
Chapter 10
Big Data Techniques as a Solution to Theory
Problems

Richard W. Evans, Kenneth L. Judd, and Kramer Quist

Abstract This chapter proposes a general approach for solving a broad class of
difficult optimization problems using big data techniques. We provide a general
description of this approach as well as some examples. This approach is ideally
suited for solving nonconvex optimization problems, multiobjective programming
problems, models with a large degree of heterogeneity, rich policy structure, poten-
tial model uncertainty, and potential policy objective uncertainty. In our applications
of this algorithm we use Hierarchical Database Format (HDF5) distributed storage
and I/O as well as message passing interface (MPI) for parallel computation of a
large number of small optimization problems.

10.1 Introduction

Big data refers to any repository of data that is either large enough or complex
enough that distributed and parallel input and output approaches must be used (see
[9, p. 3]). Liran and Levin [6] discuss the new opportunities in economics using big
data, although they focus primarily on searching for important patterns in existing
datasets. Varian [8] describes the tools Google uses to address big data questions and
provides a mapping to the open source analogues of those proprietary tools. This
paper proposes a very different use of big data techniques, using efficient sampling
methods to construct a large data set which can then be used to address theoretical
questions as well as econometric ones. More specifically, we sample the parameter
space of a parametric model and use the large sample to address a research question.
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Furthermore, constructing the data sample is a large but fixed cost which allows one
to use high performance computing to cheaply answer many questions.

Our leading example is an optimal tax application from [2], but we also present
an econometric example. The approach described in this chapter is ideally suited
for solving nonconvex optimization problems,1 multi-objective programming prob-
lems, models with a large degree of heterogeneity, rich policy structure, potential
model uncertainty, and potential policy objective uncertainty.

Our implementation of these methods has used the Python programming lan-
guage with its integration with the Hierarchical Database Format (HDF5) and its
distributed storage and parallel I/O. However, these methods are general across
platforms. We will also detail a technique that is new to this area, which is using
equidistributed sequences both as an approximation-by-simulation technique as well
as an adaptive grid refinement technique by equidistributing a sequence on various
hypercubic subspaces.2

In Sect. 10.2, we give a general description of the big data approach to solving
theoretical problems, a computational description, and a description of our use of
equidistributed sequences. In Sect. 10.3, we describe an optimal taxation example of
this approach. Section 10.4 describes some other applications of this approach, with
a more detailed description of an econometric example. Section 10.5 concludes.

10.2 General Formulation of Big Data Solution Method

In this section, we first formulate a general class of problems that are amenable to
our big data solution method. We then outline the computational steps of the method
and describe some specific techniques that we use in our implementation. We then
describe in more depth one of the key tools we use—equidistributed sequences—to
efficiently find the set of solutions using our method. This method is scalable to a
large number of processors on a supercomputer and to quickly interface with a large
size database of individual behavior.

10.2.1 General Formulation of Class of Models and Solution
Method

We first describe a general class of models that are very amenable to big data
solution techniques. Let a mathematical model be represented by a general system

1Nonconvex optimization problems are problems in which the set of possible solutions is a
nonconvex set. Androulakis et al. [1] provide a nice introduction and references to general
nonconvex optimization problems, as well as common examples. See also [7].
2See [5, Chap. 9] on quasi-Monte Carlo methods for an introduction to the uses of equidistributed
sequences.
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of equations F .x; �/, where x is a vector of endogenous variables, � is a vector of
model parameters, and F is a vector of functions, each of which operates on some
subset of x and � . Let the solution to that system of equations be a particular vector
Ox.�/ such that,

Ox.�/ � argminxF .x; �/ : (10.1)

In other words, Ox.�/ is a solution to the model given a particular set of model
parameters. The specification in (10.1) could also be written as a maximization
problem and is general enough to include the solution Ox being the root of the vector
of equations F.

Optimal policy problems often take the form of choosing a subset of the
parameter vector � to minimize (or maximize) some scalar-valued function W of
a vector of scalar valued functions G of the optimized model equations,

O� � argmin�W

�
G
�

F
�Ox.�/; �

���
(10.2)

where Ox.�/ is defined in (10.1). If G is vector-valued, then the problem is a multi-
objective programming problem. The solution to the policy problem (10.2) is a
particular parameterization of the model O� and the model being solved for that
particular parameterization F

�Ox. O�/; O��.
When both the minimization problem in (10.1) and in (10.2) are convex, the

solution O� is straightforward to find with standard computational methods. However,
when either (10.1) or (10.2) is a nonconvex optimization problem, finding a solution
becomes very difficult and nonstandard computational approaches must be used.
Introducing nonconvex structures into the economic model F in (10.1)—such
as occasionally binding constraints or nonconvex budget sets—will render the
minimization problem in (10.1) nonconvex, thereby making it likely that the min-
imization problem in (10.2) is not convex. But more subtle model characteristics,
such as heterogeneity among the equations in F, can maintain the convexity of the
minimization problem in (10.1), but break it in (10.2).

10.2.2 Computational Steps to Big Data Solution Method

Our big data approach to solving theory problems, such as the one described
in (10.1) and (10.2), is summarized in Table 10.1. The first step is to make a large

database of model solutions and objective realizations Gn

�
Fn
�Ox.�n/; �n

��
, where

�n is the nth realization of the parameter vector � . The total number of parameter
vector realizations N for which the problem is solved is presumably large. One
reason why this is a big data solution technique is that the database of model
objectives and solutions for each N parameter vectors can be so large that it must be
distributed across multiple hard drives. This is step 1 in Table 10.1.
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Table 10.1 General summary of big data approach to theory problems

Step description Output

1. Solve the model for a large number N of parameter Gn

�
Fn

�Ox.�n/; �n

��

vector realizations �n.

2. Delete all realizations of the objectives vector Gn0 Frontier of

that are strictly dominated by at least one other Gn

�
Fn

�Ox.�n/; �n

��
realization of the objectives vector Gn.

3. If the frontier from step (2) is not smooth enough, Gn;p

�
Fn;p

�Ox.�n;p/; �n;p

��
draw P new realizations of the parameter vector

�n;p in the neighborhood of each remaining point

n on the objective vector frontier.

4. Delete all realizations of the objectives vector Frontier of

Gn0 ;p0 that are strictly dominated by at least one Gn;p

�
Fn;p

�Ox.�n;p/; �n;p

��
other realization of the objectives vector Gn;p

5. Repeat refinement steps (3) and (4) until frontier

is smooth.

6. If the objective function W is known, solve for O� D argmin� : : :

optimal parameter vector O� using Eq. (10.2). W

�
Gn;p

�
Fn;p

�Ox.�n;p/; �n;p

���

In generating our database of individual responses Ox.�n/ and the corresponding
vector of objectives Gn for realization of the parameter vector �n, we used the
Python programming language. We also use Python’s MPI (message passing
interface) library mpi4py for simultaneously running computations on multiple
processors. We ran this code on 12 nodes with a total of 96 processors on the
supercomputer at the Fulton Supercomputing Lab at Brigham Young University.3 In
addition to parallel computation, we also exploited Python’s library h5py, which
enables the HDF5 suite of data and file formats and parallel I/O tools.4 The Python
code in Fig. 10.1 shows some of the key operations that generate our database of
responses in the Sales Tax example of [2] described in Sect. 10.3. The code in
Fig. 10.1 is taken from multiple Python scripts that work together to solve many
model solutions simultaneously solve many sets of model equations for carefully
load-balanced sections of policy parameter space.

Lines 2 to 4 in Fig. 10.1 import Python’s implementation of MPI, define an MPI
communicator, and define a barrier that helps in load balancing. The number of
processors to be used as well as the wall time allowed for the computation are

3See https://marylou.byu.edu/ for information about the Fulton Supercomputing Lab at Brigham
Young University.
4See https://www.hdfgroup.org/HDF5/ for a general description of the HDF5 set of tools, and see
http://www.h5py.org/ for a description of the Python library which enables the HDF5 tools.

https://marylou.byu.edu/
https://www.hdfgroup.org/HDF5/
http://www.h5py.org/
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1 ...
2 from mpi4py import MPI
3 comm = MPI.COMM_WORLD
4 comm.Barrier()
5 start = MPI.Wtime()
6 ...
7 import h5py
8 ...
9 def init_database(comm, N, sequence_type, n_policies,

type_space, policy_space, tax_rates_same, filename,
verbose=True):

10 ...
11 with h5py.File(filename, ’w’) as f:
12 ...

Fig. 10.1 Python code importing mpi4py and h5py modules

part of a supercomputer-specific job script which tells the supercomputer to start
running the job. Once MPI has been enabled for use on multiple processors, we
import the HDF5 set of tools with the import h5py call. Line 9 of Fig. 10.1
shows one function init_database() that is run in parallel for as many Python
instances as we have told the supercomputer to create. Each separate instance is
designated by the comm object in the function. This function computes the solutions
to the model Ox.�n/ and Gn and then saves those solutions using the HDF5 parallel
I/O functionality of store commands after the command in line 11 of code with
h5py.File(filename, ’w’) as f:.

An arguably more important reason for using big data techniques has to do with
the manipulation of the database of model objectives and solutions after its creation.

Once the database of Gn

�
Fn
�Ox.�n/; �n

��
exists, note that we still have not solved for

the optimal parameter vector O� . In terms of the database, we want to know what is
the �n that minimizes some function of the objectives W from (10.2). HDF5 parallel
input-output techniques are very efficient at operations across distributed memory
such as weighted averages, nonlinear functions, minima, and maxima.

But now assume that you are not sure what the correct objective aggregating
function W is. In our approach, we search our database of responses and delete all
entries in the database Gn0 that are strictly dominated by another entry Gn. The first
panel in Fig. 10.2 shows the entire database of objective realizations for each �n

where there are two objectives (each Gn has two elements). In other words, each dot
represents G1;n and G2;n for a given vector of parameters �n. The second panel in
Fig. 10.2 shows the points on the frontier in terms of G1;n and G2;n for all n after
deleting all the strictly dominated points.

The execution in our code of this deletion of strictly dominated points, as shown
in the first two panels of Fig. 10.2, is something that we have had success in speeding
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Objectives realizations of Gn for all qn Objectives frontier after deleting
strictly dominated points Gn

Refined objectives frontier Gn,p
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Fig. 10.2 General process of finding the objectives Gn frontier

up and optimizing. We use a parallel quicksort routine in which we sort portions of
the points in the first panel along one dimension of objectives G1;n and then delete
data points in which the G2;n objective is dominated.

Often times, the frontier traced out in the first deletion of strictly dominated
points is too coarse. In that case, we do another step of choosing equidistributed
sequences of new realizations of �n in the neighborhood of each point on the
frontier. We then delete all the strictly dominated objectives from those new
realizations to find the refined frontier shown in the third panel of Fig. 10.2.

10.2.3 Virtues of Equidistributed Sequences

In choosing a grid size N of realizations of the parameter vector �n and in refining
around points on the objective vector frontier �n;p, it is important to have an efficient
method to keep track of all the points that are generated and which points get saved
in the database. Using equidistributed sequences provides that efficiency, both in
terms of spreading N points uniformly throughout a particular space and in keeping
track of those points.

Equidistributed sequences are deterministic sequences of real numbers where
the proportion of terms falling in any subinterval is proportional to the length of that
interval. A sequence fxjg1

jD1 � D � R
n is equidistributed over D if and only if
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Table 10.2 Equidistributed sequences in R
n

Name of sequence Formula for .x1; x2; : : : ; xn/

Weyl .fnp1=2
1 g; : : : ; fnp1=2

n g/

Haber
�˚ n.nC1/

2
p1=2

1

�
; : : : ;

˚ n.nC1/

2
p1=2

n
��

Niederreiter
�˚

n21=.nC1/
�
; : : : ;

˚
n2n=.nC1/

��
Baker .fner1 g; : : : ; fnern g/, rj rational and distinct

lim
n!1

�.D/

n

nX
jD1

f .xj/ D
Z

D
f .x/dx (10.3)

for all Riemann-integrable f .x/ W Rn ! R, where �.D/ is the Lebesgue measure
of D.

There are a number of equidistributed sequences that possess this property. Let
p1; p2; : : : denote the sequence of prime numbers 2; 3; 5; : : :, and let fxg represent
the fractional part of x, that is fxg D x � bxc. Table 10.2 contains examples of a
number of equidistributed sequences. Figure 10.3 shows the first 10,000 points for
two-dimensional Weyl, Haber, Niederreiter, and Baker sequences.

Baker et al. [2] and Bejarano et al. [3] use a scaled Baker sequence. Quasi-Monte
Carlo integration is used to integrate over the type space for each point in policy
space given the type space distribution. Quasi-Monte Carlo integration is similar to
Monte Carlo integration, but chooses points using equidistributed sequences instead
of pseudorandom numbers. This allows for a faster rate of convergence for a large
number of points. With N points in s dimensions, quasi-Monte Carlo techniques

converge in O
�

.log N/s

N

�
as opposed to O

�
1p
N

�
for Monte Carlo techniques.5

A key distinction between equidistributed sequences and pseudorandom
sequences is that equidistributed sequences do not look like random numbers.
As can be seen in Fig. 10.3, they generally display substantial serial correlation.
From the outset, equidistributed sequences are chosen so as to perform accurate
integration, and are not encumbered by any other requirements of random numbers

Another practical advantages of using equidistributed sequences is that it allows
one to represent the entire multi-dimensional space of parameters � in the minimiza-
tion problem (10.2) as a one-dimensional list, which allows for easy partitioning
across computing nodes. Additionally, using equidistributed sequences makes for
easy expansion of the database. One has merely to append additional points to the
end of the list.

5See [5, Chap. 9] on quasi-Monte Carlo methods for a more thorough discussion of the advantages
of using equidistributed sequences to execute simulation-based methods, Riemann-integrable
functions, and Lebesgue measure.
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Fig. 10.3 Four two-dimensional equidistributed sequences with n D 10;000

10.3 Optimal Tax Application

In this section, we highlight an application of the approach presented in Sect. 10.2
to a theory problem related to optimal taxation. This example is described in
[2] and solves for an optimal schedule of sales tax rates given a heterogeneous
population of consumers. In this sales tax problem, each individual’s optimization
problem—analogous to the general problem in (10.1)—is convex. However, because
of the heterogeneity across individuals, the policy maker’s problem in choosing the
optimal tax—analogous to the general problem in (10.2)—is not convex.

Baker et al. [2] set up an economic environment in which a policy maker must
choose a schedule of sales tax rates on the different types of goods consumed by
households and in which the population of households differs in terms of their
wage and their elasticity of substitution among eight different types of consumption
goods. Total consumption by a given household C is a constant elasticity of
substitution (CES) function of all the individual types of consumption ci the
household can choose,
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C �
 

8X
iD1

˛i.ci � Nci/
��1

�

! �
��1

8� � 1 (10.4)

where � � 1 is the elasticity of substitution among all of the consumption goods,
˛i 2 Œ0; 1� is the weight on the consumption of each type of good with

P
i ˛i D 1,

and Nci � 0 is a minimum level of consumption for each type of good.
Household’s face a budget constraint in which their total expenditure on con-

sumption goods must be less-than-or-equal-to their income, which in this case is
simply their wage.

8X
iD1

.1 C �i/ci � w (10.5)

The household’s objective function is a Constant Relative Risk Aversion (CRRA)
utility function defined over total consumption from (10.4),

u.C/ D C1�� � 1

1 � �
(10.6)

where � � 1 is the coefficient of relative risk aversion. The household’s opti-
mization problem is to choose a vector of consumptions c D fc1; c2; : : : c8g that
maximizes total utility (10.6) subject to the budget constraint (10.5).

Let a household’s type be defined by its wage w and its elasticity of substitution
�. The household’s problem is a convex optimization problem where the solution
is a vector of consumption functions c .w; �I �/ that are functions of a household’s
type .w; �/ and the vector of sales tax rates � D f�1; �2; : : : �8g as well as a utility

function u
�

c .w; �I �/
�

that is also a function of household type .w; �/ and the vector

of tax rates �. This problem is analgous to the problem in (10.1) in Sect. 10.2.
For any given sales tax regime �, there are as many different household utility

levels u
�

c .w; �I �/
�

and optimal consumption vectors c .w; �I �/ as there are

different types of individuals. Baker et al. [2] then choose 57,786 different sales
tax policy vectors � with 5,100 different types of individuals resulting in solving
nearly 300 million individual optimization problems.6 They assume that the policy
maker chooses the optimal sale tax schedule � to maximize some combination of the
total utility in the economy (the sum of individual utilities u) and total tax revenue.
Each point along the solid curve in Fig. 10.4 represents a sales tax policy � that is
on the frontier in terms of both total utility (x-axis) and total revenue (y-axis).

Figure 10.5 shows how the optimal sales tax policies � change across the frontier
in Fig. 10.4. That is, sales tax rates at the left-hand-side of Fig. 10.5 correspond to

6Table 3 in [2] details that this computation took 29.5 h of wall time using 96 processors. In serial,
this would have taken nearly 3,000 h (about 120 days), which is not feasible.
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Fig. 10.4 Total utility-revenue frontiers for optimal differentiated tax versus optimal flat tax

Fig. 10.5 Optimal tax rates for good i for different levels of total revenue

points on the frontier in the lower-right side of Fig. 10.4. Figure 10.5 shows which
taxes get increased first in the most optimal sales tax schedule as more total revenue
is required. Figure 10.5 represents the entire set of optimal sales tax schedules O� for
many different possible policy maker objective functions W over the two objectives
of total utility and total revenue.
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Baker et al. [2] use this framework to test the welfare and total revenue effects
of one optimal sales tax rate on all consumption goods instead of a set of optimal
tax rates on each consumption good. They also estimate the loss in revenue from
exempting a class of consumptions goods, such as some services are in the U.S.
economy. They find that there is only a small loss in total revenue from exempting
services from sales taxation. However, that loss is small only because other taxes
are higher in order to make up for the exempted category. Further they find a 30 %
loss in total tax revenue from a sales tax regime with only one optimally chosen tax
rate versus one in which multiple sales tax rates on goods are chosen optimally.

10.4 Other Applications

Multi-objective, nonconvex optimal policy problems abound of the form described
in Sect. 10.2. Optimal insurance contracts, political institutions, problems with
occasionally binding constraints, auction and mechanism design, and maximum
likelihood estimation are a few examples. But the big data approach in this paper is
also well-suited for models in which the individual problem from Eq. (10.1) takes
a long time to run for any given parameter vector �n. The strength of this big data
approach to these problems is that the model can be solved independently and in
parallel for a grid of points in parameter space �n. These solutions can be stored
and used by later researchers. These later researchers can either get their solution by
interpolating between the stored solutions, or by adding to the database in regions in
parameter space �n that are too sparse. To describe this class of problems, we define
a slightly different version of the model from Sect. 10.2.

Let an econometric model F .ˇ; �/ be defined over a vector of exogenous
parameters ˇ, whose values are taken from outside the model, and a vector of
endogenous parameters � , whose values are estimated by the model.

O� � argmin�F .ˇ; �/ (10.7)

The solution to the problem (10.7) is an optimal parameter vector O� .ˇ/ as a

function of exogenous parameters and a model solution F
�
ˇ; O� .ˇ/

�
as a function

of exogenous parameters.
One immediate econometric application of this big data approach is when the

minimization problem (10.7) is nonconvex, given an exogenous parameter vector ˇ.
This is often the case in maximum likelihood estimation. Through a large database
of potential endogenous parameter vector �n and refinements around the objective
function frontier, confidence that O� is the global optimum increases as the size of the
database increases. This is simply a non-derivative optimizer that uses an adaptive
grid search method.

However, this method becomes very valuable when each computation of a
solution O� .ˇ/ for a given exogenous parameter vector ˇ takes a long time. Many
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instances of maximum likelihood estimation fit this criterion. Imagine a model that
estimates region-r specific parameters �r for a given calibration of other parameters
ˇr for that region. Each estimation for a given region r and its calibrated parameters
ˇr might take a long time. If we have stored a database of precomputed solutions
O�r .ˇr/, then one can simply interpolate the estimation of a new region rather than
computing the solution again.

More generally, maximum likelihood estimation of the problem in (10.7) for
one particular realization of the exogenous parameters ˇ might require a long
computational time (sometimes days). If one were to precompute once and store
in a database the solutions to the problem O� .ˇ/ for a grid of potential exogenous
parameter realizations, solutions on the continuous space of potential exogenous
parameter vector realizations ˇ could be quickly computed by interpolating between
points saved in the database. One study for which this technique is currently being
employed is [4], which describes a difficult maximum likelihood estimation of a
quantile regression.

10.5 Conclusion

Computing capability is ever becoming more powerful, less costly, and more
broadly available. At the same time, the techniques to store and interact with large
datasets are also improving. We have described a novel approach to solving complex
minimization problems that combines the tools of MPI for parallel processing the
tools of parallel I/O for using big data techniques. This approach allows researchers
to solve optimal policy problems that are otherwise too complex. A leading example
is the optimal income tax problem from Sect. 10.3. This method has myriad other
applications ranging from optimal insurance contracts to maximum likelihood
estimation.
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