
Vision Pipelines and Optimizations 8

“More speed, less haste . . . ”
—Treebeard, Lord of the Rings

This chapter explores some hypothetical computer vision pipeline designs to understand HW/SW

design alternatives and optimizations. Instead of looking at isolated computer vision algorithms, this

chapter ties together many concepts into complete vision pipelines. Vision pipelines are sketched out

for a few example applications to illustrate the use of different methods. Example applications

include object recognition using shape and color for automobiles, face detection and emotion

detection using local features, image classification using global features, and augmented reality.

The examples have been chosen to illustrate the use of different families of feature description

metrics within the Vision Metrics Taxonomy presented in Chap. 5. Alternative optimizations at each

stage of the vision pipeline are explored. For example, we consider which vision algorithms run better

on a CPU versus a GPU, and discuss how data transfer time between compute units and memory

affects performance.

& Note This chapter does not address optimizations for the training stage or the classification

stage. Instead, we focus here on the vision pipeline stages prior to classification. Hypothetical

examples in this chapter are sometimes sketchy, not intended to be complete. Rather, the intention is

to explore design alternatives. Design choices are made in the examples for illustration only; other,
equally valid or even better design choices could be made to build working systems. The reader is

encouraged to analyze the examples to find weaknesses and alternatives. If the reader can improve the

examples, we have succeeded.

This chapter addresses the following major topics, in this order:

1. General design concepts for optimization across the SOC (CPU, GPU, memory).

2. Four hypothetical vision pipeline designs using different descriptor methods.

3. Overview of SW optimization resources and specific optimization techniques.

*NOTE: we do not discuss DNN-specific optimizations here (see Chaps. 9 and 10), and we do not

discuss special-purpose vision processors here. For more information on the latest vision
processors, contact the Embedded Vision Alliance.

Springer International Publishing Switzerland 2016

S. Krig, Computer Vision Metrics, DOI 10.1007/978-3-319-33762-3_8
273

http://dx.doi.org/10.1007/978-3-319-33762-3_5
http://dx.doi.org/10.1007/978-3-319-33762-3_9
http://dx.doi.org/10.1007/978-3-319-33762-3_10

Stages, Operations, and Resources

A computer vision solution can be implemented into a pipeline of stages, as shown in Fig. 8.1. In a

pipeline, both parallel and sequential operations take place simultaneously. By using all available

compute resources in the optimal manner, performance can be maximized for speed, power, and

memory efficiency.

Optimization approaches vary by system. For example, a low-power system for a mobile phone

may not have a rich CPU SIMD instruction set, and the GPU may have a very limited thread count

and low memory bandwidth, unsuitable to generic GPGPU processing for vision pipelines. However,

a larger compute device, such as a rack-mounted compute server, may have several CPUs and GPUs,

and each CPU and GPU will have powerful SIMD instructions and high memory bandwidth.

Table 8.1 provides more details on possible assignment of operations to resources based on data

types and processor capabilities. For example, in the sensor processing stage, point line and area

operations dominate the workload, as sensor data is assembled into pixels and corrections are applied.

Most sensor processors are based on a digital signal processor (DSP) with wide SIMD instruction

words, and the DSP may also contain a fixed-function geometric correction unit or warp unit for

correcting optics problems like lens distortion. The Sensor DSP and the GPU listed in Table 8.1

typically contain a dedicated texture sampler unit, which is capable of rapid pixel interpolation,

geometric warps, and affine and perspective transforms. If code is straight line with lots of branching

and not much parallel operations, the CPU is the best choice.

Sensor Processing

Image Pre- Processing

Global Metrics

Local Feature Metrics

Classification, Learning

Augment, Render, Control

Vision Pipeline Stages Operations

Point

Line

Area

Algorithmic

Data conversion

DSP Sensor

GPU SIMT/SIMD

CPU Threads

CPU SIMD

CPU General

Memory System

Resources

Math

Figure 8.1 Hypothetical assignment of vision pipeline stages to operations and to compute resources. Depending on

the actual resource capabilities and optimization targets for power and performance, the assignments will vary

274 8 Vision Pipelines and Optimizations

As illustrated in Table 8.1, the data type and data layout normally guides the selection of the best

compute resource for a given task, along with the type of parallelism in the algorithm and data. Also,

the programing language is chosen based on the parallelism, such as using OpenCL vs. C++. For

example, a CPU may support float and double data types, but if the underlying code is SIMT and

SIMD parallel oriented, calling for many concurrent thread-parallel kernel operations, then a GPU

with a high thread count may be a better choice than a single CPU. However, running a language like

OpenCL on multiple CPUs may provide performance as good as a smaller GPU; for performance

information, see reference [526] and vendor information on OpenCL compilers. See also the section

later in this chapter, “SIMD, SIMT, and SPMD Fundamentals.”

For an excellent discussion of how to optimize fundamental image processing operations across

different compute units and memory, see the PfeLib work by Zinner et al. [477], which provides a

deep dive into the types of optimizations that can be made based on data types and intelligent memory

usage.

To make the assignments from vision processing stages to operations and compute resources

concrete, we look at specific vision pipelines examples later in this chapter.

Compute Resource Budgets

Prior to implementing a vision pipeline, a reasonable attempt should be made to count the cost in

terms of the compute platform resources available, and determine if the application is matched to the

resources. For example, a system intended for a military battlefield may place a priority on compute

speed and accuracy, while an application for a mobile device will prioritize power in terms of battery

life and make trade-offs with performance and accuracy.

Since most computer vision research is concerned with breaking ground in handling relatively

narrow and well-defined problems, there is limited research available to guide a general engineering

discussion on vision pipeline analysis and optimizations. Instead, we follow a line of thinking that

starts with the hardware resources themselves, and we discuss performance, power, memory, and

I/O requirements, with some references to the literature for parallel programming and other

Table 8.1 Hypothetical assignment of basic operations to compute resources guided by data type and parallelism
(see also Zinner [477])

Operations Hypothetical Resources and Data Types

DSP

uint16
int16

WarpUnit

GPU
SIMT/SIMD

uint16/32
int16/32
float/double

TextureUnit

CPU
Threads

uint16/32
int16/32
float/double

CPU
SIMD

uint16/32
int16/32
float/double

CPU
General

uint16/32
int16/32
float/double

Memory
System
DMA

Point x x x
Line x x x
Area x x x (tiles) x
Algorithmic
Branching

x

General Math x
Data Copy &
Conversions

x (DMA
preferred)

Compute Resource Budgets 275

code-optimization methods. Future research into automated tools to measure algorithm intensity,

such as the number of integer and float operations, the bit precision of data types, and the number of

memory transfers for each algorithm in terms of read/write, would be welcomed by engineers for

vision pipeline analysis and optimizations.

As shown in Fig. 8.2, the main elements of a computer system are composed of I/O, compute, and

memory.

We assume suitable high bandwidth I/O busses and cache lines interconnecting the various

compute units to memory; in this case, we call out the MIPI camera interface in particular, which

connects directly to the DSP in our hypothetical SOC. In the case of a simple computer vision system

of the near future, we assume that the price, performance, and power curves continue in the right

direction to enable a system-on-a-chip (SOC)sufficient for most computer vision applications to be

built at a low price point, approaching throw-away computing cost—similar in price to any small

portable electronic gadget. This would thereby enable low-power and high-performance ubiquitous

vision applications without resorting to special-purpose hardware accelerators built for any specific

computer vision algorithms.

Here is a summary description of the SOC components shown in Fig. 8.2:

• Two 1080p cameras, one for RGB and the other for a self-contained depth camera, such as a TOF

sensor (as discussed in Chap. 1).

• One small low-power controller CPU with a reduced instruction set and no floating point, used

for handling simple things like the keyboard, accelerometer updates, servicing interrupts from the

DSP, and other periodic tasks, such as network interrupt handlers.

DSP memory

GPU memory

System memory

L1 L2

L1 L2

L1 L2

L1 L2

L1 L2
CPU 1
controller

CPU 2
SIMD

CPU 3
SIMD

CPU 4
SIMD

GPU 1
256 SIMT
4 texture
samplers

DSP 2

DSP 1

Camera 1
1080p depth

Camera 2
1080p RGB | depth

MIPI

MIPI
L1 L2

DMA

RF

RF

RF

RF

RF

RF

RF

Figure 8.2 Hypothetical computer system, highlighting compute elements in the form of a DSP, GPU, 4 CPU cores,

DMA, and memory architecture using L1 and L2 cache and register files RF within each compute unit

276 8 Vision Pipelines and Optimizations

http://dx.doi.org/10.1007/978-3-319-33762-3_1

• Three full SIMD capable CPUs with floating point, used for heavy compute, typically thread

parallel algorithms such as tiling, but also for SIMD parallel algorithms.

• A GPU capable of running >256 threads with full integer and floating point, and four texture

samplers. A wide range of area algorithms map well to the GPU, but the programming model is

SIMT kernels such as compute shaders for DirectX and OpenGL, or OpenCL.

• A DSP with a limited instruction set and VLIW processing capabilities well suited to pixel

processing and sensor processing in general.

• A DMA unit for fast memory transfers; although obvious, DMA is a simple and effective

method to increase memory bandwidth and reduce power.

Compute Units, ALUs, and Accelerators

There are several types of compute units in a typical system, including CPUs, GPUs, DSPs, and

special-purpose hardware accelerators such as cryptography units, texture samplers, and DMA

engines. Each ALU has a different instruction set tuned to the intended use, so understanding each

compute unit’s ALU instruction set is very helpful.

Generally speaking, computer architecture has not advanced to the point of providing any standard

vision pipeline methods or hardware accelerators. That is because there are so many algorithm

refinements for computer vision emerging; choosing to implement any vision accelerators in silicon

is an obsolescence risk. Also, creating computer vision hardware accelerators is difficult, since

applications must be portable. So developers typically choose high-level language implementations

that are good enough and portable, with minimal dependencies on special purpose hardware or APIs.

Instead, reliance on general-purpose languages like C++ and optimizing the software is a good

path to follow to start, as is leveraging existing pixel-processing acceleration methods in a GPU as

needed, such as pixel shaders and texture samplers. The standard C++ language path offers flexibility

to change and portability across platforms, without relying on any vendor-specific hardware acceler-

ation features.

In the example vision pipelines developed in this section, we make two basic assumptions. First,

the DSP is dedicated to sensor processing and light image preprocessing to load-balance the system.

Second, the CPUs and the GPUs are used downstream for subsequent sections of the vision pipeline,

so the choice of CPU vs. GPU depends on the algorithm used.

Since the compute units with programmable ALUs are typically where all the tools and attention

for developers are focused, we dedicate some attention to programming acceleration alternatives later

in this chapter in the “Vision Algorithm Optimizations and Tuning” section; there is also a survey of

selected optimization resources and software building blocks.

In the hypothetical system shown in Fig. 8.2, the compute units include general-purpose CPUs, a

GPU intended primarily for graphics and media acceleration and some GPGPU acceleration, and a

DSP for sensor processing. Each compute unit is programmable and contains a general-purpose ALU

with a tuned instruction set. For example, a CPU contains all necessary instructions for general

programming, and may also contain SIMD instructions discussed later in this chapter. A GPU

contains transcendental instructions such as square root, arctangent, and related instructions to

accelerate graphics processing. The DSP likewise has an instruction set tuned for sensor processing,

likely a VLIW instruction set.

Hardware accelerators are usually built for operations that are common, such as a geometric

correction unit for sensor processing in the DSP and texture samplers for warping surface patches in

the GPU. There are no standards yet for computer vision, and new algorithm refinements are being

Compute Resource Budgets 277

developed constantly, so there is little incentive to add any dedicated silicon for computer vision

accelerators, except for embedded and special-purpose systems. Instead, finding creative methods of

using existing accelerators may prove beneficial.

Later in this chapter we discuss methods for optimizing software on various compute units, taking

advantage of the strengths and intended use of each ALU and instruction set.

Power Use

It is difficult to quantify the amount of power used for a particular algorithm on an SOC or a single

compute device without very detailed power analysis; likely simulation is the best method. Typically,

systems engineers developing vision pipelines for an SOC do not have accurate methods of measur-

ing power, except crude means such as running the actual finished application and measuring wall

power or battery drain.

The question of power is sometimes related to which compute device is used, such as CPU

vs. GPU, since each device has a different gate count and clock rate, therefore is burning power at

a different rate. Since silicon architects for both GPU and CPU designs are striving to deliver the most

performance per watt per square millimeter, (and we assume that each set of silicon architects is

equally efficient), there is no clear winner in the CPU vs. GPU power/performance race. The search to

save power by using the GPU vs. the CPU might not even be worth the effort compared to other

places to look, such as data organization and memory architecture.

One approach for making the power and performance trade-off in the case of SIMD and SIMT

parallel code is to use a language such as OpenCL, which supports running the same code on either a

CPU or a GPU. The performance and power would then need to be measured on each compute device

to quantify actual power and performance; there is more discussion on this topic later, in the “Vision

Algorithm Optimizations and Tuning” section.

For detailed performance analysis using the same OpenCL code running on a specific CPU vs. a

GPU, as well as clusters, see the excellent research by the National Center for Super Computing

Applications [526]. Also, see the technical computing resources provided by major OpenCL vendors,

such as INTEL, NVIDIA, and AMD, for details on their OpenCL compilers running the same code

across the CPU vs. GPU. Sometimes the results are surprising, especially for multi-core CPU systems

vs. smaller GPUs.

In general, the compute portion of the vision pipeline is not where the power is burned anyway;

most power is burned in the memory subsystem and the I/O fabric, where high data bandwidth is

required to keep the compute pipeline elements full and moving along. In fact, all the register files,

caches, I/O busses, and main memory consume the lion’s share of power and lots of silicon real estate.

So memory use and bandwidth are high-value targets to attack in any attempt to reduce power. The

fewer the memory copies, the higher the cache hit rates; the more reuse of the same data in local

register files, the better.

Memory Use

Memory is the most important resource to manage as far as power and performance are concerned.

Most of the attention on developing a vision pipeline is with the algorithms and processing flow,

which is challenging enough. However, vision applications are highly demanding of the memory

system. The size of the images alone is not so great, but when we consider the frame rates and number

of times a pixel is read or written for kernel operations through the vision pipeline, the memory

278 8 Vision Pipelines and Optimizations

transfer bandwidth activity becomes clearer. The memory system is complex, consisting of local

register files next to each compute unit, caches, I/O fabric interconnects, and system memory. We

look at several memory issues in this section, including:

• Pixel resolution, bit precision, and total image size

• Memory transfer bandwidth in the vision pipeline

• Image formats, including gray scale and color spaces

• Feature descriptor size and type

• Accuracy required for matching and localization

• Feature descriptor database size

To explore memory usage, we go into some detail on a local interest point and feature extraction

scenario, assuming that we locate interest points first, filter the interest points against some criteria to

select a smaller set, calculate descriptors around the chosen interest points, and then match features

against a database.

A reasonable first estimate is that between a lower bound and upper bound of 0.05–1 % of the

pixels in an image can generate decent interest points. Of course, this depends entirely on: (1) the

complexity of the image texture, and (2) the interest point method used. For example, an image with

rich texture and high contrast will generate more interest points than an image of a far away mountain

surrounded by clouds with little texture and contrast. Also, interest point detector methods yield

different results—for example, the FAST corner method may detect more corners than a SIFT scale

invariant DoG feature, see Appendix A.

Descriptor size may be an important variable, see Table 8.2. A 640 � 480 image will contain

307,200 pixels. We estimate that the upper bound of 1 %, or 3072 pixels, may have decent interests

points; and we assume that the lower bound of 0.05 % is 153. We provide a second estimate that

interest points may be further filtered to sort out the best ones for a given application. So if we assume

perhaps only as few as 33 % of the interest points are actually kept, then we can say that between

153 � 0.33 and 3072 � 0.33 interest points are good candidates for feature description. This

estimate varies widely out of bounds, depending of course on the image texture, interest point method

Table 8.2 Descriptor bytes per frame (1 % interest points), adapted from [133]

Descriptor Size in bytes 480p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD

Resolution 640 x 480 1920 x 1080 3840 � 2160 7680 x 4320

Pixels 307200 2073600 8294400 33177600

BRIEF 32 98304 663552 2654208 10616832

ORB 32 98304 663552 2654208 10616832

BRISK 64 196608 1327104 5308416 21233664

FREAK (4 cascades) 64 196608 1327104 5308416 21233664

SURF 64 196608 1327104 5308416 21233664

SIFT 128 393216 2654208 10616832 42467328

LIOP 144 442368 2985984 11943936 47775744

MROGH 192 589824 3981312 15925248 63700992

MRRID 256 786432 5308416 21233664 84934656

HOG (64x128 block) 3780 n.a. n.a. n.a. n.a.

Compute Resource Budgets 279

used, and interest point filtering criteria. Assuming a feature descriptor size is 256 bytes, the total

descriptor size per frame is 3072 � 256 � 0.33 ¼ 259,523 bytes maximum—that is not extreme.

However, when we consider the feature match stage, the feature descriptor count and memory size

will be an issue, since each extracted feature must be matched against each trained feature set in the

database.

In general, local binary descriptors offer the advantage of a low memory footprint. For example,

Table 8.2 provides the byte count of several descriptors for comparison, as described in Miksik and

Mikolajczyk [133]. The data is annotated here to add the descriptor working memory size in bytes per

frame for various resolutions.

In Table 8.2, image frame resolutions are in row 1, pixel count per frame is in row 2, and typical

descriptor sizes in bytes are in subsequent rows. Total bytes for selected descriptors are in column

1, and the remaining columns show total descriptor size per frame assuming an estimated 1 % of the

pixels in each frame are used to calculate an interest point and descriptor. In practice, we estimate that

1 % is an upper-bound estimate for a descriptor count per frame and 0.05 % is a lower-bound

estimate. Note that descriptor sizes in bytes do vary from those in the table, based on design

optimizations.

Memory bandwidth is often a hidden cost, and often ignored until the very end of the optimization

cycle, since developing the algorithms is usually challenging enough without also worrying about the

memory access patterns and memory traffic. Table 8.2 includes a summary of several memory

variables for various image frame sizes and feature descriptor sizes. For example, using the 1080p

image pixel count in row 2 as a base, we see that an RGB image with 16 bits per color channel will

consume:

2, 073, 600pixels � 3channels=RGB � 2bytes=pixel ¼ 12, 441, 600bytes=frame

And if we include the need to keep a gray scale channel I around, computed from the RGB, the total

size for RGBI increases to:

2, 073, 600pixels � 4channels=RGBI � 2bytes=pixel ¼ 16, 588, 800bytes=frame

If we then assume 30 frames per second and two RGB cameras for depth processing + the I channel,

the memory bandwidth required to move the complete 4-channel RGBI image pair out of the DSP is

nearly 1 GB/s:

16, 588, 800pixels � 30fps � 2stereo ¼ 995, 328, 000mb=s

So we assume in this example a baseline memory bandwidth of about ~1 GB/s just to move the image

pair downstream from the ISP. We are ignoring the ISP memory read/write requirements for sensor

processing for now, assuming that clever DSP memory caching, register file design, and loop-

unrolling methods in assembler can reduce the memory bandwidth.

Typically, memory coming from a register file in a compute unit transfers in a single clock cycle;

memory coming from various cache layers can take maybe tens of clock cycles; and memory coming

from system memory can take hundreds of clock cycles. During memory transfers, the ALU in the

CPU or GPU may be sitting idle, waiting on memory.

Memory bandwidth is spread across the fast register files next to the ALU processors, and through

the memory caches and even system memory, so actual memory bandwidth is quite complex to

analyze. Even though some memory bandwidth numbers are provided here, it is only to illustrate the

activity.

280 8 Vision Pipelines and Optimizations

And the memory bandwidth only increases downstream from the DSP, since each image frame

will be read, and possibly rewritten, several times during image preprocessing, then also read again

during interest point generation and feature extraction. For example, if we assume only one image

preprocessing operation using 5 � 5 kernels on the I channel, each I pixel is read another 25 times,

hopefully from memory cache lines and fast registers.

This memory traffic is not all coming from slow-system memory, and it is mostly occurring inside

the faster-memory cache system and faster register files until there is a cache miss or reload of the

fast-register files. Then, performance drops by an order of magnitude waiting for the buffer fetch and

register reloading. If we add a FAST9 interest point detector on the I channel, each pixel is read

another 81 times (9 � 9), maybe from memory cache lines or registers. And if we add a FREAK

feature descriptor over maybe 0.05 % of the detected interest points, we add 41 � 41 pixel reads per

descriptor to get the region (plus 45 � 2 reads for point-pair comparisons within the 41 � 41 region),

hopefully from memory cache lines or registers.

Often the image will be processed in a variety of formats, such as image preprocessing the RGB

colors to enhance the image, and conversion to gray scale intensity I for computing interest points and

feature descriptors. The color conversions to and from RGB are a hidden memory cost that requires

data copy operations and temporary storage for the color conversion, which is often done in floating

point for best accuracy. So several more GB/s of memory bandwidth can be consumed for color

conversions. With all the memory activity, there may be cache evictions of all or part of the required

images into a slower system memory, degrading into nonlinear performance.

Memory size of the descriptor, therefore, is a consideration throughout the vision pipeline. First,

we consider when the features are extracted; and second, we look at when the features are matched

and retrieved from the feature database. In many cases, the size of the feature database is by far the

critical issue in the area of memory, since the total size of all the descriptors to match against affects

the static memory storage size, memory bandwidth, and pattern match rate. Reducing the feature

space into a quickly searchable format during classification and training is often of paramount

importance. Besides the optimized classification methods discussed in Chap. 4, the data organization

problems may be primarily in the areas of standard computer science searching, sorting, and data

structures; some discussion and references were provided in Chap. 4.

When we look at the feature database or training set, memory size can be the dominant issue to

contend with. Should the entire feature database be kept on a cloud server for matching? Or should the

entire feature database be kept on the local device? Should a method of caching portions of the feature

database on the local device from the server be used? All of the above methods are currently

employed in real systems.

In summary, memory, caches, and register files exceed the silicon area of the ALU processors in

the compute units by a large margin. Memory bandwidth across the SOC fabric through the vision

pipeline is key to power and performance, demanding fast memory architecture and memory cache

arrangement, and careful software design. Memory storage size alone is not the entire picture, though,

since each byte needs to be moved around between compute units. So careful consideration of

memory footprint and memory bandwidth is critical for anything but small applications.

Often, performance and power can be dramatically improved by careful attention to memory

issues alone. Later in the chapter we cover several design methods to help reduce memory bandwidth

and increase memory performance, such as locking pages in memory, pipelining code, loop unrolling,

and SIMD methods. Future research into minimizing memory traffic in a vision pipeline is a

worthwhile field.

Compute Resource Budgets 281

http://dx.doi.org/10.1007/978-3-319-33762-3_4
http://dx.doi.org/10.1007/978-3-319-33762-3_4

I/O Performance

We lump I/O topics together here as a general performance issue, including data bandwidth on the

SOC I/O fabric between compute units, image input from the camera, and feature descriptor matching

database traffic to a storage device. We touched on I/O issues above the discussion on memory, since

pixel data is moved between various compute devices along the vision pipeline on I/O busses. One of

the major I/O considerations is feature descriptor data moving out of the database at feature match

time, so using smaller descriptors and optimizing the feature space using effective machine learning

and classification methods is valuable.

Another type of I/O to consider is the camera input itself, which is typically accomplished via the

standard MIPI interface. However, any bus or I/O fabric can be used, such as USB. If the vision

pipeline design includes a complete HW/SW system design rather than software only on a standard

SOC, special attention to HW I/O subsystem design for the camera and possibly special fast busses

for image memory transfers to and from a HW-assisted database may be worthwhile. When

considering power, I/O fabric silicon area and power exceed the area and power for the ALU

processors by a large margin.

The Vision Pipeline Examples

In this section we look at four hypothetical examples of vision pipelines. Each is chosen to illustrate

separate descriptor families from the Vision Metrics Taxonomy presented in Chap. 5, including

global methods such as histograms and color matching, local feature methods such as FAST interest

points combined with FREAK descriptors, basis space methods such as Fourier descriptors, and

shape-based methods using morphology and whole object shape metrics. The examples are broken

down into stages, operations, and resources, as shown in Fig. 8.1, for the following applications:

• Automobile recognition, using shape and color

• Face recognition, using sparse local features

• Image classification, using global features

• Augmented reality, using depth information and tracking

None of these examples includes classification, training, and machine learning details, which are

outside the scope of this book (machine learning references are provided in Chap. 4). A simple

database storing the feature descriptors is assumed to be adequate for this discussion, since the focus

here is on the image preprocessing and feature description stages. After working through the

examples and exploring alternative types of compute resource assignments, such as GPU vs. CPU,

this chapter finishes with a discussion on optimization resources and techniques for each type of

compute resource.

Automobile Recognition

Here we devised a vision pipeline to recognize objects such as automobiles or machine parts by using

polygon shape descriptors and accurate color matching. For example, polygon shape metrics can be

used to measure the length and width of a car, while color matching can be used to measure paint

color. In some cases, such as custom car paint jobs, color alone is not sufficient for identification.

282 8 Vision Pipelines and Optimizations

http://dx.doi.org/10.1007/978-3-319-33762-3_5
http://dx.doi.org/10.1007/978-3-319-33762-3_4

For this automobile example, the main design challenges include segmentation of automobiles

from the roadway, matching of paint color, and measurement of automobile size and shape. The

overall system includes an RGB-D camera system, accurate color and illumination models, and

several feature descriptors used in concert. See Fig. 8.3. We work through this example in some detail

as a way of exploring the challenges and possible solutions for a complete vision pipeline design of

this type.

We define the system with the following requirements:

• 1080p RGB color video (1920 � 1080 pixels) at 120 fps, horizontally mounted to provide highest

resolution in length, 12 bits per color, 65� FOV.
• 1080p stereo depth camera with 8 bits Z resolution at 120 fps, 65� FOV.
• Image FOV covering 44 ft in width and 60 ft in length over four traffic lanes of oncoming traffic,

enough for about three normal car lengths in each lane when traffic is stopped.

• Speed limit of 25 mph, which equals ~37 ft/s.

• Camera mounted next to overhead stoplight, with a street lamp for night illumination.

• Embedded PC with 4 CPU cores having SIMD instruction sets, 1 GPU, 8 GBmemory, 80 GB disk;

assumes high-end PC equivalent performance (not specified for brevity).

• Identification of automobiles in real time to determine make and model; also count of occurrences

of each, with time stamp and confidence score.

• Automobile ground truth training dataset provided by major manufacturers to include geometry,

and accurate color samples of all body colors used for stock models; custom colors and after-

market colors not possible to identify.

Figure 8.3 Setting for an automobile identification application using a shape-based and color-based vision pipeline.

The RGB and D cameras are mounted above the road surface, looking directly down

The Vision Pipeline Examples 283

• Average car sizes ranging from 5 to 6 ft wide and 12 to 16 ft long.

• Accuracy of 99 % or better.

• Simplified robustness criteria to include noise, illumination, and motion blur.

Segmenting the Automobiles
To segment the automobiles from the roadway surface, a stereo depth camera operating at 1080p

120 fps (frames per second) is used, which makes isolating each automobile from the roadway simple

using depth. To make this work, a method for calibrating the depth camera to the baseline road

surface is developed, allowing automobiles to be identified as being higher than the roadway surface.

We sketch out the depth calibration method here for illustration.

Spherical depth differences are observed across the depth map, mostly affecting the edges of the

FOV. To correct for the spherical field distortion, each image is rectified using a suitable calibrated

depth function (to be determined on-site and analytically), then each horizontal line is processed,

taking into consideration the curvilinear true depth distance, which is greater at the edges, to set the

depth equal across each line.

Since the speed limit is 25 mph, or 37 ft/s, imaging at 120 FPS yields maximum motion blur of

about 0.3 ft, or 4 in. per frame. Since the length of a pixel is determined to be 0.37 inches, as

developed in a subsequent section below “Measuring the Automobile Size and Shape”, the ability to

compute car length from pixels is accurate within about 4 in./0.37 in. ¼ 11 pixels, or about 3 % of a

12-ft-long car at 25 mph including motion blur. However, motion blur compensation can be applied

during image preprocessing to each RGB and depth image to effectively reduce the motion blur

further; several methods exist based on using convolution or compensating over multiple sequential

images [297, 474].

Matching the Paint Color
We assume that it is possible to identify a vehicle using paint color alone in many cases, since each

manufacturer uses proprietary colors, therefore accurate colorimetry can be employed. For matching

paint color, 12 bits per color channel should provide adequate resolution, which is determined in the

color match stage using the CIECAM02 model and the Jch color space [245]. This requires

development of several calibrated device models of the camera with the scene under different

illumination conditions, such as full sunlight at different times of day, cloud cover, low light

conditions in early morning and at dusk, and nighttime using the illuminator lamp mounted above

traffic along with the camera and stop light.

The key to colorimetric accuracy is the device models’ accounting for various lighting conditions.

A light sensor to measure color temperature, along with the knowledge of time of day and season of

the year, is used to select the correct device models for proper illumination for times of day and

seasons of the year. However, dirty cars present problems for color matching; for now we ignore this

detail (also custom paint jobs are a problem). In some cases, the color descriptor may not be useful or

reliable; in other cases, color alone may be sufficient to identify the automobile. See the discussion of

color management in Chap. 2.

Measuring the Automobile Size and Shape
For automobile size and shape, the best measurements are taken looking directly down on the car to

reduce perspective distortion. As shown in Fig. 8.4, the car is segmented into C (cargo), T (top), and H

(hood) regions using depth information from the stereo camera, in combination with a polygon shape

segmentation of the auto shape. To compute shape, some weighted combination of RGB and D

images into a single image will be used, based on best results during testing. We assume the camera is

mounted in the best possible location centered above all lanes, but that some perspective distortion

284 8 Vision Pipelines and Optimizations

http://dx.doi.org/10.1007/978-3-319-33762-3_2

will exist at the far ends of the FOV. We also assume that a geometric correction is applied to rectify

the images into Cartesian alignment. Assuming errors introduced by the geometric corrections to

rectify the FOV are negligible, the following approximate dimensional precision is expected for

length and width, using the minimum car size of 50 � 120 as an example:

FOV Pixel Width: 1080pixels/(44
0 � 1200)inches ¼ each pixel is ~0.49 in. wide

FOV Pixel Length: 1920pixels/(60
0 � 1200)inches ¼ each pixel is ~0.37 in. long

Automobile Width: (50 � 1200)/0.49 ¼ ~122 pixels

Automobile Length: (120 � 1200)/0.37 ¼ ~389 pixels

This example uses the following shape features:

• Bounding box containing all features; width and length are used

• Centroid computed in the middle of the automobile region

• Separate width computed from the shortest diameter passing through the centroid to the perimeter

• Mirror feature measured as the distance from the front of the car; mirror locations are the smallest

and largest perimeter width points within the bounding box

• Shape segmented into three regions using depth; color is measured in each region: cargo compart-

ment (C), top (T), and hood (H)

• Fourier descriptor of the perimeter shape computed by measuring the line segments from centroid

to perimeter points at intervals of 5�

Feature Descriptors
Several feature descriptors are used together for identification, and the confidence of the automobile

identification is based on a combined score from all descriptors. The key feature descriptors to be

extracted are as follows:

• Automobile shape factors: Depth-based segmentation of each automobile above the roadway is

used for the coarse shape outline. Some morphological processing follows to clean up the edges

and remove noise. For each segmented automobile, object shape factors are computed for area,

Mirror

Length

Width

Figure 8.4 Features used for automobile identification

The Vision Pipeline Examples 285

perimeter, centroid, bounding box, and Fourier descriptors of perimeter shape. The bounding box

measures overall width and height, the Fourier descriptor measures the roundness and shape

factors; some automobiles are more boxy, some are more curvy. (See Chap. 6 for more information

on shape descriptors. See Chap. 1 for more information on depth sensors.) In addition, the distance

of the mirrors from the front of the automobile is computed; mirrors are located at width extrema

around the object perimeter, corresponding to the width of the bounding box.

• Automobile region segmentation: Further segmentation uses a few individual regions of the

automobile based on depth, namely the hood, roof, and trunk. A simple histogram is created to

gather the depth statistical moments, a clustering algorithm such as K-means is performed to form

three major clusters of depth: the roof will be highest, hood and trunk will be next highest,

windows will be in between (top region is missing for convertibles, not covered here). The pixel

areas of the hood, top, trunk, and windows are used as a descriptor.

• Automobile color: The predominant colors of the segmented hood, roof, and trunk regions are

used as a color descriptor. The colors are processed in the Jch color space, which is part of the

CIECAM system yielding high accuracy. The dominant color information is extracted from the

color samples and normalized against the illumination model. In the event of multiple paint colors,

separate color normalization occurs for each. (See Chap. 3 for more information on colorimetry.)

Calibration, setup, and Ground Truth Data
Several key assumptions are made regarding scene setup, camera calibration, and other corrections;

we summarize them here:

• Roadway depth surface: Depth camera is calibrated to the road surface as a reference to segment

autos above the road surface; a baseline depth map with only the road is calibrated as a reference

and used for real-time segmentation.

• Device models: Models for each car are created from manufacturer’s information, with accurate

body shape geometry and color for each make and model. Cars with custom paint confuse this

approach; however, the shape descriptor and the car region depth segmentation provide a failsafe

option that may be enough to give a good match—only testing will tell for sure.

• Illumination models: Models are created for various conditions, such as morning light, daylight,

and evening light, for sunny and cloudy days; illumination models are selected based on time of

day and year and weather conditions for best matching.

• Geometric model for correction: Models of the entire FOV for both the RGB and depth camera

are devised, to be applied at each new frame to rectify the image.

Pipeline Stages and Operations
Assuming the system is fully calibrated in advance, the basic real-time processing flow for the

complete pipeline is shown in Fig. 8.5, divided into three primary stages of operations. Note that

the complete pipeline includes an image preprocessing stage to align the image in the FOV and

segment features, a feature description stage to compute shape and color descriptors, and a corre-

spondence stage for feature matching to develop the final automobile label composed of a weighted

combination of shape and color features. We assume that a separate database table for each feature in

some standard database is fine.

286 8 Vision Pipelines and Optimizations

http://dx.doi.org/10.1007/978-3-319-33762-3_6
http://dx.doi.org/10.1007/978-3-319-33762-3_1
http://dx.doi.org/10.1007/978-3-319-33762-3_3

No attempt is made to create an optimized classifier or matching stage here; instead, we assume,

without proving or testing, that a brute-force search using a standard database through a few thousand

makes and models of automobile objects works fine for the ALPHA version.

Note in Fig. 8.5 (bottom right) that each auto is tracked from frame to frame, we do not define the

tracking method here.

Operations and Compute Resources
For each operation in the pipeline stages, we now explore possible mappings to the available compute

resources. First, we review the major resources available in our example system, which contains 8 GB

of fast memory, we assume sufficient free space to map and lock the entire database in memory to

avoid paging. Our system contains four CPU cores, each with SIMD instruction sets, and a GPU

capable of running 128 SIMT threads simultaneously with 128 GB/s memory bandwidth to shared

memory for the GPU and CPU, considered powerful enough. Let us assume that, overall, the compute

and memory resources are fine for our application and no special memory optimizations need to

be considered. Next, we look at the coarse-grain optimizations to assign operations to compute

resources. Table 8.3 provides an evaluation of possible resource assignments.

Criteria for Resource Assignments
In our simple example, as shown in Table 8.3, the main criteria for assigning algorithms to compute

units are processor suitability and load balancing among the processors; power is not an issue for this

Capture RGB and D
images

Rectify FOV using 4-point
warp, merge RGB and D

Remove motion blur via
spatio-temporal merging

Segment shape regions
(T,H,C)w/depth+color

Morphological processing
to clean up shape

Segment roadway from
automobile using depth

Compute perimeter, area,
centroid, bounding box

Compute radius lines,
centroid to perimeter

Compute radius length
histogram, normalized

Compute Fourier
Descriptor from radial

Compute mirror distance
from front of automobile

Compute dominant color
of each automobile shape

Classify features

Bounding
Box

Dominant
Color

Mirror
Distance

Radius
Histogram

Fourier
Descriptor

Object classification
score + tracking

Image pre-processing Feature Description Correspondence

Figure 8.5 Operations in hypothetical vision pipeline for automobile identification using polygon shape features and

color

The Vision Pipeline Examples 287

application. The operation to resource assignments provided in Table 8.3 are a starting point in this

hypothetical design exercise; actual optimizations would be different, adjusted based on performance

profiling. However, assuming what is obvious about the memory access patterns used for each

algorithm, we can make a good guess at resource assignments based on memory access patterns. In

a second-order analysis, we could also look at load balancing across the pipeline to maximize parallel

uses of compute units; however, this requires actual performance measurements.

Here we will tentatively assign the tasks from Table 8.3 to resources. If we look at memory access

patterns, using the GPU for the sequential tasks 2 and 3 makes sense, since we can map the images

into GPU memory space first and then follow with the three sequential operations using the GPU. The

GPU has a texture sampler to which we assign task 2, the geometric corrections using the four-point

warp. Some DSPs or camera sensor processors also have a texture sampler capable of geometric

corrections, but not in our example. In addition to geometric corrections, motion blur is a good

candidate for the GPU as well, which can be implemented as an area operation efficiently in a shader.

For higher-end GPUs, there may even be hardware acceleration for motion blur compensation in the

media section.

Later in the pipeline, after the image has been segmented in tasks 4 and 5, the morphology stage in

task 6 can be performed rapidly using a GPU shader; however, the cost of moving the image to and

from the GPU for the morphology may actually be slower than performing the morphology on the

CPU, so performance analysis is required for making the final design decision regarding CPU

vs. GPU implementation.

In the case of stages 7–11, shown in Table 8.3, the algorithm for area, perimeter, centroid, and

other measurements span a nonlocalized data access pattern. For example, perimeter tracing follows

the edge of the car. So we will make one pass using a single CPU through the image to track the

perimeter and compute the area, centroid, and bounding box for each automobile. Then, we assign

Table 8.3 Assignment of operations to compute resources

Operations Resources and Predominant Data Types

DSP sensor
VLIW

uint16
int16

WarpUnit

GPU
SIMT/SIMD

uint16/32
int16/32
float/double
TextureUnit

CPU
Threads

uint16/32
int16/32
float/double

CPU
SIMD

uint16/32
int16/32
float/double

CPU
General

uint16/32
int16/32
float/double

1. Capture
RGB-D images

x

2. 4-point warp image rectify x x
3. Remove motion blur x
4. Segment auto, roadway x
5. Segment auto shape regions x
6. Morphology to clean up shapes x
7. Area, perimeter, centroid x
8. Radius line segments x
9. Radius histograms x
10. Fourier descriptors x
11. Mirror distance x
12. Dominant region colors x
13. Classify features x
14. Object classification score x

288 8 Vision Pipelines and Optimizations

each bounding box as an image tile to a separate CPU thread for computation of the remaining

measurements: radial line segment length, Fourier descriptor, and mirror distance. Each bounding

box is then assigned to a separate CPU thread for computation of the colorimetry of each region,

including cargo, roof, and hood, as shown in Table 8.3. Each CPU thread uses C++ for the color

conversions and attempts to use compiler flags to force SIMD instruction optimizations.

Tracking the automobile from frame to frame is possible using shape and color features; however,

we do not develop the tracking algorithm here. For correspondence and matching, we rely on a

generic database from a third party, running in a separate thread on a CPU that is executing in parallel

with the earlier stages of the pipeline. We assume that the database can split its own work into parallel

threads. However, an optimization phase could rewrite and create a better database and classifier,

using parallel threads to match feature descriptors.

Face, Emotion, and Age Recognition

In this example, we design a face, emotion, and age recognition pipeline that uses local feature

descriptors and interest points. Face recognition is concerned with identifying the unique face of a

unique person, while face detection is concerned with determining only where a face is located and

interesting characteristics such as emotion, age, and gender. Our example is for face detection, and

finding the emotions and age of the subject.

For simplicity, this example uses mugshots of single faces taken with a stationary camera for

biometric identification to access a secure area. Using mugshots simplifies the example considerably,

since there is no requirement to pick out faces in a crowd from many angles and distances. Key design

challenges include finding a reliable interest point and feature descriptor method to identify the key

facial landmarks, determining emotion and age, and modeling the landmarks in a normalized, relative

coordinate system to allow for distance ratios and angles to be computed.

Excellent facial recognition systems for biometric identification have been deployed for several

decades that use a wide range of methods, achieving accuracies of close to 100 %. In this exercise, no

attempt is made to prove performance or accuracy. We define the system with the following

requirements:

• 1080p RGB color video (1920 � 1080 pixels) at 30 fps, horizontally mounted to provide highest

resolution in length, 12 bits per color, 65� FOV, 30 FPS

• Image FOV covers 2 ft in height and 1.5 ft in width, enough for a complete head and top of the

shoulder

• Background is a white drop screen for ease of segmentation

• Illumination is positioned in front of and slightly above the subject, to cast faint shadows across the

entire face that highlight corners around eyes, lips, and nose

• For each face, the system identifies the following landmarks:

– Eyes: two eye corners and one center of eye

– Dominant eye color: in CIECAM02 JCH color coordinates

– Dominant face color: in CIECAM02 JCH color coordinates

– Eyebrows: two eyebrow endpoints and one center of eyebrow arc, used for determining

emotions

– Nose: one point on nose tip and two widest points by nostrils, used for determining emotions

and gender

– Lips: two endpoints of lips, two center ridges on upper lip

– Cheeks: one point for each cheek center

The Vision Pipeline Examples 289

– Chin: one point, bottom point of chin, may be unreliable due to facial hair

– Top of head: one point; may be unreliable due to hairstyle

– Unique facial markings: these could include birthmarks, moles, or scars, and must fall within a

bounding box computed around the face region

• A FREAK feature is computed at each detected landmark on the original image

• Accuracy is 99 % or better

• Simplified robustness criteria to include scale only

Note that emotion, age, and gender can all be estimated from selected relative distances and

proportional ratios of facial features, and we assume that an expert in human face anatomy provides

the correct positions and ratios to use for a real system. See Fig. 8.6.

The set of features computed for this example system includes:

1. Relative positions of facial landmarks such as eyes, eyebrows, nose, and mouth

2. Relative proportions and ratios between landmarks to determine age, sex, and emotion

3. FREAK descriptor at each landmark

4. Eye color

Calibration and Ground Truth Data
The calibration is simple: a white backdrop is used in back of the subject, who stands about 4 ft away

from the camera, enabling a shot of the head and upper shoulders. (We discuss the operations used to

segment the head from the background region later in this section.) Given that we have a 1080p

image, we allocate the 1920 pixels to the vertical direction and the 1080 pixels to the horizontal.

Assuming the cameraman is good enough to center the head in the image so that the head occupies

about 50 % of the horizontal pixels, and about 50 % of the vertical pixels, we have pixel resolution

for the head of ~540 pixels horizontal and ~960 pixels vertical, which is good enough for our

application and corresponds to the ratio of head height to width. Since we assume that average

Figure 8.6 (Left) Proportional ratios based on a bounding box of the head and face regions as guidelines to predict the
location of facial landmarks. (Right) Annotated image with detected facial landmark positions and relative angles and

distances measured between landmarks. The relative measurements are used to determine emotion, age, and gender

290 8 Vision Pipelines and Optimizations

head height is about 9 in. and width as 6 in. across for male and female adults, using our assumptions

for a four-foot distance from the camera, we have plenty of pixel accuracy and resolution:

900/(1920pixels � 0.5) ¼ 0.00900 vertical pixel size
600/(1080pixels � 0.5) ¼ 0.0100 horizontal pixel size

The ground truth data consists of: (1) mugshots of known people, and (2) a set of canonical eye

landmark features in the form of correlation templates used to assist in locating face landmarks

(a sparse codebook of correlation temlpates). There are two sets of correlation templates: one for fine
features based on a position found using a Hessian detector, and one for coarse features based on a

position found using a steerable filter based detector (the fine and coarse detectors are described in

more detail later in this example).

Since facial features like eyes and lips are very similar among people, the canonical landmark

feature correlation templates provide only rough identification of landmarks and their location.

Several templates are provided covering a range of ages and genders for all landmarks, such as eye

corners, eyebrow corners, eyebrow peaks, nose corners, nose bottom, lip corners, and lip center

region shapes. For sake of brevity, we do not develop the ground truth dataset for correlation

templates here, but we assume the process is accomplished using synthetic features created by

warping or changing real features and testing them against several real human faces to arrive at the

best canonical feature set. The correlation templates are used in the face landmark identification

stage, discussed later.

Interest Point Position Prediction
To find the facial landmarks, such as eyes, nose, and mouth, this example application is simplified by

using mugshots, making the position of facial features predictable and enabling intelligent search for

each feature at the predicted locations. Rather than resort to scientific studies of head sizes and shapes,

for this example we use basic proportional assumptions from human anatomy (used for centuries by

artists) to predict facial feature locations and enable search for facial features at predicted locations.

Facial feature ratios differ primarily by age, gender, and race; for example, typical adult male ratios

are shown in Table 8.4.

Table 8.4 Basic approximate face and head feature proportions

Head height head width X 1.25

Head width head height X .75

Face height head height X.75

Face width head height X.75

Eye position eye center located 30% in from edges, 50% from top of head

Eye length head width X .25

Eye spacing head width X .5 (center to center)

Nose length head height X .25

Lip corners about eye center x, about 15% higher than chin y

The Vision Pipeline Examples 291

& Note The information in Table 8.4 is synthesized for illustration purposes from elementary

artists’ materials and is not guaranteed to be accurate.

The most basic coordinates to establish are the bounding box for the head. From the bounding box,

other landmark facial feature positions can be predicted.

Segmenting the Head and Face Using the Bounding Box
As stated earlier, the mugshots are taken from a distance of about 4 ft against a white drop

background, allowing simple segmentation of the head. We use thresholding on simple color intensity

as RGBI-I, where I ¼ (R + G + B)/3 and the white drop background is identified as the highest

intensity.

The segmented head and shoulder region is used to create a bounding box of the head and face,

discussed next. (Note: wild hairstyles will require another method, perhaps based on relative sizes and

positions of facial features compared to head shape and proportions.) After segmenting the bounding

box for the head, we proceed to segment the facial region and then find each landmark. The rough size

of the bounding box for head is computed in two steps:

1. Find the top and left, right sides of the head—Topxy, Leftxy, Rightxy—which we assume can be

directly found by making a pass through the image line by line and recording the rows and columns

where the background is segmented to meet the foreground of head, to establish the coordinates.

All leftmost and rightmost coordinates for each line can be saved in a vector, and sorted to find the

median values to use as Rightx/Leftx coordinates. We compute head width as:

Hw ¼ Rightx � Leftx

2. Find the chin to assist in computing the head height Hh. The chin is found by first predicting the

location of the chin, then performing edge detection and some filtering around the predicted

location to establish the chin feature, which we assume is simple to find based on gradient

magnitude of the chin perimeter. The chin location prediction is made by using the head top

coordinates Topxy and the normal anatomical ratio of the head height Hh to head width Hw, which

is known to be about 0.75. Since we know both Topxy and Hw from step 1, we can predict the x and

y coordinates of the chin as follows:

Chiny ¼ 0:25� Hwð Þ þ Topy

Chinx ¼ Topx

Actually, hair style makes the segmentation of the head difficult in some cases, since the hair may

be piled high on top or extend widely on the sides and cover the ears. However, we can either iterate

the chin detection method a few times to find the best chin, or else assume that our segmentation

method will solve this problem somehow via a hair filter module, so we move on with this example

for the sake of brevity.

To locate the chin position, a horizontal edge detection mask is used around the predicted location,

since the chin is predominantly a horizontal edge. The coordinates of the connected horizontal edge

maxima are filtered to find the lowest y coordinates of the horizontal edge set, and the median of the

lowest x/y coordinates is used as the initial guess at the chin center location. Later, when the eye

positions are known, the chin x position can be sanity-checked with the position of the midpoint

between the eyes and recomputed, if needed. See Fig. 8.7.

292 8 Vision Pipelines and Optimizations

The head bounding box, containing the face, is assumed to be:

BoundingBoxTopLeftx ¼ Leftx
BoundingBoxTopLefty ¼ Topy
BoundingBoxBottomRightx ¼ Rightx
BoundingBoxBottomRighty ¼ Chiny

Face Landmark Identification and Compute Features
Now that the head bounding box is computed, the locations of the face landmark feature set can be

predicted using the basic proportional estimates from Table 8.4. A search is made around each

predicted location to find the features; see Fig. 8.6. For example, the eye center locations are ~30 % in

from the sides and about 50 % down from the top of the head.

In our system we use an image pyramid with two levels for feature searching, a coarse-level search

down-sampled by four times, and a fine-level search at full resolution to relocate the interest points,

compute the feature descriptors, and take the measurements. The coarse-to-fine approach allows for

wide variation in the relative size of the head to account for mild scale invariance owing to distance

from the camera and/or differences in head size owing to age.

We do not add a step here to rotate the head orthogonal to the Cartesian coordinates in case the

head is tilted; however, this could be done easily. For example, an iterative procedure can be used to

minimize the width of the orthogonal bounding box, using several rotations of the image taken every

2� from�10 to +10�. The bounding box is computed for each rotation, and the smallest bounding box

width is taken to find the angle used to correct the image for head tilt.

In addition, we do not add a step here to compute the surface texture of the skin, useful for age

detection to find wrinkles, which is easily accomplished by segmenting several skin regions, such as

forehead, eye corners, and the region around mouth, and computing the surface texture (wrinkles)

using an edge or texture metric.

Figure 8.7 Location of facial landmarks. (Left) Facial landmarks enhanced using largest eigenvalues of Hessian tensor

[475] in FeatureJ; note the fine edges that provide extra detail. (Center) Template-based feature detector using

steerable filters with additional filtering along the lines of the Canny detector [382] to provide coarse detail. (Right)
Steerable filter pattern used to compute center image. Both images are enhanced using contrast window remapping to

highlight the edges. FeatureJ plug-in for ImageJ used to generate eigenvalues of Hessian (FeatureJ developed by Erik

Meijering)

The Vision Pipeline Examples 293

The landmark detection steps include feature detection, feature description, and computing

relative measurements of the positions and angles between landmarks, as follows:

1. Compute interest points: Prior to searching for the facial features, interest point detectors are used

to compute likely candidate positions around predicted locations. Here we use a combination of

two detectors: (1) the largest eigenvalue of the Hessian tensor [475], and (2) steerable filters [370]

processed with an edge detection filter criteria similar to the Canny method [382], as illustrated in

Fig. 8.7. Both the Hessian and the Canny-like edge detectors images are followed by contrast

windowing to enhance the edge detail. The Hessian style and Canny-style images are used together

to vote on the actual location of best interest points during the correlation stage next.

2. Compute landmark positions using correlation: The final position of each facial landmark feature

is determined using a canonical set of correlation templates, described earlier, including eye

corners, eyebrow corners, eyebrow peaks, nose corners, nose bottom, lip corners, and lip center

region shapes. The predicted location to start the correlation search is the average position of both

detectors from step 1: (1) The Hessian approach provides fine-feature details, (2) while the

steerable filter approach provides coarse-feature details. Testing will determine if correlation

alone is sufficient without needing interest points from step 1.

3. Describe landmarks using FREAK descriptors: For each landmark location found in step 2, we

compute a FREAK descriptor. SIFT may work just as well.

4. Measure dominant eye color using CIECAM02 JCH: We use a super-pixel method [249, 250] to

segment out the regions of color around the center of the eye, and make a histogram of the colors of

the super-pixel cells. The black pupil and the white of the eye should cluster as peaks in the

histogram, and the dominant color of the eye should cluster in the histogram also. Even multicol-

ored eyes will be recognized using our approach using histogram correspondence.

5. Compute relative positions and angles between landmarks: In step 2 above, correlation was used to

find the location of each feature (to sub-pixel accuracy if desired [450]). As illustrated in Fig. 8.6,

we use the landmark positions as the basis for measuring the relative distances of several features,

such as:

(a) Eye distance, center to center, useful for age and gender

(b) Eye size, corner to corner

(c) Eyebrow angle, end to center, useful for emotion

(d) Eyebrow to eye angle, ends to center positions, useful for emotion

(e) Eyebrow distance to eye center, useful for emotion

(f) Lip or mouth width

(g) Center lip ridges angle with lip corners, useful for emotion

Pipeline Stages and Operations
The pipeline stages and operations are shown in Fig. 8.8. For correspondence, we assume a separate

database table for each feature. We are not interested in creating an optimized classifier to speed up

pattern matching; brute-force searching is fine.

294 8 Vision Pipelines and Optimizations

Operations and Compute Resources
For this example, there is mostly straight-line code best suited for the CPU. Following the data access

patterns as a guide, the bounding box, relative distances and ratios, FREAK descriptors and corre-

spondence are good candidates for the CPU. In some cases, separate CPU threads can be used, such as

computing the FREAK descriptors at each landmark in separate threads (threads are likely overkill

for this simple application). We assume feature matching using a standard database. Our application

is assumed to have plenty of time to wait for correspondence.

Some operations are suited for a GPU; for example the area operations, including the Hessian and

Canny-like interest point detectors. These methods could be combined and optimized into a single

shader program using a single common data read loop and combined processing loop, which produce

output into two images, one for each detector. In addition, we assume that the GPU provides an API to

a fast, HW accelerated correlation block matcher in the media section, so we take advantage of the

HW accelerated correlation.

Criteria for Resource Assignments
In this example, performance is not a problem, so the criteria for using computer resources are

relaxed. In fact, all the code could be written to run in a single thread on a single CPU, and the

performance would likely be fast enough with our target system assumptions. However, the resource

assignments shown in Table 8.5 are intended to illustrate reasonable use of the resources for each

operation to spread the workload around the SOC.

Capture RGB and D
images

Segment out background
from head

Bounding box:
Compute head width, head

Predict face landmark
positions relative to

Compute Hessian and
Canny detector image set

Bounding box:
Predict chin position

Correlation templates at
each feature landmark to

Compute relative angles
and distances between

Compute super-pixel
segmentation of eye

Create histogram of
super-pixel region JCH

Compute SIFT descriptor
at each landmark location

Classify features

Head
width/height

Eye Color

Face
landmarks

SIFT features

Object classification score

Image pre-processing Feature Description Correspondence

Figure 8.8 Operations in hypothetical vision pipeline for face, emotion, and age detection using local features

The Vision Pipeline Examples 295

Image Classification

For our next example, we design a simple image classification system intended for mobile phone use,

with the goal of identifying the main objects in the camera’s field of view, such as buildings,

automobiles, and people. For image classification applications, the entire image is of interest, rather

than specific local features. The user will have a simple app which allows them to point the camera at

an object, and wave the camera from side to side to establish the stereo baseline for MVS depth

sensing, discussed later. A wide range of global metrics can be applied (as discussed in Chap. 3),

computed over the entire image, such as texture, histograms of color or intensity, and methods for

connected component labeling. Also, local features (as discussed in Chap. 6) can be applied to

describe key parts of the images. This hypothetical application uses both global and local features.

We define the system with the following requirements:

• 1080p RGB color video (1920 � 1080 pixels) at 30 fps, 12 bits per color, 65� FOV, 30 FPS

• Image FOV covers infinite focus view from a mobile phone camera

• Unlimited lighting conditions (bad and good)

• Accuracy of 90 % or better

• Simplified robustness criteria, including scale, perspective, occlusion

• For each image, the system computes the following features:

– Global RGBI histogram, in RGB-I color space

– GPS coordinates, since the phone has a GPS
– Camera pose via MVS depth sensing, using the accelerometer data for geometric rectification to

an orthogonal FOV plane (the user is asked to wave the camera while pointed at the subject, the

camera pose vector is computed from the accelerometer data and relative to the main objects in

the FOV using ICP)

Table 8.5 Assignments of operations to compute resources

Operations Resources and Predominant Data Types

DSP sensor
VLIW

uint16
int16

WarpUnit

GPU
SIMT/SIMD

uint16/32
int16/32
float/double

TextureUnit

CPU
Threads

uint16/32
int16/32
float/double

CPU
SIMD

uint16/32
int16/32
float/double

CPU
General

uint16/32
int16/32
float/double

1. Capture
RGB-D images

x

2. Segment background fromhead x
3. Bounding box x
4. Compute Hessian and Canny x
5. Correlation x
6. Compute relative angles,
distance

x

7. Super-pixel eye segmentation x
8. Eye segment color histogram x
9. FREAK descriptors x
10. Correspondence x
11. Object classification score x

296 8 Vision Pipelines and Optimizations

http://dx.doi.org/10.1007/978-3-319-33762-3_3
http://dx.doi.org/10.1007/978-3-319-33762-3_6

– SIFT features, ideally between 20 and 30 features stored for each image

– Depth map via monocular dense depth sensing, used to segment out objects in the FOV, depth

range target 0.3–30 m, accuracy within 1 % at 1 m, and within 10 % at 30 m

– Scene labeling and pixel labeling, based on attributes of segmented regions, including RGB-I

color and LBP texture

Scene recognition is a well-researched field, and several grand challenge competitions are held

annually to find methods for increased accuracy using established ground truth datasets, as shown in

Appendix B. The best accuracy achieved for various categories of images in the challenges ranges

from 50 to over 90 %. In this exercise, no attempt is made to prove performance or accuracy.

Segmenting Images and Feature Descriptors
For this hypothetical vision pipeline, several methods for segmenting the scene into objects will be

used together, instead of relying on a single method, as follows:

1. Dense segmentation, scene parsing, and object labeling: A depth map generated using monoc-

ular MVS is used to segment common items in the scene, including the ground or floor, sky or

ceiling, left and right walls, background, and subjects in the scene. To compute monocular depth

from the mobile phone device, the user is prompted by the application to move the camera from

left to right over a range of arm’s length covering 3 ft or so, to create a series of wide baseline

stereo images for computing depth using MVS methods (as discussed in Chap. 1). MVS provides a

dense depth map. Even though MVS computation is compute-intensive, this is not a problem,

since our application does not require continuous real-time depth map generation—just a single

depth map; 3–4 s to acquire the baseline images and generate the depth map is assumed possible

for our hypothetical mobile device.

2. Color segmentation and component labeling using super-pixels: The color segmentation using

super-pixels should correspond roughly with portions of the depth segmentation.

3. LBP region segmentation: This method is fairly fast to compute and compact to represent, as

discussed in Chap. 6.

4. Fused segmentation: The depth, color, and LBP segmentation regions are combined using Boolean

masks and morphology and some logic into a fused segmentation. The method uses an iterative

loop to minimize the differences between color, depth, and LBP segmentation methods into a new

fused segmentation map. The fused segmentation map is one of the global image descriptors.

5. Shape features for each segmented region: basic shape features, such as area and centroid, are

computed for each fused segmentation region. Relative distance and angle between region

centroids is also computed into a composite descriptor.

In this hypothetical example, we use several feature descriptor methods together for additional

robustness and invariance, and some preprocessing, summarized as follows:

1. SIFT interest points across the entire image are used as additional clues. We follow the SIFT

method exactly, since SIFT is known to recognize larger objects using as few as three or four SIFT

features [153]. However, we expect to limit the SIFT feature count to 20 or 30 strong candidate

features per scene, based on training results.

2. In addition, since we have an accelerometer and GPS sensor data on the mobile phone, we can use

sensor data as hints for identifying objects based on location and camera pose alone, for example

assuming a server exists to look up the GPS coordinates of landmarks in an area.

The Vision Pipeline Examples 297

http://dx.doi.org/10.1007/978-3-319-33762-3_BM1
http://dx.doi.org/10.1007/978-3-319-33762-3_1
http://dx.doi.org/10.1007/978-3-319-33762-3_6

3. Since illumination invariance is required, we perform RGBI contrast remapping in an attempt to

normalize contrast and color prior to the SIFT feature computations, color histograms, and LBP

computations. We assume a statistical method for computing the best intensity remapping limits is

used to spread out the total range of color to mitigate dark and oversaturated images, based on

ground truth data testing, but we do not take time to develop the algorithm here; however, some

discussion on candidate algorithms is provided in Chap. 2. For example, computing SIFT

descriptors on dark images may not provide sufficient edge gradient information to compute a

good SIFT descriptor, since SIFT requires gradients. Oversaturated images will have washed-out

color, preventing good color histograms.

4. The fused segmentation combines the best of all the color, LBP, and depth segmentation methods,

minimizing the segmentation differences by fusing all segmentations into a fused segmentation

map. LBP is used also, which is less sensitive to both low light and oversaturated conditions,

providing some balance.

Again, in the spirit of a hypothetical exercise, we do not take time here to develop the algorithm

beyond the basic descriptions given above.

Pipeline Stages and Operations
The pipeline stages are shown in Fig. 8.9. They include an image preprocessing stage primarily to

correct image contrast, compute depth maps and segmentation maps. The feature description stage

computes the RGBI color histograms, SIFT features, a fused segmentation map combining the best of

depth, color, and LBP methods, and then labels the pixels as connected components. For correspon-

dence, we assume a separate database table for each feature, using brute-force search; no optimization

attempted.

Capture wide baseline
images

RGBI contrast remapping

Compute MVS depth map

Color segmentation map

LBP texture segmentation
map

Compute RGBI color
histograms

Compute SIFT features

Compute
fused-segmentation

Labeling segmented
objects

Classify features

Histograms

GPS,camera
pose

Segmented
Objects

SIFT features

Object classification score

Image pre-processing Feature Description Correspondence

Figure 8.9 Operations in hypothetical image classification pipeline using global features

298 8 Vision Pipelines and Optimizations

http://dx.doi.org/10.1007/978-3-319-33762-3_2

Mapping Operations to Resources
We assume that the DSP provides an API for contrast remapping, and since the DSP is already

processing all the pixels from the sensor anyway and the pixel data is already there, contrast

remapping is a good match for the DSP.

The MVS depth map computations follow a data pattern of line and area operations. We use the

GPU for the heavy-lifting portions of the MVS algorithm, like left/right image pair pattern matching.

Our algorithm follows the basic stereo algorithms, as discussed in Chap. 1. The stereo baseline is

estimated initially from the accelerometer, then some bundle adjustment iterations over the baseline

image set are used to improve the baseline estimates. We assume that the MVS stereo workload is the

heaviest in this pipeline and consumes most of the GPU for a second or two. A dense depth map is

produced in the end to use for depth segmentation.

The color segmentation is performed on RGBI components using a super-pixel method

[249, 250]. A histogram of the color components is also computed in RGBI for each superpixel

cell. The LBP texture computation is a good match for the GPU since it is an area operation amenable

to shader programming style. So it is possible to combine the color segmentation and the LBP texture

segmentation into the same shader to leverage data sharing in register files and avoid data swapping

and data copies.

The SIFT feature description can be assigned to CPU threads, and the data can be tiled and divided

among the CPU threads for parallel feature description. Likewise, the fused segmentation can be

assigned to CPU threads and the data tiled also. Note that tiled data can include overlapping boundary

regions or buffers, see Fig. 8.12 for an illustration of overlapped data tiling. Labeling can also be

assigned to parallel CPU threads in a similar manner, using tiled data regions. Finally, we assume a

brute-force matching stage using database tables for each descriptor to develop the final score, and we

weight some features more than others in the final scoring, based on training against ground

truth data.

Criteria for Resource Assignments
The basic criterion for the resource assignments is to perform the early point processing on the DSP,

since the data is already resident, and then to use the GPU SIMT SIMD model to compute the area

operations as shaders to create the depth maps, color segmentation maps, and LBP texture maps. The

last stages of the pipeline map nicely to thread parallel methods and data tiling. Given the chosen

operation to resource assignments shown in Table 8.6, this application seems cleanly amenable to

workload balancing and parallelization across the CPU cores in threads and the GPU.

Augmented Reality

In this fourth example, we design an augmented reality application for equipment maintenance using

a wearable display device such as glasses or goggles and wearable cameras. The complete system

consists of a portable, wearable device with camera and display connected to a server via wireless.

Processing is distributed between the wearable device and the server (Note: this example is especially

high level and leaves out a lot of detail, since the actual system would be complex to design, train

and test.).

The server system contains all the CAD models of the machine and provides on-demand graphics

models or renderings of any machine part from any viewpoint. The wearable cameras track the eye

gaze and the position of the machine. The wearable display allows a service technician to look at a

The Vision Pipeline Examples 299

http://dx.doi.org/10.1007/978-3-319-33762-3_1

machine and view augmented reality overlays on the display, illustrating how to service the machine.

As the user looks at a given machine, the augmented reality features identify the machine parts and

provide overlays and animations for assisting in troubleshooting and repair. The system uses a

combination of RGB images as textures on 3D depth surfaces and a database of 3D CAD models

of the machine and all the component machine parts.

The system will have the following requirements:

• 1080p RGB color video camera (1920 � 1080 pixels) at 30 fps, 12 bits per color, 65� FOV,

30 FPS

• 1080p stereo depth camera with 8 bits Z resolution at 60 fps, 65� FOV; all stereo processing

performed in silicon in the camera ASIC with a depth map as output

• 480p near infra-red camera pointed at eyes of technician, used for gaze detection; the near-infrared

camera images better in the low-light environment around the head-mounted display

• 1080p wearable RGB display

• A wearable PC to drive the cameras and display, descriptor generation, and wireless

communications with the server; the system is battery powered for mobile use with an 8-h battery

life

• A server to contain the CAD models of the machines and parts; each part will have associated

descriptors precomputed into the data base; the server can provide either graphics models or

complete renderings to the wearable device via wireless

• Server to contain ground truth data consisting of feature descriptors computed on CAD model

renderings of each part + normalized 3D coordinates for each descriptor for machine parts

• Simplified robustness criteria include perspective, scale, and rotation

Table 8.6 Assignments of operations to compute resources

Operations Resources and Predominant Data Types

DSP sensor
VLIW

uint16
int16

WarpUnit

GPU
SIMT/SIMD

uint16/32
int16/32
float/double
TextureUnit

CPU
Threads

uint16/32
int16/32
float/double

CPU
SIMD

uint16/32
int16/32
float/double

CPU
General

uint16/32
int16/32
float/double

1. Capture RGB wide baseline
images

x

2. RGBI contrast remapping x
3. MVS depth map x
4. LBP texture segmentation map x
5. Color segmentation map x
6. RGBI color histograms x
7. SIFT features x
8. Fused segmentation x
9. Labeling segmented objects x
10. Correspondence x
11. Object classification score x

300 8 Vision Pipelines and Optimizations

Calibration and Ground Truth Data
We assume that the RGB camera and the stereo camera system are calibrated with correct optics to

precisely image the same FOV, since the RGB camera and 3D depth map must correspond at each

pixel location to enable 2D features to be accurately associated with the corresponding 3D depth

location. However, the eye gaze camera will require some independent calibration, and we assume a

simple calibration application is developed to learn the technician’s eye positions by using the stereo

and RGB cameras to locate a feature in the FOV, and then overlay an eye gaze vector on a monitor to

confirm the eye gaze vector accuracy. We do not develop the calibration process here.

However, the ground truth data takes some time to develop and train, and requires experts in repair

and design of the machine to work together during training. The ground truth data includes feature

sets for each part, consisting of 2D SIFT features along corners, edges, and other locations such as

knobs. To create the SIFT features, first a set of graphics renderings of each CAD part model is made

from representative viewpoints the technician is likely to see, and then the 2D SIFT features are

computed on the graphics renderings, and the geometry of the model is used to create relative 3D

coordinates for each SIFT feature for correspondence.

The 2D SIFT feature locations are recorded in the database along with relative 3D coordinates, and

associated into objects using suitable constraints such as angles and relative distances, see Fig. 8.10.

An expert selects a minimum set of features for each part during training—primarily strongest

features from corners and edges of surfaces. The relative angles and distances in three dimensions

between the 2D SIFT features are recorded in the database to provide for perspective, scale, and

rotation invariance. The 3D coordinates for all the parts are normalized to the size of the machine. In

addition, the dominant color and texture of each part surface is computed from the renderings and

stored as texture and color features. This system would require considerable training and testing.

Multivariate Descriptor Layout

SIFT vertex descriptor
*3D coordinate
*2D SIFT
*LBP texture
*RGB color

Part object
*Name of part
*SIFT vertex list
*Angles between SIFT vertex list items
*Distance between SIFT vertex list items
*Service & technical information

Figure 8.10 SIFT vertex descriptor is similar to a computer graphics vertex using 3D location, color, and texture. The

SIFT vertex descriptor contains the 2D SIFT descriptor from the RGB camera, the 3D coordinate of the 2D SIFT

descriptor generated from the depth camera, the RGB color at the SIFT vertex, and the LBP texture at the SIFT vertex.

The Part object contains a list of SIFT vertex descriptors, along with relative angles and distances between each 3D

coordinate in the SIFT vertex list

The Vision Pipeline Examples 301

Feature and Object Description
In actual use in the field, the RGB camera is used to find the 2D SIFT, LBP and color features, and the

stereo camera is used to create the depth map. Since the RGB image and depth map are pixel-aligned,

each feature has 3D coordinates taken from the depth map, which means that a 3D coordinate can be

assigned to a 2D SIFT feature location. The 3D angles and 3D distances between 2D SIFT feature

locations are computed as constraints, and the combined LBP, color and 2D SIFT features with 3D

location constraints are stored as SIFT vertex features and sent to the server for correspondence. See

Fig. 8.10 for an illustration of the layout of the SIFT vertex descriptors and parts objects. Note that the

3D coordinate is associated with several descriptors, including SIFT, LBP texture, ands RGB color,

similar to the way a 3D vertex is represented in computer graphics by 3D location, color, and texture.

During training, several SIFT vertex descriptors are created from various views of the parts, each

view associated by 3D coordinates in the database, allowing for simplified searching and matching

based on 3D coordinates along with the features.

Overlays and Tracking
In the server, SIFT vertex descriptors in the scene are compared against the database to find parts

object. The 3D coordinates, angles, and distances of each feature are normalized relative to the size of

the machine prior to searching. As shown in Fig. 8.10, the SIFT features are composed at a 3D

coordinate into a SIFT vertex descriptor, with an associated 2D SIFT feature, LBP texture, and color.

The SIFT vertex descriptors are associated into part objects, which contain the list of vertex

coordinates describing each part, along with the relative angles and distances between SIFT vertex

features.

Assuming that the machine part objects can be defined using a small set of SIFT vertex features,

sizes and distance can be determined in real time, and the relative 3D information such as size and

position of each part and the whole machine can be continually computed. Using 3D coordinates of

recognized parts and features, augmented reality renderings can be displayed in the head-mounted

display, highlighting part locations and using overlaying animations illustrating the parts to remove,

as well as the path for the hand to follow in the repair process.

The near infrared camera tracks the eyes of the technician to create a 3D gaze vector onto the

scene. The gaze vector can be used for augmented reality “help” overlays in the head-mounted

display, allowing for gaze-directed zoom or information, with more detailed renderings and overlay

information displayed for the parts the technician is looking at.

Pipeline Stages and Operations
The pipeline stages are shown in Fig. 8.11. Note that the processing is divided between the wearable

device (primarily for image capture, feature description, and display), and a server for heavy

workloads, such as correspondence and augmented reality renderings. In this example, the wearable

device is used in combination with the server, relying on a wireless network to transfer images and

data. We assume that data bandwidth and data compression methods are adequate on the wireless

network for all necessary data communications.

302 8 Vision Pipelines and Optimizations

Align RGB + stereo images

Compute 2D SIFT
descriptors

3D info: Add 3D coordinate
to 2D SIFT

Compute LBP texture + RGB
color

Send 2DSIFT, 3D info,
texture & color to server

3D info: Compute 3D angles
& distances

Convert 3D info to relative
coordinates

Match 2D SIFT descriptors

Match 3D info with SIFT 3D
coordinates

Match RGB-I texture + RGB
color

Classify features

Object classification score

Feature Description
(device)

Correspondence
(server)

Augment & Track
(server)

Update gaze pose vector

Determine augmented
rendering coordinates

Render overlay & animation
images

Send graphics geometry to
device

Render augmentation to
head-mounted display

Figure 8.11 Operations in hypothetical augmented reality pipeline

Table 8.7 Assignments of operations to compute resources

Operations Resources and Predominant Data Types

DSP sensor
VLIW

uint16
int16

WarpUnit

GPU
SIMT/SIMD

uint16/32
int16/32
float/double
TextureUnit

CPU
Threads

uint16/32
int16/32
float/double

CPU
SIMD

uint16/32
int16/32
float/double

CPU
General

uint16/32
int16/32
float/double

1. Capture RGB & stereo images Device
2. Align RGB and stereo images Device
5. Compute 2D SIFT Device
3. Compute LBP texture Device
4. Compute color Device
5. Compute 2D SIFT Device
6. Compute 3D angles/distances Device
7. Normalize 3D coordinates Server
8. Match 2D SIFT descriptors Server
9. Match SIFT vertex coordinates Server
10. Match SIFT vertex color & LBP Server
11. Object classification score Server
12. Update gaze pose vector Server
13. Render overlay & animation images Server
14. Display overlays & animations Device

*GFX pipe

The Vision Pipeline Examples 303

Mapping Operations to Resources
We make minimal use of the GPU for GPGPU processing and assume the server has many CPUs

available, and we use the GPU for graphics rendering at the end of the pipeline. Most of the operations

map well into separate CPU threads using data tiling. Note that a server commonly has many high-

power and fast CPUs, so using CPU threads is a good match. See Table 8.7.

Criteria for Resource Assignments
On the mobile device, the depth map is computed in silicon on the depth camera. We use the GPU to

perform the RGB and depth map alignment using the texture sampler, then perform SIFT

computations on the CPU, since the SIFT computations must be done first to have the vertex to

anchor and compute the multivariate descriptor information. We continue and follow data locality

and perform the LBP and color computations for each 2D SIFT point in separate CPU threads using

data tiling and overlapped regions. See Fig. 8.12 for an illustration of overlapped data tiling.

On the server, we have assigned the CAD database and most of the heavy portions of the workload,

including feature matching and database access, since the server is expected to have large storage and

memory capacity and many CPUs available. In addition, we wish to preserve battery life and

minimize heat on the mobile device, so the server is preferred for the majority of this workload.

Acceleration Alternatives

There are a variety of common acceleration methods that can be applied to the vision pipeline,

including attention to memory management, coarse-grained parallelism using threads, data-level

parallelism using SIMD and SIMT methods, multi-core parallelism, advanced CPU and GPU

assembler language instructions, and hardware accelerators.

There are two fundamental approaches for acceleration:

1. Follow the data

2. Follow the algorithm

Optimizing algorithms for compute devices, such as SIMD instruction sets or SIMT GPGPU

methods, also referred to as stream processing, is oftentimes the obvious choice designers consider.

However, optimizing for data flow and data residency can yield better results. For example, bouncing

data back and forth between compute resources and data formats is not a good idea; it eats up time

and power consumed by the copy and format conversion operations. Data copying in slow-system

memory is much slower than data access in fast-register files within the compute units. Considering

the memory architecture hierarchy of memory speeds, as was illustrated in Fig. 8.2, and considering

the image-intensive character of computer vision, it is better to find ways to follow the data and

keep the data resident in fast registers and cache memory as long as possible, local to the

compute unit.

Memory Optimizations

Attention to memory footprint and memory transfer bandwidth are the most often overlooked areas

when optimizing an imaging or vision application, yet memory issues are the most critical in terms of

304 8 Vision Pipelines and Optimizations

power, bandwidth, silicon area, and overall performance. As shown in Table 8.2 and the memory

discussion following, a very basic vision pipeline moves several GB/s of descriptor through the

system between compute units and system memory, and DNN’s may be an order of magnitude more

data intensive. In addition, area processes like interest point detection and image preprocessing move

even more data in complex routes through the register files of each compute unit, caches, and system

memory.

Why optimize for memory? By optimizing memory use, data transfers are reduced, performance is

improved, power costs are reduced, and battery life is increased. Power is costly; in fact, a large

Internet search company has built server farms very close to the Columbia River’s hydroelectric

systems to guarantee clean power and reduce power transmission costs.

For mobile devices, battery life is a top concern. Governments are also beginning to issue carbon

taxes and credits to encourage power reductions. Memory use, thus, is a cost that is often overlooked.

Memory optimization APIs and approaches will be different for each compute platform and operating

system. A good discussion on memory optimization methods for Linux is found in reference [476].

Minimizing Memory Transfers Between Compute Units
Data transfers between compute units should be avoided, if possible. Workload consolidation should

be considered during the optimization and tuning stage in order to perform as much processing as

possible on the same data while it is resident in register files and the local cache of a given compute

unit. That is, follow the data.

For example, using a GPGPU shader for a single-area operation, then processing the same data on

the CPU will likely be slower than performing all the processing on the CPU. That is because GPGPU

kernels require device driver intervention to set up the memory for each kernel and launch each

kernel, while a CPU program accesses code and data directly, with no driver setup required other than

initial program loading. One method to reduce the back-and-forth between compute units is to use

loop coalescing and task chaining, discussed later in this section.

Memory Tiling
When dividing workloads for coarse-grained parallelism into several threads, the image can be

broken into tiled regions and each tile assigned to a thread. Tiling works well for point, line, and

area processing, where each thread performs the same operation on the tiled region. By allowing for

an overlapped read region between tiles, the hard boundaries are eliminated and area operations like

convolution can read into adjacent tiles for kernel processing, as well as write finished results into

their tile.

Acceleration Alternatives 305

DMA, Data Copy, and Conversions
Often, multiple copies of an image are needed in the vision pipeline, and in some cases, the data must

be converted from one type to another. Converting 12-bit unsigned color channel data stored in a

16-bit integer to a 32-bit integer allowing for more accurate numerical precision downstream in

computations is one example. Also, the color channels might be converted into a chosen color space,

such as RGBI, for color processing in the I component space (R � G � B)/3 ¼ I; then, the new

I value is mixed and copied back into the RGB components. Careful attention to data layout and data

residency will allow more efficient forward and backward color conversions.

When copying data, it is good to try using the direct memory access (DMA) unit for the fastest

possible data copies. The DMA unit is implemented in hardware to directly optimize and control the

I/O interconnect traffic in and out of memory. Operating systems provide APIs to access the DMA

unit [476]. There are variations for optimizing the DMA methods, and some interesting reading

comparing cache performance against DMA in vision applications are found in references [477, 479].

Register Files, Memory Caching, and Pinning
The memory system is a hierarchy of virtual and physical memories for each processor, composed of

slow fixed storage such as file systems, page files, and swap files for managing virtual memory,

system memory, caches, and fast-register files inside compute units, and with memory interconnects

in between. If the data to process is resident in the register files, it is processed by the ALU at

processor clock rates. Best-case memory access is via the register files close to each ALU, so keeping

the data in registers and performing all possible processing before copying the data is optimal, but this

may require some code changes (discussed later in this section).

Tile 1

Tile 2

Tile 3

Tile 4

16

16

16 16

Figure 8.12 Data tiling into four overlapping tiles. The tiles overlap a specific amount, 16 pixels in this case, allowing

for area operations such as convolutions to read, not write, into the overlapped region for assembling convolution kernel

data from adjacent regions. However, each thread only writes into the nonoverlapped region within its tile. Each tile can

be assigned to a separate thread or CPU core for processing

306 8 Vision Pipelines and Optimizations

If the cache must be accessed to get the data, more clock cycles are burned (power is burned,

performance is lost) compared to accessing the register files. And if there is a cache miss and much

slower system memory must be accessed, typically many hundreds of clock cycles are required to

move the memory to register files through the caches for ALU processing.

Operating systems provide APIs to lock or pin the data in memory, which usually increases the

amount of data in cache, decreasing paging and swapping. (Swapping is a hidden copy operation

carried out by the operating system automatically to make more room in system memory). When data

is accessed often, the data will be resident in the faster cache memories, as was illustrated in Fig. 8.2.

Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization
The data structures used contribute to memory traffic. Data organization should allow serial access in

contiguous blocks as much as possible to provide best performance. From the programming perspec-

tive, data structures are often designed with convenience in mind, and no attention is given to how the

compiler will arrange the data or the resulting performance.

For example, consider a data structure with several fields composed of bytes, integers, and floating

point data items; compilers may attempt to rearrange the positions of data items in the data structures,

and even pack the data in a different order for various optimizations. Compilers usually provide a set

of compiler directives, such as in-line pragmas and compiler switches, to control the data packing

behavior; these are worth looking into.

For point processing, vectors of data are the natural structure, and the memory system will operate

at peak performance in accessing and processing contiguous vectors. For area operations, rectangles

spanning several lines are used, and the rectangles cause memory access patterns that can generate

cache misses. Using scatter-gather operations for gathering convolution kernel data allows a large

data structure to be split apart into vectors of data, increasing performance. Often, CPU and GPU

memory architectures pay special attention to data-access patterns and provide hidden methods for

optimizations.

Scatter-gather operations, also referred to as vectored I/O or strided memory access, can be

implemented in the GPU or CPU silicon to allow for rapid read/write access to noncontiguous data

structure patterns. Typically, a scatter operation writes multiple input buffers into a contiguous

pattern in a single output buffer, and a gather operation analogously reads multiple input buffers

into a contiguous pattern in the output buffer.

Operating systems and compute languages provide APIs for scatter-gather operations. For Linux-

style operating systems, see the readv and writev function specified in the POSIX 1003.1-2001

specification. The async_work_group_strided_copy function is provided by OpenCL for scatter-gather.

Coarse-Grain Parallelism

A vision pipeline can be implemented using coarse-grain parallelism by breaking up the work into

threads, and also by assigning work to multiple processor cores. Coarse-grained parallelism can be

achieved by breaking up the compute workload into pipelines of threads, or by breaking up the

memory into tiles assigned to multiple threads.

Compute-Centric vs. Data-Centric
Coarse-grain parallelism can be employed via compute-centric and data-centric approaches. For

example, in a compute-centric approach, vision pipeline stages can be split among independent

execution threads and compute units along the lines of pipeline stages, and data is fed into the next

stage a little at a time via queues and FIFOs. In a data-centric approach, an image can be split into

tiles, as was shown in Fig. 8.12, and each thread processes an independent tile region.

Acceleration Alternatives 307

Threads and Multiple Cores
Several methods exist to spread threads across multiple CPU cores, including reliance on the

operating system scheduler to make optimum use of each CPU core and perform load balancing.

Another is by assigning specific tasks to specific CPU cores. Each operating system has different

controls available to tune the process scheduler for each thread, and also may provide the capability to

assign specific threads to specific processors. (We discuss programming resources, languages and

tools for coarse-grained threading later in this chapter.) Each operating system will provide an API for

threading, such as pthreads. See Fig. 8.13.

Fine-Grain Data Parallelism

Fine-grain parallelism refers to the data organization and the corresponding processor architectures

exploiting parallelism, traditionally referred to as array processors or vector processors. Not all

applications are data parallel. Deploying non-data-parallel code to run on a data-parallel machine is

counterproductive; it is better to use the CPU and straight-line code to start.

A data-parallel operation should exhibit common memory patterns, such as large arrays of regular

data like lines of pixels or tiles of pixels, which are processed in the same way. Referring back to

Fig. 8.1, note that some algorithms operate on vectors of points, lines, and pixel regions. These data

patterns and corresponding processing operations are inherently data-parallel. Examples of point

operations are color corrections and data-type conversions, and examples of area operations are

convolution and morphology. Some algorithms are straight-line code, with lots of branching and little

parallelism. Fine-grained data parallelism is supported directly via SIMD and SIMT methods.

SIMD, SIMT, and SPMD Fundamentals
The supercomputers of yesterday are now equivalent to the GPUs and multi-core CPUs of today. The

performance of SIMD, SIMT, and SPMD machines, and their parallel programming languages, is of

great interest to the scientific community. It has been developed over decades, and many good

resources are available that can be applied to inexpensive SOCs today; see the National Center for

Supercomputing Applications [526] for a starting point.

Figure 8.13 (Left) Typical SIFT descriptor pipeline compute allocation [172]. (Right) Reported compute times [112]

for ORB, SURF, and SIFT, averaged over twenty-four 640 � 480 images containing about 1000 features per image.

Retrofitting ORB for SIFT may be a good choice in some applications

308 8 Vision Pipelines and Optimizations

SIMD instructions and multiple threads can be applied when fine-grained parallelism exists in the

data layout in memory and the algorithm itself, such as with point, line, and area operations on

vectors. Single Instruction Multiple Data (SIMD) instructions process several data items in a vector

simultaneously. To exploit fine-grained parallelism at the SIMD level, both the computer language

and the corresponding ALUs should provide direct support for a rich set of vector data types and

vector instructions. Vector-oriented programming languages are required to exploit data-parallelism,

as shown in Table 8.8; however, sometimes compiler switches are available to exploit SIMD. Note

that languages like C++ do not directly support vector data types and vector instructions, while data-

parallel languages do, as shown in Table 8.8.

In some cases, the cost of SIMT outweighs its benefit, especially considering run-time overhead

for data setup and tear-down, thread management, code portability problems, and scalability across

large and small CPUs and GPUs.

In addition to SIMD instructions, a method for launching and managing large groups of threads

running the same identical code must be provided to exploit data-parallelism, referred to as Single

Instruction Multiple Threading (SIMT), also known as Single Program Multiple Data (SPMD). The

SIMT programs are referred to as shaders, since historically the pixel shaders and vertex shaders used

in computer graphics were the first programs widely used to exploit fine-grained data parallelism.

Shaders are also referred to as kernels.
Both CPUs and GPUs support SIMD instructions and SIMT methods—for example, using

languages like OpenCL. The CPU uses the operating system scheduler for managing threads;

however, GPUs use hardware schedulers, dispatchers, and scoreboarding logic to track thread

execution and blocking status, allowing several threads running an identical kernel on different

data to share the same ALU. For the GPU, each shader runs on the ALU until it is blocked on a

memory transfer, a function call, or is swapped out by the GPU shader scheduler when its time slice

expires.

Note that both C++ AMP and CUDA seem to provide language environments closest to C++. The

programming model and language for SIMT programming contains a run-time execution component

to marshal data for each thread, launch threads, and manage communications and completion status

for groups of threads. Common SIMT languages are shown in Table 8.8.

Note that CPU and GPU execution environments differ significantly at the hardware and software

level. The GPU relies on device drivers for setup and tear-down, and fixed-function hardware

scheduling, while CPUs rely on the operating system scheduler and perhaps micro-schedulers.

Table 8.8 Common data-parallel language choices

Language Name Standard or Proprietary OS Platform Support

Pixel Shader GLSL Standard OpenGL Several OS platforms

Pixel Shader HLSL Direct3D Microsoft OS

Compute Shader Direct3D Microsoft OS

Compute Shader Standard OpenGL Several OS platforms

RenderScript Android Google OS

OpenCL Standard Several OS platforms

C++ AMP Microsoft Microsoft OS platforms

CUDA Only for NVIDIA GPUs Several OS platforms

OpenMP Standard Several OS platforms

Acceleration Alternatives 309

A CPU is typically programmed in C or C++, and the program executes directly from memory and is

scheduled by the operating system, while a GPU requires a shader or kernel program to be written in a

SIMT SIMD-friendly language such as a compute shader or pixel shader in DirectX or OpenGL, or a

GPGPU language such as CUDA or OpenCL.

Furthermore, a shader kernel must be launched via a run-time system through a device driver to the

GPU, and an execution context is created within the GPU prior to execution. A GPU may also use a

dedicated system memory partition where the data must reside, and in some cases the GPU will also

provide a dedicated fast-memory unit.

GPGPU programming has both memory data setup and program setup overhead through the

run-time system, and unless several kernels are executed sequentially in the GPU to hide the

overhead, the setup and tear-down overhead for a single kernel can exceed any benefit gained via

the GPU SIMD/SIMT processing.

The decision to use a data parallelism SIMT programming model affects program design and

portability. The use of SIMT is not necessary, and in any case a standard programming language like

C++ must be used to control the SIMT run-time environment, as well as the entire vision pipeline.

However, the performance advantages of a data-parallel SIMT model are in some cases dramatically

compelling and the best choice. Note, however, that GPGPU SIMT programming may actually be

slower than using multiple CPU cores with SIMD instructions, coarse-grained threading, and data

tiling, especially in cases where the GPU does not support enough parallel threads in hardware, which

is the case for smaller GPUs.

Shader Kernel Languages and GPGPU
As shown in Table 8.8, there are several alternatives for creating SIMD SIMT data-parallel code,

sometimes referred to as GPGPU or stream processing. As mentioned above, the actual GPGPU

programs are known as shaders or kernels. Historically, pixel shaders and vertex shaders were

developed as data-parallel languages for graphics standards like OpenGL and DirectX. However,

with the advent of CUDA built exclusively for NVIDIA GPUs, the idea of a standard, general-

purpose compute capability within the GPU emerged. The concept was received in the industry,

although no killer apps existed and pixel shaders could also be used to get equivalent results. In the

end, each GPGPU programming language translates into machine language anyway, so the choice of

high-level GPGPU language may not be significant in many cases.

However, the choice of GPGPU language is sometimes limited for a vendor operating system. For

example, major vendors such as Google, Microsoft, and Apple do not agree on the same approach for

GPGPU and they provide different languages, which means that industry-wide standardization is still

a work in progress and portability of shader code is elusive. Perhaps the closest to a portable standard

solution is OpenCL, but compute shaders for DirectX and OpenGL are viable alternatives.

Advanced Instruction Sets and Accelerators

Each processor has a set of advanced instructions for accelerating specific operations. The vendor

processor and compiler documentation should be consulted for the latest information. A summary of

advanced instructions is shown in Table 8.9.

APIs provided by operating system vendors may or may not use the special instructions. Compilers

from each processor vendor will optimize all code to take best advantage of the advanced

instructions; other compilers may or may not provide optimizations. However, each compiler will

provide different flags to control optimizations, so code tuning and profiling are required. Using

assembler language is the best way to get all the performance available from the advanced

instruction sets.

310 8 Vision Pipelines and Optimizations

Vision Algorithm Optimizations and Tuning

Optimizations can be based on intuition or on performance profiling, usually a combination of both.

Assuming that the hot spots are identified, a variety of optimization methods can be applied as

discussed in this section. Performance hotspots can be addressed from the data perspective, the

algorithm perspective, or both. Most of the time memory access is a hidden cost, and not understood

by the developer (the algorithms are hard enough). However memory optimizations alone can be the

key to increasing performance. Table 8.11 summarizes various approaches for optimizations, which

are discussed next.

Data access patterns for each algorithm can be described using the Zinner, Kubinger, and Isaac

taxonomy [476] shown in Table 8.10. Note that usually the preferred data access pattern is in-place

(IP) computations, which involve reading the data once into fast registers, processing and storing the

results in the registers, and writing the final results back on top of the original image. This approach

takes maximal advantage of the cache lines and the registers, avoiding slower memory until the data

is processed.

Table 8.9 Advanced instruction set items

Instruction Type Description

Trancendentals GPU’s have special assembler instructions to compute common transcendental math
functions for graphics rendering math operations, such as dot product, square root, cosine,
and logarithms. In some cases, CPUs also have transcendental functions.

Fused instructions Common operations such as multiply and add are often implemented in single fused MADD
instruction, where both multiply and add are performed in a single clock cycle; the instruction
may have three or more operands.

SIMD instructions CPUs have SIMD instruction sets, such as the IntelSSEand Intel AVX instructions, similar
SIMD for AMD processors, and NEON for ARM processors.

Advanced data
types

Some instruction sets, such as for GPU’s, provide odd data types not supported by common
language compilers, such as half-byte integers, 8-bit floating point numbers, and fixed-point
numbers. Special data types may be supported by portions of the instruction set, but not all.

Memory access
modifiers

Some processors provide strided memory access capability to support scatter-gather
operations, bit-swizzling operations to allow for register contents to be moved and copied in
programmable bit patterns, and permuted memory access patterns to support cross-lane
patterns. Intelprocessors also provide MPX memory protection instructions for pointer
checking.

Security Cryptographic accelerators and special instructions may be provided for common ciphers
such as SHA or AES ciphers; for example, INTEL AES-NI. In addition, Intel offers the INTEL
SGX extensions to provide curtained memory regions to execute secure software; the
curtained regions cannot be accessed by malware.

Hardware
accelerators

Common accelerators include GPU texture samplers for image warping and sub-sampling,
and DMA units for fast memory copies. Operating systems provide APIs to access the DMA
unit [492]. Graphics programming languages such as OpenGL and DirectX provide access to
the texture sampler, and GPGPU languages such as OpenCL and CUDA also provide texture
sampler APIs.

Vision Algorithm Optimizations and Tuning 311

Compiler and Manual Optimizations

Usually a good compiler can automatically perform many of the optimizations listed in Table 8.11;

however, check the compiler flags to understand the options. The goal of the optimizations is to keep

the CPU instruction execution pipelines full, or to reduce memory traffic. However, many of the

optimizations in Table 8.11 require hand coding to boil down the algorithm into tighter loops with

more data sharing in fast registers and less data copying.

Tuning

After optimizing, tuning a working vision pipeline can be accomplished from several perspectives.

The goal is to provide run-time controls. Table 8.12 provides some examples of tuning controls that

may be implemented to allow for run-time or compile-time tuning.

Table 8.10 Image processing data access pattern taxonomy (from Zinner et al. [476])

Type Description Source Images Destination Images READ WRITE

(1S) 1 source, 0 destination 1 0 Source image no

(2S) 2 source, 0 destination 2 0 Source images no

(IP) In-place* 1 0 Source image Source image

(1S1D) 1 source, 1 destination 1 1 Source image Destination image

(2S1D) 2 source, 1 destination 2 1 Source images Destination image

*IP processing is usually the simplest way to reduce memory read/write bandwidth and memory footprint

Table 8.11 Common optimization techniques, manual and compiler methods

Name Description

Sub-function
inlining

Eliminating function calls by copying the function code in-line

Task chaining Feeding the output of a function into a waiting function piece by piece

Branch
elimination

Re-coding to eliminate conditional branches, or reduce branches by combining multiple branch
conditions together

Loop coalescing Combining inner and outer loops into fewer loops using more straight line code

Packing data Rearranging data alignment within structures and adding padding to certain data items for better
data alignment to larger data word or page boundaries to allow for more efficient memory read
and write

Loop unrolling Reducing the loop iteration count by replicating code inside the loop; may be accomplished using
straight line code replication or by packing multiple iterations into a VLIW

Function
coalescing*

Rewriting serial functions into a single function, with a single outer loop to read and write data to
system memory; passing small data items in fast registers between coalesced functions instead
of passing large images buffers

ROS-DMA* Double-buffering DMA overlapped with processing; DMA and processing occur in parallel, DMA
the new data in during processing, DMA the results out

*Function coalescing and ROS-DMA are not compiler methods, and may be performed at the source code level
Note: See references [480, 481] for more information on compiler optimizations, and see each vendor’s compiler
documentation for information on available optimization controls

312 8 Vision Pipelines and Optimizations

Feature Descriptor Retrofit, Detectors, Distance Functions

As discussed in Chap. 6, many feature descriptor methods such as SIFT can be retro-fitted to use other

representations and feature descriptions. For example, the LBP-SIFT retrofit discussed in Chap. 6

uses a local binary pattern in place of the gradient methods used by SIFT for impressive speedup,

while preserving the other aspects of the SIFT pipeline. The ROOT-SIFT method is another SIFT

acceleration alternative discussed in Chap. 6. Detectors and descriptors can be mixed and matched to

achieve different combinations of invariance and performance, see the REIN framework [379].

In addition to the descriptor extractor itself, the distance functions often consume considerable

time in the feature matching stage. For example, local binary descriptors such as FREAK and ORB

use fast Hamming distance, while SIFT uses the Euclidean distance, which is slower. Retro-fitting the

vision pipeline to use a local binary descriptor is an example of how the distance function can have a

significant performance impact.

It should be pointed out that the descriptors reviewed in Chap. 6 are often based on academic

research, not on extensive engineering field trials and optimizations. Each method is just a starting

point for further development and customization. We can be sure that military weapon systems have

been using similar, but far more optimal feature description methods for decades within vision

pipelines in deployed systems.

Boxlets and Convolution Acceleration

Convolution is one of the most common operations in feature description and image preprocessing, so

convolution is a key target for optimizations and hardware acceleration. The boxlet method [374]

approximates convolution and provides a speed vs. accuracy trade-off. Boxlets can be used to

optimize any system that relies heavily on convolutions, such as the convolutional network approach

used by LeCun and others [77, 328, 331]. The basic approach is to approximate a pair of 2D signals,

the kernel and the image, as low-degree polynomials, which quantizes each signal and reduces the

data size; and then differentiating the two signals to obtain the impulse functions and convolution

approximation. The full convolution can be recovered by integrating the result of the differentiation.

Another convolution and general area processing acceleration method is to reuse as much

overlapping data as possible while it exists in fast registers, instead of reading the entire region of

data items for each operation. When performing area operations, it is possible to program to use

sliding windows and pointers in an attempt to reuse data items from adjacent rectangles that are

already in the register files, rather than copying complete new rectangles into registers for each area

operation. This is another area suited for silicon acceleration.

Table 8.12 Run-time tuning controls for a vision pipeline

Image Resolution Allowing variable resolution over an octave scale or other scale to reduce
workload

Frames per second Skipping frames to reduce the workload

Feature database size and
accuracy

Finding ways to reduce the size of the database, for example have one data
base with higher accuracy, and another database with lower accuracy, each
built using a different classier

Feature database
organization and speed

Improving performance through better organization and searching, perhaps
have more than one database, each using a different organization strategy
and classifier

Vision Algorithm Optimizations and Tuning 313

http://dx.doi.org/10.1007/978-3-319-33762-3_6
http://dx.doi.org/10.1007/978-3-319-33762-3_6
http://dx.doi.org/10.1007/978-3-319-33762-3_6
http://dx.doi.org/10.1007/978-3-319-33762-3_6

Also, scatter-gather instructions can be used to gather the convolution data into memory for

accelerated processing in some cases, and GPUs often optimize the memory architecture for fast

area operations.

Data-Type Optimizations, Integer vs. Float

Software engineers usually use integers as the default data type, with little thought about memory and

performance. Often, there is low-hanging fruit in most code in the area of data types. For example,

conversion of data from int32 to int16, and conversion from double to float, are obvious space-savings

items to consider when the extra bit precision is not needed.

In some cases, floating-point data types are used when an integer will do equally well. Floating-

point computations in general require nearly four times more silicon area, which consumes corre-

spondingly more power. The data types consume more memory and may require more clock cycles to

compute. As an alternative to floating point, some processors provide fixed-point data types and

instructions, which can be very efficient.

Optimization Resources

Several resources in the form of software libraries and tools are available for computer vision and

image processing optimizations. Some are listed in Table 8.13.

Table 8.13 Vision optimization resources

Method Acceleration Strategy Examples

Threading libraries Coarse-grained parallelism Intel TBB, pthreads

Pipeline building tools Connect functions into pipelines PfeLib Vision Pipeline Library [477]
Halide [525]*

Primitive acceleration
libraries

Functions are pre-optimized Intel IPP, NVIDIA NPP, Qualcomm FastCV

GPGPU languages Develop SIMT SIMD code CUDA, OpenCL, C++ AMP, INTEL CILK++,
GLSL, HLSL, Compute Shaders for OpenGL
and Direct3D, RenderScript

Compiler flags Compiler optimizes for each processor;
see Table 8.11

Vendor-specific

SIMD instructions Directly code in assembler, or use
compiler flags for standard languages,
or use GPGPU languages.

Vendor-specific

Hardware accelerators Silicon accelerators for complex functions Texture Samplers; others provided
selectively by vendors

Advanced instruction
sets

Accelerate complex low-level operations,
or fuse multiple instructions; see Table 8.9

INTEL AVX, ARM NEON, GPU instruction
sets

*Open source available.

314 8 Vision Pipelines and Optimizations

Summary

This chapter ties together the discussions from previous chapters into complete vision systems by

developing four purely hypothetical high-level application designs. Design details such as compute

resource assignments and optimization alternatives are discussed for each pipeline, intended to

generate a discussion about how to design efficient systems (the examples are sketchy at times).

The applications explored include automobile recognition using shape and color features, face and

emotion detection using sparse local features, whole image classification using global features, and

augmented reality. Each example illustrates the use of different feature descriptor families from the

Vision Metrics Taxonomy presented in Chap. 5, such as polygon shape methods, color descriptors,

sparse local features, global features, and depth information. A wide range of feature description

methods are used in the examples to illustrate the challenges in the preprocessing stage.

In addition, a general discussion of design concepts for optimizations and load balancing across

the compute resources in the SOC fabric (CPU, GPU, and memory) is provided to explore HW/SW

system challenges, such as power reductions. Finally, an overview of SW optimization resources and

specific optimization techniques is presented.

Summary 315

http://dx.doi.org/10.1007/978-3-319-33762-3_5

Chapter 8: Learning Assignments

1. Estimate the memory space and memory bandwidth required to process stereo RGB images of

resolution 1920 � 1080 at 60 frames per second, and show how the estimates are derived.

2. A virtual memory system allows each running program to operate in a large virtual memory

space, sharing physical memory with all other programs. Describe how a virtual memory system

operates at a high level, including all layers and speeds of memory used between the fast

registers, main memory, and the slowest page/swap file. Discuss the relative speeds of each

memory layer in the memory architecture (HINT: registers operate at one processor clock cycle

per read/write access).

3. Describe memory swapping and paging in a virtual memory system, and discuss the performance

implications for computer vision applications.

4. Describe how DMA operates, and how memory regions can be locked into memory.

5. Discuss how data structure organization can influence memory performance in a computer vision

application, and provide an example worst-case memory organization for a specific algorithm.

6. Compare the power use of a CPU and a GPU, and compare the silicon die area of each

compute unit.

7. Name a few compiler flags that can be used to optimize code in a C++ compiler.

8. Describe sub-function in-lining and function coalescing.

9. Describe loop coalescing and loop unrolling.

10. Discuss the trade-off between using integer and floating point data types, and when each data type

is appropriate.

11. List several methods to optimize memory access in computer vision applications by illustrating

how a specific algorithm works, and how to optimize memory access for the specific algorithm.

HINT: memory access can be optimized by the structure of memory items, and the speed of the

memory used.

12. Describe at least three types of image processing and computer vision algorithms that can be

optimized to use a multi-core CPU, and describe the algorithm optimization.

13. Name at least two types of assembler instructions available in high-end CPUs to accelerate

computer vision and imaging applications.

14. Discuss multi-threading and how it can be applied to computer vision, and describe an algorithm

that has been optimized for multi-threading.

15. Discuss SIMD instructions and how SIMD can be applied to computer vision.

16. Describe the major features of a GPU and describe how the GPU features can be applied to

computer vision, and describe an algorithm that has been optimized for a GPU.

17. Name at least two programming languages that can be used to program a GPU.

18. Discuss SIMT processing and describe how SIMT can be applied to computer vision, and

describe an algorithm that has been optimized for SIMT.

19. Discuss VLIW and instruction level parallelism, and how VLIW can be applied to computer

vision, and describe an algorithm that has been optimized for VLIW.

20. Choose a computer vision application, then describe at a high level how to partition the compute

workload to operate in parallel across a multi-core CPU and a GPU.

21. Name several image processing operations and describe specific optimization methods for each

image processing operation.

22. List and describe the facial landmark features, such as eye corners, that should be detected to

classify emotions, and describe the pixel characteristics of each facial landmark.

316 8 Vision Pipelines and Optimizations

23. Define and code a face recognition algorithm and describe each pipeline stage. Provide an

architecture document with requirements and a high level design, suitable for someone else to

implement the system from the architecture document. Example pipeline stages may include

(1) sensor processing, (2) global image metrics used to guide image preprocessing, (3) search

strategies and feature detectors used to locate the face region in the image to know where to

search for individual facial landmark features, (4) which feature detectors to use to locate the face

landmark features, (5) how to design culling criteria for ignoring bad features (HINT: relative

position of features is one possibility), how to measure correspondence between detected features

and expected features, (6) define a visual vocabulary builder for the final classifier, using

K-MEANS to cluster similar feature descriptors into the reduced vocabulary set, and a select

distance function of your choice to measure correspondence between incoming detected features

and learned vocabulary features in the dictionary. Select or create a face image database of your

choice for ground truth data (some examples are in Appendix A, such as Faces In The Wild and

CMU Multi-Pie Face). Create code to implement a training protocol to build the vocabulary

dictionary. The code may run on the computer of your choice.

Chapter 8: Learning Assignments 317

	8: Vision Pipelines and Optimizations
	Stages, Operations, and Resources
	Compute Resource Budgets
	Compute Units, ALUs, and Accelerators
	Power Use
	Memory Use
	I/O Performance

	The Vision Pipeline Examples
	Automobile Recognition
	Segmenting the Automobiles
	Matching the Paint Color
	Measuring the Automobile Size and Shape
	Feature Descriptors
	Calibration, setup, and Ground Truth Data
	Pipeline Stages and Operations
	Operations and Compute Resources
	Criteria for Resource Assignments

	Face, Emotion, and Age Recognition
	Calibration and Ground Truth Data
	Interest Point Position Prediction
	Segmenting the Head and Face Using the Bounding Box
	Face Landmark Identification and Compute Features
	Pipeline Stages and Operations
	Operations and Compute Resources
	Criteria for Resource Assignments

	Image Classification
	Segmenting Images and Feature Descriptors
	Pipeline Stages and Operations
	Mapping Operations to Resources
	Criteria for Resource Assignments

	Augmented Reality
	Calibration and Ground Truth Data
	Feature and Object Description
	Overlays and Tracking
	Pipeline Stages and Operations
	Mapping Operations to Resources
	Criteria for Resource Assignments

	Acceleration Alternatives
	Memory Optimizations
	Minimizing Memory Transfers Between Compute Units
	Memory Tiling
	DMA, Data Copy, and Conversions
	Register Files, Memory Caching, and Pinning
	Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization

	Coarse-Grain Parallelism
	Compute-Centric vs. Data-Centric
	Threads and Multiple Cores

	Fine-Grain Data Parallelism
	SIMD, SIMT, and SPMD Fundamentals
	Shader Kernel Languages and GPGPU

	Advanced Instruction Sets and Accelerators

	Vision Algorithm Optimizations and Tuning
	Compiler and Manual Optimizations
	Tuning
	Feature Descriptor Retrofit, Detectors, Distance Functions
	Boxlets and Convolution Acceleration
	Data-Type Optimizations, Integer vs. Float

	Optimization Resources
	Summary
	Chapter 8: Learning Assignments

