The Experimenter’s View of GENI

Niky Riga, Sarah Edwards, and Vicraj Thomas

Abstract GENI is a federated infrastructure that provides GENI experimenters
with access to multiple different testbeds, enabling networking and distributed
systems research. Although GENI resources are owned and operated by different
organizations from a users perspective GENI appears as a unified virtual laboratory.
An experimenter can instantiate custom Layer 2 topologies that include a variety
of compute and network elements. This ability is achieved through the use of tools,
as well as common APIs and shared authentication and authorization procedures
across the federation.

GENI is a federated infrastructure that provides GENI experimenters with access to
multiple different testbeds, enabling networking and distributed systems research.
Although GENI resources are owned and operated by different organizations from
a user’s perspective GENI appears as a unified virtual laboratory. An experimenter
can instantiate custom Layer 2 topologies that include a variety of compute and
network elements. This is achieved by tools (see [5]) with the use of common APIs
and shared authentication and authorization procedures across the federation.

In more detail, a GENI user can obtain compute resources from locations around
the United States,' connect them using Layer 2 networks and can program every
aspect of their topology including how traffic is routed within their network. It is
important to note that all networking in GENI (wireless and wired) is done at Layer
2, allowing experimenters to run non-IP protocols.

All reservations in GENI are limited in time. When a reservation expires,
resources are returned to the pool of available resources. The federated design of

IThrough common APIs and policy agreements, GENI users can actually access resources from
around the globe.

N. Riga (<) S. Edwards
GENI Project Office, Raytheon BBN Technologies, 10 Moulton St. Cambridge, MA 02138, USA

V. Thomas

GENI Project Office, Raytheon BBN Technologies, 5775, Wayzata Blvd., Suite 630, St. Louis
Park, MN 55416, USA

e-mail: vthomas@bbn.com

© Springer International Publishing Switzerland 2016 349
R. McGeer et al. (eds.), The GENI Book, DOI 10.1007/978-3-319-33769-2_15

mailto:vthomas@bbn.com

350 N. Riga et al.

Fig. 1 Multiple GENI experiments run concurrently in isolated slices of the infrastructure

GENI makes it feasible to scale to a testbed that is much larger than one typically
found in a laboratory. It provides the geographic diversity often needed in network
research and the resource variety (from VMs to bare metal machines, from switches
to WiMAX and LTE base stations) to make new configurations possible and to spur
innovation.

Two of the major design principles in GENI that affect the interactions of users
with the testbed are:

1. Sliceability. Each experiment is instantiated within a separate slice of the
testbed, see Fig. 1. All slices are isolated from each other, i.e. the traffic of
one experiment is not accessible or visible to an experiment running in another
slice. This enables experiments that might be incompatible with each other to
run concurrently on the same physical resources. For example one experimenter
might be exploring the performance of a TCP variant that runs on top of IP, while
a second experimenter might be investigating the feasibility of a new non-IP
internet architecture in another slice. It is worth noting that several new internet
architectures have been deployed and evaluated on GENI [1, 7, 15, 16, 26, 28],
running concurrently in different slices. Although GENI does not provide any
hard performance isolation guarantees, its architecture and resource slicing”
provides best effort performance isolation between experiments. Sliceability not
only enables different experimenters to use the testbed concurrently but also
enables one user to run multiple experiments at the same time.

2Network slicing is done by VLAN with the appropriate bandwidth limits and there is no over-
provisioning of network capacity. Some resource providers may over-provision compute resources
by allocating more virtual machines on a server than available cores or memory. GENI also
provides a limited number of bare metal machines that users can reserve in their experiments.

The Experimenter’s View of GENI 351

2. Deep Programmability. A user is allowed to program the behavior of as many
elements in a slice as possible. This includes hosts at the edge of the topology
(the user can choose an operating system and have full root access on the hosts
to further customize them, including modifying the kernel as needed), as well
as switching and computing elements in the core of the network. GENI has
deployed programmable switches—mainly OpenFlow [19]—in the edge and
core networks, as well as computation and storage in centrally located network
exchange points, e.g. within a regional network. From the user’s point of view,
the slice includes a topology that can be programmed at different layers of the
networking stack and allows for functionality (e.g. caching) to be placed in the
middle of the network.

Accessing the GENI Testbed GENI is free for use in research and education. For
users from many academic institutions accessing GENI is as simple as logging
in any other service offered by their university. As described in [5], GENI has
outsourced, when possible, the authentication of the users to their home institu-
tions. This design choice not only makes user management much simpler for the
federation, but also simplifies the user experience by allowing them to use their
institution’s credentials to login and use GENI. The single sign-on mechanism used
in GENI is very similar to the prevalent practice in the web today of using well
known identity providers such as Google or Facebook to access third party services.
The technology used for single sign-on in GENI is Shibboleth [21]. For institutions
that do not support this technology the GENI Project Office runs a Shibboleth
Identity Provider to manage and authenticate users from these institutions.

1 Useful GENI Concepts

Before we delve into more details about how a user accesses GENI and instantiates
experiments, we will go over some basic concepts and terminology.

1.1 GENI Resources and Resource Aggregates

Resource in GENI is used to describe elements that can be reserved by users
and used in their experiments. Examples of resources include virtual machines
(VMs), bare metal machines, storage, VLANs, OpenFlow datapaths, flowspace in
OpenFlow-enabled devices, NetFPGAs, switches, sensors, monitoring cards and
cameras. Resources can be contained within one physical device (e.g. VM) or
distributed across a set of devices (e.g. VLAN), depending on the nature of the
resource.

352 N. Riga et al.

The following is a list of major GENI resource types. The elements in the list
are not necessarily mutually exclusive i.e. a resource may belong to more than
one type.

* Compute resources: Compute resources in GENI can be Virtual Machines, Linux
containers or bare metal hosts. Depending on the requirements of an experiment
the user can choose the resources that are most appropriate. For example, if
performance is critical to the experiment, the user can reserve bare metal hosts.
On the other hand if geographic diversity is more important then containers might
be the right choice since they are much more widely available.

» Wireless resources: GENI Wireless sites have one or more WiMAX or LTE
antennae that provide 4G coverage. Resources are sliced at Layer 2 by VLANS.
For more information see [29]. Also each site has 2 or more wireless devices,
usually referred to as yellow nodes that support regular *nix operating systems
and can be reserved as bare metal nodes to run remote wireless experiments using
WiMAX or WiFi interfaces. For users local to the sites there are 3G Android
phones available for mobile experiments.

o Storage resources: Some sites also provide external storage that can be reserved
and attached to an experiment, providing extra storage space when needed.

e Network resources: In addition to the wireless resources described above, GENI
provides a variety of wired network resources that can be used to (1) connect
resources from different locations in Layer 2 topologies and (2) allow the user
to control forwarding within the network. Many of the network providers in
GENI, including Internet2 [13] that provides the GENI backbone network, have
deployed OpenFlow [19] switches and allow users to control the forwarding of
their traffic as it traverses the network.

* Unique resources: The architecture GENI allows participants to connect unique
resources into GENI and provide access to them to remote users. For example
some of the compute nodes also have NetFPGAs or NPUs, that a user can
program. This capability is not limited to networking resources and sites can
connect diverse devices such as advanced microscopes and weather radars.

Resources are made available to experimenters by Aggregate Managers. An
Aggregate Manager (AM) is a service that manages a collection (an aggregate)
of physical devices in order to provide users with the requested resources. For
example an AM can manage one or more VM servers providing VMs to users, it
can manage a set of switches and provision links across them or manage a unique
resource like a microscope. The AM is responsible for provisioning the resources,
slicing shared devices ensuring isolation, providing remote access to the users when
appropriate, reclaiming the resources for expired reservations, and enforcing local
and global usage policies. An AM can manage any number of different devices from
computation servers to switches to storage. The set of devices to be managed is an
implementation and policy decision by the owners of the devices and the operator
of the AM.

The Experimenter’s View of GENI 353

All AMs implement a GENI standard API called the AM API. This API is used
by experimenter tools to learn about and reserve resources at the AM. See Sect. 1.2
for details.

Following are examples of some existing Aggregates that will clarify their role
in the GENI ecosystem:

GENI Racks. These are the most widely deployed GENI resources. A GENI Rack
consists of compute, storage and networking devices, all controlled by one or
more Aggregate Managers. Details on the design and deployment of GENI Racks
can be found in [3, 8, 18].

Network Providers. Several network providers that provide connectivity between
GENI sites have deployed GENI-compliant Aggregate Managers for users to
obtain and configure networking resources using the GENI AM API. Some
characteristic examples are:

* Internet2 and MAX that allow GENI users to dynamically configure Layer 2
circuits across their network.

* SOX (Southern Crossroads), StarLight, CENIC, and MOXI regional networks
that allow GENI users to dynamically reserve flowspace on their OpenFlow
switches and control the specified traffic with a user-defined OpenFlow
controller.

Federated testbeds. Several existing testbeds have modified their resource man-
agers to support the GENI AM API and thus allow users to reserve resources
using the same tools they would use to resources GENI resources. Notable
examples include PlanetLab [24] and Emulab [36].

1.2 GENI RSpecs and the GENI AM API

To allow interoperability among different Aggregate Managers(AMs) and a variety
of tools, GENI has specified a standardized API called the GENI Aggregate
Manager API (GENI AM API) [5]. The GENI AM API specifies the interactions
between an AM and tools (which are a proxy for users). It defines methods to
manage resource reservations (create one, expand the duration of the reservation,
delete it), get status of reserved resources and discover resources offered by AMs.
Resources in GENI are described using a standardized language called Resource
Specification (RSpecs) [27]. RSpecs are XML documents following an agreed upon
schema to represent resources. The schema supports aggregate or resource specific
extensions. As shown in Fig. 2, there are three different types of RSpecs:

1. Advertisement RSpec. Used by an AM to describe the resources it makes
available to users.

2. Request RSpec. The document a user (usually a tool) uses to describe the
resources to be reserved and how they should be configured including network
topology.

354 N. Riga et al.

Fig. 2 There are three different types of RSpecs in GENI

3. Manifest RSpec. Describes the resources a user has already reserved at an AM.

Figure 2 shows the API calls that use RSpecs to communicate between the tools
and the AMs. Since (1) all experimenter tools and AMs use the same API and
RSpec schema, and (2) all information about resources is stored at the AMs, an
experimenter may use different tools at different times for the same experiment. For
example, the experimenter may reserve resources using tool A, check on their status
using tool B and release them using tool C.

1.3 Slice

As mentioned earlier, one the major design pillars of GENI is sliceability, the ability
to share the same infrastructure among multiple users and the ability to concurrently
run multiple experiments. To achieve this GENI adopted, and expanded on the
concept of a slice from PlanetLab [24] and the SFA architecture [23].

A GENI slice is:

* A container for resources used in an experiment. Users add GENI resources
(compute resources, network links, etc.) to slices and run experiments that use
these resources.

* A unit of access control. The experimenter that creates a slice can determine who
has access to the slice i.e. are members of the slice.

e The unit of isolation for experiments. Resources assigned to the slice are
dedicated to that slice and protected from access or interference from other slices,
up to the capabilities of the specific virtualization technology used to slice each
specific resource.

All slices in GENI are ephemeral, i.e. they have an expiration time. It is worth
noting that although the resource reservations within a slice can not outlive the slice,

The Experimenter’s View of GENI 355

the expiration times can be different, i.e. a slice can (and usually does) outlive the
resource reservations.

A slice can contain resources from any number of federated aggregates. Although
slice is an abstraction, it is the concept that allows an experiment to span multiple
administrative domains. Before starting an experiment, the user has to register a
slice with a trusted Slice Authority.®> Using this registered slice, the user can request
resources from individual aggregates. In some sense, the aggregates trust and grant
resources to slices.

From an operator’s perspective, slices are the primary abstraction for accounting
and accountability—resources are acquired and consumed by slices, and experiment
behavior can be traced back to a slice.

1.4 GENI Projects

GENI is a shared, federated infrastructure that is used by experimenters around the
globe at no cost. However, when running experiments in GENI, a user accesses and
instruments real physical devices that are located within administrative domains
usually not owned by the user or his institution. To address the accountability issues
that arise in such a federated environment GENI expands on Emulab’s [36] concept
of a Project.

Projects organize research in GENI. Projects contain both people and their exper-
iments. A project is led by a single responsible individual, known as the Project
Lead. At the time of this writing, only academic faculty, senior technical staff
and GENI Rack administrators can be Project Leads. The Project Lead takes
responsibility for all experiments running within his projects and agrees to respond
appropriately if a problem is discovered.

Any user who meets the requirements to be a Project Lead can request to be one.
Leads can create GENI projects without the need for further approvals. Although
only Project Leads can create projects, a lead can choose to have other individuals
administer a specific project by making them project admins. Project admins have
the same privileges within a project as the Project Lead, but they can not create new
projects.

A project may or may not have an expiration time depending on the purpose of
the project. A project that will be used by the students of a class is typically set to
expire after the end of the semester. Research projects on the other hand tend not to
have an expiration date.

3GENT’s architecture supports multiple Slice Authorities. For example GENI currently has three
Slice Authorities that can register slices used in the federation: The GENI Slice Authority operated
by the GPO and the PlanetLab and Emulab Slice Authorities.

356 N. Riga et al.

2 The GENI Experimenter Workflow

The GENI Experimenter workflow is a structured approach to running experiments
on GENI. It serves as a framework for experimenters to be systematic with their
experimentation. For GENI tool developers it serves as a framework for describing
the steps of the workflow supported by their tools and their interfaces with other
tools.

The GENI experimenter workflow is illustrated in Fig. 3. The major phases of
running any experiment—Design/setup, Execute and Finish—are the three large
areas of the figure, The ovals represent the steps in the workflow. The white boxes
are experiment artifacts produced or consumed at each step.

Even though the workflow is depicted as a linear set of steps, in reality there
will be loops in the workflow with the experimenter going back to an earlier step or
skipping some steps altogether.

2.1 Design and Setup Experiment

Experiment Design In this step, experimenters lay out a detailed plan in advance
of running their experiments. When experimenters come to GENI to run an

Post-boot
scripts.

Design/Setup
credentials

Resource
availability

GENI info
resource Request
listing RSpecs
Measurement Experiment
graphs Scripts

Manifest
RSpecs

Custom OS
Images
Measurement
Custom OS Ansible/ data
Images Chef/...
scripts

Measurement
graphs

Artifacts for
archival

Handle to
RSpecs archived
artifacts

Fig. 3 Major steps in the GENI workflow and artifacts associated with each step

The Experimenter’s View of GENI 357

experiment, they typically have certain objectives in mind, the kind of experiment
that will achieve the objectives and measurements needed to test if the objectives
have been met.

Developing a detailed plan for an experiment on GENI includes deciding on:

1. The types, numbers and locations of resources needed. For example, experi-
menters must choose between virtual machines and raw-PCs for computation;
configuration of these resources including memory, disk space, network inter-
faces and operating system; the location of the resources; the experiment
topology and types of links; and the need for specialized resources such as
hardware switches. Experimenters may consult the GENI web pages to find
aggregates that have the resources they need.

2. How these resources will be programmed. They may choose to: (1) log into
each resources separately and configure it, (2) write scripts that are automatically
installed and executed when the resources come up, or (3) use custom OS images
that have the needed software installed and possibly configured. Section 5 has a
discussion on why experimenters should use scripts and custom images to make
experiments repeatable and reproducible.

3. How the necessary network traffic will be generated and what will be measured.
Options for network traffic generation include standard networking tools such as
iperf and ping; more sophisticated traffic generation tools such as Tmix [35]; and
the use of real user traffic (also know as opt-in user traffic). Experimenters may
collect their own measurements or use GENI Instrumentation and Measurement
tools such as LabWiki and GENI Desktop (Sect. 4.4).

Obtain Resources The next step in the experiment lifecycle is obtaining the
resources needed for the experiments. Experimenters specify the resources they
need including compute resources, network topology, operating systems to be
loaded, bandwidth of network links, etc. by creating a Request RSpec. RSpecs
are typically created using a tool such as Jacks Sect.4.1. Figure 4 shows Jacks
being used to create a Request RSpec for two virtual machines from two different
aggregates.

Experimenters need to pick the aggregates where they want to reserve resources.
This is typically a subset of the aggregates identified in the Experiment Design step
of the workflow. They may pick aggregates based on factors such as availability and
load. The GENI Meta-Operations Center (GMOC) maintains a calendar that shows
scheduled and unscheduled maintenance events. The GENI monitoring service has
information on resource utilization at each aggregate.

Experimenters submit their RSpecs to the selected aggregates using tools such as
the GENI Portal and Omni. If their reservation is successful, they get a Manifest
RSpec, an XML document with information needed to use the resources. For
example, for VMs the manifest includes login information, OS installed, and MAC
and IP addresses of the interfaces.

Since GENI is a shared testbed, resources have expiration times on them i.e. these
resources are released when they expire. Experimenters can extend the expiration

358 N. Riga et al.

=
Drag to Add

0 B 23

arigae calnieHELR: / fmmm, g0 AEL/FESOUPERS/FIpRt/" anlng:emulabe h1tp:/ tagent xmlng:tours"REtp: / fuwe, protogent .ne
TIASOUrCES P RpRC R SR - tenr 117 xmlng Jacks el e = —m Kpi==hrg: " rg/ 2001 /RN Sekena - instance” a5
1 5chemalocatione hTtg: / fmm. goni . FALITEICUrCOR/FBPRCI] gk 5 Epe="ragun

cruicn xALngs"BEL: /mw, GeOL NRE /7 RIOUFSRS P IGEr 3 LiRAE_LEn"MENT-2" Eomperent_sicager_ide O orgeauthar Styves s

<heon aBlnge"hTep:) iwwe. prOTGEeRE, NEEIFRbourcRs/FIpRe exts Bcks/ 1" urla"hEEps: F/pertal. gend. nets Lanpes ien-Vil, Svg -/
“1iwer_type xalng="hutp: . wwe. gond. oot/ resour ces/espec/3” nimes"esulab-xen”>

<divh_imape walage hutp:/ /e, geni. fet/rescurces/ripec/d” nises’ ¥ £ BUNTU12-64-5T0° />
«/sliver. v
ASREVIERS aRlngs"HELD!/ S, GO AL/ CASOUPCHSITIPRESY
“interface xslngs"BLTP:/ i, genl mrromrnwm:n el it intertace- 17

rcde smlngs"Btp: by nes/usources/ripa/3” cLient_id Mot -1® =mm,-mnr £t stanfs authar ityves™s
“icon xmlng="hitp spec/ext/ jacksi1” wrl="hetp 1.gend. et/ inage S
l Iv« i n1n; “hap: . l!"l PRI FEISLrCHL/ T IpRE/ ST nimee " pmulab-xee”r
Ah_iskpe calnis"hEtp:/fwem. geni reT/rescurces ripec/d™ nases . £ BUNTUIT-64-5T07

<ssliver _typer
“SArVICHS walngs"HETR: //m, GORL . ORL/CABOUMCERIFIGHES ")
<interface xmlngs"BUTR: / fuww, Eond neL/FRBOUTCRI/FIPRCIE" =lun: id="interface-0°/»

ik xmlng="RETR: f fmwar, G00E NRL/PRBOUMCRS/ PSS " CLienT_Ld="]ink-0"
“interface_ref xalmgs"HECp://wem. geni.ret/resources/Figee/3” clinnt
<interface_ref caleis"HECp://wem, Q63 .AAL/CESOUFCHLIFIGHEII" clinnt

'|nnrfa« i
o170

dEnegerent_mInAger ERlnge RUTH: / fwww, genL SELIFERSUTCRE/TSRRE/] Rames U pLicis: apend. stanford. edussatharity-ca®/»
“comporent_manager xmlngs"hitp:/ me. gan T/ rEICUrCRR/rSpec/3® nases~urn:publicie: RN Ayseraet . o i ityreai
</ Link»
<rrapecs

Fig. 4 Tools such as Jacks are commonly used to created request RSpecs. (a) Experiment topology
drawn using Jacks. (b) Corresponding request RSpec generated by Jacks

time using their GENI resource reservation tools. Policies on default expiration
times and the maximum duration by which a reservation can be extended at one
time are set by the aggregate owners.

2.2 Execute Experiment

Configure Resources After resources have been obtained, experimenters configure
them for their experiment. They may do this by installing software, modifying
configuration files, changing settings on network interfaces, etc. Experimenters may
automate the configuration of their resources by:

The Experimenter’s View of GENI 359

1. The use of install and execute scripts (also called post-boot scripts). These scripts,
specified in the request RSpec, are installed and executed on the resources when
they are setup by the aggregate.

2. Using system administration tools such as Ansible [2] and Chef [6].

After the resources are configured, experimenters may choose to create custom
images, which are snapshots of operating systems they have configured. For future
experiments they can specify these custom images as the operating system to be
loaded on their resources. The operating system to be loaded is specified in the
Request RSpec.

Execute Experiment Execution can be triggered manually by logging into each
resource and starting up the experiment. Experiments can also be started up
automatically using execute scripts.

GENI experiment orchestration tools such as LabWiki [17] and OMF/OML
[22, 25] allow experimenters to describe and instrument an experiment, execute it
and collect its results.

GENI tools for instrumenting experiments and collecting measurements are the
GENI Desktop and LabWiki (Sect. 4.4). These tools allow experimenters to specify
measurements to be collected, view graphs of these measurements and save the
measurements.

Experiments may archive measurements and other experiment related artifacts
such as RSpecs and scripts using a GENI-provided iRODS service Sect. 4.6.1. Items
archived on this service survive the releasing of resources used in the experiment,
the expiration of slice or project.

Setup for Additional Runs Experimenters may run the same experiment multiple
times with the same or with different inputs, or resource configurations. The changes
they make to the experiment before each run may be based on measurements
gathered during an earlier execution.

2.3 Finish Experiment

Release Resource Since GENI is a shared testbed, experimenters are expected to
release their use as soon as they are done. Experimenters can use any of the resource
reservation tools to release resources. If resources are not explicitly released by the
experimenter, they will automatically be released when they expire.

Publish Results The final step of the workflow is the publication of the results
of the experiment. Experiment reprodicibility is a tenet of scientific research and
GENI provides mechanisms for researchers to make the experiments reproducible.
The artifacts required to reproduce the experiment may be archived on the GENI
iRODS service and made accessible by other researchers. The RSpecs used for the
experiment may be uploaded and shared on the GENI Portal. Any custom image
used in the experiment can also be made public and available for others to use.

360 N. Riga et al.

Section 5.1 describes how experimenters can make their experiments reproducible
by others.

3 Case Study: GENI Cinema, Implementing an Advanced
Service on GENI

This section is based on the GENI Cinema Architecture document [14] written by
Ryan Izard, Parmesh Ramanathan and KC Wang.

GENI Cinema is a persistent live video streaming service that capitalizes on the
advanced capabilities of GENI. It allows any user (organization or individual) with
access to the GENI network to publish a live video stream through this service.
The users can also search, select and watch video streams. Being a geographically-
distributed testbed, the GENI infrastructure provides an ideal platform to implement
a content delivery network for efficient broadcasting of video content to customers
at the edges. Combined with Software Defined Networking (SDN), this allows both
network and compute resources to be conserved while users from different areas
choose between the available video “channels” hosted by GENI Cinema.

In this section we describe the deployment story of GENI Cinema from an
idea to a prototype service and highlight some of the design choices made. GENI
Cinema was developed by teams of researchers at the University of Wisconsin
(Principal Investigator Parmesh Ramanathan) and at Clemson University (Principal
Investigator Kuang-Ching Wang).

3.1 Designing GENI Cinema

Designing such a complicated service is an iterative process, where the design is
constantly being improved as the service is developed and deployed.

GENI Cinema consists of two main subsystems: one addressing end-to-end
video/audio stream handling and the other addressing optimal forwarding in the net-
work. Both subsystems heavily leverage GENI SDN capabilities. Each subsystem
was developed separately by each of the universities on the project. Each group
ran single site experiments and updated its design to optimize for performance.
Once both systems were fully developed they were integrated into one system.
Figure 5 shows the combined architecture that consists of the many functional
blocks that comprise the GENI Cinema service. There are ingress and egress
gateways for receiving and sending video streams, ingress and egress VideoLAN
Client (VLC) servers for hosting video streams on the backend and providing them
on the frontend, a global OpenFlow controller, hardware and software OpenFlow
switches for controlling the flow of video streams internal to the GENI Cinema
service, and a web server for customer interaction.

The Experimenter’s View of GENI 361

GENI Cinema
i OpenFlow
Private OpenFlow Network 'f Sort
24 Switches
’ L
o
T 7

' o 2

G 1 P

Ingress VLC Servers |- ----- + Floodlight OpenFlow Controller | Egress VLC Servers
P RESTT L <L
Web
Ingress Gateways 3y Egress Gateways
P
Live Video ‘a" ""\.‘ Live Video
Streams ‘,a’ ""‘-..‘_ Streams
-~
-~ Sag
Video -~ S Video
Producers Consumers

Fig. 5 Logical components of the GENI Cinema architecture

Sort || Sort Sort Sort
Switch [= Switch |3 Switch [Switch
7
Ingress 2 Ingress | REST I I I T I
[VLC Serverf” C Server” Egress Egress Egress Egress Egress Egress Egress

Web [VLC Server| [VLCServer| |VLC Server| (VLCServer| [VLCServer| [VLC Server) [VLC Server
Server 2

1 2
1 3 4 5 6 7
Live ’," b Live Live
Video - vy Videa Video
Streams ," \"., Streams Streams
” ~,
N |
Producers

Consumers
Fig. 6 The GENI Cinema SDN architecture. Note that each stitched link also contains two
physical OpenFlow switches under the control of a floodlight controller—one at each end of the
link

Sort
Switch

Floodlight OpenFlow
Controller

5

3.2 Use of Software Defined Networking

The GENI Cinema implementation heavily relies on the software defined capabili-
ties of the GENI network and in particular on the deployment of OpenFlow switches.

All video traffic output from the ingress VLC servers into the private GENI
Cinema network is unicast UDP in order to allow fast video stream switching
without regard for connection state, sequence, or source as TCP would impose. Each
UDP video stream is directed through the network toward all egress VLC servers
where there is at least one video consumer wishing to watch that particular stream.
Prior to each egress VLC server is an OpenFlow switch called a “sort switch”, as
depicted in Fig. 6.

362 N. Riga et al.

Each sort switch is responsible for taking the UDP video streams supplied as
input on the northbound interface, duplicating these streams if appropriate, and
sending them to the VLC instances on the associated egress VLC server. This
involves rewriting the destination MAC, IP, and/or UDP port numbers in order for
the network stack on the egress VLC server to accept the packets and send them to
the VLC instances running as applications, which is enabled by OpenFlow.

GENI Cinema reduces duplicate transmissions of video streams until the last
hop at the egress point where the consumers are connected. For example, if there
are 100 video consumers on a particular egress VLC server and all 100 video
consumers wish to watch the same video stream, a single stream will be sent by
the private GENI Cinema network to the sort switch, using 1 Mbps bandwidth. This
single stream will be made into 100 copies where each copy’s destination headers
are rewritten such that the packets are routed to the VLC instance of each video
consumer on the associated and nearby egress VLC server. This means 1 Mbps of
traffic enters the sort switch and 100 Mbps exits. On the other hand, if there are
100 video consumers that collectively select all 20 of 20 available channels, then
each channel’s stream enters the sort switch for a total of 20 Mbps. The sort switch
will make copies of each stream and rewrite the destination headers of each stream
to send it to the VLC instance of the video consumer that wishes to watch that
particular stream. After duplication, the total exit traffic is still 100 Mbps leaving the
sort switch. The exit traffic is directly proportional to the number of video consumers
presently attached to that particular egress gateway. The traffic entering can be no
more than the total number of video channels available or the number of consumers
at the egress point—whichever is less. Note that if there is no consumer watching a
particular video stream at an egress point, this stream is not sent to the sort switch.

As described, when a video consumer selects a channel to watch, the sort switch
is responsible for selecting the appropriate input stream. OpenFlow 1.1+ groups
and buckets are used at the sort switch to implement this channel changing feature
(Fig. 7). Every video is classified as an OpenFlow group, and every video consumer
has a single OpenFlow bucket. An OpenFlow bucket is a list of actions, which in
this case each action list rewrites the destination MAC, IP, and/or UDP port in the
headers of the packets. If a video consumer switches video channels, its bucket
is removed from the previous video group of the channel it was viewing, and the
bucket is simply added to the group of the new video channel. In this way, only one
connection and video stream per consumer is ever present at a given time within
the private GENI Cinema network, and no connection is set up or torn down upon a
channel change. This optimizes the bandwidth usage, as well as reduces the load on
the server resources during frequent channel changes.

The Experimenter’s View of GENI

363

|Bucket AI

(Bucket BJ

|Buckett|

|Bucket u]

Group Group Group Sort Switch
Table Table Table _
1) Receives unique UDP streams
1 2 n from northbound network

»
H

2) Default table sends each
stream to a separate group
table

Each group table contains a
list of buckets. All buckets in

3

—

the sort switch are unigue and
represent distinct consumers.

Default Flow Table (Table 0) 4) Each bucket receives a copy of
each packet, rewrites the
d ion header to the
GC Network GC Network consumer, and outputs to the

southbound network port.

Northbound Interface | | Southbound Interface

Fig. 7 The use of OpenFlow groups in the sort switch

Fig. 8 The egress/ingress
gateways can also serve as
firewalls to the GENI Cinema
private network

Firewall

\

Ingress/Egress
Gateways

Cameras, Viewers,
and Bad Guys

GENI Cinema
Private Network

3.3 Deploying GENI Cinema

GENI Cinema started with a couple of single site deployments, one at Clemson
University and the other at the University of Wisconsin. Originally the team
broadcast local classes while debugging and enhancing the system.

While running in a single site, the team also developed the ingress and egress
gateways that not only bypass any local issues due to NATing but can also secure
the GENI Cinema system by acting as a firewall (Fig. 8).

Once GENI Cinema was stable, the deployment expanded to multiple sites. The
first multi-site deployment was to connect the two prototype systems, the one at
Clemson and the one at Wisconsin. After the two-site system was operational the
team started working on a multi-site deployment. The first step was to enhance the
system architecture to clearly identify which systems needed to be deployed on each
site, how they are connected and how they interact with the rest of the system, i.e.
they designed a distributed version of their system. Each new site can be an ingress

364 N. Riga et al.

-_
D/ |controller
-

web-server|

Kentucky InstaGENI

Fig. 9 Current GENI Cinema deployment

site (where new video streams are connected), an egress site (where new consumers
are connected) or both. One or more sites are chosen to run central programmable
switches responsible for routing the video streams from producers to consumers.

Currently the prototype deployment spans nine sites (Fig.9). The deployment
of new sites is completely automated and they can add new sites on demand. This
helps them manage occasional unavailability of sites due to failures or maintenance
events.

3.4 Connecting Users to GENI Cinema

GENI Cinema is open to users without GENI accounts. Connecting users to the
GENI Cinema network is challenging, since the deployment lives within GENI.
While the deployment was within the Clemson and Wisconsin Universities, the
labs of the researchers were connected to the GENI deployment through their local
GENI Rack. Classrooms in GENI-enabled campuses can be connected in a similar
way, by expanding connectivity to the GENI network through the local GENI Rack.
However, users should be able to access GENI Cinema from anywhere. To achieve
this goal, users (producers or consumers) connect to the GENI Cinema service
through the egress and ingress gateways using the public facing interface of these
gateways. To avoid overloading the public interface, the users are load balanced
across multiple gateways.
The workflow for video publishers and consumers is as follows:

The Experimenter’s View of GENI 365

* A producer wishing to publish a video on GENI Cinema makes a request on the
GENI Cinema web service. The request is relayed to the OpenFlow controller,
which responds with an ingress gateway IP address and transport port number.
The producer connects and sends the video stream to the assigned address and
port. The incoming video stream is relayed to an ingress VLC server where the
live stream is hosted.

* When a consumer requests a video stream on the GENI Cinema web service,
the request is relayed to the OpenFlow controller, which responds with an
appropriate egress gateway IP address and port number where the consumer
can connect and watch the video. The video selected is routed, duplicated and
rewritten within the private network of GENI Cinema from the ingress VLC
server on which it is being hosted to the private interface of the egress VLC server
where the customer is connected. A VLC instance on this egress VLC server
outputs the video on the public interface and relays it to the video consumer.

4 Experimenter Tools

The experimenters’ main interface to GENI are the experimenter tools that serve
to support the experimenter workflow (Sect. 2). Some tools support the experiment
design/setup parts of the workflow by helping create Request RSpecs. Other tools
support experiment execution by helping with installing and configuring software,
orchestration (the automation and scheduling of the steps in the experiment), and
instrumentation and measurement (the taking of and collection of data related to or
produced by the experiment). Finally, other tools support the archiving and sharing
of experiment results.

4.1 RSpec Creation Tools

Jacks, Flack and jFed are all graphical user interface (GUISs) tools for creating and
editing Request RSpecs. They are used to define topologies and set properties of
nodes and the links that connect them. Node properties include node name, OS and
scripts to be installed and executed at boot time. Link properties include link type
(VLAN or GRE tunnel) and IP addresses of end-points and others.

Flack and jFed can also be used as resource reservation tools (Sect. 4.2); they can
be used to submit RSpecs to specified aggregates using the GENI AM API. While
Jacks does not do resource reservations, the RSpecs it generates can be exported for
use with other tools.

366 N. Riga et al.

Drag to Add

Fig. 10 Jacks GUI showing a topology spanning three aggregates

4.1.1 Jacks and Flack

Jacks and Flack are created by the Flux Research Group at the University of Utah.
Both are browser-based: Jacks is written in HTMLS and Flack in Flash. Flack is no
longer maintained.

Jacks is primarily an RSpec creation and viewing tool and is usually embedded in
another tool such as the GENI Portal or GENI Desktop. A unique feature of Jacks
is its constraint system that prevents experimenters from creating invalid RSpecs.
For example, it will warn experimenters if they try to create a Layer 2 link between
sites that do not support it or load an OS image in an incompatible compute resource
(Fig. 10).

4.1.2 jFed

The jFed tool [12] is created by the iMinds Research Institute in Belgium. It is a Java
application that runs on the experimenter’s workstation. It can be used to create and
view RSpecs, make resource reservations, launch ssh clients to log into nodes and
do some experiment orchestration (Fig. 11).

4.1.3 geni-lib

geni-lib [4] is a python library from Barnstormer Softworks. It provides an
object oriented scripting interface to both the AM API and GENI RSpecs. The
purpose of geni-lib is to allow developers to build custom GENI tools. This is
particularly helpful for advanced GENI experimenters. An example is the scaleup
tool distributed with geni-lib which allows experimenters to write small topologies
using standard node types (e.g. a topology might consist of multiple client, server,

The Experimenter’s View of GENI 367

(eoe | [Fed Experimenter Toolkit
Garenl | Topooay Eator || Spes Eator, || Timeina Editer. | -
| =) f&l D A 7| @ a 9
Run Reserve Save i Duplicate Auto Zoom Zoom Rosat
Layout In Out Zoom
Edit Layout Zoom

¥ Computing Elements

= N
Ganeric Node Physical Node
ﬁ“ -

Moo YENVM e —.—mm | stitchedo l.“!
; ?._-— router-4 £ router-1

B q
2 n:-\ﬂflf e L]

= -~
Dedicated Ext

© Wireless

Connection Chammnol

I_Q test_request_rspec.xmi X

Fig. 11 jFed GUI showing a topology spanning three aggregates

>>> ad = IGAM.MAX.listresources|(context)
>>> for node in ad.nodes:
if node.available and IGUtil.shared xen(node):
print node.component_id

urn:publicid:IDN+instageni.maxgigapop.net+node+pec3
urn:publicid: IDN+instageni.maxgigapop.net+node+pcl
urn:publicid: IDN+instageni.maxgigapop.net+node+pc2

Fig. 12 Using geni-lib to list all available Xen servers at an InstaGENI rack

and router nodes) which can then be easily scaled up to a larger number of nodes in
a wide range of topologies (e.g. ring, grid, random) (Fig. 12).

4.2 Resource Reservation Tools

The Omni, geni-lib, the GENI Portal, jFed, and Flack allow experimenters to
communicate with resource providers (i.e. aggregates) using the GENI AM API
(Sect. 1.2).

These tools allow experimenters to determine the resources advertised by an
aggregate (i.e. to request an advertisement RSpec), to reserve resources in a slice
(i.e. to submit a request RSpec), and to determine the resources reserved at an
aggregate in a particular slice (i.e. to retrieve a manifest RSpec).

368 N. Riga et al.

4.2.1 Omni

Omni [11] is a command line tool that can be used to invoke any AM API method on
a GENI aggregate. It was developed by the GENI Project Office. Benefits of Omni
include:

1. Omni is usually the first tool to make new AM API versions or functionality
available to experimenters. This is because it originated as a developer tool and
is still used to test new AM API functions.

2. Omni works well with aggregates that use atypical or novel RSpec extensions
and features. This is because it does very little parsing of the RSpecs.

3. Omni is a command line tool and can be used in shell scripts and/or over poor
Internet Connections.

4. Omni is written in Python and can be used by other Python scripts. Examples of
commonly used tools that take advantage of this are Stitcher and readyToLogin.
The Stitcher tool is used for dynamically connecting compute resources on
different aggregates using VLANs. ReadyToLogin is used to determine the status
of reserved resources and to get information needed to log into those resources.
Additionally, tools such as the GENI Portal and GENI Desktop use Omni behind
the scenes to make AM API calls.

The downside to Omni is that much of the burden of manipulating RSpecs
(generating Request RSpecs, parsing Advertisement and Manifest RSpecs) falls on
experimenters. Of course, experimenters can use other tools for RSpec manipulation
and use Omni for resource management.

4.2.2 The GENI Portal

The GENI Portal [10] is probably the most widely used of GENI experimenter tools
because it is the only tool for account and project management. It is a web-based tool
that requires no software installation on the experimenters’ computers, it supports
much of the experimenter workflow and it serves as an identify provider for other
tools and services. The GENI Portal was developed by the GENI Project Office.

The GENI Portal can be used for account management (requesting accounts,
requesting Project Lead status), project and slice management (creating projects and
slices, adding and removing users from projects and slices), resource management
(reserving and deleting resources, extending resource reservations) and sharing of
RSpecs. The GENI Portal embeds the Jacks tool for creating and viewing RSpecs.

The GENI Portal also serves as an OpenlD identity provider for tools, services
and testbeds hosted by other organizations. Experimenters log into the Portal and
then click from the Portal to access these tools and services without having to
separately log into those tools. Some examples of tools and services that are
accessible from the portal inlcude JFed, GENI Desktop, the Canadiatn SAVI testned,
GENI wireless, CloudLab.

The Experimenter’s View of GENI 369

i GENI Porta: Home
L c hitps:i/portal geninet/secure /dashboard phpesiices
£ Apps g Beskmares W Bockmara [GEN GENI Portak Projects

GENI Portal Home Partners
Projects. Logs

Slices

Filter by

26 days (]

pinzdays @

GENI Portal Version 3.8
Copyright © 2015 Raytheon BBN T

AN Bights Reserved - NSF Award CNS-OT147T70

GEN) is sponsoned by the ™ National Science Foundation

Fig. 13 Slice dashboard view of the GENI portal

Figure 13 shows the slice dashboard view for a user. In this figure the user has
filtered the slices he has access, to only view the ones he leads. He can manage a
slice or add resources to the slice by clicking on the dots by the name of the slice.

4.3 Experiment Orchestration and Scripting Tools

Experiment orchestration allows experimenters to automate or script their exper-
iment procedure: start/stop data collection, start/stop traffic, schedule network
events, etc. As such, orchestration is critical to the repeatability of experiments by
allowing an experimenter to do multiple runs of the same procedure and to vary
parameters as necessary.

While trivial procedures can be orchestrated with simple scripts (for example
install scripts), GENI supports more complicated procedures using OEDL which is
language to script and instrument data collection.

370 N. Riga et al.

43.1 OEDL

OEDL is a domain-specific language for the description of an experiment’s exe-
cution [33]. It is based on the Ruby language with domain specific extensions
for experiment-oriented commands and statements. An OEDL script consists of
two main parts: (1) A part where resources used in the experiment and their
configurations are declared, and (2) a part where events are defined along with tasks
to be executed when those events occur. An experiment controller interprets OEDL
scripts to orchestrate experiments. The LabWiki tool (Sect. 4.4.2) uses OEDL as its
scripting language.

4.4 Instrumentation and Measurement Tools

Measurement is a key to scientific experimentation and to this end GENI provides
experimenters with a couple of Instrumentation and Measurement (I&M) tools:
GENI Desktop/GEMINI and LabWiki/GIMI. Both tools allow experimenters to
specify the measurements to be collected, and to graph, view and archive measure-
ments.

4.4.1 GENI Desktop

GENI Desktop [34] is a web-based experimenter tool that, like the GENI Portal, can
be used to create projects and slices, create Request RSpecs using the embedded
Jacks tool, and manage resources. It was developed by the University of Kentucky.

A key feature of the GENI Desktop is the ability to instrument a slice to collect
and view live measurements. It includes a number of pre-defined measurements such
as CPU load on the hosts and number of packets sent/received on a network inter-
face. Experimenters may also provide scripts to collect and view their own custom
measurements. To select pre-defined measurements, the experimenter simply clicks
on a host or link in the “Topology View” of the GENI Desktop and then selects the
measurements of interest. Figure 14 shows the Topology View of an experiment and
a graph of traffic on one of the interfaces attached to the link in the experiment.

4.4.2 LabWiki

LabWiki [17] is a web-based tool to design, describe and run GENI experiments.
It was developed by NICTA, Australia’s Information Communications Technology
Research Centre of Excellence and the University of Massachusetts at Amherst.
LabWiki is designed to help experimenters develop experiments that are repeatable
and reproducible. LabWiki includes a panel where experimenters write experiment
scripts using the OEDL scripting language (Sect. 4.3.1), a second panel for running
and viewing graphs, and a third panel for recording notes and saving experiment

The Experimenter’s View of GENI 371

vthomas &

Toggle GN

esSKtop

Exploring Networks of the Future

Fig. 14 GENI desktop showing graph of traffic on a network link

Lab

S O T o T
[

dadirouq " Second Feaz, proparty.rescercel) &0 [g|
B = T R, 588, 3000 34"

Fig. 15 Scripting and running an experiment using the LabWiki tool

results including graphs. Experiment scripts can be shared with other LabWiki users
wishing to reproduce or extend the experiment.

Figure 15 shows the three panels of the LabWiki tool: The panel labeled
“Prepare” is used to write or load experiment scripts, the “Execute” panel is where
experimenters drop scripts to be executed and view graphs of experiment data and
the “Plan” panel is used for notes, observations and saving graphs from the Execute
panel.

4.5 Software Installation and Resource Configuration

Almost any experiment in GENI involves installing software or configuring compute
resources. Automating this process helps experimenters easily and quickly repeat

372 N. Riga et al.

experiments or share them with others. It also makes large-scale experiments
feasible as experimenters do not have to log into each resource to configure it.
Three mechanisms are widely used in GENI to automate software installation and
configuration of compute resources: (1) Install and execute scripts specified in the
Request RSpecs, (2) Custom OS images with the desired configuration or software
installed and (3) Configuration management tools such as Chef [6] and Ansible [2].

4.5.1 Install and Execute Scripts

Install and execute scripts (also called postboot scripts), are listed in the Request
RSpec as part of the specification for a compute resource. Install scripts are
bundled in tarballs (.tgz files) posted on a publicly accessible web server. They are
downloaded and installed on compute nodes by the Aggregate Manager when the
resources are provisioned. Install scrips are typically executable scripts but any type
of data can be bundled in tarballs and installed on the nodes. ExoGENI aggregates
support templating in the scripts so they can be customized based on attributes such
as slice name, hostname and node type.

Execute commands specified in the RSpec are run in the compute resource; they
may be used to configure the resource or run the installed scripts. Multiple install
and execute scripts may be specified in the RSpec; the order of installation of the
scripts and execution of the commands is not specified though all installations will
be completed before any commands are executed.

Install and execute scripts can also be used as a primitive means to orchestrate
experiments by scripting actions such as starting traffic or data collection.

4.5.2 Custom Images

Custom images are bootable operating system images with the configurations or
software needed for an experiment. Experimenters may create their own custom
image by starting with a standard OS image, configuring it as needed, and taking
a “snapshot” of the image. They can then specify this snapshotted image in their
Request RSpecs as the operating system to be loaded when their compute resources
are provisioned.

Custom images are particularly useful if configuring and installing software on a
compute resource takes a long time since the experimenter has to do this just once
on an instance of the operating system and then snapshot it. They are also useful if it
is important that a certain version of the operating system be used for the experiment
as standard images provided by the aggregates tend to keep up with newer releases
of the operating system.

The Experimenter’s View of GENI 373

4.5.3 Configuration Management Tools

Industry standard configuration management tools such as Ansible and Chef are
a user-friendly way of installing and configuring software on the nodes in an
experiment.

Configuration management tools ensure an experiment is in a known configura-
tion regardless of it’s original state. The experimenter usually writes a playbook or
recipe that describes the desired state of the node. When the playbook is run the
tool uses the playbook to bring the resource to the desired known configuration.
The commands in the playbooks are idempotent which means that the commands
can be run repeatedly without concern for the initial state and no harm will result
from the repeated invocations. These playbooks are usually easier to write than shell
scripts or install scripts, because the experimenter is only required to describe the
final intended state (e.g. Apache is installed, file.txt is present) and not how to get
the node into that state (e.g. install Apache) or error handling (e.g. if Apache is not
installed, then install Apache).

Configuration management tools make it easy to reproduce experiment configu-
rations and therefore make it easy to do multiple runs with the same setup or with
systematic variations such as changing parameters and scaling topologies.

4.6 Archiving
4.6.1 The GENIiRODS Service

GENI provides experimenters a long-term archival service for experiment related
data such as measurements. This is the main GENI-provided storage that outlives
resource reservations, slices and projects.

The GENI archival service is based on iRODS [32], an open source data
management system. iRODS enables data discovery using a meta-data catalog.
IRODS meta-data may be attached to files, users, groups, collections (iRODS
equivalent of sub-directories), and resources (e.g., a hard drive).

The GENI iRODS service is hosted by RENCI, a research institute in North
Carolina. GENI experimenters get iRODS accounts through the GENI Portal. GENI
tools such as the GENI Desktop and the GENI Wireless experimentation tools can
be configured to use this iRODS account to archive the measurements they collect.

5 Experiment Repeatability and Reproducibility

GENI makes it relatively easy for experimenters to recreate their setup and rerun
their experiments. This is important because it encourages experimenters to collect
statistics on the repeatability [31] of their experiments by recreating and rerunning

374 N. Riga et al.

their experiments multiple times. As a side-effect, they are less likely to hold on to
resources between runs of their experiments, an important consideration in a shared
testbed.

Reproducibility, an important principle of the scientific method, is the ability
to run experiments created by others and verify their results [30]. GENI supports
reprodicibility by: (1) providing tools and mechanisms that make it easy to recreate
experiment setups, (2) defining a workflow that produces and consumes formally-
defined artifacts such as experiment scripts and resource specifications, and (3)
making it easy to share these artifacts for others to reproduce experiments.

5.1 Making Experiments Repeatable and Reproducible
5.1.1 Reducing Variability Across Runs of an Experiment

Picking Resources A measure of experiment repeatability is the variability in
measurements across runs. Since GENI is a shared testbed this variability cannot
be eliminated. However, experimenters can minimize this variability by picking
non-shared resources such as bare machines and by picking the same set of
aggregates for different runs of multi-aggregate experiments to minimize latency
related variability.

They can also minimize variability by being specific in the Request RSpec about
the characteristics of the resources being requested. For example, experimenters
can specify the number of cores and memory assigned to compute resources,
the locations of these resources down to the physical computer at the aggregate
providing these resources and versions of operating systems installed.

Scripting Experiments To ensure resources are programmed and configured iden-
tically for every run, experimenters can use one of the techniques for software
installation and resource configuration described in Sect.4.5. In addition, experi-
ment scripting and orchestration using tools such as OEDL and LabWiki (Sect. 4.3)
can be used to reduce variability across runs of an experiment.

5.1.2 Sharing Experiment Artifacts for Reprodicibility

GENI supports experiment reprodicibility by making it easy to share artifacts such
as RSpecs, custom images, experiment scripts and measurements. RSpecs and
install scripts are plain files easily shared on web pages or websites such as GitHub
designed for sharing programs and scripts. In addition, experimenters can choose
to upload and make their RSpecs public on the GENI Portal. Experimenters can
reserve resources from the Portal using RSpecs they or others have uploaded. They
can also choose to make their custom images public for others to use. Likewise, the
LabWiki tool allows scripts to be shared among experimenters.

The Experimenter’s View of GENI 375

Experiment related data including measurements can be archived on the GENI
iRODS service (Sect. 4.6.1); experimenters can make these archives public or share
them with specific people.

6 Scaling Up Experiments

GENI supports experimentation at scale by providing resources at about 50
geographical locations (as of 2015) connected with Layer 2 VLANS.

In addition, GENI makes it easy to repeatedly bring up similar topologies
of different sizes. This supports best practices from software engineering and
system administration. GENI experimenters can start small with a modest topology
consisting of a trivial number of nodes which are representative of the larger
topology. Then experimenters can change one thing at a time to bring up a
sequence of larger topologies with more geographical diversity. Edwards et al. [9]
provides advice for novice experimenters when dealing with these issues as well as
illustrating this approach with a use case.

GENI tooling supports scaling experiments in a variety of ways. First, the use of
the software installation and configuration techniques described in Sect. 4.5) makes
it easy to set up and run large experiments without having to manually configure
each resource.

Second, carefully crafted install scripts or configuration management playbooks,
often make it possible to completely specify the configuration of a given node type
(i.e. to use the same script to configure all nodes with the same purpose, OS image,
software, and configuration). These node types can then be mixed and matched in
different combinations to create topologies of different configurations and different
sizes. GENI supports this with the following tooling:

e The scaleup tool distributed with geni-lib (Sect.4.1.3) lets experimenters
describe node types and one of several standard topologies (grid, ring, full
mesh) or a custom topology using a file in INI format. The output of scaleup
is a Request RSpec that can be used with any of the resource reservation tools
(Sect. 4.2).

e In addition, the GENI Portal, jFed, and Flack all support a “copy and paste”
feature in their graphical user interfaces so a given node type can be replicated to
easily create large experiments that have a large number of a few node types.

Third, once an experiment has been tested in a single Aggregate it can be easily
modified to run as a multi-Aggregate experiment. Tools such as Jacks and jFed allow
a single Aggregate Request RSpec to be imported and then for different resources
to be assigned to different Aggregates. This new RSpec can then be used to reserve
resources and run a multi-Aggregate version of the original experiment.

376 N. Riga et al.
7 Collaboration

GENI supports collaborative experimentation by allowing researchers from differ-
ent institutions to operate on the same experiment and providing them the ability to
add collaborators over the life of a project. This is important for large project teams
such as the NSF Future Internet Architecture projects [20] and for long-running
experiments.

7.1 Mechanisms for Collaboration

Research in GENI is organized into projects. A project contains both people and
their experiments. A project may have many experimenters as its members and
an experimenter may be a member of many projects. Every project has a Project
Lead who can add or remove members. The project lead can designate one or more
Admins who manage project membership as well.

Project members create slices in the context of a project; there can be many slices
in a project. The person who created a slice and the Project Lead can choose to add
other project members to the slice. Slice members can add and remove resources
in the slice and run experiments using resources in the slice. Accounts for slice
members are automatically set up on compute resources when the resources are
instantiated.

This organization of research enables collaborative experimentation. A researcher
can create a project and add collaborators as project members. When a new
collaborator joins the team, she can be added to the project and to any slices to
which she would need access.

Figure 16 shows a professor who is a project lead and has created separate
projects for research and classroom use. For the class project, the professor has
given his teaching assistant Admin privileges and has given the project an expiration
which means the students will not be able to use the project after that date.

Figure 17 shows two slices created in the same project by the same person.
The Project Lead is added to each slice by default. One of the slices contains an
additional member. The two slices contain different resources and all members will
have accounts to login to the resources when the resources are reserved.

References

1. Anand, A., Dogar, F., Han, D., Li, B., Lim, H., Machado, M., Wu, W., Akella, A., Andersen,
D.G., Byers, J.W., Seshan, S., Steenkiste, P.: XIA: an architecture for an evolvable and
trustworthy internet. In: Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pp. 2:1-2:6. ACM, New York (2011)

2. Ansible Inc. Ansible. http://www.ansible.com (2016). Accessed Jan 2016

http://www.ansible.com

The Experimenter’s View of GENI 377
O (? o
e \\
! Expiration
Professor
Profect Lead mm
4 5 z &
Research Assistant Post-Doc Tﬂd‘llnnw
Projedt Bember Project Msnbar mm
Project Hactar Project CS404

Typical Research

Typical Class

Fig. 16 A professor with separate projects for research and classroom use

Professor
I '\ S{:’;e.Agmr’n
B \' _9

Slice .Lead -
Silcs 9 m;g_“m*’gb,,-

RuearchAut| ‘]
Slice Admin
Pro]ectllaclar

Fig. 17 Different slices can have different resources. The Project Lead is added to the slice by
default as a Slice Admin. The slice creator (a.k.a. Slice Lead) can add additional people to the slice
as desired. When resources are reserved, accounts will be created for all current slice members

3. Baldin, 1., Castillo, C., Chase, J., Orlikowski, V., Xin, Y., Heermann, C., Mandal, A., Ruth, P,,
Mills, J.: ExoGENI: a multi-domain infrastructure-as-a-service testbed. In: The GENI Book.

Springer, New York (2016)

4. Barnstormer Softworks. Welcome to geni-lib documentation! http://geni-lib.readthedocs.org/

en/latest/ (2016). Accessed Jan 2016

W

. Brinn, M.: GENI architecture foundation. In: The GENI Book. Springer, New York (2016)

6. Chef Software Inc. Chef. https://www.chef.io (2016). Accessed Jan 2016

http://geni-lib.readthedocs.org/en/latest/
http://geni-lib.readthedocs.org/en/latest/
https://www.chef.io

378 N. Riga et al.

7. Day, J., Matta, 1., Mattar, K.: Networking is IPC: a guiding principle to a better internet.
In: Proceedings of the 2008 ACM CoNEXT Conference, CONEXT ’08, pp. 67:1-67:6. ACM,
New York (2008)

. Dempsey, H.: The GENI mesoscale network. In: The GENI Book. Springer, New York (2016)
9. Edwards, S., Liu, X., Riga, N.: Creating repeatable computer science and networking experi-

ments on shared, public testbeds. SIGOPS Oper. Syst. Rev. 49(1), 90-99 (2015)

10. GENI Project Office. The GENI Portal. https://portal.geni.net (2016). Accessed Jan 2016

11. GENI Project Office. Omni. http:/trac.gpolab.bbn.com/gct/wiki/Omni (2016). Accessed Jan
2016

12. iMinds Research Institute. jFed is a java-based framework for testbed federation. http://jfed.
iminds.be (2016). Accessed Jan 2016

13. Internet2. http://www.internet2.edu (2016). Accessed Jan 2016

14. Izard, R., Ramanathan, P., Wang, K.: GENI Cinema architecture. http://groups.geni.net/geni/
raw-attachment/wiki/sol4/GENICinema/GENI-Cinema- Architecture.pdf (2016). Accessed
Jan 2016

15. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.:
Networking named content. In: Proceedings of the 5th International Conference on Emerging
Networking Experiments and Technologies, CONEXT ’09, pp. 1-12. ACM, New York (2009)

16. Jain, S., Chen, Y., Zhang, Z.-L.: VIRO: a scalable, robust and namespace independent virtual
Id routing for future networks. In: 2011 Proceedings IEEE INFOCOM, pp. 2381-2389 (2011)

17. Jourjon, G., Rakotoarivelo, T., Dwertmann, C., Ott, M.: Labwiki: an executable paper platform
for experiment-based research. Proc. Comput. Sci. 4, 697-706 (2011)

18. McGeer, R., Ricci, R.: The instaGENI project. In: The GENI Book. Springer, New York (2016)

19. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., Turner, J.: Openflow: enabling innovation in campus networks. SIGCOMM Comput.
Commun. Rev. 38(2), 69-74 (2008)

20. National Science Foundation. NSF Future Internet Architecture Project. http://www.nets-fia.
net (2016). Accessed Jan 2016

21. OASIS SAML Working Group. Shibboleth Federated Identity Solution. http://www.shibboleth.
net (2016). Accessed Jan 2016

22. OMF Opverview. http://omf.mytestbed.net/projects/omf (2016). Accessed Jan 2016

23. Peterson, L., Ricci, R., Falk, A., Chase, J.: Slice-Based Federation Architecture. http://groups.
geni.net/geni/raw-attachment/wiki/SliceFed Arch/SFA2.0.pdf (2016). Accessed Jan 2016

24. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing disruptive
technology into the Internet. SIGCOMM Comput. Commun. Rev. 33(1), 59-64 (2003)

25. Rakotoarivelo, T., Ott, M., Seskar, 1., Jourjon, G.: OMF: a control and management framework
for networking testbeds. In: SOSP Workshop on Real Overlays and Distributed Systems
(ROADS) (2009)

26. Raychaudhuri, D., Nagaraja, K., Venkataramani, A.: MobilityFirst: a robust and trustworthy
mobility-centric architecture for the future internet. SIGMOBILE Mob. Comput. Commun.
Rev. 16(3), 2-13 (2012)

27. Resource Specification Documents. http:/groups.geni.net/geni/wiki/GENIExperimenter/
RSpecs (2016). Accessed Jan 2016

28. Rouskas, G., Baldine, ., Calvert, K., Dutta, R., Griffioen, J., Nagurney, A., Wolf, T.: Choicenet:
network innovation through choice. In: 2013 17th International Conference on Optical Network
Design and Modeling (ONDM), pp. 1-6 (2013)

29. Seskar, 1., Raychaudhuri, D., Gosain, A.: 4G cellular systems in GENI. In: The GENI Book.
Springer, New York (2016)

30. Stodden, V.C.: The scientific method in practice: Reproducibility in the computational
sciences. Technical Report 4773-10, MIT Sloan School of Management (2010)

31. Taylor, B.N., Kuyatt, C.E.: Guidelines for Evaluating and Expressing the Uncertainty of NIST
Measurement Results, Chapter D.1.1.2 Repeatability (of results of measurements). Number
Technical Note 1297. National Institute of Standards and Technology (1994)

32. The iRODS Consortium. iRODS. http://irods.org (2016). Accessed Jan 2016

e

https://portal.geni.net
http://trac.gpolab.bbn.com/gcf/wiki/Omni
http://jfed.iminds.be
http://jfed.iminds.be
http://www.internet2.edu
http://groups.geni.net/geni/raw-attachment/wiki/sol4/GENICinema/GENI-Cinema-Architecture.pdf
http://groups.geni.net/geni/raw-attachment/wiki/sol4/GENICinema/GENI-Cinema-Architecture.pdf
http://www.nets-fia.net
http://www.nets-fia.net
http://www.shibboleth.net
http://www.shibboleth.net
http://omf.mytestbed.net/projects/omf
http://groups.geni.net/geni/raw-attachment/wiki/SliceFedArch/SFA2.0.pdf
http://groups.geni.net/geni/raw-attachment/wiki/SliceFedArch/SFA2.0.pdf
http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs
http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs
http://irods.org

The Experimenter’s View of GENI 379

33. The OMF Experiment Description Language (OEDL). https://mytestbed.net/projects/omf6/
wiki/OEDLOMEF6, Accessed Jan 2016

34. University of Kentucky. The GENI Desktop. http://genidesktop.netlab.uky.edu (2016).
Accessed Jan 2016

35. Weigle, M.C., Adurthi, P, Herndndez-Campos, F., Jeffay, K., Smith, FED.: Tmix: a tool for
generating realistic TCP application workloads in NS-2. ACM SIGCOMM Comput. Commun.
Rev. 36(3), 67-76 (2006)

36. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb,
C., Joglekar, A.: An integrated experimental environment for distributed systems and networks.
SIGOPS Oper. Syst. Rev. 36(SI), 255-270 (2002)

https://mytestbed.net/projects/omf6/wiki/OEDLOMF6
https://mytestbed.net/projects/omf6/wiki/OEDLOMF6
http://genidesktop.netlab.uky.edu

	The Experimenter's View of GENI
	1 Useful GENI Concepts
	1.1 GENI Resources and Resource Aggregates
	1.2 GENI RSpecs and the GENI AM API
	1.3 Slice
	1.4 GENI Projects

	2 The GENI Experimenter Workflow
	2.1 Design and Setup Experiment
	2.2 Execute Experiment
	2.3 Finish Experiment

	3 Case Study: GENI Cinema, Implementing an Advanced Service on GENI
	3.1 Designing GENI Cinema
	3.2 Use of Software Defined Networking
	3.3 Deploying GENI Cinema
	3.4 Connecting Users to GENI Cinema

	4 Experimenter Tools
	4.1 RSpec Creation Tools
	4.1.1 Jacks and Flack
	4.1.2 jFed
	4.1.3 geni-lib

	4.2 Resource Reservation Tools
	4.2.1 Omni
	4.2.2 The GENI Portal

	4.3 Experiment Orchestration and Scripting Tools
	4.3.1 OEDL

	4.4 Instrumentation and Measurement Tools
	4.4.1 GENI Desktop
	4.4.2 LabWiki

	4.5 Software Installation and Resource Configuration
	4.5.1 Install and Execute Scripts
	4.5.2 Custom Images
	4.5.3 Configuration Management Tools

	4.6 Archiving
	4.6.1 The GENI iRODS Service

	5 Experiment Repeatability and Reproducibility
	5.1 Making Experiments Repeatable and Reproducible
	5.1.1 Reducing Variability Across Runs of an Experiment
	5.1.2 Sharing Experiment Artifacts for Reprodicibility

	6 Scaling Up Experiments
	7 Collaboration
	7.1 Mechanisms for Collaboration

	References

