
1© Springer International Publishing Switzerland 2017 
A.V. Kalueff (ed.), The rights and wrongs of zebrafish: Behavioral phenotyping 
of zebrafish, DOI 10.1007/978-3-319-33774-6_1

Mutagenesis and Transgenesis in Zebrafish

Fabienne E. Poulain

F.E. Poulain (*) 
Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
e-mail: fpoulain@mailbox.sc.edu

Abstract Over the last decades, the zebrafish has emerged as a powerful vertebrate 
model for studying development, diseases and behavior, and conducting high- 
throughput screens for therapeutic development. Large forward genetic screens have 
led to the generation of multiple mutant lines with developmental or behavioral 
defects, while transposon-based integration technologies have enabled the creation 
of transgenic lines essential for the functional analysis of cell and tissue movement, 
gene regulation, and gene function. The recent development of engineered endonu-
cleases including ZFNs, TALENs and the CRISPR/Cas9 system has revolutionized 
reverse genetic approaches in zebrafish, allowing for the first time precise genome 
editing for targeted mutagenesis and transgenesis. In this chapter, we provide an 
overview of the different approaches used for mutagenesis and transgenesis in 
zebrafish, with an emphasis on the recent progress in targeted genetic manipulations. 
Examples of selected mutant and transgenic zebrafish strains are given to illustrate 
their growing utility for neurobehavioral phenomics and biological psychiatry.
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Abbreviations

Cas CRISPR-associated
CRISPR Clustered regulatory interspaced short palindromic repeats
DSB Double strand break
EENs Engineered endonucleases
ENU N-ethyl-N-nitrosourea
HDR Homology-directed repair
HR Homologous recombination
KI Knock-in
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NHEJ Non homologous end joining
ssDNA Single-stranded DNA
TALEN Transcription-activator like effector nuclease
WT Wild-type
ZFN Zinc-finger nuclease

1  Introduction

In the 1960s, George Streisinger and colleagues introduced the zebrafish as a new verte-
brate model for the study of developmental genetics. Thanks to its small size, ease of 
breeding, and external fertilization producing large clutches of transparent embryos, the 
zebrafish appeared especially suited for morphological observation of developmental 
processes. Since then, the zebrafish has become a model of choice, not only for studying 
vertebrate development, but also for modeling human diseases and conducting molecule 
screening for drug discovery. Comparison of the zebrafish and human genomes indicates 
that 71.4 % of human protein-coding genes have at least one zebrafish orthologue [1]. 
Systemic large-scale forward genetic screens combined with the annotation of the zebraf-
ish reference genome have led to the identification of a large variety of mutations affect-
ing embryogenesis, physiology or behavior relevant to human health [2, 3]. More recently, 
an explosion of new tools and techniques, in particular the development of engineered 
endonucleases (EENs), have open a new area for genome editing, allowing the direct 
manipulation of the zebrafish genome for targeted mutagenesis and transgenesis (Fig. 1). 
This chapter provides an overview of the different approaches used for mutagenesis and 
 transgenesis in zebrafish, with an emphasis on the recent progress in targeted genetic 
manipulations, and their ‘translational’ applications to modeling selected brain disorders.
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Fig. 1 Timeline recapitulating the development of mutagenesis approaches in zebrafish. This his-
torical timeline recapitulates the major advances in the development of mutagenesis approaches in 
zebrafish over the last 40 years. The first ENU-based mutagenesis screens conducted in the Driever 
and Nüsslein-Volhard labs have generated several hundreds of mutants that were reported in a dedi-
cated issue of Development in 1996. As such, no author name was reported in the corresponding box
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2  Mutagenesis in Zebrafish

2.1  Chemical Genetic Screens

Forward genetic screens allow the identification of genes implicated in a specific 
biological pathway or process by screening a population of animals in which genome 
modifications have been randomly induced. Individuals that display a phenotype of 
interest are identified as carriers of a modified/mutated allele, and subsequent map-
ping of the modification/mutation responsible for the phenotype identifies the gene 
involved. Thanks to its external fertilization, its large clutch size, its rapid develop-
ment and the transparency of its embryos, the zebrafish proved ideal for large-scale 
forward genetic screens. While initial work used UV light and γ-ray irradiation to 
trigger chromosomal breaks [4–6], N-ethyl-N-nitrosourea (ENU) has rapidly 
become the standard choice for chemical mutagenesis [7–9]. ENU is a DNA alkylat-
ing agent that mostly triggers point mutations, has a high mutagenic efficiency, and 
can be directly applied to adult male zebrafish by adding it to the water, making it 
very easy to use (Fig. 2). The first large-scale ENU screens performed in the Driever 
lab in Boston and the Nüsslein-Volhard lab in Tubingen have generated several hun-
dreds of mutants with developmental phenotypes that were reported in a dedicated 
issue of Development in 1996 [10]. Other ENU screens have subsequently identified 
more genes involved in development [11–16], behavior [17–19] addiction [20], or 
diseases [21]. While the identification of the mutated alleles by positional cloning is 
often laborious, whole-genome sequencing at low coverage can now be used to map 
mutations rapidly [22, 23]. Two approaches using whole genome sequencing have 
been developed: the bulk-segregant linkage analysis (BSFseq) that involves a map-
ping cross, and the homozygosity mapping (HMFseq) [24]. Both rely on bioinfor-
matic filtering for mutagenic polymorphisms, and can be analyzed with the open 
source computational pipeline MegaMapper available at https://wiki.med.harvard.
edu/SysBio/Megason/MegaMapper. More affordable approaches using transcrip-
tome sequencing have also been developed, such as Mutation Mapping Analysis 
Pipeline for Pooled RNA-seq (MMAPPR) [25] and RNA-seq- based bulk segregant 
analysis [26]. MMAPPR offers the advantage of identifying mutations without 
sequencing the parental strain or using a SNP database.

While originally used in forward screens that identify mutations after phenotypic 
analysis, ENU mutagenesis has also been applied in reverse genetic approaches, in 
which mutations are detected first and then associated with a phenotype. Targeting 
Induced Local Lesions in Genomes (TILLING) was first used to screen for desired 
mutated alleles in Arabidopsis, and was successfully adapted to the zebrafish 2 years 
later [27, 28]. In contrast to ENU-based forward genetic screens in which pheno-
typic analysis is conducted at the F3 generation, DNA analysis and sperm 
 cryopreservation is performed in F1 families in TILLING (Fig. 2b). After mutations 
have been identified, the cryopreserved sperm is used in in vitro fertilization to 
 generate F2 families, whose carriers are isolated by genotyping. TILLING alleles 
are currently being generated and distributed to the zebrafish community by the 
zebrafish TILLING consortium initiated by the Moens lab at the Fred Hutchinson 
Cancer Research Center and the Solnica-Krezel lab at Washington University 
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School of Medicine in St. Louis. Alleles can be requested online at http://webapps.
fhcrc.org/science/tilling/index.php. Complementary to the zebrafish TILLING proj-
ect, the Zebrafish Mutation Project from the Wellcome Trust Sanger Institute aims 
to produce a knockout allele in every protein-coding gene of the zebrafish genome, 
and has so far generated 26,634 alleles. Mutations are identified after whole exome 
enrichment and Illumina next generation sequencing, and each allele is analyzed for 
morphological defects [29]. A list of available lines with mutations is available 
online at http://www.sanger.ac.uk/sanger/Zebrafish_Zmpbrowse.

2.2  Retroviral and Transposon-Mediated Mutagenesis

While ENU mutagenesis is a powerful approach to generate random mutations at a 
high rate, it requires a significant degree of effort and commitment to identify the muta-
tions. Insertional mutagenesis using retroviruses or transposons offers the  advantage of 
a fast screening of carriers and a rapid identification of the mutated gene by using the 
sequence of the insertional element as a “tag” for mapping. Retroviruses and 
 transposons have different insertion site preferences and generate null or hypomorphic 
alleles, or have no effect, depending on where they integrate in the genome.

Retroviral-mediated mutagenesis was the first insertional mutagenesis carried 
out in zebrafish in the early 1990s [30]. It used a pseudo-type retrovirus derived 
from the Moloney murine leukemia virus (MoMLV), with the envelop protein 
replaced by the glycoprotein from the vesicular stomatitis virus (VSV). Like in 
human cells, this modified retrovirus was shown to preferentially integrate in 
regions close to transcriptional starts in the zebrafish genome [31, 32]. It was used 
by the Hopkins lab at the MIT and others to carry out several large insertional 
 forward screens that led to the generation of hundreds of lines with development 
defects [33–37]. Like ENU mutagenesis and TILLING, retroviral mutagenesis has 
also been used in reverse genetics by injecting high-titer retroviruses into embryos 
[32]. Sperm from F1 males is cryopreserved, and mutations are mapped by 
 identifying the genomic sequences flanking the insertion site, or by high-throughput 
Illumina sequencing to generate a proviral insertion library. Most retroviral 
 insertions have been located in introns, with insertions into the first intron of genes 
often leading to a decrease in gene expression. Using this approach, the Lin lab at 
UCLA and the Burgess lab at NHGRI/NIH have generated the Zebrafish Insertion 
Collection (ZInC), in which 3054 mutations in genes have been isolated from 6144 
F1 fish [38, 39]. Mutant lines can be searched for with the ZInC database (http://
research.nhgri.nih.gov/ZInC/?mode=search) and requested through the Zebrafish 
international Resource Center (ZIRC) (http://zebrafish.org/home/guide.php).

Insertional mutagenesis using transposons has also been used for gene  inactivation. 
Transposons, or “jumping genes”, are mobile DNA sequences that can change their 
position within the genome, thereby altering it and creating mutations. Insertions 
and excisions require the activity of the transposase enzyme. Several transposable 
elements including Sleeping beauty, Ac/Ds and Tol2 have been used in zebrafish for 
both mutagenesis and transgenesis, Tol2 being the most common [40–42]. 
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Transposons have been favored over retroviruses due to their ease of use and their 
ability to integrate large transgenes. Transposon-based gene-breaking constructs 
have been improved over the years to simultaneously inactivate a gene (“gene trap”) 
and insert transgenes of interest such as fluorescent proteins (“protein trap”) (Fig. 3a 
and b), or to inactivate a gene in a conditional manner. The FlipTrap cassette, for 
instance, allows conditional mutagenesis thanks to the insertion of loxP and FRT 
sites for Cre-mediated and Flp-mediated recombination, respectively [43]. When 
integrated into an intron of a gene, the FlipTrap cassette forms a fusion protein of 
citrine and the endogenous protein, thereby revealing the expression profile of the 
targeted gene when it is expressed. Exposure to Cre recombinase removes the citrine 
sequence and a splice donor sequence associated to it, thereby inducing a truncation 
of the gene. Flp-mediated recombination allows the exchange of the cassette with 
any DNA sequence after the integration has occurred. Several FlipTrap lines have 
been made available through the FlipTrap database (http://www.fliptrap.org/static/
anatomies.html). Other efficient gene-breaking constructs such as the RP2 cassette 
[44], the FlEx cassette [45] or a recently developed bipartite Gal4- containing vector 
[46] also function as conditional alleles thanks to the presence of loxP and/or FRT 
sites flanking the mutagenic cassette. Transposon-based cassettes have been used to 
perform several mutagenesis screens [32, 47–49]. A list of gene trap fish lines 
obtained from the Kawakami lab is provided through the zTrap database (http://
kawakami.lab.nig.ac.jp/ztrap/). The zTrap database allows the search for gene trap 
insertions located within or near genes of interest [50].

2.3  Targeted Mutagenesis

While ENU, retroviruses and transposon-based constructs are powerful mutagene-
sis tools for forward genetic screens, the genome modifications they generate are 
random, making it effortful and time-consuming to isolate a mutant for a gene of 
interest. For many years, methods for engineering specific loci in the genome were 
restricted to organisms like the mouse, in which embryonic stem cells can be manip-
ulated in a precise way through homologous recombination (HR). In zebrafish, gene 
knockdown was transiently achieved by injecting antisense morpholino oligonucle-
otides (MOs) designed to block the splicing or translation of a targeted mRNA [51]. 
MOs have been widely used to test gene function, but have recently raised some 
concerns regarding their specificity [52, 53]. A comparative study looking at more 
than 80 genes notably reported that around 80 % of the phenotypes observed in 
MO-injected embryos (“morphants”) could not be detected in the corresponding 
mutants [54]. These differences have led to the assumption that MO-induced phe-
notypes often result from off-target effects, and that mutants should become the 
standard model to describe gene function. On the other hand, deleterious mutations 
have recently been shown to activate genetic compensatory mechanisms [55]. 
Further investigation will likely be required to explain the discrepancies between 
morphant and mutant phenotypes for a specific gene.
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Fig. 3 Overview of transposon-based gene-trap, protein trap and enhancer trap approaches. All 
transposon-based gene trap, protein trap and enhancer trap vectors contain transposable elements 
(TE) that mediate random integration of the vector in the genome. (a) In a gene trap approach, the 
vector contains a splice acceptor site (SA) upstream of a reporter sequence with a stop codon and 
a polyA (pA) signal at its 3′ end. Because the reporter does not have any start codon, its transcrip-
tion depends on the regulation of the endogenous gene by the upstream regulatory element 
(enhancer). Proper splicing of the SA to the 5′ exon of the gene integrates the reporter into the 
transcript and generates a truncated protein. (b) In a protein trap approach, the vector contains both 
a SA and a splice donor site (SD) flanking the reporter sequence. The reporter is devoid of start and 
stop codons, allowing the fusion between the reporter and the endogenous transcript when integra-
tion in an intron is in the correct orientation and proper reading frame. (c) In an enhancer trap, the 
vector contains a basal promoter with minimal activity upstream of a reporter sequence with a start 
codon, a stop codon and a pA signal. When the vector integrates near an endogenous transcrip-
tional enhancer, its basal promoter becomes regulated by it and drives the expression of the reporter 
without any mutagenic effect
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The ability to precisely manipulate the zebrafish genome has remained a 
 long- standing quest that was only recently resolved by the discovery of 
 sequence-specific endonucleases and their engineering as genome editing tools. All 
engineered endonucleases (EENs) consist of a sequence-specific DNA targeting 
component (protein domain or RNA) and a double-stranded DNA cleaving 
 endonuclease (catalytic domain) that introduces double-strand breaks (DSBs) in the 
genome. DSBs can be repaired by two different pathways: non-homologous end 
joining (NHEJ) and homology-directed repair (HDR). NHEJ can ligate the cleaved 
DNA double strands without any template but introduces insertions or deletions 
(indels) at the cut site. HDR, on the other hand, uses a homologous template of 
DNA to repair DSBs. NHEJ is ten times more active than HDR or HR during zebraf-
ish development [56–58]. This error-prone repair mechanism is exploited to intro-
duce a frameshift mutation leading to a non-functional protein. Indel mutations 
generated by NHEJ are easily detected by analyzing the formation of heterodu-
plexes between mutant and wild-type (WT) alleles, either by a mobility assay, in 
which heteroduplexes and homoduplexes have different electrophoretic migration 
profiles [59], by using enzymes like the endonucleases Surveyor or Cel-I or the 
bacteriophage resolvase T7E1 that recognize and cut mismatches [60–62], or by 
high resolution melt curve analysis (HRMA) [63–65]. The nature of indels can be 
further characterized by directly analyzing Sanger sequencing data with the poly 
peak parser software available at http://yost.genetics.utah.edu/software.php [66]. 
Several EENs including zinc finger nucleases (ZFNs), transcription activator-like 
effector nucleases (TALENs), and RNA-guided nucleases (CRISPR/Cas9) have 
been used successfully in zebrafish for targeted mutagenesis (Fig. 4), each of them 
presenting its own advantages (Table 1). A searchable database, EENdb, collects 
reported TALENs, ZFNs and CRISPR/Cas systems for different organisms 
 including zebrafish and can be accessed at http://eendb.zfgenetics.org/ [67]. Another 
software, ZiFit, can be used to design ZFNs, TALENs, or CRIPSRs and is available 
at http://zifit.partners.org/ZiFiT/Introduction.aspx [68].

Fig. 4 (continued) active upon dimerization, ZFNs work in pairs, cleaving DNA only after each of 
them has bound to its target sequence. (b) TALENs are constructed by fusing the catalytic domain 
of FokI to the DNA-binding transcription activator-like effector (TALE) proteins. Each TALE 
contains an N-terminal translocation domain that recognizes a 5′-T (in red in the DNA sequence), 
a DNA- binding central repeat domain, and a C-terminal sequence. The central domain contains 
repeat units composed of 33–35 conserved amino acids, with differences at amino acids 12 and 13 
that form the repeat variable di-residue (RVD). Each RVD recognizes and binds to a single specific 
nucleotide and is therefore responsible for the DNA binding specificity of each repeat unit. Like 
ZFNs, TALENs function by pairs to cleave DNA. (c) In the CRISPR/Cas9 system, a single guide 
RNA (sgRNA) recruits the endonuclease Cas9 to the genomic sequence it complements. The 
sgRNA is composed of 20 nt sequence that directly matches the DNA target sequence, followed by 
72–80 nt of the bacterial crRNA/tracrRNA sequence that are required for the formation of hairpin 
loops stabilizing the sgRNA. Cas9 has two catalytic domains, RuvC and HNH, that each cleaves a 
DNA strand. The presence of NGG as a protospacer adjacent motif (PAM) is required in 3′ of the 
target sequence for DNA recognition by Cas9
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Fig. 4 Engineered endonucleases for targeted mutagenesis. (a) ZFNs are composed of zinc finger 
arrays (ZFAs) fused to the catalytic domain of the FokI endonuclease. Each ZFA generally consists 
in three fingers that each recognizes and binds to a specific 3 nt DNA sequence. Since FokI becomes 
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Table 1 Comparison of mutagenesis approaches available in zebrafish

Mutagenesis 
approach Advantages Disadvantages

ENU mutagenesis High efficiency, high mutagenic 
throughput, random mutations, 
easy to use

Mapping of mutations work- 
intensive, high rate of background 
mutations

Retroviral 
mutagenesis

High integration rate, easy mapping 
of mutated genes, scalable

Integration not random, low 
throughput

Transposon-based 
mutagenesis

Scalable, easy to use, easy mapping 
of mutated genes, integration of 
large transgenes, inexpensive

Low transgenesis rate

ZFNs Targeted mutagenesis Difficult assembly, target not 
present in every gene, not scalable, 
some off-target effects

TALENs Targeted mutagenesis, no constraint 
for target selection, rare off-target 
effects

Not easy to design, not scalable, 
quite expensive

CRISPR/Cas9 Targeted mutagenesis, easy to use, 
inexpensive, multiplexing, 
tissue-specific mutagenesis

Some requirements for target 
selection, off-target effects more 
likely

2.3.1  ZFNs

First described in 1996 [69], ZFNs are chimeric proteins composed of a DNA- 
binding zinc finger array (ZFA) fused to the catalytic domain of the non-specific 
bacterial endonuclease FokI that becomes active upon dimerization (Fig. 4a). Each 
ZFA generally contains three small Cys2His2 zinc fingers derived from natural tran-
scription factors (“Cys2His2” corresponds to the four residues that coordinate the 
zinc atom), with each finger recognizing and binding to a specific 3 bp DNA 
sequence. Many fingers recognizing 5′-GNN, 5′-ANN and 5′-CNN triplets (with N 
being any base) have been isolated using phage display, and a catalogue of fingers 
and their binding preferences has been generated [70–77]. While in theory, fingers 
can be assembled into any combination to construct a ZFA against any sequence of 
interest, designing ZFAs with specific and efficient DNA binding activities has been 
a challenge, as the interaction of each finger with DNA is context dependent. Several 
methods involving direct assembly or screening strategies have been developed to 
generate efficient ZFAs. Modular assembly (MA) directly ligates fingers that recog-
nize different triplets, but does not take into account the context-dependent effects 
of the DNA sequence, leading to a rather high failure rate [78]. Best success has 
been achieved using targets composed of 5′-GNN [79]. In contrast to MA, oligo-
merized pooled engineering (OPEN) uses a bacterial two-hybrid selection method 
to identify ZFAs with high efficiencies and high affinities from a combinatorial 
library of multi-finger arrays recognizing 9 bp sequences [80, 81]. A similar 
approach with a one-hybrid selection system has also been used [82]. While more 
efficient, these approaches require expertise in constructing libraries and are quite 
labor-intensive. A more recent and easier method named Context-dependent 
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 assembly (CoDA) assembles three-finger arrays by selecting N- and C-terminal 
 fingers from known ZFAs containing a common middle finger, thereby accounting 
for context- dependent effects between adjacent fingers [83].

Since the FokI endonuclease domain must dimerize to be active [84], ZFNs func-
tion by pairs, cleaving DNA only after each of them has bound to its target sequence 
(Fig. 4a). Obligate heterodimer modifications have been introduced in the FokI cata-
lytic domain to increase ZFN efficacy and reduce off target cleavages [85, 86]. The 
spacer that separates the ZFA target sequences is relatively short, of variable size and 
has no sequence requirement. Two to five amino acids can be introduced between the 
ZFA and the FokI as an inter-domain linker to accommodate the variable size of the 
spacer in the DNA sequence [87, 88]. While the requirement of two ZFNs to target a 
sequence provides good specificity and limits off target effects, finding a target 
sequence in the 5′ region of a gene to generate a null mutation can be limited by the 
context-dependent affinity of each zinc finger within a ZFA. Nonetheless, ZFNs have 
been successfully employed for gene targeting in zebrafish since the first reports of 
their use [82, 89, 90]. ZFN target sites can be identified in several organisms  including 
zebrafish with ZFNgenome, a comprehensive open source accessible at http://bindr.
gdcb.iastate.edu/ZFNGenome/ [91]. mRNAs encoding ZFNs are then injected at 
one-cell stage after ZFNs have been assembled.

2.3.2  TALENs

While useful for targeted mutagenesis, ZFNs have rapidly been challenged by the 
development of TALENs, which appear to be more mutagenic in zebrafish [92, 93]. 
TALENs are chimera proteins obtained by fusing the DNA-binding transcription 
activator-like effectors (TALEs) to the catalytic domain of FokI (Fig. 4b). TALEs 
were originally identified in the bacterial plant pathogen Xanthomonas and were 
named for their ability to trigger the expression of genes promoting infection in the 
host cell [94].

Each TALE is composed of an N-terminal translocation domain that recognizes 
a 5′-T, a DNA-binding central repeat domain, and a C-terminal sequence. The cen-
tral domain contains 15.5–19.5 repeat units composed of 33–35 conserved amino 
acids, with differences at amino acids 12 and 13 forming the repeat variable di- 
residue (RVD) (the last repeat unit contains only 20 amino acids and is referred to 
as a half repeat). Each RVD recognizes and binds to a single specific nucleotide and 
is therefore responsible for the DNA binding specificity of each repeat unit. The 
RVDs NI, HD and NG are commonly used to target the nucleotides A, C and T, 
respectively, while NN, NK and NH can be employed for targeting a guanine, with 
NK and NH binding more specifically but with a weaker affinity [95–97]. In con-
trast to ZFNs, whose efficiency is context-dependent, TALENs do not have much 
requirement in terms of the targeted sequence besides a 5′-T and a minimum length 
of 11 RDVs for the binding domain [98]. Several online tools such as TALE-NT 
[99] (https://tale-nt.cac.cornell.edu/node/add/talen), Mojo Hand [100] (http://www.
talendesign.org/), or idTALE [101] (http://omictools.com/idtale-s5415.html) can be 
used to identify the optimal TALEN target sequence within a gene of interest.
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Like ZFNs, TALENs are engineered with the FokI endonuclease catalytic domain 
as an obligate heterodimer and must therefore work by pairs to cleave DNA. The 
optimal spacer length seems to depend on the scaffold of the TALEN, with TALENs 
containing short C-terminal lengths (17–28 amino acids) being more efficient with 
shorter spacers (12–14 bp). Several methods have been developed for constructing 
TALENs and dictate the scaffold used. The Golden Gate cloning strategy uses 
restriction digest of a TALE plasmid library by type II endonucleases followed by 
ligation [102]. This approach is theoretically a one-step assembly that can construct 
TALE repeats in one digest and ligation reaction. While several Golden Gate derived 
methods have been generated and some commercially available, they do not always 
use the same TALE scaffold and are not always compatible [103–107]. Other 
approaches such as the Unit assembly method [108, 109] and the restriction enzyme 
and ligation (REAL) method [110] rely on standard molecular cloning using hierar-
chical restriction digests and ligations. While effective, these methods are 
 labor- intensive and do not allow the construction of TALENs in a large scale. 
 High-throughput can be achieved with the fast ligation-based automatable 
 solid- phase high-throughput (FLASH) or the iterative capped assembly (ICA) 
methods that use solid-phase ligation on magnetic beads instead of the time-con-
suming transformation and growing of bacteria [111, 112].

Due to their higher mutation frequencies, the rarity of off-target effects, and the 
presence of target sequences in almost every gene, TALENs have quickly become 
the method of choice for mutagenesis in zebrafish since their first application in 
2011–2012 [64, 109, 113–115]. As for ZFNs, mRNAs encoding TALENs are 
injected at one-cell stage. TALEN efficiency can be assessed the day after by ana-
lyzing heteroduplex formation in injected embryos.

2.3.3  CRISPR/Cas9 System

The CRISPR (clustered regularly interspaced short palindromic repeats) / Cas (CRISPR 
associated proteins) system was originally identified as a defense mechanism used by 
bacteria and archae against the introduction of foreign nucleotides form bacteriophage 
and exogenous plasmids [116–118]. Invading nucleic acids are first recognized as for-
eign and integrated as spacers between short DNA repeats (the CRISPR locus) in the 
host genome, thereby forming CRISPR arrays. Transcription of these CRISPR arrays 
generates primary transcripts, or pre CRISPR RNAs (pre- crRNA) that are subse-
quently cleaved into small CRISPR RNAs (crRNAs). Upon infection, the crRNAs 
whose spacers have a sequence close to the invading nucleic acids bind to them, and 
recruit a second non-coding RNA with partial complementarity to the crRNA named 
auxiliary trans-activating crRNA (tracrRNA). The complex tracrRNA/crRNA in turn 
recruits nucleases associated with the CRISPR locus named Cas to degrade the intruder 
nucleic acids and prevent pathogen invasion. Of particular interest is Cas9, an endo-
nuclease that introduces DSBs in the target DNA thanks to its two nuclease active sites, 
RuvC and HNH, that each cleaves a DNA strand (Fig. 4c). Several groups saw the 
genome-editing possibilities offered by the CRISPR/Cas9 system and adapted it for its 
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use in eukaryotic cells. The crRNA and tracrRNA of Streptococcus pyogenes were 
fused into a single guide RNA (sgRNA) named for its ability to recruit and activate 
Cas9 [119]. On the other hand, the sequence of the Streptococcus pyogenes Cas9 has 
been modified by codon optimization and the introduction of nuclear localization sig-
nals to promote its use in eukaryotic cells [119–121].

Since the targeting properties of the CRISPR/Cas9 system only rely on the 
sequence of the sgRNA, it has become very easy to target any sequence of interest 
in the genome. Each sgRNA is composed of a 20 nt sequence that directly matches 
the target sequence, followed by 72–80 nt of the 3′ crRNA/tracrRNA sequence that 
are required for the formation of hairpin structures stabilizing the sgRNA [122, 
123]. The only constraint for the design of sgRNAs is the presence of NGG at the 3′ 
end of the target site that acts as a protospacer adjacent motif (PAM) required for 
DNA recognition by Cas9 and Cas9 subsequent activation (Fig. 4c) [124–127]. The 
requirement of NGG as a PAM currently limits the number of sequences recognized 
by Cas9, but a recent study has successfully engineered efficient Cas9 derivatives 
with altered PAM specificities, thereby expanding the repertoire of PAMs needed 
[128]. Several servers and online softwares have been specifically developed for the 
design of sgRNAs, including CRISPRdirect (http://crispr.dbcls.jp/) [129], the 
Optimized CRISPR Design (http://crispr.mit.edu/) from the Zhang lab, the Cas9 
Online Designer (http://cas9.wicp.net/) developed by Dayong Guo, Cas-Designer 
(http://rgenome.net/cas-designer/) [130], sgRNACas9 (http://www.biootools.com/) 
[131], and CHOPCHOP (https://chopchop.rc.fas.harvard.edu/) [132].

Because of its ease of use and affordability, the CRISPR/cas9 system has rap-
idly been applied in zebrafish, with mutagenesis rates comparable or superior to 
those obtained with TALENs [133–136]. sgRNAs are obtained by in vitro tran-
scription from plasmids or oligos and co-injected with Cas9 mRNA at one-cell 
stage to induce DSBs in the target sequence. Some studies have also directly 
injected the Cas9 protein with sgRNAs to increase mutagenic activity [137–139]. 
A major advantage of the CRISPR/Cas9 system is that its high efficiency is some-
times sufficient to introduce extensive biallelic mutations causing phenotypes in 
injected embryos, a feature not often seen using TALENs [140]. In addition, it 
offers the possibility to simultaneously target multiple sequences at once by co-
injecting several sgRNAs, or by using a plasmid with multiple sgRNA cassettes 
under the control of U6 or H1 promoters, a process named CRISPR multiplexing 
[140–143]. Multiplexing has recently been employed in a high-throughput muta-
genesis set-up to successfully generate mutations in 83 different genes in the 
zebrafish genome [144]. At lower scale, multiplexing can be very useful to gener-
ate double or triple mutants in related genes for which single mutants would lack a 
phenotype due to compensatory mechanisms. It can also be employed to study the 
role of non-coding RNA genes that are not affected by changing the frame of trans-
lation. The  identification of optimal targets in multiple locus has been facilitated by 
the recent development of specialized softwares such as CRISPRseek (http://www.
bioconductor.org/packages/release/bioc/html/CRISPRseek.html) [145] or CRISPR 
MultiTargeter (http://www.multicrispr.net/) [146]. Finally, a last advantage of the 
CRISPR/Cas9 system is the possibility of disrupting gene function in a spatially 
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controlled manner by injecting a modular vector that contains an sgRNA cassette 
under the control of a U6 promoter and a Cas9 cassette under the control of a tis-
sue- or cell-specific promoter [147].

Altogether, the CRISPR/Cas9 system offers so many advantages that it has 
quickly become the method of choice for targeted mutagenesis in zebrafish. A major 
drawback, though, is the rather high frequency of off-target effects observed in vari-
ous models [122, 123, 148–150]. The short length of the target sequence, and the 
tolerance of Cas9 for mismatches between the target sequence and the sgRNA, can 
lead to the mutation of secondary targets in the genome that would need repeated 
outcrossing to be eliminated. Choosing unique target sequences using the specific 
softwares mentioned above is thus important. Specificity can be further improved 
by using truncated sgRNAs (17 nt) that have a decreased mutagenesis rate at 
 off- target sites [151]. Finally, Cas9 variants possessing only one nuclease catalytic 
site instead of two can be used [122, 152, 153]. These Cas9 “nickases” introduce 
nicks in one DNA strand only, and must be used in pairs with two sgRNAs to 
 introduce DSBs. This system is thus analogous to TALENs or ZFNs by requiring a 
dual recognition of the targeted DNA sequence.

2.4  Chromosomal Deletions and Inversions

In addition to generating small indel mutations in a gene of interest, large genomic 
deletions or inversions can be introduced by injecting several TALEN pairs or mul-
tiple sgRNAs. DSBs are introduced simultaneously at two separate sites, leading to 
the loss, or more rarely the inversion, of the DNA fragment in between. In zebrafish, 
genomic deletions with sizes ranging from several hundred bases to 1 Mb have been 
reported [141, 154, 155]. Introducing large deletions has proved useful in different 
systems to study the role of cis-regulatory sequences [156, 157], or to recreate trans-
locations similar to those found in human diseases [158–160].

3  Transgenesis in Zebrafish

Transgenesis is defined as the introduction of exogenous genes, or “transgenes”, into 
the genome of a living organism. The first zebrafish transgenic lines were obtained 
by the random integration of transgenes and regulatory promoters in the genome 
using retroviruses or transposon-based systems. By expressing transgenes such as 
fluorescent proteins or genes with dominant negative mutations, and by providing a 
spatial and/or temporal control of gene activation, these transgenic lines proved to 
be powerful tools for observing the fate and behavior of cells and tissues, studying 
gene regulation, and testing gene function in development, behavior and diseases. 
More recently, TALENs and the CRISPR/Cas9 system have revolutionized zebrafish 
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research by allowing the insertion of sequences into specific loci in the genome, 
making the generation of knock-ins (KIs) finally possible.

3.1  Transposon-Based Transgenesis with Random Insertion

3.1.1  Enhancer Traps and Protein Traps

As mentioned previously for transposon-based mutagenesis, transposon-based con-
structs have been used in gene trap, enhancer trap or protein trap configurations 
(Fig. 3) in the context of high throughput screens. All constructs possess transpos-
able elements (TE) derived from Sleeping beauty or Tol2 transposons that allow 
random integration in the genome. While gene traps are used for insertional muta-
genesis (discussed earlier in section 2.2.), enhancer traps have a limited mutagenic 
effect and are designed to report the transcriptional activity of enhancers located 
nearby their site of integration (Fig. 3c). Proteins traps are constructed to create a 
fusion between the full-length trapped gene and the reporter, allowing the visualiza-
tion of protein expression in the embryo (Fig. 3b).

Numerous enhancer trap screens have been conducted in zebrafish and have led 
to the creation of a large library of transgenic lines expressing fluorescent reporters 
or drivers in specific cells and tissues. Several basal promoters have been employed, 
including keratin 4 (krt4) and keratin 8 (krt8), gata2, hsp70, c-fos, Eb1, ef1a, thymi-
dine kinase, the carp β-actin promoter (TKBA), and the medaka edar locus [161–
170]. These basal promoters have various trapping efficiencies and can drive 
different expression profiles based on their sensitivity to the genomic enhancer 
regulating them [163]. Although all basal promoters have been useful to reveal spe-
cific patterns of expression during development, some have a bias for traps with 
expression in specific structures (for instance, the E1b promoter has a strong bias for 
cranial ganglia), while others can drive non-specific background expression is tis-
sues such as the muscles or the dermis. Several reporters have also been used, the 
most common being fluorescent reporters like EGFP to monitor transcriptional 
activity and follow the movement or differentiation of the cells labeled, and Gal4, to 
drive effector gene expression where Gal4 is expressed using the Gal4/UAS system. 
Several Gal4 enhancer trap lines have been generated in combination with a 
UAS:EGFP or UAS:Kaede reporter, where the photo-convertible Kaede fluorescent 
protein can be used for mapping neural circuits or cell lineages [163, 164]. A col-
lection of enhancer trap lines is described in the ZETRAP 2.0 database available at 
http://plover.imcb.a-star.edu.sg/webpages/home.html [171].

In parallel to enhancer traps, protein traps have been developed to generate an in-
frame fusion between the full-length trapped gene and the reporter (Fig. 3b). By retain-
ing all the regulatory sequences of the endogenous genes, this approach allows detailed 
studies on the expression of the protein trapped and its regulation as well as its localiza-
tion within cells. As mentioned previously, protein traps have mostly been combined 
with gene-traps to allow simultaneous gene inactivation and protein inactivation [43].
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3.1.2  The Gateway System for Easy Transgenesis

While enhancer and protein trap constructs have been instrumental for visualizing 
developing tissues or protein localization, they are not particularly suited for over-
expressing a gene of interest in a temporally or spatially controlled manner. 
Transgenesis is an essential tool for testing gene and cell function, but has been 
historically laborious in zebrafish due to technical limitations such as laborious con-
ventional cloning and low rates of germline transmission when using supercoiled or 
linear DNA [172, 173]. To overcome these limitations, the Tol2Kit system (that uses 
the recombination-based cloning of multiple DNA fragments) was designed to 
 easily generate expression constructs for transgenesis [174]. This multisite Gateway 
technology relies on the att site specific recombination system from the λ phage 
[175], and uses different engineered att sites that recombine specifically to assemble 
up to five DNA fragments in a directional manner. Three different “entry” clones 
containing a promoter, a coding sequence of interest, and a polyA or a tag, 
 respectively, are recombined into a “destination” vector that also possesses Tol2 
recombination elements for integration in the genome with high efficiency. The 
plasmid hence generated is co-injected with transposase mRNA at one-cell stage 
for transient or stable transgenesis. Carriers of the transgene are usually easily iden-
tified by the expression of a reporter gene. A main advantage of this approach is its 
modularity that allows the generation of libraries of entry clones with promoters or 
genes of interest. For instance, entry clones with the promoter element from the 
hsp70 gene [176] or a UAS promoter have been generated for conditional expres-
sion. A list of essential Tol2Kit clones can be requested online at http://tol2kit.
genetics.utah.edu/index.php/Main_Page. By providing a simple, affordable and 
flexible system to generate transgenesis constructs, the Tol2Kit has largely facili-
tated zebrafish research, promoting the sharing of clones within the zebrafish com-
munity and making transgenesis available for any lab. Several labs have expanded 
the number of clones using the gateway technology and made their resources avail-
able (http://lawsonlab.umassmed.edu/gateway.html). To date, a list of 14,524 trans-
genic lines generated with either “trap” or Gateway constructs can be viewed on 
Zfin at  http://zfin.org/action/fish/search.

3.2  Targeted Transgenesis and the Generation of Knock-Ins

By providing an efficient approach to integrate DNA constructs into the genome, 
transposon-derived elements have been instrumental for the study of gene function 
and tissue morphogenesis in zebrafish. However, transposon-mediated integrations 
occur randomly, precluding precise genome editing. TALENs and CRISPR/Cas9, 
on the other hand, allow targeted engineering and have been recently employed to 
insert small or large sequences at precise loci into the genome. Several methods 
involving the NHEJ or the HDR pathways have successfully led to the generation 
of the first KIs in zebrafish.
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3.2.1  Integration via the HDR Pathway

DNA integration mediated by HDR has been achieved with both TALENs and the 
CRISPR/Cas9 system. Several templates including linearized plasmid and single- 
stranded DNA (ssDNA) have been used with various integration efficiencies.

One of the first reports of gene targeting via HR in zebrafish used TALENs and 
a linearized DNA vector containing the cassette to be inserted flanked by homolo-
gous sequences to the genomic target of around 800 and 900 bp on each side [177]. 
Several cassettes with loxP, eGFP, or eGFP-stop sequences were used to modify 
three different loci in the genome. Authors co-injected the linearized donor plas-
mids with TALEN mRNAs at one cell stage and were able to detect HR between the 
donor plasmids and the endogenous loci, with transmission to the germline in one 
case, albeit with low efficiency (about 1.5 %). Subsequent studies demonstrated that 
the length of homology arms as well as the configuration of the targeting construct 
have a significant impact on the efficiency of HDR [178]. In particular, increasing 
the length of the left and right arms to 1 and 2 kb, and introducing a DSB in the 
shorter homology arm, were shown to greatly improve efficient HR and germline 
transmission (over 10 %).

HDR has also been achieved using ssDNA with short homology arms as a tem-
plate together with TALENs [113] or the CRISPR/Cas9 system [133, 134, 136]. 
Short fragments encoding restriction sites (6 bp) or loxP sites (34 bp) have been 
successfully integrated after co-injecting TALEN mRNAs and ssDNA oligonucle-
otides with short homology arms of 20 and 18 bp [113]. Interestingly in that case, 
increasing the length of homology arms seemed to reduce the frequency of HDR 
integrations. While germline transmission of the integrated DNA could be observed 
in 10 % of the cases, a major drawback of this approach was the frequent imprecise 
integration of the donor DNA with additional indel mutations. Similar results were 
obtained after co-injecting ssDNA oligonucleotides with sgRNAs and Cas9 mRNA 
[133, 134, 136]. All studies reported so far achieved precise integration of the tem-
plate in the targeted genome location with various efficiencies. However, in all 
cases, imprecise repair events were frequently detected as a probable result of 
NHEJ. Inhibit the NHEJ pathway by blocking the activity of endogenous DNA 
ligase IV with the Scr7 inhibitor has recently been shown to increase the efficiency 
of HDR-mediated genome editing in mammalian cells and mice [179, 180], and 
might lead to similar improvement in zebrafish in the future.

3.2.2  Integration via the NHEJ Pathway

Considering the prevalence of NHEJ in zebrafish during development [56–58], 
recent studies have exploited the NHEJ pathway to elicit targeted integration of 
large donor DNAs [181, 182]. In this approach, the donor vector contains a short 
sequence bearing the TALEN or the CRISPR target site upstream the cassette to be 
integrated. Co-injection of this donor plasmid with sgRNA and Cas9 mRNA (or 
alternatively TALEN mRNAs) lead to the concurrent cleavage of the plasmid and 
the genomic target, and the subsequent integration of the linearized plasmid at the 
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genomic target by an NHEJ repair mechanism. Alternatively, two different sgRNAs 
can be used, one for cleaving the genome target, and the other for cleaving the donor 
plasmid. This method has proved to be very efficient for generating KIs allele, with 
rates of germline transmission over 30 %. However, since the integration of the 
donor plasmid can occur in both forward or reverse orientation and three different 
frames, screening efforts are necessary to isolate the appropriate lines. Introducing 
short homologous sequences flanking the sgRNA target site into the donor seems to 
improve the precision of integration by involving both NHEJ and HDR mechanisms 
[183]. Alternatively, selecting an sgRNA target in the intron of the gene sequence, 
and using a donor vector with a homologous arm spanning from that sgRNA site to 
the 3′ region of the targeted gene, can be employed to circumvent the requirement 
of in-frame insertions and increase KI efficiency [184].

4  Conclusions and Future Directions

Overall, the last 40 years have witnessed major advances in zebrafish research, from 
the first mutagenesis screens to the use of EENs for targeted genome editing. With 
precise genomic manipulations now available, the zebrafish has caught-up with 
other vertebrate organisms, combining genomic approaches previously restricted to 
the mouse with screening and high-resolution imaging techniques only possible in 
fish. This progress has promoted the development and use of mutant and transgenic 
lines in a wide number of research areas, and in neurobehavioral phenotyping 
research in particular. The following examples illustrate the wide spectrum of neu-
ral phenotypes studied, and their relevance to selected human brain disorders (see 
also Tables 2 and 3 for additional examples).

The Allan–Herndon–Dudley syndrome (AHDS) syndrome is a rare developmen-
tal nervous system disorder characterized by severe intellectual disability, muscle 
hypotonia and spastic paraplegia. It is caused by mutations in the mct8 (slc16a2) 
gene located on the X chromosome that encodes a thyroid hormone receptor. 
Impaired Mct8 function is thought to prevent the entry of the active T3 hormone 
into neurons, leading to abnormal neurological development. While the MCT8 
knockout mouse recapitulates the metabolic and endocrine defects seen in patients, 
they do not have any neurological or behavioral phenotype. In order to determine 
the functions of Mct8 in AHDS, Zada and colleagues used ZFNs to generate an 
mct8 zebrafish mutant line [185]. Video-tracking behavioral imaging as well as 
time-lapse imaging of neuronal circuits showed that Mct8 zebrafish mutants had a 
reduced locomotor activity that correlated with defects in synaptic density of 
 motoneuron arbors and abnormal axonal branching in sensory neurons. Additional 
behavioral defects were observed, including increased and more fragmented sleep, 
and altered responses to light variations. Thus, the use of ZFNs to induce targeted 
mutation in Mct8 in zebrafish lead to the development of the first vertebrate model 
of AHDS that recapitulates the full spectrum of defects seen in patients. As zebraf-
ish is particularly suited for large-throughput approaches, this mct8 mutant line 
could further be used in pharmacological screens for therapeutic development.
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In addition to modeling neurological developmental diseases, zebrafish mutant 
lines have been used to study complex behaviors. Sleep, for instance, is an evolu-
tionary conserved state that is essential to all organisms, but whose regulation 
remains poorly understood. In particular, the factors that transmit circadian infor-
mation to regulate sleep are largely unknown. Using TALENs as a mutagenesis 
approach, Gandhi and colleagues generated a new zebrafish line harboring a null 
mutation in the aanat2 gene that encodes an enzyme essential for melatonin synthe-
sis [186]. Videotracking assays revealed that aanat2 mutants had a normal sleep 
pattern during daytime but a reduced sleep and a longer sleep latency during night. 
Importantly, circadian rhythms were not disrupted in mutants, revealing for the first 
time that melatonin is not required to initiate or maintain the circadian clock. 
Altogether, the use of TALENs is this example allowed the generation of the first 
genetic loss-of-function model for melatonin in a diurnal vertebrate, and lead to the 
discovery of the endogenous functions of melatonin in sleep regulation.

Complementary to mutants, transgenic lines have proved very helpful to  decipher 
the mechanisms underlying complex behaviors and neurological disorders (see 
Table 3). Narcolepsy, for example, is a rare chronic sleep disorder involving exces-
sive daytime sleepiness, sleep fragmentation and paralysis at night, hypnagogic 

Table 2 Selected examples of aberrant neurobehavioral phenotypes demonstrated by mutant 
zebrafish lines

Gene
Biological 
function

Mutagenesis 
approach

Abnormal zebrafish 
phenotype

Relevance to 
human disorder Ref.

tpp1 Lysosomal 
serine protease

ENU Abnormal axon tract 
formation, early onset 
neuronal degeneration 
(apoptosis), reduced cell 
proliferation in the CNS, 
motor defects, reduced 
survival

CNL2 disease [194]

sod1 Superoxide 
dismutase

TILLING Altered neuromuscular 
junctions, reduced 
number of motoneurons, 
adult-onset motor defects

Familial ALS [195]

dbh Dopamine 
β-hydroxylase

ZFNs Lower overall activity, 
increased sleep, reduced 
arousal threshold

Sleep disorders, 
depression, 
ADHD

[196]

nptx2a Pentraxin, 
synaptic 
protein

TALENs Decreased synapse 
density in motoneuron 
axons and reduced 
locomotor response to 
stimuli

Learning 
disorders, 
memory, 
seizures

[197]

kcnh4a Voltage-gated 
potassium 
channel

CRISPR/
Cas9

Locomotor activity 
slightly increased, 
decreased number and 
length of sleep episodes

Sleep disorders [198]

ADHD attention deficit hyperactivity disorder, ALS amyotrophic lateral sclerosis, CNL ceroid lipo-
fuscinosis neuronal
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 hallucinations and cataplexy. It is caused by the selective degeneration of hypotha-
lamic hypocretin/orexin (HCRT) neurons, whose activity is known to regulate sev-
eral other behaviors including food intake, reward or drug addiction. To generate a 
zebrafish model of narcolepsy, Elbaz and colleagues used Tol2-mediated transgen-
esis to establish a stable transgenic line expressing the nitroreductase nfsB gene 
under the control of the hcrt promoter [187]. Exposing transgenic embryos to the 
drug metrodinazole induces the apoptosis of cells expressing nfsB, providing an 
inducible method to selectively ablate HCRT neurons at specific times. As expected, 
transgenic embryos lacking HCRT neurons recapitulated the defects seen in narco-
leptic patients, including increased sleep time and transitions between wake and 
sleep states. They further had altered locomotor responses to light and sound, sug-
gesting a broader function of HCRT neurons in mediating behavioral responses to 
external stimuli.

Table 3 Selected examples of aberrant neurobehavioral phenotypes demonstrated by transgenic 
zebrafish lines

Transgene Transgene function Zebrafish phenotype
Relevance to 
human disorder Ref.

dat:CFP-NTR Expression of 
CFP-nitroreductase 
fusion protein in 
dopaminergic 
neurons

Metronidazole- induced 
loss of dopaminergic 
neurons, locomotor 
defects

Parkinson’s 
disease

[199]

UAS:hTAU-P301L; 
HuC:Gal4

Expression of 
mutated human Tau 
in neurons (UAS/
Gal4 system)a

Neuronal degeneration, 
altered motoneuron 
morphology, locomotor 
defects

Tauopathies, 
FTD

[200]

UAS:TeTXlc- 
CFP;Gal4s1019t 
(Gal4s1019t: 
enhancer trap line)

Expression of 
GFP-tetanus toxin 
fusion protein in the 
dorsal habenula 
(UAS/Gal4 system)

Deficit in avoidance 
learning

Anxiety 
disorders

[201]

tph2:nfsB-mCherry Expression of 
nitroreductase–
mCherry fusion 
protein in dorsal 
raphe neurons

Increase in visual 
sensitivity during 
arousal abolished

Attention 
disorders

[202]

UAS:Arch3-GFP; 
Gal4y252 (Gal4y252: 
enhancer trap line)

Expression of 
CFP-Arch3 
(light-activated 
proton pump) in 
Gsx1-expressing 
neurons

Optogenetic inhibition 
of Gsx1-expressing 
neurons; reduced 
prepulse inhibition of 
the startle reflex, 
increased startle 
response

Schizophrenia [203]

Lines mentioned in this table have been generated using Tol1- or Tol2-transposon mediated transgenesis
ALS amyotrophic lateral sclerosis, CFP cyan fluorescent protein, FTD frontotemporal dementia, 
GFP green fluorescent protein
aTAU-P301L has been linked to frontotemporal dementia
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Transgenesis not only allows the ablation or silencing of a specific class of 
 neurons regulating complex behaviors, but can also be used to express specific 
mutations in genes causing human disorders. Amyotrophic lateral sclerosis (ALS) 
is an adult-onset lethal neurodegenerative disease characterized by the progres-
sive loss of motor neurons. While the majority of ALS is sporadic, around 10 % 
of cases are familial and caused by mutations in certain genes. Among them, 
mutations in the superoxide dismutase Sod1 gene have been associated with 20 % 
of familial ALS (fALS). Several zebrafish transgenic lines expressing the SOD1-
G93A mutation have been generated using Tol2-mediated transgenesis [188, 
189]. They all showed defects associated with fALS including abnormal motor 
neuron outgrowth and branching, loss of neuromuscular junctions, muscle atro-
phy and motor neuron cell loss leading to premature death. These new transgenic 
lines thus provide an additional system for observing the progression of ALS 
directly in vivo in an intact organism, and isolating new effective compounds in 
therapeutics screens.

Overall, targeted mutagenesis and transgenesis have broaden the field of  zebrafish 
research in many areas. The development of conditional mutant and targeted 
 transgenic lines is now under way and will expand the repertoire of lines and 
resources currently available. For instance, one recent study has introduced attP site 
at specific loci into the genome for future recombination-mediated site-specific 
transgenesis [190]. Other new approaches that could be adapted to zebrafish research 
include Cas9 engineering to regulate transcription [191–193]. The zebrafish model 
is looking at a bright future, one that George Streisinger would be proud of.
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