Chapter 12
Stem Cell Therapy for Retinal Disease
Treatment: An Update

Vamsi K. Gullapalli and Marco A. Zarbin

12.1 Introduction

Retinal degenerative conditions lead to loss of visual function due the inability of a
mammalian retina to repair or regenerate itself to a fully functional state. Use of
stem cells to restore the anatomy and function of a degenerating retina, and thus
vision, is an appealing concept. The most common of these conditions include age-
related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt dis-
ease (SD) (Zarbin 2016).

AMD affects 1.75 million persons in the USA and is the leading cause of blind-
ness in people over the age of 55 years in the USA and Europe (Wong et al. 2014).
Central vision is affected in AMD due to progressive degeneration of retinal pig-
ment epithelium (RPE), the underlying choriocapillaris and the overlying photore-
ceptors (PRs) leading to atrophic patches of outer retina (GA, geographic atrophy)
(Zarbin 2016). Central vision also can be affected by growth of abnormal blood
vessels (CNV, choroidal neovascularization) under the RPE and retina. There is no
proven therapy for GA, but there is effective drug therapy for CNV (Heier et al.
2012; Rosenfeld et al. 20006).

RP and SD are inherited retinal degenerations that cause vision loss in childhood
or young adulthood (Parmeggiani 2011). In RP, several different mutations affecting
the RPE or photoreceptors (PRs) lead to progressive degeneration of the outer retina
throughout the eye causing loss of peripheral and central vision. RP affects 100,000
persons in the USA. SD has a prevalence of 1:10,000 births and is the most common
inherited juvenile macular degeneration. Most cases are autosomal recessively
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transmitted and involve a mutation in PRs that causes progressive loss of central
vision (Genead et al. 2009). There are no proven treatments for either RP or SD that
might slow down the cell loss or restore lost vision.

While gene therapies and drug therapies are being explored as potential treat-
ments for these conditions (Ashtari et al. 2015; Jacobson et al. 2015), none of them
would be capable of restoring the PRs and RPE that are lost. Thus, in these cases,
replacing the lost cells is an attractive concept that has been explored in animal and
human studies. This article provides a brief overview of the use of stem cells in reti-
nal degenerations.

12.2 Goals of Stem Cell Therapy: Rescue and/or
Replacement

The goal of stem cell therapy is to either to “rescue” the surviving retinal cells (by
providing the necessary support or generating neurotrophic agents) and/or to
“replace” the cells that have degenerated. While the concept underlying replacement
is straightforward, it became evident from early studies in animals that transplanting
retinal cells has a positive effect on the survival of the adjacent cells as well as cells
at a distance from the site of the transplant. For example, in Royal College of
Surgeons (RCS) rats, a model for some forms of human RP, a mutation in transmem-
brane proto-oncogene tyrosine-protein kinase MER (MertK) in RPE causes poor
phagocytosis of shed PR outer segments that subsequently causes degeneration of
PRs (D’Cruz et al. 2000). Transplanting normal RPE had a positive effect not only
in the immediate vicinity of the transplant site (by replacing the ineffective RPE) but
also preserves PRs as far as away from the transplanted RPE as 1400 pm (Lund et al.
2001; Vollrath et al. 2001). This benefit was not due to migration of the transplanted
cells and points to a trophic effect of the transplant. Indeed, RPE cells are known to
produce several PR trophic factors (Kolomeyer and Zarbin 2014; Sun et al. 2015).
The distinction may not simply be semantics. If only the outer segment (OS) of a PR
has degenerated, for example, and rescue allows the OS to regenerate, then the goal
of visual restoration is achieved in a less complicated way without the struggle of
reconnecting a transplanted PR with the host retina (Sakai et al. 2003; Zarbin 2016).

12.3 RPE and PRs from Stem Cells

RPE can be harvested from human donor eyes, but they neither grow robustly, nor
do they survive well in humans after transplantation. RPE derived from fetuses fare
better, but ethical concerns as well as the limited ability to generate large numbers
of genetically normal donor cells with serial passage prevent widespread evaluation
and use. Stem cells, by nature of their virtually unlimited self-renewal and pluripo-
tency, are a more attractive source for donor tissue.
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Table 12.1 Sources of stem cells for retinal disease treatment

Example of
Cell type therapeutic cell type | Advantages Disadvantages
Embryonic stem ESC-derived retinal | Pluripotency Likely to be rejected if

cell (ESC)

pigment epithelium
(RPE)

Grown relatively easily

donor is allogneic

Adult stem cell

Bone-marrow
derived stem cells
Neural precursor
cells

Multipotency
Not rejected if
transplanted into donor

Can be relatively hard to
Harbors disease-causing
genes of donor harvest

Induced iPSC derived RPE | Pluripotent May retain epigenetic
pluripotent stem Grown relatively easily | features of cell type of
cell (iPSC) Probably not rejected origin
when injected into the Harbors disease-causing
donor genes of donor

Reproduced from Zarbin (2016) with permission from Elsevier

Embryonic stem cells (ESCs), derived from the inner cell mass of the blastocyst,
can differentiate into cells of ectoderm, mesoderm, and endoderm (Reubinoff et al.
2000; Thomson et al. 1998). Further downstream in the differentiation of the retina
is an intermediate cell type with relative reduced proliferative capacity, the multipo-
tent retinal progenitor cell (RPC) (Luo et al. 2014; Marquardt 2003) that could also
be a potential source of RPE and PRs. These cells have also been isolated from fetal
and adult human eyes (Carter et al. 2007; Coles et al. 2004; Mayer et al. 2005; Yang
et al. 2002; Blenkinsop et al. 2013).

Stem cells can be derived from adult tissues; multipotent stem cells have been
found in various organs (Gage 2000; Weissman 2000), including the eye (Saini et al.
2016; Salero et al. 2012). In addition, stem cells isolated from a particular tissue can
be induced to differentiate into an unrelated tissue. For example, neural stem cells
can be induced to develop into muscle.

Pluripotent stem cells can also be generated by somatic nuclear transfer from an
adult/fetal/neonatal cell into an unfertilized oocyte (Chung et al. 2014; Tachibana
etal. 2013; Yamada et al. 2014), or by transfection of a differentiated adult cell with
transcription factors that reactivate developmentally regulated genes, so called
induced pluripotent stem cells (iPSCs) (Park et al. 2008; Takahashi et al. 2007) (see
Table 12.1). Genetically matched cell lines might thus be generated for autologous
transplants (Yabut and Bernstein 2011).

Protocols have been developed to derive retinal cells from ESCs (Osakada et al.
2008; Lamba et al. 2006; Yanai et al. 2016). These cells can rescue PRs in RCS rats
(Schraermeyer et al. 2001) or migrate into rabbit retina and express PR markers
such as S-opsin and rhodopsin (Amirpour et al. 2012). RPE cells also have been
generated from ESCs (Gong et al. 2008; Idelson et al. 2009; Klimanskaya et al.
2004; Lund et al. 2006). These cells also rescue PRs in RCS rats (Lund et al. 2006)
and express RPE characteristics including ion transport, resting membrane potential,
transepithelial resistance, and visual pigment recycling (Bharti et al. 2011; Maeda
etal. 2013).
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Other potential sources have been explored. In situ RPE have been recently
found to contain a small population of multipotent cells (RPE-ESC) that can be
cultured (Saini et al. 2016; Salero et al. 2012) although they may not have the same
expansion capability as ESC- or iPSC-derived RPE. Bone marrow-derived stem
cells (mesenchymal stem cells) have also been used to generate RPE (Arnhold et al.
2006; Mathivanan et al. 2015). By using surface markers to select the stem cells that
have the potential to differentiate into RPE and then co-culturing with mitomycin
C-inactivated RPE cells, Mathivanan and coworkers showed that these cells exhibit
some of RPE markers and are capable of rescuing PRs after transplantation into
RCS rats (Mathivanan et al. 2015). The above two sources may have limitations due
to the number of cells that can be derived from them and the lack of complete char-
acterization of these cells.

Can stem cells be differentiated into fully functional RPE and PRs? As noted
above, RPE cells that have been derived from ESCs and iPSCs need to exhibit proper
ion transport, membrane potential, ability to phagocytose shed PR OSs, polarized
vascular growth endothelial growth factor secretion (to maintain normal subjacent
choriocapillaris anatomy), visual pigment recycling, and gene expression profiles
similar to those of in situ healthy RPE. Expression of these features has varied from
lab to lab. A thorough and comprehensive group of functional tests to ascertain the
extent of stem cell-derived RPE differentiation has been proposed (Bharti et al.
2011). Using current manufacturing techniques, stem cell-derived RPE can perform
the expected functions after transplantation into rodent models of retinal degenera-
tion (Kamao et al. 2014; Maeda et al. 2013; Li et al. 2012; Tsai et al. 2015).

12.4 Experimental Studies and Challenges

Table 12.2 lists ongoing human stem cell trials for retinal degenerative diseases. Stem
cells being used include iPSC-RPE, ESC-RPE, iPSC-neural precursor cells (NPCs),
bone marrow-derived stem cells, and human central nervous system derived stem
cells among others. It is too early to judge the outcome of these sources of tissue. A
number of challenges remain that may hinder a successful outcome. Growth arrest
due to rapid telomere shortening, chromosomal DNA damage, and increased cyclin-
dependent kinase inhibitor 1 (p21) expression (Feng et al. 2010; Kokkinaki et al.
2011), for example, can limit the success of iPSC transplant survival and function.

12.4.1 Stem Cells for Human Transplantation

Generating adequate stem cells in an efficient, rapid, and safe manner would permit
widespread use. Phenotypic instability or altered gene expression during serial pas-
saging in culture, including up-regulation of oncogenes, might occur and mandate
careful monitoring of the manufacturing process (Klimanskaya et al. 2004; Anguera
et al. 2012; Shen et al. 2008).
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Table 12.2 Current human cell therapy trials for retinal diseases
Disease
(Clinicaltrials.gov Cell type
Identifier) Phase transplanted | Center (PI) Sponsor
AMD Observational | iPSCs Hadassah Hadassah Medical
(NCT00874783) Medical Organization
Organization
(Reubinoff)
AMD-GA I ESC-RPE Hadassah Ein Cell Cure
(NCT02286089) Kerem Neurosciences
University
Hospital (Hemo)
AMD-GA /1 Bone Al-Azhar Al-Azhar
(NCT02016508) marrow- University University
derived SCs | (Safwat)
AMD-GA I/Ma ESC-RPE on | Retina Vitreous Regenerative
(NCT02590692) a polymeric | Associates Patch
substrate Medical Group Technologies
(CPCB- (Rahhal)
RPE) USC Keck
School of
Medicine
(Kashani)
AMD-CNV 1 ESC-RPE on | University Pfizer
(NCT01691261) a polyester College London
membrane (Pfizer)
AMD-GA or CNV Observational | Autologous | Moorfields Eye | Moorfields Eye
(NCT02464956) iPSC-RPE Hospital Hospital NHS
Foundation Trust
AMD Interventional | Bone Retina Retina Associates
(NNCT01920867) marrow- Associates of of South Florida
derived SCs | South Florida
(Weiss)
AMD-GA 1 Bone University of University of
(NCTO01736059) marrow- California, Davis | California, Davis
derived (Park)
CD34+ SCs
AMD-CNV Interventional | Autologous | Riken Institute Riken Institute for
iPSC-RPE for Developmental
Developmental Biology
Biology
(Takahashi)

(continued)
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Disease
(Clinicaltrials.gov Cell type
Identifier) Phase transplanted | Center (PI) Sponsor
Stargardt disease il ESC-RPE Jules Stein- Ocata
(NCTO01345000, (MAO09- UCLA Therapeutics
NCT02445612, hRPE) (Schwartz)
NCT01469832) Wills Eye
Hospital
(Regillo)
Bascom Palmer
Eye Institute
(Lam)
Moorfields Eye
Hospital
(Bainbridge)
AMD-GA il ESC-RPE Jules Stein- Ocata
(NCT01344993, (MA09- UCLA Therapeutics
NCT02563782, hRPE) (Schwartz)
NCT02463344) Wills Eye
Hospital
(Regillo)
Mass. Eye and
Ear Infirmary
(Eliott)
Bascom Palmer
Eye Institute
(Rosenfeld)
AMD-GA i HuCNS-SC | Retina StemCells
(NCT01632527) Foundation of
the Southwest
(Birch)
AMD-GA /11 ESC-RPE CHA Bundang CHA Bio and
(NCT01674829) (MA09- Medical Center | Diostech
hRPE) (Song)
Stargardt disease I ESC-RPE CHA Bundang CHA Bio and
(NCT01625559) (MAO09- Medical Center Diostech
hRPE) (Song)
Myopic macular /1 ESC-RPE Jules Stein- Ocata
degeneration (MA09- UCLA Therapeutics
(NCT02122159) hRPE) (Schwartz)
AMD-GA I CNTO 2476 | Wills Eye Janssen Research
(NCTO01226628) (umbilical Hospital (Ho) and Development
tissue-
derived

cells)
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Table 12.2 (continued)
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Disease
(Clinicaltrials.gov Cell type
Identifier) Phase transplanted | Center (PI) Sponsor
AMD-GA or CNV il Autologous | University of University of Sao
(NCTO1518127) bone Sao Paulo, Paulo

marrow- Brazil (Siqueira)

derived SCs
RP and cone-rod /11 Autologous | University of University of Sao
dystrophy bone Sao Paulo, Paulo
(NCTO01068561) marrow- Brazil (Siqueira)

derived SCs

Reproduced from Zarbin (2016) with permission from Elsevier
12.4.2 Cell Delivery

Various techniques have been used and are being explored to allow for an efficient
and effective delivery of transplanted cells to the retina. The transplant cells may be
injected into the vitreous (Park et al. 2015) or into the subretinal space (Schwartz
etal. 2015; Li et al. 2012) as a cell suspension (intravitreous or subretinal delivery)
(Diniz et al. 2013) or as a sheet of cells (subretinal delivery) (Kamao et al. 2014)
with or without a biocompatible scaffold (Hsiung et al. 2015; Redenti et al. 2008;
Tao et al. 2007; Tucker et al. 2010; Stanzel et al. 2014). Advantages of a cell suspen-
sion include ease of preparation and ease of delivery through a small retinotomy.
However, there is little control of how transplanted cells reorganize in the subretinal
space. The cells may form multilayers; they may not be polarized in the correct
way; and the cells, especially RPE transplants, will need to re-attach to an abnormal
Bruch’s membrane surface. Cells sheets, on the other hand, allow for placement of
properly polarized cells (e.g., apical villi of RPE facing PR OSs) that can start func-
tioning immediately, and the scaffold that holds the cell sheets may allow for inte-
gration of growth factors or immunomodulatory factors to promote transplant
survival and function. The scaffold may also confer some degree of protection
against Bruch’s membrane-induced cell death. Placement of cell sheets, however,
requires a larger retinal opening that could potentially lead to egress of transplanted
cells or retinal detachment after surgery.

Different potential scaffolds to support RPE sheet transplants are being explored
(Kundu et al. 2014; Nazari et al. 2015). These include vitronectin-coated polyester
membranes (Carr et al. 2013) and parylene C scaffolds manufactured using nano-
technology (Lu et al. 2012, 2014).

Transplants of PR sheets have consisted of either PR sheets, full thickness retinal
sheets, or retina-RPE sheets (Assawachananont et al. 2014; Radtke et al. 2008;
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Huang et al. 1998; Radtke et al. 1999). While the full thickness retina can still estab-
lish synaptic connections and restore visual responses in rats (Seiler et al. 2010), for
example, whether patients would experience useful visual improvement given the
altered anatomy of a “double” retina is not clear. How a suspension of PRs com-
pares to a sheet of pure PRs is also not known.

12.4.3 Transplant Survival, Differentiation, and Integration

For transplantation to be successful, RPE must survive in the subretinal space, re-
attach to the underlying Bruch’s membrane (the structure on which RPE normally
reside), be polarized so that PR OSs can be phagocytosed by the apical villi, and
establish an outer blood-retinal barrier (e.g., via tight junctions between adjacent
RPE cells). PR transplants will need to survive, extend axons to form synapses with
the host bipolar cells one side, and extend OSs towards the native RPE cells on the
other side. Loss of PRs due to mutations or retinal detachment leads to subsequent
synaptic rewiring between other interconnected retinal cells (Khodair et al. 2003;
Lewis et al. 1998; Jones et al. 2003). In other words, a mere integration of the trans-
planted PRs with the downstream bipolar cells alone may not be sufficient for com-
plete visual recovery due to synaptic rewiring of the retina that occurs once host PRs
have degenerated.

Results from preclinical models of RP indicate that if one transplants suspen-
sions of rod PRs into the subretinal space, the cells need to be of a specific develop-
mental stage for the transplant to have the highest chance of success. Specifically,
post-mitotic rod precursors that express the rod-specific transcription factor, Nrl, yet
are morphologically immature, seem to give the best results (MacLaren et al. 2006;
Pearson 2014; Pearson et al. 2012; Akimoto et al. 2006). In addition, with current
techniques, it is important to transplant a large number of cells (~200,000) to achieve
improved visual function. Wild-type rod PR precursors generated from fetal tissue
and transplanted into rd1 mice (which lack phosphodiesterase-6-beta (Pde6b) and
exhibit rapid rod PR death after birth) express Pde6b in an appropriately polarized
fashion, exhibit abnormally short OSs, and support improved visual function (Singh
etal. 2013). In the rd1 recipients, the host bipolar and Muller cells extend processes
into the PR graft and appear to make synaptic contact with the donor PRs (Singh
et al. 2013). Gonzalez-Cordero and co-workers harvested developing PRs from
optic cups generated from ESCs in vitro and noted that best integration with host
rdl retina occurs when these PR precursors are still immature but committed to
becoming PRs, which is quite similar to the results observed when using fetal tissue
as the source of PR precursors (Gonzalez-Cordero et al. 2013). Host retinal anat-
omy can modulate the efficacy of PR transplantation. If the host retina has signifi-
cant PR damage and abnormal anatomy, the transplanted PRs also tend to exhibit
abnormal and limited synapse formation (Barber et al. 2013). Glial scarring limits
integration in more advanced stages of retinal degeneration, and attenuating the
glial barrier helps promote better integration in some types of retinal degeneration
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(Pearson 2014; Barber et al. 2013; Pearson et al. 2010; Hippert et al. 2016). An
additional barrier may be the external limiting membrane (ELM), which is formed
by the junction of Muller cell apical processes and PR inner segments via adherens
junctions. In one study, transient ELM disruption using alpha amino adipic acid
improved PR precursor integration by ~100% (West et al. 2008; Pearson et al.
2010). Indeed, in retinal degenerations associated with ELM disruption, there is
greater integration of transplanted PRs with host retina (Barber et al. 2013).

In principle, it should be easier to achieve clinically successful outcomes after
RPE transplantation (for the purpose of “rescue”) than after PR transplantation (for
the purpose of “replacement”) since RPE integrate with host PRs spontaneously.
Thus, the only challenge for a successful RPE transplant, apart from the need to
control immune surveillance, involves resurfacing an atrophic patch in the foveal
area in AMD patients with GA. Transplanted RPE have been shown to survive and
rescue PRs in numerous preclinical studies. However, human studies have not
resulted in a comparable degree of success (Binder et al. 2007; Gullapalli et al.
2012). RPE survival has been shown to be poor when transplanted onto Bruch’s
membrane from aged human cadaver eyes or eyes with advanced AMD with GA
(Sugino et al. 201 1b; Gullapalli et al. 2005). In addition, human Bruch’s membrane
has been shown to undergo changes resulting from aging including thickening,
advanced glycation end-product formation, lipid and protein deposition, and protein
crosslinking (Zarbin 2004). As mentioned above, one way to address this issue
would be to use scaffolds on which transplanted RPE could be delivered as a differ-
entiated cell sheet in which the scaffold provides a surface conducive to cell survival
and prevents contact of the transplant with subjacent host Bruch’s membrane. Use of
conditioned medium derived from bovine corneal endothelial cells has been shown
to improve transplanted RPE survival on human cadaver eyes with GA (Sugino et al.
2011a) by altering cell behavior on this surface. Identification of molecules respon-
sible for this effect might allow development of an adjunct that would improve trans-
planted RPE cell survival in AMD eyes, even when cell suspensions are used.

12.4.4 Immune Response

The subretinal space is an immune privileged site, i.e., allografts survive longer in
this privileged site compared to a non-privileged site such as the subconjunctival
space. Native neonatal RPE behaves as an immune privileged tissue, i.e., RPE resist
rejection at heterotopic sites (Wenkel and Streilein 2000). Do stem cell-derived RPE
behave as immune privileged tissue? ESCs and their derivatives have been shown to
escape a host immune rejection for a long time (Yuan et al. 2007). This phenomenon
may be due to low expression of human leukocyte antigen (HLA) class I molecules
and no expression of class II molecules in their resting or differentiated state
(Drukker et al. 2002). ESCs have also been shown to suppress T-cell proliferation
(Li et al. 2004). iPSCs, on the other hand, appear to capable of inducing immune
rejection (Sohn et al. 2015), even if autologous (Zhao et al. 2011).
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Disruption of the blood-retinal barrier can be a significant factor in stimulating
the immune response. For example, disruption of native RPE (e.g., using sodium
iodate) results in loss of the immune privilege of the subretinal space. Preservation
of the barrier diminishes the immune response (Lu et al. 2010). RPE transplants
in rabbits require immune suppression for sustained cell survival, (Stanzel et al.
2014) but this result may be due to the merangiotic nature of rabbit retina (i.e.,
only a choroidal blood supply for most of the retina) (De Schaepdrijver et al.
1989). In contrast, human retina is holangiotic (i.e., the retinal and choroidal
circulation provide blood flow to the retina). Activation of the innate immune
system can lead to activation of the adaptive immune system, which mediates
immune surveillance. As a result, it is important to use surgical techniques and
devices that minimize disruption of the blood retinal barrier and that incite acute
inflammation.

Microglial activation in the host retina has been attributed to failure of grafts to
survive and integrate (Bull et al. 2008; Singhal et al. 2008). Suppression of microg-
lial activation may improve transplant survival and integration (Xian and Huang
2015).

Postoperative immune suppression will likely be needed for RPE transplants,
but elderly patients with AMD may not be able to tolerate extended periods of
immune suppression (Tezel et al. 2007). Long-acting intravitreal steroid prepara-
tions may be of use. It is not clear that PR transplants will require long-term
immune suppression as these cells exhibit very low MHC class II expression.
However, if full thickness retina transplants are used or if impure PR prepara-
tions are used, then transplantation of microglia will probably activate a host
immune response.

12.4.5 Tumor Formation

One of the important risks of stem cell transplants is development of tumors.
When ESC-derived neural precursors were injected into the subretinal space of
rhodopsin knockout mice, 50 % of the eyes developed tumors (teratomas) within
8 weeks (Arnhold et al. 2004). (These mice have a mutation resembling autoso-
mal dominant RP.) When iPSC and ESC mouse lines were compared, there was
high incidence of teratoma formation with both of them (Araki et al. 2013).
There have been no reported tumor issues with patients with SD and AMD who
have received ESC-derived RPE cells (Song et al. 2015; Schwartz et al. 2015).
iPSC cell lines may be more prone to genetic instability due to the risk of inser-
tional mutagenesis from use of viral vectors and use of oncogenic factors such
as c-Myc during cell production. Use of non-integrating reprogramming meth-
ods in the production of iPSC cell lines might reduce the risk (Kang et al. 2015)
by increasing genomic stability. Nonetheless, careful sustained monitoring will
be needed.
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12.5 Conclusion

The concept of transplanting healthy cells into diseased retina to restore vision is
appealing. Significant progress has been made during the last 30 years. Preclinical
testing has demonstrated the feasibility of cell-based therapy for the purpose of
sight preservation as well as sight restoration. This research also has identified
obstacles to success including graft survival and differentiation as well as immune
rejection. Strides in stem cell research have allowed for expanding the field signifi-
cantly. Early phase human trials using stem cell-derived donor tissue have also been
promising. Continuing research in various aspects of transplantation- establishing
cell lines without danger of tumor formation or immune rejection, refining surgical
techniques and instruments, and identifying factors that promote cell survival, dif-
ferentiation, and integration of the transplanted cells, should allow for rapid and
continued progress in the field.
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