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Abstract ORCA is an extensible platform for building infrastructure servers based
on a foundational leasing abstraction. These servers include Aggregate Managers for
diverse resource providers and stateful controllers for dynamic slices. ORCA also
defines a brokering architecture and control framework to link these servers together
into a federated multi-domain deployment. This chapter reviews the architectural
principles of ORCA and outlines how they enabled and influenced the design of
the ExoGENI Racks deployment, which is built on the ORCA platform. It also sets
ORCA in context with the GENI architecture as it has evolved.

1 Introduction

The Open Resource Control Architecture (ORCA) is a development platform
and control framework for federated infrastructure services. ORCA has been
used to build elements of GENI, most notably the ExoGENI deployment [4]. In
ExoGENI the ORCA software mediates between GENI user tools and the various
infrastructure services (IaaS) that run a collection of OpenFlow-enabled cloud sites
with dynamic layer-2 (L2) circuit connectivity.

ORCA is based on the SHARP resource peering architecture [12], which was
conceived in 2002 for federation in PlanetLab [11] and related virtual infrastructure
services [5, 8] as they emerged. ORCA incorporates the Shirako resource leasing
toolkit [14, 18, 20] and its plug-in extension APIs. It incorporates the research of
three Duke PhD students [13, 16, 23], which was driven by a vision similar to
GENI: a network of federated resource providers enabling users and experimenters
to build custom slices that combine diverse resources for computing, networking,
and storage.
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When construction of GENI began in 2008, ORCA was selected as a candidate
control framework along with three established network testbeds: PlanetLab, Emu-
lab, and ORBIT. ORCA was the only candidate framework that had been conceived
and designed from the ground up as a platform for secure federation, rather than
to support a centrally operated testbed. At that time ORCA was research software
with no production deployment, and so it was more speculative than the other
control framework candidates. We had used it for early experiments with elastic
cloud computing [10, 17–20, 24], but we were just beginning to apply it to network
resources [2, 9].

The GENI project was therefore an opportunity to test whether we had gotten
ORCA’s architecture and abstractions right, by using it to build and deploy a multi-
domain networked IaaS system. The crucial test was to show that ORCA could
support advanced network services, beginning with RENCI’s multi-layer network
testbed (the Breakable Experimental Network—BEN) in the Research Triangle
region.

During the GENI development phase (2008–2012), participants in the GENI
Cluster D group, led by RENCI, built software to control various infrastructures and
link them into a federated system using ORCA. For example, the Kansei group built
KanseiGenie [21], an ORCA-enabled wireless testbed. Through this phase ORCA
served as a common framework to organize these efforts and link them together.
This was possible because ORCA was designed as an orchestration platform for
diverse resource managers at the back end and customizable access methods at the
front end, rather than as a standalone testbed itself.

ORCA was based on the premise that much of the code for controlling resources
in a system like GENI would be independent of the specific resources, control
policies, and access methods. The first step was to write the common code once
as a generic toolkit, keeping it free of assumptions about the specific resources and
policies. The second step was to plug in software adapters to connect the toolkit to
separately developed IaaS resource managers, which were advancing rapidly outside
of the GENI effort.

The RENCI-led team used ORCA’s plug-in extension APIs to implement various
software elements later used in ExoGENI. They include: a control system and
circuit API for the BEN network, modules to link ORCA with off-the-shelf cloud
managers, storage provisioning using commercial network storage appliances,
VLAN-sliced access control for OpenFlow-enabled network dataplanes, adapters
for various third-party services, and a front-end control interface that tracked the
GENI API standards as they emerged. Section 2.5 summarizes some ORCA plugins
used in ExoGENI; the accompanying chapter on ExoGENI [1] discusses these
examples in detail.

A key outcome of the BEN experience was a methodology for describing
network resources and configurations declaratively using a powerful logic-based
semantic resource description language (NDL-OWL) [2, 3], originally for use
by the BEN plug-in modules (Sect. 2.4). The language represents attributes and
relationships (e.g., attachment points, connectivity, protocol compatibility, layering)
among virtual infrastructure elements and network substrate resources. Descriptions
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in the language (models) drive policies and algorithms to co-schedule compute
and network resources and interconnect them according to their properties and
dependencies. NDL-OWL is now used for all resources in ExoGENI. The NDL-
OWL support was a substantial effort in itself, but we were able to add logic-based
resource descriptions to ORCA and use them to build ExoGENI without modifying
the ORCA core.

This approach enabled us to demonstrate key objectives of GENI—automated
embedding and end-to-end assembly (stitching) of L2 virtual network topologies
spanning multiple providers—by early 2010 [3, 22], well before GENI had defined
protocols to enable these functions. ORCA already defined a protocol and federation
structure similar to what was ultimately adopted in GENI; we essentially used that
structure to link together third-party back-end resource managers as they appeared,
and control them through their existing APIs. This philosophy carried through to the
ExoGENI effort when it was funded in 2012: the exo prefix refers in part to the idea
of incorporating resources and software from outside of GENI and exposing their
power through GENI APIs.

The remainder of this chapter outlines the ORCA system in more detail,
illustrating with examples from ExoGENI. Section 2 gives an overview of ORCA’s
abstractions and extension mechanisms, and the role of logic-based semantic
resource descriptions. Section 3 summarizes ORCA’s architecture for federating
and orchestrating providers based on broker and controller services. Section 4 sets
ORCA in context with the GENI architecture as it has evolved.

2 Overview of the ORCA Platform

ORCA and GENI embody the key concepts of slices, slivers, and aggregates derived
from their common heritage in PlanetLab. An aggregate is a resource provider: to a
client, it appears as a hosting site or domain that can allocate and provision resources
such as machines, networks, and storage volumes. An Aggregate Manager (AM) is
a service that implements the aggregate’s resource provider API. A sliver is any
virtual resource instance that is provisioned from a single AM and is named and
managed independently of other slivers. Slivers have a lifecycle and operational
states, which a requester may query or transition (e.g., shutdown, restart).

Client tools call the AMs to allocate and control slivers across multiple aggre-
gates, and link them to form end-to-end environments (slices) for experiments or
applications. A slice is a logical container for a set of slivers that are used for some
common purpose. Each sliver is a member of exactly one slice, which exists at the
time the sliver is created and never changes through the life of the sliver. The slice
abstraction serves as a basis for organizing user activity: loosely, a slice is a unit of
activity that can be enabled, disabled, authorized, accounted, and/or contained.

In ORCA we refer to a client of the AM interface as a Slice Manager (SM). Each
request from an SM to an AM operates on one or more slivers of exactly one slice.
The role of a slice’s SM is to plan and issue AM requests to build the slice to order
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with suitable end-to-end connectivity according to the needs of an experiment or
application. ORCA is a toolkit for building SMs and AMs by extending a generic
core, and linking them together in a federation using SM controller extensions and
common services for resource brokering, user identity, and authorization.

This section summarizes the ORCA abstractions and principles, focusing on how
to use ORCA to implement diverse AMs. Figure 1 illustrates an ORCA aggregate
and the elements involved in issuing a sliver lease to a client SM. ORCA bases
all resource management on the abstraction of resource leases (Sect. 2.1). The core
leasing engine is generic: ORCA factors support for specific resources and policies
into replaceable extension modules (“plugins”) that plug into the core (Sect. 2.2).
The extensions produce and/or consume declarative resource descriptions that
represent information needed to manage the resources (Sect. 2.4). The common
leasing abstractions and plug-in APIs facilitate implementation of AMs for diverse
resources (Sect. 2.5).

2.1 Resource Leases

ORCA resource leases are explicit representations of resource commitments granted
or obtained through time. The lease abstraction is a powerful basis for negotiating
and arbitrating control over shared networked resources. GENI ultimately adopted
an equivalent leasing model in the version 3.0 API in 2012.

A lease is a promise from an aggregate to provide one or more slivers for a
slice over an interval of time (the term). Each sliver is in the scope of exactly one
lease. A‘lease is materialized as a machine-readable document specifying the slice,
sliver(s), and term. Each lease references a description (Sect. 2.4) of the slivers and

!
!

!
!

!

leasing
service

interface

lease
status
notify

setup
slivers

embed/
assign

resources

!

!

!sliver
requests

Leases with
sliver

descriptions

Client
(Slice Manager)

Resource
Control

Resource
Control

Back-end
Resource
Managers

(e.g., cloud
middleware)Handler

Handler
Aggregate Manager

Fig. 1 Structure of an ORCA aggregate. An Aggregate Manager (AM) issues sliver leases
(Sects. 2.1 and 2.3) to clients called Slice Managers (SMs). The AMs are built from a generic
leasing server core in the ORCA platform (light shade). The core invokes plug-in extension mod-
ules (dark shade) for resource-specific functions of each aggregate (Sect. 2.2). These extensions
may invoke standard APIs of off-the-shelf IaaS resource managers, e.g., OpenStack. Their resource
control functions are driven by logical descriptions of the managed resources (Sect. 2.4). ExoGENI
uses this structure for diverse aggregates, including network providers (Sect. 2.5)
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the nature of the access that is promised. Leases are authenticated: ORCA leases are
signed by the issuing AM. Lease contracts may be renewed (extended) or vacated
prior to expiration, by mutual agreement of the SM and AM. If an SM abandons a
sliver, e.g., due to a failure, then the AM frees the resources when the lease expires.

ORCA is based on SHARP [12], which introduced a two-step leasing API in
which the client first obtains an approval to allocate the resources (a ticket), and
then redeems the ticket to claim the resources and provision (instantiate) the slivers.
A ticket is a weaker promise than a lease: it specifies the promised resources
abstractly. The AM assigns (binds) concrete resources to fill the ticket only when it
is redeemed. In ORCA (as in SHARP) the tickets may be issued by brokers outside
of the aggregates (Sect. 3.2).

By separating allocation and provisioning in this way, the leasing API enables a
client to obtain promises for resources at multiple AMs cheaply, and then move to
the redeem step only if it succeeds in collecting a resource bundle (a set of tickets)
matching its needs. The two-step API is a building block for grouped leases and
atomic co-allocation—the ability to request a set of slivers such that either the entire
request succeeds or it aborts and no sliver is provisioned. The AM may commit
resources cheaply in advance, and then consider current conditions in determining
how to provision the resources if and when they are needed.

From the perspective of the AMs, leases provide a means to control the terms
under which their resources are used. The resource promises may take a number of
forms expressible in the logic, ranging along a continuum of assurances ranging
from a hard physical (e.g., bare metal) reservation to a weak promise of best-
effort service over the term. By placing a time bound on the commitments, leases
enable AMs to make other promises for the same resources in the future (advance
reservations).

From the perspective of the SMs, leases make all resource allotments explicit
and visible, enabling them to reason about their assurances and the expected
performance of the slice. Since the SM may lease slivers independently of one
another, it can modify the slice by adding new slivers and/or releasing old slivers,
enabling elastic slices that grow and shrink according to need and/or resource
availability. Various research uses of the ORCA software experimented with
elastic slice controllers (Sect. 3.3), building on our early work in adaptive resource
management for hosting centers [7, 8]. ExoGENI supports elastic slices by using
the native ORCA APIs internally, due to limitations of the early GENI APIs, which
did not support elastic slices.

2.2 Extension Modules

ORCA is based on a generic reusable leasing engine with dependencies factored into
stackable plug-in extension modules (the “plugins”) [18]. The core engine tracks
lease objects through time in calendar structures that are accessible to the extensions.
For example, an AM combines the leasing engine with two types of extensions that
are specific to the resources in the aggregate:
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• ResourceControl. The AM core upcalls a ResourceControl policy
module periodically with batches of recently received sliver requests. Its purpose
is to assign the requests onto the available resources. The batching interval is
a configurable parameter. It may defer or reject each request, or approve it with
an optional binding to a resource set selected from a pool of matching resources.
The module may query the attributes of the requester, the state of the resources
and calendar, other pending requests, and the history of the request stream.

• Handler. The AM core upcalls a Handler module to setup a sliver after
approval, or teardown a sliver after a lease is closed (expired, cancelled,
or vacated). Resource handlers perform any configuration actions needed to
implement slivers on the back-end infrastructure. The handler API includes a
probe method to poll the current status of a sliver, and a modify method to
adjust its properties.

An ORCA AM may serve multiple types of slivers by combining multiple
instances of these modules, which are indexed and selectable by sliver type. Each
upcall runs on its own thread and is permitted to block, e.g., for configuration actions
in the handler, which may take seconds or minutes to complete. The extensions
post their results asynchronously through lease objects that are shared with the
leasing core.

2.3 Leasing Engine

The ORCA lease abstraction defines the behavior of a resource lease as a set
of interacting state machines on the servers that are aware of it. The lease state
machines have well-defined states and state transition rules specific to each type of
server. Figure 2 illustrates typical states, transitions, and actions.

The core engine within each server serializes state machine transitions and com-
mits them to stable storage. After a transition commits, it may trigger asynchronous
actions including notifications to other servers, upcalls to extension modules, and
various other maintenance activities.

Lease state transitions and their actions are driven by the passage of time (e.g.,
sliver setup at the start of the term and teardown at the end of the term), changes
in status of the underlying resources (e.g., failure), decisions by policy extension
modules, and various API calls.

Cross-server interactions in the leasing system are asynchronous and resilient.
After a failure or server restart, the core recovers lease objects and restarts pending
actions. The extensions may store data blobs and property lists on the lease objects.
The core upcalls each extension with the recovered lease objects before restarting
any actions. The servers and extensions are responsible for suppressing any effects
from duplicate actions that completed before a failure but were restarted or reissued
on recovery.
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2.4 Resource Descriptions

The ORCA platform makes it possible to build new AMs quickly by implementing
the Handler and ResourceControl modules. Since the leasing core and
protocols are generic, there must be some means to represent resource-specific
information needed by these modules. This is achieved with a data-centric API in
which simple API requests and responses (ticket/redeem/renew/close)
have attached descriptions that carry this content. The descriptions contain state-
ments in a declarative language that describe the resources and their attributes and
relationships.

The description language must be sufficiently powerful to describe the resource
service that the aggregate provides: what kinds of slivers, sizes and other options,
constraints on the capacity of its resource pools, and interconnection capabilities
for slivers from those pools. It must also be able to describe resources at multiple
levels of abstraction and detail. In particular, clients describe their sliver requests
abstractly, while the aggregate’s descriptions of the provisioned slivers are more
concrete and detailed. GENI refers to these cases as advertisement, request, and
manifest respectively.

In ORCA the descriptions are processed only by the resource-specific parts of
the code, i.e., by the extension modules. The core ignores the descriptions and
is agnostic to their language. An ORCA resource description is a set of arbitrary
strings, each indexed by a key: it is a property list. ORCA defines standard
labels for distinct property lists exchanged in the protocols, corresponding to the
advertisement, request, and manifest cases.
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Fig. 3 A simple example of resource algebra and sliver allocation. These slivers represent a virtual
resource with two dimensions, e.g., virtual machines with specified quantities of memory and CPU
power. They are allocated and released from a pool of bounded capacity. Free capacity in the pool
is given by vector addition and subtraction as slivers are allocated and released

To support meaningful resource controls, the description language must enable
a resource algebra of operators to split and merge sliver sets and resource pools.
Given descriptions of a resource pool (an advertisement) and a set of slivers, a
resource algebra can determine if it is feasible to draw the sliver set from the pool,
and if so to generate a new description of the resources remaining in the pool.
Another operator determines the effect of releasing slivers back to a pool.

The original SHARP/Shirako lease manager [18] used in ORCA described
pools as quantities of interchangeable slivers of a given type. A later version
added resource controls using an algebra for multi-dimensional slivers expressed as
vectors [13], e.g., virtual machines with rated CPU power, memory size and storage
capacity, and IOPS. Figure 3 depicts a simple example of resource algebra with
vectors.

In the GENI project we addressed the challenge of how to represent complex
network topologies and sliver sets that form virtual networks over those topologies.
For this purpose we adopted a logic language for semantic resource descriptions.
Logical descriptions expose useful resource properties and relationships for infer-
ence using a generic reasoning engine according to declarative rules. In addition to
their expressive power, logical descriptions have the benefit that it is semantically
sound to split and combine them, because they are sets of independent statements
in which all objects have names that are globally unique and stable. For example, a
logical slice description is simply a concatenation of individual sliver descriptions,
each of which can be processed independently of the others. Statements may
reference objects outside of the description, e.g., to represent relationships among
objects, including graph topologies.

To this end, the RENCI team augmented the Network Description Language [15]
with a description logic ontology in the OWL semantic web language. We called
the resulting language NDL-OWL [3]. We used NDL-OWL to describe infras-
tructures orchestrated with ORCA: BEN and other networks and their attached
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edge resources, including virtual machine services. For example, NDL-OWL
enables us to enforce semantic constraints on resource requests, express path
selection and topology embedding as SPARQL queries over NDL-OWL semantic
resource descriptions, manage capacity constraints across sequences of actions that
allocate and release resources (an “algebra”), check compatibility of candidate
interconnections (e.g., for end-to-end VLAN tag stitching, Sect. 3.4), and generate
sequences of handler actions to instantiate slivers automatically from the descrip-
tions. These capabilities are implemented in extension modules with no changes to
the ORCA core.

2.5 Building Aggregates with ORCA

We used ORCA and NDL-OWL to build a collection of Aggregate Managers (AMs)
for back-end resource managers from other parties. In ExoGENI, these include two
off-the-shelf cloud resource managers: OpenStack for Linux/KVM virtual machines
and xCAT for bare-metal provisioning. These systems expose local IaaS APIs to
allocate and instantiate resources. Each AM runs one or more Handler modules
that invoke these back-end control APIs. The AM structure makes their resources
available through the leasing APIs, and provides additional functions to authorize
user requests and connect a slice’s slivers on the local aggregate with other resources
in the slice.

We augmented the cloud aggregates with additional back-end software to
function as sites in a networked IaaS federation under a separate NSF SDCI project
beginning in 2010. The added software includes a caching proxy for VM images
retrieved by URL, linkages to an off-the-shelf OpenFlow access control proxy
(FlowVisor) to enable slices to control their virtual networks, and custom OpenStack
extensions for dynamic attachment of VM instances to external L2 circuits. We
also added handlers to invoke storage provisioning APIs of third-party storage
appliances. These elements are independent of the cloud manager: the AM handlers
orchestrate their operation.

We also implemented AMs for network management to provide dynamic circuit
service for a network of cloud sites under ORCA control. Most notably, the control
software for BEN and its L2 circuit service were implemented natively as ORCA
extensions in 2009; the AM handlers issue direct commands to the vendor-defined
APIs on the BEN network elements. ExoGENI also includes other circuit AMs that
proxy third-party L2 circuit services from national-footprint backbone providers,
including the OSCARS services offered by ESNet and Internet2. For these systems
the AM handler calls the circuit API under its own identity; the circuit provider does
not know the identities of the GENI users on their networks. In effect, the provider
implicitly delegates to the AM the responsibility to authorize user access, maintain
user contacts and billing if applicable, and provide a kill switch. This approach was
easy to implement without changing the circuit providers: the AM interacts with the
provider using its standard client APIs.
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In ExoGENI, these various additions permit users to obtain resources at multiple
OpenStack sites, without the need to register identities and/or images at each site.
The network AMs and OpenStack cloud site AMs together enable ExoGENI slices
to connect their resources at multiple federated cloud sites into a slice-wide virtual
L2 network topology, use OpenFlow SDN to control the topology, and interconnect
their OpenStack VMs with other resources outside of OpenStack. The broker and
controller elements of ORCA (Sect. 3) can select the sites to satisfy a request
automatically, without the user having to know the sites.

Finally, for ExoGENI we implemented an AM to control exchange points—
RENCI-owned switches installed at peering centers where multiple transit providers
come together (e.g., Starlight). These switches implement VLAN tag translation:
the exchange AM uses this capability to stitch circuits from different providers
into a logical end-to-end circuit, expanding the connectivity options for circuits
on an ExoGENI slice data plane. The handler for the exchange AM issues direct
commands to the vendor API on the switches, similarly to the BEN control software.

3 Orchestration and Cross-Aggregate Resource Control

Section 2 described how we can build diverse aggregates with ORCA by plugging
resource-specific and policy-specific extension modules into a common leasing
core, and accessing their resources via common leasing protocols. This approach
can apply to any aggregate whose resources are logically describable. It helps to
deliver on a key goal of GENI: support for diverse virtual resources from multiple
providers (aggregates).

But GENI’s vision of a provider federation goes beyond that: it is also necessary
to coordinate functions across aggregates in the federation. ORCA defines two
kinds of coordinating servers that are not present in the GENI architecture: brokers
and controllers. The brokers (Sect. 3.2) issue tickets for slivers on aggregates: they
facilitate resource discovery and cross-aggregate resource control. The controllers
(Sect. 3.3) run as extension modules within the SMs to manage slices: each slice
is bound to exactly one controller, which receives notifications for all events in the
slice and issues sliver operations on the slice. In general, ORCA controllers run on
behalf of users to manage their slices: they have no special privilege.

These servers play an important role in ExoGENI. In particular, the ExoGENI
controllers manage topology embedding and slice assembly (Sect. 3.4). They also
implement the user-facing GENI API and proxy requests from GENI users for
ExoGENI resources (Sect. 3.5). Proxying requires them to check authorization for
GENI users, so the ExoGENI AMs are configured to trust these special controllers
to perform this function.
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3.1 ORCA Resource Control Plane

Brokers and controllers are built using the same leasing platform as the AMs. The
ORCA toolkit design recognized that these servers have key structural elements
in common: a dataset of slices and slivers; timer-driven actions on lease objects
organized in a calendar; similar threading and communication models; and lease
state machines with a common structure for plug-in extension modules.

Figure 4 illustrates the three types of interacting servers (actors) in the ORCA
framework and their policy modules. The brokers run policy extensions—similar
to the AM ResourceControl modules—to allocate sliver requests against an
inventory of advertisements, and to issue tickets for those slivers. Controllers run as
extension modules within generic Slice Manager (SM) servers. The protocol mes-
sages carry resource descriptions produced and consumed by the policy modules.
All messages are signed to ensure a verifiable delegation path.

An ORCA deployment may combine many instances of each kind of server.
ORCA was conceived as a resource control plane in which multiple instances of
these servers interact in a deployment that evolves over time. The ORCA toolkit
combines a platform to build these servers and a control framework to link them
together. These linkages (e.g., delegations of control over advertised resources from
AMs to brokers) are driven by configuration files or administrative commands, or
programmatically from an extension module. Any delegation of resource control is
represented by a ticket or lease contract with an attached resource description.
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Since all agreements are explicit about their terms, this structure creates a
foundation for resource management based on peering, bartering, or economic
exchange [12, 14, 17]. An AM may advertise its resources to multiple brokers, and
a broker may issue tickets for multiple AMs. The AM ultimately chooses whether
or not to honor any ticket issued by a broker, and it may hold a broker accountable
for any oversubscription of an AM’s advertisements [12].

3.2 Brokers

Brokers address the need for cross-aggregate resource control. They can arbitrate
or schedule access to resources by multiple users across multiple aggregates, or
impose limits on user resource usage across aggregates using the same broker. The
broker policy has access to the attributes of the requester and target slice, and it may
maintain a history of requests to track resource usage by each entity through time.

Brokers also offer basic support for co-allocation across multiple aggregates,
including advance reservations. This support is a key motivation for the two-step
ticket/lease protocol in SHARP and ORCA. In particular, an ORCA broker may
receive resource delegations from multiple aggregates and issue co-allocated tickets
against them. Because all allocation state is kept local to the broker, the co-allocation
protocol commits locally at the broker in a single step.

The key elements that enable brokers are the separation of allocation and provi-
sioning (Sect. 2.1) and the “resource algebra” of declarative resource descriptions
(Sect. 2.4). Given the algebra, the processing for ticket allocation can migrate
outside of the AMs to generic brokers operating from the AM’s logical description.
The AM must trust the broker to perform this function on its delegated resource
pools, but it can always validate the decisions of its brokers because the tickets they
issue are redeemed back to the AM for the provisioning step [12].

The logical resource descriptions enable advertisements at multiple levels of
abstraction. In practice, most AMs advertise service descriptions rather than
their internal substrate structure. For example, ExoGENI network AMs hide their
topology details: they advertise only their edge interconnection points with other
domains and the bandwidth available at each point. Abstract advertisements offer
more flexibility and autonomy to the AMs, who may rearrange their infrastructures
or adjust sliver bindings to respond to demands and local conditions at the time of
service.

Each AM chooses how to advertise its resources in order to balance the risks of
ticket rejection or underutilization of its resources. For example, an unfortunate side
effect of abstract advertisements is that brokers may issue ticket sets that are not
feasible on the actual infrastructure, particularly during periods of high utilization.
Ticket rejection by the AM is undesirable and disruptive, but it is unavoidable in
the general case, e.g., during outages. An AM may hold unadvertised capacity in
reserve to mask problems, but this choice leaves some of its resources unused.
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Alternatively, an AM may advertise redundantly to multiple brokers. This choice
reduces the risk of wasting resources due to broker failure at the cost of a higher
risk of overcommitment and ticket rejection.

To summarize, the flexible delegation model enables a continuum of deployment
choices that balance the local autonomy of resource providers with the need for
global coordination through the brokering system. Resource contracts and logical
descriptions enable AMs to delegate varying degrees of control over their resources
to brokers that implement policies of a community. At one end of the continuum,
each AM retains all control for itself, effectively acting as its own broker, and
consumers negotiate resource access with each provider separately. At the other end
of the continuum a set of AMs federate using common policies implemented in a
central brokering service. These are deployment choices, not architectural choices.
In ExoGENI all AMs advertise to a central broker, but each cloud site also serves
some resources locally.

3.3 Controllers

The slice controllers in ORCA match the Software-Defined Networking and
Infrastructure (SDN/SDI) paradigm that is popular today. Like SDN controllers
they control the structure of a virtual network (a slice) spanning a set of low-level
infrastructure elements. They issue commands to define and evolve the slice, and
receive and respond to asynchronous notifications of events affecting the slice. Like
other ORCA servers, the controller/SM is stateful: it maintains a database recording
the status of each slice, including active tickets and leases and any pending requests.
It is the only control element with a global view of the slice.

One simple function of the controller is to automate sliver renewal (“meter
feeding”) as leases expire, to avoid burdening a user. The controller may allow leases
to lapse or formulate and inject new lease requests according to a policy. In the early
work, the controller and SM were conceived as the locus of automated adaptation
policy for elastic slices and elastic services running within those slices [10, 17–
20, 24]. (This is why the SM was called Service Manager in the early papers.)
For example, a 2006 paper [20] describes the deployment of elastic grid instances
over a network of virtual machine providers, orchestrated by a “grid resource
oversight controller” (GROC). The grid instances grow and shrink according to their
observed load.

To assist the controller in orchestrating complex slices, the ORCA leasing engine
can enforce a specified sequencing of lease setup actions issued from the SM.
The controller registers dependencies by constructing a DAG across the lease
objects, and the core issues the lease actions in a partial order according to the
DAG. This structure was developed for controllers that orchestrate complex hosted
services [18], such as the GROC, but it has also proved useful to automate stitching
of network connectivity within slices that span aggregates linked by L2 circuit
networks [3], as described in Sect. 3.4 below.
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In particular, the leasing engine redeems and instantiates each lease before any
of its successors in the DAG. Suppose an object has been ticketed but no lease has
been received for a redeem predecessor: then the engine transitions the ticketed
object into a blocked state, and does not fire the redeem action until the predecessor
lease arrives, indicating that its setup is complete. The core upcalls the controller
before transitioning out of the blocked state. This upcall API allows the controller
to manipulate properties on the lease object before the action fires. For example,
the controller might propagate attributes of the predecessor (such as an IP address
or VLAN tag returned in the lease) to the successor, for use as an argument to a
configuration action.

3.4 Automated Stitching and Topology Mapping

ExoGENI illustrates how controllers and their dependency DAGs are useful to
plan and orchestrate complex slices. In particular, the controllers automate end-to-
end circuit stitching by building a dependency DAG based on semantic resource
descriptions.

The controller first obtains the description for each edge connection point
between domains traversed by links in a slice. The descriptions specify the proper-
ties of each connection point. In particular, they describe whether each domain can
produce and/or consume label values (e.g., VLAN tags) that name an attachment
of a virtual link to an interface at the connection point. A domain with translation
capability can act as either a label producer or consumer as needed.

Stitching a slice involves making decisions about which domains will produce
and which will consume labels, a process that is constrained by the topology of the
slice and the capabilities of the domains. Based on this information, the controller
generates a stitching workflow DAG that encodes the flow of labels and dependencies
among the slivers that it requests from these domains. A producer must produce
before a consumer can consume. The controller traverses the DAG, instantiating
resources and propagating labels to their successors as the labels become available.

Figure 5 illustrates with a hypothetical scenario. The NLR circuit service is a
producer: its circuits are compatible for stitching only to adjacent domains with
consumer or tag translation capability. The resulting DAG instantiates the NLR
circuit first, and obtains the produced VLAN tag from the sliver manifest returned
by the domain’s AM. Once the tag is known, the controller propagates it by firing an
action on the successor slivers at the attachment point, passing the tag as a parameter.
Each domain signs any labels that it produces, so that downstream AMs can verify
their authenticity. A common broker or other federation authority may function as
a trust anchor. In extreme cases in which VLAN tag negotiation is required, e.g.
among adjacent “producer” domains, it is possible to configure the broker policy
module to allocate a tag from a common pool of values.

The ExoGENI controllers also handle inter-domain topology mapping (embed-
ding) for complex slices [22]. A controller breaks a requested topology down into
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Cloud#1 Cloud#2 
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Propagate tag t1 2. Request BEN circuit 

Propagate+translate tag t1          
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Fig. 5 Dependency DAG and stitching workflow for an end-to-end L2 circuit scenario. NLR/Sh-
erpa chooses the VLAN tag at both ends of its circuits, BEN has tag translation capability, and the
edge cloud sites can accept tags chosen by the adjacent provider. The connection point descriptions
yield a stitching workflow DAG. The controller traverses the DAG to assemble the circuit with a
partial order of steps

a set of paths, and implements a shortest-feasible-path algorithm to plan each
path, considering compatibility of adjacent providers in the candidate paths as
described above. To plan topologies, the controller uses a query interface on the
brokers to obtain and cache the complete advertisements of the candidate network
domains. It then performs path computation against these logical models in order
to plan its sliver requests. If a path traverses multiple adjacent producer domains,
it may be necessary to bridge them by routing the path through an exchange point
that can translate the tags. After the controller determines the inter-domain path,
the network domain AMs select their own intra-domain paths internally at sliver
instantiation time.

Topology embedding is expensive, so it is convenient to perform it in the SM
controllers. The SMs and controllers are easy to scale because they act on behalf of
some set of independent slices: as the number of slices grows it is easy to add more
SMs and distribute the control responsibility for the slices across the SMs.

3.5 GENI Proxy Controller

ExoGENI SMs run special GENI controller plugins that offer standard GENI APIs
to GENI users. The GENI controllers run a converter to translate the GENI request
specification (RSpec) into NDL-OWL. The converter also checks the request for
compliance with a set of semantic constraints, which are specified declaratively in
NDL-OWL. If a request is valid, the SM and its controller module act as a proxy
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to orchestrate fulfillment of the request by issuing ORCA operations to ExoGENI
brokers and AMs. This approach enables suitably authorized GENI users to access
ExoGENI resources and link them into their GENI slices.

ExoGENI’s proxy structure was designed to support GENI standards easily as
they emerged, without losing any significant capability. In particular, a global GENI
controller exposes the entire ExoGENI federation as a single GENI aggregate.
This approach enables GENI users to create complete virtual topologies spanning
multiple ExoGENI aggregates without relying on GENI stitching standards, which
began to emerge later in the project.

4 Reflections on GENI and ORCA

This section offers some thoughts and opinions on the GENI-ORCA experience. We
believe that the ORCA architecture has held up well through the GENI process. We
built and deployed ExoGENI as a set of extension modules with few changes to the
ORCA core. Although the ORCA software itself is not used outside of ExoGENI,
the GENI standards have ultimately adopted similar solutions in all areas of overlap.

In particular, the latest GENI API standard (3.0) is similar to the ORCA protocol,
with per-sliver leases, separate allocate and provision steps, dynamic stitch-
ing, abstract aggregates with no exposed components, elastic slices with adjustable
sliver sets, and a decoupled authorization system. Beyond these commonalities,
GENI omits orchestration features from ORCA that could help meet goals of GENI
that are still incomplete. It also adopts policies for user identity and authorization,
which are outside the scope of the ORCA architecture but are compatible with it.

The remaining differences lie in the data representations carried with the
protocol—the languages for resource descriptions and for the credentials that
support a request. In particular, GENI uses a resource description language (RSpec)
that is not logic-based. RSpec may prove to be more programmer-friendly than
NDL-OWL, but it is decidedly less powerful, and it rests on weaker foundations.

These differences are primarily interoperability issues rather than architectural
issues or restrictions of the protocol itself. The version 3.0 GENI API is open
to alternative credential formats including (potentially) broker-issued tickets, by
mutual agreement of the client and server. In principle the protocol is open to
alternative resource description languages as well.

4.1 Platforms vs. Products + Protocols

In retrospect, ORCA’s toolkit orientation set us apart from the GENI project’s initial
focus on standardizing protocols to enable existing network testbeds to interoperate.
Many of our colleagues in the project understood ORCA as another testbed provider,
rather than as a platform to federate and orchestrate diverse providers. They focused
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on the infrastructure that ORCA supported, which at that time was limited to Xen
virtual machine services [18]. There was less interest in the toolkit itself, in part
because ORCA used a different language (Java) and tooling than the other GENI
clusters. Our focus on the toolkit—and the architectural factoring of GENI-relevant
functions and APIs that it embodied—clashed with the primacy of the protocol
standards, which were seen as the key to interoperability.

Even so, the ORCA toolkit allowed the GENI Cluster D team to accelerate
development by using generic ORCA servers to “wrap” existing back-end systems
and call them through their existing APIs. The result looked much like the structure
ultimately adopted in GENI (Sect. 4.2), but using the ORCA protocols rather
than the GENI standards. The ORCA experience suggests that the lengthy GENI
development phase could have been shortened by focusing on wrappers and adapters
in the early spirals, rather than on the protocols.

Moreover, if the wrappers are standardized, then it is possible to change the
protocols later by upgrading the wrappers. We found that it is easier to stabilize
the plug-in APIs for the toolkit than the protocols themselves. For example, ORCA
uses an RPC system (Axis SOAP) that has never served us well and is slated for
replacement. The GENI standards use XMLRPC, which is now seen as defunct.

Although it is always difficult to standardize protocols, interoperability in a
system like ORCA or GENI is less about protocols than about data: machine-
readable descriptions of the principals and resources. In both systems the protocols
are relatively simple, but the messages carry declarative resource descriptions
and principal credentials, which may be quite complex. Our standards for these
languages will determine the power and flexibility of the systems that we build
(Sect. 4.4).

4.2 Federation

The key differences in control framework architectures relate to their approaches to
federating the aggregates. In general, the aggregates themselves are IaaS or PaaS
services similar to those being pursued by the larger research community and in
industry. The problem for GENI is to connect them.

The GENI framework takes a simple approach to federation: it provides a
common hierarchical name space (URNs) and central authorities to authorize and
monitor user activity. GENI leaves orchestration to users and their tools and it
does not address cross-aggregate resource control (Sect. 4.3). Even so, the GENI
community invested substantial time to understand the design alternatives for
federation, reconcile terminologies, and specify a solution. Various architectures
were proposed for GENI to factor identity management and authorization functions
out of the standalone testbeds and into federation authorities, but a workable
convergence did not emerge until 2012.

The GENI solution—so far—embodies a design principle also used in ORCA.
The AMs do not interact directly; instead, they merely delegate certain functions
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for identity management, authorization, and resource management to common
coordinator servers. The coordinators issue signed statements certifying that clients
and their requests comply with federation policy. The AM checks these statements
before accepting a request.

For example, the GENI Clearinghouse authorities approve users, authorize slices,
and issue credentials binding attributes to users and slices. User tools pass their
credentials to the AMs. These mechanisms provide the common means for each
AM to verify user identity and access rights for the GENI user community. The
coordinators in ORCA/ExoGENI include brokers and the GENI controllers, which
are trusted by the AMs to check the GENI credentials of requests entering the
ORCA/ExoGENI enclave.

As originally conceived, ORCA AMs delegate these user authorization functions
to the brokers: if a community broker issues a ticket for a request, the AM accepts
the user bearing the ticket. It is the responsibility of the broker to authorize each
user request in its own way before granting a ticket. More precisely, the ORCA
architecture left the model for user identity and authorization unspecified, and it is
fully compatible with GENI’s policy choices. However, these choices should remain
easily replaceable in any given deployment (Sect. 4.4).

4.3 Orchestration

GENI has not specified any coordinator functions beyond checking user credentials.
In particular, GENI has not adopted brokers or any form of third-party ticketing to
enable cross-aggregate resource management.

Although the sponsor (NSF) has voiced a desire to control user resource usage
across multiple aggregates, GENI has defined no alternative mechanism for this
purpose. Importantly, AMs and controllers are not sufficiently powerful to meet this
need without some structure equivalent to brokers. The local policy of any AM
may schedule or limit allocation of its own resources, but it has no knowledge or
control over allocations on other aggregates. Similarly, any limit that an unprivileged
controller imposes on resource usage by a slice is voluntary, because the controller
acts as an agent of the slice and its owners.

Slice controllers are also not part of the GENI architecture. GENI was conceived
as a set of protocols and service interfaces: the client software to invoke these
interfaces was viewed as out of scope. Instead, the idea was that a standard
AM API would encourage an ecosystem of user tools to grow organically from
the community. To the extent that computation is needed to orchestrate cross-
aggregate requests for a given slice—such as topology mapping—those functions
were conceived as central services provided to the tools through new service APIs.
We believe that it is more flexible and scalable to provide these functions within
the tools. ExoGENI shows that it is possible to do so given sufficiently powerful
resource descriptions and a platform for building the tools.
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Over time it became clear that the GENI client tools must be stateful to
provide advanced slice control functions. In particular, tools must maintain state
to implement timer-driven sliver renewal, multi-step atomic co-allocation, “tree”
stitching across aggregates, and elastic slices that adapt to changing demands. Later
in the project, the GENI Project Office developed an extensible tool called omni
and a Web portal to proxy requests from stateless tools into GENI. These clients
have steadily incorporated more state and functionality. It seems likely that they
will continue to evolve in the direction of ORCA’s stateful slice controllers.

The ORCA view is that a federated infrastructure control plane is a “tripod”:
all three server types—aggregate/AM, controller/SM, and broker—are needed for
a complete system. The factoring of roles across these servers is fundamental. The
AMs represent the resource providers, and are the only servers with full visibility
and control of their infrastructures. The SMs represent the resource consumers, and
are the only servers with full visibility and control over their slices. The brokers and
other authorities (e.g., the GENI clearinghouse) mediate interactions between the
SMs and AMs: they are the only servers that can represent policy spanning multiple
aggregates.

4.4 Description Languages

Our experience with ORCA and GENI deepened our view that the key problems in
federated infrastructure—once the architecture is put right—are largely problems of
description. This understanding is a significant outcome of the GENI experience.

GENI differs from other infrastructure services primarily in its emphasis on
diverse infrastructure, rich interconnection, and deep programmability. It follows
that the central challenges for GENI are in describing “interesting” resources and in
processing those descriptions to manage them.

The early development phase of GENI was marked by an epic debate on
dev@geni.net about whether a common framework for diverse resource
providers is even possible. It is perhaps still an open question, but if the answer
is yes, then the path to get there involves automated processing of rich resource
descriptions. To incorporate a new resource service into an existing system, we
must first describe the service and its resources in a way that enables generic
software to reason about the space of possible configurations and combinations.

For example, the ORCA experience shows that it is easy to incorporate current
cloud systems and third-party transit network providers as GENI aggregates through
an adaptation layer if we can describe their resources logically. Powerful logical
descriptions also enable the various coordinator functions (Sect. 4.3) in ORCA/Ex-
oGENI. One lesson of this experience is that AM advertisements do not in general
describe the infrastructure substrate, as the GENI community has understood them,
but instead describe infrastructure services, which are even more challenging to
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represent and process. For example, AMs may proxy or “resell” resources from
other providers whose substrate they do not control, or they may offer various
mutually exclusive options for virtual sliver sets within the constraints of a given
substrate resource pool.

Our ongoing research focuses on declarative representations for resources and
trust, and their role in automating management of resources and trust. For example,
in recent work we have shown how to specify trust structure and policy alternatives
for a GENI deployment concisely and precisely in SAFE declarative trust logic [6].
Statements in the logic are embedded in credentials; a generic compliance checker
validates credentials according to policy rules, which are also expressed in the logic.

With this approach, the GENI architecture can be implemented as a set of
autonomous services (e.g., the AMs) linked by a declarative trust structure that
is represented in about 150 lines of scripted SAFE logic. The various coordinator
roles and trust relationships are captured in declarative policy rules rather than as
procedures or assumptions that are “baked in” to the software. We believe that
this approach balances low implementation cost with flexibility for deployments to
accommodate diverse policies of their members, evolve their structures and policies
over time, and federate with other deployments.
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