
Interest Point Detector and Feature
Descriptor Survey 6

“Who makes all these?”
—Jack Sparrow, Pirates of the Caribbean

Many algorithms for computer vision rely on locating interest points, or keypoints in each image, and

calculating a feature description from the pixel region surrounding the interest point. This is in

contrast to methods such as correlation, where a larger rectangular pattern is stepped over the image at

pixel intervals and the correlation is measured at each location. The interest point is the anchor point,

and often provides the scale, rotational, and illumination invariance attributes for the descriptor; the

descriptor adds more detail and more invariance attributes. Groups of interest points and descriptors

together describe the actual objects.

Polygon Shape Descriptors
Shape Moments

MSER
Shape Context
Chain Codes

Interest Points
Laplacian, LOG, Moravac, Harris,

Shi-Tomasi, Hessian, Hessian-Laplace,
DoG,, Salient Regions, SUSAN,

FAST, FASTER,,AGHAST,
Local Curvature, Morphological

Local Binary Descriptors
LBP (variants),Census,

BRIEF, ORB, BRISK, FREAK

Spectra Descriptors
SIFT, SIFT-PCA, SIFT-GLOH, SIFT-CIPHER,

SIFT-LBP, RootSIFT, CEnSurE, STAR,
Correlation, HAAR, SURF, HOG, PHOG,

Daisy, CARD, RFFM, RIFF, CHOG, D-NETS,
LGP, LPQ

Basis Functions
Gabor, Fourier, Zernike

Features

However, there are many methods and variations in feature description. Some methods use

features that are not anchored at interest points, such as polygon shape descriptors, computed over

larger segmented polygon-shaped structures or regions in an image. Other methods use interest points

only, without using feature descriptors at all. And some methods use feature descriptors only,

computed across a regular grid on the image, with no interest points at all.

Terminology varies across the literature. In some discussions, interest points may be referred to as

keypoints. The algorithms used to find the interest points maybe referred to as detectors, and the

Springer International Publishing Switzerland 2016

S. Krig, Computer Vision Metrics, DOI 10.1007/978-3-319-33762-3_6
187

algorithms used to describe the features may be called descriptors. We use the terminology inter-

changeably in this work. Keypoints may be considered a set composed of (1) interest points,

(2) corners, (3) edges or contours, and (4) larger features or regions such as blobs; see Fig. 6.1.

This chapter surveys the various methods for designing local interest point detectors and feature

descriptors.

Interest Point Tuning

What is a good keypoint for a given application? Which ones are most useful? Which ones should be

ignored? Tuning the detectors is not simple. Each detector has different parameters to tune for best

results on a given image, and each image presents different challenges regarding lighting, contrast,

and image preprocessing. Additionally, each detector is designed to be useful for a different class of

interest points, and must be tuned accordingly to filter the results down to a useful set of good

candidates for a specific feature descriptor. Each feature detector will work best with certain

descriptors, see Appendix A.

So the keypoints are further filtered to be useful for the chosen feature descriptor. In some cases, a

keypoint is not suitable for producing a useful feature descriptor, even if the keypoint has a high score

and high response. If the feature descriptor computed at the keypoint produces a descriptor score that

is too weak, for example, the keypoint and corresponding descriptor should both be rejected. OpenCV

provides several novel methods for working with detectors, enabling the user to try different detectors

and descriptors in a common framework, and automatically adjust the parameters for tuning and

culling as follows:

• DynamicAdaptedFeatureDetector. This class will tune supported detectors using an

adjusterAdapter() to only keep a limited number of features, and iterate the detector parameters

several times and redetect features in an attempt to find the best parameters, keeping only the

requested number of best features. Several OpenCV detectors have an adjusterAdapter() provided,

some do not; the API allows for adjusters to be created.

• AdjusterAdapter. This class implements the criteria for culling and keeping interest points.

Criteria may include KNN nearest neighbor matching, detector response or strength, radius

distance to nearest other detected points, number of keypoints within a local region, and other

measures that can be included for culling keypoints for which a good descriptor cannot be

computed.

• PyramidAdaptedFeatureDetector. This class can be used to adapt detectors that do not use a

scale-space pyramid, and the adapter will create a Gaussian pyramid and detect features over the

pyramid.

• GridAdaptedFeatureDetector. This class divides an image into grids and adapts the detector to

find the best features within each grid cell.

Figure 6.1 Types of keypoints, including corners and interest points. (Left to right) Step, roof, corner, line or edge,

ridge or contour, maxima region

188 6 Interest Point Detector and Feature Descriptor Survey

Interest Point Concepts

An interest point may be composed of various types of corner, edge, and maxima shapes, as shown in

Fig. 6.1. In general, a good interest point must be easy to find and ideally fast to compute; it is hoped

that the interest point is at a good location to compute a feature descriptor. The interest point is thus

the qualifier or keypoint around which a feature may be described.

There are various concepts behind the interest point methods currently in use, as this is an active

area of research. One of the best analyses of interest point detectors is found in Mikolajczyk

et al. [145], with a comparison framework and taxonomy for affine covariant interest point detectors,

where covariant refers to the elliptical shape of the interest region, which is an affine deformable

representation. Scale invariant detectors are represented well in a circular region. Maxima region and

blob detectors can take irregular shapes. See the response of several detectors against synthetic

interest point and corner alphabets in Appendix A.

Commonly, detectors use maxima and minima points, such as gradient peaks and corners;

however, edges, ridges, and contours are also used as keypoints, as shown in Fig. 6.2. There is no

superior method for interest point detection for all applications. A simple taxonomy provided by

Tuytelaars and Van Gool [511] lists edge-based region methods (EBR), maxima or intensity-based

region methods (IBR), and segmentation methods to find shape-based regions (SBR) that may be

blobs or features with high entropy.

Corners are often preferred over edges or isolated maxima points, since the corner is a structure

and can be used to compute an angular orientation for the feature. Interest points are computed over

color components as well as gray scale luminance. Many of the interest point methods will first apply

some sort of Gaussian filter across the image and then perform a gradient operator. The idea of using

the Gaussian filter first is to reduce noise in the image, which is otherwise amplified by gradient

operators.

Each detector locates features with different degrees of invariance to attributes such as rotation,

scale, perspective, occlusion, and illumination. For evaluations of the quality and performance of

interest point detection methods measured against various robustness and invariance criteria on

standardized datasets, see Mikolajczyk and Schmidt [136] and Gauglitz et al. [137]. One of the key

challenges for interest point detection is scale invariance, since interest points change dramatically in

some cases over scale. Lindberg [204] has extensively studied the area of scale independent interest

point methods.

Affine invariant interest points have been studied in detail by Mikolajcyk and Schmid [99, 133,

136, 145, 298, 303]. In addition, Mikolajcyk and Schmid [501] developed an affine-invariant version

of the Harris detector. As shown in [523], it is often useful to combine several interest point detection

methods to form a hybrid, for example, using the Harris or Hessian to locate suitable maxima regions,

Figure 6.2 Candidate edge interest point filters. (Left to right) Laplacian, derivative filter, and gradient filter

Interest Point Concepts 189

and then using the Laplacian to select the best scale attributes. Variations are common, Harris-based

and Hessian-based detectors may use scale-space methods, while local binary detector methods do

not use scale space.

A few fundamental concepts behind many interest point methods come from the field of linear

algebra, where the local region of pixels is treated as a matrix. (Refer to a good linear algebra

textbook as background for this section.) Additional concepts come from other areas of mathematical

analysis. Some of the key math useful for locating interest points are illustrated below, however note

that in practice various forms of equations and algorithms are used which deviate from those shown

here, see the references for more details.

• A Matrix. We start with a 2d rectangular pixel region, or matrix, of some dimension x,y:

Mx,y ¼
0, 0 . . . x, 0
.
0, y . . . x, y

2
4

3
5

• Gradient Magnitude. This is the first derivative of the pixels in the local interest region, and

assumes a direction. This is an unsigned positive number, and is also a Laplacian operator.

∂Mx,y

∂x

� �2

þ ∂Mx,y

∂y

� �2

• Gradient Direction. This is the angle or direction of the largest gradient angle from pixels in the

local region in the range +π to -π.

tan�1 ∂Mx,y

∂x

� �2

=
∂Mx,y

∂y

� �2

• Laplacian. This is the second derivative and can be computed selectively using any of three terms:

∂2fMx,y

∂x2

∂2Mx,y

∂y2

∂2Mx,y

∂x∂x

However, the Laplacian operator does not use the third form above, and computes a signed value of

average orientation with respect to x and y partials only, see the Gradient Magnitude operator above.

• Hessian Matrix or Hessian. A square matrix containing second order partial derivatives of each

pixel within the matrix region, describing surface curvature at each pixel. The Hessian has several

interesting properties useful for interest point detection methods discussed in this section, which

we can express in L notation as follows:

H x; σð Þ ¼ Lxx x; σð Þ Lxy x; σð Þ
Lxy x; σð Þ Lyy x; σð Þ

� �

• Largest Hessian. This is based on the second derivative, as is the Laplacian, but the Hessian uses

all three terms of the second derivative to compute the direction along which the second derivative

is maximum as a signed value.

190 6 Interest Point Detector and Feature Descriptor Survey

• Smallest Hessian. This is based on the second derivative, is computed as a signed number, and

may be a useful metric as a ratio between largest and smallest Hessian.

• Hessian Orientation, largest and smallest values. This is the orientation of the largest second

derivative in the range +π to -π, which is a signed value, and it corresponds to an orientation

without direction. The smallest orientation can be computed by adding or subtracting π/2 from the

largest value.

• Determinant of Hessian, Trace of Hessian, Laplacian of Gaussian. All three names are used to

describe the trace characteristic of a matrix, which can reveal geometric scale information by the

absolute value, and orientation by the sign of the value. See SURF [166] for an application, which

we can express in L notation as follows.

trace HnormL ¼ t γ∇2L ¼ t γ Lxx þ Lyy

� �

det HnormL ¼ t 2γ Lxx Lyy � L2
xy

� �
• Eigenvalues, Eigenvectors, Eigenspaces. Eigen properties are important to understanding vector

direction in local pixel region matrices. When a matrix acts on a vector, and the vector orientation

is preserved, and when the sign or direction is simply reversed, the vector is considered to be an

eigenvector, and the matrix factor is considered to be the eigenvalue. An eigenspace is therefore all

eigenvectors within the space with the same eigenvalue. Eigen properties are valuable for interest

point detection, orientation, and feature detection. For example, Turk and Petland [150] use

eigenvectors reduced into a smaller set of vectors via PCA for face recognition, in a method

they call Eigenfaces.

Interest Point Method Survey

We will now look briefly at algorithms and computational methods for some common interest point

detector methods including:

• Laplacian of Gaussian (LOG)

• Moravac corner detector

• Harris and Stephens corner detection

• Shi and Tomasi corner detector (improvement on Harris method)

• Difference of Gaussians (DoG; an approximation of LOG)

• Harris methods, Harris–/Hessian–Laplace, Harris/Hessian Affine

• Determinant of Hessian (DoH)

• Salient regions

• SUSAN

• FAST, FASTER, AGAST

• Local curvature

• Morphological interest points

• MSER (discussed in the section on polygon shape descriptors)

• *NOTE: many feature descriptors, such as SIFT, SURF, BRISK, and others, provide their own

detector method along with the descriptor method, see Appendix A.

Interest Point Method Survey 191

Laplacian and Laplacian of Gaussian

The Laplacian operator, as used in image processing, is a method of finding the derivative or

maximum rate of change in a pixel area. Commonly, the Laplacian is approximated using standard

convolution kernels that add up to zero, such as:

L1 ¼
�1 �1 �1

�1 8 �1

�1 �1 �1

0
@

1
A

L2 ¼
�1 0 �1

0 4 0

�1 0 �1

0
@

1
A

The Laplacian of Gaussian (LOG) is simply the Laplacian performed over a region that has been

processed using a Gaussian smoothing kernel to focus edge energy; see Gun [147].

Moravac Corner Detector

The Moravic corner detection algorithm is an early method of corner detection whereby each pixel in

the image is tested by correlating overlapping patches surrounding each neighboring pixel. The

strength of the correlation in any direction reveals information about the point: a corner is found when

there is change in all directions, and an edge is found when there is no change along the edge

direction. A flat region yields no change in any direction. The correlation difference is calculated

using the SSD between the two overlapping patches. Similarity is measured by the near-zero

difference in the SSD. This method is compute intensive; see Moravac [322].

Harris Methods, Harris–Stephens, Shi–Tomasi, and Hessian Type Detectors

The Harris or Harris–Stephens corner detector family [148, 357] provides improvements over the

Moravic method. The goal of the Harris method is to find the direction of fastest and lowest change

for feature orientation, using a covariance matrix of local directional derivatives. The directional

derivative values are compared with a scoring factor to identify which features are corners, which are

edges, and which are likely noise. Depending on the formulation of the algorithm, the Harris method

can provide high rotational invariance, limited intensity invariance, and in some of the formulations

of the algorithm, scale invariance is provided such as the Harris–Laplace method using scale space

[204, 501]. Many Harris family algorithms can be implemented in a compute-efficient manner.

Note that corners have an ill-defined gradient, since two edges converge at the corner, but near the

corner the gradient can be detected with two different values with respect to x and y—this is a basic

idea behind the Harris corner detector.

Variations on the Harris method include:

• The Shi, Tomasi, and Kanade corner detector [149] is an optimization on the Harris method, using

only the minimum eigenvalues for discrimination, thus streamlining the computation

considerably.

192 6 Interest Point Detector and Feature Descriptor Survey

• The Hessian (Hessian affine) corner detector [145] is designed to be affine invariant, and it uses the

basic Harris corner detection method but combines interest points from several scales in a

pyramid, with some iterative selection criteria and a Hessian matrix.

• Many other variations on the basic Harris operator exist, such as the Harris–Hessian–Laplace

[323], which provides improved scale invariance using a scale selection method, and the Harris/

Hessian affine method [145, 298].

Hessian Matrix Detector and Hessian–Laplace

The Hessian Matrix method, also referred to as Determinant of Hessian (DoH) method, is used in the

popular SURF algorithm [152]. It detects interest objects from a multi-scale image set where the

determinant of the Hessian matrix is at a maxima and the Hessian matrix operator is calculated using

the convolution of the second-order partial derivative of the Gaussian to yield a gradient maxima.

The DoH method uses integral images to calculate the Gaussian partial derivatives very quickly.

Performance for calculating the Hessian Matrix is therefore very good, and accuracy is better than

many methods. The related Hessian–Laplace method [298, 323] also operates on local extrema, using

the determinant of the Hessian at multiple scales for spatial localization, and the Laplacian at multiple

scales for scale localization.

Difference of Gaussians

The Difference of Gaussians (DoG) is an approximation of the Laplacian of Gaussians, but computed

in a simpler and faster manner using the difference of two smoothed or Gaussian filtered images to

detect local extrema features. The idea with Gaussian smoothing is to remove noise artifacts that are

not relevant at the given scale, which would otherwise be amplified and result in false DoG features.

The DoG features are used in the popular SIFT method [153], and as shown in Fig. 6.15, the simple

difference of Gaussian filtered images is taken to identify maxima regions.

Salient Regions

Salient regions [154, 155] are based on the notion that interest points over a range of scales should

exhibit local attributes or entropy that are “unpredictable” or “surprising” compared to the

surrounding region. The method proceeds as follows:

1. The Shannon entropy E of pixel attributes such as intensity or color are computed over a scale

space, where Shannon entropy is used the measure of unpredictability.

2. The entropy values are located over the scale space with maxima or peak values M. At this stage,

the optimal scales are determined as well.

3. The probability density function (PDF) is computed for magnitude deltas at each peak within each

scale, where the PDF is computed using a histogram of pixel values taken from a circular window

of desired radius from the peak.

4. Saliency is the product of E andM at each peak, and is also related to scale. So the final detector is

salient and robust to scale.

Interest Point Method Survey 193

SUSAN, and Trajkovic and Hedly

The SUSAN method [156, 157] is dependent on segmenting image features based on local areas of

similar brightness, which yields a bimodal valued feature. No noise filtering and no gradients are

used. As shown in Fig. 6.3, the method works by using a center nucleus pixel value as a comparison

reference against which neighbor pixels within a given radius region are compared, yielding a set of

pixels with similar brightness, called a Univalue Segment Assimilating Nucleus (USAN).

Each USAN contains structural information about the image in the local region, and the size,

centroid, and second-order moments of each USAN can be computed. The SUSAN method can be

used for both edge and corner detection. Corners are determined by the ratio of pixels similar to the

center pixel in the circular region: a low ratio around 25 % indicates a corner, and a higher ratio

around 50 % indicates an edge. SUSAN is very robust to noise.

The Trajkovic and Hedly method [206] is similar to SUSAN, and discriminates among points in

USAN regions, edge points, and corner points.

SUSAN is also useful for noise suppression, and the bilateral filter [294], discussed in Chap. 2, is

closely related to SUSAN. SUSAN uses fairly large circular windows; several implementations use

37 pixel radius windows. The FAST [130] detector is also similar to SUSAN, but uses a smaller 7 � 7

or 9 � 9 window and only some of the pixels in the region instead of all of them; FAST yields a local

binary descriptor.

Fast, Faster, AGHAST

The FAST methods [130] are derived from SUSAN with respect to a bimodal segmentation goal.

However, FAST relies on a connected set of pixels in a circular pattern to determine a corner. The

connected region size is commonly 9 or 10 out of a possible 16; either number may be chosen,

referred to as FAST9 and FAST10. FAST is known to be efficient to compute and fast to match;

accuracy is also quite good. FAST can be considered a relative of the local binary pattern LBP.

FAST is not a scale-space detector, and therefore it may produce many more edge detections at the

given scale than a scale-space method such as used in SIFT.

A B

C

Figure 6.3 SUSAN method of computing interest points. The dark region of the image is a rectangle intersecting

USANs A, B, and C. USAN A will be labeled as an edge, USAN B will be labeled as a corner, and USAN C will be

labeled as neither an edge nor a corner

194 6 Interest Point Detector and Feature Descriptor Survey

http://dx.doi.org/10.1007/978-3-319-33762-3_2

As shown in Fig. 6.4, FAST uses binary comparison with each pixel in a circular pattern against

the center pixel using a threshold to determine if a pixel is less than or greater than the center pixel.

The resulting descriptor is stored as a contiguous bit vector in order from 0 to 15. Also, due to the

circular nature of the pixel compare pattern, it is possible to retrofit FAST and store the bit vector in a

rotational-invariant representation, as demonstrated by the RILBP descriptor discussed later in this

chapter; see Fig. 6.11.

Local Curvature Methods

Local curvature methods [200–204] are among the early means of detecting corners, and some local

curvature methods are the first known to be reliable and accurate in tracking corners over scale

variations [202]. Local curvature detects points where the gradient magnitude and the local surface

curvature are both high. One approach taken is a differential method, computing the product of the

gradient magnitude and the level curve curvature together over scale space, and then selecting the

maxima and minima absolute values in scale and space. One formulation of the method is shown here.

eα �
x, y; t

� ¼ L2xLyy þ L2yLxx � 2LxLyLxy

Various formulations of the basic algorithm can be taken depending on the curvature equation

used. To improve scale invariance and noise sensitivity, the method can be modified using a

normalized formulation of the equation over scale space, as follows:

eαnorm

�
x, y; t

� ¼ t2γ L2xLyy þ L2yLxx � 2LxLyLxy

� �

where

γ ¼ 0:875

Figure 6.4 The FAST detector with a 16-element circular sampling pattern grid. Note that each pixel in the grid is

compared against the center pixel to yield a binary value, and each binary value is stored in a bit vector

Interest Point Method Survey 195

At larger scales, corners can be detected with less sharp and more rounded features, while at lower

scales or at unity scale sharper corners over smaller areas are detected. The Wang and Brady method

[205] also computes interest points using local curvature on the 2D surface, looking for inflection

points where the surface curvature changes rapidly.

Morphological Interest Regions

Interest points can be determined from a pipeline of morphological operations, such as thresholding

followed by combinations or erosion and dilation to smooth, thin, grown, and shrink pixel groups. If

done correctly for a given application, such morphological features can be scale and rotation

invariant. Note that the simple morphological operations alone are not enough; for example, erode

left unconstrained will shrink regions until they disappear. So intelligence must be added to the

morphology pipeline to control the final region size and shape. For polygon shape descriptors,

morphological interest points define the feature, and various image moments are computed over

the feature, as described in Chap. 3 and also in the section on polygon shape descriptors later in this

chapter.

Morphological operations can be used to create interest regions on binary, gray scale, or color

channel images. To prepare gray scale or color channel images for morphology, typically some sort of

preprocessing is used, such as pixel remapping, LUT transforms, or histogram equalization. (These

methods were discussed in Chap. 2.) For binary images and binary morphology approaches, binary

thresholding is a key preprocessing step. Many binary thresholding methods have been devised,

ranging from simple global thresholds to statistical and structural kernel-based local methods.

Note that the morphological interest region approach is similar to the maximally stable extrema

region (MSER) feature descriptor method discussed later in the section on polygon shape descriptors,

since both methods look for connected groups of pixels at maxima or minima. However, MSER does

not use morphology operators.

A few examples of morphological and related operation sequences for interest region detection are

shown in Fig. 6.5, and many more can be devised.

Feature Descriptor Survey

This section provides a survey and observations about a few representative feature descriptor

methods, with no intention to directly compare descriptors to each other. For more detailed informa-

tion on analytical methods for comparing feature descriptors, see also Lempitsky [844], and Huang

[889]. In practice, the feature descriptor methods are often modified and customized, and often

several descriptors are used together as a multivariate descriptor to increase confidence, see Varma

Figure 6.5 Morphological methods to find interest regions. (Left to right) Original image, binary thresholded and

segmented image using Chan Vese method, skeleton transform, pruned skeleton transform, and distance transform

image. Note that binary thresholding requires quite a bit of work to set parameters correctly for a given application

196 6 Interest Point Detector and Feature Descriptor Survey

http://dx.doi.org/10.1007/978-3-319-33762-3_3
http://dx.doi.org/10.1007/978-3-319-33762-3_2

[770], Vedaldi [887], and Gehler [792] for more details about multivariate descriptors, and applying

boosting to weight the descriptors in the classifier (i.e. a multi-stage classifier). The goal of this survey

is to examine a range of feature descriptor approaches from each feature descriptor family from the

taxonomy that was presented in Chap. 5:

• Local binary descriptors

• Spectra descriptors

• Basis space descriptors

• Polygon shape descriptors

• 3D, 4D, and volumetric descriptors

For key feature descriptor methods, we provide here a summary analysis:

• General Vision Taxonomy and FME: covering feature attributes including spectra, shape, and

pattern, single or multivariate, compute complexity criteria, data types, memory criteria, matching

method, robustness attributes, and accuracy.

• General Robustness Attributes: covering invariance attributes such as illumination, scale,

perspective, and many others.

No direct comparisons are made between feature descriptors here, but ample references are

provided to the literature for detailed comparisons and performance information on each method.

See Table 8.2 for a comparison of the memory footprints for various feature descriptor methods in this

survey, which is useful for performance analysis.

Local Binary Descriptors

This family of descriptors represents features as binary bit vectors. To compute the features, image

pixel point-pairs are compared and the results are stored as binary values in a vector. Local binary

descriptors are efficient to compute, efficient to store, and efficient to match using Hamming distance.

In general, local binary pattern methods achieve very good accuracy and robustness compared to

other methods.

A variety of local sampling patterns are used with local binary descriptors to set the pairwise point

comparisons; see the section in Chap. 4 on local binary descriptor point-pair patterns for a discussion

on local binary sampling patterns. We start this section on local binary descriptors by analyzing the

local binary pattern (LBP) and some LBP variants, since the LBP is a powerful metric all by itself and

is well known.

Local Binary Patterns
Local binary patterns (LBP) were developed in 1994 by Ojala et al. [165] as a novel method of

encoding both pattern and contrast to define texture [161–165]. LBPs can be used as an image

processing operator. The LBP creates a descriptor or texture model using a set of histograms of the

local texture neighborhood surrounding each pixel. In this case, local texture is the feature descriptor.

The LBP metric is simple yet powerful; see Fig. 6.6. We cover some level of detail on LBPs, since

there are so many applications for this powerful texture metric as a feature descriptor as well. Also,

hundreds of researchers have added to the LBP literature [165] in the areas of theoretical foundations,

generalizations into 2D and 3D, applied as a descriptor for face detection, and also applied to

spatiotemporal applications such as motion analysis. LBP research remains quite active at this

Feature Descriptor Survey 197

http://dx.doi.org/10.1007/978-3-319-33762-3_5
http://dx.doi.org/10.1007/978-3-319-33762-3_8
http://dx.doi.org/10.1007/978-3-319-33762-3_4

time. In addition, the LBP is used as an image processing operator, and has been used as a feature

descriptor retrofit in SIFT with excellent results, described in this chapter.

In its simplest embodiment, LBP has the goal of creating a binary coded neighborhood descriptor

for a pixel. It does this by comparing each pixel against its neighbors using the > operator and

encoding the compare results (1,0) into a binary number, as shown in Fig. 6.8. LPB histograms from

larger image regions can even be used as signals and passed into a 1D FFT to create a feature

descriptor. The Fourier spectrum of the LBP histogram is rotational invariant; see Fig. 6.6. The FFT

spectrum can then be concatenated onto the LBP histogram to form a multivariate descriptor, see

Varma [770], Vedaldi [887], and Gehler [792] for more details about multivariate descriptors, and

applying boosting to weight the features.

As shown in Fig. 6.6, the LBP is used as an image processing operator, region segmentation

method, and histogram feature descriptor. The LBP has many applications. An LBP may be

calculated over various sizes and shapes using various sizes of forming kernels. A simple 3 � 3

neighborhood provides basic coverage for local features, while wider areas and kernel shapes are used

as well.

Assuming a 3 � 3 LBP kernel pattern is chosen, this means that there will be 8 pixel compares and

up to 28 combinations of results for a 256-bin histogram possible. However, it has been shown [18]

that reducing the 8-bit 256-bin histogram to use only 58 LBP bins based on uniform patterns is the

optimal number. The 58 bins or uniform patterns are chosen to represent only two contiguous LBP

patterns around the circle, which consists of two connected contiguous segments rather than all

Input image LBP image LBP histogram

3
x 104

2.5

2

1.5

1

0.5

0
0 50 100 150 200 250

Figure 6.6 (Above) A local binary pattern representation of an image where the LBP is used as an image processing

operator, and the corresponding histogram of cumulative LBP features. (Bottom) Segmentation results using LBP

texture metrics. (Images courtesy and# Springer Press, from Computer Vision Using Local Binary Patterns, by Matti

Pietikäinen and Janne Heikkilä [165])

198 6 Interest Point Detector and Feature Descriptor Survey

256 possible pattern combinations [15, 165]. The same uniform pattern logic applies to LBPs of

dimension larger than 8 bits. So uniform patterns provide both histogram space savings and feature

compare-space optimization, since fewer features need be matched (58 instead of all 256).

LPB feature recognition may follow the steps shown in Fig. 6.7.

The LBP is calculated by assigning a binary weighting value to each pixel in the local neighbor-

hood and summing up the pixel compare results as binary values to create a composite LBP value.

The LBP contains region information encoded in a compact binary pattern, as shown in Fig. 6.8, so

the LBP is thus a binary coded neighborhood texture descriptor.

Assuming a 3 � 3 neighborhood is used to describe the LBP patterns, one may compare the 3 � 3

rectangular region to a circular region, suggesting 360� directionality at 45� increments, as shown in

Fig. 6.9.

The steps involved in calculating a 3 � 3 LBP are illustrated in Fig. 6.10.

LBP Feature Detection

LBP Feature Normalization

LBP Histogram Creation

LBP Classifier Training

Figure 6.7 LBP feature flow for feature detection. (Image used by permission, # Intel Press, from Building

Intelligent Systems)

Figure 6.8 Assigned LBP weighting values. (Image used by permission, # Intel Press, from Building Intelligent

Systems)

Feature Descriptor Survey 199

Neighborhood Comparison

Each pixel in the 3 � 3 region is compared to the center pixel. If the pixel � the center pixel, then the

LBP records a bit value of 1 for that position, and a bit value of 0 otherwise. See Fig. 6.10

Histogram Composition

Each LBP descriptor over an image region is recorded in a histogram to describe the cumulative

texture feature. Uniform LBP histograms would have 56 bins, since only single-connected regions are

histogrammed.

Optionally Normalization

The final histogram can be reduced to a smaller number of bins using binary decimation for powers of

two or some similar algorithm, such as 256 ! 32. In addition, the histograms can be reduced in size

by thresholding the range of contiguous bins used for the histogram—for example, by ignoring bins

1–64 if little or no information is binned in them.

Figure 6.9 The concept of LBP directionality. (Image used by permission, # Intel Press, from Building Intelligent

Systems)

7 9 9

5 6 7

5 4 7

1 1 1

0 - 1

0 0 1

Pixel .= 6 ? 1 : 0

Pixel[0,0](7) >= 6 ? 1 : 0 = 00000001
Pixel[1,0](9) >= 6 ? 1 : 0 = 00000010
Pixel[2,0](9) >= 6 ? 1 : 0 = 00000100
Pixel[2,1](7) >= 6 ? 1 : 0 = 00001000
Pixel[2,2](7) >= 6 ? 1 : 0 = 00010000
Pixel[1,2](4) >= 6 ? 1 : 0 = 00000000
Pixel[0,2](5) >= 6 ? 1 : 0 = 00000000
Pixel[0,1](5) >= 6 ? 1 : 0 = 00000000
LBP 00011111

Figure 6.10 LBP neighborhood comparison

200 6 Interest Point Detector and Feature Descriptor Survey

Descriptor Concatenation

Multiple LBPs taken over overlapping regions may be concatenated together into a larger histogram

feature descriptor to provide better discrimination.

LBP SUMMARY TAXONOMY

Spectra: Local binary

Feature shape: Square
Feature pattern: Pixel region compares with center pixel

Feature density: Local 3 � 3 at each pixel

Search method: Sliding window
Distance function: Hamming distance

Robustness: 3 (brightness, contrast, *rotation for RILBP)

Rotation Invariant LBP (RILBP)
To achieve rotational invariance, the rotation invariant LBP (RILBP) [165] is calculated by circular

bitwise rotation of the local LBP to find the minimum binary value. The minimum value LBP is used

as a rotation invariant signature and is recorded in the histogram bins. The RILBP is computationally

very efficient.

To illustrate the method, Fig. 6.11 shows a pattern of three consecutive LBP bits; in order to make

this descriptor rotation invariant, the value is left-shifted until a minimum value is reached.

Note that many researchers [163, 164] are extending the methods used for LBP calculation to use

refinements such as local derivatives, local median or mean values, trinary or quinary compare

functions, and many other methods, rather than the simple binary compare function, as originally

proposed.

Dynamic Texture Metric Using 3D LBPs
Dynamic textures are visual features that morph and change as they move from frame to frame;

examples include waves, clouds, wind, smoke, foliage, and ripples. Two extensions of the basic LBP

used for tracking such dynamic textures are discussed here: VLBP and LBP-TOP.

Figure 6.11 Method of calculating the minimum LBP by using circular bit shifting of the binary value to find the

minimum value. The LBP descriptor is then rotation invariant

Feature Descriptor Survey 201

Volume LBP (VLBP)

To create the VLBP [167] descriptor, first an image volume is created by stacking together at least

three consecutive video frames into a volume 3D dataset. Next, three LBPs are taken centered on the

selected interest point, one LBP from each parallel plane in the volume, into a summary volume LBP

or VLBP, and the histogram of each orthogonal LBP is concatenated into a single dynamic descriptor

vector, the VLBP. The VLPB can then be tracked from frame to frame and recalculated to account for

dynamic changes in the texture from frame to frame. See Fig. 6.12.

LPB-TOP

The LBP-TOP [168] is created like the VLBP, except that instead of calculating the three individual

LBPs from parallel planes, they are calculated from orthogonal planes in the volume (x,y,z)

intersecting the interest point, as shown in Fig. 6.12. The 3D composite descriptor is the same size

as the VLBP and contains three planes’ worth of data. The histograms for each LBP plane are also

concatenated for the LBP-TOP like the VLBP.

Figure 6.12 (Top) VLBP method [167] of calculating LBPs from parallel planes. (Bottom) LBP-TOP method [168]

of calculating LBPs from orthogonal planes. (Image used by permission, # Intel Press, from Building Intelligent

Systems)

202 6 Interest Point Detector and Feature Descriptor Survey

Other LBP Variants
As shown in Table 6.1, there are many variants of the LBP [165]. Note that the LBP has been

successfully used as a replacement for SIFT, SURF, and also as a texture metric.

Table 6.1 LBP variants (from reference [165])

ULBP (Uniform LBP) Uses only 56 uniform bins instead of the full 256 bins possible with 8-bit pixels to create the
histogram. The uniform patterns consist of contiguous segments of connected TRUE values.

RLBP (ROBUST LBP) Adds + scale factor to eliminate transitions due to noise (p1 - p2 + SCALE)

CS-LBPCircle-symmetric, half as many vectors an LBP, comparison of opposite pixel pairs vs. w/center pixel, useful to
reduce LBP bin counts

LBP-HF Fourier spectrum descriptor + LBP

MLBP Median LBP Uses area median value instead of center pixel value for comparison

M-LBP Multiscale LBP combining multiple radii LBPs concatenated

MB-LBP Multiscale Block LBP; compare average pixel values in small blocks

SEMB-LBP: Statistically Effective MB-LBP (SEMB-LBP) uses the percentage in distributions, instead of the number of
0-1 and 1-0 transitions in the LBP and redefines the uniform patterns in the standard LBP. Used effectively in face
recognition using GENTLE ADA-BOOSTing [531]

VLBP Volume LBPover adjacent video frames OR within a volume - concatenate histograms together to form a longer
vector

LGBP (Local Gabor Binary Pattern) 40 or so Gabor filters are computed over a feature, LBPs are extracted and
concatenated to form a long feature vector that is invariant over more scales and orientations

LEP Local Edge Patterns: Edge enhancement (Sobel) prior to standard LBP

EBP Elliptic Binary Pattern Standard LBP but over elliptical area instead of circular

EQP Elliptical Quinary Patterns - LBP extended from binary (2) level resolution to quinary (5) level resolution (-2,-1, 0,-
1,2)

LTP - LBP extended over Ternary range to deal with near constant areas (-1, 0, 1)

LLBP Local line Binary Pattern - calculates LBP over line patterns (cross shape) and then calculates a magnitude
metrics using SQRTof SQUARES of each X/Y dimension

TPLBP- [x5]three LBPs are calculated together: the basic LBP for the center pixel, plus two others around adjacent
pixels so the total descriptor is a set of overlapping LBP's,

FPLBP- [x5]four LBPs are calculated together: the basic LBP for the center pixel, plus two others around adjacent
pixels so the total descriptor is a set of overlapping LBP's, XPLBP –

*NOTE: The TPLBP and FPLBP method can be extended to 3,4,n dimensions in feature space. LARGE VECTORS.

TBP - Ternary (3) Binary pattern, like LBP, but uses three levels of encoding (1,0,-1) to effectively deal with areas of
equal or near equal intensity, uses twobinary patterns (one for + and one for -) concatenated together

ETLP - Elongated Ternary Local Patterns (elliptical + ternary[3] levels

FLBP - Fuzzy LBP where each pixel contributes to more than one bin

PLBP - Probabilistic LBP computes magnitude of difference between each pixel & center pixel (more compute, more
storage)

SILTP - Scale invariant LBP using a 3 part piece-wise comparison function to compensate and support intensity scale
invariance to deal with image noise

tLBP - Transition Coded LBP, where the encoding is clockwise between adjacent pixels in the LBP

(continued)

Feature Descriptor Survey 203

Table 6.1 (continued)

dLBP - Direction Coded LBP - similar to CSLBP, but stores both maxima and comparison info (is this pixel greater, less
than, or maxima)

CBP - Centralized Binary pattern - center pixel compared to average of all nine kernel neighbors

S-LBP Semantic LBP done in a colorimetric-accurate space (like CIE LAB etc.) over uniform connected LBP circular
patterns to find principal direction + arc length used to form a 2D histogram as the descriptor.

F-LBP - Fourier Spectrum of color distance from center pixel to adjacent pixels

LDP - Local Derivate Patterns (higher order derivatives) - basic

LBP is the first order directional derivative, which is combined with additional nth order directional derivatives
concatenated into a histogram, more sensitive to noise of course

BLBP - Baysian LBP - combination of LBPand LTP together using Baysianmethods to optimize towards amore robust
pattern

FLS - Filtering, Labeling and Statistical Framework for LBP comparison, translates LBP's or any type of histogram
descriptor into vector space allowing efficient comparison "A Bayesian Local Binary Pattern Texture Descriptor"

MB-LBP Multiscale Block LBP - compare average pixel values in small blocks instead of individual pixels, thus a 3x3
pixel PBL will become a 9x9 block LBP where each block is a 3x3 region. The histogram is calculated by scaling the
image and creating a rendering at each scale and creating a histogram of each scaled image and concatenating the
histograms together.

PM-LBP Pyramid Based MultiStructured LBP - used 5 templates to extract different structural info at varying levels 1)
Gaussian filters, 4 anisotrophic filters to detect gradient directions

MSLBF - Multiscale Selected Local Binary Features

RILBP - Rotation Invariant LBP rotates the bins (binary LBP value) until minimum value is achieved, the max value is
considered rotational invariant. This is the most widely used method for LBP rotational invariance.

ALBP - Adaptive LBP for rotational invariance, instead of shifting to a maximal value as in the standard LBP method,
find the dominant vector orientation and shift the vector to the dominant vector orientation

LBPV- Local binary pattern variance - uses local area variance to weight pixel contribution to the LBP, align features to
principal orientations, determine non-dominant patterns and reduce their contribution.

OCLBP - Opponent Color LBP - describes color and texture together - each color channel LBP is converted, then
opposing color channel LBP's are converted by using one color as the center pixel and another color as the
neighborhood, so a total of 9 RGB combination LBP patterns are considered.

SDMCLBP - SDM (co -LBP images for each color are used as the basis for generating occurrence matrices, and then
Haralick features are extracted from the images to form a multi dimensional feature space.

MSCLBP - Multi Scale Color Local Binary Patterns (concatenate 6 histograms together)- USES COLOR SPACE
COMPONENTS

HUE-LBP OPPONENT-LBP (ALL 3 CHANNELS) nOPPONENT-LBP (COMPUTED OVER 2 CHANNELS), light
intensity change, intensity shift, intensity change+shift, color-change color-shift, DEFINE SIX NEW OPERATORS:
transformed color LBP (RGB)[subtract mean, divide by STD DEV], opponent LBP, nOpponent LBP, Hue LBP, RGB-
LBP, nRGB-LBP [x8] "Multi-scale Color Local Binary Patterns for Visual Object Classes Recognition", Chao ZHU,
Charles-Edmond BICHOT, Liming CHEN

3D histograms - 3DRGBLBP [best performance, high memory footprint] - 3D histogram computed over RGB-LBP
color image space using uniform pattern minimization to yield 10 levels or patterns per color yielding a large
descriptor: 10 x 10 x 10 = 1000 descriptors.

LATCH - LATCH: Learned Arrangements of Three Patch Codes [871]

204 6 Interest Point Detector and Feature Descriptor Survey

Census

The Census transform [169] is basically an LBP, and like a population census, it uses simple greater-

than and less-than queries to count and compare results. Census records pixel comparison results

made between the center pixel in the kernel and the other pixels in the kernel region. It employs

comparisons and possibly a threshold, and stores the results in a binary vector. The Census transform

also uses a feature called the rank value scalar, which is the number of pixel values less than the

center pixel. The Census descriptor thus uses both a bit vector and a rank scalar.

CENSUS SUMMARY VISION TAXONOMY

Spectra: Local binary + scalar ranking

Feature shape: Square
Feature pattern: Pixel region compares with center pixel

Feature density: Local 3 � 3 at each pixel

Search method: Sliding window
Distance function: Hamming distance

Robustness: 2 (brightness, contrast)

Modified Census Transform

The Modified Census trasform (MCT) [197] seeks to improve the local binary pattern robustness of

the original Census transform. The method uses an ordered comparison of each pixel in the 3 � 3

neighborhood against the mean intensity of all the pixels of the 3 � 3 neighborhood, generating a

binary descriptor bit vector with bit values set to an intensity lower than the mean intensity of all the

pixels. The bit vector can be used to create an MCT image using the MCT value for each pixel. See

Fig. 6.13.

As shown in Fig. 6.13, the MCT relies on the full set of possible 3 � 3 binary patterns (29 � 1 or

511 variations) and uses these as a kernel index into the binary patterns as the MCT output, since each

binary pattern is a unique signature by itself and highly discriminative. The end result of the MCT is

analogous to a nonlinear filter that assigns the output to any of the 29 � 1 patterns in the kernel index.

Results show that the MCT results are better than the basic CT for some types of object

recognition [197].

Figure 6.13 Abbreviated set of 15 out of a possible 511 possible binary patterns for a 3 � 3 MCT. The structure

kernels in the pattern set are the basis set of the MCT feature space comparison. The structure kernels form a pattern

basis set which can represent lines, edges, corners, saddle points, semicircles, and other patterns

Feature Descriptor Survey 205

BRIEF

As described in Chap. 4, in the section on local binary descriptor point-pair patterns, and illustrated in

Fig. 4.11, the BRIEF [124, 125] descriptor uses a random distribution pattern of 256 point-pairs in a

local 31 � 31 region for the binary comparison to create the descriptor. One key idea with BRIEF is

to select random pairs of points within the local region for comparison.

BRIEF is a local binary descriptor and has achieved very good accuracy and performance in

robotics applications [195]. BRIEF and ORB are closely related; ORB is an oriented version of

BRIEF, and the ORB descriptor point-pair pattern is also built differently than BRIEF. BRIEF is

known to be not very tolerant of rotation.

BRIEF SUMMARY TAXONOMY

Spectra: Local binary
Feature shape: Square centered at interest point

Feature pattern: Random local pixel point-pair compares

Feature density: Local 31 � 31 at interest points
Search method: Sliding window

Distance function: Hamming distance

Robustness: 2 (brightness, contrast)

ORB

ORB [126] is an acronym for Oriented BRIEF, and as the name suggests, ORB is based on BRIEF and

adds rotational invariance to BRIEF by determining corner orientation using FAST9, followed by a

Harris corner metric to sort the keypoints; the corner orientation is refined by intensity centroids using

Rosin’s method [53]. The FAST, Harris, and Rosin processing are done at each level of an image

pyramid scaled with a factor of 1.4, rather than the common octave pyramid scale methods. ORB is

discussed in some detail in Chap. 4, in the section on local binary descriptor point-pair patterns, and is

illustrated in Fig. 4.11.

It should be noted that ORB is a highly optimized and very well engineered descriptor, since the

ORB authors were keenly interested in compute speed, memory footprint, and accuracy. Many of the

descriptors surveyed in this section are primarily research projects, with less priority given to

practical issues, but ORB focuses on optimizing and practical issues.

Compared to BRIEF, ORB provides an improved training method for creating the local binary

patterns for pairwise pixel point sampling. While BRIEF uses random point pairs in a 31 � 31

window, ORB goes through a training step to find uncorrelated point pairs in the window with high

variance and means 0.5, which is demonstrated to work better. For details on visualizing the ORB

patterns, see Fig. 4.11.

For correspondence search, ORB uses multi-probe locally sensitive hashing (MP-LSH), which

searches for matches in neighboring buckets when a match fails, rather than renavigating the hash

tree. The authors report that MP-LSH requires fewer hash tables, resulting in a lower memory

footprint. MP-LSH also produces more uniform hash bucket sizes than BRIEF. Since ORB is a

binary descriptor based on point-pair comparisons, Hamming distance is used for correspondence.

206 6 Interest Point Detector and Feature Descriptor Survey

http://dx.doi.org/10.1007/978-3-319-33762-3_4
http://dx.doi.org/10.1007/978-3-319-33762-3_4#Fig11_4
http://dx.doi.org/10.1007/978-3-319-33762-3_4
http://dx.doi.org/10.1007/978-3-319-33762-3_4#Fig11_4
http://dx.doi.org/10.1007/978-3-319-33762-3_4#Fig11_4

ORB is reported to be an order of magnitude faster than SURF, and two orders of magnitude faster

than SIFT, with comparable accuracy. The authors provide impressive performance results in a test of

over 24 NTSC resolution images on the Pascal dataset [126].

ORB* SURF SIFT
15.3ms 217.3ms 5228.7ms

*Results reported as measured in reference [126].

ORB SUMMARY TAXONOMY

Spectra: Local binary + orientation vector
Feature shape: Square

Feature pattern: Trained local pixel point-pair compares

Feature density: Local 31 � 31 at interest points
Search method: Sliding window

Distance function: Hamming distance

Robustness: 3 (brightness, contrast, rotation, limited scale)

BRISK

BRISK [123, 135] is a local binary method using a circular-symmetric pattern region shape and a total

of 60 point-pairs as line segments arranged in four concentric rings, as shown in Fig. 4.10 and

described in detail in Chap. 4. The method uses point-pairs of both short segments and long segments,

and this provides a measure of scale invariance, since short segments may map better for fine

resolution and long segments may map better at coarse resolution.

The brisk algorithm is unique, using a novel FAST detector adapted to use scale space, reportedly

achieving an order of magnitude performance increase over SURF with comparable accuracy. Here

are the main computational steps in the algorithm:

• Detects keypoints using FAST or AGHAST based selection in scale space.

• Performs Gaussian smoothing at each pixel sample point to get the point value.

• Makes three sets of pairs: long pairs, short pairs, and unused pairs (the unused pairs are not in the

long pair or the short pair set; see Fig. 4.10).

• Computes gradient between long pairs, sums gradients to determine orientation.

• Uses gradient orientation to adjust and rotate short pairs.

• Creates binary descriptor from short pair point-wise comparisons.

BRISK SUMMARY TAXONOMY

Spectra: Local binary + orientation vector

Feature shape: Square
Feature pattern: Trained local pixel point-pair compares

Feature density: Local 31 � 31 at FAST interest points

Search method: Sliding window
Distance function: Hamming distance

Robustness: 4 (brightness, contrast, rotation, scale)

Feature Descriptor Survey 207

http://dx.doi.org/10.1007/978-3-319-33762-3_4#Fig10_4
http://dx.doi.org/10.1007/978-3-319-33762-3_4
http://dx.doi.org/10.1007/978-3-319-33762-3_4#Fig10_4

FREAK

FREAK [122] uses a novel foveal-inspired multiresolution pixel pair sampling shape with trained

pixel pairs to mimic the design of the human eye as a coarse-to-fine descriptor, with resolution highest

in the center and decreasing further into the periphery, as shown in Fig. 4.9. In the opinion of this

author, FREAK demonstrates many of the better design approaches to feature description; it

combines performance, accuracy, and robustness. Note that FREAK is fast to compute, has good

discrimination compared to other local binary descriptors such as LBP, Census, BRISK, BRIEF, and

ORB, and compares favorably with SIFT.

The FREAK feature training process involves determining the point-pairs for the binary

comparisons based on the training data, as shown in Fig. 4.9. The training method allows for a

range of descriptor sampling patterns and shapes to be built by weighting and choosing sample points

with high variance and low correlation. Each sampling point is taken from the overlapping circular

regions, where the value of each sampling point is the Gaussian average of the values in each region.

The circular regions are designed in concentric circles of 6 regions in each circle, with small regions

in the center, and larger regions towards the edge, similar to the biological retinal distribution of

receptor cells with some overlap to adjacent regions, which improves accuracy.

The feature descriptor is thus designed in a coarse-to-fine cascade of four groups of 16 byte coarse-

to-fine descriptors containing pixel-pair binary comparisons stored in a vector. The first 16 bytes, the

coarse resolution set in the cascade, is normally sufficient to find 90 % of the matching features and to

discard nonmatching features. FREAK uses 45 point pairs for the descriptor from a 31 � 31 pixel

patch sampling region.

By storing the point-pair comparisons in four cascades of decreasing resolution pattern vectors, the

matching process proceeds from coarse to fine, mimicking the human visual system’s saccadic search

mechanism, allowing for accelerated matching performance when there is early success or rejection

in the matching phase. In summary, the FREAK approach works very well.

FREAK SUMMARY TAXONOMY

Spectra: Local binary coarse-to-fine + orientation vector

Feature shape: Square
Feature pattern: 31 � 31 region pixel point-pair compares

Feature density: Sparse local at AGAST interest points

Search method: Sliding window over scale space
Distance function: Hamming distance

Robustness: 6 (brightness, contrast, rotation, scale, viewpoint, blur)

Spectra Descriptors

Compared to the local binary descriptor group, the spectra group of descriptors typically involves

more intense computations and algorithms, often requiring floating point calculations, and may

consume considerable memory. In this taxonomy and discussion, spectra is simply a quantity that

can be measured or computed, such as light intensity, color, local area gradients, local area statistical

features and moments, surface normals, and sorted data such 2D or 3D histograms of any spectral

208 6 Interest Point Detector and Feature Descriptor Survey

http://dx.doi.org/10.1007/978-3-319-33762-3_4#Fig9_4
http://dx.doi.org/10.1007/978-3-319-33762-3_4#Fig9_4

type, such as histograms of local gradient direction. Many of the methods discussed in this section use

local gradient information.

Local binary descriptors, as discussed in the previous section, are an attempt to move away from

more costly spectral methods to reduce power and increase performance. Local binary descriptors in

many cases offer similar accuracy and robustness to the more compute-intensive spectra methods.

SIFT

The Scale Invariant Feature Transform (SIFT) developed by Lowe [153, 170] is the most well-known

method for finding interest points and feature descriptors, providing invariance to scale, rotation,

illumination, affine distortion, perspective and similarity transforms, and noise. Lowe demonstrates

that by using several SIFT descriptors together to describe an object, there is additional invariance to

occlusion and clutter, since if a few descriptors are occluded, others will be found [153]. We provide

some detail here on SIFT since it is well designed and well known.

SIFT is commonly used as a benchmark against which other vision methods are compared. The

original SIFT research paper by author David Lowe was initially rejected several times for publica-

tion by the major computer vision journals, and as a result Lowe filed for a patent and took a different

direction. According to Lowe, “By then I had decided the computer vision community was not

interested, so I applied for a patent and intended to promote it just for industrial applications.”1

Eventually, the SIFT paper was published and went on to become the most widely cited article in

computer vision history!

SIFT is a complete algorithm and processing pipeline, including both an interest point and a

feature descriptor method. SIFT includes stages for selecting center-surrounding circular weighted

Difference of Gaussian (DoG) maxima interest points in scale space to create scale-invariant

keypoints (a major innovation), as illustrated in Fig. 6.14. Feature descriptors are computed

surrounding the scale-invariant keypoints. The feature extraction step involves calculating a binned

Histogram Of Gradients (HOG) structure from local gradient magnitudes into Cartesian rectangular

bins, or into log polar bins using the GLOH variation, at selected locations centered around the

maximal response interest points derived over several scales.

The descriptors are fed into a matching pipeline to find the nearest distance ratio metric between

closest match and second closest match, which considers a primary match and a secondary match

together and rejects both matches if they are too similar, assuming that one or the other may be a false

match. The local gradient magnitudes are weighted by a strength value proportional to the pyramid

scale level, and then binned into the local histograms. In summary, SIFT is a very well thought out

and carefully designed multi-scale localized feature descriptor.

A variation of SIFT for color images is known as CSIFT [171].

Here is the basic SIFT descriptor processing flow (note: the matching stage is omitted since this

chapter is concerned with feature descriptors and related metrics):

1. Create a Scale Space Pyramid

1 http://yann.lecun.com/ex/pamphlets/publishing-models.html.

Spectra Descriptors 209

http://yann.lecun.com/ex/pamphlets/publishing-models.html

An octave scale n/2 image pyramid is used with Gaussian filtered images in a scale space. The

amount of Gaussian blur is proportional to the scale, and then the Difference of Gaussians (DoG)

method is used to capture the interest point extrema maxima and minima in adjacent images in the

pyramid. The image pyramid contains five levels. SIFT also uses a double-scale first pyramid level

using pixels at two times the original magnification to help preserve fine details. This technique

increases the number of stable keypoints by about four times, which is quite significant. Otherwise,

computing the Gaussian blur across the original image would have the effect of throwing away the

high-frequency details. See Figs. 6.15 and 6.16.

2. Identify Scale-Invariant Interest Points

As shown in Fig. 6.16, the candidate interest points are chosen from local maxima or minima as

compared between the 26 adjacent pixels in the DOG images from the three adjacent octaves in the

pyramid. In other words, the interest points are scale invariant.

The selected interest points are further qualified to achieve invariance by analyzing local contrast,

local noise, and local edge presence within the local 26 pixel neighborhood. Various methods may be

used beyond those in the original method, and several techniques are used together to select the best

interest points, including local curvature interpolation over small regions, and balancing edge

responses to include primary and secondary edges. The keypoints are localized to sub-pixel precision

over scale and space. The complete interest points are thus invariant to scale.

Figure 6.14 (Top) Set of Gaussian Images obtained by convolution with a Gaussian kernel and the corresponding set

of DoG images. (Bottom) In octave sets. The DOG function approximates a LOG gradient, or tunable bypass filter.

Matching features against the various images in the scaled octave sets yields scale invariant features

210 6 Interest Point Detector and Feature Descriptor Survey

3. Create Feature Descriptors

A local region or patch of size 16 � 16 pixels surrounding the chosen interest points is the basis of the

feature vector. The magnitude of the local gradients in the 16 � 16 patch and the gradient

orientations are calculated and stored in a HOG (Histogram of Gradients) feature vector, which is

Figure 6.15 SIFT DoG as the simple arithmetic difference between the Gaussian filtered images in the pyramid scale

Figure 6.16 SIFT interest point or keypoint detection using scale invariant extrema detection, where the dark pixel in

the middle octave is compared within a 3 � 3 � 3 area against its 26 neighbors in adjacent DOG octaves, which

includes the eight neighbors at the local scale plus the nine neighbors at adjacent octave scales (up or down)

Spectra Descriptors 211

weighted in a circularly symmetric fashion to downweight points farther away from the center interest

point around which the HOG is calculated using a Gaussian weighting function.

As shown in Fig. 6.17, the 4 � 4 gradient binning method allows for gradients to move around in

the descriptor and be combined together, thus contributing invariance to various geometric distortions

that may change the position of local gradients, similar to the human visual system treatment of the

3D position of gradients across the retina [240]. The SIFT HOG is reasonably invariant to scale,

contrast, and rotation. The histogram bins are populated with gradient information using trilinear

interpolation, and normalized to provide illumination and contrast invariance.

SIFT can also be performed using a variant of the HOG descriptor called the Gradient Location

and Orientation Histogram (GLOH), which uses a log polar histogram format instead of the Cartesian

HOG format; see Fig. 6.17. The calculations for the GLOH log polar histogram are straightforward,

as shown below from the Cartesian coordinates used for the Cartesian HOG histogram, where the

vector magnitude is the hypotenuse and the angle is the arctangent.

m x; yð Þ ¼
ffi
L xþ 1,yð Þ � L x� 1,yð Þð Þ2 þ L x,yþ 1ð Þ � x,y� 1ð Þð Þ2

q
θ x; yð Þ ¼ TAN �1 L x, yþ 1ð Þ � L x, y� 1ð Þð Þ= L xþ 1, yð Þ � x� 1, yð Þð Þ

As shown in Fig. 6.17, SIFT HOG and GLOH are essentially 3D histograms, and in this case the

histogram bin values are gradient magnitude and direction. The descriptor vector size is thus 4 � 4

� 8 ¼ 128 bytes. The 4 � 4 descriptor (center image) is a set of histograms of the combined eight-

way gradient direction and magnitude of each 4 � 4 group in the left image, in Cartesian coordinates,

while the GLOH gradient magnitude and direction are binned in polar coordinate spaced into 17 bins

over a greater binning region. SIFT-HOG (left image) also uses a weighting factor to smoothly reduce

the contribution of gradient information in a circularly symmetric fashion with increasing distance

from the center.

Figure 6.17 (Left and center) Gradient magnitude and direction binned into histograms for the SIFT HOG, note the

circle over the bin region on the left image suggests how SIFT weights bins farther from center less than bins closer to

the center, (Right) GLOH descriptors

212 6 Interest Point Detector and Feature Descriptor Survey

Overall compute complexity for SIFT is high [172], as shown in Table 6.2. Note that feature

description is most compute-intensive owing to all the local area gradient calculations for orientation

assignment and descriptor generation including histogram binning with trilinear interpolation. The

gradient orientation histogram developed in SIFT is a key innovation that provides substantial robustness.

The resulting feature vector for SIFT is 128 bytes. However, methods exist to reduce the

dimensionality and vary the descriptor, which are discussed next.

SIFT SUMMARY TAXONOMY

Spectra: Local gradient magnitude + orientation

Feature shape: Square, with circular weighting

Feature pattern: Square with circular-symmetric weighting
Feature density: Sparse at local 16 � 16 DoG interest points

Search method: Sliding window over scale space

Distance function: Euclidean distance (*or Hellinger distance with RootSIFT retrofit)
Robustness: 6 (brightness, contrast, rotation, scale, affine transforms, noise)

SIFT-PCA

The SIFT-PCA method developed by Ke and Suthankar [175] uses an alternative feature vector

derived using principal component analysis (PCA), based on the normalized gradient patches rather

than the weighted and smoothed histograms of gradients, as used in SIFT. In addition, SIFT-PCA

reduces the dimensionality of the SIFT descriptor to a smaller set of elements. SIFT originally was

reported using 128 vectors, but using SIFT-PCA the vector is reduced to a smaller number such as

20 or 36.

The basic steps for SIFT-PCA are as follows:

1. Construct an eigenspace based on the gradients from the local 41 � 41 image patches resulting in

a 3042 element vector; this vector is the result of the normal SIFT pipeline.

2. Compute local image gradients for the patches.

3. Create the reduced-size feature vector from the eigenspace using PCA on the covariance matrix of

each feature vector.

SIFT-PCA is shown to provide some improvements over SIFT in the area of robustness to image

warping, and the smaller size of the feature vector results in faster matching speed. The authors note

that while PCA in general is not optimal as applied to image patch features, the method works well for

the SIFT style gradient patches that are oriented and localized in scale space [175].

Table 6.2 SIFT compute complexity (from Vinukonda [172])

SIFT Pipeline Step Complexity Number of Operations

Gaussian blurring pyramid �N2 U2 s 4N2 W2 s

Difference of Gaussian pyramid �sN2 4N2 s

Scale-space extrema detection �sN2 104sN2

Keypoint detection �αsN2 100sαN2

Orientation assignment �sN2(1 – αβ) 48sN2

Descriptor generation �(x2 N2(αβ þ γ)) �1520x2 N2(αβ þ γ) N2

Spectra Descriptors 213

SIFT-GLOH

The Gradient Location and Orientation Histogram (GLOH) [136] method uses polar coordinates and

radially distributed bins rather than the Cartesian coordinate style histogram binning method used by

SIFT. It is reported to provide greater accuracy and robustness over SIFT and other descriptors for

some ground truth datasets [136]. As shown in Fig. 6.17, GLOH uses a set of 17 radially distributed

bins to sum the gradient information in polar coordinates, yielding a 272-bin histogram. The center

bin is not direction oriented. The size of the descriptor is reduced using PCA. GLOH has been used to

retrofit SIFT.

SIFT-SIFER Retrofit

The Scale Invariant Feature Detector with Error Resilience (SIFER) [216] method provides

alternatives to the standard SIFT pipeline, yielding measurable accuracy improvements reported to

be as high as 20 % for some criteria. However, the accuracy comes at a cost, since the performance is

about twice as slow as SIFT. The major contributions of SIFER include improved scale-space

treatment using a higher granularity image pyramid representation, and better scale-tuned filtering

using a cosine modulated Gaussian filter.

The major steps in the method are shown in Table 6.3. The scale-space pyramid is blurred using a

cosine modulated Gaussian (CMG) filter, which allows each scale of the octave to be subdivided into

six scales, so the result is better scale accuracy.

Since the performance of the CMG is not good, SIFER provides a fast approximation method that

provides reasonable accuracy. Special care is given to the image scale and the filter scale to increase

accuracy of detection, thus the cosine is used as a bandpass filter for the Gaussian filter to match the

scale as well as possible, tuning the filter in a filter bank over scale space with well-matched filters for

each of the six scales per octave. The CMG provides more error resilience than the SIFT Gaussian

second derivative method.

SIFT CS-LBP Retrofit

The SIFT-CSLBP retrofit method [165, 194] combines the best attributes of SIFT and the center

symmetric LBP (CS-LBP) by replacing the SIFT gradient calculations with much more compute-

Table 6.3 Comparison of SIFT, SURF, and SIFER pipelines (adapted from [216])

SIFT SURF SIFER

Scale Space Filtering Gaussian 2nd derivative Gaussian 2nd derivative Cosine Modulated Gaussian

Detector LoG Hessian Wavelet Modulus Maxima

Filter approximation level OK accuracy OK accuracy Good accuracy

Optimizations DoG for gradient Integral images,
constant time

Convolution,
constant time

Image up-sampling 2x 2x Not used

Sub-sampling Yes Yes Not used

214 6 Interest Point Detector and Feature Descriptor Survey

efficient LBP operators, and by creating similar histogram-binned orientation feature vectors. LBP is

computationally simpler both to create and to match than the SIFT descriptor.

The CS-LBP descriptor begins by applying an adaptive noise-removal filter (a Weiner filter is the

variety used in this work) to the local patch for adaptive noise removal, which preserves local

contrast. Rather than computing all 256 possible 8-bit local binary patterns, the CS-LBP only

computes 16 center symmetric patterns for reduced dimensionality, as shown in Fig. 6.18.

Instead of weighting the histogram bins using the SIFT circular weighting function, no weighting

is used, which reduces compute. Like SIFT, the CS-LBP binning method uses a 3 � 3 region

Cartesian grid; simpler bilinear interpolation for binning is used, rather than trilinear, as in SIFT.

Overall, the CS-LCP retrofit method simplifies the SIFT compute pipeline and increases performance

with comparable accuracy; greater accuracy is reported for some datasets. See Table 6.4.

RootSIFT Retrofit

The RootSift method [166] provides a set of simple, key enhancements to the SIFT pipeline, resulting

in better compute performance and slight improvements in accuracy, as follows:

• Hellinger distance: RootSIFT uses a simple performance optimization of the SIFT object

retrieval pipeline using Hellinger distance instead of Euclidean distance for correspondence. All

other portions of the SIFT pipeline remain the same; K-means is still employed to build the feature

vector set, and other approximate nearest neighbor methods may still be used as well for larger

feature vector sets. The authors claim a simple modification to SIFT code to perform the Hellinger

distance optimization instead of Euclidean distance can be a simple set of one-line changes to the

code. Other enhancements in RootSIFT are optional, discussed next.

p8 c

p2p1

p4

p3

p7 p6 p5

LPB=
s(p1 - c)0 +
s(p2 – c)1 +
s(p3 – c)2 +
s(p4 – c)3 +
s(p5 – c)4 +
s(p6 – c)5 +
s(p7 – c)6 +
s(p8 – c)7

CS-LPB=
s(p1 – p5)0 +
s(p2 – p6)1 +
s(p3 – p7)2 +
s(p4 – p8)3

Figure 6.18 CS-LBP sampling pattern for reduced dimensionality

Table 6.4 SIFTand CSLBP retrofit performance (as per reference [194])

Feature
extraction

Descriptor
construction

Descriptor
normalization

Total
ms time

CS-LBP 256 0.1609 0.0961 0.007 0.264

CS-LBP 128 0.1148 0.0749 0.0022 0.1919

SIFT 128 0.4387 0.1654 0.0025 0.6066

Spectra Descriptors 215

• Feature augmentation: This method increases total recall. Developed by Turcot and Lowe [324],

it is applied to the features. Feature vectors or visual words from similar views of the same object

in the database are associated into a graph used for finding correspondence among similar features,

instead of just relying on a single feature.

• Discriminative query expansion (DQE): This method increases query expansion during training.

Feature vectors within a region of proximity are associated by averaging into a new feature vector

useful for requeries into the database, using both positive and negative training data in a linear

SVM; better correspondence is reported in reference [166].

By combining the three innovations described above into the SIFT pipeline, performance, accu-

racy, and robustness are shown to be significantly improved.

CenSurE and STAR

The Center Surround Extrema or CenSurE [177] method provides a true multi-scale descriptor,

creating a feature vector using full spatial resolution at all scales in the pyramid, in contrast to SIFT

and SURF, which find extrema at subsampled pixels that compromises accuracy at larger scales.

CenSurE is similar to SIFT and SURF, but some key differences are summarized in Table 6.5.

Modifications have been made to the original CenSurE algorithm in OpenCV, which goes by the

name of STAR descriptor.

The authors have paid careful attention to creating methods which are computationally efficient,

memory efficient, with high performance and accuracy [177]. CenSurE defines an optimized

approach to find extrema by first using the Laplacian at all scales, followed by a filtering step using

the Harris method to discard corners with weak responses.

The major innovations of CenSurE over SIFT and SURF are as follows:

1. Use of bilevel center-surround filters, as shown in Fig. 6.19, including Difference of Boxes (DoB),

Difference of Octagons (DoO) and Difference of Hexagons (DoH) filters, octagons and hexagons

are more rotationally invariant than boxes. DoB is computationally simple and may be computed

with integral images vs. the Gaussian scale space method of SIFT. The DoO and DoH filters are

also computed quickly using a modified integral image method. Circle is the desired shape, but

more computationally expensive.

2. To find the extrema, the DoB filter is computed using a seven-level scale space of filters at each

pixel, using a 3 � 3 � 3 neighborhood. The scale space search is composed using center-surround

Haar-like features on non-octave boundaries with filter block sizes [1,2,3,4,5,6,7] covering 2.5

octaves between [1 and 7] yielding five filters. This scale arrangement provides more

Table 6.5 Major differences between CenSurE and SIFTand SURF (adapted from reference [177])

CenSurE SIFT SURF

Resolution Every pixel Pyramid sub-sampled Pyramid sub-sampled

Edge filter method Harris Hessian Hessian

Scale space extrema method Laplace, Center Surround Laplace, DOG Hessian, DOB

Rotational invariance Approximate yes no

Spatial resolution in scale Full subsampled Subsampled

216 6 Interest Point Detector and Feature Descriptor Survey

discrimination than an octave scale. A threshold is applied to eliminate weak filter responses at

each level, since the weak responses are likely not to be repeated at other scales.

3. Nonrectangular filter shapes, such as octagons and hexagons, are computed quickly using

combinations of overlapping integral image regions; note that octagons and hexagons avoid

artifacts caused by rectangular regions and increase rotational invariance; see Fig. 6.19.

4. CenSurE filters are applied using a fast, modified version of the SURF method called Modified

Upright SURF (MU-SURF) [180, 181], discussed later with other SURF variants, which pays

special attention to boundary effects of boxes in the descriptor by using an expanded set of

overlapping subregions for the HAAR responses.

CENSURE SUMMARY TAXONOMY

Spectra: Center-surround shaped bi-level filters

Feature shape: Octagons, circles, boxes, hexagons

Feature pattern: Filter shape masks, 24 � 24 largest region
Feature density: Sparse at Local interest points

Search method: Dense sliding window over scale space

Distance function: Euclidean distance
Robustness: 5 (brightness, contrast, rotation, scale, affine transforms)

Correlation Templates

One of the most well known and obvious methods for feature description and detection, as used as the

primary feature in basic deep learning architectures discussed in Chaps. 9 and 10, takes an image of

the complete feature and searches for it by direct pixel comparison—this is known as correlation.

Correlation involves stepping a sliding window containing a first pixel region template across a

second image region template and performing a simple pixel-by-pixel region comparison using a

method such as sum of differences (SAD); the resulting score is the correlation.

Since image illumination may vary, typically the correlation template and the target image are first

intensity normalized, typically by subtracting the mean and dividing by the standard deviation;

however, contrast leveling and LUT transform may also be used. Correlation is commonly

implemented in the spatial domain on rectangular windows, but can be used with frequency domain

methods as well [4, 9].

Correlation is used in video-based target tracking applications where translation as orthogonal

motion from frame-to-frame over small adjacent regions predominates. For example, video motion

encoders find the displacement of regions or blocks within the image using correlation, since usually

Figure 6.19 CenSurE bilevel center surround filter shape approximations to the Laplacian using binary kernel values

of 1 and �1, which can be efficiently implemented using signed addition rather than multiplication. Note that the

circular shape is the desired shape, but the other shapes are easier to compute using integral images, especially the

rectangular method

Spectra Descriptors 217

small block motion in video is orthogonal to the Cartesian axis and maps well to simple displacements

found using correlation. Correlation can provide sub-pixel accuracy between 1/4 and 1/20 of a pixel,

depending on the images and methods used; see reference [143]. For video encoding applications,

correlation allows for the motion vector displacements of corresponding blocks to be efficiently

encoded and accurately computed. Correlation is amenable to fixed function hardware acceleration.

Variations on correlation include cross-correlation (sliding dot product), normalized cross-

correlation (NCC), zero-mean normalized cross-correlation (ZNCC), and texture auto correlation

(TAC).

In general, correlation is a good detector for orthogonal motion of a constant-sized mono-space

pattern region. It provides sub-pixel accuracy, has limited robustness and accuracy over illumination,

but little to no robustness over rotation or scale. However, to overcome these robustness problems, it

is possible to accelerate correlation over a scale space, as well as various geometric translations, using

multiple texture samplers in a graphics processor in parallel to rapidly scale and rotate the correlation

templates. Then, the correlation matching can be done either via SIMD SAD instructions or else using

the fast fixed function correlators in the video encoding engines.

Correlation is illustrated in Fig. 6.20.

CORRELATION SUMMARY TAXONOMY

Spectra: Correlation
Feature shape: Square, rectangle

Feature pattern: Dense

Feature density: Variable sized kernels
Search method: Dense sliding window

Distance function: SSD typical, others possible
Robustness: 1 (illumination, sub-pixel accuracy)

Figure 6.20 Simplified model of digital correlation using a triangular template region swept past a rectangular region.

The best correlation is shown at the location of the highest point

218 6 Interest Point Detector and Feature Descriptor Survey

HAAR Features

HAAR-like features [4, 9] were popularized in the field of computer vision by the Viola–Jones [178]

algorithm. HAAR features are based on specific sets of rectangle patterns, as shown in Fig. 6.21,

which approximate the basic HAAR wavelets, where each HAAR feature is composed of the average

pixel value of pixels within the rectangle. This is efficiently computed using integral images.

By using the average pixel value in the rectangular feature, the intent is to find a set of small

patterns in adjacent areas where brighter or darker region adjacency may reveal a feature—for

example, a bright cheek next to a darker eye socket. However, HAAR features have drawbacks,

since rectangles by nature are not rotation invariant much beyond 15�. Also, the integration of pixel

values within the rectangle destroys fine detail.

Depending on the type of feature to be detected, such as eyes, a specific set of HAAR feature is

chosen to reveal eye/cheek details and eye/nose details. For example, HAAR patterns with two

rectangles are useful for detecting edges, while patterns with three rectangles can be used for lines,

and patterns with an inset rectangle or four rectangles can be used for single-object features. Note that

HAAR features may be a rotated set.

Of course, the scale of the HAAR patterns is an issue, and since a given HAAR feature only works

with an image of appropriate scale. Image pyramids are used for HAAR feature detection, along with

other techniques for stepping the search window across the image in optimal grid sizes for a given

application. Another method to address feature scale is to use a wider set of scaled HAAR features to

perform the pyramiding in the feature space rather than the image space. One method to address

HAAR feature granularity and rectangular shape is to use overlapping HAAR features to approximate

octagons and hexagons; see the CenSurE and STAR methods in Fig. 6.19.

HAAR features are closely related to wavelets [219, 326]. Wavelets can be considered as an

extension of the earlier concept of Gabor functions [179, 325]. We provide only a short discussion of

wavelets and Gabor functions here; more discussion was provided in Chap. 2. Wavelets are an

orthonormal set of small duration functions. Each set of wavelets is designed to meet various goals to

locate short-term signal phenomenon. There is no single wavelet function; rather, when designing

wavelets, a mother wavelet is first designed as the basis of the wavelet family, and then daughter

wavelets are derived using translation and compression of the mother wavelet into a basis set.

Wavelets are used as a set of nonlinear basis functions, where each basis function can be designed

as needed to optimally match a desired feature in the input function. So, unlike transforms which use a

uniform set of basis functions like the Fourier transform, composed of SIN and COS functions,

wavelets use a dynamic set of basis functions that are complex and nonuniform in nature. Wavelets

can be used to describe very complex short-term features, and this may be an advantage in some

feature detection applications.

Figure 6.21 Example HAAR-like features

Spectra Descriptors 219

http://dx.doi.org/10.1007/978-3-319-33762-3_2

However, compared to integral images and HAAR features, wavelets are computationally expen-

sive, since they represent complex functions in a complex domain. HAAR 2D basis functions are

commonly used owing to the simple rectangular shape and computational simplicity, especially when

HAAR features are derived from integral images.

HAAR SUMMARY TAXONOMY

Spectra: Integral box filter

Feature shape: Square, rectangle

Feature pattern: Dense
Feature density: Variable-sized kernels

Search method: Grid search typical

Distance function: Simple difference
Robustness: 1 (illumination)

Viola–Jones with HAAR-Like Features

The Viola–Jones method [178] is a feature detection pipeline framework based on HAAR-like

features using a perceptron learning algorithm to train a detector matching network that consists of

three major parts:

1. Integral images used to rapidly compute HAAR-like features.

2. The ADA-BOOST learning algorithm to create a strong pattern matching and classifier network by

combining strong classifiers with good matching performance with weak classifiers that have been

“boosted” by adjusting weighting factors during the training process.

3. Combining classifiers into a detector cascade or funnel to quickly discard unwanted features at

early stages in the cascade.

Since thousands of HAAR pattern matches may be found in a single image, the feature

calculations must be done quickly. To make the HAAR pattern match calculation rapidly, the entire

image is first processed into an integral image. Each region of the image is searched for known HAAR

features using a sliding window method stepped at some chosen interval, such as every n pixels, and

the detected features are fed into a classification funnel known as a HAAR Cascade Classifier. The top

of the funnel consists of feature sets which yield low false positives and false negatives, so the first-

order results of the cascade contain high-probability regions of the image for further analysis. The

HAAR features become more complex progressing deeper into the funnel of the cascade. With this

arrangement, images regions are rejected as soon as possible if the desired HAAR features are not

found, minimizing processing overhead.

A complete HAAR feature detector may combine hundreds or thousands of HAAR features

together into a final classifier, where not only the feature itself may be important but also the spatial

arrangements of features—for example, the distance and angular relationships between features could

be used in the classifier.

220 6 Interest Point Detector and Feature Descriptor Survey

SURF

The Speeded-up Robust Features Method (SURF) [152] operates in a scale space and uses a fast

Hessian detector based on the determinant maxima points of the Hessian matrix. SURF uses a scale

space over a 3 � 3 � 3 neighborhood to localize bloblike interest point features. To find feature

orientation, a set of HAAR-like feature responses are computed in the local region surrounding each

interest point within a circular radius, computed at the matching pyramid scale for the interest point.

The dominant orientation assignment for the local set of HAAR features is found, as shown in

Fig. 6.22, using a sliding sector window of size π
3
. This sliding sector window is rotated around the

interest point at intervals. Within the sliding sector region, all HAAR features are summed. This

includes both the horizontal and vertical responses, which yield a set of orientation vectors; the largest

vector is chosen to represent dominant feature orientation. By way of comparison, SURF integrates

gradients to find the dominant direction, while SIFT uses a histogram of gradient directions to record

orientation.

To create the SURF descriptor vector, a rectangular grid of 4 � 4 regions is established

surrounding the interest point, similar to SIFT, and each region of this grid is split into 4 � 4

subregions. Within each subregion, the HAAR wavelet response is computed over 5 � 5 sample

points. Each HAAR response is weighted using a circularly symmetric Gaussian weighting factor,

where the weighting factor decreases with distance from the center interest point, which is similar to

SIFT. Each feature vector contains four parts:

v ¼
X

dx ,
X

dy ,
X

dx

,X

dy

� �

The wavelet responses dx and dy for each subregion are summed, and the absolute value of the

responses |dx| and |dy| provide polarity of the change in intensity. The final descriptor vector is

4 � 4 � 4: 4 � 4 regions with four parts per region, for a total vector length of 64. Of course, other

vector lengths can be devised by modifying the basic method.

As shown in Fig. 6.22, the SURF gradient grid is rotated according to the dominant orientation,

computed during the sliding sector window process, and then the wavelet response is computed in

dx dy

Figure 6.22 (Left) The sliding sector window used in SURF to compute the dominant orientation of the HAAR

features to add rotational invariance to the SURF features. (Right) The feature vector construction process, showing a

grid containing a 4 � 4 region subdivided into 4 � 4 subregions and 2 � 2 subdivisions

Spectra Descriptors 221

each square region relative to orientation for binning into the feature vector. Each of the wavelet

directional sums dx, dy, |dx|, |dy| is recorded in the feature vector.

The SURF and SIFT pipeline methods are generally comparable in implementation steps and final

accuracy, but SURF is one order of magnitude faster to compute than SIFT, as compared in an ORB

benchmarking test [126]. However, the local binary descriptors, such as ORB, are another order of

magnitude faster than SURF, with comparable accuracy for many applications [126]. For more

information, see the section earlier in this chapter on local binary descriptors.

SURF SUMMARY TAXONOMY

Spectra: Integral box filter + orientation vector

Feature shape: HAAR rectangles

Feature pattern: Dense
Feature density: Sparse at Hessian interest points

Search method: Dense sliding window over scale space

Distance function: Mahalanobis or Euclidean
Robustness: 4 (scale, rotation, illumination, noise)

Variations on SURF

A few variations on the SURF descriptor [180, 181] are worth discussing, as shown in Table 6.6. Of

particular interest are the G-SURF methods [180], which use a differential geometry concept [182] of

a local region gauge coordinate system to compute the features. Since gauge coordinates are not

global but, rather, local to the image feature, gauge space features carry advantages for geometrical

accuracy.

Table 6.6 SURF variants (as discussed in Alcantarilla et al. [180])

SURF Circular Symmetric Gaussian Weighting Scheme, 20x20 grid

U-SURF
[181]

Faster version of SURF, only upright features are used; no orientation. Like M-SURF except
calculated upright “U” with no rotation of the grid, uses a 20x20 grid, no overlapping HAAR features,
modified Gaussian weighting scheme, bilinear interpolation between histogram bins.

M-SURF
MU-SURF
[181]

Circular symmetric Gaussian weighting scheme computed in two steps instead of one as for normal
SURF, 24x24 grid using overlapping HAAR features, rotation orientation left out in MU-SURF
version.

G-SURF,
GU-SURF
[180]

Instead of HAAR features, substitutes 2nd order gauge derivatives in Gauge coordinate space, no
Gaussian weighting, 20x20 grid. Gauge derivatives are rotation and translation invariant, while the
HAAR features are simple rectangles, and rectangles have poor rotational invariance, maybe +/-15
degrees at best.

MG-SURF
[180]

Same as M-SURF, but uses gauge derivatives.

NG-SURF
[180]

N = No Gaussian weighting as in SURF; same as SURF but no Gaussian weighting applied, allows
for comparison between gauge derivate features and HAAR features.

222 6 Interest Point Detector and Feature Descriptor Survey

Histogram of Gradients (HOG) and Variants

The Histogram of Gradients (HOG) method [98] is intended for image classification, and relies on

computing local region gradients over a dense grid of overlapping blocks, rather than at interest

points. HOG is appropriate for some applications, such as person detection, where the feature in the

image is quite large.

HOG operates on raw data; while many methods rely on Gaussian smoothing and other filtering

methods to prepare the data, HOG is designed specifically to use all the raw data without introducing

filtering artifacts that remove fine details. The authors show clear benefits using this approach. It is a

trade-off: filtering artifacts such as smoothing vs. image artifacts such as fine details. The HOG

method shows preferential results for the raw data. See Fig. 4.12, showing a visualization of a HOG

descriptor.

Major aspects in the HOG method are as follows:

• Raw RGB image is used with no color correction or noise filtering, using other color spaces and

color gamma adjustment provided little advantage for the added cost.

• Prefers a 64 � 128 sliding detector window; 56 � 120 and 48 � 112 sized windows were also

tested. Within this detector window, a total of 8 � 16 8 � 8 pixel block regions are defined for

computation of gradients. Block sizes are tunable.

• For each 8 � 8 pixel block, a total of 64 local gradient magnitudes are computed. The preferred

method is simple line and column derivatives [�1,0,1] in x/y; other gradient filter methods are

tried, but larger filters with or without Gaussian filtering degrade accuracy and performance.

Separate gradients are calculated for each color channel.

• Local gradient magnitudes are binned into a 9-bin histogram of edge orientations, quantizing

dimensionality from 64 to 9, using bilinear interpolation; <9 bins produce poorer accuracy, >9

bins does not seem to matter. Note that either rectangular R-HOG or circular log polar C-HOG

binning regions can be used.

• Normalization of gradient magnitude histogram values to unit length to provide illumination

invariance. Normalization is performed in groups, rather than on single histograms. Overlapping

2 � 2 blocks of histograms are used within the detector window; the block overlapping method

reduces sharp artifacts, and the 2 � 2 region size seems to work best.

• For the 64 � 128 pixel detector window method, a total of 128 8 � 8 pixel blocks are defined.

Each 8 � 8 block has four cells for computing separate 9-bin histograms. The total descriptor size

is then 8 � 16 � 4 � 9 ¼ 4608.

Note that various formulations of the sliding window and block sizes are used for dealing with

specific application domains. See Fig. 4.12, showing a visualization of HOG descriptor computed

using 7 � 15 8 � 8 pixel cells. Key findings from the HOG [98] design approach include:

• The abrupt edges at fine scales in the raw data are required for accuracy in the gradient

calculations, and post-processing and normalizing the gradient bins later works well.

• L2 style block normalization of local contrast is preferred and provides better accuracy over global

normalization; note that the local region blocks are overlapped to assist in the normalization.

• Dropping the L2 block normalization stage during histogram binning reduces accuracy by 27 %.

• HOG features perform much better than HAAR-style detectors, and this makes sense when we

consider that a HAAR wavelet is an integrated directionless value, while gradient magnitude and

direction over the local HOG region provides a richer spectra.

Spectra Descriptors 223

http://dx.doi.org/10.1007/978-3-319-33762-3_4#Fig12_4
http://dx.doi.org/10.1007/978-3-319-33762-3_4#Fig12_4

HOG SUMMARY TAXONOMY

Spectra: Local region gradient histograms
Feature shape: Rectangle or circle

Feature pattern: Dense 64 � 128 typical rectangle

Feature density: Dense overlapping blocks
Search method: Grid over scale space

Distance function: Euclidean
Robustness: 4 (illumination, viewpoint, scale, noise)

PHOG and Related Methods

The Pyramid Histogram of Oriented Gradients (PHOG) [183] method is designed for global or

regional image classification, rather than local feature detection. PHOG combines regional HOG

features with whole image area features using spatial relationships between features spread across the

entire image in an octave grid region subdivision; see Fig. 6.23.

PHOG is similar to related work using a coarse-to-fine grid of region histograms called Spatial

Pyramid Matching by Lazebni, Schmid, and Ponce [516], using histograms of oriented edges and

SIFT features to provide multi-class classification. It is also similar to earlier work on pyramids of

concatenated histogram features taken over a progressively finer grid, called Pyramid Match Kernel

and developed by Grauman and Darrell [517], which computes correspondence using weighted,

multi-resolution histogram intersection. Other related earlier work using multi-resolution histograms

for texture classification are described in reference [47].

The PHOG descriptor captures several feature variables, including:

• Shape features, derived from local distribution of edges based on gradient features inspired by the

HOG method [98].

• Spatial relationships, across the entire image by computing histogram features over a set of

octave grid cells with blocks of increasingly finer size over the image.

Figure 6.23 Set of PHOG descriptors computed over the whole image, using octave grid cells to bound the edge

information. (Center Left) A single histogram. (Center right) Four histograms shown concatenated together. (Right)
Sixteen histograms shown concatenated

224 6 Interest Point Detector and Feature Descriptor Survey

• Appearance features, using a dense set of SIFT descriptors calculated across a regularly spaced

dense grid. PHOG is demonstrated to compute SIFT vectors for color images; results are provided

in [183] for the HSV color space.

A set of training images is used to generate a set of PHOG descriptor variables for a class of

images, such as cars or people. This training set of PHOG features is reduced using K-means

clustering to a set of several hundred visual words to use for feature matching and image

classification.

Some key concepts of the PHOG are illustrated in Fig. 6.23. For the feature shape, the edges are

computed using the Canny edge detector, and the gradient orientation is computed using the Sobel

operator. The gradient orientation binning is linearly interpolated across adjacent histogram bins by

gradient orientation (HOG), each bin represents the angle of the edge. A HOG vector is computed for

each size of grid cell across the entire image. The final PHOG descriptor is composed of a weighted

concatenation of all the individual HOG histograms from each grid level. There is no scale-space

smoothing between the octave grid cell regions to reduce fine detail.

As shown in Fig. 6.23, the final PHOG contains all the HOGs concatenated. Note that for the center

left image, the full grid size cell produces 1 HOG, for the center right, the half octave grid produces

4 HOGs, and for the right image, the fine grid produces 16 HOG vectors. The final PHOG is

normalized to unity to reduce biasing due to concentration of edges or texture.

PHOG SUMMARY TAXONOMY

Spectra: Global and regional gradient orientation histograms
Feature shape: Rectangle

Feature pattern: Dense grid of tiles

Feature density: Dense tiles
Search method: Grid regions, no searching

Distance function: l2 norm

Robustness: 3 (image classification under some invariance to illumination, viewpoint,
noise)

Daisy and O-Daisy

The Daisy Descriptor [206, 308] is inspired by SIFT and GLOH-like descriptors, and is devised for

dense-matching applications such as stereo mapping and tracking, reported to be about 40 % faster

than SIFT. See Fig. 6.24. Daisy relies on a set of radially distributed and increasing size Gaussian

convolution kernels that overlap and resemble a flower-like shape (Daisy).

Daisy does not need local interest points, and instead computes a descriptor densely at each pixel,

since the intended application is stereo mapping and tracking. Rather than using gradient magnitude

and direction calculations like SIFT and GLOH, Daisy computes a set of convolved orientation maps

based on a set of oriented derivatives of Gaussian filters to create eight orientation maps spaced at

equal angles.

As shown in Fig. 6.24, the size of each filter region and the amount of blur in each Gaussian filter

increase with distance away from the center, mimicking the human visual system by maintaining a

sharpness and focus in the center of the field of view and decreasing focus and resolution farther away

from the center. Like SIFT, Daisy also uses histogram binning of the local orientation to form the

descriptor.

Spectra Descriptors 225

Daisy is designed with optimizations in mind. The convolution orientation map approach

consumes fewer compute cycles than the gradient magnitude and direction approach of SIFT and

GLOH, yet yields similar results. The Daisy method also includes optimizations for computing larger

Gaussian kernels by using a sequential set of smaller kernels, and also by computing certain

convolution kernels recursively. Another optimization is gained using a circular grid pattern instead

of the rectangular grid used in SIFT, which allows Daisy to vary the rotation by rotating the sampling

grid rather than recomputing the convolution maps.

As shown in Fig. 6.24 (right image), Daisy also uses binary occlusion masks to identify portions of

the descriptor pattern to use or ignore in the feature matching distance functions. This is a novel

feature and provides for invariance to occlusion.

An FPGA optimized version of Daisy, called O-Daisy [209], provides enhancements for increased

rotational invariance.

DAISY SUMMARY TAXONOMY

Spectra: Gaussian convolution values
Feature shape: Circular

Feature pattern: Overlapping concentric circular

Feature density: Dense at each pixel
Search method: Dense sliding window

Distance function: Euclidean

Robustness: 3 (illumination, occlusion, noise)

CARD

The Compact and Realtime Descriptor (CARD) method [210] is designed with performance

optimizations in mind, using learning-based sparse hashing to convert descriptors into binary codes

Figure 6.24 (Left) Daisy pattern region, which is composed of four sets of eight overlapping concentric circles, with

increasing Gaussian blur in the outer circles, where the radius of each circle is proportional to the Gaussian kernel

region standard deviation. The overlapping circular regions provide a degree of filtering against adjacent region

transition artifacts. (Right) A hypothetical binary occlusion mask; darker regions indicate points that may be occluded

and “turned off” in the descriptor during matching

226 6 Interest Point Detector and Feature Descriptor Survey

supporting fast Hamming distance matching. A novel concept from CARD is the lookup-table

descriptor extraction of histograms of oriented gradients from local pixel patches, as well as the

lookup-table binning into Cartesian or log polar bins. CARD is reported to achieve significantly better

rotation and scale robustness compared to SIFT and SURF, with performance at least ten times better

than SIFT and slightly better than SURF.

CARD follows the method of RIFF [211, 214] for feature detection, using FAST features located

over octave levels in the image pyramid. The complete CARD pyramid includes intermediate levels

between octaves for increased resolution. The pyramid levels are computed at intervals of 1=
ffiffiffi
2

p
, with

level 0 being the full image. Keypoints are found using a Shi–Tomasi [149] optimized Harris corner

detector.

Like SIFT, CARD computes the gradient at each pixel, and can use either Cartesian coordinate

binning, or log polar coordinate binning like GLOH; see Fig. 6.17. To avoid the costly bilinear

interpolation of gradient information into the histogram bins, CARD instead optimizes this step by

rotating the binning pattern before binning, as shown in Fig. 6.25. Note that the binning is further

optimized using lookup tables, which contain function values based on principal orientations of the

gradients in the patch.

As shown in Fig. 6.25, to speed up binning, instead of rotating the patch based on the estimated

gradient direction to extract and bin a rotationally invariant descriptor, as done in SIFT and other

methods, CARD rotates the binning pattern over the patch based on the gradient direction and then

performs binning, which is much faster. Figure 6.25 shows the binning pattern unrotated on the right,

and rotated by π/8 on the left. All binned values are concatenated and normalized to form the

descriptor, which is 128 bits long in the most accurate form reported [210].

v

1

2
3

4

5

6
7

8

9

10

11

12

13

14

15

16

0

v

u

1

23

4

5

6 7

8

9

1011

12

13

14 15

16

0 u

Figure 6.25 CARD patch pattern containing 17 log polar coordinate bins, with image on left rotated to optimize

binning

Spectra Descriptors 227

CARD SUMMARY TAXONOMY

Spectra: Gradient magnitude and direction
Feature shape: Circular, variable sized based on pyramid scale and principal orientation

Feature pattern: Dense

Feature density: Sparse at FAST interest points over image pyramid
Search method: Sliding window

Distance function: Hamming
Robustness: 3 (illumination, scale, rotation)

Robust Fast Feature Matching

Robust Feature Matching in 2.3us developed by Taylor, Rosten and Drummond [212] (RFM2.3) (this

acronym is coined here by the author) is a novel, fast method of feature description and matching,

optimized for both compute speed and memory footprint. RFM2.3 stands alone among the feature

descriptors surveyed here with regard to the combination of methods and optimizations employed,

including sparse region histograms and binary feature codes. One of the key ideas developed in

RFM2.3 is to compute a descriptor for multiple views of the same patch by creating a set of scaled,

rotated, and affine warped views of the original feature, which provides invariance under affine

transforms such as rotation and scaling, as well as perspective.

In addition to warping, some noise and blurring is added to the warped patch set to provide

robustness to the descriptor. RFM2.3 is one of few methods in the class of deformable descriptors

[336–338]. FAST keypoints in a scale space pyramid are used to locate candidate features, and the

warped patch set is computed for each keypoint. After the warped patch set has been computed, FAST

corners are again generated over each new patch in the set to determine which patches are most

distinct and detectable, and the best patches are selected and quantized into binary feature descriptors

and saved in the pattern database.

As shown in Fig. 6.26, RFM2.3 uses a sparse 8 � 8 sampling pattern within a 16 � 16 region to

capture the patch. A sparse set of 13 pixels in the 8 � 8 sampling pattern is chosen to form the index

into the pattern database for the sparse pattern. The index is formed as a 13-bit integer, where each bit

Figure 6.26 RFM2.3 (Left) Descriptor sparse sampling pattern. (Right) Sparse descriptor using 13 samples used to

build the feature index into the database

228 6 Interest Point Detector and Feature Descriptor Survey

is set to 1 if the pixel value is greater than the patch mean value, limiting the index to 213 or 8192

entries, so several features in the database may share the same index. However, feature differences

can be computed very quickly using Hamming distance, so the index serves mostly as a database key

for organizing like-patches. A training phase determines the optimal set of index values to include in

the feature database, and the optimal patterns to save, since some patterns are more distinct than

others. Initially, features are captured at full resolution, but if few good features are found at full

resolution, additional features are extracted at the next level of the image pyramid.

The descriptor is modeled during training as a 64-value normalized intensity distribution function,

which is reduced in size to compute the final descriptor vector in two passes: first, the 64 values are

reduced to a five-bin histogram of pixel intensity distribution; second, when training is complete, each

histogram bin is binary encoded with a 1 bit if the bin is used, and a 0 bit if the bin is rarely used. The

resulting descriptor is a compressed, binary encoded bit vector suitable for Hamming distance.

RFM2.3 SUMMARY TAXONOMY

Spectra: Normalized histogram patch intensity encoded into binary patch index code
Feature shape: Rectangular, multiple viewpoints

Feature pattern: Sparse patterns in 15 � 15 pixel patch

Feature density: Sparse at FAST9 interest points
Search method: Sliding window over image pyramid

Distance function: Hamming

Robustness: 4 (illumination, scale, rotation, viewpoint)

RIFF, CHOG

The Rotation Invariant Fast Features (RIFF) [211, 214] method is motivated by tracking and mapping

applications in mobile augmented reality. The basis of the RIFF method includes the development of

a radial gradient transform (RGT), which expresses gradient orientation and magnitude in a compute-

efficient and rotationally invariant fashion. Another contribution of RIFF is a tracking method, which

is reported to be more accurate than KLT with 26� better performance. RIFF is reported to be 15�
faster than SURF.

RIFF uses a HOG descriptor computed at FAST interest points located in scale space, and

generally follows the method of the author’s previous work in CHOG [215] (compressed HOG) for

reduced dimensionality, low bitrate binning. Prior to binning the HOG gradients, a radial gradient

transform (RGT) is used to create a rotationally invariant gradient format. As shown in Fig. 6.27 (left

image), the RGT uses two orthogonal basis vectors (r,t) to form the radial coordinate system that

surrounds the patch center point c, and the HOG gradient g is projected onto (r,t) to express as the

rotationally invariant vector (gT r, gT t). A vector quantizer and a scalar quantizer are both suggested

and used for binning, illustrated in Fig. 6.27.

As shown in Fig. 6.27 (right image) the basis vectors can be optimized by using gradient direction

approximations in the approximated radial gradient transform (ARGT), which is optimized to be

easily computed using a simple differences between adjacent, normalized pixels along the same

gradient line, and simple 45� quantization. Also note in Fig. 6.27 (center left image), that the

histogramming is optimized by sampling every other pixel within the annuli regions, and four annuli

regions are used for practical reasons as a trade-off between discrimination and performance. To meet

real-time system performance goals for quantizing the gradient histogram bins, RIFF uses a 5 � 5

scalar quantizer rather than a vector quantizer.

Spectra Descriptors 229

In Fig. 6.27 (left image), the gradient projection of g at point c onto a radial coordinate system (r,t)

is used for a rotationally invariant gradient expression, and the descriptor patch is centered at c. The

center left image (Annuli) illustrates the method of binning, using four annuli rings, which reduces

dimensionality, and sampling only the gray pixels provides a 2� speedup. The center and center right

images illustrate the bin centering mechanism for histogram quantization: (1) the more flexible scalar

quantizer SQ-25 and (2) the faster vector quantizer VQ-17. And the right image illustrates the radial

coordinate system basis vectors for gradient orientation radiating from the center outwards, showing

the more compute efficient ARGT, or approximated radial gradient transform (RGT), which does not

use floating point math (RGT not shown, see [214]).

RIFF SUMMARY TAXONOMY

Spectra: Local region histogram of approximated radial gradients
Feature shape: Circular

Feature pattern: Sparse every other pixel

Feature density: Sparse at FAST interest points over image pyramid
Search method: Sliding window

Distance function: Symmetric KL-divergence

Robustness: 4 (illumination, scale, rotation, viewpoint)

Chain Code Histograms

A Chain Code Histogram (CCH) [198] descriptor records the shape of the perimeter as a histogram by

binning the direction of the connected components—connected perimeter pixels in this case. As the

perimeter is traversed pixel by pixel, the direction of the traversal is recorded as a number, as shown

in Fig. 6.28, and recorded in a histogram feature. To match the CCH features, SSD or SAD distance

metrics can be used.

Chain code histograms are covered by U.S. Patent US4783828. CCH was invented in 1961 [198]

and is also known as the Freeman chain code. A variant of the CCH is the Vertex chain code [199],

which allows for descriptor size reduction and is reported to have better accuracy.

c

p

t

g

r

p

t
’

g’

r’

q

SQ-25 quantizer VQ-17 quantizer ARGTAnnul
i

Radial gradients

Figure 6.27 Concepts behind the RIFF descriptor [211, 214], based partially on CHOG [215]

230 6 Interest Point Detector and Feature Descriptor Survey

D-NETS

The D-NETS (Descriptor-NETS) [127] approach developed by Hundelshausen and Sukthankar

abandons patch or rectangular descriptor regions in favor of a set of strips connected at endpoints.

D-NETS allows for a family of strip patterns composed of directed graphs between a set of endpoints;

it does not specifically limit the types of endpoints or strip patterns that may be used. The D-NETS

paper provides a discussion of results from three types of patterns:

• Clique D-NETS:A fully connected network of strips linking all the interest points. While the type

of interest point used may vary within the method, the initial work reports results using SIFT

keypoints.

• Iterative D-NETS: Dynamically creates the network using a subset of the interest points,

increasing the connectivity using a stopping criterion to optimize the connection density for

obtaining desired matching performance and accuracy.

• Densely sampled D-NETS: This variant does not use interest points, and instead densely samples

the nets over a regularly spaced grid, a 10-pixel grid being empirically chosen and preferred, with

some hysteresis or noise added to the grid positions to reduce pathological sampling artifacts. The

dense method is suitable for highly parallel implementations for increased performance.

For an illustration of the three D-NETS patterns and some discussion, see Fig. 4.8.

Each strip is an array of raw pixel values sampled between two points. The descriptor itself is

referred to as a d-token, and various methods for computing the d-token are suggested, such as binary

comparisons among pixel values in the strip similar to FERNS or ORB, as well as comparing the 1D

Fourier transforms of strip arrays, or using wavelets. The best results reported are a type of empiri-

cally engineered d-token, created as follows:

• Strip vector sampling, where each pixel strip vector is sampled at equally spaced locations

between 10 and 80 % of the length of the pixel strip vector; this sampling arrangement was

determined empirically to ignore pixels near the endpoints.

• Quantize the pixel strip vector by integrating the values into a set of uniform chunks, s, to reduce

noise.

• Normalize the strip vector for scaling and translation.

• Discretize the vector values into a limited bit range, b.

• Concatenate all uniform chunks into the d-token, which is a bit string of length s�b.

8 *

21

4

3

7 6 5

Chain code
starting at top
center pixel,
moving clockwise:
5,4,6,7,7,1,1,1,2,4

3.0

2.5

2.0

1.5

1.0

0.5

2 3 4 5 6 7

Figure 6.28 Chain code process for making a histogram. (Left to right) 1. The eight possible directions that the

connected perimeter may change. 2. Chain code values for each connected perimeter direction change; direction for

determining the chain code value is starting from the center pixel. 3. An object with a connected perimeter highlighted

by black pixels. 4. Chain code for the object following the connected perimeter starting at the top pixel. 5. Histogram of

all the chain code values

Spectra Descriptors 231

http://dx.doi.org/10.1007/978-3-319-33762-3_4#Fig8_4

Descriptor matching makes use of an efficient and novel hashing and hypothesis correspondence

voting method. D-NETS results are reported to be higher in precision and recall than ORB or SIFT.

D-NETS SUMMARY TAXONOMY

Spectra: Normalized, averaged linear pixel intensity chunks

Feature shape: Line segment connected networks
Feature pattern: Sparse line segments between chosen points

Feature density: Sparse along lines

Search method: Sliding window
Distance function: Hashing and voting

Robustness: 5 (illumination, scale, rotation, viewpoint, occlusion)

Local Gradient Pattern

A variation of the LBP approach, the local gradient pattern (LGP) [196] uses local region gradients

instead of local image intensity pair comparison to form the binary descriptor. The 3 � 3 gradient of

each pixel in the local region is computed, then each gradient magnitude is compared to the mean

value of all the local region gradients, and the binary bit value of 1 is assigned if the value is greater,

and 0 otherwise. The authors claim accuracy and discrimination improvements over the basic LBP in

face-recognition algorithms, including a reduction in false positives. However, the compute

requirements are greatly increased due to the local region gradient computations.

LGP SUMMARY TAXONOMY

Spectra: Local region gradient comparisons between center pixel and local region
gradients

Feature shape: Square

Feature pattern: Every pixel 3 � 3 kernel region
Feature density: Dense in 3 � 3 region

Search method: Sliding window

Distance function: Hamming
Robustness: 3 (illumination, scale, rotation)

Local Phase Quantization

The local phase quantization (LPQ) descriptor [158–160] was designed to be robust to image blur,

and it leverages the blur insensitive property of Fourier phase information. Since the Fourier

transform is required to compute phase, there is some compute overhead; however, integer DFT

methods can be used for acceleration. LPQ is reported to provide robustness for uniform blur, as well

as uniform illumination changes. LPQ is reported to provide equal or slightly better accuracy on

nonblurred images than LBP and Gabor filter bank methods. While mainly used for texture descrip-

tion, LPQ can also be used for local feature description to add blur invariance by combining LPQ with

another descriptor method such as SIFT.

232 6 Interest Point Detector and Feature Descriptor Survey

To compute, first a DFT is computed at each pixel over small regions of the image, such as 8 � 8

blocks. The low four frequency components from the phase spectrum are used in the descriptor. The

authors note that the kernel size affects the blur invariance, so a larger kernel block may provide more

invariance at the price of increased compute overhead.

Before quantization, the coefficients are de-correlated using a whitening transform, resulting in a

uniform phase shift and 8-degree rotation, which preserves blur invariance. De-correlating the

coefficients helps to create samples that are statistically independent for better quantization.

For each pixel, the resulting vectors are quantized into an 8-dimensional space, using an 8-bit

binary encoded bit vector like the LBP and a simple scalar quantizer to yield 1 and 0 values. Binning

into the feature vector is performed using 256 hypercubes derived from the 8-dimensional space. The

resulting feature vector is a 256-dimensional 8-bit code.

LPQ SUMMARY TAXONOMY

Spectra: Local region whitened phase using DFT ! an 8-bit binary code

Feature shape: Square
Feature pattern: 8 � 8 kernel region

Feature density: Dense every pixel

Search method: Sliding window
Distance function: Hamming

Robustness: 3 (contrast, brightness, blur)

Basis Space Descriptors

This section covers the use of basis spaces to describe image features for computer vision

applications. A basis space is composed of a set of functions, the basis functions, which are composed

together as a set, such as a series like the Fourier series (discussed in Chap. 3). A complex signal can

be decomposed into a chosen basis space as a descriptor.

Basis functions can be designed and used to describe, reconstruct, or synthesize a signal. They

require a forward transform to project values into the basis set, and an inverse transform to move data

back to the original values. A simple example is transforming numbers between the base 2 number

system and the base 10 number system; each basis had advantages.

Sometimes it is useful to transform a dataset from one basis space to another to gain insight into the

data, or to process and filter the data. For example, images captured in the time domain as sets of

pixels in a Cartesian coordinate system can be transformed into other basis spaces, such as the Fourier

basis space in the frequency domain, for processing and statistical analysis. A good basis space for

computer vision applications will provide forward and inverse transforms. Again, the Fourier

transform meets these criteria, as well as several other basis spaces.

Basis spaces are similar to coordinate systems, since both have invertible transforms to related

spaces. In some cases, simply transforming a feature spectra into another coordinate system makes

analysis and representation simpler and more efficient. (Chapter 4 discusses coordinates systems used

for feature representation.) Several of the descriptors surveyed in this chapter use non-Cartesian

coordinate systems, including GLOH, which uses polar coordinate binning, and RIFF, which uses

radial coordinate descriptors.

Basis Space Descriptors 233

http://dx.doi.org/10.1007/978-3-319-33762-3_3
http://dx.doi.org/10.1007/978-3-319-33762-3_4

Fourier Descriptors

Fourier descriptors [219] represent feature data as sine and cosine terms, which can be observed in a

Fourier Power Spectrum. The Fourier series, Fourier transform, and Fast Fourier transform are used

for a wide range of signal analysis, including 1D, 2D, and 3D problems. No discussion of image

processing or computer vision is complete without Fourier methods, so we will explore Fourier

methods here with applications to feature description.

Instead of developing the mathematics and theory behind the Fourier series and Fourier transform,

which has been done very well in the standard text by Bracewell [219], we discuss applications of the

Fourier Power Spectrum to feature description and provide minimal treatment of the fundamentals

here to frame the discussion; see also Chap. 3. The basic idea behind the Fourier series is to define a

series of sine and cosine basis functions in terms of magnitude and phase, which can be summed to

approximate any complex periodic signal. Conversely, the Fourier transform is used to decompose a

complex periodic signal into the Fourier series set of sine and cosine basis terms. The Fourier series

components of a signal, such as a line or 2D image area, are used as a Fourier descriptor of the region.

For this discussion, a Fourier descriptor is the selected components from a Fourier Power

Spectrum—typically, we select the lower-frequency components, which carry most of the power.

Here are a few examples using Fourier descriptors; note that either or both the Fourier magnitude and

phase may be used.

• Fourier Spectrum of LBP Histograms. As shown in Fig. 3.10, an LBP histogram set can be

represented as a Fourier Spectrum magnitude, which makes the histogram descriptor invariant to

rotation.

• Fourier Descriptor of Shape Perimeter.As shown in Fig. 6.29, the shape of a polygon object can

be described by Fourier methods using an array of perimeter to centroid line segments taken at

intervals, such as 10�. The array is fed into an FFT to produce a shape descriptor, which is scale

and rotation invariant.

• Fourier Descriptor of Gradient Histograms. Many descriptors use gradients to represent

features, and use gradient magnitude or direction histograms to bin the results. Fourier Spectrum

magnitudes may be used to create a descriptor from gradient information to add invariance.

• Fourier Spectrum of Radial Line Samples. As used in the RFAN descriptor [128], radial line

samples of pixel values from local regions can be represented as a Fourier descriptor of Fourier

magnitudes.

0.5

0.4

0.3

0.2

0.1

2 4 6 8 10 12

Figure 6.29 (Left) Polygon shape major and minor axis and bounding box. (Center) Object with radial sample length

taken from the centroid to the perimeter, each sample length saved in an array, normalized. (Right) Image fed into the

Fourier Spectrum to yield a Fourier descriptor

234 6 Interest Point Detector and Feature Descriptor Survey

http://dx.doi.org/10.1007/978-3-319-33762-3_3
http://dx.doi.org/10.1007/978-3-319-33762-3_3#Fig10_3

• Fourier Spectrum Phase. The LPQ descriptor, described in this chapter, makes use of the Fourier

Spectrum phase information in the descriptor, and the LPQ is reported to be insensitive to blur

owing to the phase information.

Other Basis Functions for Descriptor Building

Besides the Fourier basis series, other function series and basis sets are used for descriptor building,

pattern recognition, and image coding. However, such methods are usually applied over a global or

regional area. See Chap. 3 for details on several other methods.

Sparse Coding Methods

Any of the local feature descriptor methods discussed in this chapter may be used as the basis for a

sparse codebook, which is a collection of descriptors boiled down to a representative set. Sparse

coding and related methods are discussed in more detail in Chap. 10. Interesting examples are found

in the work by Aharon, Alad, and Bruckstein [518] as well as Fei-Fei, Fergus, and Torralba [519]. See

Fig. 6.30.

Polygon Shape Descriptors

Polygon shape descriptors compute a set of shape features for an arbitrary polygon or blob, and the

shape is described using statistical moments or image moments (as discussed in Chap. 3). These shape

features are based on the perimeter of the polygon shape. The methods used to delineate image

perimeters to highlight shapes prior to measurement and description are often complex, empirically

tuned pipelines of image preprocessing operations, like thresholding, segmentation, and morphology

(as discussed in Chap. 2). Once the polygon shapes are delineated, the shape descriptors are

computed; see Fig. 6.31. Typically, polygon shape methods are applicable to larger region-size

features. In the literature, this topic may also be discussed as image moments. For a deep dive into

the topic of image moments, see Flusser et al. [500].

Figure 6.30 One method of feature learning using sparse coding, showing how Histograms of Sparse Codes (HSC) are

constructed from a set of learned sparse codes. The HSC method [117] is reported to outperform HOG in many cases

Polygon Shape Descriptors 235

http://dx.doi.org/10.1007/978-3-319-33762-3_3
http://dx.doi.org/10.1007/978-3-319-33762-3_10
http://dx.doi.org/10.1007/978-3-319-33762-3_3
http://dx.doi.org/10.1007/978-3-319-33762-3_2

Polygon shape methods are commonly used in medical and industrial applications, such as

automated microscopy for cell biology, and also for industrial inspection; see Fig. 6.31. Commercial

software libraries are available for polygon shape description, commonly referred to as particle
analysis or blob analysis. See Appendix C.

MSER Method

The Maximally Stable Extremal Regions (MSER) method [186] is usually discussed in the literature

as an interest region detector, and in fact it is. However, we include MSER in the shape descriptor

section because MSER regions can be much larger than other interest point methods, such as

HARRIS or FAST.

The MSER detector was developed for solving disparity correspondence in a wide baseline stereo

system. Stereo systems create a warped and complex geometric depth field, and depending on the

baseline between cameras and the distance of the subject to the camera, various geometric effects

must be compensated for. In a wide baseline stereo system, features nearer the camera are more

distorted under affine transforms, making it harder to find exact matches between the left/right image

pair. The MSER approach attempts to overcome this problem by matching on blob-like features.

MSER regions are similar to morphological blobs and are fairly robust to skewing and lighting.

MSER is essentially an efficient variant of the watershed algorithm, except that the goal of MSER is

to find a range of thresholds that leave the watershed basin unchanged in size.

The MSER method involves sorting pixels into a set of regions based on binary intensity

thresholding; regions with similar pixel value over a range of threshold values in a connected

component pattern are considered maximally stable. To compute a MSER, pixels are sorted in a

binary intensity thresholding loop, which sweeps the intensity value from min to max. First, the

binary threshold is set to a low value such as zero on a single image channel—luminance, for

example. Pixels < the threshold value are black, pixels >¼ are white. At each threshold level, a

list of connected components or pixels is kept. The intensity threshold value is incremented from 0 to

the max pixel value. Regions that do not grow or shrink or change as the intensity varies are

Figure 6.31 Polygon shape descriptors. (Left) Malachite pieces. (Right) Polygon shapes defined and labeled after

binary thresholding, perimeter tracing, and feature labeling. (Image processing and particle analysis performed using

ImageJ Fiji)

236 6 Interest Point Detector and Feature Descriptor Survey

considered maximally stable, and the MSER descriptor records the position of the maximal regions

and the corresponding thresholds.

In stereo applications, smaller MSER regions are preferred and correlation is used for the final

correspondence, and similarity is measured inside a set of circular MSER regions at chosen rotation

intervals. Some interesting advantages of the MSER include:

• Multi-scale features and multi-scale detection. Since the MSER features do not require any image

smoothing or scale space, both coarse features and fine-edge features can be detected.

• Variable-size features computed globally across an entire region, not limited to patch size or

search window size.

• Affine transform invariance, which is a specific goal.

• General invariance to shape change, and stability of detection, since the extremal regions tend to

be detected across a wide range of image transformations.

The MSER can also be considered as the basis for a shape descriptor, and as an alternative to

morphological methods of segmentation. Each MSER region can be analyzed and described using

shape metrics, as discussed later in this chapter.

Object Shape Metrics for Blobs and Polygons

Object shape metrics are powerful and yield many degrees of freedom with respect to invariance and

robustness. Object shape metrics are not like local feature metrics, since object shape metrics can

describe much larger features. This is advantageous for tracking from frame to frame. For example, a

large object described by just a few simple object shape metrics such as area, perimeter, and centroid

can be tracked from frame to frame under a wide range of conditions and invariance. For more

information, see references [120, 121] for a survey of 2D shape description methods.

Shape can be described by several methods, including:

• Object shape moments and metrics: the focus of this section.

• Image moments: see Chap. 3 under “Image Moments.”

• Fourier descriptors: discussed in this chapter and Chap. 3.

• Shape Context feature descriptor: discussed in this section.

• Chain code descriptor for perimeter description: discussed in this section.

Object shape is closely related to the field of morphology, and computer methods for morphologi-

cal processing are discussed in detail in Chap. 2. Also see the discussion about morphological interest

points earlier in this chapter.

In many areas of computer vision research, local features seem to be favored over object shape-

based features. The lack of popularity of shape analysis methods may be a reaction to the effort

involved in creating preprocessing pipelines of filtering, morphology, and segmentation to prepare

the image for shape analysis. If the image is not preprocessed and prepared correctly, shape analysis is

not possible. (See Chap. 8 for a discussion of a hypothetical shape analysis preprocessing pipeline.)

Polygon shape metrics can be used for virtually any scene analysis application to find common

objects and take accurate measurements of their size and shape; typical applications include biology

and manufacturing. In general, most of the polygon shape metrics are rotational and scale invariant.

Table 6.7 provides a sampling of some of the common metrics that can be derived from region shapes,

both binary shapes and gray scale shapes.

Polygon Shape Descriptors 237

http://dx.doi.org/10.1007/978-3-319-33762-3_3
http://dx.doi.org/10.1007/978-3-319-33762-3_3
http://dx.doi.org/10.1007/978-3-319-33762-3_2
http://dx.doi.org/10.1007/978-3-319-33762-3_8

Table 6.7 Various common object shape and blob object metrics

Object Binary Shape Metrics Description

Perimeter Length of all points around the edge of the object, including the sum of diagonal
lengths ~= 1.4 and adjacent lengths = 1

Area Total area of object in pixels

Convex hull Polygon shape or set of line segments enclosing all perimeter points

Centroid Center of object mass, average value of all pixel coordinates or average value of all
perimeter coordinates

Fourier descriptor Fourier spectrum result from an array containing the length of a set of radial line
segments passing from centroid to perimeter at regular angles used to model a 1D
signal function, the 1D signal function is fed into a 1D FFTand the set of FFT
magnitude data is used as a metric for a chosen set of octave frequencies

Major/minor axis Longest and shortest line segments passing through centroid contained withinand
touching the perimeter

Feret Largest caliper diameter of object

Breadth Shortest caliper diameter

Aspect ratio Feret/Breadth

Circularity 4 X Pi X Area/Perimeter2

Roundness 4 X Area/(Pi X Feret2)
(Can also be calculated from the Fourier descriptors)

Area equivalent diameter sqrt((4/Pi) X Area)

Perimeter equivalent diameter Area/Pi

Equivalent ellipse (Pi X Feret X Breadth)/4

Compactness sqrt((4/Pi) X Area)/Feret

Solidity Area/Convex_Area

Concavity Convex_Area-Area

Convexity Convex_Hull/Perimeter

Shape Perimeter2/Area

Modification ratio (2 X MinR)/Feret

Shape matrix A 2D matrix representation or plot of a polygon shape (may use Cartesian or polar
coordinates; see Figure 6-32)

Grayscale Object
Shape Metrics

SDM plots *See Chapter 3, “Texture Metrics” section.

Scatter plots *See Chapter 3, “Texture Metrics” section.

Statistical moments of
grayscale pixel values

Minimum
Maximum
Median
Average
Average deviation
Standard deviation
Variance
Skewness
Kurtosis
Entropy

*Note: some of binary object metrics also apply to grayscale objects.

238 6 Interest Point Detector and Feature Descriptor Survey

Shape is considered to be binary; however, shape can be computed around intensity channel

objects as well, using gray scale morphology. Perimeter is considered as a set of connected

components. The shape is defined by a single pixel wide perimeter at a binary threshold or within

an intensity band, and pixels are either on, inside, or outside of the perimeter. The perimeter edge may

be computed by scanning the image, pixel by pixel, and examining the adjacent touching pixel

neighbors for connectivity. Or, the perimeter may be computed from the shape matrix [327] or chain

code discussed earlier in this chapter. Perimeter length is computed for each segment (pixel), where

segment length ¼ 1 for horizontal and vertical neighbors, and
ffiffiffi
2

p
otherwise for diagonal neighbors.

The perimeter may be used as a mask, and gray scale or color channel statistical metrics may be

computed within the region. The object area is the count of all the pixels inside the perimeter. The

centroid may be computed either from the average of all (x,y) coordinates of all points contained

within the perimeter area, or from the average of all perimeter (x,y) coordinates.
Shape metrics are powerful. For example, shape metrics may be used to remove or excluding

objects from a scene prior to measurement. For example, objects can be removed from the scene when

the area is smaller than a given size, or if the centroid coordinates are outside a given range.

As shown in Fig. 6.29 and Table 2, the Fourier descriptor provides a rotation and scale invariant

shape metric, with some occlusion invariance also. The method for determining the Fourier descriptor

is to take a set of equally angular-spaced radius measurements, such as every 10�, from the centroid

out to points on the perimeter, and then to assemble the radius measurements into a 1D array that is

run through a 1D FFT to yield the Fourier moments of the object. Or radial pixel spokes can be used

as a descriptor.

Other examples of useful shape metrics, shown in Fig. 6.29, include the bounding box with major

and minor axis, which has longest and shortest diameter segments passing through the centroid to the

perimeter; this can be used to determine rotational orientation of an object.

The SNAKES method [522] uses a spline model to fit a collection of interest points, such as

selected perimeter points, into a region contour. The interest points are the spline points. The SNAKE

can be used to track contoured features from frame to frame, deforming around the interest point

locations.

In general, the 2D object shape methods can be extended to 3D data; however, we do not explore

3D object shape metrics here, see reference [192, 193] for a survey of 3D shape descriptors.

Shape Context

The shape context method developed by Belongie, Malik, and Puzicha [231–233], describes local

feature shape using a reference point on the perimeter as the Cartesian axis origin, and binning

selected perimeter point coordinates relative to the reference point origin. The relative coordinates of

each point are binned into a log polar histogram. Shape context is related to the earlier shape matrix

descriptor [327] developed in 1985 as shown in Fig. 6.32, which describes the perimeter of an object

using log polar coordinates also. The shape context method provides for variations, described in

several papers by the authors [231–233]. Here, we look at a few key concepts.

To begin, the perimeter edge of the object is sparsely sampled at uniform intervals, typically

keeping about 100 edge sample points for coarse binning. Sparse perimeter edge points are typically

distinct from interest points, and found using perimeter tracing. Next, a reference point is chosen on

the perimeter of the object as the origin of a Cartesian space, and the vector angle and magnitude

(r, θ) from the origin point to each other perimeter point are computed. The magnitude or distance is

normalized to fit the histogram. Each sparse perimeter edge point is used to compute a tangent with

Polygon Shape Descriptors 239

the origin. Finally, each normalized vector is binned using (r, θ) into a log polar histogram, which is

called the shape context.

An alignment transform is generated between descriptor pairs during matching, which yields the

difference between targets and chosen patterns, and could be used for reconstruction. The alignment

transform can be chosen as desired from affine, Euclidean, spline-based, and other methods. Corre-

spondence uses the Hungarian method, which includes histogram similarity, and is weighted by the

alignment transform strength using the tangent angle dissimilarity. Matching may also employ a local

appearance similarity measure, such as normalized correlation between patches or color histograms.

The shape context method provides a measure of invariance over scale, translation, rotation,

occlusion, and noise. See Fig. 6.33.

8

910

11

12

13 14

15

16

1718

19

20

21 22

23

0
12

3

4
5 6

7

0
0
0
0
0
0
0
0

0

1

0

0

1

0

0

0

1

0

0

1

0

1

0

1

1

0

1

0

0

1

1

0

0
0
0
0
0
0
0
0

0
0
1
1
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
1
0
0

0
0
1
0
0
1
0
0

0
0
0
1
1
1
0
0

Figure 6.32 A shape matrix descriptor [327] for the perimeter of an object. (Left two images) Cartesian coordinate

shape matrix. (Right two images) polar coordinate shape matrix using three rows of eight numbered bin regions, gray
boxes represent pixels to be binned. Note that multiple shape matrices can be used together. Values in matrix are set if

the pixel fills at least half of the bin region, no interpolation is used

Figure 6.33 Shape context method. (Left) Perimeter points are measured as a shape vector, both angle and distance,

with respect to a chosen perimeter point as the reference Cartesian origin. (Right) Shape vectors are binned into a log

polar histogram feature descriptor

240 6 Interest Point Detector and Feature Descriptor Survey

3D, 4D, Volumetric and Multimodal Descriptors

With the advent of more and more 3D sensors, such as stereo cameras and other depth-sensing

methods, as well as the ubiquitous accelerometers and other sensors built into inexpensive mobile

devices, the realm of 3D feature description and multimodal feature description is beginning to

blossom.

Many 3D descriptors are associated with robotics research and 3D localization. Since the field of

3D feature description is early in the development cycle, it is not yet clear which methods will be

widely adopted, so we present only a small sampling of 3D descriptor methods here. These include

3D HOG [188], 3D SIFT [187], and HON 4D [190], which are based on familiar 2D methods. We

refer the interested reader to references [192, 193, 208] for a survey of 3D shape descriptors. Several

interesting 3D descriptor metrics are available as open source in the Point Cloud Library,2 including

Radius-Based Surface Descriptors (RSD) [521], Principal Curvature Descriptors (PCD), Signatures

of Histogram Orientations (SHOT) [523], Viewpoint Feature Histogram (VFH) [381], and Spin

Images [520].

Some noteworthy 3D descriptors we do not survey include 3D Shapenets by Wu [863], 3D voxel

patterns [864], triangular surface patches [865], 3D surface patch features [865], see also [866–870].

Applications driving the research into 3D descriptors include robotics and activity recognition, where

features are tracked frame to frame as they morph and deform. The goals are to localize position and

recognize human actions, such as walking, waving a hand, turning around, or jumping. See also the

LBP variants for 3D: V-LBP and LBP-TOP, which are surveyed earlier in this chapter as illustrated in

Fig. 6.12, which are also used for activity recognition. Since the 2D features are moving during

activity recognition, time is the third dimension incorporated into the descriptors. We survey some

notable 3D activity-recognition research here.

One of the key concepts in the action-recognition work is to extend familiar 2D features into a 3D

space that is spatiotemporal, where the 3D space is composed of 2D x,y video image sequences over

time t into a volumetric representation with the form v(x,y,t). In addition, the 3D surface normal, 3D

gradient magnitude, and 3D gradient direction are used in many of the action-recognition descriptor

methods.

Development of 3D descriptors is continuing, which is beyond the scope of this brief introduction.

However, for the interested reader, we mention recent work in the areas of volumetric shape

descriptors, depth image surface shape descriptors, and 3D reconstruction using depth-based land-

mark detectors, which can be found in the references [863–870].

3D HOG

The 3D HOG [188] is partially based on some earlier work in volumetric features [191]. The general

idea is to employ the familiar HOG descriptor [98] in a 3D HOG descriptor formulation, using a stack

of sequential 2D video frames or slices as a 3D volume, and to compute spatiotemporal gradient

orientation on adjacent frames within the volume. For efficiency, a novel integral video approach is

developed as an alternative to image pyramids based on the same line of thinking as the integral

image approach use in the Viola–Jones method.

A similar approach using the integral video concept was also developed in [191] using a

subsampled space of 64 � 64 over 4–40 video frames in the volume, using pixel intensity instead

2 http://pointclouds.org.

3D, 4D, Volumetric and Multimodal Descriptors 241

http://pointclouds.org/

of the gradient direction. The integral video method, which can also be considered an integral volume

method, allows for arbitrary cuboid regions from stacked sequential video frames to be integrated

together to compute the local gradient orientation over arbitrary scales. This is space efficient and

time efficient compared to using precomputed image pyramids. In fact, this integral video integration

method is a novel contribution of the work, and may be applied to other spectra such as intensity,

color, and gradient magnitude in either 2D or 3D to eliminate the need for image pyramids—

providing more choices in terms of image scale besides just octaves.

The 3D HOG descriptor computations are illustrated in Fig. 6.34. To find feature keypoints to

anchor the descriptors, a space-time extension of the Harris operator [189] is used, then a histogram

descriptor is computed from the mean of the oriented gradients in a cubic region at the keypoint.

Since gradient magnitude is sensitive to illumination changes, gradient orientation is used instead to

provide invariance to illumination, and it is computed over 3D cuboid regions using simple x, y,
z derivatives. The mean gradient orientation of any 3D cuboid is computed quickly using the integral

video method. Gradient orientations are quantized into histogram bins via projection of each vector

onto the faces of a regular icosahedron 20-sided shape to combine all vectors, as shown in Fig. 6.34.

The 20 icosahedron faces act as the histogram bins. The sparse set of spatiotemporal features is

combined into a bag of features or bag of words in a visual vocabulary.

HON 4D

A similar approach to the 3D HOG is called HON 4D [190], which computes descriptors as

Histogram of Oriented 4D Normals, where the 3D surface normal + time add up to four dimensions

(4D). HON 4D uses sequences of depth images or 3D depth maps as the basis for computing the

descriptor, rather than 2D image frames, as in the 3D HOG method. So a depth camera is needed. In

this respect, HON 4D is similar to some volume rendering methods which compute 3D surface

normals, and may be accelerated using similar methods [434–436].

In the HON 4D method, the surface normals capture the surface shape cues of each object, and

changes in normal orientation over time can be used to determine motion and pose. Only the

orientation of the surface normal is significant in this method, so the normal lengths are all normalized

to unity length. As a result, the binning into histograms acts differently from the HOG style binning,

so that the fourth dimension of time encodes differences in the gradient from frame to frame. The

HON 4D descriptor is binned and quantized using 4D projector functions, which quantize local

surface normal orientation into a 600-cell polychron, which is a geometric extension of a 2D polygon

into 4-space.

Figure 6.34 HOG 3D descriptor computation. (Left) 2 � 2 � 2 descriptor cell block. (Left center) Gradient orien-

tation histogram computed over 2 � 2 � 2 cell sub-blocks. (Right center) Gradient orientations quantized by

projecting the vector intersection to the faces of a 20-faceted icosahedron. (Right) Mean gradient orientation computed

over integral video blocks (volume vector integral)

242 6 Interest Point Detector and Feature Descriptor Survey

Consider the discrimination of the HON 4D method using gradient orientation vs. the HOG

method using gradient magnitude. If two surfaces are the same or similar with respect to gradient

magnitude, the HOG style descriptor cannot differentiate; however, the HON 4D style descriptor can

differentiate owing to the orientation of the surface normal used in the descriptor. Of course,

computing 3D normals is compute-intensive without special optimizations considering the noncon-

tiguous memory access patterns required to access each component of the volume.

3D SIFT

The 3D SIFT method [187] starts with the 2D SIFT feature method and reformulates the feature

binning to use a volumetric spatiotemporal area v(x,y,t), as shown in Fig. 6.35.

The 3D orientation of the gradient pair orientation is computed as follows:

m3D x; y; tð Þ ¼
ffi
L2x þ L2y þ L2t

q

θ x; y; tð Þ ¼ tan �1 Ly
Lx

� �

ϕ x; y; tð Þ ¼ tan �1 Lytffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2x þ L2y

q
0
B@

1
CA

F

qqq

FF

q

Figure 6.35 Computation of the 3D SIFT [187] vector histogram bins as a combination of the combined gradient

orientation of the sub-volumes in a volume space or 3D spatiotemporal region of three consecutive 2D image frames

3D, 4D, Volumetric and Multimodal Descriptors 243

This method provides a unique two-valued (ϕ, θ) representation for each angle of the gradient

orientation in 3-space at each keypoint. The binning stage is handled differently from SIFT, and

instead uses orthogonal bins defined by meridians and parallels in a spherical coordinate space. This

is simpler to compute, but requires normalization of each value to account for the spherical difference

in the apparent size ranging from the poles to the equator.

To compute the SIFT descriptor, the 3D gradient orientation of each sub-histogram is used to guide

rotation of the 3D region at the descriptor keypoint to point to 0, which provides a measure of

rotational invariance to the descriptor. Each point will be represented as a single gradient magnitude

and two orientation vectors (ϕ, θ) instead of one, as in 2D SIFT. The descriptor binning is computed

over three dimensions into adjacent cubes instead of over two dimensions in the 2D SIFT descriptor.

Once the feature vectors are binned, the feature vector set is clustered into groups of like features,

or words, using hierarchical K-means clustering into a spatiotemporal word vocabulary. Another step

beyond the clustering could be to reduce the feature set using sparse coding methods [107–109], but

the sparse coding step is not attempted.

Results using 3D SIFT for action recognition are reported to be quite good compared to other

similar methods; see reference [187].

Summary

In this chapter we survey a wide range of local interest point detectors and feature descriptor methods

to learn “what” practitioners are doing, including both 2D and 3D methods. The vision taxonomy

from Chap. 5 is used to divide the feature descriptor survey along the lines of descriptor families, such

as local binary methods, spectra methods, and polygon shape methods. There is some overlap

between local and regional descriptors; however, this chapter tries to focus on local descriptor

methods, leaving regional methods to Chap. 3. Local interest point detectors are discussed in a

simple taxonomy including intensity-based regions methods, edge-based region methods, and shape-

based region methods, including background on key concepts and mathematics used by many interest

point detector methods. Some of the difficulties in choosing an appropriate interest point detector are

discussed and several detector methods are surveyed.

This chapter also highlights retrofits to common descriptor methods. For example, many

descriptors are retrofitted by changing the descriptor spectra used, such as LBP vs. gradient methods,

or by swapping out the interest point detector for a different method. Summary information is

provided for feature descriptors following the taxonomy attributes developed in Chap. 5 to enable

limited comparisons, using concepts from the analysis of local feature description design concepts

presented in Chap. 4.

244 6 Interest Point Detector and Feature Descriptor Survey

http://dx.doi.org/10.1007/978-3-319-33762-3_5
http://dx.doi.org/10.1007/978-3-319-33762-3_3
http://dx.doi.org/10.1007/978-3-319-33762-3_5
http://dx.doi.org/10.1007/978-3-319-33762-3_4

Chapter 6: Learning Assignments

1. Interest points, or Keypoints, are located in images at locations such as maxima and minima.

Describe the types of maxima and minima features found in images.

2. Interest point detectors must be selected and parametrically tuned to give best results. Describe

various approaches to select and tune interest point detectors for a range of different types of

images.

3. Describe your favorite interest point detector, discuss the advantages compared to other

detectors, and describe the basic algorithm.

4. Describe and summarize the names of as many interest point detectors as you can remember, and

describe the basic concepts and goals of each algorithm.

5. An interest point adapter function can be devised to help tune interest point parameters to

automatically find better interest points. Select an interest point detector of your choice, describe

how the interest point detector algorithm works using pseudo code, describe each parameter to

the interest point function, describe the image search pattern the adapter could use, and describe

parameters to control region size and iterations. (See also assignment 6 below).

6. Write an interest point adapter function using your favorite interest point detector in your favorite

programming language, and provide test results.

7. Describe how the local binary pattern (LBP) algorithm works using pseudo code.

8. List a few applications for the local binary pattern.

9. Describe how the local binary pattern can be stored in a rotationally invariant format.

10. Compare local binary pattern algorithms including Brief, Brisk, Orb, and Freak, and highlight the

differences in the pixel region sampling patterns.

11. List the distance function most applicable to local binary descriptors, and how it can be

optimized.

12. Describe the basic SIFT algorithm, highlighting the scales over which the pixel regions are

sampled, the algorithm for detecting interest points, the algorithm for computing the feature

descriptor, and the summary information stored in the descriptor.

13. Describe at least one enhancement to the basic SIFT algorithm, such as SIFT-PCA and SIFT-

GLOH, SIFT-SIFER, or RootSIFT, and highlight the major improvements provided by the

enhancement.

14. Describe the pixel patch region shape and sizes used in the SIFT algorithm, and describe how the

pixel samples are weighted within the region.

15. Discuss the SURF feature descriptor algorithm.

16. Compare the local binary feature descriptors ORB, FREAK, and BRISK.

17. Describe how HAAR-like features are used in feature description, draw or describe a few

example HAAR-like features, and discuss how HAAR features are related to Wavelets.

18. Describe integral images, how they are built, and discuss why integral images can be used to

optimize working with HAAR filters.

19. Describe the Viola–Jones feature classification funnel and pipeline.

20. Design an algorithm to compute gradient histograms from a local region, describe how to create a

useful feature descriptor from the gradient histograms, and select a specific distance function that

could be applied to measure correspondence between gradient histograms, and discuss the

strengths and weaknesses of your algorithm.

21. Describe the algorithm for your favorite feature descriptor, discuss the advantages, and provide

simple comparisons to a few other feature descriptors.

Chapter 6: Learning Assignments 245

22. Describe how a chain code histogram is computed.

23. Describe how a polygon feature shape can be refined (for example using morphology operations,

thresholding operations), and then describe the types of feature metrics that can be computed over

polygon shapes.

24. List at least five polygon shape feature metrics and describe how they are computed, including

perimeter and centroid.

246 6 Interest Point Detector and Feature Descriptor Survey

	6: Interest Point Detector and Feature Descriptor Survey
	Interest Point Tuning
	Interest Point Concepts
	Interest Point Method Survey
	Laplacian and Laplacian of Gaussian
	Moravac Corner Detector
	Harris Methods, Harris-Stephens, Shi-Tomasi, and Hessian Type Detectors
	Hessian Matrix Detector and Hessian-Laplace
	Difference of Gaussians
	Salient Regions
	SUSAN, and Trajkovic and Hedly
	Fast, Faster, AGHAST
	Local Curvature Methods
	Morphological Interest Regions

	Feature Descriptor Survey
	Local Binary Descriptors
	Local Binary Patterns
	Neighborhood Comparison
	Histogram Composition
	Optionally Normalization
	Descriptor Concatenation

	Rotation Invariant LBP (RILBP)
	Dynamic Texture Metric Using 3D LBPs
	Volume LBP (VLBP)
	LPB-TOP

	Other LBP Variants

	Census
	Modified Census Transform
	BRIEF
	ORB
	BRISK
	FREAK

	Spectra Descriptors
	SIFT
	SIFT-PCA
	SIFT-GLOH
	SIFT-SIFER Retrofit
	SIFT CS-LBP Retrofit
	RootSIFT Retrofit
	CenSurE and STAR
	Correlation Templates
	HAAR Features
	Viola-Jones with HAAR-Like Features
	SURF
	Variations on SURF
	Histogram of Gradients (HOG) and Variants
	PHOG and Related Methods
	Daisy and O-Daisy
	CARD
	Robust Fast Feature Matching
	RIFF, CHOG
	Chain Code Histograms
	D-NETS
	Local Gradient Pattern
	Local Phase Quantization

	Basis Space Descriptors
	Fourier Descriptors
	Other Basis Functions for Descriptor Building
	Sparse Coding Methods

	Polygon Shape Descriptors
	MSER Method
	Object Shape Metrics for Blobs and Polygons
	Shape Context

	3D, 4D, Volumetric and Multimodal Descriptors
	3D HOG
	HON 4D
	3D SIFT

	Summary
	Chapter 6: Learning Assignments

