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Abstract In this paper we propose a particular class of multilayer perceptrons,

which describes possibly non-linear phenomena, linked with Łukasiewicz logic; we

show how we can name a neural network with a formula and, viceversa, how we can

associate a class of neural networks to each formula. Moreover, we introduce the def-

inition of Łukasiewicz Equivalent Neural Networks to stress the strong connection

between different neural networks via Łukasiewicz logical objects.
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1 Introduction

Many-valued logic has been proposed in [1] to model neural networks: it is shown

there that, by taking as activation functions 𝜌 the identity truncated to zero and one

(i.e., 𝜌(x) = (1 ∧ (x ∨ 0))), it is possible to represent the corresponding neural net-

work as combination of propositions of Łukasiewicz calculus.

In [3] the authors showed that multilayer perceptrons, whose activation functions

are the identity truncated to zero and one, can be fully interpreted as logical objects,

since they are equivalent to (equivalence classes of) formulas of an extension of

Łukasiewicz propositional logic obtained by considering scalar multiplication with

real numbers (corresponding to Riesz MV-algebras, defined in [4, 5]).

Now we propose more general multilayer perceptrons which describe not neces-

sarily linear events. We show how we can name a neural network with a formula and,
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viceversa, how we can associate a class of neural networks to each formula; more-

over we introduce the idea of Łukasiewicz Equivalent Neural Networks to stress the

strong connection between (very different) neural networks via Łukasiewicz logical

objects.

2 Multilayer Perceptrons

Artificial neural networks are inspired by the nervous system to process information.

There exist many typologies of neural networks used in specific fields. We will focus

on feedforward neural networks, in particular multilayer perceptrons, as in [3], which

have applications in different fields, such as speech or image recognition. This class

of networks consists of multiple layers of neurons, where each neuron in one layer

has directed connections to the neurons of the subsequent layer. If we consider a

multilayer perceptron with n inputs, l hidden layers,𝜔
h
ij as weight (from the jth neuron

of the hidden layer h to the ith neuron of the hidden layer h + 1), bi real number and

𝜌 an activation function (a monotone-nondecreasing continuous function), then each

of these networks can be seen as a function F ∶ [0, 1]n → [0, 1] such that

F(x1,… , xn) = 𝜌(
n(l)∑

k=1
𝜔
l
0,k𝜌(… (

n∑

i=1
𝜔
1
l,ixi + bi)…))).

3 Łukasiewicz Logic and Riesz MV-Algebras

MV-algebras are the algebraic structures corresponding to Łukasiewicz many valued

logic, as Boolean algebras correspond to classical logic. An MV-algebra is a structure

A = (A, ⊕,
∗
, 0) that satisfies the following properties:

∙ x⊕ (y⊕ z) = (x⊕ y)⊕ z
∙ x⊕ y = y⊕ x
∙ x⊕ 0 = x
∙ x∗∗ = x
∙ x⊕ 0∗ = 0∗
∙ (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x

The standard MV-algebra is the real unit interval [0, 1], where the constant 0 is

the real number 0 and the operations are

x⊕ y = min(1, x + y)

x∗ = 1 − x
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for any x, y ∈ [0, 1]. Another example of MV-algebra is the standard Boolean alge-

bra {0, 1} where all the elements are idempotent, i.e. x⊕ x = x and the ⊕ is the

connective ∨ in classical logic. A further class of examples of MV-algebras are Mn
(for each n ∈ ℕ), where the elements are the continuous functions from the cube

[0, 1]n to the real interval [0, 1] which are piecewise linear with integer coefficients.

These functions are called McNaughton functions and a major result in MV-algebra

theory states that Mn is the free MV-algebra with n generators. For more details on

the theory of the MV-algebras see [2].

A Riesz MV-algebra (RMV-algebra) is a structure (A, ⊕,
∗
, 0, ⋅), where (A, ⊕,

∗
, 0)

is an MV-algebra and the operation ⋅ ∶ [0, 1] × A → A has the following properties

for any r, q ∈ [0, 1] and x, y ∈ A:

∙ r ⋅ (x⊙ y∗) = (r ⋅ x)⊙ (r ⋅ y)∗
∙ r ⋅ (x⊙ y∗) = (r ⋅ x)⊙ (r ⋅ y)∗
∙ r ⋅ (q ⋅ x) = (rq) ⋅ x
∙ 1 ⋅ x = x

where x⊙ y = (x∗ ⊕ y∗)∗. We will denote by RMn the Riesz MV-algebra of the con-

tinuous functions from the cube [0, 1]n to the real interval [0, 1] which are piecewise

linear with real coefficients (Riesz McNaughton functions). In analogy with the MV-

algebra case RMn is the free Riesz MV-algebra on n generators.

When we talk about a (Riesz) MV-formula, i.e. a syntactic polynomial, we can

consider it also as a (Riesz) McNaughton function. Actually, in most of the literature

there is no distinction between a (Riesz) McNaughton function and a (Riesz) MV-

formula, but it results that, with a different interpretation of the free variables, we can

give meaning to MV-formulas by means of other, possibly nonlinear, functions (e.g.

we consider generators different from the canonical projections 𝜋1,… , 𝜋n, such as

polynomial functions, Lyapunov functions, logistic functions, sigmoidal functions

and so on).

4 The Connection Between Neural Networks and Riesz
MV-Algebras

Already in the first half of XXth century Claude Shannon understood the strong rela-

tion between switching circuits and Boolean algebras, and so Boolean algebras were

(and they are still) used to describe and analyze circuits by algebraic methods. In an

analogous way, in [3] the authors describe the connection between (a particular class

of) neural networks and RMV-algebras; for instance the authors define the one-layer

neural networks which encode min(x, y) and max(x, y) as follows:

min(x, y) = 𝜌(y) − 𝜌(y − x)

max(x, y) = 𝜌(y) + 𝜌(x − y)
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where 𝜌 is the identity truncated to zero and one. In [3] the following theorem was

proved.

Theorem 1 Let the function 𝜌 be the identity truncated to zero and one (i.e., 𝜌(x) =
(1 ∧ (x ∨ 0))).

∙ For every l, n, n(2),…, n(l) ∈ ℕ, and 𝜔h
i,j, bi ∈ ℝ, the function F ∶ [0, 1]n → [0, 1]

defined as

F(x1,… , xn) = 𝜌(
n(l)∑

k=1
𝜔
l
0,k𝜌(… (

n∑

i=1
𝜔
1
l,ixi + bi)…)))

is a Riesz McNaughton function;
∙ for any Riesz McNaughton function f, there exist l, n, n(2), …, n(l) ∈ ℕ, and
𝜔
h
i,j, bi ∈ ℝ such that

f (x1,… , xn) = 𝜌(
n(l)∑

k=1
𝜔
l
0,k𝜌(… (

n∑

i=1
𝜔
1
l,ixi + bi)…))).

4.1 Łukasiewicz Equivalent Neural Networks

If we consider particular kinds of functions from [0, 1]n to [0, 1]n (surjective func-

tions) we can still describe non linear phenomena with a Riesz MV-formula, which,

this time, does not correspond to a piecewise linear function but rather to a func-

tion which can still be decomposed into “regular pieces” (e.g. a piecewise sigmoidal

function).

The crucial point is that we can try to apply, with a suitable choice of genera-

tors, all the well established methods of the study of piecewise linear functions to

piecewise non-linear functions.

As in [3] we have the following definition.

Definition 1 We denote by  the class of the multilayer perceptrons such that the

all activation functions of all neurons coincide with the identity truncated to zero

and one.

We can generalize this definition as follows.

Definition 2 We call Ł the class of the multilayer perceptrons such that:

∙ the activation functions of all neurons from the second hidden layer on is 𝜌(x) =
(1 ∧ (x ∨ 0)), i.e. the identity truncated to zero and one;

∙ the activation functions of neurons of the first hidden layer have the form 𝜑 ◦ 𝜌(x)
where 𝜑 is a continuous functions from [0, 1] to [0, 1].
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Example

An example of 𝜑(x) could be LogSigm, the logistic sigmoid function “adapted” to

the interval [0, 1], as showed in the next figure.

The first hidden layer (which we will call interpretation layer) is an interpretation

of the free variables (i.e. the input data) or, in some sense, a change of variables.

Roughly speaking we interpret the input variables of the network x1,… , xn as

continuous functions from [0, 1]n to [0, 1]; so, from the logical point of view, we

have not changed the (Riesz) MV-formula which describes the neural network but

only the interpretation of the variables.

For these reasons we introduce the definition of Łukasiewicz Equivalent Neural
Networks as follows.

Definition 3 Given a network in Ł , the Riesz MV-formula associated to it is the

one obtained first by replacing 𝜑 ◦ 𝜌 with 𝜌, and then building the Riesz MV-formula

associated to the resulting network in  .

Definition 4 We say that two networks of Ł are Łukasiewicz Equivalent iff the

two networks have logically equivalent associated Riesz MV-formulas.

5 Examples of Łukasiewicz Equivalent Neural Networks

Let us see now some examples of Łukasiewicz equivalent neural networks (seen

as the functions 𝜓(𝜑(x̄))). In every example we will consider a Riesz MV-formula

𝜓(x̄) with many different 𝜑 interpretations of the free variables x̄, i.e. the activation

functions of the interpretation layers.

Example 1

A simple one-variable example of Riesz MV-formula could be 𝜓 = x̄⊙ x̄. Let us

plot the functions associated with this formula when the activation functions of the
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ϕ(x̄) := id(x) ϕ(x̄) := LogSigm (x)

Fig. 1 𝜓(x̄) = x̄⊙ x̄

interpretation layer is respectively the identity truncate function to 0 and 1 and the

LogSigm (Fig. 1).

In all the following examples we will have (a), (b) and (c) figures, which indicate

respectively these variables interpretations:

(a) x and y as the canonical projections 𝜋1 and 𝜋2;

(b) both x and y as LogSigm functions, applied only on the first and the second coor-

dinate respectively, i.e. LogSigm ◦ 𝜌(𝜋1) and LogSigm ◦ 𝜌(𝜋2) (as in the example

1);

(c) x as LogSigm function, applied only on the first coordinate, and y as the cubic

function 𝜋
3
2 .

We show how, by changing projections with arbitrary functions𝜑, we obtain func-

tions (b) and (c) “similar” to the standard case (a), which, however, are no more

“linear”. The “shape” of the function is preserved, but distortions are introduced.

Example 2: The ⊙ Operation

We can also consider, in a similar way, the two-variables formula 𝜓(x̄, ȳ) = x̄⊙ ȳ,

which is represented in the following graphs (Fig. 2).

Fig. 2 𝜓(x̄, ȳ) = x̄⊙ ȳ
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Fig. 3 𝜓(x̄, ȳ) = x̄ →̌ ȳ

Fig. 4 𝜓(x̄, ȳ) = (x̄⊙ ȳ∗)⊕ (x̄∗ ⊙ ȳ)

Example 3: The Łukasiewicz Implication

As in classical logic, also in Łukasiewicz logic we have implication (→̌), a propo-

sitional connective which is defined as follows: x̄ →̌ ȳ = x̄∗ ⊕ ȳ (Fig. 3).

Example 4: The Chang Distance

An important MV-formula is (x̄⊙ ȳ∗)⊕ (x̄∗ ⊙ ȳ), called Chang Distance, which is

the absolute value of the difference between x and y (in the usual sense) (Fig. 4).

6 Conclusions and Future Investigations

To sum up we:

1. propose Ł as a privileged class of multilayer perceptrons;

2. link Ł with Łukasiewicz logic (one of the most important many-valued logics);

3. show that we can use many properties of (Riesz) McNaughton functions for a

larger class of functions;

4. propose an equivalence between particular types of multilayer perceptrons,

defined by Łukasiewicz logic objects;

5. compute many examples of Łukasiewicz equivalent multilayer perceptrons to

show the action of the free variables interpretation.
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We think that using (in various ways) the interpretation layer it is possible to

encode and describe many phenomena (e.g. degenerative diseases, distorted signals,

etc.), always using the descriptive power of the Łukasiewicz logic formal language.

In the future investigations we will focus on:

∙ the composition of many multilayer perceptrons, to describe more complicated

phenomena and their relations;

∙ the implementation of a back propagation model, regarded as a dynamical system.
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