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Abstract The ability to repeat experiments from a research study and obtain similar
results is a corner stone in experiment-based scientific discovery. This essential
feature has often been overlooked by the distributed computing and networking
community. There are many reasons for that, such as the complexity of provisioning,
configuring, and orchestrating the resources used by experiments, their multiple
external dependencies, or the difficulty to seamlessly record these dependencies.
This chapter describes a methodology based on well-established principles to plan,
prepare and execute reproducible experiments. We propose and describe a family
of tools, the LabWiki workspace, to support an experimenter’s workflow based
on that methodology. This proposed workspace provides services and mechanisms
for each step of an experiment-based study, while automatically capturing the
necessary information to allow others to repeat, inspect, validate and modify prior
experiments. Our LabWiki workspace builds on existing contributions, de-facto
protocols, and model standards, which emerged from recent experimental facility
initiatives. We use a real experiment as a thread to guide and illustrate the discussion
throughout this chapter.

1 Introduction

One of the cornerstones of scientific discovery is validation by the community.
In experimental science, this requires others to repeat the experiments and obtain
similar results within acceptable statistical bounds. Traditionally, the distributed
computing and networking community has been largely ignoring this. There are few
publications in top-tier venues, which primarily report on the successful validation
of somebody else’s work, while problems with repeatability are sometimes buried
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in vague references. There are many reasons for that. Advances in the underlying
technology continuously create new opportunities to explore new ideas leaving little
time to reflect on the “old”. But there are also very pragmatic reasons. First of
all, most experiments are conducted in complex environments with many external
dependencies, such as type and speed of computers and networks, size of storage,
chip sets, or operating system and driver versions. Some of them will only affect the
measured “utility” of the reported phenomena, while others are essential to having a
successful experiment in the first place. Unfortunately, many of these dependencies
are never reported and therefore making it very difficult for others to repeat an
experiment.

We argue, that our inability in Computer Science to repeat reported experiments
is not only bad practice, but also hampers progress in general. It reduces our ability
to expand on prior work, verify and adapt it to different contexts, compare different
methods in different environments and much more. We also argue that the “paper”
as the traditional publication mechanism is one of the major obstacles in improving
the status quo.

We are clearly not alone, initiatives, such as the Elsevier’s Executable Paper
Challenge [4] have been exploring new avenues for disseminating scientific results.
In addition, easy access to emerging large scale experimental facilities, funded and
coordinated by programs, such as GENI in the US [1], FIRE in Europe [5], and
similar activities in China, Korea, and Japan, provide the community with a common
“playground” in which to conduct experiments. But only providing experimental
facilities is not sufficient. The sharable resources we have available today still need
to get provisioned, configured and modified before they can be used in experiments.
We see those steps as the crucial pieces that are needed to perform repeatable
experiments.

In the remainder of this chapter we propose and describe a family of tools to
support an experimenter’s workflow, while also automatically capturing most of the
necessary information to allow others to repeat, inspect, validate and modify prior
experiments.

More specifically, we propose to model the experimenter workflow on the
Scientific Method1 which we interpret, as shown in Fig. 1, as a repeated cycle of
stating a hypothesis, designing and conducting an experiment, and finally analyzing
the measurements taken during the experiments with the intent to test or disprove
the hypothesis.

We observed that many of these steps follow the same internal workflow of
planning, preparing, and executing. We therefore built an experimenter-facing web-
based tool, called LABWIKI, which supports this three-step workflow in different
contexts. LABWIKI, as the name implies, is modeled after the traditional laboratory
book, which experimenters use for a very similar workflow and purpose. LABWIKI

takes this further, by not only being the recording mechanism, but also the operating
platform for many activities within the experiment workflow.

1https://en.wikipedia.org/wiki/Scientific_method.

https://en.wikipedia.org/wiki/Scientific_method
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Fig. 1 Scientific method

We start the remainder of this chapter with a brief overview of LABWIKI

(Sect. 2) and then introduce its user interface (Sect. 3). In Sect. 4, we introduce a
real experiment used to research a time synchronization approach and published
in [13], which will be used as a guiding example in the remainder of this chapter.
An overview on experimental facilities and testbed resources is given in Sect. 5.
We will illustrate the experiment workflow by taking the reader through every
step, namely the experiment design (Sect. 6), the setup of and experiment (Sects. 7
and 8), the execution of an experiment (Sect. 9), and the analysis (Sect. 10) of
a previously published research result [13]. Finally, we briefly describe how the
LABWIKI workspace can support educators in harnessing these large facilities for
lab tutorials (Sect. 11).

2 LabWiki Overview

The web-based LABWIKI service strives to be the primary tool for an experimenter
to plan, prepare, execute, analyse and even publish experimental-driven research.
While the classical UNIX approach of “many little tools” often leads to a very
rich and versatile environment it also requires great discipline on behalf of an
experimenter to keep a detailed record of what combination of tools and their
configurations have been used for what experimental artefact. On the other hand,
a single comprehensive tool rarely works for cutting-edge research as requirements
for new features often outstrip the development resources of the “mega tool” builder.

LABWIKI attempts to find a sweet spot by defining a framework which a) is based
on well established, unifying methodology, b) supports the tracking of artefacts,
their meta data and relationships to others, c) is extensible, and d) allows for easy
integration of external tasks and services. Simplistically, it can be viewed as an
easily customisable glue between the many little tools and the “history keeper” on
how they were all used in the pursuit of a scientific discovery.
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Fig. 2 LABWIKI and
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LABWIKI is the result of the shared experience of the authors in their respective
roles as tool builders, testbed operators, researchers, educators, engineers, admin-
istrators and many more. The following is a description of LABWIKI’s current
“universe” of components, services, and capabilities.

LABWIKI, as shown in Fig. 2, is sitting on top of a suite of supporting tools
and services, which can be used directly by an experimenter, or more likely by other
tools acting on her behalf, specifically the SliceService (Sect. 8.3) which harmonizes
resource provisioning across many different testbeds; OEDL (Sect. 7), a domain-
specific language for describing the orchestration of an experiment; JobService
(Sect. 9) for scheduling an experiment; OMF & FRCP (Sect. 9) for executing and
coordinating individual experiment runs (or trials); and OML (Sect. 7) for collecting
and managing measurements during a trial.

In addition LABWIKI can be easily extended through plugins to extend it’s
functionality or adapt it to a new environment. Example plugins described in this
chapter are the Topology Editor (Sect. 8.2), Experiment Executer (Sect. 9.1 and
right panel in Fig. 3), the Analysis Widget (Sect. 10), and the iBook Widget Creator
(Sect. 11.2).

3 LabWiki User Experience

As mentioned in the Introduction, the experimenter interacts with LABWIKI

primarily through a web browser. After a standard login process, the user will
see (Fig. 3) a browser window split into three columns, labeled “Plan”, “Prepare”,
and “Execute”. This reflects the basic workflow identified above. Each column
comprises a tool & search bar, followed by a widget header, an optional widget
toolbar and the widget body. The top tool & search bar allows the user to quickly
locate or create resources relevant to the respective activity and choose the desired
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Fig. 3 Main interface of LABWIKI

widget to interact with that resource. LABWIKI itself is a framework with most of
the functionality provided by plugins, which in turn provide one or more widgets.
For instance, the wiki widget for the “Plan” column supports editing of rich text
resources.

All widgets are stateless and only provide mechanisms for a user to interact
with one or more named resources. These resources may reside on a separate
service, such as the JobService (Sect. 9.2), or are file-like resources, such as a
wiki entry, or an image. For these kinds of objects, LABWIKI provides layered,
pluggable artifact stores. Current implementations support persistence through the
local filesystem, versioned and access-controlled repositories such as Git [2], and
via iRODS [16]. The clean separation of stateless widgets and state-full, externally
resolvable resources allows for interacting and embedding of these resources outside
of LABWIKI as well. For instance, plots of experiment measurements, hosted
on JobService (Sect. 9.2) can be embedded into a wiki page, which then can be
published from the wiki widget to a third-party blog service. Importantly, the link
from the plot in the blog entry to the actual experiment is maintained, including
access control mechanisms.

LABWIKI supports multiple user accounts and uses OpenID for authentication.
Resources, managed through LABWIKI belong to projects and a user’s membership
and role in a project are the basis of LABWIKI’s authorization mechanism.
Information about membership and respective roles are sourced from external
services, such as the GENI ClearingHouse. Currently LABWIKI is also facilitating
the transfer of delegation and speaks-for credentials for the services some of the
plug-ins call upon (e.g. SliceService Sect. 8.3).
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4 Experiment Overview

As the main objective of LABWIKI is to support a group of researchers in producing
verifiable experiments, we will use a real research experiment as the guide through
the reminder of this chapter. This experiment was first designed as part of a research
effort on time synchronization in networked sensors, with the results published
in [13].

Researchers in many domains, such as human-computer interaction, are increas-
ingly collecting large amounts of data from heterogeneous distributed sensors.
Accurately synchronizing these data streams is crucial for meaningful analysis and
conclusions. While there are many, well-established techniques for synchronizing
clocks in distributed entities [14, 19], they require additional software to be deployed
on these entities, or depend on variables which may not be under the experimenter’s
control (e.g., the offset between a NTP client and a server depends on the network’s
round-trip delay). The above mentioned research project proposed a different
approach based on measurements of the data collection system itself and uses the
obtained meta data to synchronize the original data a-posteriori.

The main experiment assumes a scenario where certain events can be measured
by more than one sensor and where all sensors then forward these measurements to
a common collection server. Figure 4 illustrates the resulting experiment topology.
A series of events are generated by a source S and measured by two entities
E1 and E2. The respective measurement samples are sent to the same collection
server C. Time delays may be added at the various Dij points. E1, E2, and C
add locally sourced timestamps t to all samples that they produce and receive,
respectively.

5 Experimental Facilities

Major initiatives such as GENI [1] and FIRE [5] have focused on providing
distributed, virtual laboratories for transformative, at-scale experiments in network
science and services. Designed in response to the Internet ossification issue, these
so-called testbeds enable a wide variety of experiments in many areas, including
clean-slate networking, protocol design, distributed service offerings, social net-
work integration, content management, and in-network service deployment. Many
software tools were proposed to allow operators and experimenters to manage,

Fig. 4 Topology of the Time
Calibration experiment
from [13]
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access and control the resources from these testbeds. The models, protocols, and
APIs from some of these contributions are currently converging towards de-facto
standards within the community.

A RSpec2 defines a set of resources that can be used in an experiments. These
resources may be requested from a variety of GENI or FIRE testbeds, such as
ExoGENI, OpenFlow Mesoscale, or Fed4FIRE [20]. There are three different types
of RSpecs, (a) the Advertisement which is sent by an Aggregate Manager (AM) to
an experimenter to describe its available resources; (b) the Request which is sent
by the experimenter to the AM to describe the resources she wants to reserve; and
(c) the Manifest which is returned by the AM to describe which resources have been
reserved by the experimenter. These RSpecs are exchanged in the previous sequence
between the AM and the experimenter. The requested resources will be available to
the experimenter after the successful completion of that sequence.

The Aggregate Manager APIs [1] define a common interface for software to
provide, request, reserve, and provision resources over different facilities. They are
based on a slice abstraction, which is a container for all the resources used in a
project. Experimenters are associated with slices and use these APIs to interact
with various entities (e.g., Clearinghouse, Aggregate Manager) in order to discover,
reserve, and provision resources. These interactions are mostly performed through
third-party interfaces. For example, Omni3 is a command line tool used to specify
and reserve resources from GENI facilities. It allows stitching, a technique to con-
nect resources via layer 2 VLans. In contrast, Flack4 and Jacks5 are graphical tools,
which allow experimenters to reserve resources and specify RSpecs through a visual
topology editor. Finally, JFed6 is a Java-based tool, which allows experimenters
to obtain large distributed topologies using resources from both FIRE and GENI
testbeds.

The Federated Resource Control Protocol (FRCP) and the OML Measurement
Stream Protocol7 (OMSP) [12, 18] are two protocols to control resources and
collect data from them. They are commonly used in both GENI and FIRE facilities.
FRCP defines a short set of asynchronous interactions over a publish-and-subscribe
system, which allows experimenters to configure resources and instruct them to
execute given tasks. The OMF and NEPI control tools both implement FRCP [8, 17].
OMSP defines the format and transport of measurement tuples from producers
(e.g., a resource) to consumers (e.g., a storage server). It supports various types
of measurements, encodings, and the use of metadata. The OML framework [12]

2http://geni.net/resources/rspec.
3http://trac.gpolab.bbn.com/gcf/wiki/Omni.
4http://www.protogeni.net/wiki/Flack.
5https://www.emulab.net/protogeni/jacks-doc/.
6http://jfed.iminds.be.
7http://oml.mytestbed.net/doc/doxygen/omsp.html.

http://geni.net/resources/rspec
http://trac.gpolab.bbn.com/gcf/wiki/Omni
http://www.protogeni.net/wiki/Flack
https://www.emulab.net/protogeni/jacks-doc/
http://jfed.iminds.be
http://oml.mytestbed.net/doc/doxygen/omsp.html
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provides an OMSP storage server and a C client library to instrument resources.
Other client libraries also exist (e.g., OML4R,8 OML4Py9 or OML4J10).

6 Experiment Design

The first step of an experimental study is the design of the experiment itself. It is
driven by research goals, such as testing a hypothesis, measuring performance, or
demonstrating capabilities.

There have been many contributions related to experiment design since the sem-
inal work of Fisher [3]. Examples in the area of computer science include [9, 15].
While there are many variations, a good starting point is the identification of the
dependent, independent, and confounding variable sets. The dependent variables
are measured attributes of the studied system, their analysis will provide answers to
the study’s questions. The independent variables would impact the studied system
and modify its dependent variables. The third set of confounding variables may be
unknown or uncontrollable by the experimenter and may have some effect on any
of the former variables.

Given these three variable sets, the researcher then devises an experiment plan
where usually the dependent variables are measured, the independent variables
are controlled and varied across different repeated trial batches, and the effect
of confounding variables are mitigated through techniques such as replication or
randomization. The choice of controlled values for the independent variables and
the number of trials and their repetition depends on the objectives of the study.

The LABWIKI workspace has a set of tools to support the experiment design
process. The “Plan” column on the left-hand side of its interface (Fig. 5) provides
a Wiki widget that allows the experimenter to describe and record her design. This
design strives to replace her pen-and-paper laboratory notebook. It currently uses
the popular Markdown syntax,11 and figures and plots from other widgets can be
easily dragged-and-dropped into the write-up.

The Design of Our Example Experiment In the case of our example experiment,
we identify the dependent variables as the arrival times of a measurement sample
at different points in the system. Our independent variables consist of configurable
clock offsets and network delays, generally referred to as Dij in Fig. 4. One potential
confounding variable would be the varying delays in processing measurement
samples inside the sensors.

8https://github.com/mytestbed/oml4r.
9https://github.com/mytestbed/oml4py.
10https://github.com/NitLab/oml4j.
11http://daringfireball.net/projects/markdown.

https://github.com/mytestbed/oml4r
https://github.com/mytestbed/oml4py
https://github.com/NitLab/oml4j
http://daringfireball.net/projects/markdown
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Fig. 5 The experiment design notes are shown in the “Plan” panel. They can be written down in a
wiki form in the “Prepare” using Markdown source

In this particular realization of the experiment, we chose a classic ICMP ping
to the network’s broadcast address as the event generated by the source S and
measured through their respective network interfaces on E1 and E2. In the first
round of trials, the entities are quasi-synchronized and no delay is added on the
collection network. This establishes a baseline for future results. We then planned
to run a series of trials, where various known time offsets are introduced to each
entity’s clock and on their respective paths on the collection network. To mitigate the
potential impacts of confounding factors, we decide to run multiple trials for each
specific offset configuration and further repeat these multiple trials over different
instantiations of our topology. More details about this experiment design and each
series of trials are available in the original study [13].

As mentioned above, we primarily use the Wiki widget to describe the design and
work plan. Dragging experiment results and other artifacts onto the wiki will allow
us to keep track of progress. This will be especially important if an experiment is
carried out by a team where different members are pursuing different parts of the
work plan.

7 Experiment Description and Instrumentation

Once the design of the experiment is finalized and documented in LABWIKI’s Plan
panel, the next step is to translate it into a machine-readable description.
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7.1 Describing an Experiment

We propose to use the existing OEDL language [17] to describe an experiment.
OEDL has been widely used to describe repeatable experiments on both GENI
and FIRE facilities. A typical OEDL script is primarily composed of two sections.
The first one declares the resources used in the experiment and their initial
configurations. For example, an experimenter may declare a given application to
be used, along with its available parameters and measurement capabilities; and
the specific initial settings for both of them. The second section of the OEDL
script defines the orchestration of tasks the resources have to execute throughout an
experiment trial. These tasks are grouped into experimenter-defined events, which
may be triggered either by timers or experiment-specific conditions. This event-
based approach allows complex experiment orchestrations, such as changing the
parameters of an application X seconds after the measurement of Y from another
application reaches the value Z.

LABWIKI has inspired a third, optional section for a typical OEDL script.
It allows an experimenter to define charts to provide quick feedback on the progress
or outcome of an experiment trial. The experiment widget in LABWIKI uses that
to display line, pie, or histogram charts in the respective column with relevant
measurement data streams sourced from the JobService. We do want to note, that
this is primarily to provide a graphical live feedback on an individual execution of
an experiment trial, and will usually not replace a thorough data analysis over the
complete result set obtained for an experiment (Sect. 10).

Listing 1 provides a shortened OEDL script for our example experiment. While
the complete OEDL script12 describes the entire experiment with all required
settings as designed in Sect. 6, this shortened version only shows the experiment
for the baseline trials. We will now briefly describe this script and refer the reader
to the OEDL Reference document13 for further details.

Lines 1–4 fetch and load additional OEDL scripts, similar to the include state-
ment found in many programming languages. Lines 6–9 define some experiment
parameters which may be modified for different trials. Lines 11–18 define a group of
resources comprising of the entities E1 and E2 from Fig. 4. An ICMP packet capture
application is associated to each resource in that group (line 13). The parameters
and measurements to collect for this application are set using the setProperty and
measure commands, respectively. Lines 20–29 define another group of resource
with only the source S from Fig. 4. The ICMP ping application is associated to that
resource (line 22), and configured to ping the network’s broadcast address (line 23).
Lines 31–39 define a third group which include all the previous resources. A time
statistic reporting application is associated to all these resources (line 34). Finally,
Lines 41–49 define the sequence of tasks to perform once all the resources are ready

12http://git.io/clock-delay-impairments.rb.
13http://omf6.mytestbed.net/OEDLOMF6.

http://git.io/clock-delay-impairments.rb
http://omf6.mytestbed.net/OEDLOMF6
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1 loadOEDL( ’ h t t p : / / goo . g l / 4br2MW ’ )
2 loadOEDL( ’ h t t p : / / goo . g l / qg8Alo ’ )
3 # From t h e t r a c e �oml2 package
4 loadOEDL( ’ f i l e : / / / u s r / s h a r e / t r a c e �oml2 / t r a c e . rb ’ )
5
6 defProperty ( ’ e n t i t y 1 ’ , ’ node20 ’ , ’ 1 s t e n t i t y ID ’ )
7 defProperty ( ’ e n t i t y 2 ’ , ’ node21 ’ , ’ 2nd e n t i t y ID ’ )
8 defProperty ( ’ s o u r c e ’ , ’ node19 ’ , ’ Event s o u r c e ID ’ )
9 defProperty ( ’ t ime ’ , 180*60 , ’ T r i a l d u r a t i o n [ s ] ’ )

10
11 defGroup ( ’ E n t i t i e s ’ , p rop . e n t i t y 1 , p rop . e n t i t y 2 ) do | g |
12 # Captur e ICMP echo p a c k e t s
13 g . addApplication ( ’ t r a c e ’ ) do | app |
14 app . setProperty ( ’ f i l t e r ’ , ’ icmp [ icmptype ]= icmp�echo ’ )
15 app . setProperty ( ’ i n t e r f a c e ’ , ’ e t h 1 ’ )
16 app . measure ( ’ e t h e r n e t ’ , : s ample s => 1)
17 end
18 end
19
20 defGroup ( ’ Source ’ , p rop . s o u r c e ) do | g |
21 # B r oadcas t ICMP echo r e q u e s t s e v e r y 10 s
22 g . addApplication ( ’ p ing ’ ) do | app |
23 app . setProperty ( ’ d e s t _ a d d r ’ , ’ 1 0 . 0 . 0 . 2 5 5 ’ )
24 app . setProperty ( ’ b r o a d c a s t ’ , true )
25 app . setProperty ( ’ i n t e r v a l ’ , 10 )
26 app . setProperty ( ’ q u i e t ’ , true )
27 app . measure ( ’ p ing ’ , : s amples => 1)
28 end
29 end
30
31 defGroup ( ’ A l l ’ , p rop . s ou rce ,
32 prop . e n t i t y 1 , p rop . e n t i t y 2 ) do | g |
33 # R epor t t i m e s y n c h r o n i s a t i o n e v e r y minu te
34 g . addApplication ( ’ n tpq ’ ) do | app |
35 app . setProperty ( ’ loop� i n t e r v a l ’ , 60 )
36 app . setProperty ( ’ q u i e t ’ , true )
37 app . measure ( ’ n tpq ’ , : s amples => 1)
38 end
39 end
40
41 onEvent ( : ALL_UP_AND_INSTALLED) do
42 group ( ’ A l l ’ ) . star tAppl icat ions
43 group ( ’ E n t i t i e s ’ ) . star tAppl icat ions
44 group ( ’ Source ’ ) . star tAppl icat ions
45 af te r prop . t ime do
46 allGroups . stopApplications
47 Experiment . done
48 end
49 end

Listing 1 Example of an OEDL script

and their associated applications are installed. In this simple case, all the resources
first start their time reporting applications. Then the resources within the “Entities”
group start their applications. Then the resource in the “Source” group does the
same. After a set duration, all resources in all the groups stop their applications, and
the trial is finished.
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Fig. 6 Applications can be instrumented with OML to inject timestamped samples into various
measurements streams (MS) which can be processed in-line (e.g., aggregated or sub-sampled)
before finally being collected and written into a storage backend

7.2 Instrumenting Resources

LABWIKI leverages the OML measurement framework [12] for measurement
collection and storage. OML is based on the concept of measurement points (MPs).
The schema of an MP defines a tuple of typed metrics meaningfully linked together
(e.g., sampled at the same time, or pertaining to the same group). The series of tuples
generated by reporting measurements through an MP defines a measurement stream
(MS). OML defines several entities along the reporting chain that can generate,
manipulate, or consume MSs. This is illustrated in Fig. 6.

Instrumentation Process

The instrumentation of a resource consists of enabling applications to act as
injection points (Fig. 6). By providing a structured way of defining MPs, OML
fosters the reusability and interchangeability of instrumented applications, and
simplifies the assembly of subsequent experiments. For example the “wget” and
“cURL” applications report similar information about web transfers, and should
therefore attempt to reuse the same MPs.

It is therefore important to first identify all the measurements that can be
extracted from an application. For example, ping not only provides latency infor-
mation, but also sequence and TTL information for each received packet from any
identified host, as well as overall statistics. A rule-of-thumb is that measurements,
which are calculated, measured or printed at the same time/line are good candidates
to be grouped together into a single MP. For more complex cases, where samples
from multiple MPs need to be linked together, OML provides a specific data type
for globally unique identifiers (GUID). They can be used in a similar way as foreign
keys in databases. For example, in the case of the trace-oml2 application, it
was decided to create one MP per protocol encapsulated in a packet (e.g., ethernet
or IP). A fresh GUID is generated for each packet, which is then parsed, injecting
information about each header in the relevant MP, along with the GUID.

It is also possible to report metadata about the current conditions. Such details
as description, unit and precision of the fields of an MP are primordial for the
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later understanding of the collected measurements.14 Other information such as the
command line invocation, or application version and parameters are also worthy of
inclusion as part of this metadata.

Instrumentation Libraries

The most complete OML implementation is the C liboml2(1,3).15 It pro-
vides an API, which can be used to define MPs within the source code of
an application, and mechanisms to process the injected samples at the source.
The oml2-scaffold(1) tool can be used to generate most of the boiler-
plate instrumentation code, along with the supporting OEDL description [12,
App. A]. An example application written from scratch to report network packets
is trace-oml2,16 used in Listing 1 (line 13).

The Ruby and Python bindings (OML4R & OML4Py) are particularly useful
for writing wrappers for applications for which the source code is unavailable.
Wrappers work by parsing the standard output of an application, and extracting
the desired metrics to report. An example is the ping-oml2 wrapper,17 using
OML4R18, used in Listing 1 (line 22).

7.3 The Prepare Panel

Our LABWIKI workspace has a “Prepare” panel at the center of its interface (center
widget in Fig. 3), which provides a simple code editor widget. The experimenter
may use this widget to edit an OEDL script, as described previously. All OEDL
scripts created within this editor widget are versioned and saved within LABWIKI’s
artefact store with group-based access control. While this widget is a convenient
tool for users to edit their OEDL scripts, the may use alternate means to do so, as
well. For example, they may edit their scripts in other editors and then cut & paste
it into the “Prepare” panel’s code editor, as illustrated in Fig. 7. Alternatively, they
may directly use a git repository, and push it into LABWIKI’s artefact store.

14Base SI units should be preferred whenever possible.
15Manpages for OML system components can be found at http://oml.mytestbed.net/doc.
16http://git.mytestbed.net/?p=oml-apps.git;a=blob;f=trace/trace.c.
17We generally use APPNAME-oml2 as the binary’s name of OML-instrumented versions of
upstream APPNAME utilities; the OEDL application description however only uses APPNAME
for conciseness.
18http://git.io/oml4r-ping-oml2.

http://oml.mytestbed.net/doc
http://git.mytestbed.net/?p=oml-apps.git;a=blob;f=trace/trace.c
http://git.io/oml4r-ping-oml2
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Fig. 7 The “Prepare” panel can be used to upload and edit the various files and scripts needed to
describe the experiment (e.g., Markdown or OEDL)

8 Resource Selection and Provisioning

While the previous section dealt with describing the entire experiment and its
resource needs, it did not consider where these resources come from. For instance,
the OEDL script in Listing 1 refers to resources, such as virtual machines (nodes)
and applications (trace, ping). It is the former kind of resources, which we assume
will be provided by testbeds and the programmable networks, as offered by GENI,
connecting them.

More specifically, an experimenter needs to first define a topology of nodes,
their interconnecting networks, and their specific characteristics. For our example
experiment, at least four (virtual) machines and four links are required to create the
topology in Fig. 4. We note, that should the experiment be extended (e.g., by adding
new entities E3 and E4), additional resources have to be reserved. Alternatively, the
experimenter may reserve a larger topology and run different trials on a subset of
the reserved resources.

8.1 Process Overview

Specification The very first step is the specification of resources that are required
for an experiment. Section 5 described several approaches for resource description
and tools to create them. The most common specification is the XML-based GENI
RSpec.19

19http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs.

http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs
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Reservation Once specified, a set of resources needs to be reserved. This requires
a negotiation phase between the provisioning tools and the corresponding services
on the testbed side. A negative outcome of this negotiation means that the requested
resources can currently not be provisioned, or the requestor does not have sufficient
privileges, or has exceeded her quota. For example, a VM is requested but all the
physical machines’ resources have been already allocated to other experimenters. In
such a case, the experimenter either waits or hopes that the desired resources will
become available in the near future or modifies the request for a different set of
resources. A positive response means that the provisioning process will move on to
the next step.

Provisioning After specific resources have been identified, they need to be provi-
sioned before the experimenter can gain access to them. In the case of a physical
machine, this may require a power up. In the case of a VM, a disk image containing
the requested operating system needs to be loaded and the VM started up with
the appropriate configurations. This may also include the distribution of security
credentials to limit access to those resources to the requesting party. As each step
may take time and in the case of large requests never fully complete successfully,
proper communication between the requesting and providing services need to be
maintained as even a subset of successfully provisioned services can already be
used for successful experimentation.

Monitoring Most of the resources provided are virtualized in some form or
depend on other services in non-obvious ways. It is therefore important for most
experiments to be able to monitor their resources and potentially even the broader
context in which they are provided. For instance, CPU and memory allocations
to VMs may change over time, or there may be external interference in wireless
testbeds. While some of these parameters can be monitored by the experimenter
herself, others may need special access and therefore need to be collected by the
resource provider with the results forwarded to the experimenter. For instance, the
BonFIRE [7] testbed provides monitoring information on the physical server to
the VM “owners” for the respective server. An experimenter can either use such
infrastructure information after the completion of the experiment during the analysis
phase or display this information in real time in LabWiki for actual monitoring.

8.2 Labwiki Topology Editor Plugin

LABWIKI provides a topology editor plugin, which supports the experimenter in
navigating the above described steps. The plugin provides two widgets, one for the
“Prepare” panel to specify the topology, and one for the “Execute” panel to request
the provisioning of a defined topology and its ongoing monitoring.



422 T. Rakotoarivelo et al.

Fig. 8 LABWIKI’s topology
widget

Figure 8 shows a screenshot of the first widget, the graphical topology editor.
The widget is split vertically with the graph editor on top and the property panel
for the selected resource (dotted outline) at the bottom. Interactive graphical editors
are usually easy to learn, but do not scale well to large topologies. Hierarchical
grouping with associated visual “collapsing” can mitigate some of these scaling
issues. However, larger topologies will not be “hand crafted” but generated by
tools, such as BRITE [11]. The topology editor has a text-mode, which allows the
experimenter to specify a BRITE model as well as provisioning information for the
nodes and links created.

The topology description can either be stored as RSpec or extended GraphJ-
SON.20 It is this textual representation, which the “Slice” widget is sending to
the SliceService when requesting the reservation and provisioning of a specific
topology. This widget uses the same graph editor (now read-only) to convey
progress by animating the graph elements accordingly. Monitoring information is
also overlaid to provide experimenters with quick feedback on the overall topology
status.

20https://github.com/GraphAlchemist/GraphJSON.

https://github.com/GraphAlchemist/GraphJSON
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8.3 The SliceService

The SliceService provides a REST API for requesting and provisioning of resources
for a testbed federation. It is essentially a proxy service to the SFA APIs of the Clear-
ingHouse (CH) and AggregateManager (AM). We reluctantly chose this path as the
legacy decisions regarding technology (XML-RPC and client-authenticated SSL),
as well as multiple versions for both API and RSpec put a considerable maintenance
burden on the upstream tools. Therefore, we designed and implemented a service,
which is based on current best practices for web-based services. We want to stress,
that this is not a value judgement of the SFA APIs but a commonly encountered
legacy problem. This decision allows us to concentrate our development as well
as debugging efforts regarding testbed interactions on a single service. In fact, some
design decisions for the SliceService have been heavily influenced by JFed,21 which
seems to have similar objectives.

Following the REST philosophy, SliceService defines a distinct set of resources
and provides a consistent set of actions to create, modify, and delete those resources.
It also takes advantage of the recently introduced delegation mechanism based on
credentials. Traditionally, SFA tools were assumed to have access to the requesting
user’s private key. However, in this context, the user is authenticated with LABWIKI

which in turn requests SliceService to perform certain actions on behalf of a specific
user. In addition, a specific SliceService instance may serve many different users.
To maintain full transparency on who is operating on whose behalf we need to
ensure that every request made by SliceService to a CH or AM contains the full
delegation chain back to the user. This will allow each CH or AM to decide if it
trusts the intermediate services. In turn it increases the security of both LABWIKI

and SliceService as user authentication can be delegated to dedicated federation
services, such as the CH.

The SliceService also plays a crucial role in the security mechanism of FRCP
(Sect. 5) by providing the newly created resources with proper credentials in a secure
manner. However, a detailed description of the overall security mechanism is beyond
the scope of this chapter.

9 Running an Experiment Trial

Once an experiment is designed, described, and all necessary resources have been
allocated, the next step is to execute an instance (or trial) of that experiment.
Running an experiment trial should be effortless for the experimenter, as she will
need to repeat this process many times in order to gather sufficient data to derive
statistically meaningful conclusions.

21http://jfed.iminds.be.

http://jfed.iminds.be
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Fig. 9 The “Execute” panel shows details of the currently running experiment, including real-time
graphs of the measurements being collected

9.1 The Execute Panel

Our LABWIKI workspace has an “Execute” panel on the right-hand side of
its interface (Fig. 3), which hosts an experiment widget. This widget allows an
experimenter to configure, start, and observe individual experiment trials, as shown
in Fig. 9. To initiate this process, an experimenter intuitively drags & drops the
experiment’s icon from the previous “Prepare” panel into the “Execute” one. This
action triggers LABWIKI to display a list of the experiment properties defined
in the respective OEDL script which can now be configured for a specific trial.
For example, the experiment design might require that 20 trials should be run
with property A set to 1, followed by another 20 trials with A set to 2. Once the
experimenter is satisfied with the trial’s configuration, she may press the start button
at the bottom of the panel, which instructs LABWIKI’s experiment widget to post a
request for trial execution to an external JobService instance.

9.2 The JobService and Its Scheduler

Our LABWIKI workspace de-couples the frontend interface used to develop and
interact with experiment artifacts from the backend processes orchestrating the
execution of an experiment trial. The JobService software is the backend entity
in charge of supervising this execution. This decoupling enables our tools to cater
for a wide range of usage scenarios, such as use of an alternative user frontend,
automated trial request (e.g., software can request a given trial to be run at a periodic
time), optimization of a shared pool of resources among trial requests from the same
project.



A Walk Through the GENI Experiment Cycle 425

The JobService provides a REST API, which allows clients such as a LABWIKI

instance to post trial requests (i.e. experiment OEDL scripts, property config-
uration). Each request is passed to an internal scheduler, which queues it and
periodically decides which job to run next. This scheduler function is a plugable
module of the JobService, thus a third party deploying its own JobService may
define its own scheduling policies. In its simplest form, our default Scheduler is just
a plain FIFO queue. However, in an education context it could be a more complex
function, which could allow a lecturer to optimize the use of a pool of resources
(allocated as in Sect. 8) between parallel experiment trials submitted by multiple
groups of students. The JobService’s REST API also allows a client to query for the
execution status and other related information about its submitted trials. LABWIKI

uses this feature and displays the returned information in its “Execute” panel once
the trial execution has started.

9.3 Orchestrating Resources

The JobService uses the existing OMF framework [17], which is available on
many GENI facilities to orchestrate experiment trials. More specifically, when
the JobService’s Scheduler selects a given trial request for execution, it starts an
OMF Experiment Controller process (EC). This EC interacts with a Resource
Controller (RC) running on each of the involved resources, and have them enact
the tasks required in the experiment description. This interaction is done via the
FRCP protocol (Sect. 5). While the trial is being executed, the JobService constantly
monitors the information from the output of the EC process and uses it as part of
the status provided back to LABWIKI. While our current JobService uses OMF for
its underlying experiment trial execution, its design also permits the use of other
alternative frameworks, such as NEPI [8].

9.4 Collecting Measurements

The applications instrumented in Sect. 7.1 inject measurement streams from mea-
surement points as selected by the experiment description (e.g., Listing 1 line 16
or 27). In Fig. 6, the reporting chain is terminated by a collection point. The
OML suite [12] provides an implementation of this element in the form of the
oml2-server(1). It accepts OMSP streams on a configurable TCP port, and
stores the measurement tuples into SQL database backends.

In our LABWIKI workspace, the EC instructs the applications on the location of
the collection points to report their MSs to. One database is created per experiment,
and a table is created for each MP (regardless of how many clients report into this
MP). The oml2-server currently supports SQLite3 and PostgreSQL databases,
and there are plans to extend this to semantic and NoSQL databases.
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For very large deployments, the OML collection can be scaled by running multi-
ple oml2-servers behind a TCP load balancer such as HAProxy.22 Instrumented
applications carry all the necessary state information in the initial connection for
any server to create the tables and store the reported tuples. A PostgreSQL cluster
can then be used as a backend to store data into a single centralised logical location
where analysis tools can access data both in real time and retroactively.

10 Result Analysis Over Multiple Trials

As mentioned in Sect. 6, it is often necessary to execute several trials of a given
experiment to gather sufficient data for a meaningful analysis. LABWIKI facilitates
these replicated trials, and provides two options for the experimenter to use the
produced data.

First, the “experiment” widget provides an “Export” button once the respective
trial has terminated. Depending on the LABWIKI configuration, data can be exported
either as a self-contained database file (SQLite3 or PostgreSQL dumps), as a
compressed (e.g. ZIP) archive of comma separated (CSV) formatted files, or pushed
into an existing iRODS data store. LABWIKI’s plugin-based design allows other
third-party export widgets to be provisioned as requested. The experimenter may
then download the produced database and import it into her preferred data analysis
software.

LABWIKI provides another alternative to interact with the produced data through
another widget, which interfaces with a separate R server. This widget allows the
experimenter to nominate an R script to be submitted to the R server, which executes
the script’s instructions and returns any outputs (text or graphic results) to the widget
for display. Figure 10 shows a screenshot of this widget being used to analyze data
from our example experiments.

In many cases, the result analysis of multiple trials will provide new insights into
the subject of the study. The experimenter may then reflect on these conclusions
and decide to either run further trials with an updated experiment design, descrip-
tion, used resources, and/or analysis as required. This step effectively closes the
experiment workflow process as described in Sect. 1.

11 Store and Publish

As an experiment-based study progresses, it is essential to ensure that all generated
artifacts, such as documents, data, and analysis, are permanently stored for contin-
ued and future access. Furthermore, once a study finishes, the experimenter should
be able to easily share her findings with the community.

22http://www.haproxy.org/.

http://www.haproxy.org/
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Fig. 10 LABWIKI’s analysis
widget

11.1 Storing and Sharing with LABWIKI

As mentioned previously, LABWIKI supports different types of artifact stores. This
allows different operators to deploy their own LABWIKI instance, to select the
storage solution that best suits their requirements. For example, in an evaluation or
small closed institution context, a plain directory hierarchy based on the underlying
file system may be enough. In contrast, for a large community spanning multiple
organizations (e.g. GENI), a solution offering fine- grain access control, high
service availability, and version control may be more appropriate. A list of the
supported artifact stores are available in our source code repository, together with
LABWIKI’s “Repository” API, which could be used to add interfaces to other
storage alternatives.23

To facilitate the sharing of generated documents, LABWIKI’s “wiki” plugin has
a pluggable export component, which allows the publication of its documents to
an external Content Management System (CMS). This feature is accessed through

23http://mytestbed.github.io/labwiki2/.

http://mytestbed.github.io/labwiki2/
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an “Export” action displayed at the top of LABWIKI’s “Plan” panel. There is
currently only one export plugin available, which allows the sharing of documents
to a Respond CMS system.24 The source code for this component along with
documentation on how to implement other ones are available in our repository.25

11.2 Publish as a Practical Lab for a Course

Many recent contributions discussed the benefits of using interactive online mate-
rials and eBooks in teaching Computer Science (CS) courses [6, 21, 22]. However,
the creation of interactive elements (e.g., a practical lab) within an eBook platform
currently requires considerable programming skills as well as familiarity with
other mechanisms, such as student authentication. LABWIKI provides a simple
yet effective solution to generate such an interactive element from an existing
experiment. Using this solution, a CS lecturer could develop an experiment in
LABWIKI, which would involve resources on distributed testbed facilities and
illustrate some aspect of a course. Once finalized, this experiment could then be
“embedded” within an eBook. The students using this eBook would then be able
to execute a real experiment trial through the eBook interface, i.e., a trial actually
using real testbed resources.

Lecturer Side Once the lecturer is satisfied with her experiment, she needs to
generate an eBook widget [10] to act as the interface to that experiment. Such a
widget is a self-contained HTML5/Javascript wrapper, which can be embedded in
an ePub3 or Apple iBook document. The “Execute” panel of LABWIKI provides
a “create widget” action as shown in Fig. 11. The lecturer triggers this action and
provides some configuration parameters for the widget to be generated (e.g., a name,
the display size of the widget in pixel, the set of allocated resources). The “create
widget” process then generates a fully configured widget, which will be downloaded
to the lecturer’s machine. She can then include this HTML5/Javascript widget into
her eBook using third-party authoring tools.

Student Side A student may then download the eBook and open the page with
the forementioned widget. Once triggered inside the eBook, the widget will switch
to a full-screen web container connected to the remote LABWIKI workspace.
From then on, the student has access to a subset of the previously mentioned
LABWIKI features, namely the experiment trial execution (Sect. 9), the result
analysis (Sect. 10), and the publishing (Sect. 11.1) features. Thus, she is not allowed
to modify the experiment description or the set of resources to use. Once the
experiment trial finishes, she may perform any result analysis requested by the
lecturer as part of the practical lab, and submit the answers as a LABWIKI generated
document (Sect. 9.1).

24http://respondcms.com/.
25http://git.io/labwiki-plan.

http://respondcms.com/
http://git.io/labwiki-plan
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Fig. 11 Creating an eBook Widget

12 Conclusion

This chapter described a methodology based on well established principles to plan,
prepare and execute experiments. We proposed and described a family of tools,
the LABWIKI workspace, to support an experimenter’s workflow based on that
methodology. LABWIKI enables repeatable experiment-based research in Computer
Networking, Distributed Systems, and to certain extends Computer Science in
general. We showed how this set of tools leverages large-scale Future Internet
initiatives, such as GENI and FIRE, and de-facto protocol and model standards,
which emerged from these initiatives. It provides services and mechanisms for each
step of an experiment-based study, while automatically capturing the necessary
information to allow peers to repeat, inspect, validate and modify prior experiments.
Finally, the LABWIKI workspace also provides tools for sharing all generated
artifacts (e.g. documents, data, analyses) with the community. For educators, a
seamless mechanism to turn an experiment in an interactive practical lab for
teaching Computer Science is provided.
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