numbers for edits of individually edited features in OSM
that were cross-linked to Mapillary were extracted. This provides information about
whether features were newly created (version number 1) or modified (version
number >1). A summary of these activity types is provided in Table 4. The large
number of edits with a Mapillary reference (last three columns) suggests that street
level imagery is used not only to create new features but also to edit existing ones
(e.g. to add descriptive information). The table distinguishes between edits applied
to nodes that were created during the 11 week analysis period based on Mapillary
(left part), and edits applied to nodes that were created before that period or without
reference to Mapillary (right part).

4.2 Across-Platform User Contributions

For analysis of individual mapping behavior across the two VGI platforms we
extracted Mapillary and OSM contributions of 83 individual users identified earlier
as described in Sect. 3.2. This analysis was conducted for Europe (see Fig. 1b). To
analyze whether mapped areas of edits are co-located or spatially distinct, for each
user, the percentage of 10 by 10 km tiles mapped only in OSM, mapped only in
Mapillary, or mapped in both platforms was computed. Results showed that 93 %

Table 4 Number of OSM features based on activity type

Created during data collection with Mapillary Edited (created earlier or created
reference without Mapillary reference)
Total | Not Edited Edited
edited once more than
further once
Nodes | 692 596 65 31 968
Ways 681 593 74 14 649
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of users mapped at least some areas in both platforms, resulting in an overlap
(Fig. 5a). Even though the sampling of users analyzed for this part of the study
started with extracting users from Mapillary, the diagram shows that the majority of
users focuses more on OSM (blue area) than on Mapillary (green area) in their data
collection efforts. For five users, the exact same tiles are mapped both in OSM and
Mapillary. Figure 5b highlights the spatial differences for a selected user in
Northeastern Germany, showing that urban areas tend to be mapped both in OSM
and Mapillary, whereas rural areas are predominantly mapped in OSM only. The
latter may change once urban areas become more completely mapped and thus
saturated in Mapillary, so that mappers need to divert more towards rural areas for
additional Mapillary contributions. Areas of Mapillary-only contributions can be
found along selected major roads (e.g. highway bypass of Berlin). This bypass was
already mapped in OSM, but provided a novel contribution option to Mapillary.
Mapillary requires users to be physically present at mapping locations, while
editing OSM remotely is a common practice. This might be a reason behind OSM
contributions being more spatially spread for this user.

Curves in Fig. 6 show which percentage of users mapped at least a given per-
centage of the total mapped area (constructed from OSM and Mapillary tiles
combined) in OSM, Mapillary, or in both. For example, the leftmost values mean
that 100 % of the users mapped (at least) 0 % of the area in OSM, Mapillary or
both. Moving further to the right, one can see that 75 % of the users mapped OSM
in at least 50 % of their combined areas, that 48 % of users mapped Mapillary in at
least 50 % of their areas, but that only 10 % of users mapped at least 50 % of
overlapping areas, i.e. in OSM and Mapillary. Furthermore the diagram shows that
2 % of users have a 100 % overlap in mapped areas.
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5 Discussion and Conclusions

The first part of the study analyzed how Mapillary street level photographs are
incorporated and cross-linked in OSM by matching the Mapillary keyword to tags
in OSM edits and changesets. Results showed that even during a short period of
time (August 31-November 15, 2015), Mapillary images have been used to edit
OSM features. It was found that overall Mapillary is most frequently associated
with changesets rather than with individually edited features, although the share of
OSM events (nodes, ways, changesets) that are cross-tagged with Mapillary varies
between the continents. The predominant tagging of changesets might be the result
of batch changes in order to avoid the tagging of redundant information with
individual features.

The geographic focus of Mapillary related OSM events corresponds to the core
areas of Mapillary contributions, which are Europe and the United States. However,
due to some local mapping activities, peaks in Japan and in Southeast Asia could
also be identified.

The frequency distribution of cross-linked OSM primary features with a refer-
ence to Mapillary is significantly different from that of the entire OSM dataset. The
percentage of cross-linked features compared to the entire OSM dataset is higher for
transportation (highway, public transport, traffic sign) and leisure (natural, amenity,
tourism). This finding is in line with common activities associated with Mapillary,
which are recording photos while commuting, traveling, and outdoor and leisure
activities, such as hiking. The crowdsource nature of Mapillary allows users to map
OSM features in places where they are currently less frequently found, including
airport taxiways or indoor objects. Cross-linking the two data sources can also help
to improve data quality. An example was given where a changed road network
pattern was reflected in Mapillary photographs, which were then used to update
OSM road geometries. Furthermore the Mapillary images provide a potential data
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source for adding OSM feature attribute information (e.g. surface type, name of
business) without the need to conduct a field survey.

The second part of the study extracted areas of mapping activities from indi-
vidual users who contributed both to OSM and Mapillary. The analysis revealed
that an individual mapper is more likely to edit larger areas in OSM than in
Mapillary. Despite this fact it could be observed that 93 % of users in our sample
mapped at least some areas that overlapped between OSM and Mapillary. The
overlapping areas tend to be located in locations where a user conducts frequent
edits, for example in urban areas the user is familiar with.

For future analysis, we plan to extend our data collection methods to include the
geographic areas of API calls from the iD and JOSM editors. These areas will
reveal the spatial extent for which OSM users loaded Mapillary imagery into the
editors. This will allow us to add a temporal component to the analysis, namely to
check whether the viewing of the Mapillary street level photos coincides temporally
with an OSM event, e.g. node edit, for an area of interest.
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Geo-Privacy Beyond Coordinates

Grant McKenzie, Krzysztof Janowicz and Dara Seidl

Abstract The desire to share one’s location with friends and family or to use
location information for navigation and recommendations services is often overshad-
owed by the need to preserve privacy. As recent progress in big data analytics, ambi-
ent intelligence, and conflation techniques is met with the economy’s growing hunger
for data, even formerly negligible digital footprints become revealing of our activi-
ties. The majority of established geo-privacy research tries to protect an individual’s
location by different masking or perturbation techniques or by suppressing and gen-
eralizing an individual’s characteristics to a degree where she cannot be singled out
from a crowd. In this work we demonstrate that location privacy may already be
compromised before these techniques take effect. More concretely, we discuss how
everyday digital footprints such as timestamps, geosocial check-ins, and short social
media messages, e.g., tweets, are indicative of the user’s location. We focus partic-
ularly on places and highlight how protecting place-based information differs from
a purely spatial perspective. The presented research is based on so-called semantic
signatures that are mined from millions of geosocial check-ins and enable a proba-
bilistic framework on the level of geographic feature types, here Points Of Interest
(POI). While our work is compatible with leading privacy techniques, we take a user-
centric perspective and illustrate how privacy-enabled services could guide the users
by increasing information entropy.
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1 Introduction and Motivation

While data privacy continues to be an area of worry and confusion for many, recent
concerns over the privacy of location information specifically have come to the soci-
etal forefront. With the increase in mobile devices, as well as technical advances in
ambient intelligence powered by the Internet of Things (IoT), location information
has become ubiquitous. It has been widely recognized that the resulting technological
and social implications will change our understanding of privacy (Bohn et al. 2005;
Weber 2010). In fact, personal location information is now arguably a commodity to
be traded for services, e.g., for navigation applications, local search, and coupons.
Social media have also had a role to play in the advancement of location information
usage. An increasing number of social applications allow, and increasingly require,
some aspect of location to be shared, be it through posts, messages, check-ins, or
photos. While many of these services request location information to improve the
user experience, e.g., to show nearby places recommended by friends, other services
do not provide clear benefits to the user and collect a variety of personal data in
the background (McKenzie and Janowicz 2014). A recent study, for instance, shows
that smartphone users are still unaware of the extent and also the frequency at which
their personal data are being collected and that they would benefit from more fine
grained privacy settings and alerts (Almuhimedi et al. 2015). Even coarse location
information can be revealing. In fact, 95 % of individuals can be uniquely identified
by just 4 spatio-temporal fixes from cell antennas (de Montjoye et al. 2013).
Consequently, when discussing geo-privacy, people primarily think of geographic
coordinates and positioning techniques such as Global Navigation Satellite Systems
(GNSS), Wi-Fi-based positioning systems (WPS), Bluetooth Low Energy (BLE)
beacons, or radio towers. There are, however, various other possibilities to infer
somebody’s location and, at least in terms of geo-privacy, some of them may be
more revealing than geographic coordinates alone. Additionally, these approaches
do not require access to the user’s mobile device. This is particularly important as
it dramatically increases the number of parties that may infer a user’s location. In
contrast to positioning techniques, these approaches rely on the notions of place and
place types instead of merely focusing on geographic space. Intuitively, there are
certain, often latent, place characteristics that emerge from human behavior towards
these places and define them as being of a common type, e.g., bar or office. With
respect to temporal characteristics, for instance, a place that is mostly visited during
the evenings and weekends is more likely a bar than an office building. Similarly,
a place where people predominantly talk about tacos, burritos, and tequila is more
likely to be a Mexican restaurant than a Polish restaurant. In an analogy to remote
sensing, a set of spatial, temporal, and thematic characteristics that jointly identify a
type of place is referred to as the semantic signature of said type (Janowicz 2012).
In this work, we employ these signatures to demonstrate how apparently harm-
less digital footprints such as social media messages, check-in timestamps, and so
forth can be used to compromise a user’s geo-privacy before position masking tech-
niques come into play. While our work is compatible with established methods for
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location privacy, we focus on digital footprints here and how types of places impact
geo-privacy. The concern in this case is that people should be aware that even if they
don’t explicitly share their geographic coordinates that their location can be proba-
bilistically determined based on the words that they write, the timestamps that they
make public, and a basic understanding of the spatial and platial' configuration of a
city.

The contributions of this work are as follows:

1. We build on existing work in the area of geo-privacy to show how non-spatial con-
tent published by an individual can lead to the disclosure of information directly
related to her location.

2. We demonstrate how semantic signatures, built from millions of geosocial foot-
prints, can be used to infer the place type of the location someone is visiting.
Moreover, we show that it is possible to quantify this inference and calculate the
probability of determining one’s location based on her content.

3. We offer a window into what is possible provided seemingly innocuous informa-
tion. This work suggests ways that content publishers may adjust one or more
pieces of published content in order to reduce the risk of revealing their location.

The remainder of the paper is organized as follows. Section 2 introduces related
research relevant for the work at hand. Section 3 introduces the datasets used for
our study and briefly reviews how the semantic signatures were constructed. Three
different groups of semantic bands (spatial, temporal and thematic) are discussed in
the section following this (Sect. 4). In Sect. 5, we implement our approach through
a use case that demonstrates the importance of the semantic signatures in privacy
preservation. Finally, we conclude with ideas for future work in Sect. 6.

2 Related Work

Geo-privacy research efforts in the GI science community have focused primarily
on geomasking or obfuscation techniques, which introduce inaccuracy to geographic
coordinates in an effort to balance the protection of location privacy and preserva-
tion of spatial information (Armstrong et al. 1999). Attention to the development
and evaluation of geomasking procedures has given rise to a large body of work in
recent years (Hampton et al. 2010; Zandbergen 2014; Keith C 2015; Kounadi and
Leitner 2015; Seidl E. et al. 2015; Seidl 2015; Zhang et al. 2015). The foci of mask-
ing studies, which include the testing of distance thresholds and quantification of
personal reidentification risk, remain unable to address the impact on location pri-
vacy of individuals generating location-bearing content outside a masked data set.
A major missing component from these works is the consideration of other data dis-
closing personal locations even when geographic coordinates are omitted or masked
to remain confidential.

!Following recent literature, we will use the term platial here for ‘place-based’” (Goodchild 2015).
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Geo-privacy in masking studies is often defined as the right of the individual to
determine how, when, and the extent to which his or her location data is shared with
others (Duckham and Kulik 2006). This definition places an emphasis on human
agency in privacy rights and is arguably unrealistic in a digital age characterized by
frequent and rapid data exchange, where it is difficult to keep track of the parties
to which personal data are transmitted. Setting a concrete definition of geo-privacy
also opposes other frequently cited conceptual approaches that eschew specific def-
initions. The definition presented here, however, is in line with the purpose of this
paper, which is to introduce unique means by which content publishers, e.g., social
media users, may control the release of their location data, namely by considering
what is possible with semantic signatures.

The measurement of privacy in a release of data is framed as the risk of identity
disclosure. The principle of k-anonymity describes a release of data where each per-
son in the data set is indistinguishable from k — 1 other individuals in the same data
set (Sweeney 2002). The k-anonymity property does not recognize the side infor-
mation that an adversary might have about an individual in the database. Another
development in information privacy studies is differential privacy, which addresses
the problem auxiliary information outside a database poses to the notion of absolute
disclosure prevention (Dwork 2011).

Compared to data collected and transferred to third parties in traditional data col-
lection models, individuals do have some agency in the location information they
share in user-generated content. The benefits of participation in location-sharing
applications (LSAs) or other social networks tend to outweigh perceived privacy
risks for users. Social influence is shown to have a strong impact on the adop-
tion of a location sharing application (LSA) among university students (Beldad and
Kusumadewi 2015), which extends from having friends or peers known to use the
application. Users of the location check-in application Foursquare report that moti-
vations for location sharing include coordination with friends, presentation of self,
gaming aspects, and peace of mind or safety purposes (Lindqvist et al. 2011). Loca-
tion reporting in other social media is not limited to GPS-assisted check-ins, and
may be based on text content. Consider the message, “finally home,” which may be
posted for peace of mind or coordination purposes. The site “Please Rob Me”? used
a classifier predicting whether or not a Twitter user was home based on tweets to
demonstrate how such information could be exploited by an adversary (Gambs et al.
2010).

Another consideration for this work is whether content publishers are likely to
embrace new options for protecting their geo-privacy. A survey of location pri-
vacy preferences for personal GPS data finds that providing more complex privacy
options, including setting temporal limits and specific locations that may not be
shared, leads to more location sharing (Benisch et al. 2011). This provides support
for developing an application that allows users to fine-tune privacy settings based
on semantic signatures. It also debunks the idea that increased privacy support is at
odds with information sharing.

Zhttp://pleaserobme.com.
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3 Data and Semantic Signatures

For the analysis and examples used in this paper we accessed POI data from
Foursquare’s public facing application programming interface (API).> A total of
908,031 randomly selected Foursquare venues* were accessed, each categorized into
one of 421 Foursquare-defined place types. These types are hierarchically organized
into three levels, e.g., Arts and Entertainment > Movie Theater > Indie Movie The-
ater. Analyzing attributes of these POI and aggregating them to the type level allows
us to derive semantic signatures (Janowicz 2012). Semantic signatures use digital
footprints emitted from humans such as terms that are associated with certain place
types, times at which places of a given type are typically frequented, and so forth.

To construct temporal bands, each POI in the dataset was accessed every hour
for 4 months starting in October 2013. The number of check-ins was recorded and
cleaned allowing for a popularity distribution to be calculated through aggregating
data to the place type level. To further strengthen the temporal bands, the 4 months
of check-ins were distilled down to hours of the day over the course of a single week.
This produced an array of 168 temporal bands (24 h x 7 days). These bands can be
further aggregated into courser resolution bands which are discussed in Sect. 4.2.

Thematic bands are constructed from the unstructured textual content provided
as tips by people that have visited POI. Tips are essentially reviews that a visitor
uses to describe or comment on a place. All tips were accessed for each POI in
the Foursquare venue dataset mentioned previously. The tips were combined based
on place type, stemmed, and cleaned (punctuation and stop words were removed).
To ensure robust data signatures, only those place types with 30 or more tips were
included in this textual analysis. Latent Dirichlet allocation (LDA) (Blei et al. 2003)
was used to mine topics from the text and assign probabilistic topic distributions to
each of the place types. LDA analyzes documents (aggregate of tips by place types in
this case) and extracts topics based on the co-occurrence of words. This allows place
types to be described as a distribution of topics extracted from the textual content
contributed by individuals to those place types. We call these topic distributions
thematic bands. In this work, 200 topics (thematic bands) are used.

Spatial bands are developed by exploring the geospatial patterns within the POI
data. A number of different approaches are used to create these bands. Spatial
descriptive statistics such as Ripley’s K function are used to estimate the deviation of
POI place types from spatial homogeneity. In previous work these place type func-
tions have been binned by distance and combined with other spatial dispersion tech-
niques such as Average Nearest Neighbors (ANN) and Voronoi place-type variance
to produce a range of spatial bands (McKenzie et al. 2014).

For the purposes of this research, further investigation into the role of semantic
signatures in location privacy focuses specifically on examples in the greater Los
Angeles region. The boundary of this region was determined through the 2014 U.S.

3https://developer.foursquare.com/docs/venues/search.
4Venue in this case is the Foursquare-specific term for Point of Interest.
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census urban areas dataset and the boundaries of 240 neighborhoods within this
region were ascertained from the 2014 census designated places dataset.

4 Indicativeness of Digital Footprints

In this section, we present a number of ways that information shared by an individ-
ual could be used to expose her location. A multidimensional approach is outlined
exploiting the spatial layout of POI, the unique temporal popularity distributions of
place types, and the thematic structure that can be extracted from text. The impact of
each group of semantic bands is discussed individually and implemented as a whole
in Sect. 5.

4.1 Spatial Indicativeness

To start with an illustrative example, imagine a user publishing content via her
favorite social networking application, stating that she is at a Mexican restaurant
in neighborhood N. We assume for the purposes of this research that we have access
to a complete POI gazetter for the greater Los Angeles region (e.g., Foursquare venue
set).

If N is East Los Angeles, the probability of determining her location is quite low
compared to other neighborhoods (Fig. 1a). East Los Angeles has one of the highest
ratios of Mexican restaurants to all other POI types in the region, namely 50 out of
809 (0.062). In comparison, the probability of randomly selecting a Mexican restau-
rant in Beverly Hills (Fig. 1b) is merely 4 out of 900 (0.004).

(a) (b)

Fig.1 Mexican restaurants compared to all POl in two greater Los Angeles neighborhoods. a East
Los Angeles. b Beverly Hills
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Consequently, knowing that a user is at a Mexican restaurant and in a specific
neighborhood significantly impacts the ability to locate this individual. With access
to a public POI dataset, the above example shows just how different two neighbor-
hoods are with regards to platial privacy. In other words, the same place type can be
revealing in one neighborhood, while it does not expose the user’s likely location in
another neighborhood.

If an individual were to state the name of the establishment, e.g., indicate that she
were at the chain restaurant Chipotle Mexican Grill, this would further increase the
probability of determining her exact location within Beverly Hills. In this case, two
of the four Mexican restaurants in Beverly Hills belong to the chain and therefore
have the same name. In comparison, in East Los Angeles, no two Mexican restaurants
have the same name. Thus, any indication of the place name on the part of the user
immediately identifies her location to the place instance level.

Given the hierarchy of place types introduced in Sect. 3, we can increase location
privacy by simply moving one level up in the place type hierarchy. For example,
in the Foursquare place type vocabulary, Food is the category into which Mexican
Restaurant is assigned (along with numerous other restaurant types, grocery stores,
etc.). Comparing the number of POI categorized as Food to all POI in the dataset,
the ability to locate someone in Beverly Hills based purely on place types drops
considerably from 4 out of 900 POI (Mexican Restaurant) to 163 out of 900 (Food).
Of the 240 neighborhoods in the greater Los Angeles region, Beverly Hills drops
from 4th to 193rd with regards to its ability to locate someone based on place type.
East Los Angeles on the other hand drops to a ratio of 0.234 (189 out of 809). This
signifies a substantial decrease in identifiability, but not to the same extent as in
Beverly Hills. Table 1 shows a sample of LA neighborhoods along with ratios for

Table 1 A sample of neighborhoods in Los Angeles showing total POI within each neighborhood
along with ratios for four different place types at two different levels in the place type hierarchy

Neighborhood POI count Mexican Food Museum Arts and
restaurant entertainment
Redondo Beach 948 0.014 0.217 0.000 0.023
Inglewood 998 0.025 0.200 0.000 0.024
Monterey Park 1,085 0.007 0.190 0.001 0.013
Torrance 2,731 0.011 0.168 0.001 0.017
Malibu 1,070 0.006 0.089 0.002 0.026
Santa Monica 1,443 0.016 0.243 0.001 0.038
Culver City 993 0.011 0.209 0.003 0.050
Stevenson Ranch 19 0.000 0.316 0.000 0.000
East Los Angeles 809 0.062 0.234 0.000 0.011
Beverly Hills 900 0.004 0.181 0.002 0.047
All POI 208,682 0.015 0.150 0.001 0.025
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Fig. 2 Plot of Ripley’s K functions for three POI categories as well as all POIs in the greater Los
Angeles region

Mexican Restaurants and Museums as well as their parent categories Food and Arts
and Entertainment respectively.

The importance of spatial clustering within the POI dataset must also be consid-
ered. Simply knowing a place type and its prevalence within a region is valuable,
but knowledge of the spatial distribution of the place type within the region may
also lead to an increase in identifying a user’s location. For example knowing that
an individual is located at a place type that is highly clustered in a region minimizes
the time necessary to find them (e.g., search and rescue operation).

Figure 2 depicts Ripley’s K statistics (Dixon 2002) for three place types as well as
all places of interest in the Los Angeles. It shows the deviation from spatial homo-
geneity (shown as the dashed gray line in this figure). Naturally, place types such as
Mexican restaurants show stronger clustering at a smaller distance than police sta-
tions or farmer’s markets. Other methods for assessing the spatial indicativeness of a
geospatial dataset have also proved valuable, including spatial entropy (Batty 1974).

4.2 Temporal Indicativeness

By way of another example, let us assume that an individual chooses not to pub-
lish the place type of the location but rather the time at which she is visiting a spe-
cific neighborhood N. Previous research has shown that time is highly indicative of
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the types of places that people visit (McKenzie and Janowicz 2015). As one might
expect, it is highly unlikely that someone posting from Los Angeles at 5am on a
Monday is at the Department of Motor Vehicles. Similarly, one is less likely to locate

someone at a nightclub at 9 am on a Monday.
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Using the temporal bands we can probabilistically estimate an individual’s loca-
tion given a specific time. These probabilities can work at multiple levels of granular-
ity. Figure 3 shows temporal signatures for three different place types with increasing
levels of temporal granularity. Consulting the values in this Figure, an individual that
is very precise in mentioning the time in an online post, e.g., 9 pm on a Friday night,
would be more likely to be found at a bar, then at an office building. These bands can
be aggregated based on the level of temporal granularity published. Say an individ-
ual solely mentioned the time of day, e.g., 9 am, and not the day of the week, then
this method would return office building as the most probable place type.

Unsurprisingly, different temporal bands offer different amounts of information
about the platial location of an individual. For instance, someone who only men-
tions 5 am on a Monday when publishing content is unlikely to be at Department of
Motor Vehicles. Realistically, the probability of this person being anywhere except
at home is rather small. On the other hand, if this person were to mention 6 pm on
a Friday there is a much wider range of places this person could be given the activ-
ities that are possible at this time. To put it more formally, each temporal band can
be defined by the unpredictability of the place types one might visit, which can be
represented through Information Entropy (Claude E 1948). 5 am on a Monday has
relatively low information entropy when compared to 6 pm on a Friday, given that
one could more easily predict the place type of an individual in the first case, namely
in some form of accommodation. Information entropy (E7) is defined in Eq. 1 where
p; is the probability of a given temporal band.

Er=- ZP[ log, (p;) )]

Previous work (McKenzie et al. 2014) explored the amount by which the hourly
temporal bands are unpredictable. Computing entropy across check-ins to all POI
in the dataset showed that there is a statistical difference in the information that
is presented between the hourly temporal bands (Table 2). This is important as the
ability to determine the place where someone is can drastically increase depending
on the time that she publishes content.

Table 2 Information entropy for five lowest and five highest temporal bands

Low entropy High entropy

Day Hour (AM) Entropy Day Hour (PM) Entropy
Monday 05:00:00 4.76 Thursday 07:00:00 5.97
Monday 04:00:00 4.87 Tuesday 07:00:00 5.96
Tuesday 04:00:00 4.93 Friday 06:00:00 5.95
Thursday 04:00:00 4.95 Friday 07:00:00 5.94
Tuesday 03:00:00 4.99 Saturday 12:00:00 5.93
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4.3 Thematic Indicativeness

The words and language that people use when talking about the activities are indica-
tive of the type of place they are doing the activity. Previous work in this area has
shown that non-geographic terms and phrases can be geospatially indicative (Adams
and Janowicz 2012; Mahmud et al. 2014). The results show that words in the English
language can be tied to some region on the planet with varying levels of probability.

The thematic bands introduced in Sect. 3 define each place type in the Foursquare
dataset as a distribution across topics. In short, the place types are defined by the
language of the people that have visited them. Three examples of topics extracted
from the unstructured natural language of the Foursqaure tips are shown in Fig. 4 as
word clouds of the topic’s most prevalent terms.

Using these thematic bands as the foundation, we use an LDA inference approach
(McCallum 2002) to infer a distribution of these same topics for any new unstruc-
tured text-based document. For example, given content such as,

So glad I made it in to deposit my check at the ATM before they closed.

We, as humans, likely infer that the user is at a bank. From a computational per-
spective, an LDA model would need to construct a topic distribution for this text
that would likely place a high probability on the topic related to banking (Fig. 4b),
low probability on the topic related to Mexican food (Fig. 4a) and somewhere in the
middle for the non-place type topic (Fig.4c). It is also likely that the bank place
type follows a very similar topic distribution to the topic distribution of the sentence
above. Jensen-Shannon distance (JSd) (Lin 1991) (Eq. 2) is used to measure the dis-
similarity between our newly created topic distribution (P) and each of the topic dis-
tributions for all 421 place types (Q). KLD (Eq. 3) represents the Kullback—Leibler
divergence and the lowercase d in JSd signifies Distance instead of Divergence. M is
equal to %(P + Q). The smaller the dissimilarity value (bounded between 0 and 1),
the more likely it is that our example content can be assigned to that place type. In this
simplified example, the sentence above shows the least dissimilarity with the bank
place type, and thus the user is said to be most likely at a bank. An implementation
of this model is discussed in further detail in Sect. 5.
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Fig. 4 Three example topics represented as word clouds of their most prevalent terms. a Terms
related to Mexican food. b Banking related terms. ¢ Non-place type specific terms
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5 Implementation: A Use Case

In the previous sections, we discussed the various bands of semantic signatures and
the ways in which these bands contribute to determining the place where someone is.
In this section, we bring the bands of the semantic signatures together to implement
one approach that determines a user’s place. An example use case is introduced,
and the parameters are altered to show how sensitive the model is to changes. A
first implementation of a formula is introduced to quantify the place-based privacy
implications of the content.

5.1 Thematic Content

To start, let us imagine that an unknown individual publishes some small amount of
unstructured content, e.g., a tweet. In this first iteration of the example, the content
is both thematic and spatial but does not include any temporal property.

Excited for chicken tacos and delicious salsa in Beverly Hills. €8

After stemming, a topic distribution for the text is inferred through an LDA topic
inferencer based on the topic distributions (200 topics) learned from the 421 place
types (thematic bands). A JSd dissimilarity value is then computed between the topic
distribution for this text and each of the place type topic distributions. Note that
this example uses a very small amount of text, so the inference model has a limited
amount of data on which to infer the topic distribution. A greater amount of data
would arguably lead to more accurate results. The top 10 least dissimilar place types
are shown in Table 3.

The place types listed vary in their specificity. Taco place is a sub type of Mexican
restaurant while building is a very generic place type. To put it another way, the
descriptive content contributed as tips about taco places are narrower in their theme
than the building place type which might include a wide range of themes related to
places that exist within a building, e.g., restaurant types or car mechanics. Equation 4
shows how the thematic property of a place type (PTyy,,,.) is quantified. Note that
this function simply converts the dissimilarity value into a similarity value (higher
value = better match).

PTrpeme = 1 = PT gy 4)
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Table 3 Top 10 place types

U P Place type JSd dissimilarity value

that are least dissimilar from -

the sample content (Quote 1) Mexican restaurant 0.267
Taco place 0.268
Food 0.301
Bar 0.302
Restaurant 0.309
American restaurant 0.317
Building 0.321
Miscellaneous shop 0.321
College cafeteria 0.329
Food and drink shop 0.330

5.2 Spatial Constraints

From a regional or spatial perspective, the content in Quote 1 indicates that the pub-
lisher is in Beverly Hills. We know from our gazetteer of places that there are four
Mexican restaurants within the neighborhood boundary. Making the assumption that
there is a certain region around an individual’s point location that they can sense (e.g.,
visually, auditory), we construct a grid over a region. We expect that one would be
able to locate something or someone reasonably quickly within this region. Provided
this assumption, we overlay a 500 x 500 meter cell grid over the Beverly Hills neigh-
borhood in Los Angeles. Recording the presence or lack thereof of POI in each grid
cell we find 115 out of 118 grid cells contain at least one POI. Of these, 2 grid cells
contain at least one Mexican restaurant producing a ratio of 2/115 or 0.017.

Through these two data dimensions we are able to first determine the place type
of the user and building off this constraint, spatially restrict the location possibili-
ties. Using a rudimentary cell-based clustering technique we can further restrict the
expected spatial locations of a content publisher.

5.3 Spatial Change

Building on the content of Quote 1, let us imagine that instead of sharing Beverly
Hills as her location, this person mentions East Los Angeles. The textual content
remains the same, so we have still determined that Mexican restaurant is the probable
place type, but in this case, the number and spatial layout of place instances matching
this criteria has changed. Overlaying the same 500 x 500 meter cell grid over East
Los Angeles we find that 112 out of 136 cells contain at least one POI and of these
cells, 36 contain at least one Mexican restaurant resulting in a ratio of 0.321. So
while the place type remains the same, the difference in spatial layout of these two
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Table 4 Effort values for two neighborhoods, Beverly Hills and East Los Angeles

Neighborhood Mexican restaurant cells | Ratio Total cells | Effort value (x10%)
Beverly Hills 2 0.017 136 2.5

East Los Angeles 36 0.321 118 979.3

Greater Los Angeles 2,328 0.088 98,461 20.8

region (Full area)

The Greater Los Angeles region is shown for comparison

neighborhoods means that there is a substantially lower chance of someone locating
the user in East Los Angeles compared to Beverly Hills.

While the ratio is informative, the raw cell count is important here as well. Tasked
with finding the publisher of the content a user would have to travel to 36 different
regions (cells) in East Los Angeles but only 2 in Beverly Hills. Stepping back to
the entire greater Los Angeles region, there are 98,461 cells that overlap neighbor-
hood boundaries, and of these, 26,311 contain POI. Of the cells containing at least
one POI, 2,328 contain at least one Mexican restaurant, producing a ratio of 0.088.
Taking this ratio by itself implies that on average it is harder to locate someone at a
Mexican restaurant in East Los Angeles than in the greater Los Angeles area over-
all. Though in this case, one would have to travel to 2,328 different regions (cells) in
order to find the content publisher.

A relative effort value bounded between 0 and 1 is proposed by multiplying the
number of likely cells by the ratio and dividing by the total possible set of cells over
the regions. Table 4 lists the resulting effort values for the neighborhoods previously
discussed.

5.4 Content Change

Again, let us slightly alter the published content and observe the implications on
location privacy. Keep in mind that the actual location of the user (Beverly Hills) and
activity (eating Mexican appetizers) remains the same. If instead of posting about the
specific type of appetizer, the user generalizes her content as shown in Quote 2, what
impact does this have on our ability to locate her?

Excited for great chicken appetizers in Beverly Hills. 2)

A topic distribution for this new content is again inferred from the existing LDA
topic model and JSd is used to calculate the dissimilarity between this topic distrib-
ution and all place type topic distributions. The top ten least dissimilar place types
are shown in Table 5.

Importantly, Mexican restaurant, presumably the place type the user is currently
enjoying their food, appears nowhere in the list. The best match is instead, food,
which is the parent category of Mexican restaurant, as well as many other place
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Table 5 Top ,IOPI?CB types Place type JSd dissimilarity value

that are least dissimilar from

the sample content (Quote 2) Food 0.263
Restaurant 0.268
American restaurant 0.275
Miscellaneous shop 0.276
Cafeteria 0.287
Cafe 0.305
Building 0.310
Assisted living 0.312
College cafeteria 0.313
General entertainment 0.322

types. Instead of 4 possible locations in Beverly Hills, we are now faced with 163
possible locations. At least one food location exists in 44 of the 112 cells leading to
aratio of 0.393 and an effort value of 0.127. A similar adjustment is seen in East Los
Angeles and for the greater Los Angeles region overall. Note that the broad activity
of going out for food, even more specifically, appetizers, has not been lost through
adjusting the text. By simply publishing a more generic term as part of her content,
the publisher decreased her ability to be found in Beverly Hills dramatically.

5.5 Temporal Baseline

In addition to the textual and regional content specified in the examples above, one
could imagine that someone might also tag their post with some type of temporal
information. For example, a user might add the time Friday at 7 pm (e.g., as a meeting
time) to the text.

In this example, the time is reported to a high granularity, permitting us to employ
the 168 band temporal signatures in determining the place type probability. Taking
the temporal signatures for each place type, we can directly compare the probabilities
for Friday (Fig.5) at 7 pm. For the purposes of this example, we have reduced our
set of 421 place types to the three shown in this figure. Of these three, Mexican
restaurant is the place type showing the highest probability at this time. Based on this
information alone, we make the assumption that the user is at a Mexican Restaurant
in Beverly Hills. This is in agreement with our text-based topic analysis discussed in
Sect. 5.1.

This is not the entire story, however. While Mexican restaurant shows the high-
est temporal probability at 7 pm on a Friday, visually, it is followed quite closely by
bar (Fig.5). Computationally we can quantify this concern by referencing the infor-
mation entropy for the hourly temporal signatures (a sample is shown in Table 2).
Friday at 7 pm lists the fourth highest entropy value. The high entropy of this band
tells us that in general, at 7 pm on a Friday night, people tend to be at quite a range of
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Fig. 5 Hour resolution temporal bands for Bar, Office and Mexican Restaurant on Friday

place types. Conceptually, this makes sense as this is the start of the weekend, and
people could be engaging in a range of activities (e.g., watching a movie, at a bar,
eating dinner, etc.). Knowledge of this high entropy reduces our certainty in deter-
mining the place type of the user and therefore has an impact on our overall ability
to establish the platial location of the user. The influence of temporal bands can be
quantified using Eq. 5, where PT,, represents the temporal probability of the given
time band, max(tp) is the maximum temporal band value, and PT}, is the information
entropy of the given time band.

PTyy, = PT,,/max(ip) X W + (1 — PT/max(E)) X (1 = W) (5)

If we set the weight component W equal to 0.5 and assume a time of 7 pm on
Friday, Mexican restaurant produces a PT;,,, value of 0.382, while Bar lists a value
of 0.345. Importantly, the information entropy values remain the same in this case.
This allows us to compare place types across different temporal bands.

What would happen if instead of Friday at 7 pm, the user tweets out her message
1 h later? The information entropy for 8 pm on a Friday is 5.852 (compared to 5.932
at 7 pm). The order of temporal probabilities has shifted as well with bar now slightly
more probable than Mexican restaurant, 0.022 and 0.019 respectively. These changes
lead to revised PTy;,, values for the two place types. Mexican restaurant has dropped
to 0.351 while Bar has risen to 0.389. Though minute, a 1 h adjustment has had a
significant impact on determining the place type. At 8 pm on Friday, the temporal
bands now indicate that the user is likely at a bar.

5.6 A Combined Approach: Thematic and Temporal Bands

We now need to combine the two values calculated through referencing the thematic
and temporal bands into a single value which indicates the most likely place type for
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Table 6 Statistical approach to determining place type based on temporal and thematic bands

Time Thematic Temporal Combined

Place type | Mex bar Mex bar Mex bar
Friday 7pm | 0.733 0.607 0.381 0.351 0.558 0.542
Friday 8 pm | 0.733 0.607 0.345 0.389 0.521 0.543

the user. In the case of Friday at 7 pm, both the temporal band and thematic band indi-
cate that the user is likely at a Mexican restaurant. One hour later offers a different
perspective with the textual content indicating a Mexican restaurant and the tem-
poral component suggesting a bar. A single value can be calculated through Eq. 6.
Note that the equation gives the option of weighting one component over another.

PTPmb = PTTheme X W+ PTTime X (l - W) (6)

With equal weights of 0.5, Table 6 shows the resulting place types depending on
time and theme. The thematic properties of both Mexican restaurant and bar remain
the same across time, while the temporal properties change based on the values com-
puted in Eq. 5. The combined value is calculated through Eq. 6. Not surprisingly, the
results suggest that the user is likely at a Mexican restaurant on Friday at 7 pm, since
both the thematic and temporal values agree. More interestingly, at 8 pm, this method
determines that the user is slightly more likely to be at a bar, even though the content
suggests that she is likely to be at a Mexican restaurant.

6 Conclusions and Future Work

In this work we discuss the use of semantic signatures for exposing location infor-
mation about a user through the content that she publishes. These semantic signa-
tures, described through various spatial, temporal, and thematic bands mined from
user-generated geosocial content, have shown to be an important basis on which the
place type of an individual’s location can be determined. Despite omitting or mask-
ing geographic coordinates, the methods presented in this work show that a person’s
location can still be revealed through comparing the signatures to non-geotagged
content published by an individual. We propose a method to compute the location
indicativeness of the signatures, i.e., the ability to locate somebody based on their
published content.

Our initial findings suggest that protecting a user’s geographic coordinates and
other potentially revealing characteristics, such as ethnicity, is not sufficient as every-
day digital footprints can give away the user’s location as well. These findings, for
instance, could be used to develop mobile applications that helps users, e.g., polit-
ical activists, to make small changes to their content in order to better protect their
geo-privacy.
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Future work in this area will focus on expanding the range of semantic signatures.
For example, the data collection for check-ins is currently being expanded to look at
yearly data with the goal of exploiting seasonal effects on place type check-ins. Fur-
thermore, hyperlocal data such as events could be used to enhance the robustness of
these signatures. In addition, we hope to expand this work into a prototype applica-
tion or browser plug-in that reports on the level of location privacy that is attainable
based on the content as well as spatial and temporal information that someone pub-
lishes.
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Modelling Spatial Patterns of Outdoor
Physical Activities Using Mobile Sports
Tracking Application Data

Rusne Sileryte, Pirouz Nourian and Stefan van der Spek

Abstract The paper presents a workflow for collecting, structuring and processing
geo-referenced recreational mobility data from a sports tracking application as to
monitor recreational usage of urban spaces. The data collected include GPS trajec-
tories of people walking, jogging, and running for recreational purposes in Euro-
pean cities. The presented workflow includes systematic steps for aggregating the
trajectories and attributing them to a spatial network model called Urban Space Net-
work. The nodes of this network are the navigable spaces or streets and its links
are the connections between them. A method is proposed to find a fuzzy notion of
recreational space usage, using the number of distinct application users whose tra-
jectories have been accounted for the space in question. The fuzzified space usage
values are then attributed to the nodes of the network. This model can be primar-
ily used to observe actual patterns of space usage and has the potential to be used
as ‘ground truth data’ for validating and calibrating network-based models of recre-
ational mobility. Patterns revealed by the workflow can be used to study where out-
door physically active mobility happens and where it is absent. Thus the proposed
workflow can provide spatial and objective insight useful in planning, management
and governance of cities in promoting active mobility that is already a rather global
trend in urbanism.

Keywords Mobile sports tracking application data + Mobility data « Urban space
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1 Introduction

Guidelines, policies, and regulations have already begun being created to encourage
physical activities in cities (NYC DDC 2010). Therefore, a better understanding of
where physical activities are conducted would enable more effective policy interven-
tions to promote physically active lifestyles in different built-environment contexts.
Probabilistic models on networks could bring the benefit of predicting the likely
effects of changes on facilitating or hindering the phenomena.

A substantial amount of data related to outdoor physical activities can be obtained
from mobile sports tracking applications. This data is constantly generated world-
wide by smart device users willing to record their spatio-temporal activity. The avail-
able data is extremely big, provided voluntarily and in large numbers, public, and
therefore not raising privacy issues, always available up-to-date, features the same
world-wide method of collection and finally, it is constantly growing.

However, mobile sports tracking application data is collected for personal motives
and the motivation of application providers is rather satisfaction of a user, than aggre-
gate data collection. In fact, nor the data is available in a single click; neither appli-
cation providers supply an interface for ready-made free access due to likely privacy
issues. Furthermore, the available data is raw and so vast in size, that structuring,
filtering and aggregation procedures need to be applied. The GPS (Global Position-
ing System) data is just a sequence of points in Euclidian space, which need to be
mapped and analysed in a ‘network space’, while constructing an appropriate ‘space
network’ for any of the cities is a non-trivial task itself.

Three cities have been chosen as case studies based on the availability of data
provided by Eurostat, similarity of rate between city’s population and the chosen
sports tracking application users. The chosen ones are namely Vilnius (Lithuania),
Valencia (Spain) and Gothenburg (Sweden) with a ratio of 2-3 spotted application
users per 1000 inhabitants. This paper describes a workflow for observing usage of
urban spaces for running and walking activities in various European cities based on
the mobile sports tracking application data. The developed workflow exceeds the
scope of a single project in that it aims to simplify and standardize the preprocessing
of mobility data.

The following section delineates related work and clarifies how this research is
distinguished from the similar works. The third one explains the procedure for acqui-
sition of required data, which is followed by constructing an Urban Space Network.
Next section explains a method to interpret the relative space usage and delivers the
results. Finally, the conclusions are drawn preceded by the discussion and recom-
mendations.
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2 Related Research

Previous studies of physically active human mobility rely on manual data collec-
tion by directly observing chosen locations during certain short periods (Floyd et al.
2008), asking residents in surrounding areas of a park to complete 7-day physical
activity logs that include the location of their activities (Kaczynski et al. 2008),
comparing recipients places of residence with their physical activity registered by
accelerometers (Cohen et al. 2006) or even using a telephone survey (Lopez 2004).

All the previously mentioned methods are performed by intensive human labour
and can only be applied on relatively small-scale measurements. In addition, walka-
bility has been mostly studied as a property of the entire neighbourhood rather than
particular urban space or their networks. Yet a number of researches have explored
definite relation between street walkability and the configuration of urban street net-
work and its attributes such as transport nodes, land use, infrastructural elements,
major attractors, aesthetic features, etc. (Hillier and lida 2005; Gebel et al. 2007).

Mobile GPS data has been already used by various researches in order to investi-
gate spatial mobility patterns in urban settings. Van der Spek et al. (2009, 2013) have
carried out a research which aims to explain pedestrians’ behaviour in various cities
by deploying GPS tracking system supplemented with questionnaires. Piorkowski
(2009) has pioneered in using mobile sports tracking application data for analytic
purposes. He aimed on enhancing location privacy and designing better context-
aware services. Ferrari and Mamei (2011, 2013) have used Nokia Sports Tracker
application data to identify the areas and temporal routines of a city most used for a
given sports activity, highlight cultural and climate-related differences among cities
and show differences in the routine behaviour of various demographic and social
communities. Oksanen et al. (2015) aim to extract frequently used routes from mas-
sive public workout data in order to define the most popular routes as a suggestion
for application users.

The goal of this research, in respect to the previously described ones, is to use
mobility data in tandem with other open data sources, for modelling recreational
usage in a network rather than Euclidean space through an automated procedure,
which later allows utilising the model as a ground truth for the further investigations
of the desired phenomena.

3 Required Data

3.1 Mobile Sports Tracking Application Data

Sports tracking applications cannot provide direct access to their databases due to
privacy issues; however, some of them display public workouts on dedicated web-
sites. In that case, users are consent to publicly displayed (but not distributed) per-
sonal data. After considering a number of applications, Endomondo was chosen due
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to its popularity rate and relatively convenient data access. Workouts are available
to be viewed on www.endomondo.com/workouts/+workoutID unless specified to be
private by a user.

Every workout is a JSON (Java Script Object Notation) object embedded into
an HTML (Hyper Text Mark-up Language) code of a page. Additional to the GPS
trajectory, other available attributes include type of the workout (running, walking,
etc.), date and time, user name (id), distance, duration, average and maximum speed,
burnt calories, hydration, altitude and weather data. A user can choose to make any of
these attributes private, edit the values or delete the workout permanently at any time
(Endomondo 2015). Tracking is based on a GPS receiver and therefore is dependent
on the characteristics of each individual device.

A tutorial in Barsukov (2014) has been used as a basis for the data acquisition
framework. The adapted scheme of data acquisition is shown in Fig. 1. A local script
sends an HTTP (Hyper Text Transfer Protocol) request to the server for a workout
with a chosen ID and either gets a negative response (in case the workout is listed as
private or it has been deleted) or a positive response and an HTML code of a page, in
which case the algorithm continues exploring the data. If GPS trajectory is available
and listed as ‘Running’ or ‘Walking’, the required fields are output into a text file,
which is later filtered based on multiple criteria and transformed from a JSON object
into a PostGIS geometry.

Data samples were collected every 8 days in a period of May 2014—May 2015,
aiming to have sufficient data throughout the full year and a variety of weekdays
as well as occasional public holidays. Data acquisition process took approximately
1248 h and resulted in more than 3.5 million valid GPS tracks of almost a million
distinct users within the territory of Europe. The collected data is evenly distributed
throughout a day, all seasons and weekdays.

Fig.1 Workflow for the
acquisition of mobile sports /

Server at
tracking application data :

HTTP request of HTML of

get_datarb

raw_data.csv

filter & transform. py json object -> PostGIS geom

Spatial table in

2SOL PostGIS
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Fig. 2 Original OSM street
network expressed in
polylines (left) and actual
perceived urban space
needed for the active
recreational travel analysis
(right)

3.2 OpenStreetMap

Lately the road network provided by the OpenStreetMap (OSM) is often chosen to
form the backbone of urban networks because of its universal coverage and standard
defined for all modes of transport. Besides, due to its open access nature and vol-
unteered contribution, OSM can have a very good level of completeness (Mooney
2015) and it includes representation of paths for non-motorised means of transport,
which is essential for the analysis of the jogging and walking movement patterns.

A single polyline in OSM dataset usually describes a single path; however, in
some cases it can also form a boundary polygon and represent an area, which stands
for various parks, squares and even wider boulevards within which no further paths
are drawn. The elimination of one of the entity types would result into missing net-
work connections, which would result into misleading snapping of GPS tracks and
wrong evaluation of network configuration. Thus, the inconsistency of entity types
needs further attention while processing the dataset.

Girres and Touya (2010) have listed a number of possible problems regarding
the OSM street segment geometry and topology, including duplicate overlapping or
missing segments, intersection nodes, etc. In addition to these, the high level of detail
presented in the street network is redundant and even confusing for the later applied
algorithms. While a single street in OSM can be represented by multiple lines, which
stand for different car lanes, bicycle lanes, footpaths and sidewalks, all these lines
are still perceived as a single space by a person engaged into an active recreational
activity (Fig.2). Therefore, the OSM street network has been later processed and
coupled with additional datasets in order to overcome the identified problems and
provide a neat Urban Space Network.

3.3 European Urban Atlas Road Land-Use Data

The Urban Atlas (UA) is a joint initiative of the European Commission Directorate-
General for Regional Policy and the Directorate-General for Enterprise and Indus-
try with the support of the European Space Agency and the European Environment
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Agency. Its aim is to provide pan-European comparable and freely accessible land
use and land cover data for Large Urban Zones with more than 100,000 inhabitants.
The resulting vector maps provide land-use classification for 21 different land-use
classes with minimum overall accuracy of 85 % and positional accuracy of +5m
(Urban Audit 2007).

The ‘Roads and Associated Land’ class is represented by a single polygon, which
comprises a city road network. The associated lands are: slopes of embankments;
areas enclosed by roads, without direct access; fenced areas along roads; noise bar-
riers; rest areas, service stations and parking areas; railway facilities; foot- or bicy-
cle paths parallel to the traffic line; green strips and alleys (with trees or bushes).
Since road lanes, cycle lanes, pedestrian paths, complicated crossroad lanes and
street crossings are all covered by a single polygon, it becomes easier to determine
a single space than in case of OSM dataset.

However, in order to use the polygon as a network, it has to be converted into
polyline features. It also does not contain paths meant for non-motorised means of
transport, and lacks most of the bridges. Due to these reasons, the UA road-land-use
polygon needs to be both processed and combined with OSM data to satisfy research
needs.

4 Urban Space Network

4.1 Definition of an Urban Space Network

Generally, a street network is defined as a system of interconnecting lines that rep-
resent a system of roads for a given area (Mora and Squillero 2015). In case of
this research, Urban Space Network (USN) is a network of interconnected public
urban spaces, which are navigable for humans but not necessarily for vehicles. It
can be defined as a network whose edges represent a single human-navigable space
(i.e. street, footpath, parkway, square, etc.), and its vertices are intersections of such
spaces in which there are more than two choices of moving direction. Thus, the con-
ventional street network is merely a subset of the USN.

Specifically, the USN is a topological skeleton of the navigable urban spaces.
This topological construct can be represented as a (dual) graph whose nodes and
links represent spaces and connections between them respectively. From a cognitive
perspective, having navigable spaces as the nodes has a number of advantages for
later studies, i.e. the possibility of modelling cognitive costs of going from one space
to another. However, the basic reason why recreational activities need to be modelled
and analysed in a network space instead of Euclidean space is the assumption that
human movement in cities is steered by the built as well as natural environment and
its implied movement restrictions. E.g. while the two banks of a river might be very
close to each other in an Euclidean space, they might be extremely far away in a
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network space and therefore the same built environment factors that determine the
usage of one bank may have no influence on the other one.

Furthermore, the USN must be generalised, i.e. contain a single edge for a single
perceived space and a single node of intersection. It has to be noted that pedestrians,
in contrast to vehicles, are not compelled to use designated paths, e.g. a piece of
road between 2 crossings together with all its sidewalks, bicycle and car lanes, and
other associated land is considered one navigable space if there are no possibilities
to navigate from it to another one.

4.2 Dataset Integration

The biggest mismatch between the UA and OSM datasets is different type of entities
(polygon in case of UA and polyline and polygon in case of OSM). There are also
geometrical mismatches or cases when streets in one dataset do not appear in the
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other. In order to overcome these issues and correct the topological errors apparent
in the OSM dataset, a new polygon-based approach has been developed as in Fig. 3.

The first step of dataset integration is to ensure that all of them belong to the
same coordinate system. For this research, along with the default WGS 84, Europe
Albers Equal Area Conic (ESRI:102013) has been chosen for visualisation and cal-
culations since it is adapted to fit Europe and uses metric unit system, thus no further
recalculation from degrees to meters is needed.

Another important step is network generalization and simplification. Automated
generalisation has long been a research effort of cartographers (Jiang and Clara-
munt 2004; Savino 2011; Li et al. 2014). While the previously mentioned researches
mainly treat road networks formed by a single dataset and generalisation for scaling
purposes, in case of this research an additional challenge is created by using multiple
datasets and pedestrian routes, which do not follow such strict patterns as road lanes.

In order to unify the type of entities OSM polylines are buffered and that way
transformed into a single polygon. The buffer width is decided based on the gen-
eral level of detail set for the network’s generalisation. When both datasets have the
same type of entity, they can be dissolved into a single polygon (Fig. 4). However,
beforehand they are simplified using a well-known Douglas-Peucker algorithm with
the threshold of 1 m in order to reduce computation time. A number of holes, which
do not form a substantial gap between the paths, are cleaned by removing polygon
rings smaller than a chosen threshold.

After the datasets are united into a single polygon, its centreline needs to be
extracted in order to return to the polyline type of entity. The centreline of a poly-
gon is also an approximation of all the neighbouring paths into a single network
edge. The Boost library, which provides free peer-reviewed portable C++ source

Fig. 4 Polygon-based approach for integrating UA and OSM datasets: grey polygons represent
OSM line features buffered by a chosen distance, white polygon represents OSM pedestrian area;
green polygon comes from UA dataset of land use type ‘Roads and associated land’
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Fig. 5 Part of the resultant USN of Valencia overlaid with Google Earth image

libraries, has been used. The Boost.Polygon.Voronoi has been used to compute a
Segment Voronoi (Delaunay) Graph, which takes line segments as an input; there-
fore, no geometry densification is needed.

The post processing is needed in order to decrease the complexity of the net-
work and that way save computation time as well as to facilitate the interpretation
of space usage values. This step includes building network topology, removing dan-
gling edges, collapsing short segments and simplifying polylines. The example of
resultant Urban Space Network in Valencia is shown in Fig. 5.

4.3 Validation

The benefits of the developed USN construction method are validated comparing
it with a network obtained using a more commonly used approach for network
generalization and simplification: that is by iteratively using topological cleaning
tools followed by a vertex-snapping algorithm. The method, differently than the pro-
posed one, is based on polylines; therefore, initially, centrelines have to be extracted
from the UA road polygon and OSM pedestrian areas. Table 1 shows the differences
between the two approaches considering a number of relevant aspects.

While both methods have their own benefits and drawbacks, the polygon-based
method fits the purpose of this research better, since it provides a simpler outcome
with less redundant connections, easily removable artefacts and a single network
edge per single perceived space.
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Table 1 Comparison between the polygon-based and the polyline-based dataset integration and

network generalisation methods

Polygon-based

Polyline-based

Topological | The outcome network is always
validity topologically valid

The outcome needs to be
cleaned from topological
errors: mainly overlaps,
pseudo-nodes and duplicate
geometries

Junction sim-| Junctions need to be further
plicity processed by collapsing short
segments

Bigger junctions (more than
4 ways) tend to create
artefacts

Redundant Centerline extraction algorithm

Snapping algorithm results

segments creates redundant dangles into redundant connections
Geometric Geometric distortions do not Polyline geometry can get
distortions exceed the buffer width severely distorted while
moving all vertices of a
polyline into different
directions
Attributes No attributes preserved Attributes are preserved
Execution The crucial time needed for both methods is the extraction of Segmented Voronoi
time (Delaunay) Graph edges, which lie inside the polygon; the buffering time in

method

polygon-based method is comparable with the snapping time in polyline-based




Modelling Spatial Patterns of Outdoor Physical Activities ... 189

5 Space Usage

5.1 Filtering GPS Trajectories

In the initial state acquired GPS tracks are rather a set of coordinates, which are not
in any way related to the USN (Fig. 6), therefore in order to define the usage measure,
GPS tracks need to be processed filtered and snapped to the underlying network.

Filtering of GPS points is needed in order to remove outliers, which appear in
GPS trajectories due to various reasons: lack of satellites in sight due to environment
obstructions, ‘cold start’ or signal multipath. Filtering outliers has been detached
from the initial filter that takes place while writing data into the database in order
to reduce total filtering time and be able to process only the relevant GPS tracks.
However, this is a trade-off between filtering time and loss of individual GPS point
attributes. Consequently, such methods as proposed by Schuessler and Axhausen
(2009), Auld et al. (2013), Biljecki (2010), which suggest removing the outliers from
GPS data based on the unrealistic altitude, sudden speed and acceleration jumps or
sudden changes in heading become unavailable.

In case of this research the under-filtering is less of a problem than over-filtering
due to the snapping algorithm, which relies on a sequence of points. In addition,
scarce data should not be lost during the outliers filtering. Therefore, the definition
of an outlier has been formulated as following: it is a point that lies from both of its
neighbours further than three times the median while the distance between the neigh-
bours is less than the smaller distance between the point and each of its neighbours.
Median refers to the median distance between two consecutive points calculated for
each GPS track individually.

The heuristics of using three medians comes from the evaluation of a sample
set of 100 randomly chosen GPS tracks from different cities, which can be visually
confirmed as not having outliers. The calculation is based on the ratio between the

Fig. 6 GPS track (transparent green) on a USN (single line red) prior to snapping



190 R. Sileryte et al.

median distance between two consecutive points and a maximum deviation from the
median in each of the test tracks. The average value of 100 tested ratios appeared to
be 2.2215 with standard deviation of 0.8429. Thus, if the ratio between a point and
its neighbours is higher than the mean ratio plus the standard deviation, the point
can be considered as suspicious.

5.2 GPS Track Snapping on an Urban Space Network

The reason for the geometric mismatch between the GPS tracks and the space net-
work lies both in the inaccuracy of the GPS measures (Ranacher et al. 2015) and
the data used to construct the USN. Most of the map-matching algorithms tend to
deal with the GPS tracks of vehicle movements, which are in many aspects different
from the workout data. E.g. runners as in contrast to vehicles, do not necessarily stay
on a designated path, they can change moving direction at junctions as well as in
the middle of a path, do not have any movement restrictions or predictable moving
speed. Moreover, nothing is known about the characteristics of a GPS device, posi-
tioning data quality, satellites in range or the frequency of GPS fixes. Due to these
reasons, most of the advanced algorithms cannot be implemented and therefore only
geometrical and topological data is used for snapping.

The GPS snapping algorithm has been developed based on the algorithms pro-
posed by Marchal et al. (2004), Yang et al. (2005), Quddus and Washington (2015).
It is a topological algorithm, which relies on the multiple hypothesis’ technique. It
allows to keep track of several positions or paths at once and to select eventually
which candidate is the best. The first point is snapped to the two closest segments
of the extracted piece of the whole network. Later, the best-fit edge is decided by
checking the following points and choosing the best matching one. The path is aug-
mented through topological connections of the best fitting edge, always choosing
two of them based on a single point and deciding the better one based on a sequence
of points up until the last GPS point is reached. The sample results of map matching
algorithm can be seen in Fig. 7.

The accuracy of the map-matching algorithm has been computed by visually com-
paring the GPS track with the assigned USN edges of 25 randomly selected samples
in Vilnius city, which all together make up almost 5000 GPS points. Mapping accu-
racy has been computed as a number of correctly assigned network edges over the
number of all edges considered (assigned, over-assigned and under-assigned) and
results into 85 % of overall mapping accuracy, which is reasonable for a geometri-
cal/topological, map matching algorithm. The standard deviation of GPS points to
the network edge they are snapped to is 15.859 m.

Moreover, over-assignment is more frequent than under-assignment. This hap-
pens often due to lack of edges in the network, i.e. recreational activities happening
in spaces which are not represented by any edge in the network. This can happen
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Fig.7 GPS snapping
algorithm: bright line
indicates original GPS track;
dark line indicates USN
edges to which the GPS track
has been snapped

o il

because of two reasons—either the lack of an existing path in the OSM or UA data
or the absence of a path as such, e.g. running in out-door stadium, in meadows or
private lands.

5.3 Value of Recreational Usage

After snapping GPS tracks every space in a network gets an attribute of a number
of distinct application users spotted therein. While the overall goal is to model the
recreational space usage, i.e. give an indication to every space of how much the
particular space is used for recreation, the actual counts cannot clearly represent the
measure. Moreover, literal quantification of recreational usage is impossible, since
it is a rather qualitative notion.

In order to quantify a qualitative measure, a fuzzy notion of likeliness has been
used (Klir and Yuan 1995). It describes how likely it is that a space is used for active
recreational travels and is measured in the range of 0—1, where 0 means no usage and
1 means that a space is definitely used. All values in between indicate how much a
space is used compared to the other ones. It is important to note that values of recre-
ational usage are not numerical but rather of an ordinal nature. Fuzzy normalisation
primarily serves for visualisation purposes enabling more intuitive and comprehen-
sible overview of space usage.

In order to perform the fuzzy normalization, first the cumulative frequency for
each space usage value is calculated. The number of distinct users spotted in a space
over the whole study period is denoted as u. The set of spaces with & or less users
is defined as S(k) = u|u < k; as to which the cumulative frequency is f€(k) = |S(k)|.
Then normalized space usage and its normalized cumulative frequency are defined
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respectively as: kK" = k/k,,,., in which k. is the maximum number of spotted dis-
tinct users for a single space in the whole range of spaces; and f, Clk) = (FC(k) —
FE0)/(F€ (kypa) —f€(0)) in which f€(k) denotes the normalized cumulative usage
frequency of & or less users.

Any space which has a number of spotted application users above 0, is regarded
as ‘somewhat used for recreation’. The distribution of values differ per city due to the
different proportions of network size and number of application users and because
of different distributions of recreational activity, which are dependent on individual
characteristics of the built environment. Higher number of attractive spaces shares
out the total number of the users, while lower amount of attractive spaces concen-
trates the users within them.

However all normalized frequencies have similar distributions and approximately
even out at one point corresponding to 20 % of the maximum usage. Simply put, in
all three cases only 3 % of all the network spaces have a number of spotted users
higher than 20 % of the maximum registered. Therefore, this point has been used as a
reference for the likeliness coefficient. For example, in case of Vilnius the maximum
number of spotted users in an urban space is 592, which means that all spaces, which
have 118 or more users, are regarded as ‘used for recreation’. Accordingly, a space,
which has 59 users, is considered to have recreational usage value of 0.5. Figure 8
illustrates the dependency between the number of users spotted in a single space and
its recreational usage.
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Fig. 8 The solid lines correspond to the normalised cumulative frequency of urban spaces, while
the dashed line corresponds to the recreational usage of those spaces, when the normalised number
of spotted distinct application users is the same. All normalisations are done according to the cities’
own minimum and maximum values
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6 Results

The resulting maps for all three case study cities can be seen in Fig. 9.
While examining the maps closer, it can be noticed that large recreational areas
in all of the three cities attract the most of the recreational activities. While these

Fig. 9 Visualisation of
USN coloured according to
its recreational usage values
as defined after the fuzzy
normalisation; case studies
of Vilnius, Valencia and
Gothenburg
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results are expected, the interesting things can be noticed while closer examining
non-recreational areas. For example, in case of Vilnius, some heavy traffic streets
are used for recreation more than the nearby green zones, while in case of Valencia
almost all recreational activities are concentrated in the parks or green alleys, leav-
ing densely urbanised areas excluded. In case of Gothenburg, the most recreational
spaces almost evenly spread throughout the city, interconnecting with each other and
forming their own ‘recreational network’.

The constructed network can be overlaid with a number of related maps in order
to visually inspect the relationships between different phenomena. However, more
importantly, network nodes can also be attributed with a number of measures, such
as space greenness, network centrality, land use, etc. in order to use quantitative
methods to find associations between the values.

Finally, by looking at the maps, it can be noticed that it is not only the attractive-
ness of a single space that enables presence of recreational activity but also its posi-
tion in a broader network of spaces; not in a sense of being in an attractive area but in
a sense of being connected to other attractive spaces. In other words it is the position
of a space in the network space that matters more than its position in the Euclidean
Space. Therefore, these findings suggest that it is the network-based analysis that
must play bigger role than the neighbourhood-based analysis. This highlights the
role of USN as an essential construct in this research.

7 Discussion and Future Work

First of all, a collaboration between sports tracking application and a researcher
would significantly improve the efficiency of data acquisition. Furthermore, know-
ing such characteristics as user age group, occupation, education, etc. might give a
better overview of data validity and allow deeper investigation of recreational travel
patterns. Currently, user group analysis is not possible due to the privacy matters.

Furthermore, the running and walking activities have been considered equally,
while they might also have different movement patterns. In addition, various other
types of recreational travels could be added among which recreational cycling, ori-
enteering, roller skiing, skateboarding, etc. Generally, the collected data is limited
to only one sports tracking application which limits the set of tracked individuals
to those who have knowledge of a foreign language, possession of a smart phone,
ability to use the application and, of course, having given a consent to be tracked.
Therefore, it must be acknowledged that acquired data represents only a certain sub-
set of all recreational travels conducted in a city, which may cause related bias to the
research results.

Even though the integration of UA and OSM datasets improves the complete-
ness of a USN, a number of paths and connections remain unknown. This problem
could be tackled by upgrading the GPS network-snapping algorithm. The missing
paths could be added to the constructed USN based on the clusters of GPS tracks.
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This would also improve the mapping accuracy of the algorithm itself. Furthermore,
some heavy traffic roads should rather be considered as barriers, so that only cer-
tain connections through them would be possible. Finally, buffering sometimes may
cause connection of spaces, which actually do not reach in reality due to topography,
water features, etc.

8 Conclusions

The conducted research has investigated how mobile sports tracking application data
can be used to model and visualise the recreational usage of an Urban Space Network.
An automatic and non-labour intensive method has been devised for data acquisition,
management and processing. Collected GPS tracks have been filtered from blun-
dering fixes and snapped to a USN with 85 % mapping accuracy. GPS tracks when
aggregated per single network edge form a measure, which is later normalised using
fuzzy normalisation methods, and represents how much a space is used for recreation
compared to the other ones.

Before processing the mobility data, a systematic workflow has been developed
for constructing an Urban Space Network using OSM data complemented with UA
road land use data. The method relies on integration of datasets, generalisation and
simplification through buffering linear features, combining all polygons and using
Segmented Voronoi (Delaunay) Graph to extract polygon centreline, which, after
minor processing and additional simplification is used as a representation of a USN.
The constructed network is relevant for the desired type of analysis and differs from
conventional street networks in that it includes paths for both motorised and non-
motorised means of transport, which run through urban fabric as well as parks and
urban forests. A particular characteristic of the USN is that it has low granularity,
however, well-preserved space connectivity.

The visualisation of results has proved that analysing recreational usage in a net-
work space instead of Euclidean space brings clearer insight and provides a basis
for understanding and explaining the usage patterns and their associations with built
environment effects. Finally, testing all processes and algorithms in parallel for three
different case studies has ensured that the collected data as well as the developed
methods would not be dependent on a specific urban structure and can be repeated
for any of the European cities with sufficient application users.
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Estimating the Biasing Effect
of Behavioural Patterns on Mobile Fitness
App Data by Density-Based Clustering

Cecilia Bergman and Juha Oksanen

Abstract Crowd-sourced data of high spatial and temporal resolution can provide
a new basis for mobility analyses given that its various types of biases distorting the
results are identified and adequately handled. In this paper, trajectory patterns that
can affect the validity of mobile fitness app data are examined by means of cycling
trajectories (n = 50,524) from the Helsinki Metropolitan Area, in Finland. In
addition to mass events and group journeys, we evaluated the biasing effect of
routes that have been repeatedly recorded by the same application user. Based on
the results, repeatedly recorded commuting routes may skew fitness application data
more than group patterns. Many of the changes in the frequencies and length
distributions at different temporal granularities before and after extracting the ‘bias
patterns’ were statistically significant. Also the skewed distribution of tracks among
users (i.e. contribution inequality) became more even. The biases induced by
behavioural patterns ought to be considered when evaluating the validity of fitness
app data in analyses of general mobility behaviour and when designing value-added
applications based on the data. Considering the trade-off between privacy and data
accuracy regarding dissemination of sensitive crowd-sourced movement data, the
findings emphasise the importance of preserving the possibility to detect
individual-level phenomena in order to produce valid analysis results.
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1 Introduction

Crowdsourcing is expected not only to provide insights into phenomena for which
no official data is being collected, but also to augment and supplant conventional
data sources (Pucci et al. 2015; Tam and Clarke 2015). Consequently, addressing
the inherent biases that affect the quality and value of the new datasets has become
crucial (Shearmur 2015). Mobile sports tracking, or fitness application trajectories,
are an example of crowd-sourced movement data, which has been proliferating in
recent years due to advances in positioning technology. Considering especially the
emerging interest in using fitness app data in an urban planning context the rep-
resentativeness of the data remains an important issue. For example, with respect to
cycling, the main focus in planning is on cycling as transportation, while tracking as
an activity is typically attached to fitness-oriented cycling (Griffin and Jiao 2015).
In addition to the representativeness of utilitarian cycling, concerns have been
expressed about the digital divide and how it, together with other bias-causing
factors, can reflect both spatial and socio-economic biases related to, e.g. gender,
age and wealth (Bell et al. 2014; Griffin and Jiao 2015; Oksanen et al. 2015;
Romanillos et al. 2015).

A limited amount of attention has been paid on other behavioural patterns that
might introduce biases into mobile fitness app data. Previous studies have shown
that the extremely uneven distribution of recorded workouts between users can
locally distort heat maps that show the popular places for engaging in sports
(Oksanen et al. 2015) and thereby affect routing (Bergman and Oksanen 2016).
Furthermore, the interactive filtering of a heat map proposed by Sainio et al. (2015)
enabled us to visually recognise mass events, such as competitions that were unique
with respect to certain characteristics, for instance length. Identifying such patterns
is important in order to understand the data, derive valid conclusions regarding
cycling behaviour and potentially exclude them from further analysis. The novel
value-added services that are being developed by aggregating the data for insights
into the collective behaviour of the application users, such as the popularity of
different routes, are affected by the bias patterns as well.

The objective of this paper was to automatically recognise the pre-identified
patterns that can bias the dataset and thus affect its utility, and to assess the effect of
the patterns on certain general characteristics of the dataset. The investigated pat-
terns included both mass events along with other group journeys and routes that
have been recorded by the same user more than once. While referring to the afore
mentioned categories, terms ‘group patterns’ and ‘individual patterns’, respectively,
will be used in the rest of the paper. An efficient method based on the idea of
progressive clustering (Andrienko et al. 2007; Rinzivillo et al. 2008) was used to
identify similar trajectories. Although we concentrated on cycling data recorded by
users of the Sports Tracker mobile application, the methods are also applicable to
data from other fitness applications as well as other sports that do not need to be
restricted to a network. The rest of the paper is organised as follows. In Sect. 2, we
provide a concise overview of existing work on trajectory similarity analysis and
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present the method employed to search for patterns in the dataset. Section 3
introduces the dataset and provides novel insights about its frequency and length
distributions at different temporal levels of detail. In Sect. 4, we present the results
and evaluate the importance of extracting the identified patterns from mobile sports
tracking data. Finally, we discuss the meaning of the results with respect to the
utility of mobile sports tracking data and end the paper by offering some
conclusions.

2 Trajectory Similarity Analysis

2.1 Previous Research

Discovering new knowledge based on the trajectories of moving objects and their
semantic enrichment is crucial for smart mobility applications and an important
topic in GIScience. Various patterns, such as stops and moves (Spaccapietra et al.
2008), periodic (Cao et al. 2007) and relative motion, that is, individual-group
dynamics (Laube et al. 2005), frequent trajectories (Savage et al. 2010), outliers and
causal interactions (Liu et al. 2011), and POIs (Liu and Seah 2015) have been
mined from GPS trajectories. In addition to human mobility, patterns of animal
movement, e.g. migration (Damiani et al. 2015), as well as natural processes, e.g.
hurricanes (Dodge et al. 2011), have also been investigated. In general, the methods
used for trajectory mining can be divided into various categories depending on, for
example, the nature of the movement, which can be either free or network
restricted, and whether the aim is to extract patterns within single trajectories or
from a set of trajectories.

Similarity analysis is an intrinsic part of many methods of pattern extraction and
data mining, such as clustering, i.e. the grouping of trajectories based on their
similarity to one another. Similarity can either be partial (Lee et al. 2007) or com-
plete, as in this study, where an entire trajectory is compared to other trajectories.
Although most studies have focused on geometric similarity, the importance of
temporal and attribute proximity has also been stressed in many contexts (e.g. Nanni
and Pedreschi 2006). Moreover, in certain situations it may be more appropriate to
understand similarity as a similar variation in movement parameter profiles (Dodge
etal. 2012) or in the geographic context (Buchin et al. 2014). When the exact route is
irrelevant, trajectories can also be grouped based on their origin and destination
(Andrienko et al. 2007). All in all, determining an appropriate measure of similarity
is very much dependent on the context (Gudmundsson et al. 2012).

Several methods, which have their roots in time-series analysis, have been
developed to measure the similarity of trajectories. Euclidean Distance (ED)-based
approaches are popular because they are simple and efficient to calculate, and
provide a metric similarity measure. Other well-known, more complex methods,
such as Dynamic Time Warping (DTW), Longest Common Subsequence (LCSS)
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and Edit Distance with Real Penalty (ERP), are however more robust with respect
to noise, outliers and time-shifts (for an overview, see e.g. Dodge 2011; Gud-
mundsson et al. 2012; Long and Nelson 2013).

2.2 Discovering Similarity Patterns in Mobile
Fitness App Data

In this study, we were interested in recognising GPS trajectories that are co-located
spatially and, in certain cases, also temporally. We treated each recorded track as
one discrete trajectory, which we then compared to other trajectories as a whole.
Although in this study we only required that similar trajectories approximately
follow the same path, the analysis needs will ultimately determine which trajec-
tories should be considered similar.

The workflow of discovering similarity patterns is presented in Fig. 1. The
advantages of progressive clustering include a simple distance function for each
step and restricting the computationally more expensive step (IV) to a potentially
interesting subset of the data (Andrienko et al. 2007; Rinzivillo et al. 2008). Renso
and Trasarti (2013) further point out that such iterative mining, where at each step a

Fig. 1 The workflow, which
is based on progressive
clustering, used in the present
study. After pre-processing,
trajectories were grouped by
date (la) and by user (Ib). [ |
Trajectories in each group
were then clustered based on
the origin and destination
points such that both points l l

were required to belong to the ! L
same cluster (II). The
identified clusters were further
clustered by route length and
start time (//la), or just route
length (ZIIb). In the final step,
clustering was performed

Pre-processed
trajectory data

I. Grouping
of trajectories

a. DATE b. USER
2011-09-11" ‘ID32xcuyt’

1. Location of origin and destination points

based on route similarity (/V) g | |
H lll. a.Llengthand start time b. Length
8 | ]
Iv. Route similarity
| |
1 1
| 1
GROUP INDIVIDUAL
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new constraint is introduced to remove uninteresting data, may enhance our
understanding of the data. DBSCAN-algorithm (Density-Based Spatial Clustering
Applications with Noise; Ester et al. 1996) of scikit-learn (Pedregosa et al. 2011)
allowed us to form clusters of arbitrary shape without knowing their number in
advance, while requiring only two parameters: the radius of the neighbourhood of
an object, Eps, and the minimum number of objects in the neighbourhood, MinPts.

In the first step, the pre-processed trajectories (see Sect. 3) were partitioned
based on both the user (Ib) and the date (Ia); hereby, it was assumed that group
patterns take place during the same day. In step I, the trajectories in each group
were clustered by DBSCAN based on the spatial similarity of their origin and
destination points. Clusters of similar trajectories had origin and destination points
that coincided spatially so that they were density reachable from each other. In step
III, time was constrained depending on the pattern. In mass events, the recording of
tracks should start at approximately the same time or within a specified time
window, since in large events participants may be divided into different starting
blocks. Group journeys were not handled differently, although they could be sep-
arated from events as they proceed simultaneously throughout the entire journey
(IlTa). No time constraint was used with the user-specific trajectories (IIIb). Fol-
lowing the specifications proposed by Liu et al. (2012), we calculated Eps by
dividing the median length of the cluster’s trajectories by a value that determined
how large a divergence from the median length we would accept. This was a robust
method considering the fact that, due to GPS error, the accepted divergence should
be higher for routes of 100 km than for those of 20 km. Finally, the trajectories in
each identified group were clustered based on the similarity of their routes in step
IV. The average distance between trajectories was used as a measure of
(dis)similarity (see e.g. Nanni and Pedrexchi 2006) as follows.

D(T\,T»,) = <§ d(Tl(i)’Tz(i))> /Nfix (1)

where 7| and T, are two trajectories for which we generated a fixed number of
ordered equidistant points (V) along the path and d() is the Euclidean distance
between the ith generated points along the two trajectory lines. Apart from being
computable in linear time and also applicable with respect to trajectories of complex
shape, this measure provided a metric dissimilarity value that was easy to
understand.

3 Dataset

Mobile fitness applications can be situated between social media, emphasising their
role as social networks, and, in the words of Kitchin (2014), ‘sousveillance’, by
which he refers to their function as a type of self-monitoring mechanism. Typically,
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application users can themselves define whether the workouts they record are pri-
vate, i.e. only the user can view and access the track data, or public, i.e. everybody
can view the track and its additional metadata. In this study, we used public track
data recorded by the users of the Sports Tracker mobile application (http://www.
sports-tracker.com). The users of Sports Tracker can decide, on a track-wise basis,
whether or not they want to allow a track to be publicly viewable.

The dataset used in this study consisted of workouts recorded between April
2010 and November 2012 in the Helsinki Metropolitan Area, in southern Finland.
We obtained the data from Sports Tracking Technologies Ltd. (currently Amer
Sports Digital Services Ltd.), which pseudonymised the user identifiers of the tracks
before data delivery. The original dataset included 62,843 GPS trajectories, which
consisted of time-ordered location points recorded with an interval of one second.
After removing trajectories that either had no timestamp or that had lasted for less
than two minutes, we were left with 50,524 trajectories recorded by 3,723 users.
Similar to many other online communities that are based on volunteered collabo-
ration (Yang et al. 2016), the dataset was characterised by contribution (or par-
ticipation) inequality; here half of the tracks were recorded by 5 % of the users.
Further pre-processing of the trajectories was necessary for an efficient similarity
analysis. In addition to the positional error intrinsic in GPS data, it was apparent
that stops during which time the recording had continued affected the length of the
trajectory. Based on experiments, stops were effectively removed by the following
process which yet preserved the details of the road network (Fig. 2). First, we
calculated speed and acceleration rate between all consecutive points and removed
points where the speed was below 2 m/s or the acceleration rate was more than
1 m/s?, which indicated jumping of the GPS signal. Second, a five-point median
filter was used to further remove outliers and reduce the size of the dataset; the five
points were replaced with a median point. Finally, the total magnitude of the
heading change was calculated for each five (n) point window; when the total
change in degrees exceeded 60°(n— 1), the five consecutive points were removed.
For instance, Zhang et al. (2013) have previously noted the vitality of heading
change when using GPS data to identify stops.

Fig. 2 Examples of noisy trajectories before (red) and after (green) pre-processing. An offset of
approx. 300 m has been added to one of the trajectories for visualisation purposes


http://www.sports-tracker.com
http://www.sports-tracker.com
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To enhance understanding of the data and illustrate the results, the dataset was
disaggregated by time as well as based on the geometric shape of the trajectories. If
the ratio of the total length to the straight line distance between the origin and end
points of the trajectory exceeded four, then the track was classified as a ‘loop track’;
otherwise, it was classified as an ‘A-to-B track’. With a clear majority of the
trajectories, the threshold ratio that determined the class of each track was either
very large (loop tracks) or small (A-to-B track); for example, with only 3.3 % of the
tracks, the ratio was in the range of three to eight. With this coarse definition,
61.8 % of the tracks belonged to the category of A-to-B tracks and 38.2 % of them
were loop tracks. A-to-B tracks were on average 12.0 km long (median 9.9 km),
while loop tracks were on average 33.4 km (25.7 km) long.

The frequency of tracked workouts varied between the summer and winter
months, with the workouts being at their lowest points from December to March. In
both cases, monthly length distributions were rather homogeneous, especially in the
summer months, with only September standing out from the loop tracks (Fig. 3a).
Tracking was more popular during weekdays (Mon-Fri) than at weekends
(Sat-Sun) (Fig. 3b). Loop tracks dominated at weekends, especially on Sunday
when the recorded tracks were also longer than on the other days. Clear peaks in the
number of tracks could be observed in the morning and in the afternoon during
weekdays (Fig. 3c). Similarly, at weekends loop tracks showed two—although not
as obvious—peaks: one before noon and the other after 17 o’clock (Fig. 3d). At
weekends, recorded tracks were longer before noon than in the afternoon and
evening.

We also considered redefining the classes as utilitarian (A-to-B tracks) and
recreational (loop tracks) trips. However, a purely geometry-based reclassification
of the tracks as utilitarian and recreational trips would by no means be perfect. Not
all of the tracks that started at one point and ended at another point were utilitarian
by nature; a leisure rider can, for example, ride to a particular destination, stop the
tracking there and then return back by train. Also, not all tracks that started and
ended at the same point should be classified as recreational tours. A cyclist can ride
to, e.g. a supermarket or football pitch, put the tracking on hold and then continue
recording the same track after shopping or training, respectively. A straightforward
solution would be to divide the track into two tracks if the original track includes a
break that exceeds certain duration. However, recreational tours can also include
breaks. All of these examples were identified from the dataset and demonstrate the
heterogeneity of mobile fitness app data. We therefore use the terms A-to-B tracks
and loop tracks in this paper. The classification does not play a role in the clustering
method; it is only used to illustrate the results.
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Fig. 3 The frequencies and length distributions of A-to-B and loop tracks for the different
a months, b days, and ¢ hours Mon—Fri and d Sat—Sun based on the time when the tracking was
started. In the boxplots, the lower edge of the box represents the 25th percentile and the upper edge
the 75th percentile. The median is represented with a /ine and the mean with a box. The whiskers
extend to the 5th and 95th percentiles
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4 Results and Analysis

4.1 Performance Evaluation

The results for density-based clustering depend on the chosen parameter values. In
all steps (see Fig. 1), the MinPts was two. In step II, the neighbourhood should be
large enough to take into account both GPS inaccuracy and the variation in terms of
where the tracking is turned on or off; for example, participants may start recording
mass events already before the start line. Moreover, some people prefer to start and
stop tracking further away from their home to preserve their location privacy. The
Eps was 500 m in step II, whereas in step III we calculated it based on the data, as
explained in Sect. 2.2. Here, we accepted a 10 % divergence from the median
length. Regarding the required proximity of trajectories in time, we defined the Eps
as 30 min (step Ila). All parameters in steps II and III were intentionally rather
large yet such that they efficiently restrained the number of candidates that needed
to be compared in step IV.

Euclidean distance as a measure of similarity is not robust with respect to the
outliers and noise in the data, some of which could be ‘cleaned’ in pre-processing.
Based on our comparison of the clusters after step III and step IV, we left out only
one of the 79 trajectories that represented the Tour de Helsinki 2012—the largest
identified mass event—from the final cluster due to ‘noise’ (Fig. 4). We used the
same Eps in step IV as in step II, that is, 500 m, but in order to test the sensitivity of
the results to the Eps, we repeated the calculations also with six other distances
ranging from 50 to 2,000 m.

Table 1 shows the effects of each clustering step on the identified clusters. Both
the standard deviation of the length of trajectories in a cluster and the number of
clusters significantly decreased in step III when the trajectories were grouped based
on their length and starting time (Table 1a). When we opted not to consider tem-
poral similarity during the clustering process, the largest reduction in the number of

Fig. 4 Identified mass events
of cycling in the Helsinki : Giro d'Espoo
Metropolitan Area. The | = VueltaVantaa
‘noisy’ track was likely === ‘Noisy'track (TH)
because of tracking being I
paused approx. 20 km before
the end line. The map
contains data from the
Topographic database by the
National Land Survey of
Finland 01/2016

Tour de Helsinki (TH) .

20km
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Table 1 The effect of density-based clustering steps on the results in cases where the aim is to
recognise a group patterns, and b individual patterns represented with cluster-wise statistics

(a) Group patterns (b) Individual patterns

I I v |1 I v
Number of clusters 635 172 170 4,293 |4,180 |3,694
Number of tracks in clusters 3,728 | 1,003 | 567 |38,329 |32,062 |25,776
Cluster size Average |24 33 33 |89 7.6 7.0
Median | 2.0 2.0 20 (3.0 3.0 3.0
Std. 4.8 8.5 85 | 182 16.7 13.9
Cluster-wise length (km) Average |28.0 |374 [385 |19.1 19.7 16.9

Median |22.4 |24.6 |24.8 |13.0 133 11.9
Cluster-wise std. of length (km) | Average | 7.0 0.13 |0.13 |42 0.66 0.27
Median | 2.4 0.08 [0.08 |0.85 0.26 0.19
Std. of length/avg. length (%) Average | 243 |05 05 |[184 3.4 24
Median |16.7 |03 03 (89 2.3 1.6

clusters occurred only in the last step when we divided the identified groups of
similar length into smaller groups based on their route (Table 1b). Nevertheless, the
mean cluster-wise standard deviation of length decreased already in the third step,
which was an indication of recreational loop tracks of varying length. Most typi-
cally though, a single user had recorded workouts of approximately equal length but
varying routes. Thus, the number of tracks that appeared in clusters decreased in the
last step (Table 1b), as did the average length of the trajectories in a cluster,
indicating that longer rides in particular differed in their routes.

4.2 Identified Clusters

The results confirmed the existence of patterns identified in previous studies. We
discovered nearly 4,000 clusters, 48 % of which included only two trajectories. The
number of individual patterns (Table 2b, d) was more than 45 times greater than
that of group patterns (Table 2a, c). Nearly all of the group journeys consisted of a
group of two cyclists, with the exception of mass events (Table 2a). Also, the
majority of the repeatedly recorded loop tracks included only two occurrences
(Table 2b). In all cases, except with clusters consisting of only two trajectories
(Table 2c), the size distribution was positively skewed. Figure 5 shows the standard
deviation of the start time as a function of the temporal occurrence of clusters. The
largest clusters seem to represent commuting, as they typically took place during
the peak hours and the deviation within the clusters was small. All three mass
events started at 11 o’clock and can be identified by their minimal standard devi-
ation (Fig. 5a). Notice that Fig. 5 does not separate clusters of group patterns and
individual patterns.
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Table 2 Cluster characteristics

209

Loop tracks A-to-B tracks
(a) Group (b) Individual (c) Group (d) Individual
patterns patterns patterns patterns
Number of clusters (% of 119 (92) 1,204 (59) 51 (100) 2,506 (39)
clusters with two members)
Number of tracks in clusters 465 4,665 102 21,111
Cluster size Average 39 3.8 2.0 8.4
Median 2.0 2.0 2.0 3.0
Std. 10.2 6.7 0.0 16.0
Cluster-wise Average |47.4 28.6 17.7 11.2
length (km) Median 33.5 22.1 10.0 9.5
Cluster-wise std Average 157 389 71.1 207
of length (m) Median 92.3 291 42.1 161

The total number of clusters is different than in Table 1b (IV), because in a few clusters there were
both loop and A-to-B tracks. This was partly because of tracks at the Velodrome which would
require different pre-processing than tracks on the road network

(a) 8 Iloop tracks per cluster {b) s A-to-B tracks per cluster
7 @ B ° ° Number
of tracks
6 6 o g @ © 20
g ] °
5 5 .
£ 5 75
£ 4 ta ° 3 !
5 8 v i 2 150
W t W
=3 =3 . -
B ] .
@ e ® .
2 2 o 250
1 . e 1
5 7 9 11 13 15 17 19 21 11 13 15 17 19 21
start time start time
o 3 6 9 12 15 18 21 24 27 =30km

Mean length of the tracks in the cluster

Fig. 5 Identified clusters of a loop tracks and b A-to-B tracks. The x-axis denotes the average
start time and the y-axis the standard deviation of start times in the cluster

The standard deviation of the trajectory lengths in a cluster was smaller for group
patterns (Table 2a, c) than individual patterns (Table 2b, d). Because of time
constraints, the clusters of group patterns typically represented similar routes, and in
nine cases the recorded tracks were exactly identical also from a temporal stand-
point. This can mean that the route was recorded by one user who, for instance,
shared the GPS track with another user. In all cases, the standard deviation of the
length was small, which indicated the validity of the clustering method being used
(Tables 1 and 2). However, it is important to recognise that the routes in a particular
cluster were not necessarily identical, but could partly follow different paths as long
as their mean distance was within the specified threshold, origin and destination
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Fig. 6 Schematic illustration of the principles of calculating track similarity. Tracks A and
B belong to the same cluster. Tracks C and D do not fall into the cluster because their origin points
are more than 500 m apart from those of tracks A and B. Notice that with track C the movement is
in the opposite direction. Track E does not belong to the cluster due to its dissimilar length and
route

points were co-located, and route lengths were similar (Fig. 6). As Fig. 5 shows,
the identified clusters were also mostly homogeneous from a temporal standpoint
(std < 2).

Clustering of individual patterns was more sensitive to the distance parameter
used in calculating route similarity (step IV) than group patterns. Especially with
repeatedly tracked loop routes both the number of tracks in clusters (Fig. 7a) and
the mean cluster-wise standard deviation of length (Fig. 7b) increased along with a
greater distance parameter, whereas in other cases they remained more stable.
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Fig. 7 a Number of tracks in clusters and b average cluster-wise standard deviation of length with
different distance parameters (Eps) in step IV. The Eps used in the present study (500 m) is marked
with brown stripe
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4.3 Effects on the Dataset

When considering further uses of the data for analyses, a crucial question must be
addressed: What are the bias patterns and how should they be handled in data
processing? If the aim is to provide insights into the popularity of cycling along the
network, then we can completely exclude mass events where cyclists cannot
influence the route, which may not even be especially popular except for during the
event. Group journeys and commutes as well as other similar paths repetitively
recorded by one person might be, for example, replaced by one representative
trajectory. However, if we want to be able to find the most popular paths at different
times of the day or during different months, it becomes problematic to decide which
tracks should be retained. On the other hand, if the aim is to assess the effects of the
cycling infrastructure and other factors on route choices, the spatial trajectories
become important. Even small variations in routes can be important if we are
specifically interested in, for instance, how construction work in an area has affected
cyclists’ behaviour.

To evaluate the effect of the identified bias patterns, we replaced each identified
cluster with an attribute vector that represented the median characteristics (length,
speed, day, month and start time) of the cluster. Several methods have been
developed to identify the representative trajectory geometry of a set of trajectories
(e.g. Buchin et al. 2013; Etienne et al. 2015), but we did not investigate the spatial
effects in this particular study.

After excluding the bias patterns, the number of trajectories was 28,543 and the
share of loop tracks had increased to 54.9 % (compared to 38.2 % previously). The
average length of the loop tracks increased to 33.9 km (compared to 33.4 km
previously), whereas the median length increased to 26.6 km (compared to 25.7 km
previously). The mean length of the A-to-B tracks was also higher, 13.1 km
(compared to 12.0 km previously), whereas the median length was close to that of
the original dataset, 9.7 km (compared to 9.9 km previously). Moreover, the fol-
lowing changes that are presumably indicators of Tour de Helsinki and other mass
events were noticed in the distributions of loop tracks: a narrower length distri-
bution in September (Fig. 8a); on Sunday (Fig. 8b); and at 10-11 o’clock at
weekends (Fig. 8d). The non-parametric Mann-Whitney-Wilcoxon test confirmed
the significance of these changes. Even though most statistically significant changes
(shaded boxes in Fig. 8) were characterized by a small population size, for example,
changes in the morning and in the afternoon were significant not only during
weekdays, but, interestingly, also at weekends. As can be seen, the morning peak
reduced more than the evening peak at weekdays, which can indicate that especially
in the morning people’s route choices are less diverse (Fig. 8c).

Figure 9 shows length histograms before and after replacing the identified
clusters with their median attributes. Before the replacement, the loop tracks
showed a peak every ten kilometres, which was less evident afterwards. Although
many peaks indicated bias patterns, such as those representing the mass events Tour
de Helsinki (140 km), Giro d’Espoo (111 km) and Vuelta Vantaa (79 km in 2012),
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Fig. 8 The frequencies and length distributions of A-to-B and loop tracks during different
a months, b days and ¢ hours Mon-Fri and d Sat—Sun based on the time when tracking was started
after extracting the bias patterns. A shaded box means that the change in the distribution compared
to that in Fig. 3 was statistically significant at a significance level of 0.05 based on
Mann-Whitney-Wilcoxon test
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Fig. 9 The length distributions of a A-to-B tracks and b loop tracks before and after extracting the
bias patterns. The bin in both figures is 1 km. The shaded region represents the variation with Eps
(step IV) between 100-2000 m

several peaks were preserved, e.g. at 20, 50 and 100 km (Fig. 9b). Based on the
Kolmogorov-Smirnov (K-S) test, the change in distributions before and after
extracting the bias patterns was significant (p < 0.01) for the A-to-B tracks
(statistic = 0.055, p-value 4.12e-24) as well as for the loop tracks (statis-
tic = 0.019, p-value 0.0051). With parameters from 50 to 250 m the change was
statistically significant only for the A-to-B tracks at a significance level of 0.05. It
turned out that an average distance of 50 m was too small to identify the tracks of
mass events, and hence all further sensitivity analyses were started from 100 m.

We used the chi-square test to evaluate the changes in frequencies of the
monthly, weekly and diurnal distributions (Figs. 3 and 8). Because the sample sizes
were different, we scaled the original binned counts to be comparable with those
after the extraction. The p-values were small (p < le-100) with all parameter values
in all other cases except for the diurnal distribution of weekends (Figs. 3d and 8d).
However, also here in the case of both A-to-B tracks and loop tracks we could reject
the null hypotheses that the two binned data (before and after) stem from a common
distribution pattern at a significance level of 0.05 with all parameters greater than
50 m, and at a significance level of 0.001 with all parameter values greater or equal
than 250 m. The change of loop tracks at weekends was least significant. Although
the changes in the frequencies of track counts during weekdays were significant, the
bimodal and unimodal distributions of A-to-B tracks and loop tracks, respectively,
were preserved.

Replacing clusters of individual patterns by one ‘track’ affected also on the
contribution inequality. The share of users responsible of half of the recorded tracks
increased to almost 9 %. Furthermore, the Gini coefficient which measures the
inequality visualized with the Lorenz curve (see Yang et al. 2016) in Fig. 10
decreased from 0.75 to 0.65.
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5 Discussion

To the best of our knowledge, no existing study has evaluated in detail the latent
similarity patterns that may affect the validity of mobile sports tracking data.
Beecham and Wood (2014) extracted group journeys from bike sharing data,
providing insights on their spatial, temporal and demographic characteristics;
however, their data was rather different with respect to the role of the bike-sharing
system and the trip types, and it consisted—in spatial terms—only of the origin and
destination points. Based on their findings, 3 % of bike-sharing trips were made in
groups of two or more people, whereas in the present study only 1 % of mobile
fitness app data tracks were identified as group journeys, including mass events.
Furthermore, Andrienko et al. (2013) developed methods to analyse the internal
trajectory patterns of individual events and commuter patterns. Event identification
for its part has been a popular topic in terms of mining social media data, such as
georeferenced images (Sun and Fan 2014) and microblog streams (Sakaki et al.
2010). Likewise, mobile phone data have been used to detect social events char-
acterised by unusual activity (Traag et al. 2011).

Many previous studies have concluded that, besides recreational cycling trips,
mobile fitness apps are used to record commuting journeys (Bell et al. 2014; Griffin
and Jiao 2015; Oksanen et al. 2015). Also the contribution inequality has been
reported before but not investigated in greater detail in the context of the present
study. It turned out that the extent of bias induced by individual patterns, and
specifically commuters, was greater than the bias caused by mass events and other
group journeys. Hence, after excluding the bias patterns, loop tracks constituted the
majority of the data. Visually, the frequency distributions before and after resem-
bled each other in general, but statistically there were significant differences. Mass
events can have a significant effect on spatial as well as length patterns, and
therefore, it is often advisable to exclude them from the data. The effect of mass
events was further enhanced by their temporal coincidence. Cyclists actively
tracking their commutes can, depending on the analysis purpose, be handled via
different means. For example, Oksanen et al. (2015) discussed the concept of
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popularity and suggested the number of users and number of tracks revised by a
diversity index as alternatives to the number of recorded tracks. Their study
demonstrated that it would be feasible to calibrate the biased Sports Tracker dataset
with adequate reference data, such as official bicycle counts, for a richer view of
cycling volumes along the network of routes in the Helsinki area. However, when
no reference data with sufficient spatial coverage is available, or when the analysis
requires information about the routes, then we should consider extracting the latent
patterns inducing biases in the dataset.

Because the method used was restricted to whole matching, that is, to comparing
the similarity of trajectories as a whole, certain patterns that would also require
discovering similar subtrajectories were excluded. These included journeys that
were only partially made in groups as well as participants in mass events who did
not finish the tour. Another limitation of this study is the use of only one dataset
from a single region. That a relatively small group of users was causing biases in
the dataset raises questions related to the generalizability of the results. The biasing
effect of mass events can vary between mobile fitness apps because some appli-
cations are more oriented to competitive athletes than others. This may also be
reflected in the popularity of the application among commuters. However, we argue
that all similar types of datasets can be biased by commuters who repetitively track
their route to work. Furthermore, similar uneven distributions of workouts between
users have been reported in studies related to other fitness applications and areas
(Ferrari and Mamei 2013; Vickey and Breslin 2012). Our findings suggest that this
inequality is to large extent related to commuting. Whether the dataset covers all
tracks or only those that are publically viewable does not necessarily make a big
difference.

6 Conclusions

The aim of the study was to estimate the biasing effect of mass events and other
group journeys as well as routes repeatedly recorded by the same user on mobile
fitness app data. Density-based clustering was used in multiple steps to efficiently
extract the afore-mentioned behavioural patterns. Together, the group and indi-
vidual patterns had a statistically significant effect on the characteristics of the
dataset, especially with respect to its frequencies and length distributions at different
temporal granularities.

Excluding individual patterns resulted in a more even distribution of tracks
between users. Based on the results, contribution inequality was strongly yet not
exclusively related to commuting behaviour. Considering the trade-off between
privacy and data accuracy regarding dissemination of sensitive movement data, the
results highlight the importance of recognising individual-level phenomena. If
tracks recorded by the same user cannot be associated to each other due to the
information loss caused by anonymization, significant biasing behavioural patterns
might stay hidden.
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There is obviously a need for analysis methods that are robust to latent bias
patterns. It should be noted, though, that extracting these patterns does not release
us from the necessity of using several data sources to assess the validity of such
datasets and obtain insights that are representative and useful. Although the results
clearly show that, for example, contribution inequality can indicate the prevalence
of biases and therefore should not be ignored, a more thorough assessment of their
generalizability would require inspection of datasets from a wider area, both geo-
graphically and application-wise.
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by Summarizing Spatiotemporal
Events Across Multiple Levels of Detail
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Abstract There are many spatiotemporal events with high levels of detail (LoDs)
being collected in many phenomena. The LoD of analysis plays a crucial role in the
user’s perception of phenomena. From one LoD to another, some patterns can be
easily perceived or different patterns may be detected. Standard practices work on a
single LoD driven by the user in spite of the fact that there is no exclusive LoD to
study a phenomenon. Our proposal aims to support users in carrying the inspection
and comparison tasks of a phenomenon across multiple LoDs, without having to
look at raw data, and to handle the spatiotemporal complexity. This paper presents a
framework to build abstracts at different LoDs where five types of abstracts are
proposed. The framework makes no assumption about the phenomenon, the ana-
lytical task and the phenomenon’s LoDs. The SUITE’s prototype implements the
proposed framework allowing users to inspect abstracts across multiple LoDs
simultaneously, helping to understand in what LoDs the phenomenon perception
distinguishes itself or in what LoDs “interesting patterns” emerge.
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1 Context and Motivation

Crimes, traffic accidents, forest fires, respiratory infections, human interaction with
mobile devices (e.g., tweets), among others, are leading to the storage of lot of
spatiotemporal events with high levels of detail (LoDs). We consider spatiotem-
poral events as data with the following structure: (S, 7, Ay, ..., Ay), Where S de-
scribes the spatial location of the event, T specifies the time moment, and Ay, ..., Ay
are attributes detailing what has happened. As an example of a spatiotemporal event
we have a car accident occurred in some latitude and longitude, at eight o’clock,
with two victims.

The underlying space-time complexity in spatiotemporal events makes the data
analysis process very challenging which at a first glance may seem a chaos of
events without any particular meaning. For example, an overview of geo-referenced
car accidents occurred in USA' is displayed in Fig. 1. From it, we can perceive
hotspots of accidents in metropolitan areas, which is common-sense knowledge.
However, “interesting patterns” relating to space and time may be hidden in the vast
amount of data that is usually displayed and analyzed.

Both spatial and temporal attributes of events can be expressed at different
spatial and temporal LoDs. For example, they can range from grids with different
cell sizes (e.g., cells of 2 km? or 4 kmz) to cities or countries, and from seconds to
months or years, respectively. The LoD reflects the units’ size in which phenomena
are aggregated/summarized, likely affecting the user perception about them
(Andrienko et al. 2010; Laurini 2014; Silva et al. 2015b).

A change in the phenomenon’s LoD can bring improvements for the analytical
activity (Camossi et al. 2008; Laube and Purves 2011; Silva et al. 2015b). From one
phenomenon’s LoD to another, some patterns can become easily perceived and
different patterns may be detected. Moreover, the volume and complexity of data
can be reduced without affecting the user’s analytical capability.

The LoD plays a crucial role during the analytical process and, often, there is no
exclusive LoD to analyze a phenomenon (Keim et al. 2008; Andrienko et al. 2010).
This key idea is illustrated in Fig. 2 by displaying the number of accidents in USA
using time series across multiple LoDs. For example, at LoD 2.27 km?* Month, a
cyclical pattern for each year can be easily detected while at LoD CountiesYear, a
decreasing trend is observed.

The identification of the proper LoDs to analyze a spatiotemporal phenomenon
is a key issue for the users (Keim et al. 2008; Andrienko et al. 2011). However,
standard practices provide Visual Analytics tools that work on a single LoD driven
by the user (Maciejewski et al. 2010; Ferreira et al. 2013). To understand what LoD
would be adequate to detect patterns, users have to probe hypotheses, which can be
a challenging task.

"USA car accidents occurred between 2001 and 2013, which corresponds to about 450.000
geo-referenced accidents: http://www.nhtsa.gov/FARS.
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MExico

Fig. 1 An overview of the car accidents in USA
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Fig. 2 The number of accidents of USA across multiple LoDs

Firstly, the users often face difficulties to specify in advance what an “interesting
pattern” is. The importance of a pattern depends on the specific application, the
analysis question, and its concordance with domain knowledge (Keim et al. 2008;
Andrienko et al. 2010). Secondly, the LoDs in which “interesting patterns” can
easily be perceived are often difficult to determine a priori (Sips et al. 2012).
Approaches allowing users to study and explore phenomena across multiple LoDs
are necessary (Camossi et al. 2008; Keim et al. 2008; Andrienko et al. 2010; Sips
et al. 2012).

To meet this need, the mainly contribution of this work is a framework to build
summaries, at different LoDs, about phenomena described by spatiotemporal
events. As our framework does not make any assumption about the phenomenon,
the analytical task and the phenomenon’s LoDs, it can be widely used to get an
overview of the phenomenon under analysis. The framework establishes five types
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of abstracts working with space and time together. The users can inspect those
abstracts across multiple LoDs simultaneously, helping to understand either in what
LoDs the phenomenon perception distinguishes itself or in what LoDs “interesting
patterns” emerge. A Visual Analytics prototype was also developed that imple-
ments our contributions.

This paper is organized as follows. Section 2 presents related work about
modelling spatiotemporal phenomena at different LoDs, and discusses proposals
working on different LoDs. In Sect. 3, the background needed about the granularity
theory is given in which the proposed framework is based on. Section 4 presents the
framework for summarizing spatiotemporal events. Section 5 presents the Visual
Analytics prototype. Section 6 concludes with some remarks about the work
undertaken and guidelines for future work.

2 Related Work

To observe spatiotemporal phenomena at different LoDs, we need, on one hand,
approaches that are able to model spatiotemporal phenomena at different LoDs, and
on the other hand, we need analytical approaches that can work across different
LoDs. Such approaches were researched and are further discussed in this section.

Several approaches for modelling spatiotemporal phenomena at multiple LoDs
under different terminologies like multirepresentation, multiresolution and granular
computing are presented.

Multirepresentation approaches (Parent et al. 2009) provide different point of
view from a spatiotemporal phenomenon, allowing the observation of the same
geographical space and/or interval of time at different perspectives.

Multiresolution approaches (Stell and Worboys 1998; Zhou et al. 2004) focused
essentially in the generalization of spatial features which involves feature simpli-
fication, dimensionality reduction, and whether a spatial feature should exist in
some spatial LoD or not (Weibel and Dutton 1999).

Granular computing approaches model phenomena at several LoDs based on
granularities. There are several proposals for granularities definitions, namely
temporal granularity (Bettini et al. 2000), spatial granularity (Camossi et al. 2006;
Pozzani and Zimanyi 2012) and a granularity definition applicable to any domain
(Pires et al. 2014). Granularities can be related through relationships, allowing one
to compare and relate granules belonging to different granularities. This is useful to
model phenomena at different LoDs.

Camossi et al. (2006) propose a granular computing approach to index and
aggregate spatiotemporal information at different LoDs in object-oriented database
management systems. However, more than indexing spatiotemporal information at
different LoDs, the granularity theory proposed in Pires et al. (2014) and Silva et al.
(20154, b) was devised to represent spatiotemporal phenomena at different LoDs in
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a semi-automatic way, also including some concepts from multirepresentation and
multiresolution (see Sect. 3). A more detailed discussion about modeling spa-
tiotemporal phenomena at different LoDs can be found in Silva et al. (2015a).

Although there are several approaches to model spatial phenomena at different
LoDs, few works on approaches that work across several LoDs were found.

Camossi et al. (2008) propose a spatiotemporal clustering technique applicable
to different temporal and spatial LoDs in order to improve a clustering algorithm
efficiency. The appropriate temporal and spatial LoD depends on a trade-off
between the mining efficiency and the maximum detail desired, which is an input
parameter. The choice of the temporal and spatial LoD is done iteratively through
the LoDs available until the best trade-off is found. This approach is independent
from the application domain and is focused on a particular analytical “task” (i.e.,
clustering). Furthermore, it follows a fully automatic approach to find the proper
temporal and spatial LoD.

When a user is at an early stage of the analysis, semi-automatic approaches are
desirable so that human judgment can be involved in the analytical process as stated
by the Visual Analytics principles (Keim et al. 2008). In other words, approaches
that combine automatic algorithms and interactive interfaces including the user
in-the-loop, relying on users’ cognitive capabilities and domain knowledge. The
human involvement in the analytical process is crucial as the appropriate LoDs may
depend on the specific application, the analysis question, and its concordance with
domain knowledge.

Some proposals working on several LoDs appeared from the Visual Analytics
research area. Sips et al. (2012) propose a Visual Analytics approach called Pinus,
aiming the detection of patterns at multiple temporal LoDs in numerical time series,
specifically from environmental sciences. This approach makes no assumption
about the temporal LoD. The Pinus visualization allows users to visually detect the
temporal LoDs where interesting patterns emerge in the time series. Goodwin et al.
(2016) propose a framework for analyzing multiple variables across spatial LoDs
and geographical location. They use a novel interactive visualization to identify
correlation in multiple variables allowing a user’s analysis in several spatial LoDs
and geographical location simultaneously.

Sips et al. (2012) and Goodwin et al. (2016) recognize the importance of the
LoD in the user’s analysis that is embedded in their proposals. Particularly, the
former focuses on several temporal LoDs, and the latter handles multiple spatial
LoDs. Furthermore, the former approach is independent from the user’s analytical
task while the latter is focused on comparing multiple variables across geographical
location and spatial LoDs.

Approaches working across several LoDs are needed and, as shown, they are
starting to be developed. Yet, to the best of our knowledge, there are no approaches
that work across several spatial and temporal LoDs, and that are independent from
the analytical task and the domain applicable in the context of spatiotemporal
events.
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3 Granularity Theory

A granularity theory devised to model spatiotemporal phenomena at multiple LoDs
was proposed in Pires et al. (2014) and Silva et al. (2015a, b). This theory provides
the concepts needed to our framework that are explained below.

The granularity theory lies on the concept of granularity. Granularities perform
divisions of a domain. Each division corresponds to a non-decomposable entity,
mentioned as a granule. A granularity was formally defined as follows (Pires et al.
2014).

Definition 1 (Granularity) Let ZS be an index set; D be a domain; 2P5 the power
set of the DS; and GS be a subset of the power set of the DS apart from the empty
set GSC2P5\{@} such that any two elements are disjoint from each other.
A granularity G is a bijective mapping:

G:GS -1IS (1)

A granularity is a set of granules where each one is composed by its extent
g € GS and its index value ind € ZS denoted by g;,4. States, Counties are examples
of spatial granularities and Hours, Days are examples of temporal ones.

Granularities can be related through relationships allowing one to compare and
relate granules belonging to different granularities, useful to hold spatiotemporal
data at different LoDs. A fundamental relation between granularities is the rela-
tionship finer than, i.e., a granularity G is finer than H if and only if each extent of
granule of G is contained in one and only one extent of a granule of H (G < H). For
example, Counties is finer than States (Counties < States) and Hours is finer than
Days (Hours < Days).

A granularities-based model is composed by a set of atoms which are used to
make statements about phenomena. An atom is a predicate symbol together with its
arguments such that arguments are granules from granularities. Each predicate is
defined by a signature. The signature declares the granularities and the respective
granules that can be used in the arguments. Let P € P be n-ary predicate with a set
of arguments denoted by Args(P), and G a set of granularities of the model.
A predicate signature is of form P({(arg, G(pa))|arg € Args(P) AGpug)SG})
declaring the set of valid granularities for each argument G(p 4y).

Let’s consider that we want to describe crimes in USA. We introduce the
predicate symbol crime to describe the spatial location, the time moment and the
number of victims resulting from a crime: crime(where, when, victims). The crime
signature’s predicate is defined as follows: (i) Gcrime,where) = {Counties, States};
(@) G(crimeyheny = {Hours, Days}; (iti) G(crime viciims) = {Numbers, Binary}. Note
that, the granularity Numbers corresponds to N and the granularity Binary is defined
as: (0, “No Victims”), ([1, €], “With Victims”) where ¢ is the maximum number of
victims occurred in a crime. This way, Numbers < Binary.
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An atom is of form P(r) with = = {(arg, g)|arg €Args(P) Ag is a granule of a
valid granularity G(p 4 }. 7 denotes the tuple of terms of an atom. An example of a
atom describing an crime can be: crime({(where, Oakland), (when, 03/01/2015
18 h), (victims, 0)}) where the underlying granularities used are {(where, Counties),
(when, Hours), (victims, Numbers)}.

Until now, the term LoD was informally used. However, the concept of LoD was
formally defined (Silva et al. 2015b). One valid LoD of the predicate P consists of a
set of argument pairs and a valid granularity. Looking at Fig. 3, the LoD, {(where,
Counties), (wWhen, Hours), (victims, Numbers)} and LoD, {(where, Counties),
(when, Days), (victims, Numbers)} are two examples of valid LoDs of the crime
predicate. The set of all valid LoDs of the predicate P is denoted by £”. From now
on, a LoD will refer to one LoD belonging to £F.

Two LoDs can be related by the relationship is more detailed than formally
defined in Silva et al. (2015b). The LoD, is more detailed than LoD, because
County < States, Hours < Days and Numbers < Binary. All LoDs in £ form a
partial order along with the relation is more detailed than. In our example, the
partial order formed by the LoDs in £ is illustrated in Fig. 3.

Using a predicate P, a phenomenon is described by a collection of atoms for
each valid LoD. There might be equal atoms in some LoDs which are described in
Silva et al. (2015b) in the form of: Gg,,(P(7),f), where f is the number of atoms in
the form P(z) such that f > 0. For the sake of simplification and assuming atoms of
the predicate P, we will use the following notation: (z)/f. Notice that, (7)/f can
also be mentioned as an atom according to the granularities-based model definition
(Silva et al. 2015b).

Events are captured at lowest LoD regarding all valid LoDs of the predicate P.
After that, and using the generalization concept introduced in Silva et al. (2015b),
events can be generalized automatically for any coarser LoD. For example, crime
({(where, Oakland), (when, 03/01/2015 18 h), (victims, 0)}) at LoD, can be gen-
eralized to crime({(where, Oakland), (when, 03/01/2015), (victims, 0)}) at LoD,, as
well as can be generalized to crime({(where, Michigan), (when, 03/01/2015 18 h),
(victims, 0)}) at LoD,.

States, Days, Numbers Countics, Davs, Binary States, Days, Binary
v v
States, Hours, Numbers Countics, Days, Numbers Counties, Hours, Binar States, Hours, Binary
- * 4§ >
LoD LoD
3 b
LoD _{ Counties, Hours, Numbers is more detailed than
u

Fig. 3 The partial order of all valid LoDs of the crime predicate
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Using the granularity theory, we can have spatiotemporal events at multiple
LoDs. As discussed, the LoD has an important role for the user’s analysis.
Therefore, analyses across multiple LoDs simultaneously are needed.

4 SUITE: A Framework for Summarizing
Spatiotemporal Events

The goal of this work is to propose a framework to build statistical summaries, at
different LoDs, about phenomena described by spatiotemporal events. The users
should be able to inspect and compare the phenomenon’s perception across multiple
LoDs, without having to look at raw data, and consequently, not needing to handle
the spatiotemporal complexity.

The proposed framework is based on the granularity theory but, since we are
assuming spatiotemporal events, we consider that each used predicate has one and
only one argument where describing the spatial location of the event, and one and
only one argument when specifying the time moment. Other arguments can be used
to detail what has happened.

The signature of event follows the pattern, event((where, G(p ere)), (When,
G(p,when))» Args), and Args = {(arg1,G\), ..., (arg,, G,)} represents the signature
for the other arguments. We also assume that any valid spatial granularity does not
have a temporal evolution (Silva et al. 2015a), i.e., the used spatial granularities
remain stable along the considered temporal scope.

Let a = {(where,S), (when,T), ..., (arg,, G,)} € L" be a LoD of event. An
atom event((where, s), (when,t),args)/f represents, at a some LoD from L,
f spatiotemporal events that happen located on a spatial granule s, at a temporal
granule 7, described by args = {(argi,v1), ..., (argu,va)}.

An atom is associated with one and only one spatiotemporal grain st composed
by a spatial granule s and a temporal granule 7, st = (s€S,7€T). In general, a set
of event atoms is associated to each spatiotemporal grain st € S X T. This set may be
empty, meaning that no event happened at the spatiotemporal grain st; or the set has
just one atom event((where,s), (when,t),args)/f meaning that f similar events
happened at the spatiotemporal grain s¢; or the set has many atoms, meaning that
many different events happened at the spatiotemporal grain st.

This way, a granularities-based model (or just model), M (event)®, regarding a
predicate event at a LoD can be described as a set of indexed collections of atoms,
each being indexed by a spatiotemporal grain from SX 7,

{st > {event((where,s), (When,t),args)/[f }|st = (s,t) €SXT} (2)

Let’s consider a simple synthetic example of event with {S;,S,} as the set of
valid spatial granularities, {77, 7>} the set of valid temporal granularities and just
one additional argument with just one granularity G,.,. Assuming T; <7, and
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(s1a:ts) {g9./4. gv/2}
(534.t5) {g9./4, 9,/3}
(Sa1.t5) {g,/1. g»/1}
(542.t5) {g./6}

(543.t5) {9./2, 9v/4, g/1}
(s13t;) —— {g9./4, 95/2}
(S23,t) = {g./5}

(S24.t3) > {9,/1, 9/3, g/1}
(541.t1) = {g,/1}

(qu-rﬂ » {9./3. g1}

Fig. 4 Schematic representation of M (event)”

S1 <8, the most detailed LoD is a = {(where, S,), (when, T), (arg, Garg) }. Let’s
represent by s;; the spatial granules from Sy, # the temporal granules from 7 and
Garg = {84, 8, 8c}- Figure 4 presents a set of available atoms indexed by each
spatiotemporal grain (s, fx). Each atom is written in a simplified form, such that
event((where, s;;), (when, 1), (arg, garg))/f is just represented by gar/f. For
instance, the set of atoms associated with (sy3, ) is {g,/4} and {g,/2}, and the set
of atoms associated with (sx4, 1) is {ga/1,85/3,8:/1}.

The USA car accident dataset, represented in Fig. 1, can be described at each
LoD a by an equation similar to (2), i.e., M (accident)®, where each spatiotemporal
grain st = (s, ) index a set of atoms representing the accidents which happened at
that spatiotemporal grain. We can apply simple statistics to summarize
M (accident)".

For instance, some spatiotemporal grains st index empty sets while others index
non-empty sets. The percentage of spatiotemporal grains with non-empty sets,
named occupation rate, measures the average density of a model at a given LoD.
Let’s consider the spatial granularities grid(0.14 km?), grid(2.27 km?),
grid(36.39 km?), Counties, States, and the temporal granularities Day, Week,
Month, and Year. Figure 5 shows the occupation rate for different combinations of
spatial and temporal granularities. As we can see in Fig. 5, the occupation rate
increases with coarser granules.

Occupation Rate (in %) Occupation Rate (in %)

100%

12%

10% 0%

0% 0%

08 —_— - -y 36,39 km2 W%

e — — —_— - .o 0% Staes

:': — — — _—  0lkm2 - L Counties

) Dovs Wesks  Months Yeers Dy Weeks Morths Years
m0ldkn? w127km? w3639imi mCourties m Staes

Fig. 5 The occupation rate for different combinations of spatial and temporal granularities
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Fig. 6 The occupation rate computed at each temporal granule

At each LoD, the context for the occupation rate, shown in Fig. 5, is global in
the sense that it considers all spatiotemporal grains. The same computation can be
done for each temporal granule #;, considering all the spatiotemporal grains
st = (s,;). In that case, we get the temporal evolution for the occupation rate
computed at each spatial context, as shown in Fig. 6. Each time series is displayed
based on its maximum and minimum values. Bearing this in mind, at 0.14 km?
Month LoD a cyclical pattern is observed, for instance; and, at StatesYear LoD the
one value is a constant which means that there is at least one accident in each state
for each year. Another pattern can be seen at 36.39 Year LoD, for instance, which is
showing a decreasing trend.

On the other hand, the occupation rate computation can also be done for each
spatial granule s;, considering all the spatiotemporal grains st = (s;, ), getting for
each spatial granule the occupation rate across all the temporal granules. Figure 7
shows two maps where each “point” represents a spatial granule and its color is
given by the occupation rate value according to the map’s legend (see Fig. 7).

The map at 0.14 km® Days LoD shows an outlier, highlighted by a dash circle.
In the “yellow” spatial granule, there are accidents occurring with some degree of
frequency in comparison with the other granules. When we change the LoD to
0.14 km? Years, the perception is changed and that outlier is no longer perceived.

To achieve this kind of perception, the proposed framework builds statistical
summaries of each phenomenon’s LoD to support users in carrying inspection and
comparison tasks of a phenomenon across multiple LoDs. Observing summaries
across multiple LoDs can provide useful information to identify the proper ones to
carry out a particular analysis. We will call those statistical summaries as abstracts.

4.1 Abstracts

Our framework was designed to build abstracts over M (P)”. An abstract A can be
a number, a vector, or even a matrix measuring a particular feature of a
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Fig. 7 The occupation rate computed at each spatial granule

phenomenon. Five types of abstracts with different contexts are introduced:
(i) Global Abstract; (ii) Temporal Abstract; (iii) Spatial Abstract; (iv) Compacted
Temporal Abstract; (v) Compacted Spatial Abstract.

Definition 2 (Global Abstract) Let M(P)” be the set of granular syntheses indexed
by each spatiotemporal grain. Thus, a function Fgppa : (M(P)*) = AGiobal
produces a global Abstract such that Ag,pe 1S One abstract A.

For instance, in Fig. 5, we are displaying Global Abstracts i.e., the occupation
rate for each LoD of the model M (accident)”. Global Abstracts may hide some
important variations in space and/or time. Hence, we introduce the possibility to
create abstracts that are more “detailed”. One of them is the Spatial Abstract.

Definition 3 (Spatial Abstract) Let M(P)” be the set of granular syntheses indexed
by each spatiotemporal grain. Thus, a function Fspariar : (M(P)*) = Agpatiar pro-
duces an abstract for each temporal granule such that Ag,qiw = {(7,A)|r € T}.

A Spatial Abstract is a summary based on M(P)” for each 1 € T.. It allows us to
look at the evolution of a summary over time, which is measuring a spatial feature
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of a phenomenon. Figure 6 shows several Spatial Abstracts (i.e., the occupation
rate), one for each LoD.

In the same way as the Spatial Abstract allows one to look at a summary over
time, we introduce the Temporal Abstract to look at a summary over space.
A Temporal Abstract is a summary based on M (P)” for each s € S. It allows us to
look at a summary over space, which is measuring a temporal feature of a
phenomenon.

Definition 4 (Temporal Abstract) Let M(P)“ be the set of granular syntheses
indexed by each spatiotemporal grain. Thus, a function Frempora :
(M(P)*) = Afemporar produces an abstract for each spatial granule such that
ATempoml = {(sa A)‘S € S}

Two examples of Temporal Abstracts can be found in Fig. 7, in which the
occupation rate is computed for each spatial granule s.

Moreover, each Spatial (or Temporal) Abstract can be further summarized into a
single summary that we called Compacted Spatial (or Temporal) Abstract.

Definition 5 (Compacted Spatial Abstract) Let Agpqiq be a Spatial Abstract. Thus,
a function Feompacispatiar © (Aspatia) = Acompacrspariat produces a Compacted Spatial
Abstract such that Ac,ppacispariar 1S One abstract A.

For each Spatial Abstract (i.e., time series) displayed in Fig. 6, we can use an
aggregation measure, like the average, to produce a Compacted Spatial Abstract.
Other methods that come from descriptive statistics as well as methods to analyze
time series can be used to build Compacted Spatial Abstracts.

Definition 6 (Compacted Temporal Abstract) Let Argemporas be a Temporal
Abstract. Thl.lS, a function IFCompactTemporal : (ATemporal) - ACompactTemporal prOdUCCS
a Compacted Spatial Abstract such that Acompaciremporar 15 One abstract A.

For each Temporal Abstract (i.e., map) displayed in Fig. 7, we can also use an
aggregation like the average to produce a Compacted Temporal Abstract. Other
methods that come from descriptive statistics or spatial statistics can be used to
produce Compacted Temporal Abstracts.

4.2 Properties of Abstracts Functions

Abstracts are built through functions. Each function will be measuring certain
feature of phenomena which in turn can employ different strategies using different
information from the model M (P)“. Bearing this in mind, we identified three
properties that can further characterize the function that computes an abstract. These
properties describe the way each spatiotemporal grain contributes to the Abstract
computation, i.e., the way each y = st — {event((where, s), (when, t),args)/f} is
integrated for the resulting abstract. They are: (i) neighbourhood dependency; (i)
spatiotemporal dependency; (iii) semantic dependency. These properties are further
detailed.
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Neighbourhood dependency: The contribution of each y for the Abstract depends
(or not) on the spatiotemporal neighbourhood. This neighbourhood dependency
may be only temporal (e.g., depends only on the events that happen on the same
spatial granules but on previous temporal granules); only spatial (e.g., depends only
on the events that happen on the same spatial neighbour’s granules but on the same
temporal granule); or may be both spatial and temporal dependent.

When an Abstract computation is not dependent then the computation of F({y}),
where y = st — {event((where,s), (when,t),args)/f}, can be rewritten as
F{r}) = Agg[p({[F’ (y)}), where F' computes the contribution of each y and Aggg

aggregates those contributions to get the final Abstract. This means that F canbea
function of local computation not requiring information about others y.

Spatiotemporal dependency: the contribution of each y for the Abstract depends
(or not) on the specific spatiotemporal grains st = (s,¢) of y. This spatiotemporal
dependency may be only temporal (e.g. the contribution is different if the events
happened at night or during day, or even varying with the season); only spatial (e.g.,
the contribution is different if the events happened at high mountains or at sea level,
or even varying according to the spatial granule like the specific counties); or may
be both spatial and temporal dependent.

When an Abstract computation is not spatiotemporal dependent then the com-
putation of F({y}), where y = st > {event((where,s), (when,t),args)/f}, can be
rewritten. Consider y' as y = st — {event(args)/f} where we removed the infor-
mation about s an ¢ and leave the set {event(args)/f} indexed by st just to keep any
neighbourhood  information  between  spatiotemporal  grains.  Then,
F({r}) =F({r'})-

When an Abstract computation is neither spatiotemporal dependent nor neigh-
bourhood dependent, F({y}), can be rewritten as F({y}) = Aggr ({F ({r'})}), where
F computes the contribution of each set { y’} independently of their spatiotemporal
location, and Aggr aggregates those contributions to get the final Abstract.

Semantic dependency: the contribution of each y for the Abstract depends (or not)
on the semantic arguments of y. When the Abstract is not semantic dependent then
y = st - {event((where, s), (When,t),args)/f} can be simplified to y = st — {event
((where,s), (when,t))/f}. For instance, if we are studying the car accidents an
Abstract semantic dependent will consider the type of accident and/or the number
of victims, while an Abstract semantic independent only considers the number of
accidents.

When an Abstract computation is neither spatiotemporal dependent nor neigh-
bourhood dependent nor semantic dependent, F({y}), can be rewritten as
F({r}) = Aggr ({F ({f})}), where F' computes the contribution of each bag {f},
and Aggr aggregate those contributions to get the final Abstract. The occupation
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rate is an extreme example of such Abstract and can be defined based on:
F({r}) = ifl{r}|>0 then 1 else 0:

Ager(xh) = 2 o)

4.3 Discussion

Our framework allows one to define or use many functions available in the liter-
ature that create summaries of data.

As presented, the functions computing abstracts may be semantic dependent.
Such dependency is delimited by the predicate’s signature regarding the arguments
args. These arguments depend on the phenomenon itself. In the case of car acci-
dents, one may collect information about the number of victims, whether some of
the drivers present an alcoholic rate above the legally allowed, information about
weather conditions, among others. A function computing an abstract can use this
information. For instance, one can compute the occupation rate by weather con-
ditions as Global Abstract; or we can use the Global Moran’s I (Moran 1950) to
build a Spatial Abstract that measures the correlation between spatiotemporal grains
and the weather conditions.

Furthermore, the functions producing abstracts may be spatial and/or temporal
dependent. In case of dependency, it is important to have a base knowledge for each
spatial and temporal granule and that base knowledge should be relevant for the
phenomenon in study. Some examples to describe a temporal granule are: the time
of the day that each temporal granule exists (e.g., night or day), what kind of season
it is in. Concerning the spatial granules, they can be characterized, for instance, as
information about altitude, if is a rural or urban area, among others.

Moreover, the functions computing abstracts may be neighbourhood dependent.
This dependency can make the functions likely to be more time-consuming when
compared with the neighbourhood independent ones. Some examples are given:
(i) the enhanced Jacquez k nearest neighbour test (Malizia and Mack 2012) can be
an example of a Global Abstract neighbourhood dependent; (if) the number of
clusters of spatiotemporal grains identified by a 4D spatiotemporal density-based
clustering approach proposed in Oliveira et al. (2013) can be an example of Global
Abstract computed by a function neighbourhood and semantic dependent; (iii)
Keogh et al. (2005) propose an algorithm to find the most unusual subsequence
within a time series, which can be used as Temporal Abstract. Such abstract is
computed by a function temporal neighbourhood dependent; (iv) based on the
Fourier discrete transform, a function may compute a Temporal Abstract returning
the n higher frequencies. Such function is temporal neighbourhood dependent.
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In the absence of the neighbourhood dependency, functions making abstracts
can work individually for each spatiotemporal grain as discussed. For this reason,
parallel computing techniques can be employed.

Moreover, in the analysis of an abstract using different LoDs one needs to be
aware of the Modifiable Areal Unit Problem, MAUP (Openshaw and Openshaw
1984), which means that patterns may be biased due to how raw data are aggre-
gated. Since the SUITE’s framework was proposed to allow analyses across mul-
tiple LoDs such problem may be identified or discarded sooner. For example, when
a pattern is only visible in a specific LoD it can be further validated. One might
conclude that the pattern suffers from MAUP and can be ignored or, if the phe-
nomenon specifically operates there, it can be considered valid. Therefore, we argue
that the analysis across multiple LoDs can attenuate the MAUP.

Finally, the functions computing abstracts may be used in different abstracts
holding different properties and sometimes they depend on the phenomena in study.
However, it is fundamental that those functions provide comparable abstracts.
Ultimately, we aim to support users carrying inspection and comparison tasks of a
phenomenon across multiple LoDs. To this end, comparable abstracts are funda-
mental to allow a fair comparison among phenomenon’s LoDs.

5 SUITE’s Prototype

The SUITE’s prototype was developed, implementing the granularities-based
model specific for spatiotemporal events. The server provides a set of RESTful Web
services (Spring) implemented in Java and is relying on PostgreSQL as the Data-
base Management System. The browser-based client handles user interaction and
data presentation. It’s coded in JavaScript, HTMLS5, and uses WebGL to display
efficiently thematic maps.

The prototype receives as input a dataset of spatiotemporal events and a pred-
icate signature, and then it generates automatically the set of atoms for each LoD of
the corresponding predicate. The set £ is inferred based on the granularities
defined for each argument and the relationship finer than that exists among them.
During the generalization’s computation, local summaries associated to each spa-
tiotemporal grain are built. For example, the number of spatiotemporal events, the
number of distinct atoms event((where, s), (when,t),args)/f, among others. These
are used by the abstracts’ functions in order to take advantage of the computation
already performed when they are executed. Notice that, the functions developed to
generate abstracts so far are displayed in Appendix. Moreover, new abstracts’
functions can easily be added, since the prototype was developed in a modular way.

Figure 8 presents the three main panels of the SUITE Prototype user interface:
Global, Spatial, and Temporal Abstract. Each panel is showing a thematic partial
order for the computed LoDs of the dataset of car accidents in USA. Each node
represents a LoD and is colored according to the chosen Abstract function, in this
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Fig. 8 An overview of the SUITE’s prototype
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Fig. 9 The thematic partial order of the Compacted Temporal Abstract and the Temporal Abstract
occupation rate across three LoDs
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case the occupation rate. For the Spatial, and Temporal panels an additional
function is required (in this case the standard deviation) to compute Compacted
Spatial Abstracts and Compacted Temporal Abstract.

The thematic partial orders allow users to inspect and compare the results of
abstractions functions, measuring a particular feature of a phenomenon. In Fig. 9
the thematic partial order of the Compacted Temporal Abstract displayed in Fig. 8
was zoomed in. We can see different classes of values of the corresponding
Compacted Temporal Abstracts for the LoDs CountiesDay, CountiesWeek and
CountiesMonth. The respective Temporal Abstracts are also displayed in Fig. 9,
and as can be seen, different perceptions about the occupation rate were achieved.

Thematic partial orders should be further explored by analyzing the Spatial
Abstracts or Temporal Abstracts. Notice that the time series displayed in Fig. 6 are
Spatial Abstracts, and the maps shown in Figs. 7 and 9 are Temporal Abstracts
coded into visual representations. These “perspectives” are shown together in
Fig. 10 regarding the occupation rate considering only the accidents with drunk
drivers involved. Notice that, in SUITE’s prototype users can conduct “semantic”
filters based on the arguments args specified in the predicate signature.

Observing the Spatial Abstract value at StatesMonth LoD (left side in Fig. 10),
we can see a change in the behavior of the occupation rate. It changes from a
slightly constant behavior to a cyclic one, and this was not observed considering all
accidents as shown in Fig. 11.
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Fig. 10 The Temporal Abstract perspective and one Spatial Abstract at 36.39 km? Month using
the occupation rate

StatesMonth WQWHM‘J—.MHHMM Al Accidents
StatesMonth WWW With drunk
drivers invalved

Fig. 11 Spatial Abstracts considering all accidents and with the accidents with drunk drivers
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The SUITE’s prototype allows one to conduct analyses of abstracts across
multiple LoDs, providing hints about in what LoDs the phenomenon perception
distinguishes itself or in what LoDs “interesting patterns” may emerge.

6 Conclusions and Future Work

Standard practices provide tools that work on a single LoD driven by the user.
However, the LoD plays a crucial role during the analytical process and, often, there
is no exclusive LoD to analyze a phenomenon.

This paper presents a framework to build abstracts, at different LoDs, about
phenomena described by spatiotemporal events. As our framework makes no
assumption about the phenomenon, the analytical task and the phenomenon’s
LoDs, it can be widely used to get an overview of the phenomenon under analysis.
The framework establishes five type of abstracts working with space and time
together as well as the properties to characterize the functions to compute them.
This allows us to frame many proposals in the literature that create summaries of
data in the proposed abstracts and properties.

The SUITE’s prototype implements the proposed framework allowing analyzes
across multiple LoDs. Datasets of spatio-temporal events are automatically gener-
ated for the multiple LoDs, and for each one, abstracts can be computed. The
prototype already implements a set of functions to compute abstracts (see Appen-
dix) but new abstracts functions can be easily added.

Future work can be directed to further experimentation of the SUITE’s proto-
type, namely, the assessment of domain experts of the proposed framework, and to
enrich the prototype with new functions to compute abstracts.
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Appendix
Measure Description Global Spatial | Temporal | Properties
Atoms Percentage of granules with [ ] [ ] [ ]

Colision (%) events, where atom
colisions exits

Occupation Percentage of granules with | @ L L

Rate (%) events

Bray-Curtis Calculates the similarity [ ] A
Similarity based on the counts of

for Atoms

(continued)
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(continued)
Measure Description Global | Spatial | Temporal | Properties
atoms, between consecutive
temporal grains
Bray-Curtis Calculates the similarity L] .
Similarity based on the number of
for granular synthesis, between
Synthesis consecutive temporal grains
Correlation Correlation between the [ ] .\
Index for number of atoms of
Atoms consecutive temporal grains
Correlation Correlation between the [ ] y.X
Index for number of granular
Synthesis synthesis of consecutive
temporal grains
Dice Dice index (event/no event) ® .5
Similarity between consecutive
(Binary) temporal grains
Gower Similarity (event/no event) ] .
Similarity between consecutive
(Binary) temporal grains
Jaccard Jaccard index (event/no [ ] .
Similarity event) between consecutive
(Binary) temporal grains
Moran’s 1 Calculates the spatial [ ] AO
autocorrelation among
nearby locations, given a
domain specific variable
Maximum Calculates the maximum ® A
Number of number of event happening
sequential for a spatial grain
occurrences
Legend

A Neighborhood dependent [ Spatio-temporal dependent ) Semantic dependent
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of Imperfect Geohistorical Data About
Natural Risks: A Qualitative Classification
and Its Experimental Assessment

Cécile Saint-Marc, Marléne Villanova-Oliver, Paule-Annick Davoine,
Cicely Pams Capoccioni and Dorine Chenier

Abstract Imperfections, often called ‘uncertainties’, exist in almost every
spatio-temporal dataset, especially in historical data. They are of different types
(unreliability, inaccuracy...) and concern every data dimension (space, time and
theme). Based on previous work, this article proposes a synthesis qualitative
classification of imperfection types. This classification has been assessed with
domain experts (hydrologists, geophysicians and GIScientists working in a railway
company) during an experiment, that gave positive results towards the use of this
classification. Participants were also asked to evaluate the seriousness of each
imperfection type in an analysis context. This evaluation has allowed to associate a
quantitative index to each imperfection type and to visualize a quantity of imper-
fection attached to each spatial object in a map.
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1 Introduction

Imperfections are present in almost every spatio-temporal dataset. It is defined as
the fact that data representing reality differ from reality itself in various ways (Plew
2002). In the literature, the terms ‘uncertainty’, ‘unreliability’ or ‘data quality issue’
are employed as synonyms. We decided to use the term ‘imperfection’ in this
article, as a broad term including all these representations.

Geographic information about the past, named geo-historical information, is
especially concerned by imperfection, because it often comes from testimonies and
archive documents, which deliver incomplete and sometimes uncertain information.
Natural risk studies particularly require working over historical natural phenomena
to understand at-risk processes in space and to better anticipate and prevent future
events.

In a study we have made about the historical major flood of November 1999 in
France and its impacts on the railway system, we have counted that 327 records out
of 399 (82 %) in the dataset contained imperfections. Each dimension of data may
be affected by imperfections: its location, its dating and its theme. In the dataset we
studied, 36 % of the locations, 64 % of the dating and 14 % of the data values were
imprecise or uncertain. Even if a dataset is uncertain or imprecise, it must often be
included in spatial analysis because it is the only available resource. Thus the
management of information imperfections in the field of natural risks is crucial.

Buttenfield (1993) identified two issues to communicate the imperfection of
information. The first one was the lack of methods to measure and represent the
numerous aspects of imperfection in geospatial data. Should imperfection be
qualified or quantified? What was the best method? Where and how could it be
included in information systems? The second issue was to figure it in communi-
cation mediums. Is it possible to visualize imperfection at the same time as data?
Which methods may enable to interact with these visualizations in a comprehensive
and useful manner? Moreover, may users agree to use this information, even if it is
a complex and time-consuming additional parameter to integrate in their decisions
(Kinkeldey et al. 2015).

Two ways exist to represent imperfections in geospatial data: to quantify it, for
example in the form of statistical probabilities (e.g. Lowell 1997; Potter et al. 2012;
Zoghlami et al. 2012), or to qualify it with a set of appropriate terms (e.g.
MacEachren et al. 2005; Thomson et al. 2005; Skeels et al. 2008; Arnaud 2009;
Snoussi et al. 2012). Qualification allows the user to make the difference between
types of imperfection whereas quantification has the advantage to be suitable for
calculations by computers. Qualitative form can also be converted into quantitative
form if needed (Thomson et al. 2005). This article focuses on qualitative classifi-
cations of imperfection and conditions for their visualization in a map.

The first section of the article deals with existing classifications of imperfection
(here, ‘classifications’ stand for ‘definitions of different types of imperfection’) and
a synthetized classification is proposed. The second section introduces the visual-
ization methods to represent multiple types of imperfection simultaneously in a map
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and explains how they can be used in the context of our synthesis classification. The
third section describes a user study conducted with experts of the French railway
company (SNCF), in order to validate our classification in a practical context.
Finally the results are discussed and outlooks are given.

2 Representation of Spatio-Temporal Data Imperfection

Research in GIScience has shown interest in representing and visualizing imper-
fection for about 25 years now. This section deals with a synthesis of previous
works related to the qualitative expression of imperfection. Based on these works, a
synthetized classification is then presented.

2.1 Classifications of Imperfection: A State of the Art

2.1.1 Extent of This State of the Art

Many works in GIScience interested in classifying imperfection types (Veregin
1989; Pornon 1992; Plew 2002; Thomson et al. 2005; Griethe and Schumann 2006;
Pang 2008; Arnaud 2009; ISO 2013). For reasons of length, this article does not
aim to review extensively all the literature about classification of imperfection.
After an exploration of previous work, we have decided to describe three of them
that review previous work before proposing their own classification, and that
defended different viewpoints about imperfections (Skeels et al. 2008; Arnaud
2009; Snoussi et al. 2012). The first one focuses on spatial data use cases and has
been developed with domain experts. The second one is GIScience-oriented with a
social science approach, considering the format and human processing of
spatio-temporal data. The third one is a high-level classification, designed for
computer science and not specifically for geographic information, but which uses a
more exhaustive terminology.

2.1.2 A Review of Reviews

A first synthetized classification was proposed by Arnaud (2009) in the domain of
natural risk geohistorical data. The author has reviewed typologies of imperfection
in GIScience and Social Science. Mainly inspired by the classification by Thomson
et al. (2005), it described 10 types of imperfection, ordered by origins of imper-
fection: information-related factors, human-related factors and media-related factors
(Fig. 1). Each of these categories counted two to five imperfection factors.
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Social sciences GlScience
Roland- | Lang et Thomson | Skeels | Griethe
Uncertainty factors May alii Bﬁg;ﬁ‘;ld et alii etali | etali
(2000) | (2005) (2005) | (2007) | (2006)
Imprecision (fuzzy dimension)
T - semantic X
= - spatial X X X
[ - attributary X X X
5 = - granularity X
B é’ Objectivity (exactness) X X
E Validity X
% Incompleteness X
il Exhaustivity X X
& o | Subjectivity of authors X X X X
E2s
5 5 2| Logical consistency
Tes (agree/disagree) A A .
g Technical errors in lineage . o . = ” .
£ o p| (genealogy)
238
5 R S
Eo g E Reliability/credibility of sources X X X X X
Interrelatedness of sources X

Fig. 1 Classification of uncertainty factors (translated from Arnaud 2009)

Seven of these factors are classified into two main categories: factors which
characterize the information, in a similar way as metadata (incompleteness, sub-
Jjectivity of authors, logical consistency, objectivity or exactness) and quality cri-
teria, relative to the data itself (imprecision, reliability of data sources, genealogy
errors). Arnaud (2009) specified that these factors are related and influence each
other. For example, subjectivity of authors may induce issues in the logical con-
sistency of information or in the precision of information. An interest of this
classification is its inspiration from social sciences, which enriched the classifica-
tion by taking into account data sources and human factors.

The second classification was proposed by Smets (1997) in the field of artificial
intelligence. We consider here a version of this classification that was enriched by
Snoussi et al. (2012). It is presented in Fig. 2. An interest of this classification is
that it divides imperfections in three main categories: imprecision (real values are
located in a set of values, finite or infinite—e.g. ‘at the north of’, ‘during 20th
century’), inconsistency (contradiction between pieces of information) and uncer-
tainty (partial knowledge that does not allow deciding if the value is true or false).
Imprecision terms are classified in two groups: data with and without errors, while
uncertainty terms are separated between objective and subjective assessment.

This second classification is quite exhaustive, presenting 24 types of imperfec-
tion. The whole terminology is organized in the form of a decision tree, which
might help to pick up the right term corresponding to the encountered imperfection.
The main drawback of this proposal is that it is based only on a reduced number of
previous works, essentially in the domains of computer sciences and artificial
intelligence. As a consequence, even if Snoussi et al. (2012) have applied it to



Representation and Visualization of Imperfect ... 243

Imperfect
Information
Imprecision Inconsistency Uncertainty
-Vagueness -Inacurate ~Conflicting -Probable i
: ; -Possible -Random
-Missing ~Invalid ~Incoherent -Believable <
=% -Necessary -Likely
-Biaised “Inconsistent -Doubtful # v
Dispositio Propensity
-Erraneous ~Confused -Possible ' J
-Incorrect -Unreliable )
-Distorted -Irrelevant
-Meaningless -Undecidable
-Non sensical

Fig. 2 Taxonomy of imperfect information (Snoussi et al. 2012). Terms written in bold green are
those that were add